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SIGNATURES, MONOPOLES AND
MAPPING CLASS GROUPS

D. Kotschick

Abstract. Using the Seiberg–Witten monopole invariants of 4–manifolds, we
prove bounds on the signatures of surface bundles over surfaces. From these
bounds we derive consequences concerning characteristic classes of flat bundles
and the minimal genus of surfaces representing 2–homology classes of mapping
class groups.

1. Introduction

It is a classical result of Chern, Hirzebruch and Serre that the signature is
multiplicative in fibre bundles in which the fundamental group of the base acts
trivially on the cohomology of the fibre. Kodaira and, independently, Atiyah
gave examples of surface bundles over surfaces with non–zero signature, showing
that some assumption on the monodromy is necessary for multiplicativity of the
signature. Given the examples of Atiyah and Kodaira, it is clear that there
are surface bundles over surfaces with arbitrarily large signatures, because one
can always pull back a given bundle to a finite unramified covering of the base,
thereby multiplying the value of the signature by the covering degree. It is then
interesting to prove upper bounds on the absolute values of the signatures of
surface bundles over surfaces in terms of other invariants, particularly the Euler
characteristic, which is what we do in this paper.

The bounds we prove have two interpretations in terms of surface topology.
Firstly, they imply new bounds on the characteristic numbers of flat bundles
over surfaces whose monodromy representations factor through the mapping
class group. Comparing these bounds with the Milnor inequality, we obtain
a new obstruction to lifting symplectic representations to the mapping class
group. Secondly, and most interestingly, we obtain lower bounds on the Gromov–
Thurston norm of 2–dimensional homology classes of mapping class groups. No
non–trivial lower bounds were known previously.

Our arguments are based on the observation that, using the Thurston con-
struction, surface bundles over surfaces can be given symplectic structures com-
patible with both choices of orientation. Results about the Seiberg–Witten in-
variants of symplectic 4–manifolds then imply bounds on the signature.
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In [9] we showed that if a 4–manifold carries complex structures compatible
with both choices of orientation, then its signature must vanish. This is no
longer true for symplectic manifolds, as shown by surface bundles over surfaces.
However, if a closed 4–manifold X is symplectic for both choices of orientation,
then the symplectic structures must both be minimal, as X cannot contain
embedded spheres of non–zero selfintersection, cf. [9]. Taubes [17, 18] proved
the existence of symplectically embedded surfaces representing the canonical
class, which implies

3
∣
∣σ(X)

∣
∣ ≤ 2χ(X),(1)

unless X is ruled. This shows in particular that X satisfies the 11
8 –conjecture.

For a general 4–manifold which is symplectic for both choices of orientation
it is difficult to say more, though we conjecture that such a manifold must be
aspherical if it is not ruled. The only examples with non–zero signature that
we are aware of are the surface bundles over surfaces studied in this paper. For
these we will improve (1) in Theorem 2 below.

2. Signatures of surface bundles

Let X be a smooth closed orientable 4–manifold which is a smooth fibre
bundle with base B a surface of genus g ≥ 2 and fibre F a surface of genus
h ≥ 2. We shall always assume that all the manifolds involved are oriented
coherently, and X will denote the total space with its orientation. Note that X
is aspherical.

For every such surface bundle X we have:

(2)
∣
∣σ(X)

∣
∣ ≤ b2(X) = χ(X) − 2 + 2b1(X)

≤ χ(X) − 2 + 2b1(B) + 2b1(F ) = 4gh + 2,

where σ(X) denotes the signature of X, and χ(X) its Euler characteristic.
As g > 0, the base B has unramified coverings of arbitrarily high degree d.

Pulling back the fibration to such coverings, we obtain surface bundles Y whose
signatures are d–fold multiples of the signature of X. Letting d go to infinity,
the inequality (2) applied to Y instead of X gives

∣
∣σ(X)

∣
∣ ≤ 4(g − 1)h.(3)

The first improvement on this trivial inequality is:

Proposition 1. Let X be an aspherical surface bundle. Then
∣
∣σ(X)

∣
∣ ≤ χ(X).(4)

Proof. Fix a finite unramified covering F ′ → F , corresponding to a normal
subgroup π1(F ′) ⊂ π1(F ). There is a finite index subgroup of the mapping
class group of F leaving this subgroup invariant, cf. Lemma 4.1 in [14]. This
shows that after replacing the fibration X → B by its pull–back to a finite
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unramified covering of B, we may assume that X has a finite fibrewise unramified
covering of degree > 1. Passing to this covering and iterating the construction,
we obtain a sequence of coverings which are surface bundles with growing h.
As the fibre genus goes to infinity the inequality (3) applied to these coverings
implies |σ(X)| ≤ 4(g − 1)(h − 1) as claimed.

Here is our main result about the signatures of surface bundles.

Theorem 2. Let X be an aspherical surface bundle over a surface. Then

2
∣
∣σ(X)

∣
∣ ≤ χ(X).(5)

Proof. As h �= 1, the fundamental class of the fibre cannot be zero in H2(X, R),
and so there exists a closed 2–form ε on X whose integral over each fibre is
positive. It is easy to arrange the restriction of ε to be non–degenerate on each
fibre, cf. [19]. Let v be a volume form on B, and ωt = ε + tπ∗v. Then ωt is
closed for every t ∈ R, and

ωt ∧ ωt = ε ∧ ε + 2tε ∧ π∗v.

Thus, for t >> 0 and t << 0 respectively, ωt is a symplectic form on X compat-
ible, respectively not compatible, with the orientation of X.

From Proposition 1 we have |σ(X)| ≤ χ(X). Thus

b2(X) − ∣
∣σ(X)

∣
∣ = χ(X) − 2 + 2b1(X) − ∣

∣σ(X)
∣
∣ ≥ 2b1(X) − 2 ≥ 4g − 2 ≥ 6,

which means that with either choice of orientation X has b+
2 ≥ 3.

As X is aspherical, any symplectic structure on it is minimal. Further, for
the structure constructed above the canonical class K cannot be zero as K ·F =
2h − 2 �= 0 by the adjunction formula applied to the symplectic submanifold
F ⊂ X.

It follows from the work of Taubes on the Seiberg–Witten and Gromov invari-
ants [17, 18, 8] that there is a smooth symplectically embedded surface Σ ⊂ X
representing K. This surface may not be connected, but in any case it has no
spherical component. In the argument below we shall tacitly assume that Σ is
connected. In the disconnected case the same argument works, by summing over
the components.

The bundle projection X → B induces a smooth map Σ → B whose degree
d is the algebraic intersection number Σ · F = K · F = 2h − 2. By Kneser’s
theorem1, we must have g(Σ)−1 ≥ d(g−1). The adjunction formula for Σ gives

g(Σ) − 1 =
1
2
(Σ2 + Σ · K) = K2 = 2χ(X) + 3σ(X).

Substituting into Kneser’s inequality we find χ(X) ≥ −2σ(X).
The same argument applied to the manifold X endowed with the opposite

orientation gives χ(X) ≥ 2σ(X).

1This follows from the results of Milnor [13], see 4.1 below.
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The inequality (5) is unlikely to be sharp. Here is an improvement under
additional geometric hypotheses:

Theorem 3. Let X be an aspherical surface bundle over a surface. If X ad-
mits a complex structure (not necessarily compatible with the orientation), or an
Einstein metric, then

3
∣
∣σ(X)

∣
∣ ≤ χ(X).(6)

Proof. Suppose X admits a complex structure. After possibly reversing the
orientation, we may assume that the complex structure is compatible with the
orientation. As X is aspherical, it is a minimal surface. Its Chern numbers
c2(X) = χ(X) = 4(g − 1)(h − 1) > 0 and c2

1(X) = 2χ(X) + 3σ(X) ≥ 2χ(X) −
3|σ(X)| ≥ 1

2χ(X) = 2(g − 1)(h − 1) > 0 by Theorem 2. Thus X is of general
type by the Kodaira classification of surfaces.

Now X is a surface of general type for which the underlying manifold endowed
with the other, non–complex, orientation is symplectic and therefore has non–
zero Seiberg–Witten invariants [16, 8]. Thus Theorem 1 of [9] gives

σ(X) ≥ 0.

This, together with the Miyaoka–Yau inequality

3σ(X) ≤ χ(X),

implies (6).
Suppose that X admits an Einstein metric. As it is also symplectic, it has

non–zero Seiberg–Witten invariants and by the result of [10] satisfies 3σ(X) ≤
χ(X). The same argument for the manifold with the other orientation gives
−3σ(X) ≤ χ(X).

I believe that any surface bundle over a surface with g, h ≥ 2 satisfies (6)
strictly. The known examples [1, 7, 14] would allow for even stronger inequalities.

3. The signature as a 2–dimensional characteristic number

The component of the identity of the diffeomorphism group Diff(F ) is con-
tractible, so that a surface bundle X over a surface B is determined by its
monodromy representation

ρ : π1(B) −→ Γh,

where Γh = Diff(F )/Diff0(F ) is the mapping class group of the fibre F .
Composing ρ with the obvious homomorphisms

Γh
φ−→ Sp(2h, Z) i−→ Sp(2h, R),
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we obtain a flat vector bundle E → B, whose fibres are the first homology groups
of the fibres of X → B. Applying the Atiyah–Singer index theorem to the family
of fibrewise signature operators shows2

∣
∣σ(X)

∣
∣ = 4

∣
∣〈c1(E), [B]〉∣∣,(7)

as in [1, 11, 14]. Meyer [11] showed that this formula holds for local coefficient
systems π1(B) → Sp(2h, R) which do not necessarily factor through Γh. Then
X may not exist as a manifold, but the first homology of the local coefficient
system still has a non–degenerate symmetric bilinear form whose signature plays
the role of the signature of X.

The image of the monodromy representation ρ will be called the monodromy
group of the bundle X. By abuse of language, we sometimes also call the image
of φ ◦ ρ the monodromy group.

In the special case of surface bundles over surfaces, the result of Chern, Hirze-
bruch and Serre [2] is that the signature vanishes if φ ◦ ρ is trivial. If φ ◦ ρ has
finite image, the same conclusion holds because one can pull back the bundle to
the finite covering of B whose fundamental group is the kernel of φ ◦ ρ, and use
the multiplicativity of the signature in finite unramified coverings. More gener-
ally, Morita [15] has proved that a surface bundle with amenable monodromy
group has zero signature. However, the signature is not usually determined by
the monodromy group. The following result shows that the signature depends
on the monodromy representation, not just its image, the monodromy group.

Proposition 4. Every finitely generated subgroup of Γh (respectively of
Sp(2h, Z)) is the monodromy group of a surface bundle with zero signature.
Moreover, the bundle can be chosen to be flat in the sense that its monodromy
representation lifts to Diff(F ).

Proof. Given a generating set with k elements for the monodromy group, we
choose preimages φ1, . . . , φk of the generators in Diff(F ). If the genus g of
B is at least k, we can map π1(B) onto the free group on k generators in the
obvious way, and then map the generators of this free group to the φi. This
gives a monodromy representation for a flat surface bundle with fibre F . The
Chern class of the associated local coefficient system over B vanishes because it
is pulled back via the classifying space of a free group, which has trivial second
cohomology.

In view of (7), bounding the signatures of surface bundles X amounts to
bounding the first Chern numbers of certain flat Sp(2h, R)–bundles over the
base B. It is a well–known observation usually attributed to Lusztig that there
are only finitely many values for the characteristic numbers of flat bundles be-
cause the representation variety is algebraic, and therefore has finitely many
components. An explicit bound is called a Milnor inequality, because Milnor [13]
proved the first such bound in the case h = 1. We shall deduce from Theorem 2

2The sign ambiguity in (7) can of course be removed.
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that flat vector bundles whose monodromy representations factor through the
mapping class group Γh satisfy much stronger bounds than arbitrary symplectic
flat bundles.

4. Milnor inequalities and bounded cohomology

We consider a closed oriented surface B of genus g and a representation of
π1(B) in Sp(2h, R). In order to see how liftings of the representation to the
mapping class group Γh influence the bound on the first Chern number, we
deviate temporarily from our assumption h ≥ 2 and recall the classical case
h = 1 considered by Milnor [13].

4.1. The case of flat Sp(2, R)–bundles. For h = 1 we have Γ1 = Sp(2, Z) =
Sl(2, Z) and Sp(2, R) = Sl(2, R). The first Chern class for Sp(2, R) is the Euler
class for Sl(2, R).

Milnor [13] showed that for every flat Sl(2, R)–bundle over a surface B of
genus g > 0 the absolute value of the Euler number is bounded by g − 1, and
that this bound is best possible. However, for bundles with monodromy group
contained in Sl(2, Z), the Euler number vanishes because a torus bundle has zero
signature. Thus the Euler number is an obstruction to lifting representations
from Sl(2, R) to Sl(2, Z).

4.2. Higher ranks. Consider now a representation ρ : π1(B) → Sp(2h, R), for
g, h ≥ 2. By exhibiting an explicit cocycle representing the first Chern class,
Turaev [20] showed

∣
∣〈c1(ρ), [B]〉∣∣ ≤ (g − 1)h.(8)

Taking direct sums of Milnor’s flat Sl(2, R)–bundles shows that this bound is
best possible. In a different form, this was also proved by Domic–Toledo [3].

It is remarkable that using (7), the bound (8) translates precisely into the
trivial bound |σ(X)| ≤ 4(g − 1)h for a surface bundle with fibre of genus h over
a base of genus g – and nothing better.

Theorem 2 has the following equivalent formulation, which shows that most
symplectic representations do not factor through the mapping class group.

Theorem 5. If a representation ρ : π1(B) → Sp(2h, R) factors through the map-
ping class group Γh, then the first Chern number of the associated flat bundle
satisfies

∣
∣〈c1(ρ), [B]〉∣∣ ≤ 1

2
(g − 1)(h − 1).(9)

Another way to formulate this, is to say that although the universal first
Chern class for Sp(2h, R) has sup norm ||c1||∞ = 1

4h in the sense of Gromov [4],
its pullback to the mapping class group has a much smaller sup norm:

∣
∣
∣
∣φ∗i∗c1

∣
∣
∣
∣
∞ ≤ 1

8
(h − 1).(10)
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Remark 1. The inequality (9) does not hold if one assumes only that ρ fac-
tors through Sp(2h, Z). In [11], Meyer gave an example of a representation
ρ : π1(B) → Sp(4, Z) with g = g(B) = 4 and with first Chern number 2.

5. Minimal genus in the homology of mapping class groups

The vanishing of the signatures of torus bundles is equivalent to the vanishing
of the first Chern class in H2(BSl(2, Z), Q). In fact, this cohomology group is
well–known to be trivial itself. Passing to higher genus bundles, H2(BΓ2, Q) also
vanishes by a result of Igusa, but H2(BΓh, Q) does not, for all h ≥ 3. Meyer [12]
showed that for h ≥ 3 there are always surface bundles with fiber of genus h
and with non–zero signature, so that the first Chern class must be non–zero in
H2(BΓh, Q) by (7). More precisely, the first Chern class generates H2(BΓh, Z)
by a result of Harer, who proved that H2(BΓh, Z) = Z for h ≥ 5. For h = 3 or 4,
the second Betti number of Γh is also 1, but it is not known whether H2(BΓh, Z)
is torsion–free in these cases. See [5] and the subsequent correction.

Let gh(n) denote the minimal genus of a closed oriented surface B admitting a
continuous map into BΓh whose fundamental class represents n times a generator
of H2(BΓh, Z)/torsion. Theorem 2 is equivalent to the following lower bound
for the minimal genus:

Theorem 6. For n �= 0 and h ≥ 3, we have gh(n) ≥ 1 + 2|n|
h−1 .

This gives a partial answer to a question raised by G. Mess in [6], Problem
2.18:

Corollary 7. limn→∞
gh(n)

n ≥ 2
h−1

This is the first non–trivial lower bound obtained on this limit, which obvi-
ously exists and is finite. The known examples of surface bundles [1, 7] give
certain upper bounds for this limit. The smallest upper bound, which one gets
for certain values of h, is 44

5(h−1) . In any case, the fibrewise covering argument
in the proof of Proposition 1 shows that

limh→∞(limn→∞
gh(n)

n
) = 0,

so that the qualitative behaviour of the bound in Corollary 7 is what one expects.
Corollary 7 is a statement about the Gromov–Thurston norm of the generator

x of H2(Γh, Z)/torsion:
∣
∣
∣
∣x

∣
∣
∣
∣ ≥ 8

h − 1
.

This is dual to the upper bound (10) on the Gromov sup norm of the dual
generator φ∗i∗c1.

If one only considers maps B → BΓh which are homotopic to maps which are
holomorphic for suitable complex structures on B, the minimal genus is likely
to be larger than for arbitrary continuous maps, because most surface bundles
do not admit complex structures. For fixed g and h there are infinitely many
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homotopy types of surface bundles with Euler characteristic 4(g − 1)(h − 1),
corresponding to conjugacy classes of representations π1(B) → Γh. At most
finitely many can carry complex structures, because those which do are minimal
of general type by the proof of Theorem 3, and therefore fall into a bounded
family realising at most finitely many diffeomorphism types.

For holomorphic maps from the base B into the moduli space of complex
curves of genus h, Theorem 3 gives ghol

h (n) ≥ 1 + 3|n|
h−1 for the minimal genus,

which implies limn→∞
ghol

h (n)
n ≥ 3

h−1 . This is a non–trivial result about the
enumerative algebraic geometry of the moduli space.
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