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H3B. AKan. HayK CCCP Math. USSR Izvestiya
Cep. MaTeM. TOM 55 (1991), Jfc 2 Vol. 38 (1992), No. 2

ON HOMOLOGY CLASSES DETERMINED BY REAL POINTS
OF A REAL ALGEBRAIC VARIETY

UDC 513.6+517.6

V. A. KRASNOV

ABSTRACT. For a nonsingular «-dimensional real projective algebraic variety X the
set X(R) of its real points is the union of connected components X\ U · · • U Xm .
Those components give rise to homology classes [Χι], . . . , [Xm\ G Hn(X(C, F2).
In this paper a bound on the number of relations between those homology classes is
obtained.

I N T R O D U C T I O N

I n th i s p a p e r we o b t a i n a b o u n d o n t h e n u m b e r of re lat ions be tween t h e homology

classes which arise f rom t h e c o n n e c t e d c o m p o n e n t s of t h e set of real po int s of a real

algebraic variety, where t h e set of real p o i n t s is cons idered as a subset of t h e set

of complex p o i n t s . T o give a m o r e precise s t a t e m e n t of t h e p r o b l e m we i n t r o d u c e

the following notation. Let X be an η-dimensional real projective algebraic variety
which we assume to be nonsingular and complete. Then X(R) will denote the set of
real points and X(C) the set of complex points of X. The set X(R) may consist
of several connected components; we denote them X\, ... , Xm . They give rise to
homology classes [X\], ... , [Xm] e Hn(X(C), ¥2) • Let κ(Χ) denote the number of
relations between those classes. The main goal of this paper is to obtain bounds on
κ(Χ).

First we should state the results already known. For curves the result is classical:
K(X) < 1. The same holds for surfaces which satisfy the condition Hi(X(C), F2) =
0. This is a more recent result, the first published proof of which is due to V. M. Khar-
lamov. We should remark that this proof already requires a theory, whereas in the
case of a curve the bound is obtained by elementary arguments. This theory rests
on the Smith exact sequence. However, to use this sequence for this problem in
the general case would be, in my opinion, rather difficult. With the aid of Galois-
Grothendieck cohomology I obtained in [1] the following general bound:

(*) κ{Χ) < Σ dimF2 H
l (G, Hn+«(X(C), F 2 )),

where G = {e, τ} is the group of order two generated by the complex conjugation
τ: X(C) —> X(C). Notice that the known bounds for curves and surfaces can be
deduced from (*); but, as we will see later, for higher dimensions this formula is
clearly imprecise.

Before stating the new results we introduce some more notation. Notice that
some components of X(R) may be nonorientable. Let X\, ... , Xs be the orientable
components of X(R). By κ+(Χ) we shall denote the number of relations between the
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278 V. A. KRASNOV

homology classes [Χι], ... , [Xs] e Hn(X(C), F 2 ) , and by K-{X) the corresponding
number for the nonorientable components.

We now state the new results. In the first theorem (which is only partially new)
we deal with surfaces. More precisely, we have

Theorem. Let X be a surface. Then the following assertions are true:
(i) If the homology group H\{X(C), Z) is free, then

K(X)< l+q(X),

where q{X) is the irregularity of the surface.
(ii) // degX is odd and H\(X{C), F2) = 0, then κ{Χ) = 0.
(iii) // degX is odd and Hi(X(C), Z) is free, then κ(Χ) < q(X).
(iv) //Hi(X(C), Z) = 0, then κ_(X) = 0.

In the next theorem we consider complete intersections of arbitrary dimension.

Theorem. Let X be a complete intersection. Then the following assertions are true:
(i) κ{Χ) < 1.
(ii) // deg^T is odd, then K-{X) = 0.
(iii) If ae%X is odd and ώχαΧ is even, then κ{Χ) = 0.

Let

L: H"{X{C), F2) - Hq+2(X(C), F2)

denote the Lefschetz operator. We then have

Theorem. Let X be a variety such that the homomorphisms

L": Hn'q{X{C), F2) -» Hn+q{X{C), F2)

are isomorphisms for 0 < q < n. Then

K(X) < dimHn+l(X(C), F2) + dimHn+2{X(C), F2).

The Lefschetz operator is given by multiplication by the cohomology class corre-
sponding to a hyperplane section. We now consider multiplication by the cohomology
class corresponding to the canonical divisor. Let

K: H"(X(C),F2) -> H"+1{X{C), F 2 )

by the resulting homomorphism. We now have

Theorem. Let X be a GM-variety such that the homomorphisms

Kq. Hn~q(X{C),Y2) -• Hn+q{X{C), F 2 )

are isomorphisms for 0 < q < η. Then κ+(Χ) = 0.

In the next two theorems we use the Hodge structure on X(C).

Theorem. Suppose that the homology groups Hq{X{C), Z) (0 < q < n) are free and
k = [(n- l)/2]. Then

κ(Χ)<
0<r+s<n

r>s

A more precise bound, although under some additional assumptions, is given by
the following
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Theorem. Let Υ be a hyperplane section of X and suppose that the homology groups
Hq(X(C) - Y(C), Ζ) (0<q<n) are free. Then

κ{Χ)<
n-2<r+s<n-\

r>s

With this we conclude the list of the main results, but we should remark that this
paper contains some other new results. Finally, we remark that we use a continuous
numbering of theorems, propositions, corollaries, and remarks.

§ 1. GENERAL BOUNDS

In this section X will denote an «-dimensional real algebraic variety which may
be singular and noncomplete. The set X(C) of complex points is an «-dimensional
complex-analytic space, and the set X(R) of real points is a real-analytic space which
is not necessarily connected. The dimensions of its connected components do not
exceed « . Let τ: X{C) —* X{C) denote the complex conjugation and G = {e, τ}
the group of order two generated by the involution τ . Let κ(Χ) denote the kernel
dimension of the homomorphism

Ha{X(R),V2)-+Hn(X(C),V2),

induced by the embedding X(R) <-> X{C).

1.1. Old bounds. The following bounds were obtained, among other results, in [1]:

(1.1.1) κ(Χ) < £ d i m F 2 / / > ( G , H"+«(X(C), F 2 )),

(1.1.2) κ(Χ) < £ d i m F 2 H°M{G, Hn+"(X(C), Z)),

where e(q) equals 1 when q is odd and 2 when q is even (see [1], Proposition 2.6,
3.9).

In this section we shall generalize (1.1.1) and (1.1.2). Before doing that we should
remark, however, that those bounds have relative versions. Let Υ be a subvariety of
X and let κ(Χ, Υ) denote the kernel dimension of the homomorphism

Hn(X(R), Y(R); F2) - Hn(X(C), Y(C); F2).

We now have the following bounds:

(1.1.3) κ(Χ, Y) < X;dim F 2 // ' (G, H"+"(X(C), Y(C);T2)),
q>0

(1.1.4)

Although these results cannot be found in [ 1 ], their proof is identical to that of (1.1.1)
and (1.1.2). Notice also that, examining the homomorphism

0 > Hn(X(R)) > HH(X(R), Y(R))

• Hn(X(C)) > Hn(X(C), Y(C))

between the long homology exact sequences of (X(R), Y(R)) and (X(C), Y(C)),
one has that

(1.1.5) κ(Χ)<κ(Χ,Υ).
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1.2. New bounds. Let f:X—>Z be a map of real algebraic varieties. Consider the
homomorphism

(1.2.1) Hn(X(R),F2) - Hn(X(C),F2)®Hn(Z(R),F2),

which is the direct sum of the homomorphisms

(1.2.2) Hn(X(R), F2) -> Hn(X(C), F 2 ) ,

and

(1.2.3) Hn(X(R),F2)-*Hn(Z(R),F2),

induced by the maps X(R) -̂» X(C) and X(R) -> Z(R). Let κ ( / ) denote the
kernel dimension of the homomorphism (1.2.1) and d(f) the image dimension of
the homomorphism (1.2.3). We then have that

(1.2.4) K(X)-d(f)<K(f)<K(X).

In some cases one can find a bound on S(f). For example, if Ζ is a projective
space, then S(f) < 1. Thus if we find a bound on /c(/), then (1.2.4) would yield a
bound on κ(Χ). Before we formulate the corresponding results we recall some facts
about Galois-Grothendieck cohomology groups HN(X(C), G; F2) and the filtration
^ , G; F2)} of them given by the spectral sequence

(1.2.5) / | ' ? ( X ( C ) , G; F 2 ) = / / " ( G , H"{X{C); F 2)) => ffw(I(C),G; F 2 )

(see [1]). All those facts are contained in the following theorem.

Theorem 1. The following assertions are true:
(i) If Ν > In, then the homomorphism

HN(X(C) ,G;F2)^ HN(X(R) ,G;¥2),

induced by the embedding X(R)«-+ X(C) is an isomorphism.
(ii) There is a canonical isomorphism

Ν

HN(X(R), G; F 2 ) = 0 H"(X(R), F 2 ) .

9=0

(iii) If k < Ν, then there are canonical isomorphisms

k
FkHN(X(R), G; F2) = 0 H"(X(R), F2).

?=o

We recall also that the variety X is called a GM-variety if the spectral sequence
I{X{C), G; F2) degenerates.

We now formulate a new result.

Theorem 2. Suppose that Ζ is a GM-variety. Then

K(f) < ^ d i m ^ C o k e r l i / ^ G , Hn+"(Z(C), F2)) ^Hl(G, Hn+"(X(C),F2))].
q>0

Proof. Let m = max{dimX, d i m Z } . We will make use of the Galois-Grothen-
dieck cohomology group H2m+l(-, G; F 2 ) and the filtration {Fk{-, G; F 2 )} given
by spectral sequence (1.2.5). First we remark that

fl 2 6)
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since, by virtue of Theorem 1,

We also have

-• Fn(X{R))/Fn-l(X(R))]

= lm[Fn{X(C)) θ F"(Z(R)) 1

Since

K(f) = aimKer[Hn(X(R)) -» Hn(X(C)) θ

= dimCoker[//"(X(C))e//"(Z(R))

it follows from (1.2.6) and (1.2.7) that

(1.2.8) K(f) <dimCokeT[Fn(X(C))®Fn(Z(R))^Fn(X(R))/F"-l{X{R))].

Consider the commutative diagram

F"(X(C))®F2m+l(Z(C)) • Fn{X{C))®F2m+1(Z(R))

(1-2.9)

F2m+l{X(C)) —+ F2m+l(X(R))/F"-l(X{R)),

where the upper homomorphism equals the sum of the homomorphisms

id: Fn(X(C)) - Fn(X(C)), F2m+l(Z(C)) - F2m+l{Z(R)),

and therefore is an isomorphism by Theorem l(i) since

F2m+l(Z(C)) = H2m+l(Z(C),G;¥2), F2m+l(Z(R)) = H2m+l{Z{R), G; F 2 ) .

The lower homomoφhism in (1.2.9) is, by a similar argument, an epimorphism.
Therefore it follows from (1.2.9) that

d i m C o k e r t f ^ C ) ) ®F 2 m + 1 (Z(R)) -> F2m+l(X(R))/F"-l(X(R))]

(1.2.10) < dimCoker[Fn{X{C)) ® F2m+l(Z{C)) ^ F2m+i(X(C))]

= dimCoker[F2 m + 1(Z(C)) -» F2m+l(X(C))/Fn(X(C))].

On the other hand,

dimCoker[Fn{X(C)) φ F2m+l{Z(R)) ^ F2m+l{X(R))/F"-l(X(R))]

= dimCoker[F"(X(C)) ©F"(Z(R)) -• Fn(X(R))/Fn-l(X(R))],

since

F2m+l(X(R)) = φΗ9(Χ(Κ)), F2m+l(X{R))/Fn'l(X(R)) =

9=0
and the homomorphism F 2 m + 1 (Z(R)) -» i="2m+1(X(R)) is the direct sum of the
homomorphisms H"{Z{R)) - 77«(JT(R)). It now follows from (1.2.8), (1.2.10),
and (1.2.11) that

(1.2.12) K{f) <dimCoker[F2m+l(Z(C)) ^ F2m+l{X{C))/Fn(X{C))].
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We now notice that

dimCoker[F2 ;"+ 1(Z(C)) -»F2m+1(X(C))/Fn(X(C))]

q>n

Furthermore, since Ζ is a GM-variety,

dimCoker[/^m-«+1'«(Z(C)) -f I^-9+l

(1 2 14) " d*mCo1cer[I*m-«+l'*(Z(C)) - /2

2m-«+1'«(X(C))]

= dimCoker[i/2 m-«+ 1(G, H"{Z(C))) -> H2m-q+{{G, Hq{X{C)))}

= dimCoker[7/'(G, H*(Z(C)))

where the last equality follows from the equality

HP(G, Α) = Ατ/{α + τ(α)}, p>0

(here the group A consists of elements of order two; see [1]). It now remains to
apply (1.2.12)—(1.2.14), and the theorem is proved.

Before we state another result about «:(/) we recall the necessary facts about the
cohomology groups HN{X(C), G;Z) and the filtration {Fk(X(C), G; Z)} of them
given by the spectral sequence

I%'q(X{C),G;Z) = Hp(G, H"(X(C); Z)) =• HP+«(X(C),G;Z)

(see [1]). All those facts are contained in the following theorem.

Theorem 3. The following assertions are true:
(i) If Ν > 2n, then the homomorphism

HN(X(C), G; Z) -> HN(X(R) ,G;Z)

is an isomorphism.
(ii) If 2M > η, then there is a canonical isomorphism

Μ

H2M(X(R), G; Z ) - 0 H2"(X(R), F 2 ) ,

9=0

and if 2m > η, then there is a canonical isomorphism
Μ

H2M+1(X(R),G; Z ) =

(iii) There are canonical isomorphisms

F2kH2M(X(R),G;Z)= 0 / / 2 « ( I ( R ) , F 2 ) Θ H2k(X(R), Z)/(2), 2M>n,
\?=o J

k
F2k+lH2M{X(R), G; Z) = 0 H 2 q { X { R ) , F2), 2M>n,

q=Q
k-\

F2kH2M+l(X{R), 6 ; Z ) = 0 # + 1 ( I ( R ) , F 2 ) , 2M > η ,

A-i \
F2k+lH2M+l(X(R), G; Ζ) = φ H2"+l (X{R), F2) Θ H2k+l(X(R), Z)/(2),

V»=° /
2 M > « .
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We recall also that the variety X is called a GM Z-variety if the spectral sequence
I(X{C), G; Z) degenerates.

We now state another new result.

Theorem 4. Suppose that Ζ is a GM Z-variety. Then
(1.2.15)

, Hn+q{Z(C), Z)) -> He(-"\G, Hn+q{X{C), Z))].

Proo/. We shall use the Galois-Grothendieck cohomology groups H2m+X(·, G; Z) if
η is odd, and H2m+2(-, G\Z) if « is even. When η is odd the argument is almost
identical to that of Theorem 2. When η is even some modifications are required.
Since

I^-"+l'n(X(R), G;Z) = H2m-n+l(G, Hn{X{R),Z)) = H"(X(R),Z)2,

where H"{X(R), Z) 2 is the subset of elements of H"(X(R), Z) of order two, we
should replace H2m+l{-, G; Z) with H2m+2{-, G; Z) . We then have that

G;Z) = H2m-n+2{G, Hn(X{R),Z))

= H"(X(R), Z)/(2) = Hn(X(R), F 2 ) .

Now we adapt the proof of Theorem 2 to our situation. We start at the end of it
and proceed backwards.

Since Ζ is a GM Z-variety, we have that

dimCoker[/£"-«+ 2 '«(Z(Q) - I^-"+2

(l.z.lo) , . , .
< dimCoker[/T(<?)(G, Hq(Z{C))) -» H^\G, H9(X(C)))],

where the cohomology of X(C) and Z(C) is considered with integer coefficients.
Notice that we also have

dimCoker[F2 m + 2(Z(C)) -• F2m+2{X{C))/Fn{X(C))]

( L 2 · 1 7 ) < ^dimCoker[/^"-«+ 2-?(Z(C)) -»I^-«+ 2^{X(C))].
q>n

Similarly to (1.2.10), one can prove that

2 1 8 ) dimCoker[F"(X(C)) Θ F 2 m + 2 (Z(R)) - F2m+2(X(R))/F"-l(X(R))]

<dimCoker[F2m+2{Z(C))^F2m+2(X(C))/Fn(X(C))].

Instead of (1.2.11), one has

(l 2 19)

= dimCoker[F"(X(C)) e f " + 1 ( Z ( R ) ) -• F"(X(R))/F " " '

i.e., F"(Z(R)) must be replaced by Fn+l(Z(R)), and (1.2.8) must be replaced by

(1.2.20) 1 1

Now (1.2.15) follows from (1.2.20), (1.2.19), (1.2.17), and (1.2.16). The theorem is
proved.

§2. APPLICATIONS OF THE GENERAL RESULTS

In this section X will be an η-dimensional real algebraic variety, which is as-
sumed to be nonsingular and complete. Under these assumptions, the set X{C) of
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complex points is an «-dimensional compact complex variety, and the set X(R) of
real points if it is nonempty, is an η-dimensional real-analytic variety which need not
be connected. Let Xlf ... , Xm denote the connected components X(R). They give
rise to homology classes [Χι], ... , [Xm] e Hn(X(C), F 2 ) . The number of linearly
independent relations between them is equal to the number κ(Χ) introduced in §1.

2.1. Curves and surfaces. First we shall re-prove two known results.

Proposition 1. Let X be a curve. Then κ(Χ) < 1 and if κ(Χ) - 1 then the only
relation is of the form

(2.1.1) [*i] + " - + [*w] = 0.

Proof. In the case of a curve inequality (1.1.1) yields

K{X) < dim H^G, H2(X(C), F2)) = 1.

Hence only one relation is possible. To show that this relation is indeed of the form
(2.1.1) we consider the noncomplete curve X which is obtained from X by deleting
a real point. We then have that

K{X) < dim Hl (G, H2(X(C), F2)) = 0,

i.e., K(X) - 0 and the homomorphism H\(X(C), F2) -> Hi(X(C), F2) is an iso-
morphism. This means that if we delete a point from X\ then the homology
classes [X2], ... , [Xm] are linearly independent in H{(X{C), F 2 ) . The proposition
is proved.

Proposition 2. Let X be a surface such that Hi(X{C), F2) = 0. Then κ(Χ) < 1,
and if κ(Χ) — 1 then the only relation is of the form (2.1.1).

The proof is identical to that of Proposition 1.

Remark 1. Proposition 1 is a classical result. An elementary proof of it can be found,
for example, in [2]. Another proof of Proposition 2 can be found in [3].

Proposition3. Let X be a surface such that the homology group Hi(X(C), Z) is free.
Then

(2.1.2) K(X) < 1 + q{X),

where q{X) is the irregularity of the surface.

Proof. In the case of a surface inequality (1.1.2) becomes

(2.1.3) K(X)< l+dimF2H
l(G,H3(X(C),Z)).

Since the group H3(X(C), Z) is free,

dimF2 H\G, H\X(C), Z)) = dim¥l H2(G, H3(X(C),Z))

(see [4]). Therefore

dimF2 H\G, H\X(C), Z)) < { rkH\X{C), Z) = q{X),

and the proposition is proved.

Remark 2. The bound (2.1.2) is sharp. To see that, consider the surface X which is
the product of a curve Μ of genus g by the projective line. Then κ(Χ) = g + 1 =

Remark 3. Let A{X) be the Albanese variety of a surface X and let |Λ(ΛΓ)| denote
the number of connected components of the set of real points of A(X). Then

dimF 2//'(<?, H3(X(C),Z)) = log2\A(X)\
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(see [4]), and therefore (2.1.3) can be rewritten as

K(X)<l+log2\A(X)\.

Remark 4. If the equality κ(Χ) = 1 + q{X) holds, then log2 \A(X)\ = q{X), which
means that A(X) is an M-variety.

Proposition 4. Let X be a projective surface of odd degree such that H\(X(C), F2)
= 0. Then κ(Χ) = 0.

Proof. Consider an embedding map f:X—> PN and the commutative diagram

H2(X(R)) • H2(¥N(R))

(2.1.4)

Since X is of odd degree, this diagram shows that f, sends the homology class
[X\]+---+[Xm] to a generator of the group H2(PN(C)). Therefore [Χι]+·- +[Xm] Φ
0, and the proposition is proved.

Proposition 5. Let X be a projective surface of odd degree such that the group
is free. Then

κ(Χ)<\ο%2\Α{Χ)\, K(X)<q(X).

Proof. Consider an embedding map f\ X -*¥N . It follows from (1.2.15) that

K{f) < dimF2 H\G, H\X(C), Z)) = log2 \A(X)\.

We shall now show that κ(Χ) = /c(/). For this we have to show that if the image of
a homology class a e H2(X(R)) under the map H2(X(R)) -> H2(PN(R)) is different
from zero, then it is also nonzero under the map H2(X(R)) -> H2(X(C)). But the
latter can be seen from the diagram (2.1.4). The proposition is proved.

Before we formulate the next proposition we make some remarks. Let X be
a surface, Υ a curve on X, and suppose that κ(Υ) = 1 and the cycle Y{R) is
homologous to zero in X(R). We can now form a new topological surface W as
follows. The set Y(R) splits Y(C) into two parts. Choose one of them. On the other
hand, take a part of X(R) whose boundary equals Y(R). Then W is the union of
the chosen parts of F(C) and X(R) with common boundary Y(R). Notice that W
is not defined uniquely.

Proposition 6. Let X be a surface such that HX{X{C), F2) = 0, Υ c X, and let
Υ c X be a nonsingular curve. Then κ(Χ, Υ) < 2 and κ(Χ, Υ) = 2 only when
the following conditions hold: κ(Χ) = κ(Υ) = 1, the cycle Y(R) is homologous to
zero in X(R), and, for some choice of the part of X(R), the topological surface W
is homologous to zero in X(C), where the homology is considered with coefficients in
F 2 .

Proof. If the homomorphism

(2.1.5) H2(Y(C)) -> H2(X(C))

is a monomorphism, then it follows from the long homology exact sequence of
the pair (X(C), Y(C)) that H3(X(C), Y(C)) = 0. Therefore (1.1.3) implies that
K(X, Y) < 1. If the homomorphism (2.1.5) is zero, then 7/3(X(C), Y(C)) = F 2

and similarly to the above we have that κ(Χ, Υ) < 2. Hence we always have that
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κ(Χ, Υ) < 2. Consider now the homomorphism between the long homology ex-
act sequences of the pairs (X(R), Y(R)) and (^(C), 7(C)). It gives rise to the
commutative diagram
(2.1.6)

0 » H2(X(R)) > H2(X(R),

•·· • F2 • H2(X(C)) > H2{X(C), K(C)) -» HX(Y(O) • 0

Let κ(Χ, Y) = 2. Then it follows immediately from this diagram that κ(Χ) =
κ (Υ) = 1. Furthermore, since the only relation between the homology classes
[Yi], . . . , [Ym] is of the form [Yl] + ... + [Ym] = [Y(R)] = 0, we have that if
κ(Χ, Υ) = 2 then the curve Y(R) splits X{R) in such a way that for some choice
of the part of X(R) this part is homologous to zero in H2(X(C), Y(C)); all this
follows from (2.1.6). If we now take the corresponding surface W, then it will be
homologous to zero in H2(X(C)). Thus the condition κ(Χ,Υ) — 2 implies the
conditions κ{Χ) = κ(Υ) = 1 and W ~ 0. Diagram (2.1.6) shows that the converse
is also true. The proposition is proved.

2.2. Complete intersections and double coverings.

Theorem 5. Let X be a nonsingular complete intersection PN. Then the following
assertions are true:

(i) K{X) < 1, and the only relation is of the form [X(R)] = 0.
(ii) If degX is odd and dimX = η is even, then κ(Χ) = 0.

Proof. If Υ is a hyperplane section of X, then Hq(X(C), Y(C)) = 0 for η < q <
2n . Therefore (1.1.3) implies that

K(X, Y)<dimH1(G,H2n(X(C),

Now repeating the argument with a deleted pointed Xo e X(R)\7(R) from the
proof of Proposition 1, we see that the only relation between the relative homology
classes is of the form

(2.2.1) [X(R)] modr(R) = 0.

After that we consider the homomorphism between the long homology exact se-
quences of the pairs (X(R), Y(R)) and {X(Q, Y(C)). We then have that κ(Χ) <
κ(Χ, Y) < 1, and the only relation will be, by virtue of (2.2.1), of the form
[X(R)] = 0. Thus the first assertion of the theorem is proved. The second as-
sertion can be proved by an argument similar to the one in the proof of Proposition
4. The theorem is proved.

Theorem 6. Let X be a two-fold covering of a nonsingular complete intersection Ζ c
P^ with branching along a regular intersection by a nonsingular hypersurface in PN.
Then K(X)<1, and the only relation is of the form [X(R)] = 0.

Proof. Let Υ be the preimage of a general hyperplane section of Ζ under the pro-
jection I - » Z . Then the desired result follows from the argument in the proof of
the first assertion of Theorem 5. The theorem is proved.

2.3. Hyperplane sections.

Proposition 7. Let Ζ be a nonsingular projective GM-variety, X a hyperplane section
of Ζ such that the operators

L": Hn-"(X{C), F2) -> Hn+i(X{C), F2)
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are isomorphisms for 0 < q < n, where L is the Lefschetz operator, and f: X •—> Ζ
the embedding map. Then κ ( / ) = 0.

Proof. We shall use the bound from Theorem 2:

K{f) < ^dimCokerLfir'tG, Hn+q(Z(C))) -^Hl(G, Hn+q(X(C)))].
q>0

It suffices to show that the homomorphisms in the right-hand side are epimorphisms.
To this end consider the commutative diagram

Lq:H"-q(Z(C)) • Hn+q{Z(C))

It gives rise to the

L":

L«:Hn-<l(X(C))

commutative diagram

Hl(G,H"-<i(Z(C))) —

I '

—» Hn+"{X{C)).

-+ Hl(G,Hn+"(Z(C)))

1

L«:Hl(G,Hn-<{X(C)) —^-» H\G, Hn+"{X{£))),

whence the desired assertion. The theorem is proved.

Remark 5. In the above proposition X can be replaced by a complete intersection
of Z .

Theorem 7. Let X be a projective variety such that the operators

Lq. Hn-g(X(C),F2) -» Hn+q{X{C),¥2)

are isomorphisms for 0 < q < η, and Υ a hyperplane section. Then

K{X, Y) < dimHl{G, Ηη~2{X(C) ,F2)) + dimHl(G, Hn~\X{C), F2)).

Proof. By (1.1.3),

κ(Χ, Y) < Y^dimHl(G, Hn+"(X(C), Y(C); F2))

= ^ dimH\G, Hn+q{X{C), Y{C); F2))

n=\
= y£dimHl(G,H"(X(C)-Y(C),F2)).

q=0

Now we want to compute the cohomology group Hq(X(C) - Y(C), F2) for q <
η - 1. Applying Poincare duality to the long homology exact sequence of the pair
(X(C), y(C)), we have the exact sequence

• · · -+ Hq-2{Y{C)) -» W{X{C)) -• Hq{X{C) - Y(C))

Since Hk{Y(C)) = Hk(X(C)) for k < η - 1, it follows from the above sequence
that the sequence

3 tf(X(C)) Λ tf(*(C)) - //(X(C) - Y(C))

\ ±+ Hq+l(X(C))
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is exact for q < n-1. Let Pq{X(C), F 2 ) denote the primitive part of Hq(X(C), F 2 )
i.e.,

P"(X{C), F 2 ) = Ker[L"-« + 1 : Hq(X(C), F 2 ) -» H2"-q+l(X(C), F 2 )] .

The condition that Lq: Hn~q(X(C)) - tf"+«(X(C)) are isomorphisms for 0 < q < η
gives rise to the Lefschetz decomposition

[?/2]

(2.3.2) Hq(X{Q) = 0 LkPq-2k(X{Q).

fc=0

Therefore it follows from (2.3.1) that

Hq{X{C) - Y{C)) = Pq{X(C))

for q < η - 1. Hence

n-\ n-\

Y^aimH'iG, Hq(X(C) - Y(C))) = ΣάχπιΗι(Ο, Pq(X(Q)).
q=0 q=0

But, according to (2.3.2), this sum is equal to

dimHl(G, Hn-2(X(C))) + dimHl(G, H"-l(X(C))).

The theorem is proved.

Corollary 1. Let X be a projective variety such that the operators

Lq: H"-q(X(C), F2) -• Hn+q(X(C), F2)

are isomorphisms for 0 < q < η . Then

K{X) < dimH l {G, H"-2(X(C))) + dimH l (G, Hn~' (X(Q)).

To prove this, just apply (1.1.5).

2.4. Applications of the Hodge structure.

Theorem 8. Let X be a projective variety such that the groups Hq(X(C),Z)
{0<q<n) are free and k = [(n- l)/2]. Then

(2.4.1) * ( * ) <
0<r+s<n

r>s

where the hr's(X(C)) are the Hodge numbers.

Proof. We shall show that the right-hand side of the inequality

K{X) < Y^dimHe^(G, Hn+q(G, Hn+q(X(C), Z))

(see (1.1.2)) does not exceed the right-hand side of (2.4.1). To this end, note that

, H"+q(X(C), Z)) - d i m / / ' ( G , H"+q(X(C), Z))

< TkHn+i(X(C), Z ) - r * = dime Hn+q{X(C), C)~T'

when q is odd, and

dimHeiq)(G, Hn+q(X(C), Z)) = dimH2(G, Hn+q(X(C),Z))

< T)aHn+q{X{C), Z)T* = dimHn+q(X(C), C)T*

when q is even. Note also that when q is odd the Lefschetz isomorphism

Lq: H"-q(X(C), C)^Hn+<l{X(C), C)
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induces the isomorphism

(2.4.4) L": H"-q(X{C), C)T'^ Hn+«(X{C), C)"T*,

because

(2.4.5) LOX* = -T*OL,

and when q is even we have the isomorphism

(2.4.6) L": Hn-"(X(C), C)T* ̂ Hn+"{X(C), C)T*.

It now follows from (2.4.2)-(2.4.4) and (2.4.6) that

(2.4.7) ^ d i m / T ^ C , Hn+q{X{C), Z)) < ^dim7/"-«(X(C), Ζ) τ *.

Consider now the Hodge decomposition

H"-"(X(C),C)= φ Hr's(X(C)).
r+s=n—q

Since r*(Hr>s(X(C))) = Hs>r(X(C)), it follows from this decomposition that

(2.4.8) aimHn-q{X{C),Cf = ^ hr's{X{C))
r+s=n-q

r>s

when η - q is odd, and

(2.4.9) dimH"-"(X(C),CY' =

r>s

when n — q = 2t.
It follows from (1.1.2) and (2.4.7)—(2.4.9) that to finish the proof of (2.4.1) it

remains to show that

(2.4.10) Σ dirnH'^iXiC))'' < Σ hk~2i>k~2'(X{Q).
0<t<k i>0

To abbreviate our notation let H'-' = H'''(X(C)), and let P'-' denote the primitive
part of Htl, i.e., the kernel of the operator

τη-21+Ι . fjt,t _^ ijn-t+l ,n-t+l

By virtue of (2.4.5), it follows from the Lefschetz decomposition

//''' = Ρ11 Θ LP'-1·'-1 θ L2P'-2'-2 φ L3P'-3'-3 θ • · ·

that
Η'+'1 = Pi·'® LP'J1'-1 φ L2P'-2''-2 θ L 3 ^ " 3 · ' " 3 θ · · · ,

which in turn implies that

Replacing t by t — 1 in this equality, we get

h'-1-'-1 = ρ'-1'1'1 + p'S2-'-2 + p'-3'1-3 + p>_-4><-4 +

Adding the two equalities, we have
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which implies, since p'+'{ </?'-', that

Therefore

0<t<k i>0

which is (2.4.10). The theorem is proved.

Remark 6. In the surface case Theorem 8 yields (2.1.2).
In the next theorem we will need the following notation. Consider the set 0, 1, . . . ,

η - 1, and count the number of elements of it of the form Ak. If η is odd, subtract
one. The number thus obtained is denoted by A(n). Note that

Δ(/ΐ) =

Theorem 9. Let X be a projective variety of odd degree such that the homology groups
Hg(X(C), Z) (0 < q < n) are free, and let k = [(n- l)/2]. Then

κ(Χ)<

' η/4

( « -

(η +

1)/4,

2 ) / 4 ,

3 ) / 4 ,

« Ξ Ο

« Ξ 1

Η Ξ 2

« Ξ 3

m o d

m o d

m o d

m o d

4 ,

4 ,

4 ,

4 .

0<r+s<n
r>s

Proof. Let / : X —> P^ be the embedding map. Applying (1.2.5), we have

(2.4.11)
η

K(ff) < J 2 d i m H ^ \ G , H n + q { X { C ) , Z ) )

9=1

η

- ^ d i m I m [ i / E ^ ( G , Hn+q(T?N{C), Z ) ) - • H e { q ) ( G , H n + q { X { C ) , Z ) ) ] ,

9 = 1

w h e r e t h e right-hand s i d e o f ( 1 . 2 . 5 ) w a s r e w r i t t e n i n a d i f f e r e n t w a y . N o t e n o w t h a t

/ / e ( ? ) ( G , H n + q ( P N { C ) , Z ) ) = F 2

only when η - q = 0 mod 4; otherwise this group is zero. We shall now show that

(2.4.12) dimIm[/r ( < ? )(G, Hn+<1(PN(C), Z)) -» He^{G, Hn+q{X{C), Z))] = 1

whenever « - ? Ξ 0 mod 4. Let α denote a generator of Hl(G, H2(PN(C), Z)).
Then the image of a" under the homomorphism

H"{G, H2n(PN(C),Z)) ^Hn(G, H2n(X(C),Z))

is different from zero, since the degree of X is odd. Hence the image of am under
the homomorphism

Hm(G, H2m(PN(C),Z))-^Hm(G, H2m(X(C),Z))

is also different from zero for m = 1, ... , η. This gives us (2.4.12). Finally, we
remark that K(f) = κ{Χ) for η even—this can be checked as in the proof of
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Proposition 5—and κ(Χ) < κ ( / ) + 1 for η odd. It remains to apply (2.4.11),
(2.4.12), and the inequality

',Hn+q(X(C),Z))
q=l

0<r+s<n ;>0

obtained in the proof of Theorem 8. The theorem is proved.

Now we state the relative version of Theorem 8.

Theorem 10. Let X be a projective variety and Υ a hyperplane section of X. Suppose
that the homology groups Hq(X(C) - Y{C), Z) are free for 0 < q < n, and let
k = [(n- l)/2]. Then

K(X,Y)<

n-2<r+s<n-l
r>s

Proof. By the Poincare isomorphism, we can identify homology with cohomology.
Since the complex conjugation changes the orientation of X{C) only when η is odd,
we have that

τ, = (-1)"τ · .

By virtue of (1.1.4), this yields

K{X, Y) < 5 3 d i m / / ^ ( G , Hn+<I(X(C), Y(C);Z))
q>0

(2.4.13) = Y.^^H^{G,Hq{X{C)-Y{C),Z))
q=0
n-l

= 5 3 d i m Η ' { 9 ) ( G > H"{X(C)- Υ•(C).Z)),
9=0

where in the last equality we used the freeness of the group Hq(X(C) - Y(C), Ζ),
0 < q < η — 1. Now we make several observations. First,

4 dimF2 H^(G, Hq(X(C) - Y(C), Z))

<dimcHq{X(C)-Y(C),C){-l)'T'

Second, for 0 < q < η - 1 the equality

(2.4.15) Hq(X{Q - Y(C), C) = Pq(X(C), C)

holds. And finally

(2.4.16) dimP'i(X(C),C)-T' = Y] pr's + pql2'ql2

r+s=q
r>s

when q is odd, and

(2.4.17) dimP"{X(C),Cy' < 5 3 pr-s + p"'2'9'2

r+s=q
r>s

when q is even.



292 V. A. KRASNOV

Similar equalities and inequalities have been obtained before, and we omit the
details. Thus we deduce from (2.4.13)—(2.4.17) that

K(X,Y)< > pr's + > p'·'= > hr's + hk-k.

0<r+s<n 0<i<k n-2<r+s<n-l
r>s r>s

The theorem is proved.

Corollary 2. Under the assumptions of Theorem 10,

κ(Χ)<
n-2<r+s<n—\

r>s

This follows from (1.15).

§3. ORIENT ABLE AND NONORIENTABLE COMPONENTS

Among the components X\, ... , Xm there can be both orientable and nonori-
entable ones. Let X\, ..., Xs be the orientable components, and the rest nonori-
entable. The number of relations between the homology classes [X\],..., [Xs] e
Hn(X(C), ¥2) will be denoted by κ+(Χ), and the number of relations between the
remaining classes by K-(X). It is clear that

κ+(Χ) + K.{X) < κ(Χ),

and therefore any bound on κ(Χ) yields bounds on κ+(Χ) and K-(X). In this
section we shall obtain more precise bounds than those derived from the above in-
equality. In order to get information about κ+(Χ) we need to recall some facts about
complex line bundles with real structure.

3.1. Characteristic classes. Let L —» X be a line bundle, where L and X are real
algebraic varieties. Then the map L(C) —> X(C) between the sets of complex points
in a complex-analytic line bundle and the map L(R) —> X(R) is a real-analytic bun-
dle. Associated with L(C) there is the Chern class c(L(C)) e H2(X(C), Z) and with
L(R)-the Stiefel-Whitney characteristic class w(L(R)) e Hl(X(R), F 2 ) . In this sub-
section we shall define a new characteristic class cw(L) e H2(X(C), G; Z(l)) which
is a "mixture" of the characteristic classes c(L(C)) and w(L(R)). Here Z(l) is the
constant sheaf on X(C) with fiber Ζ on which involution τ acts by multiplication
by - 1 . We shall define the characteristic class cw (L) with the aid of the exponential
exact sequence

(3.1.1) o - > z ( i ) ^ ^ ( C ) - > < ? ; ( C ) - > i

of G-sheaves, where the homomorphism Z(l) —> ^ - ( Q sends k to 2nik, and the
other homomorphism sends / to exp(/). The group Η' (X(C), G; ^w C J is the
group of complex-analytic bundles on X(C) with real structure. It coincides with
PicA\ From the exact sequence (3.1.1) we obtain the coboundary operator

We now set

(3.1.2) cw(L) = S(L(C)).

We can also define homomorphisms

a: H2(X(C), G; Z(l)) - H2(X(C), Ζ),

β: H2(X(C), G; Z(l)) - Hl(X(R), F 2 ) .
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The map a is the composition of the projection onto I^2(X(C), G; Z( l)) and the
embedding

^ 2 , G; Z( l ) ) c H2(X(C), Z( l)) = H2(X(C),Z).

Before defining the homomorphism β we examine the spectral sequence

I%'q(X{R), G;Z{\)) = Hp(X{R),%'q(Z{\)))^Hp+i{X{R), G ;

Since

r2, q is odd,

we have the canonical homomorphism

H2(X(R),G;Z(\))^H1(X(R),¥2).

The composition

Η (Λ ( C ) , (J , L\i}) —> π (Λ ( Κ ) , ( J , ZJ(1 )) —» η (Λ [κ.), Γ2)

will be denoted by β .

Proposition 8.

a(cw(L)) = c(L(Q), fi(cw{L)) = w(L(R)).

Proof. First we remark that the exact sequence of sheaves (3.11) gives rise to the
exact sequence of Galois-Grothendieck cohomology groups and the exact sequence
of usual cohomology of sheaves. Moreover, there is a homomorphism from the first
sequence into the second one. In particular, we have the commutative diagram

-> H2(X(C),G;Z(l))

0·) — ^ H2(X(C),Z(l)),

which implies the first equality in the proposition. To prove the other equality,
consider the exact sequence of G-sheaves

(3.1.3) υ —»^r (υ, (y\x(R) —>Λ ((J, <y )U(R) — > ^ (Cr, ̂ ( i ) ) —> u,

which is obtained from (3.1.1). It coincides with another exact exponential sequence

(3.1.4) o - J ^ ^ i ' ^ F z - O

on X(R), where si is the sheaf of germs of real-valued complex-analytic functions
on X{R) and sf* is the sheaf of germs of invertible functions. Thus exact sequences
(3.1.3) and (3.1.4) give rise to the commutative diagram

(3.1.5) I I

Hl(X(R),j/*) - ^ Hl(X(R),F2)

Note now that the homomorphism

Hl(X(R), &\G, (9*)) - Hl(X(R), F 2 ) ,
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which is derived from (3.1.5), coincides with the composition

Hl(X(R), jr°(G, &*)) -> Hx(X(R) ,G;@*)

Λ H2(X(R), G; Z(l)) Λ Hl(X(R)F2).

In particular,

(3.1.6) β(δ(Σ(Ο\Χ{η))) = sgn(L(R)).

Since
sgn(L(R)) = w(L(R)), fi(d(L(Q\x<K)) = fi(cw(L)),

the second equality follows from (3.1.6). The proposition is proved.

3.2. Orientable components. First we introduce some notation. Let X+(R) denote
the union of the orientable components of X(R). For brevity we set

FqH2n+l(·, G; F2) = Fq{·),

where FqH2n+l(', G; F2) denotes the filtration obtained from the spectral sequence

/£'«(·, G; F2) = H"(G, H"(-,F2)) => H2n+\-,G; F2).

This abbreviation will be used for the spaces X(C), X(R), and X+(R). Moreover,
let

3f€H2(X(C),G;Z(l)), Κ e H2(X(C), Z), k e Hl(X(R), F2)

be the characteristic classes of the canonical bundles on X, X{C), and X(R), re-
spectively. Note that Κ = a(Jf), k = β{3?), and k\x+{K) = 0. Also let

(3.2.1) Kq: H"-q{X{C), F2) ^Hn+q(X(C), F2)

denote the homomorphism given by multiplication by Kq .

Theorem 11. Let X be a GM-variety such that the homomorphisms (3.2.1) are iso-
morphisms for 0 < q < η . Then κ+(Χ) = 0.

Proof. Consider the homomorphism

(3.2.2) F"(X(C))/F"-l(X(C))^Fn(X+(R))/F"-l(X+(R)).

It coincides with

(3.2.3) H"+l(G, Hn(X(C), F2)) - H"(X+(R), F2),

since X is a GM-variety. In turn, (3.2.3) is determined by the homomorphism

(3.2.4) H"(X(C), F2) - Hn(X+(R), F 2 ) ,

induced by the embedding X+(R) c X(C). We shall prove that (3.2.2) is an epimor-
phism. This would imply that (3.2.4) is also an epimorphism, and the latter means
that κ+(Χ) = 0. To prove that (3.2.2) is an epimorphism we first remark that the
homomorphism

(3.2.5) F2n+1(X(C))/F"-l(X(C)) - F2n+l(X+(R))/F"-l(X

is an epimorphism because the map

X2n+l (X(C), G; F2) - H2n+l(X{R), G; F2)

is an isomorphism and the map

H2n+l(X(R), G; F2) -» H2n+l(X+(R), G; F2)
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is an epimorphism. Now we prove by induction on q that

2 6)

where q > 0. Because

the surjectivity of (3.2.2) follows from (3.2.6) and the surjectivity of (3.2.5). When
q = 0 both sides of (3.2.6) are the same. Assume that this is also true for q -
m - \ > 0. We now show that this is true for q = m. To this end, consider the
homomorphism

F"-m(H2"-2m+i(X{C), G; F2))/Fn-m-1

(3.2.7) , ,
_U >Fn+m(H2n+l{X(C), G,F2))/Fn+m-1.

Since X is a GM-variety, this homomorphism coincides with

I I Km

G, Hn-m(X{C),F2)) — • H"-m+l(G, Hn+m(X(C), F2)).

It now follows from the hypothesis of the theorem that (3.2.7) is an isomorphism.
Therefore

Fn+m(X{C)) = Fn+m-l{X(C))+^m U F"-m(H2n-2m+l(X(C), G; F 2 )) .

The image of 3?m U F"-m{H2"-2m+1(X(C), G;F 2 )) under the homomoφhism
Fn+m(X(C)) -> Fn+m(X+(R)) is zero because 3? goes to k . Therefore the images
of Fn+m(X(C)) and Fn+m-\X(C)) coincide. The theorem is proved.

Remark 7. Under the assumptions of Theorem 11 the number K" is odd, and
therefore X{R) contains at least one nonorientable component because in this case
kn φθ.

3.3. Nonorientable components. First we obtain two general bounds, and then we
apply them to certain types of varieties.

Proposition 9.
£ * ( ) , Z)),

where
1 q even,
2 q odd

Proof. We use the Galois-Grothendieck cohomology groups H2n+2(·, G; Z)
when η is odd, and H2n+l(·, G; Z) when η is even. Consider the case of odd
η . Note first that

l£2'n(X{R), G;Z) = Hn+2(G, Hn(X(R), Z)) = H"(X(R), Z)2 ,

where Hn(X{R), Z) 2 is the subgroup of Hn(X(R), Ζ), consisting of elements of
order two. On the other hand,

K-(X) < dimCoker[//"(X(C), Ζ)" τ * -> H"(X(R), Z)2]

< dimCoker[//"+2(G, H"(X(C),Z)) -> Hn+2(G, Hn(X{R),Z))]

< dimCoker[/^+ 2-"(^(C), G\Z)-> l£2'n{X(R), G;Z)].
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Since the homomorphism H2n+2(X(C) ,G;Z)-* H2n+2{X(R), G; Z) is an isomor-
phism, the homomorphism

H2n+2(X(C), G; Z)/F"-l(X(C), G; Z)

_, H2n+2(X(R), G; Z)/F"-l(X(R), G; Z)

is an epimorphism. Therefore

dimCoker[/^2-"(X(C), G; Z) - InJ2 ·»(X(R), G; Z)]

< dimi/ 2 n + 2 (X(C), G; Z)/Fn(X(C), G; Z)

, Z))

, Z)).

The proposition is proved.

Remark 8. Similar arguments yield the relative version of Proposition 9:

κ_(Χ, Υ) < ΣdimF2 H^\G, H"+"(X(C), Y(C); Z)).

Notice that under the map

Hn(X(C), Z) -• Hn{X(R), Z)

the subgroup Hn(X(C), Ζ)~τ" goes to the subgroup Hn(X(R), Z)2 . Therefore the
number

= dimCoker[//n(X(C), Ζ)~τ' @ H"{Z{R), Z) 2 -» //"(X(R), Z)2]

can be defined for a map / : X —» Ζ of real algebraic varieties.

Theorem 12. Suppose that Ζ is a GMZ-variety. Then

K-(f) < J ^ d i m ^ C o k e r l t f ^ G , Hn+«{Z{C),Z)) - //^>(G, //n + 9(X(C), Z))].

The proof is similar to that of Theorem 4. One should only use the Galois-
Grothendieck cohomology groups H2m+2(- ,G;Z), η is odd, and H2m+l (· ,G;Z),
η is even.

We now consider some consequences of our results.

Corollary 3. Let X be a surface such that Hx (X(C), Z) = 0. Then κ_ (X) = 0.

This follows from Proposition 9.

Corollary 4. Let X be a complete intersection of odd degree. Then K-(X) = 0.

Proof. If η is even, then κ(Χ) = 0 by Theorem 5, and therefore K-(X) = 0. If
« is odd, then on applying Theorem 12 to the embedding f: X ^->PN we have the
equality «_(/) = 0. On the other hand, H"{PN{C), Z) = 0 when « is odd, and
therefore

0 = * _ ( / ) = dimCoker[//"(X(C), Z)"T* -> //"(X(R), Z) 2 ] .

It now follows that Κ-(Λ') = 0. The corollary is proved.
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