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V. A. KRASNOV

ABSTRACT. For a vector bundle Ε on a real algebraic variety X , the author studies
the connections between the characteristic classes

ck(E{Q) € H2k(X{C), Z), wk(E(R)) € Hk(X(R), F2) .

It is proved that for Af-varieties the equality Wic(E(R) = 0 implies the congru-
ence C/C(E(C)) = 0 mod 2 . Sufficient conditions are found also for the converse
to hold; this requires the construction of new characteristic classes ηυ^(Ε(€)) £
H2k(X(C); G, z(fc)). The results are applied to study the topology of X(R).

I N T R O D U C T I O N

Let X be a nonsingular real projective algebraic variety, and Ε a vector bundle
on X. Then the following two topological vector bundles are defined: the com-
plex bundle E(C) on X(C) and the real bundle E{R) on X{R), where E(C) and
X(C) are the sets of complex points, and E(R) and ^(R) the sets of real points.
Our principal problem consists in looking for connections between the characteristic
classes

ck(E(Q) e H2k(X(C), Z), wk(E(R)) e Hk(X(R), F 2).

Let us give examples of such connections. We start with rather obvious ones. The
best known is

Assertion 00. In H2k{X(R), F2),

c*(£(C))U(R) mod 2 = (wk(E(R)))2.

This means in particular that the equality wk{E(R)) = 0 implies the congruence
Ck(E)(C))\x(z) = 0 mod 2. Subsequent examples will show that under certain appro-
priate conditions the equality wk(E{R)) = 0 implies the congruence ck{E{C)) = 0
mod 2 on all of X(C).

Assertion 01. Suppose dimX = η . Then

(cn(E(C)), [X(C)]) mod 2 = (wn(E(R)), [X(R)]),

where [X(C)] e H2n{X{C),Z) and [X(R)] e Hn{X(R),F2) are the fundamental
homology classes.

This results from the following fact: if the class cn(E(C)) is given by the zero-cycle

±χι±·--±χρ±(χ[+ x[') ±---±(x'q + x1;),

where x\, ... , xp € X(R) and the pairs x'r, x" are complex conjugate, then the
class wn(E(R)) is given by the zero-cycle x\ + • • • + xp . As a consequence we have
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704 V. A. KRASNOV

Corollary 02. Suppose άιτη,Χ = η. Then the equality wn(E{R)) = 0 implies the
congruence cn(E(C)) = 0 mod 2; and if X(R) consists of a single component, then
the converse holds.

Assertion 01 can be generalized as follows.

Assertion 03. Let f: Υ ^ X be a mapping of a nonsingular k-dimensional real
algebraic variety. Then

(rck(E(C), [Y(C)}) mod 2 = (f*wk(E{R)), [Y(R)]).

Before stating the corollaries of this assertion, we recall that by Ak (X) is meant
the group of rational equivalence classes of /c-cycles; then certain homomorphisms

dc: Ak(X) - H2k(X(C),Z), c l c : Ak(X) - H2k(X(C), F2)

are defined.

Corollary 04. Suppose thehomomorphism clc' Ak(X) —> H2k{X(C), F2) isepi. Then
the equality wk(E(R)) = 0 implies the congruence ck(E(C)) = 0 mod 2.

This follows from Assertion 03, using resolution of singularities for cycles on X.

Corollary 05. Suppose X is an η-dimensional nonsingular complete intersection.
Then for 2k > η the equality wk(E(R)) = 0 implies the congruence ck(E(C)) Ξ 0
mod 2 (when X is of odd degree this holds also for 0 < 2k < n).

We show now that the following holds.

Proposition 06. Let X be an M-variety. Then the equality W\(E(R)) = 0 implies
the congruence C\(E(C)) = 0 mod 2.

It suffices to prove this for a line bundle; in the contrary case we replace Ε by
det.E. For a line bundle, consider a continuous mapping / : X(C) —> P ^ C ) , com-
muting with complex conjugation, such that the bundle E(C) is topologically iso-
morphic with the bundle f*V(C), where V(C) is the universal bundle on P ^ C )
and the isomorphism preserves the real structures on E(C) and f*V(C). Then

(1) cl(E(C)) = rc1(V(C)), w,(£(R)) = f*wl( V(R)).

If Wi(E(R)) = 0, then from (1) we obtain the equality

(2) £dimKer[//*(P"(R), F2) - H«(X(R), F2)] = N.
q

On the other hand, for the mapping / we have the Harnack-Thom inequality

^dimKert/Z^P^CR), F2) - W{X{R), F2)]

(3)
< ^dimKer[//"(P^(C), F2) - H"(X(C),F2)]

q
(see [1]), which is satisfied for any continuous mapping. From (l)-(3) we obtain the
congruence C\(E(C)) = 0 mod 2.

Proposition 06 implies the following interesting fact.

Corollary 07. Let X be an M-surface, and let all the components of X{R) be ori-
entable. Then the Euler characteristic satisfies the congruence x(X(R)) = 0 mod 16,
and the homology class [X(R)] in H2(X(C), F2) is equal to zero.

The proof will be given in §4.5.
We note now that if the method of the proof of Proposition 06 is applied to

a mapping / : X(C) -> G r ^ C * ) , where m = rkE and f*V{C) is topologically
isomorphic to ^ ( C ) , one arrives at the following result.
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Proposition 08. Let X be an M-variety. Then the equalities

wi(E(R)) = 0,...,wm(E(R)) = 0

imply collectively the congruences

d(E(C)) = 0 mod 2, . . . ,cm(E(C)) = 0 mod 2.

We prove in this paper the following generalization of Proposition 06.

Theorem 09. Let X be an M-variety. Then the equality wk(E(R)) = 0 implies the
congruence ck(E(C)) = 0 mod 2.

We also prove

Theorem 010. Let X be an M-variety. Then the equality ^ ( ^ ( R ) ) = 0 implies the
equality v2k(X{C)) = 0, where vr(·) is the Wu class of the variety.

This implies

Corollary 011. Let X be a Ik-dimensional M-variety, with vk{X{R)) = 0. Then the
Euler characteristic satisfies the congruence x(X(R)) = 0 mod 8, and the homology
class [X{R)] in H2k(X(C), F2) is equal to zero.

The proof of this corollary is given in §4.5. For the proof of Theorem 09 we need
to construct certain new characteristic classes (for line bundles they have already
come up in [2]). The precise definition of these classes will be given in the main part
of the paper; for the moment, we simply explain where they reside.

Let Z(k) be the constant sheaf on X(C) with stalk (2ni)kZ c C. Let τ : X(C) ->
X(C) be the involution of complex conjugation; then τ acts on Z(k) also concor-
dantly with the action on X(C), by complex conjugation. Let G = {e, τ} be the
group of order 2; then Z{k) becomes a (J-sheaf, and the Galois-Grothendieck co-
homology H2k(X(C); G, Z{k)) is defined (see [3]), for which there exist canonical
homomorphisms

a: H2k(X(C); G, Z{k)) - H2k(X(C), Ζ),

β: H2k(X(C); G, Z{k)) - Hk(X(R), F 2).

We shall construct characteristic classes

cwk(E(C), τ) e H2k(X(C); G, Z{k)),

which we call mixed, since they satisfy the equalities

a(cwk(E(C), τ)) - ck(E(C)), P(cwk(E(C), τ)) - wk(E(R)).

Indeed, we have the following commutative diagram:

ck{E)

ΠΊ
Ak(X)

Ac/ \ clg
(4) ck(E(C)) £ H2k(X(C), Z) I dHk(X(R),F2) 3 wk(E(R))

H2k(X(C);G,Z(k))
ID

cwk(E(C),T)
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Here Ak{X) is the group of rational equivalence classes of cycles of codimension
k . The homomorphism clc is the composite of the homomorphism clc: Ak(X) —>
^2n-2fc(-^(C), Ζ), defined by taking the complex points of the cycle, with the Poincare
duality

H2n_2k(X(C),Z)^H2k(X(C),Z).

The homomorphism CIR is constructed similarly, but its definition involves certain
subtleties (see §2.2). The homomorphism cl is defined in §2.1. Under all the ho-
momorphisms cl, clc , CIR , a, and β , characteristic classes go into characteristic
classes. A good part of the paper is concerned with the validation of diagram (4).

Let it be noted, also, that these mixed characteristic classes are being defined for
Real (capital letter!) bundles on a topological space with involution. We recall that
a Real bundle on such a topological space X means a complex vector bundle Ε
on X provided with an antilinear involution (of the real structure) τ: Ε —> Ε that
commutes with the involution on X (see [4]).

We have also made use of the mixed characteristic classes toward the solution of
the converse problem: to find sufficient conditions that the congruence Ck{E(C)) = 0
mod 2 imply the equality wk(E(R)) = 0. In this direction there already exists the
following previous result (see [5] and [6]).

Proposition 012. Suppose Hl(X{C), Z) = 0 and the group H2{X{C),Z) has no
elements of order 2. Then the congruence Ci(E(C)) = 0 mod 2 implies the equality

We re-prove this proposition by using the mixed characteristic classes, and attempt
a generalization for the classes ck(E(C)) with k > 1 . In particular, we prove

Theorem 013. Suppose X is a GM-variety such that H2q-x{X{C), Z) = 0 for 1 <
q < k, H2"{X{C), Z) has no elements of order 2 for 1 < q < k, and the ho-
momorphism clc: Aq{X) —> H2q{X{C), Z) is epi for q < k. Then the congruence

c k ( E ( C ) ) Ξ 0 m o d 2 i m p l i e s t h e e q u a l i t y w k ( E ( R ) ) = 0 .

F i n a l l y , l e t u s o b s e r v e t h a t b y a n o n s i n g u l a r r e a l a l g e b r a i c v a r i e t y w e m e a n i n t h i s

p a p e r a s c h e m e X o v e r t h e field R s u c h t h a t X ® R C i s a n o n s i n g u l a r i r r e d u c i b l e

v a r i e t y . A s u b v a r i e t y o f a v a r i e t y X i s a r e d u c e d a n d i r r e d u c i b l e c l o s e d s u b s c h e m e

o f X .

§ 1 . L I N E B U N D L E S

T h i s s e c t i o n i s i n t r o d u c t o r y . I t w i l l a s s i s t i n d e f i n i n g t h e m i x e d c h a r a c t e r i s t i c

c l a s s e s o f a n a r b i t r a r y c o m p l e x v e c t o r b u n d l e w i t h r e a l s t r u c t u r e .

1.1. Picard groups. Let X be a topological space with involution τ: X —> X, i.e.,
a real topological space in the terminology of [4]. We consider only compact spaces.
The Picard group Pic X is by definition the group of complex line bundles on X
(isomorphic bundles being identified); Pic(X, τ) is the group of Real (capital letter!)
line bundles on X, i.e., the group of complex line bundles with real structure; and
Pic8 Χτ is the group of real (lower-case!) line bundles on Χτ.

Let <fx be the sheaf of germs of continuous complex-valued functions on X,
and @x the sheaf of germs of invertible complex-valued functions. Then Pic X =
Hx {Χ, @χ). Similarly, if J/J·, and Ji/χ, are the sheaves of germs of real-valued
functions, then PicRXT = ΗΧ{Χτ, s/χ,). A corresponding description applies to the
group Pic(X, τ) ; for this, we observe that on the sheaves @x and (fx there exists
a canonical real structure given by the formula θ(φ) = ψ~°τ, where φ is the germ



CHARACTERISTIC CLASSES OF VECTOR BUNDLES 707

of a function and the bar signifies complex conjugation. We shall now demonstrate
the following fact.

Proposition 1.1.1. There exist a canonical isomorphism

where G = {e, τ} is the group of order 2 and Hl (X; G, <f£) is Galois-Grothendieck
cohomology.

Proof. We first describe the cohomology group Hl (X; G, <f%) by means of coverings
(see [3]). Let U = {«,·} be a covering of X, with τ acting on the index set / so that
τ([/,·) = t/T(,·) for every i £ I. In this case the covering U is called a G-covering.
It will be called a covering without fixed points if τ acts on / without fixed points.
Supposing, then, that the covering U = {M,·} is without fixed points, consider the
cochain complex φ e Ck(\J, <f%). It is acted on by the involution τ in the following
way: if φ e Ck(U, <P£) and φ = {φία • • -ik) , then

P u t

Hk(U; G,&*x) = Hk(C*(V,

t h e n

We now show how to construct, for a given cocycle φ e Z ' ( U , @χ)α, a complex
line bundle with real structure. Put

Ε = JJ U, χ C
ί

and define an involution θ: Ε —> Ε as follows: if (χ, z) e £/,· χ C, then 0(.x, z) =
(τ(χ), ζ) e C/T(,·) χ C. The cocycle φ determines an equivalence relation on Ε that
is preserved under the action of θ . Indeed, if χ e [/,· D [/,·, then, by definition,

Ui χ C 3 (χ, ζ) ~ (χ, Ρ,-7·(Λ;) · ζ ) € C/,· χ C.

But

θ(χ, ζ) = (τ(χ),ζ) e ί/τ(/) x C , i ( x , ^ 7 ( x ) · ζ ) = (τ(χ), Ψί){χ) • ζ )

= {τ{χ), Ψα{τ{χ)) · ζ) e ί/τϋ, x C ,

i.e., θ(χ, ζ) ~ θ(χ, <Pij(x) · ζ ) . Factoring Ε, we obtain the complex line bundle

Ε = E/~ =

s with real structure θ. This permits construction of a homomorphism
Hl(X; G, &χ) -» Pic(X, τ), which is then easily verified to be an isomorphism;
and the proposition is proved.

1.2. The characteristic classes. First of all, we observe that there exist canonical
homomorphisms

a: Pic(X, τ) -> Pic Χ, β: Pic(X, τ) -* PicR XT;

the first "forgets" the real structure, and the second is given by the formula Ε ι-»
Εθ . For any Ε e Pic(X, r) there are defined the characteristic classes C\(a)(E)) e
H2(X, Z) and •ω1(β(Ε)) e Ηι(Χτ, F 2 ) . We shall now define a characteristic class
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e H2(X; G, Z(l)) which is a "mix" of the classes Ci(a(£)) and ιυλ{β{Ε));
here Z(l) = (2πΐ) · Ζ c C is a constant sheaf on X, on which the involution τ acts
by complex conjugation, i.e., by multiplication by - 1 . The new characteristic class
is defined by means of the exponential exact sequence of (7-sheaves

(1) 0-»Ζ(1)-κ&Ξ?<?£-> 1.

This exact sequence (1) determines a coboundary homomorphism

and we denote the composite homomorphism

Pic(X, τ) ^ H\X; G,d?*)^ H2(X; G,

by cw\. Observe that in fact cw\ is an isomorphism, since

Hl(X; G,(?) = H2(X;G,<?) = 0.

We now define two more homomorphisms:

a : H2(X; G, Z(l)) -» H2(X, Ζ), β : H2(X; G, Z(l)) -+ Hl(X\F2).

The mapping α is the composite of projection onto II^,2(X; G, Z(l)) and the in-
clusion I I ^ 2 ( Z ; G, Z(l)) c H2(X, Z(l)) = # 2 ( * , Z) . Before defining β , let us
look at the spectral sequence

lp

2'
q{XT; G, Z(l)) = H"{XX, ^«(Z(l))) => Hp+q{XT; G,

Since

F 2 for,? odd,

we have a canonical isomorphism

Η2{Χτ; G,Z{l))^Hl(XT,F2).

The composite

H2(X; G, Z(l)) - H2(XT; G, Z(l)) ^ //'(Χ τ, F2)

is what we denote by β .

Proposition 1.2.1. The following equalities hold:

(2) a{cw{{E)) = cx (

We omit the verification of these equalities, since it is given in [2].
We also state the following obvious fact.

Proposition 1.2.2. Let f: X —> Υ be an equivariant mapping of spaces with involution,
and Ε a complex line bundle on Υ with real structure; then

(3) cwl(f*E) = r(cwl(E)).

Remark 1.2.3. It will be seen later that equalities (2) and (3) determine the mixed
characteristic classes cwi(E) uniquely. For the moment we compute the Galois-
Grothendieck cohomology group in which these classes lie, for the general case. Let
Ε be a complex vector bundle on X with real structure, and suppose Ε splits into
line bundles with real structure; that is, Ε = Ει θ · · · Θ Em . Then we must have
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and therefore
cwk(E)eH2k(X;G,Z(k)),

where Z(k) = Z(l) ® ··· ® Z(l) = {2ni)kZ c C; that is, Z(k) is a constant sheaf
with stalk Ζ , on which the action of the involution is multiplication by - 1 for odd
k and trivial for even k.

1.3. Divisors. In this section X is an «-dimensional compact complex variety,
τ: X —> X an antiholomorphic involution, Pic X and Pic(JST, τ) groups of complex-
analytic line bundles, and @χ and &χ sheaves of germs of holomorphic functions.
Let 9tiv(X) be the group of divisors on X Then τ acts on 2liv{X), since if ψ is
a hypersurface in X, so is τ(Χ); so that we have an involution

x*:3Siv{X)-+3liv{X).

Let D be a divisor invariant with respect to τ*. Then on the sheaf (f(D) there
exists a canonical real structure; namely, put θ(φ) = φ ο τ , where ^ is the germ
of a meromorphic function such that (φ) + D > 0, and the bar means complex
conjugation. The corresponding line bundle will be denoted by L(D). Consequently,
we have a homomorphism

L:3>iv{XY* ^ P i c ( X , τ),

and composition with the homomorphism

cwx: Pic(X,r)^H2{X;G

gives a homomorphism

cl: 3iv(X)x* -f H2(X; G,

We want to describe the homomorphism cl geometrically. Suppose first that D is
an irreducible hypersurface, invariant with respect to τ , and [D] e H2n-2{D, Z) is
the fundamental homology class. Consider the Poincare-Lefschetz isomorphism

H2n_2(D,Z)^H2(X,X\D;Z),

and denote the image of [D] under this isomorphism by [D]*. Observe now that

H2(X, X\D; G, Z(l)) = H2(X, X\D; Ζ),

as follows from the spectral sequence

llp

2>«(·; G, Z(l)) = H"(G, H"{-,Z{\))) => H'+*(.; G,

so [D]* can be regarded as a cohomology class in H2(X, X\D; G, Z(l)) . Denote
its image in H2(X; G, Z(l)) also by [D]* . Suppose next that D = YX + Y2, where
Γι and Y2 are irreducible hypersurfaces such that τ(Υ\) = Y2 . Putting [D] =
[Yi] + [Y2] and repeating the preceding argument, we obtain again a cohomology
class [D]* e H2(X; G, Z(l)) . Since the divisors of these two forms generate the
group 3>iv(X)T" , there is a homomorphism

[]·: 3Πυ(Χ)τ' ^H2(X;G, Z(l)).

Proposition 1.3.1.
c\(D) = [D]\

Proof. It suffices to verify this equality for divisors of the two forms just described.
From the exact sequence of G-sheaves
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we obtain the commutative diagram

L(D)€Hl{X,X\D;G,<?*) Λ H2(X, X\D; G, Z(l)) 9 [D]*
(1) I I rx I

L{D)eHl(X,X\D;(f*) Λ H2(X, X\D; Z) 9 [£>]*

Observe that the bundle L(D) does indeed determine an element of the Picard group
Hl (X, X\D; G, (f*), as is easily seen from the definition of Cech cohomology. For
the lower row in (1) we have

(2) 3{L{D)) = [D]\

so that this equality holds also in the upper row, since the homomorphism

H2(X,X\D; G,Z{\))^H2{X,X\D;Z)

is an inclusion. If now we regard L(D) as an element of Hl(X; G, <f*), and [D]*
as an element of H2(X; G, Z(l)) , then (2) holds also in this case. This proves the
proposition.

Remark 1.3.2. Suppose D — k\ Y\ Η \-kmYm , where Y\, ... ,Ym are nonsingular
irreducible hypersurfaces invariant with respect to τ , and put DT — k\ Yf + • • • +
kmY^ ; then Dx is a divisor on Χτ, and a cohomology class [Ζ)τ]* e Ηι(Χτ, F2) is
defined. It is easily verified that W\{L{DT)) = [DT]* (see [6]), and this means that

We note also that the manner of construction of the mapping [ ]*: 3iiv(X)x* -*
H2(X; G, Z(l)) has been borrowed from [12] and [13], with modification taking
account of the real structure.

§2. REAL ALGEBRAIC CYCLES

In this section X is a nonsingular real projective algebraic variety, and we define
and study certain mappings

cl: Ak(X) -> H2k(X(C); G, Z(k)), cl c : Ak(X) - H2k(X(C), Ζ),

c\R:Ak(X)^Hk(X(R),F2).

2.1. The mappings cl and cl c · If Zk (X) is the group of cycles of codimension k ,
we can define a mapping cl: Zk(X) -> H2k(X(C); G, Z{k)) by the equality cl(F) =
[Y]", where the cohomology class [Y]* in H2k(X(C) ;G,Zek)) is defined in the
same way as for divisors in §1.3. Similarly, cl c(F) = [Y(C)]* e H2k(X{C), Z) (see
[13]). Denoting by a the canonical mapping

H2k(X(C); G, Z(fc)) - H2k(X(C), Z(/c)) = H2k(X(C), Ζ),

we obtain the equality a{[Y]*) = [Y(C)]* ; i.e., a(cl(7)) = c\c{Y).

Proposition 2.1.1. If two cycles Y' and Y" are rationally equivalent, then cl(F') =

To prove this, we first need the following fact.

Lemma 2.1.2. Let X and Υ be two topological spaces with involution, and f,g:X—>
Υ equivariant mappings that are equivariantly homotopic. Then the cohomology group
homomorphisms

f*,g*: H"(Y; G, Z(k)) - Hn(X; G, Z{k))

coincide.
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Proof. We show first that the mapping it: X —> Χ χ / , it(x) = (x, t), induces an
isomorphism

(1) i*t:H
n{X χ I; G, Z(k)) -> Hn(X; G, Z(k))

that is independent of t. Indeed, since

rt:H*(X x /, Z(k)) - H"{X, Z(k))

is an isomorphism for every q , it follows from the spectral sequence

Ilf •«(·; G, Z(k)) = H"(G, H"(·, Z(k))) => H™(.; G, Z(k))

that also (1) is an isomorphism. Furthermore, since the composite of the mappings

coincides with id, the isomorphism i* ο pr* is independent of t, and therefore so
is /*. Now let F: Χ χ / —> Υ be an equivariant homotopy from / to g. Then
/* = i* ο F* and g* = i* ο F*, and therefore f* = g*. This proves the lemma.

Proof of Proposition 2.1.1. Let F c i x P 1 be a subvariety of codimension k that
projects dominantly onto P 1 . It determines a cohomology class

[VY e H2k(X(C) xPl(C);G, Z{k)).

If t e Ρ'(Κ), we denote by V, the cycle in X = Χ χ {t} equal to Vn(X χ {t});
then

(2) [vtr = i

This equality follows from the commutativity of the diagram

eH2k(X(C) xP '(C),X(C) xP'(C)\F(C); G,

[V(C)]* e i/ u (X(C) χ P'(C), X(C) χ P>(C)\F(C); Z{k)) '-I

Ί H2k(X(C),X(C)\Vt(C);G, Z{k)) 3 [Vt]*
r^a I

ll H2k(X(C),X(C)\Vt(C); Z(k)) 3 [Vt{C)Y

and the equality [F,(C)]* = i*[V{C)]*. From (2) and the lemma, we conclude that
the cohomology class [Vty e H2k(X(C); G, Z(k)) is independent of t. This proves
the proposition.

Thus, there is defined a mapping

cl: Ak{X) -• H2k(X(C); G, Z(Jfe)).

We prove

Proposition 2.1.3. The mapping cl preserves products.

Proof. Let Υ and Ζ be two subvarieties, of codimension k and /, with proper
intersection. Then the cohomology class

[(Y - Z)(C)]' € H2k+2I(X(C), X(C)\Y(C) η Z(C); Z)

is the product of the classes

[Y(C)T e //2A:(X(C), X(C)\7(C); Z),

]· e H2l(X(C), X(C)\Z(C); Z).
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It follows that the class

[Y · Z]· e H2k+2I(X{C), X(C)\Y(C) η Z(C) ;G,Z(k + I))

is the product of the classes

[Y]* e H2k(X(C), X(C)\Y(C); G, Z(k)),

[Z]· € tf2/(X(C), X(C)\Z(C); G, Z(/)),

so that this relation also holds for the classes

[Y · Z\* e //2*+2/(X(C); G, Z(fc + /)), [Y]* e /72*(X(C); G, Z(k)),

[ZYeH2'(X(C);G,Z(l)).

This proves the proposition.

We now want to study the composite of the homomorphisms

Ak(X) -> H2k(X(C); G, Z{k)) -> H2k(X(R); G, Z(k))

For this we shall need first to define the fundamental homology class of the alge-
braic set Y{R), where Υ is a subvariety of X, and also to study the cohomology
H2k(X(R);G,Z(k)).

2.2. The fundamental homology class and the mapping cl R . Let Υ be a subvariety
of X of dimension m, such that the set 7(C) is irreducible and dim Y(R) — m . We
shall define a homology class |T(R)] € Hm(Y(R), F2) . For this we take a resolution
of singularities

i : F - > y
U U
Z' ^Z

where Ζ is the singularities of Υ and Ζ ' = π~ ' (Ζ) , and consider the following
commutative diagram of exact homology sequences with coefficients in Γ2:

0 - Hm(Y'(R)) - Hm(Y'(R),

0 - //m(F(R)) - Hm(Y(R), Z(R))

The fundamental homology class |T'(R)] e Hm(Y'(R)) is defined; its image in
Hm(Y(R)) gives the fundamental homology class [Y(R)]. Observe that if we take
a triangulation of Y(R), then [T(R)] is the sum of all the w-simplices; by [7], a
triangulation of Y(R) exists. We now define a mapping

Let Υ be a subvariety as above, with m + k — dim X. Consider the sequence of
homomorphisms

Hm{Y{R), ¥2) ^ Hk(X(R), X(R)\Y(R); F2) - Hk(X(R), F 2 ) ,

where the first is the Poincare-Lefschetz isomoφhism; the image of [Y(R)] in both
Hk(X(R), X{R)\Y(R); F2) and Hk(X(R), F2) will be denoted by [ r ( R ) ] ' . In this
case we put clR(F) = [^(R)]*. In all other cases, dimR Y(R) < dim c y(C), and we
put C1R( Y) = 0. This gives a homomorphism

clR:Zk(X)-+Hk(X(R),F2),
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where the images of rationally equivalent cycles coincide; as a result, we have a
homomorphism

clR:Ak(X)^Hk(X(R),F2).

This homomorphism is connected in a certain fashion with the homomorphism
cl: Ak(X) -> H2k(X(C); G, Z(k)). To understand this connection, consider the
homomorphism

β': H2k(X(C); G, Z(fc)) - H2k(X(R); G, F2)

which is the composite of the homomorphisms

H2k(X(C); G, Z(k))^H2k(X(C);G, F2) -+ H2k(X(R); G, F 2 ) ,

of which the first is induced by the homomorphism of G-sheaves Z(k) —> F 2 ,
(2ni)kp ι-> ρ mod 2, and the second is the restriction. Since

2k
H2k(X(R);G, F2) = φ#«(ΛΓ(Ε), F2)

(see [1]), projection onto //^(^(R), F2) defines also a homomorphism

β: H2k(X(C); G, Z(k)) -, tf*(*(R), F2).

Theorem 2.2.1. The image of the composite of the homomorphisms

Ak{X) 4 H2k(X(C); G, Z{k)) Κ H2k(X(R);G, F2)

lies in Hk(X{R), F 2 ) , and β ο cl = clR.

The proof will be given in §2.4; for the moment, we consider only the cases k =
0, 1.

Observe that

A°(X) = Z-[X], H°(X(C) ;G,Z) = H°(X(C), Ζ) = Ζ ·

H°(X(R); G, F2) = H°(X(R), F2) = F 2 · [X,]* + · · · + F 2 ·

where X\, ... ,Xm are the components of X(R); furthermore,

= [X,]· + ··· + [*„

These equalities imply the theorem for the case k = 0. The case k = 1 has already
been worked out (see Remark 1.3.2), since each divisor is linearly equivalent to a
difference to a difference Y' - Y" , where Y' and Y" are nonsingular hypersurfaces.

2.3. Functorial properties of the mapping cl. Suppose we have a triple Ζ c Υ c X,
where X and Υ are nonsingular real algebraic varieties, while the variety Ζ can be
singular. Then cohomology classes

[YY e H2k(X(C), X(C)\Y(C); G, Z(k)),

[Ζ]·γ € H2d(Y(C), Y(C)\Z(C);G, Z[d)),

[Z]*x e H2k+2d(X(C), X(C)\Z(C) ;G,Z(k + d)),

are defined, where k = codim^ Υ and d = codimy Ζ . In this case we can define a
product

(1) [ Z ] r · [Υ]' e H2k+2d(X(C), X(C)\Z(C) ;G,Z(k + d))
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as follows. Let π: U -* Y{C) be a tubular neighborhood of Υ(C) in X(C), where
π is a real projection, i.e., commutes with τ , and let V — n~l(Z(C)). Then we
have an isomorphism

π*: H2d(Y(C), F(C)\Z(C); G, Z(d)^H2d(U, U\V; G, Z(d)),

since
π*: //«(r(C), 7 ( C ) \ Z ( C ) ; Z ) ^ H q ( U , U \ V ; Z )

is an isomorphism for every # . Consequently, we can regard [Z]y as an element of
the group H2d(U, U\V;G, Z(d)), and the product (1) is therefore defined.

Proposition 2.3.1.

(2) [ΖΥΥ · [Υ]* = [Z]x.

Proof. Equality (2) holds for the cohomology classes

[Y(C)T e H2k(X(C), X(C)\Y(C); Z{k)),

[Z(C)]*y(C) 6 H2d(Y(C), y(C)\Z(C); Z(d)),

[Z(C)TX{C) e H2k+2d(X(C), X(C)\Z(C); Z(k + d)).

Then the inclusions

H2k(X(C), X(C)\Y(C); G, Z(k)) c H2k(X(C), X(C)\Y(C);

H2d(Y(C), y(C)\Z(C); G, Z(rf)) c H2d(Y(C), y(C)\Z(C);

// 2 * + M (Z(C), AT(C)\Z(C);G,Z(k + d)) c i/ 2 / c + M(X(C), JT(C)\Z(C); Z(fc + d))

imply that it also holds for the original classes. This proves the proposition.

Remark 2.3.2. If we regard the cohomology classes [Z]*Y and [Z]*x as elements
of the groups H2d(Y(C); G, Z(d)) and H2k+2d(X(C) ;G,Z{k + d)), equality (2)
remains true.

Now let / : X —> Υ be a mapping of nonsingular projective real algebraic varieties.
Then there are homomorphisms

f*:Ak(Y) - Λ*(Λ-), Γ- H2k(Y(C); G, Z{k)) -+ H2k(X(C);G, Z(fc)).

Proposition 2.3.3.
/ * o d = clo/·.

Proof. Identify X with the graph Γ/ c Χ χ Υ; we obtain a commutative diagram

ci I ci |

; G, Z(k)) - C //2i:(X(C) χ Y(C); G,

cl | cl J.

— H2k(Tf(C); G, Z{k)) = H2k(X(C); G, Z(k))

where ρ: Χ χ Υ ^ Υ is the projection and
H2k(X(C) χ y(C); G, Z(fc)) - / / ^ ( ^ ( C ) ; G, Z(/c))

is the restriction homomorphism. It remains only to observe that the composite
of the homomorphisms in the upper row of the diagram is by definition equal to
the homomorphism /* : Ak(Y) —> Ak(X), while the composite in the lower row
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is equal to the homomorphism /*: H2k(Y(C); G, Z{k)) -> H2k(X(C); G, Z(k)).
This proves the proposition.

2.4. Proof of the theorem on CIR . We carry out an induction on the dimension of
X. The theorem holds for curves; assuming it holds for dim X < η , we show it
holds for dim X = η + 1. Thus, let Υ be a subvariety of X of codimension k ; we
must show that the image of cl ([Y]) under the homomorphism

2k
H2k(X(C); G, Z(k)) - H2k(X(R) ;G,¥2) = ($H*(X{R), F2)

?=o

lies in Hk(X(R), F2) and is equal to C1R([F]) . We show first that Υ can be supposed
nonsingular. Consider a sequence of monoidal transformations with nonsingular
centers

X fra "2 v O\ v vm * " " " * Λ\ * Λ0 — Λ ,

resolving the singularities of Y. Denote by Γ, c X, the inverse image of 7,_! c X,_i
under the mapping σ,, where Yo = Υ; then Ym c Xm is a nonsingular subvariety.
We prove that if the theorem holds for the cycle [Yt] € ΑΚ{Χ{), then it holds for the
cycle [Yj-\] € Ak(Xj^i). Let Z,_! be the center of the monoidal transformation
ac. X\ —» Xi-\ , and put Wj = σ~'(Ζ,_ι); then Wi is a nonsingular hypersurface in
Xi. Observe that

(1)
where Δ e Ak{Xi) is a cycle that lies on Wt. We verify first of all that the theorem
holds for the cycle Δ. From Proposition 2.3.1 we have

(2) clx'{A) = c\Wi(A)-c\([Wi]),

where c\{[W{\) = [Wj]* e H2{Xt{C), X,(C)\^(C); G, Z(l)), which under the ho-
momorphism

H2{Xj{C), XiiQXWiiC); G, Z(l)) ^ //2(X,(R), Jr,-(R)\^(R); G, F2)

goes into C1R([H^]) . By the induction assumption, the cohomology class cl^(A) e
H2k-2{W,{C) ;G,Z(k-l)) goes under the homomorphism

H^-^WiiC); G, Z(k - 1)) - H2k-2{Wi{R) ;G,¥2)

into the class cl^(A) e ^ " ' ( ^ ( R ) , F 2 ) . Since (2) holds also for clR , we find that
under the homomorphism

H2k(X,(C); G, Z(k)) - H2k(X,(R); G, F2)

the class clx'(A) goes into the class C1RJ(A), as claimed. Thus, the theorem holds
for the cycles [7,] and Δ, and so by (1) it holds for the cycle a?([Yj-i]) e Ak{Xl).
Consider now the commutative diagram

i) -^ H2k(X^(C);G,Z(k)) ^

H2k(XAR);

I

G, F2)

9=0

2k

= ^L·

2k

φ ,(R), F2)

< I
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The homomorphisms σ*: Hq(X^i{R), F2) -> //?(X,(R), F2) are inclusions; in ad-
dition, the diagram

ι) ^ Hk(Xi_l(R),F2)

a*([Yi-l])eAk(Xi) - ^ # * ( * i ( R ) , F 2 )

is commutative; consequently, under the homomorphism

; G, Z(k)) - / / ^ ( ^ . ( R ) ; G, F2)

t h e c l a s s c l ( [ y , _ i ] ) m a p s i n t o t h e c l a s s C 1 R ( [ Y , _ I ] ) , a s c l a i m e d . T h u s , w e c a n s u p p o s e

the subvariety Υ to be nonsingular. A monoidal transformation of X with center
Υ gives us a commutative diagram

Ϋ C X

i Ί
Υ c X

where ? = σ~ι(Χ). Consider the cycle σ*{[Υ]) e Λ*(?). Since it lies on Ϋ, the

class clAr(<7*[y]) goes under the homomorphism

H2k(X(C); G, Z(k)) -+ H2k(X(R); G, F2)

into the class ο1κ(σ*[Κ]) (this is proved in the same way as for the cycle Δ above);
ν

c o n s e q u e n t l y , t h e c l a s s c l ([Y]) g o e s u n d e r t h e h o m o m o r p h i s m

H2k(X(C); G , Z ( k ) ) ^ H 2 k ( X ( R ) ; G , F 2 )

into the class clg ([Υ]), as claimed. This completes the proof of the theorem.

2.5. General observations. To sum up, we have constructed the following commu-
tative diagram:

Ak(X) > Hk(X{R),F2)
cXy^ cl | rx

H2k{X(C),Z) A H2k(X(C); G, Z(Jfc)) - ^ H2k(X(R); G, F2)

The homomorphism in it preserve multiplication, and it depends contravariantly on
X.

Let £ be a vector bundle on X . Since the Chern characteristic classes Ck(E) e
Ak(X), are present, we can put

cwk(E) = c\(ck(E)) e H2k(X(C);G, Z{k)).

This defines the mixed characteristic classes for real algebraic bundles, but we want
to define them also in the topological situations. Various approaches exist for dealing
with this problem. We shall solve it by means of the universal bundle, and also show
that Grothendieck's method can be applied. For real algebraic bundles we prove
that these definitions coincide with the definition in terms of algebraic cycles. These
matters are taken up in the next section.

§3. THE MIXED CHARACTERISTIC CLASSES

We first make some remarks concerning a special class of varieties.
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3.1. Varieties with cellular decomposition and Grassmannians. Let X be a non-
singular projective real algebraic variety with cellular decomposition; i.e., X has a
filtration

X = Xn D Xn-X D---DXODX-I=0

by closed subschemes such that each difference Xi\Xi-i is a union of schemes C/,;

isomorphic to affine spaces A"" . If F,y- is the closure of [/,·_,-, then the classes {Vi/}
determine a basis for A*(X), and the homomorphism

is an isomorphism; this means that the composite of the mappings

Ak(X) - ^ H2k{X(C); G, Z{k)) - ^ //2/c(X(C), Z)

is an isomorphism for every k . Put a" 1 = clo(clc)"1 ; then the homomorphism

a " 1 : H2k{X{C), Z) -+ //2*(X(C); G, Z(*))

is an inclusion for every k .
As an example of a variety with cellular decomposition, we take the Grassmann

variety Gr^ (m < n). We denote by Grm(C) the topological space \Jn>m Gr^(C),
with involution τ: Grm(C) —> Grm(C) by complex conjugation. The inclusions

a " 1 : H2k(Gxn

m{C), Z) - H2k{Gxn

m{C); G,

induce inclusions

a " 1 : // 2 f c(Grm(C), Z) ^ // 2*(Grm(C); G,

since the restriction homomorphisms

H2k{GrN

m{C), Z) ^ / / U ( G C ( C ) , Ζ),

H2k{GTN

m{C); G, Z(k)) - H2k (Grn

m(C); G, Z(k))

are isomoφhisms for TV » « » / : . Let F be the universal bundle on Grm (C), and
put

(1) cw^(F) = a-\ck{V)) e H2k(Grm(C); G, Z(k)).

Observe that then

(2) fi{cwk{V)) = wk{V') e // f c(Grm(R), F 2 ) ,

where the homomorphism

β: H2k(Grm(C);G, Z(k)) - // f c(Grm(R), F2)

is the composite of the homomorphisms

H2k(Grm(C); G, Z(k)) -* H2k(Grm(C); G, F2)
Ik

-> // 2 A :(Grw(R); G,¥2) = 0 / / « ( G r m ( R ) , F2) - // f c(Grm(R), F2).

Equality (2) results from the following considerations. Let σι ...ι be the Schubert
cell in Gr^(C),and Vn the restriction of V to Gr^(C);then

ck{vn) = {-\)k[au ...,,]·,

whence

by Theorem 2.2.1. If we now take the limit as η —> +cxs, we obtain (2).
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3.2. Definition of the mixed characteristic classes and their properties. Let X
be a compact topological space with involution τ: X ~* X, and Ε —> X an m-
dimensional complex bundle with real structure. Then there exists an equivariant
mapping / : X -> Grm(C) such that f*V « Ε; this is proved in the same way as the
corresponding fact for bundles without real structure (see [8]). So by definition we
put

(1) cwk(E) = f* wk(V).

We must verify that this definition is legitimate. Let g: X —> Grm(C) be a second
equivariant mapping such that g*(V) « Ε. Then / and g are equivariantly homo-
topic; this is proved in the same way as the corresponding fact for bundles without
real structure (see [8]). It remains only to apply Lemma 2.1.2.

Theorem 3.2.1. 1) If Ε is a complex vector bundle with real structure, then

a(cwk{E)) = ck(E), fi(cwk{E)) =

2) If h: X —> Υ is an equivariant mapping of topological spaces with involution,
and F a complex vector bundle with real structure on Υ, then

3) If Ε and F are complex vector bundles with real structure on X, then

cw(E Θ F) = cw(E) U cw(,F),

where cw = 1 + cwi + CW2 Η is the total mixed characteristic class.
4) If Ε is a line bundle, then cw\{E) is the characteristic class of'§1.2.

Proof. Part 1) need be verified only for the universal bundle, and for the latter it
follows from equalities (1) and (2) of §3.1. Part 2) follows immediately from the
definition of mixed classes in this section. To prove part 3), consider the canonical
mapping

Ν : Grm(C) χ Grn(C) -• Gr m + n (C),

where m and η are the dimensions of Ε and F. Let h be the composite of the
mappings

χ Jjtl^ G r m ( C ) χ Grn(C) ^U Gr m + n (C),

where / and g are mappings of X into Grm(C) and Grn(C) such that f*Vm « Ε
and g*V ss F . Then it is easily verified that

Consequently,

cw(£ ®F) = /z*(cw(Fm+")) = ((/ χ g)* ο iV*)(cw(Fm+")).

Furthermore, since A r*(c(Fm+")) = c{Vm)®c{Vn), we obtain from the definition of
cw(F) for the universal bundle (see (1) in §3.1) the corresponding equality

^*(cw(F m + n )) = cw(Fm) ® cw(F"),

Hence

cw(£ θ F) = (/ χ g)*(cw(Fm) ® cw(F"))

= /*(cw(Fw)) U g*(cw(F")) = cw(£) U cw(F).

Part 4) need be verified only for the universal line bundle on VN(C). But on a
projective space cwi is uniquely determined by the equality a(cwi) = c\ , since the
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homomorphism a: H2(PN{C); G, Z(l)) -» H2{¥N(C), Z) is an isomoφhism; and
the characteristic class of §1.2 satisfies this equality. This completes the proof of the
theorem.

The mixed characteristic classes can be defined also by Grothendieck's method
using projectivization of the bundle; but to do this we must first compute the Galois-
Grothendieck cohomology for the projectivization.

3.3. Projectivization of a vector bundle. In this subsection X is a compact topo-
logical space with involution τ : X —» X; π: Ε —> X is an m-dimensional complex
vector bundle with real structure θ: Ε -* Ε; and π: Ρ (Ε) —> Χ is the projectiviza-
tion of π: Ε —> Χ. Note that the involution θ: Ε —> Ε induces an involution
Θ: P(E) -> P(E). We write Z± for the constant G-sheaves on P{E) with stalk Z ,
on which the involution θ is equal to ± id.

Proposition 3.3.1. The Leray spectral sequences for the Galois-Grothendieck cohomol-
ogy

EP>J = H"(X;G, RqK,{Z±)) => HP+«{P{E);G, Z±)

are degenerate.

Proof. We can assume that X either is connected or consists of two connected com-
ponents X' and X" such that τ(Χ') = X" ; in any other case it can be represented
as a disjoint union of such spaces. Since Rqn*{Z) = 0 for q odd, we have

d,;± = 0 for ή> odd and any ρ and r;

dr',± = 0 f° r r e v e n a n d any ρ and q.

We prove that the remaining differentials are also zero. First we show that d^'l = 0
for all r.

If Χτ Φ 0 , put Υ = {χ} , where χ is a fixed point in Χτ; otherwise put Υ =
{χ, τ(χ)}, where χ e X. Denote by EY the restriction of Ε to Υ; observe that
the spectral sequence

E%;i{Y) = HP(Y; G, Λ«π,(Ζ_)) =• Hp+q{P{EY); G, Z_)

is degenerate, with Ep

r;l{Y) = 0 for ρ Φ Ο.
Consider the commutative diagram

t e H2(P(E); G, Z_) - H2(P(EY); G, Z_) = Ζ · i y

where the horizontal homomoφhisms are induced by the inclusion P(EY) c /*(£);
also, / = cwi(L) and tY = cw(Ly), with L = O(-l) and LY = Ογ(-Ι) the
canonical line bundles; and i 0 · 2 and i°'2 are the projections of t and iy . Since t0'2

goes into iy'2 / 0 , the homomorphism £^' 2 _ —> ^ 2 _ ( 7 ) is an epimorphism. On
the other hand, the homomorphism £ ° ' - —* E%'-(^) ^s a n isomorphism. Therefore
d°;i = 0 for every r .

Now consider the sum of the spectral sequences:

EP·" = H"(X; G, Λ ? π»(Ζ + φΖ_)) =• HP+"{P(E); G, Z+ ©Z_).

Multiplication by i° •2 gives an isomorphism

II
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commuting with the differentials. Since dP'° = 0 , it follows from the commutative
diagram

ττΡ, Ο ~ τ?ρ, 2

>3 ' i > 3

t h a t dP'2 = 0 . C o n s i d e r i n g n e x t t h e i s o m o r p h i s m s

pp, 2 ~ | pp, 4 ~ ) pp, 6 ~
3 3 3 * ' * '

we find that dP'2q = 0 for all ρ and q . Continuing similarly, we find that dP

r'
2q — 0

for all ρ, q, and r. This proves the proposition.

Corollary 3.3.2. (i) The homomorphism π*: Hq(X; G, Z±) -> Hq(P{E); G, Z±) is
an inclusion for every q.

(ii) The homomorphism t" : Hq(X, G, Z+ φ Ζ _ ) -> (Hq+2p(P(E); G, Z+ φ Ζ_)
is an inclusion for 0 < ρ < m - 1.

(iii)

Hq(P(E); G,Z+®Z-) = Hq{X; G , Z + ® Z _ )

φ ί — //«-2(Χ; G,Z+®Z_)

Proo/. Part (i) follows immediately from the proposition;
(ii) follows from the fact that the homomorphisms

are isomorphisms for 0 < ρ < m - 1; and (iii) follows from (ii) and the equality

e pr,s _ pg,0 ffi f /r<?-2,0 ffi . . ffi fm-l pq-2m+2,0

This proves the corollary.

3.4. Definition of the mixed characteristic classes by Grothendieck's method. We
retain the notation of §3.3. Since there exist canonical isomorphisms Z(2#) =
Z + and Ζ(2ήτ - 1) = Z_ , we have from Corollary 3.3.2 (iii) a decomposition

m
(1) ί = / ί —̂' ak ι

k=\

where ak e H2k(X; G, Z{k)).

Proposition 3.4.1.

where the ak are the cohomology classes in the decomposition ( 1 ) .

Proof. Consider the tautological exact sequence of complex vector bundles wi th real

structures on P(E):

0 -• L -> π*Ε -* F -> 0.

It d e t e r m i n e s a decomposition

(J) π L· = L·® r.
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Since r k F = m - 1, we have cwk(F) = 0 for k > m. This follows from the fact
that cwk(Vm~l) = 0 for k > m, where Vm~x is the universal bundle. Similarly,
cwfc(L) = 0 for k > 2. From the decomposition (3) we have

π* cw(£) = (1 + t) — cw(F).

Consequently,

cw(F) = (1 + t)'1 - π* cw(£) = (1 - t + t2 ) ~ π* cw(£),

and therefore

i.e.,

tm = -
k=l

Applying part (iii) of the corollary, we arrive at (2). This proves the proposition.

3.5. The mixed characteristic classes of an algebraic bundle. In this subsection X
is a nonsingular projective real algebraic variety, and Ε a vector bundle on X. We
have then the characteristic classes

ck(E) € Ak(X), ck(E(C)) e H2k(X(C), Z), wk(E(R)) e Hk(X(R), F2),

as well as the mixed characteristic classes cwk(E(C)) e H2k(X(C); G, Z(k)). Ob-
serve that clc(Ck(E)) — ck{E(C)). The next proposition generalizes this equality.

Proposition 3.5.1. The following equalities hold:

(1) cl(ck(E)) = cvrK(E(C)),ciR{ck(E)) = wk(E(R)).
Proof. For line bundles, these equalities have been verified in §1.3. For a bundle of
rank m, consider the sequence of projectivizations

γ "«-Ι γ "«-2 K2 γ Tt\ γ
Λ-m-l > Ληι-2 * ' ' ' ~" y Λ \ * Λ ι

w h e r e X\ = P(E) a n d X2 = P{F), w i t h F t h e c o k e r n e l i n t h e e x a c t s e q u e n c e

0-tL-> π\Ε -» F -> 0, etc. Then for the bundle π*{Ε), π = 7tm_i ο · · · ο π 2 ο ) ΐ ι ,
we have a filtration

where the factors Ei/Ei+i = F, are line bundles. Consequently, we obtain for the
total characteristic classes the equalities

= cw(F0(C) ~ ... ^ cw(Fm

= w(F0(R)) - ••· ̂  «;(/·„,_,(R)),

and therefore

(2) cl(c(*n*E)) = cw(n*E(C)), C1R(C(JT*E)) =

Since the homomorphisms

n*:Ak{X)^Ak(Xm-i), π*: H2k(X(C); G, Z(k)) - / / " ( ^ ^ ( C ) ; G,

π*: tffc(X(R), F2) - / / ^ ^ . . ( R ) , F2)

are inclusions, the equalities (2) imply (1). This proves the proposition.
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§4. APPLICATIONS OF THE MIXED CHARACTERISTIC CLASSES

4.1. Orientability of bundles.

Proposition 4.1.1. Let X be a topological space with involution τ: Χ —• X such that
Hl(G, Hl(X, F2)) = 0, and Ε a complex vector bundle on X with real structure.
Then the congruence c\{E) = 0 mod 2 implies orientability of Ex.

Proof. Consider the commutative diagram

H2(X,Z) £-
i

H2(X,F2) Λ

We must show that

H2(X;G,
i

H2(X; G

Z(l)) Λ

,F2) Κ

under the homomorphism

H2(X; G,Z(1))-

Hl(XT

α
Η2(Χτ

0. Let

//2(X;

,F 2 )

; G , F 2 ) =

cw\(E) be

G , F 2 ) ,

2
= 0// 9 (A- T ,F 2 ) .

the image of cwj (E)

induced by the canonical G-sheaf homomorphism Z(l) -> F 2 ; then the congruence
Ci (E) = 0 mod 2 implies that

(1) cw!(£) e Ker[//2(X; G, F2) - ^ 7/2(X, F2)].

On the other hand, the condition HX(G, HX{X, F2)) = 0 and the spectral sequence

IIf'? = H»(G, H"(X, F2)) => Hp+q{X; G, F2)

imply the equality

(2) Ker[tf2(X; G, F2) - ^ / / 2 ( ^ , F2)] = F°//2(X; G, F2),

where F°H2(X; G ,F2) is the corresponding term of the filtration obtained from
the spectral sequence. From (1) and (2) it follows that

^'(cw,(E)) e F°H2(X* ;G,F2) = Η\Χτ, F 2 ) ;

but at the same time we have the relation

Therefore Wi(ET) = 0. This proves the proposition.

Corollary 4.1.2. Let X be a real algebraic variety such that Hl(G, Hl(X(C), F2)) =
0, and Ε a vector bundle on X. Then the congruence c\{E(C)) = 0 mod 2 implies
orientability of E(R).

Remark 4.1.3. A proposition close to 4.1.1 was proved in [6] by somewhat different
means. Proposition 012, it is obvious, follows from Corollary 4.1.2, since in the
absence of elements of order 2 in H2{X(C), Z) we have the equality

tim¥lH\G, H\X{C),F2)) = dim F 2 //'(G, H\X(C), Z))

+ dim F 2 // 2 (G,//'(X(C),Z))

(see [1]).

Remark 4.1.4. For curves, the condition H{{G, Hl(X(C), F2)) = 0 means that
X(R) consists of a single component (see [1]). The results of [1] also imply the
following fact.
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Assertion. If X is a real algebraic GM Z-variety, X{R) consists of a single compo-
nent, and the group H2(X(C), Z) has no elements of order 2, then

Hl(G,Hl(X(C),¥2)) = 0.

Indeed, under these assumptions the set ^4(R) of real points of the Albanese
variety consists of a single component; and therefore

d i m H \ G , Hl(X(C), Z)) = dimH2(G, H\X{C),Z)) = 0.

Remark 4.1.5. In addition to the condition on X(C), Hl(G, Hl(X{C), F2)) = 0,
we can require that X be an ^/-variety; then from Proposition 06 we have

E{R) is orientable & c, (E(C)) = 0 mod 2.

In particular:

Assertion. Let X — f| 77, be a nonsingular complete intersection in PN, with dim X
> 2 and X an M-variety. Then

X{R) is orientable ·«• the number y^deg//, — Ν — I is even.
i

4.2. Sufficient conditions for Ck(E(C)) to be even.

Lemma 4.2.1. Let X be a real algebraic GM-variety, with the involution τ* acting
trivially on Hq{X{C), F 2 ) . Then the homomorphism

β': Hq(X(C);G, F2) ^ H"(X(R);G, F2)

is an inclusion.

Proof. Let dimX = η ; then for Ν > 2n the homomorphism

β': HN{X(C); G, F2) -• HN{X(R) ;G,¥2)

is an isomoφhism (see [1]). Consider the spectral sequence

Up

2'
g(·; G, F2) = Hp(G, Hq{-, F2)) => Hp+q{·; G, F2)

and the corresponding filtration FpHN~q{· \G,¥2) (<? < N). Then

F°HN-q(X(C) ;G,¥2) = H°(X(C), F2) = F 2 ,

F°HN-q(X(R); G, F2) = //°(A"(R), F 2).

Denote by ω the generator of H°(X(C), F 2 ) , and by ώ\, ... , &>m the generators
of / ^ ( ^ ( R ) , F2) corresponding to the components of X(R). Put ώ = ώι Η hwm .
Then )3'(ω) = ώ . Now consider the commutative diagram

Hq(X(C);G,F2)

(1)

HN(X(C); G, F2) — ^ — HN{X(R); G, F2)

where JV = 2 η + 1, the elements ω and ώ being regarded as belonging to the
groups F°HN-«(X(C);G,F2) and F°HN-"(X(R); G , F 2 ) . As already observed,
the homomorphism

β': HN(X(C); G, F2) -> HN(X(R) ;G,¥2)
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is an isomorphism. The homomorphism

- ω: H«(X(C);G, F2) - HN(X(C); G, F2)

is mono; this follows from the lemma's hypothesis, since then the homomorphism

^w\\\p

2'
q-p{X{C); G,¥2) - Hp+N-q'q-p(X(C); G,F2)

is mono for all ρ . The homomorphism

G,¥2) - HN(X(R); G,F2)

q N
@HP(X(R), F2) 0 / / " ( X ( R ) , F2)
p=0 p=0

is also mono. Consequently, we conclude from diagram (1) that

β': H"(X(C);G, F2) - H"{X{R);G, F2)

is mono. This proves the lemma.

Theorem 4.2.2. Let X be a real algebraic GM-variety, let the involution τ* act on
H2k(X(C), F2) trivially, and let Ε be a vector bundle on X. Then the equality
wk(E(R)) = 0 implies the congruence ck(E(C)) = 0 mod 2.

Proof. In the commutative diagram

H2k{X(C), Z) <— H2k(X(C);G, Z{k)) β> • H2k(X(R); G, F2) = φ Η«(Χ(Κ), F2)

I.

H2k(X(C),F2) <—̂  //2*(X(C);G,F2) '̂ » //2fc(X(R); G, F2)

we have

, F 2 ) ,

, Z).

Denote by cwk(E(C)) and e<.(£'(C)) the reductions mod 2 of the characteristic
classes cwk(E(C)) and ck(E{C)). We must prove that ck(E{C)) = 0 . But from the
diagram it follows that

ck(E(C)) = a(cwk(E(C))), $'(c$rk(E{C))) = wk(E(R)) = 0,

and it remains only to apply Lemma 4.2.1. This proves the theorem.

A similar proof gives

Theorem 4.2.3. Let X be a nonsingular projective real algebraic GM-variety, with
the involution τ* acting trivially on H2k(X(C), Z); and suppose y e Ak(X). Then
the equality C1R(J>) = 0 implies the congruence clc(y) = 0 mod 2.

4.3. Sufficient conditions for the equality wk(E(R)) = 0.

Proposition 4.3.1. Let X be a nonsingular projective real algebraic variety such that
the homomorphism clc: Ak(X) -> H2k(X(C), Z) is an isomorphism. Then the con-
gruence clc(y) = 0 mod 2 implies the equality C1R0>) = 0.

Proof. If clc(J>) = mod 2, then y = 2z , ζ e Ak(X). Therefore clR(y) = 2clR(z) =
0, since C1R(Z) e Hk(X(R), F2) has order 2. This proves the proposition.
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Proposition 4.3.2. Let X be a topological space with involution τ: X —> X such that

fi'(F2k-lH2k{X; G, Z(fc))) C Fk-lH2k(XT; G,¥2),

and Ε a complex vector bundle with real structure. Then the congruence ck{E) = 0

mod 2 in I I ^ 2 / c ( Z ; G, Z(k)) c H2k(X, Z) implies the equality wk{ET) = 0.

Proof. Consider the commutative diagram

H2k{X,Z)£-Hlk(X;G,Z(k)) ^ Hlk(X* ;G,F2) D Hk(X\Y2)
u v ii

II^J

2't(X;G,Z(/t))=//2":(X;G,Z(/t))/F2':-1 ^1 //2*(Χτ ;G,F2)/Fk-t D Hk(XT ,F2)

Let 6\ν^(£) be the image of cwk(E) under the homomoφhism

// U (X; G, Z(fc)) -+ / / U ( Z ; (7, Z{k))IFk-1

T h e n c w / k ( £ ) = c k ( £ ) e l l ° ^ 2 k ( X ; G , Z ( k ) ) , a n d ^ ( J ? ) Ξ 0 m o d 2 . T h e r e f o r e

fi'(cwk(E)) = 0 . O n t h e o t h e r h a n d , fi'(cwk(E)) = P ' ( c v / k ( E ) ) = w k ( E T ) . T h i s

p r o v e s t h e p r o p o s i t i o n .

A s i m i l a r p r o o f g i v e s

P r o p o s i t i o n 4 . 3 . 3 . L e t X b e a n o n s i n g u l a r p r o j e c t i v e r e a l a l g e b r a i c v a r i e t y s u c h t h a t

fi'{F2k-xH2k(X{C);G, Z { k ) ) ) c F k - l H 2 k ( X ( R ) ; G , F 2 ) ;

a n d s u p p o s e y e A k ( X ) . I f c l c ( y ) e U ° ^ 2 k ( X { C ) ; G , Z ( k ) ) i s e v e n , t h e n c l R ( y ) = 0

T h e o r e m 4 . 3 . 4 . L e t X b e a n o n s i n g u l a r p r o j e c t i v e r e a l a l g e b r a i c v a r i e t y s u c h t h a t

H 2 « - l ( X ( C ) , Z ) = 0 f o r \ < q < k , H 2 « ( X ( C ) , Z ) h a s n o e l e m e n t s o f o r d e r 2 f o r

q < k , a n d t h e h o m o m o r p h i s m s c l c : A q { X ) — • H 2 q { X ( C ) , Z ) a r e e p i m o r p h i s m s f o r

0 < q < k . T h e n

fi'{F2k-yH2k{X(C);G, Z { k ) ) ) c F k - 2 H 2 k { X ( R ) ; G , F 2 ) .

W e p r e f a c e t h e p r o o f o f t h i s w i t h s o m e l e m m a s .

L e m m a 4 . 3 . 5 . L e t X b e t h e v a r i e t y o f T h e o r e m 4 . 3 . 4 . T h e n t h e d i f f e r e n t i a l s d , ; ±

i n t h e s p e c t r a l s e q u e n c e s

l l p

2 l l = H " { G , H " { X { C ) , Z ± ) ) = > H P + " ( X ( C ) ; G , Z ± )

are zero for q < 2k and any ρ and r.

Proof. Since H2q-x{X{C),Z) = 0 for 1 < q < k, we have dp

r% = 0 for q
odd (q < 2k). The fact that the homomorphism cl c : Ai(X) ->' H2i(X(C), Z)
is epi implies that the involution τ* on H2q(X(C), Z) is equal to (-1) 9 ; hence
HP{G, H2"{X{C), Z±)) = 0 (q < k) in all cases except the following: ρ even, q
even, sign + ; ρ even, q odd, sign - ; ρ odd, q even, sign - ; ρ odd, q odd, sign
+ . Consequently, dP^ — 0 in all cases except possibly those listed. Next, since
clc: A"(X) -• H2"{X{C), Z) (q < k) is epi, the composite

A"(X) - ^ H2q{X{C); G, Z{q)) - ^ H2q{X{C), Z)

is epi. This means in particular that, additionally, d®'l9 = 0 in the following cases:
q even, sign + ; q odd, sign - . We prove now that all the remaining differentials
are also equal to zero for q < k. Since dP'±* = 0, we prove first that dPy2? = 0
(q < k). Let ω be the generator of the group

Hl(G, H°{X(C),Z(l))cHl(X{C); G, Z(l))
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and consider the commutative diagram

H°(G, H2«(X(C), Z(q))) -^U H3{G, H2<>-2{X{C),

HP{G,H2"{X(C),Z(p + q))) -^-U HP+\G, H2"-2{X{C), Z{p + q)))

Since the multiplications of wP are epimoφhisms, it follows from the equality
d\'2£ = 0 that d\;lq = 0 {q < k). A similar proof gives dp

r'l
q = 0 for r =

4 , 5 , . . . . This completes the proof of the lemma.

Lemma 4.3.6. Let X be the variety of Theorem 4.3.4, with X(R) Φ 0 . Then

F2"-lH2<1{X(C)· G, Z(q)) = F2"-2H2<i{X(C); G, Z{q))

= F2"-3H2q(X{C);G,Z(q))

= F2«-4H2<<(X{C);G,Z(q))

= a^H2«-\X{C);G,Z{q-2)) (q < k),

where Ω is the generator of the group

H\G, H°(X(C), Z(2))) c H\X(C); G, Z(2)).

Proof. The first three equalities follow from the equalities

H2q-\X{C) ,Z) = Hl(G, H2"-2(X{C), Z{q))) = H2q-\X(C), Z) = 0,

and the last from Lemma 4.3.5 and the fact that the homomorphisms

- Ω : Hr(G, H*(X(C), Z(q - 2))) - Hr+\G, HS(X(C), Z(q))) ,r + s = 2q-4,

are epi. This proves the lemma.

Lemma 4.3.7. Let X be the variety of Theorem 4.3.4. Then

H2"(X(C); G, Z(q)) = F2"~lH2HX(C); G, Z(q)) + cl(A"(X)) (q < k).

The proof follows from the equalities

F2"~lH2"(X(C); G, Z(q)) = Ker[a : H2«(X(C); G, Z(q)) -> H2"(X(C), Z)],

a(cl(Ai(X))) - c\c(A"{X)) = H2«(X(C), Z).

Proof of Theorem 4.3.4. If X{R) = 0 , then Hk{X(R); G, F2) = 0, and the theorem
is of course valid. Suppose, then, that X(R) φ 0 . From Lemmas 4.3.5-4.3.7 we
have the decomposition

F2k-lH2k(X(C); G, Z(k)) = Ω - c\{Ak~2{X)) + Ω2 - c\{Ak~\X)) + ••• .

Since Ω 6 F°H4{X{C); G, Z(2)), we have β'{Ω) e F°H4(X(R); G, F 2 ) . On the
other hand,

p{c\{Ak~2i{X))) = c l R (^- 2 i (X)) c Hk-'{X{R), F2) c F f c"'//2 A :(X(R); G, F 2 ) ,

and therefore

p{F2k-xH2k{X{C); G, Z(fc))) C F f e"2//2 A :(X(R); G, F 2).

This proves the theorem.

Remark 4.3.8. Suppose X is a nonsingular projective real algebraic variety such that
//2«-'(;T(C), Z) = 0 for all <? , //2«(Z(C), Z) has no elements of order 2 for all
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q, and the homomorphisms cl c : A"{X) -> H2q{X(C), Z) are isomorphisms for all
q . For example, X can be a variety with cellular decomposition. Then the proof of
Theorem 4.3.4 results in a canonical decomposition

H2k(X(C);G,Z(k))

= Ak(X) Θ Ak-2(X)/(2) θ Ak-\X)/{2) Θ · · ·

= H2k(X{C), Ζ) θ H2k-\X{C), F2) θ H2k~\X(C); F2) φ · · ·

= H2k(X(C), Ζ) θ Hk-2(X{R), F2) θ Hk-\X{R), F2) Θ · · · .

Before stating the next proposition, we note that the image of the homomorphism

cl c : Ak(X) -+ H2k{X(C), Z) is contained in H2k(X(C), Z)*"')**' .

Proposition 4.3.9. Let X be a nonsingular projective real algebraic variety such that
the group H2k(X(C), Z) has no elements of order 2 and the image of the ho-
momorphism clc: Ak(X) -> H2k(X{C),Z) is H2k(X(C), Ζ)*"1**1*; and suppose
y e Ak(X). Then if c\c{y) is even in H2k(X(C), Z), necessarily clc(y) is even
in ll°Jk(X(C);G,Z(k)).
Proof. Since clc = a o cl and

Im[a: H2k(X(C); G, Z{k)) - // 2 f c (^(C), Z)] = II^ 2*(X(C); G, Z(A;)),

the hypothesis implies that

U°Jk(X(C);G, Z(k)) = H2k(X(C),Z)(-^*'.

It remains only to observe that evenness of clc (y) in H2k(X(C), Z) implies evenness
of clcOO in H2k{X(C), Z)(-')V if H2k(X(C),Z) has no elements of order 2. This
proves the proposition.

Proposition 4.3.10. Let X be a nonsingular projective real algebraic GM-variety such
that the group Hq(X(C), Z) has no elements of order 2 for 2 < q < 2k. Then

; G,

Proof. We must show that in the spectral sequence

Π£·*(ΛΓ(Ο; G, Z(fc)) = H?(G, H"{X(C), Z(fc))) => H™(X(C); G, Z(k))

the differentials d®'2k(X{C); G, Z(k)) are all zero. Consider the spectral sequence
homomorphism

ll{X{C);G,Z{k))^l\{X{C);G,¥2)

given by the G-sheaf homomorphism Z(k) —> F 2 . Since the groups H9(X(C), Z)
(0 < q < 2k) have no elements of order 2, the homomorphism

H"(G, H"(X(C),Z(k))) - //"(G, /i»(I(C), F2))

are mono for ρ > 0, 0<q <2k (see [1]). Hence the equality rf° > 2 f c (^(C); G, F2) =
0 implies the equality d2'2k(X(C); G, Z(k)) = 0. Continuing this argument for
r = 3, 4, . . . , we find that d?'2k{X{C); G, Z(/t)) = 0 for all r. This proves the
proposition.

4.4. A theorem on the Wu classes. In this subsection we study the connection
between the classes vk(X(R)) and v2k(X{C)). Let us first recall some definitions. If
w = 1 + wx + w2 Η is the total Stiefel-Whitney class of a variety, then

ν = 1 +Vi +v2-\ = Sq~'(tu)
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" 1
is the total Wu class of the variety. Here Sq"1 is the inverse operator to the operator

Sq = 1 + Sq1 + Sq2 + •··://*(·, F2) - > # * ( · , F 2).

We need also one further piece of notation. Let (Χ, τ) be a real topological space.
Then there exists a canonical decomposition

This gives a canonical inclusion

Η"{Χτ ,F2)^H2q{XT; G,F2).

This inclusion we denote by i*, as also the inclusion of direct sums

H*(X\ F2) = φΗ"(Χτ, F2) -» φΗ2"(Χτ; G, F2) = He™(X*;G, F2).

Next, we make the following auxiliary observation.

Lemma 4.4.1. Let {Χ, τ) be a real topological space, where X is a finite CW-
complex, and let (Ε, Θ) be a Real vector bundle of rank m on X. Then there
exists an element

υ{Ε, Θ) e Heven{X; G, F2)

such that

a(v(E, 0)) = Sq-'(£(£)), β'(ν(Ε, Θ)) = J * ( ^

Proof. Suppose first that Ε is a line bundle. Then cw(E, Θ) = 1 + cwi, where
= cwi(E, θ), and it suffices to put

•y ^ ο

v(E, Θ) = I + cwi + cwj + cwj + cwj Η .

Indeed, we have then on the one hand that

ά(ν(Ε, Θ)) = 1 + ci + c2 + c\ + cf + · · · ,

where Ci = C\{E) = w2(E), and

β'(ν(Ε, θ)) = 1 +ΐϋι +w2 + wl + wf + ••• ,

where wx =Wx{Ee),w2k € Η2" (Χτ, F2) c H2"+l (Χτ; G, F2); and on the other hand

Sq(l + δχ + c\ + af + c\ + · · · ) = 1 + Ci = £(£),

Sq( 1 + wx + w\ + wf + wf + • • •) = 1 + w{ = w(Ee).

In the general case, consider a mapping π: Ρ -* X such that π* (is, β) splits into a
sum of Real line bundles:

π*Ε = Ει θ · · · θ Em ;

for example, take for π: Ρ —> X a composite of projectivizations. Then, putting

ν(π*Ε, θ) = v{Ex, θ) U • · · U v(Em , θ),

we show that
v(n*E,e)en*(Heven(X;G,F2))

this can be verified in the following fashion. From the definitions of υ (π*Ε, θ)
and ν{Ελ, θ), ... , w(£ m , 0) it follows that v2q(n*E, θ) e Η2<ί(Ρ\ G, F2) is a
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symmetric polynomial in έ\νι(£Ί , θ), ... , cv/\{Em, θ). But the mixed character-
istic classes cwk(n*E, Θ) = n*(cwk(E, Θ)) are elementary symmetric polynomi-
als in cwi(2si, Θ), ...cvt\(Em, Θ). This means that v2g(n*E, Θ) is a polynomial
in 5ν/ι(π*Ε, Θ), ... , cwg(n*E, θ), and consequently v2q(n*E, Θ) is contained in
n*(Heven(X; G, F 2 )) . Finally, observe that the homomorphism

π*: Hevea(X; G, F2) -» Heven(P; G, F2)

is an inclusion (see §3.3). This proves the lemma.

Remark 4.4.2. In proving the lemma we have found that the class v2k(E, θ), as
constructed, is a polynomial in cwi(Ε, θ), ... , cwk(E, Θ). So for a real algebraic
bundle Ε -> X the class v2k(E(C), Θ) is algebraic; i.e., it is equal to c\{y) mod 2,
where y e Ak(X).

Remark 4.4.3. One can define a cohomology operation Sq': Hq{X; G,F 2 ) —>
H"+l(X; G, F 2 ) , and for v(E, Θ) take the cohomology class S q ' ^ c w ^ , Θ)). We
have not pursued this path in proving the lemma, since it would involve a much more
technical verification.

Theorem 4.4.4. Let X be a nonsingular projective real algebraic GM-variety, with τ*
acting trivially on H2k(X(C), F 2 ) . Then vk{X(R)) = 0 implies vlk{X{C)) = 0.

The proof follows from Lemma 4.4.1, Remark 4.4.2, and Theorem 4.2.3.

4.5. Corollaries of the aggregate theorems. We apply the results first to complete
intersections.

Corollary 4.5.1. Let X bean η-dimensional nonsingular complete intersection in FN,
and Ε a vector bundle on X. Then:

1) Suppose 2k <n. If ck(E(C)) is even, then wk(E(R)) = 0,and if v2k(X(C))
= 0, then vk(X{R)) = 0.

2) Suppose X is a GM-variety and 2k = η . If ck{E{C)) is even, then wk(E(R))
= 0 and if v2k(X(C)) = 0, then vk(X(R)) = 0.

3) Suppose X is a GM-variety and 2k < η. If wk{E(R)) = 0, then ck(E{C))
is even, and if vk(X(R)) = 0, then v2k(X(C)) = 0.

4) Suppose X is an M-variety. For every k, if wk(E(R)) = 0, then ck{E(C))
is even, and if vk(X(R)) = 0, then v2k(X(C)) = 0.

Proof. The first assertion follows from 4.3.3, 4.3.4, and 4.3.9. The second follows
from 4.3.3, 4.3.4 and 4.3.10. The last two both follow from 4.2.2 and 4.4.4. This
proves the corollary.

Before stating the second corollary, we make an observation concerning M-
varieties.

Let X be an arbitrary «-dimensional nonsingular projective real algebraic variety.
The set of real points X(R) determines a homology class [X(R)] € Hn{X(C), F2) .

Lemma 4.5.2. Let X bean M-variety. Then in H"(X(C), F2) we have the equality

[X(R)Y = vn(X(C)).

Proof. For brevity, denote the class [X(R)] by a , and consider the quadratic form
on Hn(X(C), F2) given by A(x) = χ · τ»(χ). Then a is the characteristic element
of this quadratic form; i.e., A(x) = a · χ (see [9]). Since X is an M-variety, we
have τ»(χ) = χ, so that A(x) = x2. But the characteristic element of this form is
the homology class dual to the Wu class vn(X(C)). This proves the lemma.
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Corollary 4.5.3. Let X be a Ik-dimensional nonsingular projective real algebraic M-
variety. Then:

1) // vk(X{R)) = 0, then [X(R)] = 0,and x{X(R)) = 0 mod 8.
2) If X is a surface, and X{R) an orientable surface, then x{X{R)) = Omod 16.
3) If X is a complete intersection, then [X{R)] = 0 implies vk(X(R)) = 0.

Proof. If vk(X{R)) = 0, it follows from Theorem 4.4.4 that v2k{X{C)) = 0, and
therefore from Lemma 4.5.2 that [X(R)] = 0 . On the other hand, the equality
v2k(X(C)) = 0 implies that the quadratic form on H2k(X(C), Z)/Tors is even, so
we have the congruence a(X(C)) = 0 mod 8. But we have in addition the congruence
X ( X { R ) ) Ξ a { X ( C ) ) m o d 1 6 , b y R o k h l i n ' s t h e o r e m i n [ 1 0 ] .
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