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A Maslov cocycle for unitary groups

Linus Kramer and Katrin Tent

Abstract

We introduce a 2-cocycle for symplectic and skew-hermitian hyperbolic groups over arbitrary
fields and skew-fields, with values in the Witt group of hermitian forms. This cocycle has good
functorial properties: it is natural under extension of scalars and stable, and so it can be viewed
as a universal 2-dimensional characteristic class for these groups. Over R and C, it coincides with
the first Chern class.
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Introduction

We introduce a Maslov index and Maslov cocycle for symplectic and hyperbolic unitary groups
over arbitrary fields and skew-fields. In the classical work of Lion and Vergne [13], this is done
by associating to triples (X,Y,Z) of Lagrangians in a real symplectic vector space M a certain
integral invariant, the Maslov index. This invariant is used to construct a Z-valued cocycle
for the symplectic group. The corresponding group extension of the symplectic group is the
topological universal covering group of Sp2n R.

In this approach, it is somewhat cumbersome that one has to deal with arbitrary triples of
Lagrangians. Our starting point was the idea that the whole construction should also work if
one considers only triples of Lagrangians in ‘general position’, that is, triples (X,Y,Z) in M
that are pairwise opposite,

M = X + Y = Y + Z = Z + X.

Geometrically, such triples are much easier to classify. Moreover, these triples carry an
interesting algebraic structure. To each pair (X,Y ) of opposite Lagrangians one can associate
a linear map [Y ;X] that identifies X with the dual of Y and the dual of X with Y . In this
way we obtain a graph, the opposition graph, whose vertices are the Lagrangians and whose
edges join opposite Lagrangians. Concatenating the linear maps [Y ;X] along closed paths in
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this graph, we arrive at an interesting groupoid GM , the projectivity groupoid. A minimal
closed path has length 3, and the resulting element in the holonomy group turns out to be
a complete geometric invariant for the triple consisting of the three Lagrangians along the
path. This makes sense and works not just for symplectic forms, but for arbitrary hyperbolic
skew-hermitian forms over fields or skew-fields.

In order to relate this invariant to group cohomology, we need a chain complex. A natural
candidate is the flag complex of the opposition graph, whose simplices are the finite complete
subgraphs (cliques). If the field is infinite, then this flag complex is contractible and the
symplectic (or unitary) group acts on it, and thus its equivariant cohomology is isomorphic to
the group cohomology.

The final ingredient is the observation that along a closed path of length 3, the element in
the holonomy group determines a nondegenerate hermitian form, which may be viewed as an
element in a Witt group. In this way we associate to every triangle in the opposition graph an
element in the Witt group of hermitian forms. We verify that this map is indeed an invariant
cocycle, which gives us a 2-cocycle for the unitary group.

This cocycle, which we call the Maslov cocycle, has good functorial properties. It is
stable under direct sums of hermitian spaces and well behaved under extension of scalars.
Furthermore, it coincides in the symplectic setting over fields of characteristic not equal to 2
with the classical Maslov cocycle. Our cocycle, however, exists over arbitrary fields and skew-
fields of any characteristic. Furthermore, the cocycle can be reduced to a subgroup of the Witt
group, the kernel of the signed discriminant.

The classical Maslov cocycle is important, as it yields a central extension of the symplectic
group. The question which extension is defined by our general Maslov cocycle can by and large
be reduced to a map in algebraic K-theory. In the smallest case Sp2 D = SL2 D this is due to
Barge [1] and Nekovar [19]. Nevertheless, even in the classical situation of a symplectic group
Sp2n D over a field D �= R, our result appears to be the first complete proof for this. In general,
the cocycle is related to certain symbols and depends on algebraic properties of the field. We
carry this out in some detail for local fields. For R and C the Maslov cocycle ‘is’ the first Chern
class c1 and gives the universal covering groups of Sp2n R and SU(n, n). Over nonarchimedean
local fields, we obtain a covering of degree at most 2.

A Witt group-valued Maslov cocycle appears already in [13]. Besides this, our paper is
influenced from [19, 21] (but see the remarks after Theorem 23). The idea of a ‘partially
defined cocycle’ seems to go back to Weil and appears also in a topological context in [16].
The opposition graph is used (in a different way) in [20]. The Maslov index itself has been
generalized in several ways [3, 18]. Buildings [10, 27] are not mentioned in this paper, although
the motivation for our approach is the opposition relation in spherical buildings. Lurking behind
the linear algebra is the projectivity groupoid for spherical buildings, which was first studied
systematically by Knarr [8] for spherical buildings of rank 2.

We assume that the reader is familiar with basic homological algebra, as well as hermitian
forms and unitary groups. Apart from this, we tried to make the paper self-contained and
accessible to nonexperts.

Acknowledgements. Part of this work was completed while the authors were at the School
of Mathematics, Birmingham, UK. We thank Theo Grundhöfer, Karl-Hermann Neeb, Chris
Parker, Andrew Ranicki and Winfried Scharlau.

1. Lagrangians and hyperbolic modules

In this section we introduce some standard terminology from the theory of hermitian forms.
Everything we need can be found in [6, 9, 23]. We work over a field or division ring D of
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arbitrary characteristic. The modules we consider are finite-dimensional right D-modules. We
assume that J is an involution of D, that is, an antiautomorphism whose square is the identity
(we allow J = id). The involution extends naturally to an involution of the matrix ring Dn×n,
which we also denote by J . For ε = ±1 we consider

Dε = {a ∈ D | a− aJε = 0}.

1.1. Forms

A form on a right D-module M is a biadditive map f : M ×M with the property that

f(ua, vb) = aJf(u, v)b

for all u, v ∈M and all a, b ∈ D. An ε-hermitian form h is a form with the additional property
that

h(u, v) = h(v, u)Jε,

and (M,h) is called a hermitian module. If f is any form, then

hf (u, v) = f(u, v) + f(v, u)Jε

is ε-hermitian. The hermitian forms that arise in this way are called trace ε-hermitian or even.
If char(D) �= 2, then every ε-hermitian form is automatically trace ε-hermitian; this is also true
in characteristic 2 if J is an involution of the second kind, that is, if J |Cen(D) �= id, but may
fail otherwise [6, 6.1.2]. Note also that hf (u, u) = 0 is equivalent to f(u, u) ∈ D−ε.

1.2. The dual M∨ of M (which is a left D-module) can be made into a right D-module
MJ by twisting the scalar multiplication with J , that is, by setting

ξa = [v �−→ aJξ(v)]

(where a ∈ D, ξ ∈M∨ and v ∈M). Thus forms are just linear maps M →MJ . A form is called
nondegenerate if the associated linear map is injective (and hence bijective). There is a natural
notion of an isomorphism (or isometry) of forms; the automorphism group of a nondegenerate
ε-hermitian form is the unitary group

U(M,h) = U(M) = {g ∈ GL(V ) | h(u, v) = h(g(u), g(v)) for all u, v ∈M}.

1.3. Lagrangians

For any subset X ⊆ V we have the subspace X⊥ = {u ∈M | h(x, u) = 0 for all x ∈M}, the
perp. A subspace that is contained in its own perp is called totally isotropic and a subspace that
coincides with its perp is called a Lagrangian. A nondegenerate hermitian form that admits
Lagrangians is called metabolic.

1.4. The hyperbolic functor

Given a right D-module X, there is a natural form f on M = X ⊕XJ , given by
f((x, ξ), (y, η)) = ξ(y). The associated trace ε-hermitian form

hX((x, ξ), (y, η)) = ξ(y) + η(x)Jε

(and every isometric hermitian module) is called hyperbolic. Obviously, X is a Lagrangian, and
so hyperbolic modules are metabolic. The converse is true for trace-valued hermitian forms and
hence in particular in characteristic not equal to 2 (see [9, I 3.7.3]). The rank of a hyperbolic
module is the dimension of X (that is half the dimension of the hyperbolic module). We note
that the assignment

hyp : X �−→ (X ⊕XJ , hX)
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is a functor from D-modules to hermitian modules, and that hyp induces an injection GL(X)→
U(X ⊕XJ ).

1.5. Special cases and Lie groups

Every hyperbolic form (M,h) can be reduced to one of the following three types.
Symplectic groups: If (J, ε) = (id,−1), then D is necessarily commutative and U(M) =

Sp(M) is the symplectic group. For M = R2n and M = C2n, these Lie groups are often denoted
by Sp(n, R) and Sp(n, C), respectively

Hyperbolic orthogonal groups: If J = id and ε = 1 �= −1, then D is commutative and of
characteristic different from 2. The group U(M) = O(M) is the hyperbolic orthogonal group;
for R and C, these Lie groups are often denoted by O(n, n) and O(2n, C). We shall see in
Subsection 2.3 below that the Maslov cocycle is uninteresting in this situation.

Standard hyperbolic unitary groups: If J �= id, then U(M) is the standard hyperbolic unitary
group. Scaling the hermitian form by a suitable constant and changing the involution, we can
assume that ε = −1 (‘Hilbert 90’; see [6, p. 211]). The −1-hermitian forms are also called
skew-hermitian. Examples of involutions are the standard conjugation z �→ z̄ on C and on
the real quaternion division algebra H. Note that there is also the ‘nonstandard’ involution
zα = −iz̄i on H. The skew-hyperbolic unitary groups corresponding to (Cn, z �→ z̄), (Hn, z �→ z̄)
and (Hn, z �→ zα) are the Lie groups denoted by U(n, n), SO∗(4n) and Sp(n, n) in [7, X,
Table V].

2. The opposition graph and triples of Lagrangians

In this section we construct an invariant κ that classifies triples of pairwise opposite Lagrangians
in a −ε-hermitian hyperbolic module up to isometry. The invariant is a nondegenerate
ε-hermitian form. In particular, we will have to work simultaneously with ε- and −ε-hermitian
forms. We assume throughout that M is a −ε-hermitian hyperbolic module and we let

L = L(M) = {X ∈M | X = X⊥}
denote its set of Lagrangians.

Definition 1. We call two Lagrangians X and Y opposite if X ∩ Y = 0 or, equivalently,
if M = X + Y . If the rank of M is 1, then Lagrangians are 1-dimensional, and X is opposite
Y if and only if X �= Y .

Lemma 2. If M has rank 1, then L has |Dε|+ 1 elements.

Proof. Let x be a nonzero vector in the 1-dimensional space X and let ξ ∈ XJ be its
dual, that is, ξ(x) = 1. Then x and ξ span X ⊕XJ ∼= M . The vector v = (xa, ξ) spans a
Lagrangian if and only if ξ(xa) = a ∈ Dε. There is precisely one additional Lagrangian, spanned
by (x, 0).

Later it will be important that there are enough Lagrangians. We note that Dε is infinite
if D is an infinite field, unless J = id and ε = −1 �= 1. If D is not commutative, then Dε is
always infinite [6, 6.1.3].

Proposition 3. If |Dε| � k, then there exists for every finite collection X1, . . . , Xk of
Lagrangians a Lagrangian Y opposite to X1, . . . , Xk.
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Proof. Let n denote the rank of M . We proceed by induction on k � 1, modifying the
proof in [27, 3.30]. Let X1, . . . , Xk be k Lagrangians. We choose a Lagrangian Y such that � =
dim(Y ∩X1) is as small as possible, and (by the inductions hypothesis) such that Y is opposite
X2, . . . , Xk. We claim that � = 0. Otherwise, we can choose a subspace Q ⊆ X1 of dimension
n− 1, such that X1 = Q + (Y ∩X1). Now Q⊥ can be split as Q⊥H, with H hyperbolic of
rank 1. The 1-dimensional Lagrangians P of H parametrize the Lagrangians of M containing
Q bijectively via P �→ Q⊕ P . Let P1 = Y ∩H. For ν = 2, . . . , k, each Xk determines a unique
1-dimensional Lagrangian Pk ⊆ H with dim((Q + Pk) ∩Xk) �= 0. By Lemma 2 we may choose a
1-dimensional Lagrangian P ′ ⊆ H different from P1, . . . , Pk. Then Y ′ = P ′ ⊕Q is a Lagrangian
opposite X2, . . . , Xk with dim(Y ′ ∩X1) = �− 1, which is a contradiction.

In particular, there exists always a Lagrangian Y opposite a given Lagrangian X. The
map y �→ h(y,−)|X is an isomorphism Y

∼=−→ XJ and we have thus a unique isomorphism of
hyperbolic modules X ⊕XJ

∼=−→ X ⊕ Y = M extending the inclusion X ↪→M . If (X ′, Y ′) is
another such pair, then we can choose a linear isomorphisms X ∼= X ′ and obtain isomorphisms

X ⊕ Y
∼=� X ⊕XJ ∼= X ′ ⊕X ′J �∼=

X ′ ⊕ Y ′.

Hence we have established the following result (which also follows from Witt’s theorem [6,
6.2.12]).

Lemma 4. The unitary group U(M) acts transitively on ordered pairs of opposite
Lagrangians.

2.1. We now study this U(M)-action in more detail. We fix a D-module X of dimension
n, with basis x. We consider Y = XJ and we let y denote the dual basis. Then M = X ⊕ Y
is hyperbolic of rank n, with basis x,y, and we may work with 2× 2 block matrices. The
hermitian form h = hX on M is represented by the matrix

h =
(

0 −ε
1 0

)
.

We find that the U(M)-stabilizer L of the ordered pair (X,Y ) consists of matrices of the form

�a =
(

a−J 0
0 a

)
,

with a ∈ GLnD and �a�a′ = �aa′ , while the U(M)-stabilizer U of (X,x) consists of matrices
of the form

ut =
(

1 t
0 1

)
,

with t− tJε = 0, that is, t ∈ Dn×n has to be ε-hermitian. Note also that utut′ = ut+t′ , u−1
t =

u−t, and that

�aut�
−1
a = ua−J ta−1 .

The U(M)-stabilizer P of X splits therefore as a semidirect product P = LU , with Levi factor
L and unipotent radical U � P .

Next, we note that if Z is another Lagrangian opposite X, then we have a unique isomorphism
X ⊕ Y → X ⊕ Z fixing the basis x. This isomorphism is therefore given by an element of the
group U , and we have the following result.

Lemma 5. The group U acts regularly on the set Xopp of all Lagrangians opposite X.
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Let ut ∈ U . Then the Lagrangian Z = ut(Y ) is opposite Y if and only if M is spanned by
y, ut(y). With the matrix notations we established before, we have

u(yν) = yν +
∑

μ

xμtμ,ν .

A necessary and sufficient condition for Z = ut(Y ) being opposite Y is thus that the matrix t
be invertible.

2.2. We let H = {t ∈ Dn×n | t− tJε = 0} denote the set of all ε-hermitian n× n-matrices.
There is a natural left action (a, t) �→ a−J ta−1 of GLnD on H, and we denote the orbit of t
by 〈t〉. The orbit space

Hermε(n) = {〈t〉 | t ∈ H} = L\H
consists thus of the isomorphism classes of ε-hermitian forms on Dn. We denote the subset
corresponding to the nonsingular hermitian forms by Herm◦

ε(n). Then we have an L-equivariant
bijection given by

H � Xopp t �−→ ut(Y ).

Factoring out the L-action, we get bijections as follows:

Hermε(n) � L\Xopp and Herm◦
ε(n) � L\(Xopp ∩ Y opp)

While the isomorphism H → U depends on the chosen basis x, these two maps are base-
independent as one can easily check (this will also follow from Subsection 4.3). Summarizing
these results, we have the following theorem.

Theorem 6. Let L(3) ⊆ L× L× L denote the set of all triples of pairwise opposite
Lagrangians. Then we have a U(M)-invariant surjective map

L(3) κ� Herm◦
ε(n)

whose fibers are the U(M)-orbits in L(3). The map κ is given by

κ(g(X), g(Y ), gut(Y )) = 〈t〉,
where X,Y is our fixed pair of opposite Lagrangians as in Subsection 2.1.

The result will be refined in Proposition 9.

2.3. According to Subsection 1.5, we have the following cases.
Symplectic groups: The triples are classified by isomorphism classes of nondegenerate

symmetric matrices.
Hyperbolic orthogonal groups: The triples are classified by isomorphism classes of non-

degenerate skew-symmetric matrices. There is one such class if n is even, and L(3) = ∅ if
n is odd.

Standard hyperbolic unitary groups: We may assume that ε = 1 (thus the form is skew-
hermitian), and then the triples are classified by isomorphism classes of n-dimensional
nondegenerate hermitian forms.

3. Flag complexes of graphs

We continue to assume that M is a −ε-hermitian hyperbolic module. Now we consider the
simplicial complex whose k-simplices are k + 1-sets of pairwise opposite Lagrangians. It will
be convenient to do this in the general setting of graphs, flag complexes and simplicial sets.
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3.1. The opposition graph

By a graph Γ = (V,E) we understand an undirected graph without loops or multiple edges;
V is its set of vertices, E its set of edges, and edges are unordered pairs of vertices. If {u, v}
is an edge, then we call u, v adjacent. For the hyperbolic module M , we put V = L and O =
{{X,Y } | X,Y ∈ L and M = X + Y }. The resulting graph Γ = (L,O) is called the opposition
graph of M .

3.2. Flag complexes

The flag complex Fl(Γ) of a graph Γ is the simplicial set whose k-simplices are tuples
(x0, . . . , xk) of vertices, such that for all 0 � μ < ν � k we have either xμ = xν or {xμ, xν} ∈ E.
We have the standard Z-free chain complex C∗(Fl(Γ)) with the usual boundary operator

∂(x0, . . . , xk) =
∑

ν

(−1)ν(x0, . . . , x̂ν , . . . , xk)

and the resulting homology and cohomology groups [14].
We will also use alternating chains, which are defined as follows [5]. Let Nk denote the

submodule of Ck(Fl(Γ)) generated by all elements (x0, . . . , xk) with xμ = xν for some μ <
ν, and all elements of the form (x0, . . . , xk)− sign(π)(xπ0 , . . . , xπk

) for π ∈ Sym(k + 1). The
alternating chain complex is defined as the quotient chain complex given by

C̃∗(Fl(Γ)) = C∗(Fl(Γ))/N∗.

The natural projection C∗(Fl(Γ))→ C̃∗(Fl(Γ)) is a chain equivalence, that is, induces an
isomorphism in homology and cohomology; see [5, VI.6]. The coset of (x0, . . . , xk) is denoted
by 〈x0, . . . , xk〉, with the relations 〈x0, . . . , xk〉 = 0 if xμ = xν for some μ < ν, and

〈x0, . . . , xk〉 = sign(π)〈xπ0 , . . . , xπk
〉.

3.3. Equivariant cohomology

The unitary group U(M) acts in a natural way on the opposition graph and its flag complex.
In general, when a group G acts (from the left, say) on a chain complex C∗, then we may
consider the equivariant homology of C∗, which is defined as follows. If P∗ → Z is a projective
resolution of G over Z, then the equivariant homology HG

∗ (C∗) is defined as the total homology
of the double complex P∗ ⊗G C∗; see [2, Chapter VII.5]. The two canonical filtrations on the
double complex yield two spectral sequences ′E and ′′E converging to HG

∗ (C∗) and the first one
has on its second page

′E2
pq = Hp(G;Hq(C∗)).

If C∗ is acyclic (for example, if C∗ = Z is concentrated in dimension 0), then ′E collapses on
the second page, and there is a natural isomorphism HG

∗ (C∗) ∼= H∗(G).
Similar remarks hold for cohomology; here, one looks at the double complex HomG(P∗, C∗).

Note also that if c : C∗ → A is a G-invariant cochain (thus G acts trivially on the coefficient
module A) and if η : P1 → Z is the augmentation map, then c may be viewed in a natural way
as a cochain in HomG(P∗,HomZ(C∗, A)) ∼= HomZ(P∗ ⊗G C∗, A) via

c(p⊗ z) = η(p)c(z).

It is well known that for a complete graph (that is, for E =
(
V
2

)
) the simplicial set Fl(Γ) is

acyclic. The following concept is a weakening of (infinite) complete graphs.
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3.4. The star property

A (nonempty) graph Γ = (V,E) has the star property if for every finite set x0, . . . , xk of vertices,
there exists a vertex y that is adjacent to the xν for ν = 0, . . . , k.

Note that we require that y �= x0, . . . , xk. A graph with the star property is obviously infinite.
Note also that the opposition graph of a hyperbolic module has by Proposition 3 the star
property if Dε is infinite.

Lemma 7. If Γ has the star property, then Fl(Γ) is acyclic.

Proof. If (x0, . . . , xk) is a k-simplex in Ck(Fl(Γ)) and if y is adjacent to x0, . . . , xk put
y#(x0, . . . , xk) = (y, x0, . . . , xk). Suppose that c is a k-cycle, that is, c is a finite linear
combination of k-simplices and ∂c = 0. Let y be a vertex adjacent to all vertices appearing
in the simplices of c. Then ∂(y#c) = c− y#∂c = c, and thus c is a boundary.

The geometric realization |Fl(Γ)| of the flag complex of a graph with the star property is
in fact contractible. To see this, it suffices by Hurewicz’s Theorem to show that π1|Fl(Γ)| = 0;
see [26, Chapter 7.6.24 and 7.6.25]. However, from the star property, any simplicial path in
|Fl(Γ)| is contained in a contractible subcomplex, and every path is homotopic to a simplicial
path [26, 3.6].

Proposition 8. If Dε is infinite, then the flag complex of the opposition graph of
a −ε-hermitian hyperbolic module is acyclic and its geometric realization is contractible.
Consequently, we have in equivariant homology a natural isomorphism

H
U(M)
∗ (Fl(Γ))

∼=� H∗(U(M))

induced by the constant map Fl(Γ)→ Fl({pt}), and similarly for cohomology.

Using this natural isomorphism, we often identify these two (co)homology groups.

4. The projectivity groupoid

If X and Y are opposite Lagrangians in the hyperbolic module M , then we have canonical
isomorphisms X ⊕XJ ∼= X ⊕ Y ∼= Y ⊕ Y J , such that the first isomorphism is the identity on
X and the second isomorphism is the identity on Y . In this way, we associate an isomorphism
X ⊕XJ → Y ⊕ Y J to every oriented edge (X → Y ) of the opposition graph Γ.

4.1. The projectivity groupoid

Recall that a groupoid is a small category where every arrow is an isomorphism. The
projectivity groupoid GM of M is defined as follows. The objects of GM are 2-graded vector
spaces X∗ with X1 = X and X−1 = XJ , where X ∈ L is a Lagrangian. To each oriented edge
(X → Y ) we associate an isomorphism [Y ;X] : X∗ → Y−∗ of degree −1, the composite [X,Y ]
of which is given by

[Y ;X] : X ⊕XJ
∼=� X ⊕ Y

∼=� Y ⊕ Y J .

These maps generate the morphisms of GM . We note that each object X∗ in G carries a natural
structure of a hyperbolic module with −ε-hermitian form hX , and that the morphisms preserve
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this structure. Furthermore
[X;Y ][Y ;X] = idX∗,

and hence a morphism along a simplicial path depends only on the homotopy class of the path
in Γ (that is, we have a natural transformation from the fundamental groupoid π1Γ to GM).
Finally, we note that GM is in a natural way 2-graded: the paths of even length induce maps
of degree 1, and the paths of odd length maps of degree −1.

4.2. Now we determine the morphism corresponding to a closed path of length 3. Let
X,Y be opposite Lagrangians with bases x,y as in Subsection 2.1 and let Z = ut(Y ). We
write [Z;Y ;X] = [Z;Y ][Y ;X] and so on. Then

[Z;X;Y ](yν) = ut(yν) and [Z;X;Y ](xν) = ut(xν) = xν .

Now, we have

h(yλ, ut(yν))) = h

(
yλ,yν +

∑
μ

xμtμ,ν

)
= h

(
yλ,
∑

μ

xμtμ,ν

)
.

The dual basis of y is h(−,x)J . With respect to the graded basis (y, h(−,x)J ) for Y∗ = Y ⊕ Y J ,

the morphism ϕ = [Y ;Z;X;Y ] is therefore given by a block matrix of the form ϕ =
(∗ ∗

t ∗
)

.

As this matrix has to be unitary and of degree −1, and because tJ = tε, we obtain

ϕ =
(

0 −t−1

t 0

)
.

4.3. If hY denotes the canonical −ε-hermitian form on Y∗, then

hϕ(−,−) = hY (−, ϕ(−))(−ε)

is the ε-hermitian form hϕ =
(

t 0
0 t−J

)
. We note that tJ t−J t = t, therefore both blocks

represent the same isomorphism type 〈t〉 in Herm◦
ε(n), and we define

κ̃(Z,X, Y ) = 〈t〉.
Note also that this class does not depend on the basis y and that κ̃ is U(M)-invariant.
Furthermore, we have κ̃(Z,X, Y ) = κ(X,Y,Z), where κ is the invariant from Theorem 2.6.
We shall see shortly that both invariants agree completely.

4.4. From ϕ−1 =
(

0 t−1

−t 0

)
we see that

κ̃(X,Z, Y ) = 〈−t〉.
Next we note that for y1, y2 ∈ Y∗ we have

hY (y1, ϕ(y2)) = hX([X;Y ]y1, [X;Y ]ϕ[Y ;X][X;Y ]y2)
= hX([X;Y ]y1, [X;Y ][Y,Z,X, Y ][Y ;X][X;Y ]y2)
= hX([X;Y ]y1, [X;Y,Z,X][X;Y ]y2),

whence
κ̃(Y,Z,X) = κ̃(Z,X, Y ),

that is, κ̃ is invariant under cyclic permutations of the arguments. In particular, we have

κ̃ = κ
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Since κ classifies by Theorem 2.6 triples of pairwise opposite Lagrangians, we have the following
sharpening of Theorem 2.6.

Proposition 9. The setwise U(M)-stabilizer of a triple X,Y,Z of pairwise opposite
Lagrangians induces (at least) the cyclic group Z/3 on this set. It induces the full symmetric
group Sym(3) if and only if aJ ta = −t for some a ∈ GLnD, where κ(X,Y,Z) = 〈t〉.

5. The Maslov cocycle

We want to turn the invariant κ : L(3) → Herm◦
ε(n) into a 2-cocycle for the flag complex Fl(Γ)

of the opposition graph. Suppose that A is an abelian group and that α : Herm◦
ε(n)→ A is a

map. By the properties of κ derived in Subsection 4.4, we see that

c : 〈X,Y,Z〉 �→ α(κ(X,Y,Z))

is a 2-cochain on the alternating chain complex C̃2(Fl(Γ)), provided that we have the relation
α(〈−t〉) = −α(〈t〉) for all t ∈ Herm◦

ε(n). Now we investigate under what conditions this map is
a cocycle, that is, under what conditions c(∂〈X,Y,Z, Z ′〉) = 0, that is, when

c(〈Y,Z, Z ′〉 − 〈X,Z,Z ′〉+ 〈X,Y,Z ′〉 − 〈X,Y,Z〉) = 0.

5.1. We fix again (X,x), (Y,y) as in Subsection 2.1. Suppose that Z = ut(Y ) and Z ′ =
ut′(Y ), and that X,Y,Z, Z ′ are pairwise opposite. Thus we have

κ(Z,X, Y ) = 〈t〉 and κ(Z ′,X, Y ) = 〈t′〉.
As u−1

t (Z) = Y and u−1
t ut′ = u−t+t′ , we obtain

κ(Z ′,X, Z) = κ(u−1
t ut′(Y ),X, Y ) = 〈t′ − t〉.

It remains to determine κ(Z ′, Y, Z). Let w =
(

0 1
−ε 0

)
. Then w is unitary and interchanges

X and Y . We have w(Z) = wut(Y ) = wutw
−1(X) and we consider vt = wutw

−1 =
(

1 0
−tε 1

)
.

Then we have

urvt =
(

1− rtε r
−tε 1

)
,

whence urw(Z) = urvt(X) = Y for r = t−1ε. Thus far we have achieved

urw(Y ) = X and urw(Z) = Y.

We seek t′′ such that ut′′(Y ) = urw(Z ′) = urwut′(Y ), or Y = ur−t′′wut′(Y ). Now we have

ur−t′′wu′
t =

(
1 r − t′′

0 1

)(
0 1
−ε −t′ε

)
=
(

(t′′ − r)ε 1 + (t′′ − r)t′ε
−ε −t′ε

)
,

whence 1 = (r − t′′)t′ε, which gives t′′ = r − t′−1
ε = (t−1 − t′−1)ε, and thus we have

κ(Z ′, Y, Z) = h(ut′′(Y ),X, Y ) = 〈t−J − t′−J〉.
Plugging this into the boundary formula, we have the next result.

Proposition 10. Let A be an abelian group. A function α : Herm◦
ε(n)→ A determines a

U(M)-invariant 2-cocycle c on the alternating 2-chains of Fl(Γ) if and only if the following
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two relations hold for all r, s, t ∈ Herm◦
ε(n):

r + s = 0 implies α〈r〉+ α〈s〉 = 0,

r + s + t = 0 implies α〈r〉+ α〈s〉+ α〈t〉+ 〈−r−J − s−J〉 = 0.

Recall that the Grothendieck–Witt group KUε
0 (D,J) of hermitian forms is defined as the

abelian group completion of the commutative monoid consisting of the isomorphism classes of
nondegenerate ε-hermitian forms [23, p. 239]. The Witt group W ε(D,J) is the factor group
of KUε

0 (D,J) by the subgroup generated by the ε-hermitian hyperbolic modules. We let [t]
denote the image of 〈t〉 in KUε

0 (D,J) and W ε(D,J).

Theorem 11. Let α〈t〉 = [t] ∈W ε(D,J). Then α satisfies the two conditions of Proposi-
tion 10 and therefore

m : 〈X,Y,Z〉 �−→ [κ(X,Y,Z)]

defines a W ε(D,J)-valued U(M)-invariant 2-cocycle on the alternating chain complex
C̃2(Fl(Γ)).

Proof. We proceed similar to [21, Proposition 1.2] and use the fact that metabolic forms
vanish in the Witt group W ε(D,J), see [23, 7.3.7], and that a 2k-dimensional nondegenerate
hermitian form is metabolic if it admits a totally isotropic subspace of dimension k.

For the 2n-dimensional ε-hermitian form (r)⊕ (−r), the vectors (x, x), with x ∈ Dn, span
an n-dimensional totally isotropic subspace, and thus this form is metabolic and [r] + [−r] = 0.

Similarly we find for r + s + t = 0 and the 4n-dimensional form (r)⊕ (s)⊕ (t)⊕ (−rJ − sJ)
that the vectors (x, x, x, 0) and (r−Jx, s−Jx, 0, x), with x ∈ Dn, span a totally isotropic 2n-
dimensional subspace, and thus this form is also metabolic and [r] + [s] + [t] + [−rJ − sJ ] = 0.

5.2. The Maslov cocycle

We call the W ε(D,J)-valued cocycle

m : 〈X,Y,Z〉 �−→ [κ(X,Y,Z)]

(and the corresponding cocycle for the equivariant homology of Fl(Γ)) the Maslov cocycle.

6. Naturality of the Maslov cocycle

We now study naturality of the Maslov cocycle under restriction maps. There are two obvious
types, coming from field and from vector space inclusions. We start with field inclusions, which
are easier.

6.1. Extension of scalars

Suppose that D and E are division rings with involutions J and K, respectively, and that
ϕ : D → E is a homomorphism commuting with these involutions. If M is a hyperbolic module
over D, then M ⊗ϕ E is hyperbolic over E. The map sending a Lagrangian X ⊆M to
X ⊗ϕ E induces an injection L(M)→ L(M ⊗ϕ E) and an injection Γ(M)→ Γ(M ⊗ϕ E) on
the respective opposition graphs. There is a natural map WD

E : W ε(D,J)→W ε(E,K) and,
obviously, this map takes the Maslov cocycle mD of M to the Maslov cocycle mE of M ⊗ϕ E
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as follows:
C̃2 Fl(Γ(M)) � C̃2 Fl(Γ(M ⊗ϕ E)

W ε(D,J)

mD

� WD
E � W ε(E,K).

mE

�

This gives the following result.

Theorem 12. Let ϕ : (D,J)→ (E,K) be a homomorphism of skew-fields with involutions
and assume that Dε is infinite. Consider the natural group monomorphism

Φ : U(M) � U(M ⊗ϕ E).

Then (WD
E )∗mD = Φ∗mE in the diagram

H2(U(M);W ε(D,J))
(WD

E )∗ � H2(U(M);W ε(E,K))

H2(U(M ⊗ϕ E);W ε(E,K)).

Φ∗
�

6.2. Suppose now that M1 and M2 are hyperbolic modules (both over D) with
corresponding sets L1,L2 of Lagrangians. Then their direct sum M = M1 ⊕M2 is in a natural
way a hyperbolic module. There is an obvious map

U(M1) � U(M)

and the question is what happens with the Maslov cocycle under this map. The problem is that
the opposition graph Γ1 of M1 is not a subgraph of the opposition graph Γ of M . However,
there is a natural subgraph of Γ that projects U(M1)-equivariantly onto Γ1 and that yields a
good comparison map. The construction is as follows.

If X1 ⊆M1 and X2 ⊆M2 are Lagrangians, then X1 ⊕X2 is Lagrangian in M , and thus we
have a natural injection L1 × L2 → L. Moreover, X1 ⊕X2 is opposite Y1 ⊕ Y2 in M if and only
if Xν is opposite Yν for ν = 1, 2. This leads us to the following notion.

Definition 13. The categorical product Γ1 × Γ2 of two graphs has V1 × V2 as its set of
vertices and (x1, x1) and (y1, y2) are adjacent if and only if {x1, y1} ∈ E1 and {x2, y2} ∈ E2.
There are natural maps Γ1 ← Γ1 × Γ2 → Γ2 with the usual universal properties.

The next result is immediate.

Lemma 14. The categorical product of two graphs having the star property has again the
star property. In particular, its flag complex is acyclic.

Note that the categorical product of the graph consisting of one single edge with itself is not
even connected:

• • •
× • • =
• • •.
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The fact that y �= x0, . . . , xk in the star property is crucial for the lemma.

6.3. Thus far we have for ν = 1, 2 a diagram of U(M1)-equivariant maps

Fl(Γ1)

Fl(Γ1 × Γ2) �

� pr
1

Fl(Γ)

Fl(Γ2)
� pr 2

and if Dε is infinite, these three complexes are acyclic. Next we note that if we have a triangle
(X1 ⊕X2, Y1 ⊕ Y2, Z1 ⊕ Z1) in Γ1 × Γ2 and if we choose bases x1,x2,y1,y2 for X1,X2, Y1, Y2,
then

[κ(X1 ⊕X2, Y1 ⊕ Y2, Z1 ⊕ Z1)] = [t1 ⊕ t2] = [t1] + [t2],

with κ(Xν , Yν , Zν) = 〈tν〉. Thus we have a commutative diagram

C̃2 Fl(Γ1)
i1� C̃2 Fl(Γ1)⊕ C̃2 Fl(Γ2) �(pr1,pr2)

C̃2 Fl(Γ2 × Γ2)

W ε(D,J).

m1 + m2

� �
m

m
1

�

that yields in cohomology:

H2
U(M1)

(Fl(Γ1)) � H2
U(M1)

(Fl(Γ1))⊕H2
U(M1)

(Fl(Γ2)) � H2
U(M1)

(Fl(Γ1 × Γ2))

[m1] � [m1] + [m2] � [m]

(we omit here the coefficient group W ε(D,J)). Note that [m2] = 0 in H2
U(M1)

(Fl(Γ2)), as U(M1)
acts trivially on Fl(Γ2). Mapping to the one-point space {pt}, we see that [m1] and [m] have
the same image in H2

U(M1)
({pt}) = H2(U(M1)), and from

H2
U(M1)

(Fl(Γ1)) H2
U(M1)

(Fl(Γ1 × Γ2)) �
∼=

H2
U(M1)

(Fl(Γ)) � H2
U(M)(Fl(Γ))

H2(U(M1))

∼=
�

======== H2(U(M1))

∼=
�

======== H2(U(M1))

∼=
�

� H2(U(M)).

∼=
�

we obtain the following stability result.

Theorem 15. Assume that Dε is infinite, let M1,M2 be hyperbolic modules and consider
M = M1 ⊕M2. Then the restriction map

H2(U(M1);W ε(D,J)) � H2(U(M);W ε(D,J))

maps the Maslov cocycle [m] for U(M) onto the Maslov cocycle [m1] for U(M1).
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7. Reduction of the cocycle

Our next aim is to show that the Maslov cocycle can be reduced to a subgroup of the Witt
group. For this, we need a refinement of the Lagrangians and the opposition graph. We noted in
Subsection 2.3 that the Maslov cocycle is trivial in the hyperbolic orthogonal situation, where
J = id and ε = −1 �= 1, and hence we may disregard this case. By Subsection 1.5 there is no
loss of generality in assuming that

ε = 1

in the remaining cases, and we shall do this in this section.

7.1. Based Lagrangians

Let Γ = (V,E) be a graph and f : X → V a map. The induced graph f∗Γ on X is the graph
whose vertices are the elements of X, and {x, x′} is an edge if and only if {f(x), f(x′)} is an
edge of Γ. If f is surjective and if Γ has the star property, then f∗Γ also has the star property.
In what follows, we consider the set L̂ of based Lagrangians, that is, pairs (X,x) where X ⊆M
is a Lagrangian and x is a basis for X. There is a forgetful surjection F : L̂ → L and we let

Γ̂ = F ∗Γ

denote the induced graph on this vertex set. We call Γ̂ the based opposition graph. Because the
U(M)-stabilizer P induces the full group GL(X) on X, we see that U(M) acts transitively
on L̂. With the notation of Subsection 2.1, the stabilizer of (X,x) is the group U . The map
Γ̂→ Γ is equivariant, and Fl(Γ̂) is acyclic if D1 is infinite. In particular, we may use Fl(Γ̂) to
compute the group cohomology of U(M).

We also have a based version ĜM of the projectivity groupoid. The objects are again the
2-graded spaces X ⊕XJ , but now with a preferred graded basis consisting of x and the dual
basis of x. The morphisms in ĜM are thus given by unitary matrices.

7.2. We recalculate the Maslov cocycle in terms of the based spaces. In Subsection 4.2
we have seen that we have in terms of our standard basis x,y the matrices

(Y∗,y)

(
0 −1
1 0

)
� (X∗,x) �

(
0 −1
1 0

)
(Z∗, ut(y))

(
0 −t−1

t 0

)
� (Y∗,y).

If we add base changes through matrices a, b, c ∈ GLnD for X, Y and Z and reverse the middle
arrow, we arrive at the diagram

(Y∗, by)

(
0 −abJ

a−Jb−1 0

)
� (X∗, ax)

(
0 caJ

−c−Ja−1 0

)
� (Z∗, cut(y))

(
0 −bt−1cJ

b−J tc−1 0

)
� (Y∗, by)

(and cut(y) = uc−J tc−1(cy)). With respect to the basis by, we have

[Y ;Z;X;Y ] =
(

0 −bt−1bJ

b−J tb−1 0

)
.

Using invariants of these matrices, we now construct a refined cocycle.

7.3. Invariants of hermitian forms

The dimension induces a natural homomorphism dim : KU1
0 (D,J)→ Z. Since the dimension

of any hyperbolic module is even, there is an induced map W 1(D,J)→ {±1} mapping the
class [t] to (−1)dim(t). We denote its kernel by I(D,J); its elements are represented by even-
dimensional hermitian forms. In the quadratic case (J = id and ε = 1 �= −1), ID = I(D, id) is
called the fundamental ideal in the Witt ring WD = W 1(D, id) (see [12, Chapter II.1]).
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Recall that the determinant is a homomorphism from GLnD to K1(D), the abelianization
of D∗ = GL1D. The involution J induces an automorphism J on K1(D). We let N denote
the subgroup of K1(D) consisting of elements of the form xJx and put S = K1(D)/N .
Since det(gJ tg) = det(gJg) det(t), we have a well-defined homomorphism [t] �−→ det(t)N from
KU1

0 (D,J) to S. However, this map cannot be factored through W 1(D,J). Similarly as in [12,
Chapter II.2] we introduce therefore the abelian group

Ŝ = S × {±1},
endowed with the commutative group law

(x, (−1)m) + (y, (−1)n) = (xy(−1)mn, (−1)m+n),

and we define the signed discriminant as

disc(t) = (det(t)N(−1)n(n−1)/2, (−1)n),

where n = dim(t). This map vanishes on hyperbolic forms and induces therefore a homomor-
phism disc : W 1(D,J)→ Ŝ. We let II(D,J) ⊆W 1(D,J) denote the subgroup generated by all
elements [t], where dim(t) ∈ 4Z and det(t) = 1. Obviously, II(D,J) ⊆ ker(disc).

Lemma 16. The sequence

0 � II(D,J) � W 1(D,J) � Ŝ

is exact.

Proof. Let [t] be a form in the kernel of disc. Then dim(t) is even and we distinguish
two cases. If dim(t) = 4, then det(t) = xJx ∈ N . Choose g ∈ GLnD with det(g) = x−1, then
det(gJ tg) = 1 and [t] = [gJ tg] ∈ II(D,J). For dim(t) = 4� + 2 we have det(t) = −xJx and we

consider the 4� + 4-dimensional form t⊕ h, for h =
(

0 −1
1 0

)
. Then det(t⊕ h) = xJx. By the

previous remark, [t⊕ h] = [t] ∈ II(D,J).

In the quadratic case, II(D,J) is the square I2D of the fundamental ideal [12, Chapter II, 2.1]

7.4. We define an Ŝ-valued equivariant 1-cochain f on C̃1Fl(Γ̂) by

f〈(X, ax), (Y, by)〉 = (det(−abJ )(−1)n(n−1)/2N, (−1)n) ∈ Ŝ,

where the notation is as in Subsection 7.2. Note that this is indeed an alternating cochain:

(det(g)N, (−1)n) + (det(−gJ )N, (−1)n) = (det(−ggJ)(−1)n2
N, (−1)2n) = (N, 1).

Then df = f∂ is an Ŝ-valued 2-coboundary, and we have

df〈(Z, cut(y)), (X, ax)), (Y, by)〉 = f〈(X, ax), (Y, by))〉 − f〈(Z, cuty), (Y, by))〉
+ f〈Z, cut(y))(X, ax))〉

= (det(−abJ )(−1)n(n−1)/2N, (−1)n)

+ (det(−bt−1cJ)(−1)n(n−1)/2N, (−1)n)

+ (det(caJ )(−1)n(n−1)/2N, (−1)n)

= (det(aaJbbJccJ t)(−1)n(n−1)/2N, (−1)n)

= (det(t)(−1)n(n−1)/2N, (−1)n),
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whence
disc∗ m + df = 0,

where disc∗ denotes the coefficient homomorphism induced by disc : W 1(D,J)→ Ŝ. Conse-
quently, the image of m vanishes in H2(U(M); Ŝ).

7.5. Recall that EU(M) ⊆ U(M) is the invariant subgroup generated by the Eich-
ler transformations. This group is perfect if D1 is infinite [6, 6.3.15] and consequently
H1(EU(M);A) = Hom(EU(M), A) = 0 for any coefficient group A with trivial EU(M)-
action. We consider Ŝ0 = disc(W 1(D,J)) ⊆ Ŝ. The long exact cohomology sequences for the
coefficient maps

0 � Ŝ0
� Ŝ � Ŝ/Ŝ0

� 1

0 � II(D,J) � W 1(D,J) � Ŝ0
� 0

yield therefore monomorphisms

0 � H2(EU(M); Ŝ0) � H2(EU(M); Ŝ)

0 � H2(EU(M); II(D,J)) � H2(EU(M);W 1(D,J)).
This gives us the next Theorem. To keep the notation simple, we denote the restriction of

m to the subgroup EU(M) also by m.

Theorem 17. Assume that ε = 1 and that D1 is infinite. There exists a unique cohomology
class [m̃] ∈ H2(EU(M); II(D,J)) that maps under the coefficient homomorphism II(D,J)→
W 1(D,J) onto [m]. We call this class the reduced Maslov cocycle.

Proof. As we have proved in Subsection 7.4, we see that disc∗[m] + [df ] = 0 in
H2(EU(M); Ŝ), whence disc∗[m] = 0 in H2(EU(M); Ŝ0). Therefore [m] has a preimage [m̃] in
H2(EU(M); II(D,J)). The map H2(EU(M); II(D,J))→ H2(EU(M);W 1(D,J)) is injective,
and so the preimage is unique.

7.6. In the symplectic situation (J, ε) = (id, 1) it is possible to give an explicit formula
for the reduced cocycle m̃. Then Ŝ = Ŝ0 and EU(M) = U(M) = Sp2n D and we can directly
define a W 1(D,J)-valued 1-cochain on Fl(Γ̂) by

f̃〈(X, ax), (Y, by)〉 = 〈det(−ab), 1, . . . , 1〉,
where the right-hand side denotes as usual the n-dimensional symmetric bilinear form with the
given entries on the diagonal. Under the map p : Fl(Γ̃)→ Fl(Γ), this is a lift of f and we have
disc∗ df̃ = p∗df . Thus

m̃ = p∗m + df̃

is the reduced Maslov cocycle on Fl(Γ̂) in the symplectic case. Explicitly, it reads as

m̃〈(X, ax), (Y, by), (Z, cuty)〉 = 〈det(−ab), 1, . . . , 1〉+ 〈det(ca), 1, . . . , 1〉
+ 〈det(−btc), 1, . . . , 1〉 − 〈t〉.

8. Kashiwara’s Maslov cocycle

In the symplectic situation over a field D of characteristic not equal to 2, the Maslov index is
classically defined through a different quadratic form [13]. (A variant is used in [21], while a



A MASLOV COCYCLE FOR UNITARY GROUPS 107

topological generalization for bounded symmetric domains of tube type is given in [18]. See
[3] for a survey of topological Maslov indices.)

8.1. Kashiwara’s Maslov index

Let D be a field of characteristic not equal to 2. We assume that we are in the symplectic
situation ε = 1, J = id. Given three Lagrangian X,Y,Z (not necessarily pairwise opposite), we
consider the following 3n-dimensional quadratic from qX,Y,Z on the direct sum X ⊕ Y ⊕ Z as
follows:

qX,Y,Z(x, y, z) = h(x, y) + h(y, z) + h(z, x).

If the Lagrangians are not pairwise opposite, then the quadratic form is going to have a radical.
The Kashiwara–Maslov index of (X,Y,Z) is the class in the Witt group WD that is represented
by the nondegenerate part q+

X,Y,Z of qX,Y,Z .
For D = R, the Witt group WR is isomorphic to Z via the signature and the Maslov index

can directly be defined as the signature of qX,Y,Z (even if the form is degenerate). This is
essentially Kashiwara’s definition of the symplectic Maslov index as developed in [13, 1.5.1].

If X,Y,Z are pairwise opposite, then we find that with respect to our standard basis x,y, uty
for X ⊕ Y ⊕ Z the quadratic form is represented by the matrix

qX,Y,Z =

⎛⎝0 −1 0
0 0 t
1 0 0

⎞⎠ .

We note that X ⊕ Y ⊕ 0 is a hyperbolic submodule in X ⊕ Y ⊕ Z whose orthogonal com-
plement is spanned by vectors of the form (tz, z, z) ∈ D3n. The restriction of qX,Y,Z to this
subspace is given by z �→ (zT tz), and thus qX,Y,Z = q+

X,Y,Z is represented by [t] in WD. This
is our first result.

Proposition 18. If X,Y,Z are pairwise opposite Lagrangians, then the Kashiwara–Maslov
index of (X,Y,Z) agrees with the image [t] of 〈t〉 = κ(X,Y,Z) in the Witt group WD.

Next we get to Kashiwara’s Maslov cocycle, which is defined as follows. We fix a Lagrangian
X0 ∈ L and define τ : Sp2n D × Sp2n D →WD via

τ(g, h) = 〈q+
X0,g(X0),gh(X0)

〉.
We want to relate this group cocycle to our Maslov cocycle defined in terms of the flag complex
of the opposition graph.

8.2. Recall the bar notation [2, I.5] for the standard free resolution of a group G over Z.
Its chain complex is given as

Fn = ZGn+1

and the generator (1, g1, g1g2, g1g2g3, . . . , g1 · . . . · gn)⊗ 1 ∈ Fn ⊗G Z is denoted by [g1| · . . . ·
|gn]. Then τ can be viewed as the WD-valued 2-cochain [g|h] �→ τ(g, h) for G = Sp2n D and
one can verify the cocycle identity [13, 1.5.8].

In general, suppose that X is a set on which a group G acts, and that c : X ×X ×X → A is
a G-invariant map taking values in an abelian group A, such that c satisfies the cocycle identity
c(x, y, z)− c(w, y, z) + c(w, x, z)− c(w, x, y) = 0. If we choose a base point o ∈ X, then it is not
difficult to see that the cocycle (g1, g2, g3) �→ c(g1(o), g2(o), g3(o)) defined on the standard free
resolution F∗ of G over Z and the cocycle g ⊗ (x, y, z) �→ c(x, y, z) defined on F0 ⊗G C2 ⊆ F∗ ⊗G

C∗ are homologous (C∗ is the standard complex of k + 1-tuples of elements of X). However,
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we cannot use this directly to compare our Maslov cocycle with its classical counterpart, since
our cocycle is defined only on special triples of Lagrangians. We need to refine this idea using
some elementary homological algebra. We do this in general, as we need it also in the next
section.

8.3. Let Γ = (V,E) be a graph with the star property. Suppose that G is a group acting
transitively on the vertices of Γ. Let o ∈ V be a base point and consider the induced graph ΓG

on G under the map G→ V , g �→ g(o) and its flag complex given by

F ′
∗ = C∗Fl(ΓG) ⊆ F∗.

Obviously, this chain complex is a free resolution of G over Z and a subcomplex of the standard
free resolution F∗ of G. Both chain complexes F∗ and F ′

∗ can be used to determine the group
(co)homology of G.

Suppose now that c : C2Fl(Γ)→ A is a G-invariant cocycle. Then we can construct two
2-cocycles for G, one via

ĉ : (g0, g1, g2) �−→ c(g0(o), g1(o), g2(o))

on F ′
2 ⊗G Z, and the other via

c : g ⊗ (x, y, z) �−→ c(x, y, z)

on F ′
0 ⊗G C2Fl(Γ) ⊆ F ′

∗ ⊗G C2Fl(Γ). Our first aim is to prove that both cocycles are homolo-
gous. We consider C∗ = C∗Fl(Γ) and we call a generator (g0, . . . , gm)⊗ (x0, . . . , xn) ∈ F ′

m ⊗G

Cn admissible if {g0(o), . . . , gm(o), x0, . . . , xn} consists of pairwise adjacent elements in Γ.
This is a well-defined notion, that is, invariant under the left diagonal action of G. Let
D∗∗ ⊆ F ′

∗ ⊗G C∗ denote the submodule generated by the admissible elements. We note that
this submodule is Z-free and closed under the vertical and horizontal differentials, and so it is
a double complex.

Lemma 19. The inclusion D∗∗ ↪→ F ′
∗ ⊗G C∗ induces an isomorphism in homology and

cohomology (for coefficient groups with trivial G-action).

Proof. We show that the relative homology groups of the pair (F ′
∗ ⊗G C∗,D∗∗) vanish. Let

z ∈⊕m+n=k F ′
m ⊗G Cn be a relative k-cycle and let z̃ ∈⊕m+n=k F ′

m ⊗Z Cn be an element
that maps onto z. We choose a group element j such that for all terms (g0, . . . , gm)⊗
(x0, . . . , xn) appearing in z̃, the vertex j(o) is adjacent to g0(o), . . . , gm(o), x0, . . . , xm (this
is a well-defined condition as we work with z̃ ∈⊕m+n=k F ′

m ⊗Z Cn, where the G-action is
not factored out). Consider the k + 1-chain j#z̃, whose (m + 1, n)-terms are of the form
(j, g0, . . . , gm)⊗ (x0, . . . , xn). The total differential is

∂(j#z̃) = z̃ − j#(∂z̃).

Projecting this equation back to F ′
m ⊗G Cn, we see that the image of j#∂z̃ is in D∗+1,∗. Thus

z is a relative boundary and H∗(F ′
∗ ⊗G C∗,D∗∗) = 0. From the long exact homology sequence

we get an isomorphism H∗(D∗∗)
∼=−→ H∗(F ′

∗ ⊗G C∗). Since both F ′
∗ ⊗G C∗ and D∗∗ are Z-free,

the universal coefficient theorems and the 5-Lemma yield isomorphisms for homology and
cohomology with arbitrary coefficient groups A (with trivial G-action); see [26, 5.3.15, 5.5.3].

The remaining part of the comparison is routine. We denote elements of G by g, h, i and
vertices of Γ by u, v, w. We define two 1-cochains f1, f2 on D∗∗ by

f1((g)⊗ (u, v)) = c(g(o), u, v) and f2((g, h)⊗ (u)) = c(g(o), h(o), u),
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where c is the given G-invariant 2-cocycle on Fl(Γ). Then dfν = fν∂ and using the cocycle
identity for c, we obtain

df1((g)⊗ (u, v, w)) = (c(g(o), v, w)− c(g(o), u, w) + c(g(o), u, v)
= c(u, v, w)

df1((g, h)⊗ (u, v)) = c(h(o), u, v)− c(g(o), u, v)
df2((g, h)⊗ (u, v)) = −c(g(o), h(o), v) + c(g(o), h(o), u)

= df1((h, i)⊗ (x, y))
df2((g, h, i)⊗ (u)) = c(h(o), i(o), u)− c(g(o), i(o), u) + c(g(o), h(o), u)

= c(g(o), h(o), i(o)),

which shows that
df1 − df2 = c− ĉ.

Theorem 20. Let G be a group acting vertex-transitively on a graph Γ having the star
property, and let c : C2(Fl(Γ))→ A be a G-invariant A-valued 2-cocycle (where G acts trivially
on A). Fix a vertex o of Γ and let F ′

∗ ⊆ F∗ and C∗ be as in Subsection 8.3. Then the cocycles

ĉ : F ′
2 ⊗G Z � A, (g0, g1, g2)⊗ 1 �−→ c(g0(o), g1(o), g2(o))

and

c : F0 ⊗G C2
� A, g ⊗ (x, y, z) �−→ c(x, y, z)

are homologous under the isomorphism

H2(G;A)
∼=� H2

G(C∗;A).

Moreover, there exists a cocycle ˆ̂c : F2 ⊗G Z→ A extending ĉ, i.e. ĉ = ˆ̂c|F ′∗ .

Proof. Only the last claim remains to be proved. Since the inclusion F ′
∗ ⊆ F∗ induces an

isomorphism in cohomology, we find a cocycle ˜̂c on F∗ ⊗G Z such that ĉ− ˜̂c|F ′∗⊗GZ = da is a
coboundary. Now F ′

∗ ⊗G Z is a direct summand in the Z-free module F∗ ⊗G Z, and thus we
can extend a to a 1-cochain ã on F∗ ⊗G Z. Then (˜̂c + dã)|F ′∗⊗GZ = ĉ.

Corollary 21. For a field D of characteristic not equal to 2, Kashiwara’s Maslov cocycle
and our Maslov cocycle yield the same cohomology class in H2(Sp2n D;WD).

We obtain also the following general result for unitary groups over arbitrary skew-fields.

Corollary 22. If Dε is infinite and o ∈ L is a fixed Lagrangian, then there exists a group
cocycle τ : U(M)×U(M)→W 1(D,J) such that

τ(g, h) = 〈κ(o, g(o), gh(o))〉
holds for all pairs g, h with o, g(o), gh(o) pairwise opposite.

9. The Maslov cocycle as a central extension

The reduced Maslov cocycle defines a central extension [2, IV.3; 6, 1.4C]

1 � II(D,J) � ÊU(M) � EU(M) � 1
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of EU(M) by II(D,J). This extension is uniquely determined by the homomorphism

[m̃] ∈ H2(EU(M); II(D,J)) ∼= Hom(H2(EU(M)), II(D,J));

our aim is to determine this homomorphism H2(EU(M))→ II(D,J) algebraically. In view of
the naturality that we proved in Section 6, we begin with the smallest case Sp2 D = SL2 D,
where D is an infinite field. We do allow fields of characteristic 2, as we rely on the results
in [15, 17] which are valid over arbitrary (infinite) fields. Note, however, that in our setup
the Witt group W 1(D, id) is always the Witt group of symmetric bilinear forms (and not of
quadratic forms).

9.1. The Schur multiplier of SL2 D and the Steinberg cocycle

We consider

ut =
(

1 t
0 1

)
ar =

(
r 0
0 r−1

)
br =

(
0 r
−r−1 0

)
Since SL2 D is a two-transitive group, every element is either of the form arut or of the form
usbrut. We define KSp2 D as the abelian group generated by symbols {x, y}, for x, y ∈ D∗,
(the symplectic Steinberg symbols), subject to the relations:

{st, r}+ {s, t} = {s, tr}+ {t, r},
{s, 1} = {1, s} = 0,

{s, t} = {t−1, s},
{s, t} = {s,−st},
{s, t} = {s, (1− s)t} if s �= 1.

According to [15, 5.11; 17, p. 199] the Schur multiplier of SL2 D is H2(SL2 D) ∼= KSp2 D.
Moreover, the Steinberg normal form of the universal group cocycle

stbg : SL2 D × SL2 D � H2(SL2 D)

is given for ‘generic’ group elements by

stbg(g(s1, r1, t1), g(s2, r2, t2)) =
{

t

r1r2
,−r1

r2

}
− {−r1,−r2},

where t = t1 + s2 �= 0 and g(s, r, t) = usbrut; cf. [11, 15, 5.12; 17, p. 198 (1)] in a more special
situation. We note that the formula given in [17, p. 198 (1)] is incorrect. The formula above is
due to Schwarze [24, 5.9] and agrees with Matsumoto’s calculations.

9.2. Given x, y ∈ D, we denote by (x, y)D the 4-dimensional symmetric bilinear form:

(x, y)D = 〈1,−x,−y, xy〉.
If char(D) �= 2, then this is the norm form of the quaternion algebra

(
x,y
D

)
(see [23, 2.§ 11]).

Obviously, (x, y)D ∈ II(D, id), and (x, y)D = (y, x)D = (xz2, y)D. Using the fact that the
metabolic form 〈x,−x〉 vanishes in W 1(D, id), it is routine to verify that these elements
satisfy the first four defining relations of KSp2 D; for example (s,−st)D = 〈1,−s, st,−s2t〉 ∼=
〈1,−s, st,−t〉 ∼= (s, t)D. For the last relation, it suffices to check that 〈−t, st〉 ∼= 〈−(1− s)t, (1−
s)st〉 for s �= 1. This follows from(

1 1
s 1

)(−t 0
0 st

)(
1 s
1 1

)
=
(−(1− s)t 0

0 (1− s)st

)
Thus we have a homomorphism

R : KSp2(D) � II(D, id) ⊆W 1(D, id),
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which maps the symplectic Steinberg symbol {u, v} to the 4-dimensional symmetric bilinear
form R({u, v}) = (u, v)D.

Applying R to the Steinberg cocycle, for ‘generic’ group elements (with the same notation
as before), we obtain

R ◦ stbg(g(s1, r1, t1), g(s2, r2, t2)) =
(

t

r1r2
,−r1

r2

)
D

− (−r1,−r2)D

= (r1r2t, r1r2)D − (−r1,−r2)D

= (−r1r2, t)D − (−r1,−r2)D

= 〈1, r1r2,−t,−r1r2t〉 − 〈1, r1, r2, r1r2〉
= 〈1, r1r2,−t,−r1r2, t,−1,−r1,−r2,−r1r2〉
= 〈−t,−r1r2t,−r1,−r2〉 = −〈t, r1r2t, r1, r2〉.

9.3. We compare this expression with the reduced Maslov cocycle. In M = D2 we consider
x =

(
1
0

)
, X = xD and o = (X,x). Using the notation of Subsection 8.4, we have for F ′

2 the
formula

τ(g1, g2) = τ([g1|g2]) = m̃(o, g1(o), g1g2(o)),

where three vertices o, g1(o), g1g2(o) have to be pairwise opposite. For the first pair of vertices,
this condition gives g1 = us1br1ut1 , and for the second pair g2 = us2br2ut2 . Then we have

τ([g1|g2]) = m̃(o, g1(o), g1g2(o))

= m̃(g−1
1 (o), o, g2(o))

= −m̃(o, g−1
1 (o), g2(o))

= −m̃(o, g(−t1,−r2,−s1)(o), g(s2, r2, t2)(o))
= −m̃(o, u−t1b−r1(o), us2br2(o))
= −m̃(o, b−r1(o), ut1+s2br2(o)),

which yields the additional condition t = t1 + s2 �= 0 that ensures that the first and third
vertices are opposite. Note that by Subsection 8.3 the class of any 2-cocycle is completely
determined by its values on F ′

2, and hence it suffices indeed to work with ‘generic’ elements.
The explicit formula in Subsection 7.6 for the reduced Maslov cocycle now yields a = 1, b = r−1

1

and c = −r−1
2 , whence

τ([g1|g2]) = −〈t, r1, r2, r1r2t〉 = R∗ stbg([g1|g2]).

For SL2 D over fields of characteristic not equal to 2, the following result was proved in [1, 19;
Section 5].

Theorem 23. Let D be an infinite field. The central extension of Sp2n D determined by
the reduced Maslov cocycle is given by the homomorphism R : KSp2 D → II(D, id).

Proof. For n = 1 we have shown this in Subsection 9.3. In general, the standard inclusion
Sp2n D ⊂ � Sp2n+2 D induces for all n � 1 an isomorphism in 2-dimensional homology such
that the universal Steinberg cocycle for Sp2n+2 D restricts to the universal Steinberg cocycle
for Sp2n D (see [15, 5.11]). The result now follows by induction on n.

For fields of characteristic not equal to 2, this is stated in [21, 3.1]. However, the proof has
a gap: the authors evaluate the reduced Maslov cocycle on the torus (the diagonal matrices)
and compare it there with the universal Steinberg cocycle. However, they fail to show that the
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reduced Maslov cocycle is a Steinberg cocycle, and therefore they cannot use the comparison
theorem [15, 5.10].

In any case, this result settles the situation for symplectic groups over infinite fields of
arbitrary characteristic. Note that for fields of characteristic not equal to 2, the map R is
surjective [23, 4.5.5], and thus Ŝp2n D is an epimorphic image of the universal central extension.

9.4. Local fields

By a local field we mean a locally compact (nondiscrete) field; the connected local fields are
R, C and the totally disconnected ones are the finite extensions of the p-adic fields Qp and, in
positive characteristic, the fields Fq((X)) of formal Laurent series over finite fields [29, 1.3].
Being a closed subgroup of the general linear group, a symplectic or unitary group over a local
field is in a natural way a locally compact group.

9.5. The Maslov cocycle over R

For D = R, the Witt group WR = W 1(R, id) is isomorphic to Z via the signature sig : WR→ Z
(see [23, 2.4.8]); the fundamental ideal IR has index 2, and IIR = I2R has index 4. We note that

sig((x, y)D) =

{
4 if x, y < 0
0 else

By [15, p. 51; 17, 10.4]; this 4Z-valued cocycle yields precisely the universal covering group
S̃p2n R of Sp2n R.

We compare the relevant classifying spaces. Let BSp2n Rδ denote the classifying space for
Sp2n R, viewed as a discrete topological group and let BSp2n R be the classifying space for the
Lie group Sp2n R; the latter is homotopy equivalent to BU(n), as U(n) ⊆ Sp2n R is from [7,
X, Table V] and Iwasawa’s theorem [7, VI, § 2] a homotopy equivalence. The classifying space
BSp2n Rδ is an Eilenberg–MacLane space of type K(Sp2n R, 1) whose cohomology is naturally
isomorphic to the abstract group cohomology of Sp2n R (see [2, II.4]). The identity map from
the discrete group to the Lie group induces a continuous map between the classifying spaces

F : BSp2n Rδ � BSp2n R.

On the right, the universal covering is classified by the first Chern class c1. This shows that
under the forgetful map F ∗ the first universal Chern class c1 ∈ H2(BSU(n)) ∼= H2(BSp2n R)
pulls back to the Maslov cocycle as follows:

F ∗(c1) = [m̃]

(if the sign for the Chern classes is chosen appropriately). The real Maslov cocycle may be
viewed therefore as a combinatorial description of the first Chern class; this was observed
in [28].

Proposition 24. Under the forgetful functor from topological groups to abstract groups,
the first Chern class for Sp2n R maps to the reduced Maslov cocycle.

As II(C, id) = 0 the Maslov cocycle for Sp2n C vanishes. Now we turn to nonarchimedean
local fields; cf. [13, p. 104–115].

9.6. We assume that D is a nonarchimedean and nondyadic local field (that is, the
characteristic of the residue field of D is not equal to 2). The Witt group WD has 16 elements,
the group Ŝ of extended square classes 8, and thus II(D, id) = I2D is cyclic of order 2 (see
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[12, VI.2.2]). Its nontrivial element is represented by the norm form of the unique quaternion
division algebra over D. Let S denote the group of square classes of D and let

(−,−)H : S × S � {±1}
be the Hilbert symbol [12, p. 159]: (x, y)H = −1 if (x, y)D is anisotropic, that is, the norm
form of a quaternion division algebra. Consider e : I2D

∼=� {±1}, then we clearly have

e ◦R ◦ stbg(x, y) = (x, y)H

for SL2 D. Thus the reduced Maslov cocycle for SL2 D is the reduction of the universal cocycle
stbg to {±1} via the Hilbert symbol. As in the proof of Theorem 24, this carries over to Sp2n D.
The following result is partially contained in [13, pp. 104–115].

Proposition 25. Let D be a nonarchimedean nondyadic local field. The reduced Maslov
cocycle defines a twofold nontrivial covering of Sp2n D that is determined by the Hilbert symbol

KSp2 D → {±1}. The corresponding covering group Ŝp2n D is a locally compact group; it is
the unique nontrivial twofold covering of Sp2n D in the category of locally compact groups.

Proof. Only the topological result remains to be proved. It is shown in [17, 10.4] that in the
category of locally compact groups, Sp2n D admits a universal central extension S̃p2n D; the
extending group is the group μ(D) of all roots of unity in D. (See [22] for a modern account
and a much more general result.) This group μ(D) is a finite cyclic group [17, Ch. II] and of
even order 2n, as it contains the involution −1. The corresponding Steinberg cocycle is given
by the norm residue symbol KSp2 D → μ(D) (see [17, Chapter II]). However, the nth power
of the norm residue symbol is the Hilbert symbol. This shows that Ŝp2n D is a continuous
quotient of S̃p2n D. As the cyclic group μ(D) has a unique subgroup of index 2, the extension
is the unique nonsplit twofold topological extension.

9.7. Finally, we consider unitary groups over fields. We assume that E is a field with an
automorphism J �= id of order 2; the fixed field is D ⊆ E. We denote the hyperbolic unitary
group by U2nE; then EU2nE = SU2nE = U2nE ∩ SL2n E (see [6, 6.4.25,6.4.27]). As we have
noted in Section 6, there is a natural injection Φ : Sp2n D ⊂ � SU2n E and we have a
commutative diagram as follows:

H2(Sp2n D)
Φ∗ � H2(SU2n E)

II(D, id)

[m̃D]

� WD
E � II(E, J).

[m̃E ]

�

Unfortunately, the Schur multiplier H2(SU2nE) seems to be less understood than its symplectic
counterpart. However it is proved in [4, 2.1, 2.5] (and in a weaker form in [6, 6.5.12]) that the
map Φ∗ is surjective, and thus H2(SU2nE) is a quotient of KSp2D. (Here SU2nE is the group
of D-points of a quasisplit absolutely simple and simply connected algebraic group over D, and
hence the results from [4] apply.)

The following facts concerning WD
E were kindly pointed out by W. Scharlau. First, the map

WD
E : W 1(D, id) −→W 1(E, J)

is an epimorphism, because every hermitian form can be diagonalized (even in characteristic
2, see [9, I.6.2.4]) and thus is the image of a diagonal symmetric bilinear form over D.
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Assume now that char(D) �= 2 and E = D(
√

δ). Passing from a hermitian form h over E
to its trace form bh over D (see [23, p. 348]), we have an monomorphism trf : W 1(E, J)→
W 1(D, id) = WD; explicitly, we hence

trf〈a1, . . . , an〉 = 〈1,−δ〉 ⊗ 〈a1, . . . , an〉.
In particular, trf ◦WD

E ((x, y)D) = 〈1,−δ〉 ⊗ 〈1,−x〉 ⊗ 〈1,−y〉, and WD
E (I2D) is isomorphic to

a subgroup of I3D.
It follows that the Maslov cocycle for the unitary group over a nonarchimedean nondyadic

local field E vanishes, because I3D = 0 (see [12, VI.2.15(3)]). The case of the complex numbers
is more interesting.

9.8. Complex unitary groups

For E/D = C/R the map W R

C
: WR→W 1(C, ¯ ) and its restriction I2R→ II(C, ¯ ) is an

isomorphism. We use the standard Lie group notation SU2nC = SU(n, n) (see [7]) (note that
multiplication by i transforms skew-hermitian into hermitian matrices). The maximal compact
subgroup is S(U(n)×U(n)). As in Subsection 9.5 we compare the classifying space for the
discrete group (whose homology is the abstract group homology) with the classifying space
BSU(n, n) for the Lie group. For n = 1 we have an isomorphism Sp2 R = SU2 C, whence a
big commutative diagram

H2(Sp2R) ============== H2(SU(1, 1))
F∗ � H2(BSU(1, 1))

I2R
ϕ∗
∼=

[m̃
R ]

�

� II(C, )̄
1
4 sig
∼=

[m̃
C ]

�
� Z

c
1∼=

�

H2(Sp2n R)
�

�

[m̃

R

]
�

H2(SU(n, n))
� F∗ �

[m̃C
]

�

H2(BSU(n, n)).

∼=

�

∼=
c1

�

Proposition 26. If we identify the first Chern class c1 with the generator of
H2(BSU(n, n)), it pulls under the forgetful map F back to the reduced Maslov cocycle for

SU(n, n). Thus ̂SU(n, n) is the universal covering group of the Lie group SU(n, n).

9.9. Sharpe [25] (see also 6 5.6D*]) has constructed an exact sequence:

K2(D) � KU−1
2 (D,J) � L1

0(D,J) � 0

The L-group L1
0(D,J) maps onto II(D,J) and we conjecture that the composite

KU−1
2 (D,J) � II(D,J)

‘is’ (in most cases) the reduced Maslov cocycle m̃ : H2(EU(M))→ II(D,J). In the symplectic
situation over fields of characteristic not equal to 2, this is indeed the case by Theorem 23 and
[6, 5.6.8]. However, a proof would certainly require a different description of the relevant maps
than the one in [25].
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