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0. Introduction

The following is known as the Kahn—Priddy Theorem (see [3]).

(0.1) THEOREM. Let t:Qf*(BZp) -> £lf* be the transfer map defined on bordism
class representatives by t(M { M) = M, where M carries the induced tangential
framing. Then t: Qh

n(BZp) -> p-torsQ[[ is a split surjection for any prime p.

For odd primes, it is more usual to state the theorem with BZp; however, a simple
application of the transfer of the covering BZp -> BHp shows that Y.p and Zp are
interchangeable.

Assuming that Cl{^ is finite, an equivalent formulation (see [6]) is as follows.

(0.2) THEOREM. The map t: Q{*(BZp) -> Q[[ is a split surjection for n ^ 1.

We shall give a proof of the above assertion using framed manifolds.
We shall employ the following notation. For p = 2, let U"-k denote U"+k with the

negating involution on the first n co-ordinates. Let S"-*"1 be the unit sphere in U"-k.
Let e"'k be the trivial Z2-bundle with fibre U"'k over an arbitrary Z2-space.

For p odd and q = j{p -1), let C"'k denote C" x Uk where Zp acts by multiplying
the q complex subspaces C" by a>, a>2,..., a>q respectively (OJ = exp(2ni/p)). Let
S2""-k"1 be the unit sphere in Cq"'k. Let e2ll"'k be the trivial Zp-bundle with fibre C""'k

over an arbitrary Zp-space.
If Mj and M2 are framed bordant, we shall write Ml ~ M2, and use [ M J to

stand for their common framed bordism class.
Our aim is to produce a splitting x// for t in (0.2).

1. The case when p = 2

Let M with tangential framing a represent x e Qj,r. Consider the manifold
W = M x M x [ — 1 , 1 ] , with involution T given by T(m,n,u) = {n,m, —u). The
fixed point set of T is the diagonal A = {(m, m, 0)}.

Now A = M has normal bundle tM © £1>0 (where t denotes the tangent bundle),
which is equivariantly trivialised by a : tM © £1?0 ->• IR" + 1 '°. We can thus perform a
Pontrjagin-Thom collapse to construct an equivariant map

pM: W > M ' ® c ^ 5 " + 1 - ° .

Observe that pM is transverse to 0 e S " + 1 ' ° = U" + l'° u {oo}, and tha t pA"/(0) = A.
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(1.1) LEMMA. The map pM is equivariantly homotopic to a map qM which agrees
with pM on a tubular neighbourhood N{&), and which is transverse to oo.

Proof. Let W = W-N{&), and X = S" + 1 ' o -N(0) . Then W is a free
Z2-manifold with boundary, and pM: W -• X is an equivariant map such that
pM{dW) c dX.

In these circumstances, equivariant transversality is possible by a simple
consequence of Thorn theory (see [5; Lemma (5.1.)]), and the homotopy takes place
away from boundaries since oo £ dX.

Thus we may construct qM: W -» X, equivariant and transverse to oo, and
agreeing with pM on W. To conclude, we paste back in JV(A) and N(0).

We now write q^l(cx)) <z W as XM. This has a free Z2 action by very
construction, and as we shall see in (1.3) carries a compatible framing. In fact,
according to the homotopy chosen in (1.1), it is only well defined up to free
equivariant framed bordism.

Furthermore, if we choose M ~ M' via a framed bordism B, we can apply the
above construction to all of B and obtain a suitable bordism XM ~ XM..

So it is permissible to define i^(x) to be [XM j Ar
M/Z2].

(1.2) LEMMA. Ifn ^ 1, then \j/ so defined is a homomorphism satisfying t\j/ = 1.

Proof In S"+1 °, choose an interval / connecting 0 and oo. Now qM is transverse
to the end points, and so by relative (but non-equivariant!) transversality can be
made transverse to all of / so long as n > 0. Then q^,l{I) is a framed bordism in W
from XM to A = M. So tip = 1.

Now let M' = M, JJ M2, so that

W = (Ml x Mx ]J M2 x M2 [ ] Z2xMlxM2)xI.

Then A lies within the first two components, and hence so does the framed bordism
above. Thus XM. = XM{ \\ XMv and \\i is a homomorphism.

It remains to establish the following.

(1.3) LEMMA. We may frame XM by a framing which is equivariantly equivalent to
a Z2 invariant framing; so [XM [ XMI7L2~\ eQj,r(£Z2).

Proof It suffices to produce an equivariant isomorphism

tXM 0 £°-s ̂  e°-" + s (s large)

from the data that tXM ® e" + 1'° s tW|XM.
So consider W x O c H / x[—1,1] = Wx, where W{ carries T extended by the

identity. Then
tWxe0A s t(MxI)xt{MxI)

where the latter carries the switch involution. Then applying the framing a we see
that tW 0 e0 1 s e"*1-"*1, and so

tXM 0 £ " + U ^ £n+Un + l ( 1 4 )
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Also, there is the classifying map / : XM -> S" + 2'~i for T restricted to XM. Since
2"n (where n is the Hopf bundle over UPn +1) can be trivialised by Clifford algebra for
suitably large a, we see that over sn + 2-~l there is an isomorphism £b'° ^ e°'h

whenever b = 0(mod2°). So pulling back along / , the same is true over XM. Hence

tXM 0 £°-6 + 1 * tXM 0 e M ^ eM + 1 by (1.4)

^ «0,«+l +b

as sought.

Note that several choices have been made above: presumably distinct choices will
yield different versions of \p.

Combining (1.2) and (1.3), we have our proof of (0.2). In turn we therefore have
a simple geometric proof of the following result of Thorn, first (and recently) proven
geometrically by S. Buoncristiano using a more complicated argument.

(1.4) PROPOSITION. Any framed manifold is an unoriented boundary.

Proof From above, M ~ XM. Now attach to XM the total space of the
associated line bundle.

2. The case when p is odd

We now outline the construction of ^ for odd primes. The idea is similar to the
case when p = 2, but simpler in one interesting aspect.

Let W = M x... x M with p factors, and let Zp act by cyclic permutation. The
fixed point set is the diagonal M = A <= W, which has normal bundle (p-l)tM.
Furthermore, Zp acts on (p-l)tM ^ q(tM ® C) by multiplying successive factors
by co, co2,..., co9.

Now recall (for example from [1]) how the framing a of tM © e gives rise to the
'Gauss map' v(a): tM -> tS". Using this, together with a Pontrjagin-Thom collapse,
we may construct an equivariant map

v(a)

But tS" ® C admits a trivialisation as a U(n) bundle, which can be combined with r'M
to produce the equivariant map

rM • W > S(p-1)n'° = Cqn'0 u {oo} .

Note that rM is transverse to 0, and that r^l(0) = A.
The perceptive reader will observe that we have introduced v(a) merely as a

device to trivialise (p — l)tM systematically for all p and a.
Since W — N{A) is a free Zp-space, we can proceed as for p = 2 and assume that

rM is equivariantly transverse to oo, and transverse to an interval [0, oo] in S{p~1)n'°.
Then YM = r^l(co) is a free Z -manifold framed bordant to A. To show that it has a
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framing invariant under the Zp action, we must prove the analogue of (1.3). This
depends on three observations:

(i) tYM®e<p-"n'°

(ii) tW 0 e p ~ M s fi(p-D(" + i)." + i v i a a>

(iii) E
{p~1)m'° s eo-(p-1)m over KM for m = 0(modpfl).

The third of these isomorphisms follows since the regular complex line bundle over a
lens space has order pa for some suitably large a (for example, see [2]).

The analogue of (1.2) follows at once, and so ij/: Qj,r -> £lk
n(BTp) is constructed. It

is not unique.
The first point to note is that the above proof does not apply directly to I p , since

£p does not act freely on I f -N(A) .
Secondly, and unlike the case when p = 2, YMis actually embedded in Mp rather

than in M2 x / . This is the basis of §3.

3. An immersed version for p = 2

Returning to p = 2 and the data of §1, we consider the Gauss map v(a): M -* S"
and assume that it is transverse to 0 e 5". Thus if v(a) has degree d,

v(a)"l(0) = {p1,p2, •-., pd), where each p,- e M .

(Note that, if d = 0 then M is parallelised by a and §1 applies to give XM c M x M.)
Writing a\a) for the map v(a)2: M x M -*• S" xSn, where T acts on both the

range and the domain, we see that cr'(a) is equivariant.
Now let A c S" x S" denote the immersed submanifold consisting of the axes

S" v S". Then <r'(a) is equivariantly transverse to A, whose inverse image consists of
Id copies of M, immersed with trivial normal bundle i n M x M and having d2 double
points. The involution T interchanges the two sets of d copies of M.

Of course, as a map of diagonals M -> S", the two maps cr'(a) and v(a) coincide.
But v(a) extends by definition to a bundle map tM -* tS". Since these are the normal
bundles of the respective diagonals, we may adjust <r'(a) by a homotopy to a map
<r(a), which as a map of neighbourhoods

<r(a): N(A) > N(A)

is transverse to A = S", with ^(a)"1^") = A = M.
Now regard the restriction

ff(a): W • S" x S",

where W = M x M —N(A). Then as in §1, we may apply equivariant transversality
and assume that a(a) is so transverse to A, obtaining a{a)~l{A) = ZM [J A, where
ZM carries a free involution.

However, we may do more. There is an immersed and stably framed bordism B in
S"xS" between A and A. Making a{a) further transverse to B, we deduce that
(T(a)"1(A)~Zl M[]A. But (j(a) ^ a'{a), and so 2 d M ~ Z M [ ] A . Thus
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JM = 2dM — ZM is a framed manifold with free involution, bordant to M and
immersible in M xM.

So JM is a suitable candidate for a representative of \j/(x). The verification of the
details concerning the action of the involution on the framing is similar to the
calculations in §1. It transpires that the immersion of 2dM has normal bundle
isomorphic to en>0. We leave the remaining computation to the interested reader.

4. An application

We conclude by showing how the methods of §1 can be extended to give a wholly
geometric proof of the following.

(4.1) PROPOSITION. Suppose that the n-stem Q(* is finitely generated. Then it is
finite (n ^ 1).

Proof. Let x be any element of Qjj" which does not have finite order. Using our
constructions, we have

i//{x) = x, + y, where x, e Q* yx e Gft
Therefore

x = t\l/(x) = p
therefore

x = pmxm + t(ym)

by iteration. Applying (4.2) below, we deduce that p"x = pm+"xm for m = 1,2,... .
So p"x does not have finite order, and yet it is divisible by arbitrarily high powers of
p. So p"x = 0, whence x = 0.

So it remains to give a geometric demonstration of (4.2) (note that the choice of p
is irrelevant). To this end, it is convenient to consider signed, or virtual, coverings of
a framed manifold N. These arise from standard coverings by negating the first
framing vector (and hence the orientation) of the total space. Examples of 'degree'
— p are — pN J. N and —n: — N J, N where n: N j N is a given p-fold covering.

Such coverings, along with standard ones, may be added over a common base by
taking disjoint union of total spaces. In particular, if we form n — n: (N — N) J, JV,
there is an obvious framed bordism of the total space to zero, expressed as
n-n - 0 | N.

(4.2) LEMMA. Suppose that y lies in the reduced group Q.%(BZp), and is represented
by N i N with N connected. Then p"N ~ 0 in Q.%.

Proof. Consider the virtual covering p : (N — pN) | N, and its cartesian square
p2: (N-pN)2 I N2. We wish to restrict p2 to the diagonal N —j-> N2.

o
Well, N2 | N2 restricts to pN IN, whilst both (N x JV) | N2 and (NxN)l N2

restrict to N | N. Hence

5*p2 ~ {P
2N-pN)lN .
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Continuing by induction, we deduce that

5*pk ~ {-\)k{pkN-pk-lN)lN.

Furthermore, on the7-th subproduct Nj = Nj-1 x * x Nk~j <^—.—»• Nk,

i*pk = (p_p)(iV-piV)fc-1 [N11'1 ~ 0[Nk~l .

So, if we choose k > n in order that d: N -> Nk is homotopic to a map which
k ( \

factors through (J JV- for f\ N is {k -1 )-connected , we have that
\ k )

S*pk ~ 0 I N .
Hence

But N ~ 0 by choice, and so pk~*N ~ 0 for all k > n.

Thus (see §0) our proof of (0.1) is entirely geometrical, modulo only that Q[[ is
finitely generated.

Two interesting problems are as follows:

(i) describe XM and YM of §§1, 2 intrinsically in terms of M and a;

(ii) relate our i// to the Hopf invariants of [4].
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