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ON COHOMOLOGY CLASSES DEFINED BY THE REAL POINTS
OF A REAL ALGEBRAIC GM-SURFACE

UDC 513.6+517.6

V. A. KRASNOV

ABSTRACT. The cohomology classes χ, = [Λ",-]* € H2(X(C), Z) are studied, where
X\, ... , Xm are the connected components of the set of real points X(M.) of a real
algebraic GM-surface X and X(M) = X\ U • - · υ Xm is assumed to be orientable. The
results are applied to obtain congruences for the Euler characteristic of X(S.).

I N T R O D U C T I O N

Let I b e a nonsingular projective real algebraic surface, and let τ: X(C) —>
X(C) be the involution of complex conjugation. Put Υ = X{C)/x and denote
by π: X(C) —> y the corresponding projection. Let X\, ... , Xm be the con-
nected components of X(R), and let x, = [X,]* e H2(X(C), F2) (i e {I, ... , m})
be their cohomology classes. We may assume that the components X\, ... , Xm

are embedded in Υ; since Υ is a differentiable fourfold, the cohomology classes
y, = [Χί]γ £ H2(Y, F2) are defined. In the present paper we prove, in particular,
the following

Theorem 1. If X is a GM-surface, then the kernel of the natural homomorphism
π*: H2(Y, F2) —> H2{X{C), F2) is spanned by the cohomology classes y\, ... , ym •

Suppose that all the surfaces X\, ... , Xm are orientable. We choose an orienta-
tion and denote by X^ , ... , X^ the oriented components. These oriented compo-
nents define the cohomology classes JC+ = [Xf]* e H2(X(C), Z) (/ e {1, . . . , m)).
In addition to these cohomolgy classes we will consider the cohomology classes
x+ e H2{X(C); G,Z), where G = {e, τ}, also defined by the oriented surfaces
X,+, . . . , ΛΓ+ . A precise definition of these cohomology classes is given in §1.2, and
now we only remark that under the canonical homomorphism a: H2(X(C); G, Z) —>
H2{X(C), Z) the cohomology classes xf , . . . , x+ are mapped to xf, ... , x+ .

In this paper we prove the following

Theorem 2.

H2(X(C) ;G,Z) = π*Η2(Υ; G, Z) + ^ ( x + , . . . , x+),

where -S^xf , ... , x£) is the linear span of xj", . . . , x+ and the involution τ acts
trivially on Υ.

The most important result for further applications is the following

Corollary. If X is a GM-surface and the group H*(X{C), Z) is free, then the follow-
ing equality holds:

_ _ _ _ _ _ H2(X(C), Ζ)τ' = π*Η2(Υ, Ζ) + ̂ ( x , + , . . . , x+).
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386 V. A. KRASNOV

We denote by χ (resp. Xi) the Euler characteristic of X(R) (resp. Xi) and by σ
the signature of X(C). Using Theorem 1, in the present paper we prove the following

Theorem 3. Let X be a GM-surface such that the surfaces X\, ... , Xm-\ are ori-
entable and the surface Xm is not necessarily orientable, Xi = 0 (mod 4) for i e
{1, . . . , , m - 1}, and w2(X(C)) = [X(R)]m. Then χ = σ (mod 16).

Two special cases of this theorem for surfaces with H\(X{C), Z) = 0 were proved
in [1]. In the first case it is assumed that the quadratic form on H2{X(C), Z) is even
and the surface X(R) is orientable. In the second case the assumption is that the
quadratic form on H2(X{C), Z) is odd and the surface X(R) has one nonorientable
component. The following result of A. L. Slepyan [2] is also a special case of Theorem
3: If C is a plane curve of degree 2k such that C(R) disconnects C(C) and the
characteristic of each odd oval is even, then ρ - η = k2 (mod 8).

Using the corollary of Theorem 2, in the present paper we prove the following

Theorem 4. Let X be a surface such that H*(X(C), Z) is a free group, X(R) =
XtU---UXm is an orientable surface, and [X(R)] = 0 in H2(X(C), F 2 ) . Then the
following assertions hold:

(i) // X is an M-surface and Xi = 0 (mod 2μ) for i e {1, . . . , m), then χ = 0
(mod 2"+3);

(ii) // X is an (M - \)-surface, Xi = 0 (mod 2μ) for i e {1, . . . , m}, and
μ>2, then either χ = 0 (mod 2"+3) or χ = 22v+i · χ', where χ1 is an odd
number.

For surfaces with H\(X(C), Z) = 0 this theorem was proved in [1]. We remark
that in the proof of Theorem 4 we use constructions from [1], but, due to the corollary
of Theorem 2, our proof does not rely on complicated theorems from number theory.

§1. GENERAL THEOREMS ON COHOMOLOGY CLASSES DEFINED BY REAL POINTS

1.1. The kernel of the homomorphism π*: H2{Y, F2) -+ H2(X{C), F 2 ) . Consider
the spectral sequence

\p

2'
q = Hp(Y,^q{G, F2)) =» HP+9(X{C); G, F 2).

By [3], this spectral sequence yields the following five-term exact sequence:

0Η\Υ,¥2)Η

— H°{X(R), F2) — H2(Y, F2) — H2(X(C); G, F 2).

We compute the homomorphism H°{X(R), F2) —• H2(Y, F2) in this sequence. To
the components X\, ... , Xm there correspond generators of the group H°(X(R), F2)
which will be denoted by X\, ... , Xm .

Lemma 1.1.1. Under the homomorphism H°(X(R), F2) -» H2(Y, F2) the generators
Xi, ... ,Xm are mapped to yx, ... ,ym.

Proof. Let I/, be an open ε-neighborhood of Xi in X{C) with respect to a τ-
invariant Riemann metric and put V[ = ί/,/τ. Denote by (F2)c/, the kernel of the
restriction homomorphism F 2 —* F 2 | „,„, ,, ; this is a sheaf on X(C). In a similar
way we define a sheaf (F 2 )F, on Υ . The inclusion of the sheaf (F2)t/1 in F 2 induces
a homomorphism of the five-term exact sequence for the sheaf {¥2)u, to the exact
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sequence (1); in particular, we have a commutative diagram

H°(Xi, F2) > H2{Y, (F2)K/) > H2(X(C); G, (¥2)Ut)

<*> 1 I I

, F2) > H2(Y, F2) • //2(X(C); G, F2)

The group H°(Xi, F2) has a single generator which is mapped to X, under the
homomorphism /7°(Xi, F2) -> H°(X(R), F2) in diagram (2). Similarly, the group
H2(Y, (F2)^) has a single generator which is mapped to >>, by the homomorphism
H2(Y, (F2)^.) —> H2(Y, F 2 ) . Hence it suffices to prove vanishing of the homomor-
phism H2(Y, (¥2)vi) -» H2(X(C); G, (¥2)Vi) • To this end we consider the compo-
sition of homomorphisms

H2(Y, (F 2)K () — H2(X(C);G,

According to [3], this composition coincides with the homomorphism

π*: Η2(Υ, (V2)Vi) - H2(X(C), (¥2)ν.),

which is equal to zero. It remains to observe that the homomorphism

a: H2(X(C);G, {¥2)u,) - H2(X(C), (¥2)u,)

is an isomorphism. This follows from the spectral sequence

nf ·« = H"{G, H«(X(C), (¥2)Ut)) => ΗΡ+«{Χ{€); G, (¥2)Vl).

The lemma is proved.

Theorem 1.1.2. Let X be a GM-surface. Then the kernel of the homomorphism

n*:H2(Y,F2)^H2(X(C),W2)

is generated by the cohomology classes y\, ... , ym .

Proof. From Lemma 1.1.1 and the exact sequence (1) it follows that the kernel of
the homomorphism H2(Y, F2) -> H2(X(C) ;G,W2) is generated by the cohomology
classes y\, ... ,ym. Consider the composition of maps

H2(Y, F2) -» H2(X(C); G, F2) -^ H2(X(C), F2);

it coincides with the homomorphism π: H2(Y, F2) -> H2(X(C), F 2 ) .
Denote by {F<>H2(X(C); G, F2)} the filtration in H2(X(C) ;G,¥2) induced by

the spectral sequence

llp

2'" = H»(G, H«(X(C),¥2)) => Hp+«(X{<C); G,¥2);

then kera = FlH2{X(C); G,¥2). We need to show that the intersection of the
image of H2(Y, F2) -> H2(X(C); G, F2) with FlH2(X(C); G, F2) is trivial. To
this end we consider the exact sequence of type (1) for the sheaf F 2 on X(R):

O^H1 (X(R), F2) - Hl (X(R) ;G,¥2)

- H°(X{R),¥2) - H2(X(R), F2) - //2(X(R); G, F 2).

Since the composition of maps

H2(X(R) ,¥2)^H2(X(R) ;G,¥2)^H2(X(R), F2)
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coincides with the identity map, the image of the homomorphism H2(X(R), F2) —•
H2{X(R) ;G,¥2) has trivial intersection with FlH2{X(R); G, F 2 ) . Consider now
the commutative diagram

H2(Y,¥2) —

1

H2(X(R),¥2) —

— H2(X(C);G,

1

— H2{X(R);G,

F2)

F2)

where the vertical arrows are restriction homomorphisms. Since X is a GM-surface,
the restriction homomorphism FlH2(X{C); G,¥2) -> FlH2(X(R); G, F2) is an
inclusion (cf. [4]). From the above observation on the image of the homomorphism
H2(X(R), F2) -> //2(ΛΓ(Μ); G, F2) we infer a similar assertion about the image of
the homomorphism H2(Y, F2) ->· /72(X(C); G, F 2 ) . The theorem is proved.

1.2. The structure of the group H2(X(C), Z)T*. In this subsection we assume that
X(R) is an orientable surface. First of all we explain how to construct the cohomology
classes x"J~, ... , x+ e H2(X(C); G, Z). These classes are constructed as follows.
The oriented components Xf, ... , X^ define via Poincare-Lefschetz duality the
cohomology classes Jc+, ... , jc+ € H2{X{C), X(C)\X(R); Ζ), which are mapped to
x+, ... , x+ under the homomorphism H2(X(C), X(C)\X(R); Z) -• H2(X(C), Z).
The canonical homomoφhism

ά: H2(X(C),X(C)\X{R); G, Z) ^ H2(X(C), X{C)\X(R); Z)

is an isomorphism; this follows from the second spectral sequence

ΙΙξ •q = H»(G, Hi(X{C), X(C) \ X{R); Z)) =» //P+<7(X(C), X(C) \ JT(R); G, Z).

We denote by x | , ... , x+ the preimages ά" 1 (.*+), ... , Q " 1 ^ ) · By definition,
their images under the homomorphism

H2{X{C), X(C) \ X(R) ;G,Z)-> H2{X(C); G, Z)

are equal to x | , ... , x+ . We observe that the canonical homomorphism a:
H2(X(C);G,Z) -> H2(X(C),Z) maps the cohomology classes x | , . . . ,
Xm tO Xj , ... , Xm .

Theorem 1.2.1.

(1) H2(X(C); G, Ζ) = π*Η2{Υ; G, Z ) + J ? ( x + , ... , x+),

where the action of τ on Υ is trivial.

A proof of this theorem will be given in the end of this section, and now we
formulate a corollary, important for applications, and prove several lemmas used in
the proof of the theorem.

Corollary 1.2.2. Let X be a GMZ -surface. Then

(2) H2 {X(C), Z)x' = π*Η2(Υ, Ζ) + 5?{x\ , ... , x+).

Proof. A definition of GMZ-variety is given in [5], where it is shown that the spectral
sequence U(X(C); G, Z) for such a variety degenerates. From this it follows that
the image of the homomorphism a: Hq{X{C); G, Z) -> Hq{X{€),Z) is equal to
Hq(X{<C), Ζ)τ' . Applying a to equality (1), we get equality (2). In fact, as we
already explained, a(H2(X(C); G, Z)) = H2(X(C), Z)T' and we have inclusions
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α{π*Η2(Υ; G, Z)) c π*Η2(Υ, Ζ) c H2(X(C), Ζ)τ* . Now it remains to observe
that a(J?(x+ , . . . , x+)) = i?(x+ , . . . , x+). The corollary is proved.

Before formulating our lemmas we introduce additional notation. We choose a
τ-invariant Riemann metric on X(C); let U be the open ε-neighborhood of X(R)
with respect to this metric. Put si = π,Ζχ^)', then Zy is a subsheaf of si .
Let V = n(U) = U/τ and let siy be the kernel of the restriction homomoφhism
si —> si\Y_v- We denote by si the subsheaf Zy + siv and by 3! the quotient
sheaf si I si . We observe that τ acts on the sheaves si , s/v , si , 38 .

Lemma 1.2.3. The homomorphism H2{Y; G, si) -* H2{Y; G,si) induced by the
inclusion si c si is an epimorphism.

Proof. Consider the commutative diagram of exact sequences of sheaves

0 > si > si > & • 0

υ > ύίΐ \γ_γ ' <» \γ—γ ^® Ιγ-y υ

w h e r e t h e v e r t i c a l a r r o w s a r e r e s t r i c t i o n h o m o m o r p h i s m s . T h i s d i a g r a m y i e l d s t h e

f o l l o w i n g c o m m u t a t i v e d i a g r a m o f e x a c t c o h o m o l o g y s e q u e n c e s :

( 3 )

· · • - • H 2 ( Y ; G , s i ) -^ H 2 { Y ; G , s i ) -> H 2 { Y \ G , & ) -*•••

i i - 1

• H 2 { Y ; G , s i \ Y _ v ) - H 2 ( Y ; G , s / \ Y _ v ) -> H2{Y; G, 38\γ_ν) - · · ·

Since the sheaf έ$ vanishes on V, the restriction homomorphism H2(Y; G,
—• H2(Y'; G ,3§\γ_ν) is an isomorphism. Now from diagram (3) it is evident that it

suffices to show that the homomorphism H2(Y; G, si\Y_v) -> H2(Y; G, si\Y_v)

is an epimorphism. Since s/\Y_y = i\Y_v , we have

H2(Y; G, si~\Y_y) = H2(Y- V; G, Z),

where

12J(Y; G, Jf\r_y) = 12J(Y -V;G,Z) = H2(Y - V, Z)

since l°2'
l(Y - V; G, Z) = H°{Y - V, J^l(G, Z)) = 0.

On the other hand, %"i{G, si\Y_v) = 0 for q > 0, hence

H2(Y; G, stf\Y_v) = I^ ° (F; G, ^\γ_ν)

= H2(Y,jr0(G,jtf\Y_v)) = H2(Y -V,Z).

Since the sheaf homomorphism 3?°(G, si\Y_v) —» ̂ °(G, si\Y_y) is an isomor-
phism, the homomorphism

\ 2 ' ° ( Y - G o / \ ^ ^ ^ ' ^ ( Y - G Q / I 1 — H 2 ( Y • G Q / \ Ϊ

is also an isomoφhism. Hence the map H2(Y; G, s/\Y_y) -+ H2(Y; G, si\Y_v)
is an epimorphism. The lemma is proved.
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Lemma 1.2.4. The homomorphism Η*(Ϋ; G, Zy) -> / / 3 ( F ; G, s/y) induced by the
inclusion Zy cxfy, where V is the closure of V, is a monomorphism.

Proof. First we notice that the homomorphism

(4) n*:H3(V,dV;Z)-^H\D,dU;Z)

is a monomorphism. In fact,

H\V, dV;Z) = tfi(X(R), Ζ), Η\ϋ, 8U;Z) =

and the homomorphism (4) is induced by multiplication by 2. Consider now the

commutative diagram

H\V;G,ZV) • H\V;G,tfv) - ^ H\U;G,ZV)

H\V,Zy) • H\V,tfy) —ϊΐ-» H\U,ZV)

where the composition of homomorphisms in the bottom row coincides with the
homomorphism (4).

It remains to observe that the vertical homomorphisms in this diagram are mono-
morphisms. This follows from the second spectral sequence for the cohomology
groups H"{V; G,ZV), H"{D; G,ZV). The lemma is proved.

Lemma 1.2.5. The homomorphism

H2(Y;G,Z)®H2(Y;G,sfy)-+H2(Y;G,s/)

induced by addition of sheaves Ζ θ sfv —* sf is an epimorphism.

Proof. Consider the commutative diagram of exact sequences of sheaves

0 > Zy > Ζγθ£/ν > j / » 0

0 > Zy > Zy®S/y > S#\y > 0
where the vertical homomorphisms are induced by restricting the correspondingsheaves to V. This diagram yields the following commutative diagram of exactcohomology sequences:
··· -» H2(Y; G, Z)®H2{Y; G,sfy) -* H2{Y;G,J/) -* H*(Y; G,

1 Ι Ί
H2(V; G, Z)eH2(V; G,s/V) -• H2{V; G,sf) -* &{V; G,

Since the homomorphism H3(Y; G, Zy) -» H3{V; G, Zy) is an isomorphism, it
suffices to verify that the homomorphism H2(V; G,sf)-> H3(V; G, Zy) is equal
to zero, which is equivalent to the homomorphism H3(V; G, Zy) -> Hl (V; G, Ζ) φ
H3(V; G, s/y) being a monomorphism; this last assertion follows from Lemma 1.2.4.
The lemma is proved.

Proof of Theorem 1.2.1. From Lemmas 1.2.3 and 1.2.5 it follows that the composition
homomorphism

H2{Y; G,Z)®H2{Y; G, s/v) -• H2{Y; G, si)
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is an epimorphism. It remains to observe that

H2(Y; G,sfv) = H2(X(C),X(C) \U;G,Z) =

a n d the h o m o m o r p h i s m (7) coincides wi th t h e h o m o m o r p h i s m

H\Y; G, Z ) 0 J ? ( x + , . . . , x + ) -> H2(X(C); G, Z ) .

T h e t h e o r e m is proved.

§2. A P P L I C A T I O N O F G E N E R A L T H E O R E M S T O P R O V I N G C O N G R U E N C E S

2.1 . Surfaces for which w2(X(C)) = [X(R)]*. We begin with proving two l e m m a s .

Lemma 2.1.1. y\-\ h ym = 0 .

Proof. P u t χ = χι + ··· + xm, y = yi + •·· + ym a n d consider t h e l inear form

l(z) = y • ζ o n H2(Y, F 2 ) defined by t h e c u p p r o d u c t ; t h e n

l{z) = y . z = x- π*{ζ) = τ * ( π * ( ζ ) ) · π*(ζ) = π*{ζ) · π * ( ζ ) = 0.

T h e l e m m a is proved.

Lemma 2.1.2.

w2(X(C))=n*(w2(Y))+x.

Proof. Consider a triangulation of X(C) such that τ: X(C) —> X(C) is a simplicial
involution and X(R) is a subcomplex. Then the quotient of this triangulation is a
triangulation of Υ. Let C be the two-dimensional chain equal to the sum of two-
dimensional simplices in the barycentric subdivision of the triangulation X(C), and
let n{C) be the analogous chain for the corresponding triangulation of Υ; then C
and n(C) are cycles and w2(X(C)) = C*, w2(Y) = n{C)* (cf. [6]). It remains to
observe that n*(n(C)*) = C* + χ. The lemma is proved.

Theorem 2.1.3. Let X be a GM-surface such that the surfaces X\, ... , Xm-i are
orientable and the surface Xm is not necessarily orientable. Suppose that xt = 0
(mod 4) for i e {1, . . . , m - 1} and that w2(X(C)) = [AT(R)]'. Then χ Ξ σ
(mod 16).

Proof. Since χ — σ - 2σ+ (cf. [7]) and σ+ = σ(Υ), it suffices to show that σ(Υ) = 0
(mod 8). From the equality w2(X{C)) = [X(R)]*, Lemmas 2.1.1 and 2.1.2, and
Theorem 1.1.2 it follows that w2(Y) = yix Η \-yik , where 1 < i\ < ••· • < i^ < m — 1 .
We fix orientation on the surfaces X\, . . . , Xm-\ ; then for / e {1, ... , m - 1} we
get A'ell-defined cohomology classes x* e H2{X(C), Z), yt e H2(Y, Z). Since
(y+)2 = 2(x+)2 = -2χί, we have (y+)2 = 0 (mod 8). Therefore, o{y) = {y+)2 +

1- (ytk )
2 = 0 (mod 8). The theorem is proved.

Remark 2.1.4. In [1] there are two congruences for the Euler characteristic χ of a
surface X with H\{X(C), Z) = 0 such that X(R) has only one nonorientable com-
ponent. In the first congruence it is assumed that the quadratic form on H2(X(C), Z)
is even, in which case X(R) is orientable (cf. [8, 9]); thus the set of surfaces for which
this congruence is proved in [ 1 ] is empty. The second congruence is a special case of
Theorem 2.1.3.

2.2. The invariants μ(Χ) and u{X) and the cohomology class h. In what fol-
lows we will repeatedly apply Corollary 1.2.2. For this reason we assume that the
surface X(R) is orientable. The cohomology classes JCJ1" , . . . , JC+ will be denoted by
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Χ\, ... , xm. Furthermore, suppose that the cohomology group H*(X(C), Z) is free.
Then X is a GMZ-surface if and only if X is a GM-surface (cf. [5]). We also assume
that the homology class [X{SL)] in H2(X(C), F2) is trivial, i.e., JCI Η h xm = 0
(mod 2) in H2(X{C),Z).

Denote by L the group H2(X(C), Z), denote by φ the involution τ* on L,
and put L ± = {x e i | φ(χ) = ±x}. On L we consider two quadratic forms
Q,Q', where <2(x,y) = x-y, Q'(x, y) = χ · <p{y). The element x\ Η h xm is
characteristic for the form Q' (cf. [10]). Since Χ\Λ \-xm = 0 (mod 2), the form
Q' is even on L, and since Q'\L± = ±Q\L± , the form Q is even on L* .

If χ, = 0 for all ζ € {1, . . . , m), then we put μ(Χ) = oo; otherwise μ(Χ)
is defined to be the largest natural number μ such that χ, = 0 (mod 2μ) for all
i e {\, ... , m) . We denote by v{X) the largest natural number ν for which there
exist odd numbers l\, ... , lm such that

l\Xi + --- + lmxm = 0 (mod2'/).

If there exist numbers ν with this property bigger than any given number, then we
put v{X) = oo .

Proposition 2.2.1. One always has v{X) < μ(Χ).

Proof. We multiply the congruence l\X\ -\ h lmxm Ξ Ο (mod 2") by x,; then we
get the congruence χ, = 0 (mod 2V). The proposition is proved.

Suppose that v(X) < oo. Then there exist odd numbers l\, ... ,lm such that
l\X\ + • • • + lmXm = 0 (mod 2"(*)). In this case we put

1

1 = 1
We notice that the cohomology class h € L+ is not uniquely defined.

Proposition 2.2.2. If there exists a decomposition h = d + p(rf) vw?/z d £ L, then
ν{Χ)<μ{Χ).
Proof. From h = d + <p(d) it follows that h · x, = 2d · Xj. On the other hand,

hence χι = 0 (mod 2ν{·Χ)+χ). The proposition is proved.

Proposition 2.2.3. Let X be a GM-surface such that v{X) < oo. Then there exist
odd numbers l\, ... , lm such that hxx -\ \- lmxm = 0 (mod 2"(X)) and

(=1
Proof. Let /{,..., l'm be odd numbers such that l[x{ + • • • + l'mxm = 0 (mod 2"W).
We put

h = ^
<=1

then h! € L+ . By Corollary 1.2.2 there exist integers n\, ... , nm such that
m

h! + J2nix'e **/ / 2 (F,Z) .

It remains to put /, — l\ + n,2l/i-x^. The proposition is proved.

In what follows for a GM-surface X with v{X) < oo we shall always assume that
h en*H2(Y,Z).
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Proposition 2.2.4. Let X be a GM-surface such that v{X) < oo and v(X) < μ(Χ).
Then there exists a decomposition h = d + <p(d) with d e L.

Proof. First we observe that the existence of a decomposition h = d + q>(d) is
equivalent to the linear form l(z) = h · ζ on L+ being even (cf. [4]). In view of
Corollary 1.2.2, it suffices to show that this form is even on £?{x\, ... , xm) and on
π*Η2{Υ, Ζ). Since *, = 0 (mod 2"W+ 1), it follows that h · xt• = 0 (mod 2) and
so the form h · ζ is even on -2*(.Xi, . . . , xm). Since h e π*Η2(Υ, Ζ), this form is
even on π*Η2(Υ, Ζ). The proposition is proved.

2.3. Congruences for the Euler characteristic of an M-surface and (M - l)-surface.
In this section we keep the assumptions and notation of 2.2; furthermore, we denote
by a the dimension of the space L/L+ φ L~ over the field F 2 .

Proposition 2.3.1. Let X be a GM-surface such that μ(Χ) < oo. Then the following
assertions hold:

(i) the congruence

(1) χ = 0 ( m o d 2 m i n < ^ + 3 , 2 ^ + 1 } )

always holds;

(ii) if the form Q is even on L and v(X) < μ(Χ), then

(2) χ = 0

(iii) ifa = 0, then μ(Χ) = ν{Χ) and

(3) x = Q ( m o d 2 m i

(iv) if a=\, μ(Χ) > 2, and χ ^ 0 (mod 2"W+3), then

(4) / Ξ -22"{Χ)σ (mod 2m i n { f i ( X ) + 3· 2l/

Proof. Since Q is even on L+ , h2 = 0 (mod 2), and therefore

(5) lfxi+-- + l2

mXm = O (mod2 2"W+ 1).

O n t h e o t h e r h a n d , I f = 1 ( m o d 2 3 ) , * , Ξ 0 ( m o d 2 ^ X ) ) ; h e n c e

( 6 ) l h i + - - + l 2

m X n , = X i + - - - + X m ^ X ( m o d

Congruence (1) immedia te ly follows from congruences (5) a n d (6). We n o w t u r n

to the proof of congruence (2). Since v{X) < μ(Χ), from Proposition 2.2.4 it follows
that there exists a decomposition h = d + φ{ά), d e L. Then h2 = 2d2 + 2d• φ(ά),
and since the forms Q and Q' are even on L, h2 = 0 (mod 4); hence

lfxl + -- + l2

mXm = 0 (mod 22"W+ 2).

Combining this congruence with congruence (6), we get congruence (2). To prove
congruence (3) we observe that for a = 0 the element h does not admit decomposi-
tion h — d + φ{ά). Hence from Proposition 2.2.4 it follows that v{X) = μ(Χ), and
congruence (3) follows from congruence (1).

We turn to the proof of assertion (iv). Since χ ^ 0 (mod 2^*>+3) and μ(Χ) > 2,
congruence (1) yields the following inequalities: 2v(X) + 1 < μ(Χ) + 3, v(X) <
μ{Χ). Hence from Proposition 2.2.4 it follows that there exists a decomposition

N o w we observe that orientabi l i ty of X(R) implies the existence of a character is t ic

class k of t h e form Q with d e c o m p o s i t i o n k — c - (p(c). In fact, k cor responds t o
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a nonsingular real algebraic curve i o n I . From orientability of X(R) it follows
that clR (K) = 0, and in this case it is shown in [4] that k — clc (K) admits a
decomposition k = c - q>(c). We claim that 2 does not divide k = c - tp{c), i.e.,
Q is an odd form. In fact, by the Gudkov-Krakhnov-Kharlamov theorem χ = σ ± 2
(mod 16) and by (1) χ = 0 (mod 8). Hence σ = ±2 (mod 8) and Q is an odd
form.

Denote by c, d the images of elements c, d under the projection L —> L/L+ Θ
L~ ; then c = d . This follows from the equality dimF2 (L/L+ Θ L~) = 1 and the
fact that k — c - q>(c) and h = d + φ(ά) are odd elements. Since c = d, we have
h = k (mod 2), i.e., Λ is a characteristic element of the form Q. Hence h2 = σ
(mod 8) and therefore

/?*i + - + tJkXm = -2 2 " w <7 (mod 22"<*>+3).

Combining this with congruence (6) we obtain congruence (4). The proposition is
proved.

Remark 2.3.2. From the proof of the above proposition it is clear that congruence (4)
can be written in the form

χ = ± 2 2 " ( * ) + 1 (mod 2m

from which it follows that χ = 22"W+1 · χ', where χ' is an odd number.

Theorem 2.3.3. Let X be a surface such that H*{X(C), Z) is a free group, X(R) =
Xi\J---liXm is an orientable surface, and [X(R)] = 0 in H2(X(C), F 2 ) . Then the
following assertions hold:

(i) // X is an M-surface and xt = 0 (mod 2μ) for i e {1, . . . , m), μ > 2,
then χ = 0 (mod 2"+ 3);

(ii) if X is an (M-l )-surface and #, = 0 (mod 2") for i e {1, ... , m), μ>2,
then either χ = 0 (mod 2^+3) or χ = -21υσ (mod 2 m i n ^ + 3 · 2 t / + 3>), where
1 <v <μ/2+ 1.

Proof. Since all Af-surfaces and (M - l)-surfaces are GM-surfaces (cf. [4]), the
assertions of the theorem follow from Proposition 2.3.1, (iii) and Remark 2.3.2. The
theorem is proved.

Remark 2.3.4. Theorem 2.3.3, (ii) implies the following claim:

(ii)' if X is an (M - \)-surface and Xi = 0 (mod 4) for i e {1, ... , m}, but
χφΟ (mod 32), then χ = -4σ (mod 32).

This claim yields the following Fidler congruence for ΛΖ-curves of degree 4k,
where k is an odd number: If the characteristic of each even oval is even, then
p-n = -4 (mod 16) (cf. [2, 11]).

However it is quite possible that assertion (ii)' involves the empty set of surfaces,
i.e., the following assertion holds:

(ii)" if X is an (M - \)-surface and χ, = 0 (mod 4) for i e {1, . . . , m}, then
χ = 0 (mod 32).

This last assertion certainly holds for surfaces with Hi (X{C), Z) = 0 since the
condition χι = 0 (mod 4) implies that χ = 0 (mod 16) (cf. [1]), and therefore the
congruence χ = -4σ = ±8 (mod 32) is impossible. In particular, the assumptions of
the Fidler congruence are not satisfied (this also follows from [2], viz. assertion (4.3)
in that paper is incompatible with assertion (4.7)). We observe that assertion (ii)"
also holds if σ = ±2 (mod 16) since in that case the Gudkov-Krakhnov-Kharlamov
congruence shows that χ = 0, ±4 (mod 16), and therefore χ ^ ±8 (mod 32).



COHOMOLOGY CLASSES DEFINED BY THE REAL POINTS O F A REAL ALGEBRAIC GM-SURFACE 395

B I B L I O G R A P H Y

1. V. V. Nikulin, Involutions of integral quadratic forms and their applications to real algebraic geom-
etry, Izv. Akad Nauk SSSR, Ser. Mat. 47 (1983), no. 1, 109-177; English transl. in Math. USSR
Izv. 22 (1984).

2. O. Ya. Viro, Progress in topology of real algebraic varieties during the last six years, Uspekhi Mat.
Nauk 41 (1986), no. 3 (249), 45-67; English transl. in Russian Math. Surveys 41 (1986).

3. A. Grothendieck, Sur quelquespoints d'algebre homologique, Tohoku Math. J. (2) 9 (1957), no. 2-3,
119-221.

4. V. A. Krasnov, Algebraic cycles on a real algebraic GM-variety and their applications, Izv. Akad.
Nauk Ser. Mat. 57 (1993), no. 4, 153-173; English transl. in Russian Acad. Sci. Izv. Math. 43
(1994).

5. , Harnack-Thom inequalities for mappings of real algebraic varieties, Izv. Akad. Nauk SSSR
Ser. Mat. 47 (1983), no. 2, 268-297; English transl. in Math. USSR Izv. 22 (1984).

7. V. A. Rokhlin, Congruences modulo 16 in Hubert's sixteenth problem, Funktsional Anal, i
Prilozhen. 6 (1972), no. 4, 58-64; ; 7 (1973), no. 2, 91-92; English transl. in Functional Anal.
Appl. 6 (1972); 7 (1973).

8. A. J. Sommese, Real algebraic spaces, Ann. Scuola Norm. Sup. Pisa (4) 4 (1977), no. 4, 599-612.

9. V. A. Krasnov, Orientability of real algebraic varieties, Constructive Algebraic Geometry, Sb.
Nauchn. Trud. Yaroslav. Gos. Ped. Inst. No. 194 (1981), 46-57. (Russian)

10. V. I. Arnol'd, On the situation of ovals of real plane algebraic curves, involutions of four-dimensional
manifolds, and the arithmetic of integral quadratic forms, Funktsional. Anal, i Prilozhen. 5 (1971),
no. 3, 1-9; English transl. in Functional. Anal. Appl. 5 (1971).

11. T. Fidler [Thomas Fiedler], New congruences in the topology of real plane algebraic curves, Dokl.
Akad. Nauk SSSR 270 (1983), no. 1, 56-58; English transl. in Soviet Math. Dokl. 27 (1983).

Received 2 8 / J U N E / 9 1

Translated by F. L. ΖΑΚ


