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COHOMOLOGICAL QUOTIENTS AND
SMASHING LOCALIZATIONS

By HENNING KRAUSE

Abstract. The quotient of a triangulated category modulo a subcategory was defined by Verdier.
Motivated by the failure of the telescope conjecture, we introduce a new type of quotients for any
triangulated category which generalizes Verdier’s construction. Slightly simplifying this concept,
the cohomological quotients are flat epimorphisms, whereas the Verdier quotients are Ore localiza-
tions. For any compactly generated triangulated category S, a bijective correspondence between the
smashing localizations of S and the cohomological quotients of the category of compact objects in
S is established. We discuss some applications of this theory, for instance the problem of lifting
chain complexes along a ring homomorphism. This is motivated by some consequences in algebraic
K-theory and demonstrates the relevance of the telescope conjecture for derived categories. Another
application leads to a derived analogue of an almost module category in the sense of Gabber-Ramero.
It is shown that the derived category of an almost ring is of this form.

Introduction. The telescope conjecure from stable homotopy theory is a
fascinating challenge for topologists and algebraists. It is a conjecture about
smashing localizations, saying roughly that every smashing localization is a finite
localization. The failure of this conjecture forces us to develop a general theory
of smashing localizations which covers the ones which are not finite. This is pre-
cisely the subject of the first part of this paper. The second part discusses some
applications of the general theory in the context of derived categories of associa-
tive rings. In fact, we demonstrate the relevance of the telescope conjecture for
derived categories, by studying some applications in algebraic K-theory and in
almost ring theory.

Let us describe the main concepts and results from this paper. We fix a com-
pactly generated triangulated category S, for example, the stable homotopy cate-
gory of CW-spectra or the unbounded derived category of an associative ring. A
smashing localization functor is by definition an exact functor F:S → T between
triangulated categories having a right adjoint G which preserves all coproducts
and satisfies F ◦G ∼= IdT . Such a functor induces an exact functor Fc:Sc → Tc

between the full subcategories of compact objects, and the telescope conjecture
[5, 31] claims that the induced functor Sc/Ker Fc → Tc is an equivalence up to
direct factors. Here, Ker Fc denotes the full triangulated subcategory of objects
X in Sc such that FcX = 0, and Sc/Ker Fc is the quotient in the sense of Verdier
[35]. The failure of the telescope conjecture [18, 23] motivates the following
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1192 HENNING KRAUSE

generalization of Verdier’s definition of a quotient of a triangulated category. To
be precise, there are examples of proper smashing localization functors F where
Ker Fc = 0. Nonetheless, the functor Fc is a cohomological quotient functor in
the following sense.

Definition. Let F: C → D be an exact functor between triangulated categories.
We call F a cohomological quotient functor if for every cohomological functor
H: C → A satisfying Ann F ⊆ Ann H, there exists, up to a unique isomorphism,
a unique cohomological functor H′:D → A such that H = H′ ◦F.

Here, Ann F denotes the ideal of all maps φ in C such that Fφ = 0. The
property of F to be a cohomological quotient functor can be expressed in many
ways, for instance more elementary as follows: every object in D is a direct
factor of some object in the image of F, and every map α: FX → FY in D can
be composed with a split epimorphism Fπ: FX′ → FX such that α ◦Fπ belongs
to the image of F.

Our main result shows a close relation between cohomological quotient func-
tors and smashing localizations.

THEOREM 1. Let S be a compactly generated triangulated category, and let
F:Sc → T be a cohomological quotient functor. Denote byR the full subcategory
of objects X in S such that every map C → X from a compact object C factors
through some map in Ann F.

(1) The categoryR is a triangulated subcategory of S and the quotient functor
S → S/R is a smashing localization functor which induces a fully faithful and
exact functor T → S/R making the following diagram commutative.

Sc
F ��

inc
��

T

��
S can �� S/R

(2) The triangulated categoryS/R is compactly generated and the subcategory
of compact objects is precisely the closure of the image of T → S/R under forming
direct factors.

(3) There exists a fully faithful and exact functor G: T → S such that

S(X, GY) ∼= T (FX, Y)

for all X in Sc and Y in T .

One may think of this result as a generalization of the localization theorem of
Neeman-Ravenel-Thomason-Trobaugh-Yao [27, 31, 34, 38]. To be precise, Nee-
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man et al. considered cohomological quotient functors of the form Sc → Sc/R0

for some triangulated subcategory R0 of Sc and analyzed the smashing localiza-
tion functor S → S/R where R denotes the localizing subcategory generated
by R0.

Our theorem provides a bijective correspondence between smashing local-
izations of S and cohomological quotients of Sc; it improves a similar corre-
spondence [21] – the new ingredient in our proof being a recent variant [22]
of Brown’s Representability Theorem [6]. The essential invariant of a cohomo-
logical quotient functor F:Sc → T is the ideal Ann F. The ideals of Sc which
are of this form are called exact and are precisely those satisfying the following
properties:

(1) I2 = I.

(2) I is saturated, that is, for every exact triangle X′ α→ X
β→ X′′ → ΣX′ and

every map φ: X → Y in Sc, we have that φ ◦α,β ∈ I implies φ ∈ I.
(3) ΣI = I.
Let us rephrase the telescope conjecture in terms of exact ideals and cohomo-

logical quotient functors. To this end, recall that a subcategory of S is smashing
if it is of the form Ker F for some smashing localization functor F:S → T .

COROLLARY. The telescope conjecture for S is equivalent to each of the follow-
ing statements.

(1) Every smashing subcategory of S is generated by compact objects.
(2) Every exact ideal is generated by idempotent elements.
(3) Every cohomological quotient functor F:Sc → T induces up to direct

factors an equivalence Sc/Ker F → T .
(4) Every two-sided flat epimorphism F:Sc → T satisfying Σ( Ann F) = Ann F

is an Ore localization.

This reformulation of the telescope conjecture is based on our approach to
view a triangulated category as a ring with several object. In this setting, the
cohomological quotient functors are the flat epimorphisms, whereas the Verdier
quotient functors are the Ore localizations. The reformulation in terms of ex-
act ideals refers to the classical problem from ring theory of finding idempotent
generators for an idempotent ideal, studied for instance by Kaplansky [15] and
Auslander [1]. We note that the telescope conjecture becomes a statement about
the category of compact objects. Moreover, we see that the smashing subcate-
gories of S form a complete lattice which is isomorphic to the lattice of exact
ideals in Sc.

The second part of this paper is devoted to studying noncommutative localiza-
tions of rings. We do this by using unbounded derived categories and demonstrate
that the telescope conjecture is relevant in this context. This is inspired by re-
cent work of Neeman and Ranicki [30]. They study the problem of lifting chain
complexes up to homotopy along a ring homomorphism R → S. To make this
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precise, let us denote by Kb(R) the homotopy category of bounded complexes of
finitely generated projective R-modules.

(1) We say that the chain complex lifting problem has a positive solution,
if every complex Y in Kb(S) such that for each i we have Yi = Pi ⊗R S for
some finitely generated projective R-module Pi, is isomorphic to X⊗R S for some
complex X in Kb(R).

(2) We say that the chain map lifting problem has a positive solution, if for
every pair X, Y of complexes in Kb(R) and every map α: X ⊗R S → Y ⊗R S in
Kb(S), there are maps φ: X′ → X and α′: X′ → Y in Kb(R) such that φ ⊗R S is
invertible and α = α′ ⊗R S ◦ (φ⊗R S)−1 in Kb(S).

Note that complexes can be lifted whenever maps can be lifted. For example,
maps and complexes can be lifted if R → S is a commutative localization.
However, there are obstructions in the noncommutative case, and this leads to
the concept of a homological epimorphism. Recall from [13] that R → S is a
homological epimorphism if S ⊗R S ∼= S and TorR

i (S, S) = 0 for all i ≥ 1. For
example, every commutative localization is a flat epimorphism and therefore a
homological epimorphism. The following observation is crucial for both lifting
problems.

PROPOSITION. A ring homomorphism R → S is a homological epimorphism if
and only if −⊗R S: Kb(R) → Kb(S) is a cohomological quotient functor.

This shows that we can apply our theory of cohomological quotient functors,
and we see that the telescope conjecture for the unbounded derived category D(R)
of a ring R becomes relevant. In particular, we obtain a noncommutative analogue
of Thomason-Trobaugh’s localization theorem for algebraic K-theory [34].

THEOREM 2. Let R be a ring such that the telescope conjecture holds true
for D(R). Then the chain map lifting problem has a positive solution for a ring
homomorphism f : R → S if and only if f is a homological epimorphism. Moreover,
in this case f induces a sequence

K(R, f ) −→ K(R) −→ K(S)

of K-theory spectra which is a homotopy fibre sequence, up to failure of surjectivity
of K0(R) → K0(S). In particular, there is induced a long exact sequence

· · · −→ K1(R) −→ K1(S) −→ K0(R, f ) −→ K0(R) −→ K0(S)

of algebraic K-groups.

Unfortunately, not much seems to be known about the telescope conjecture for
derived categories. Note that the telescope conjecture has been verified for D(R)
provided R is commutative noetherian [26]. On the other hand, there are counter
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examples which arise from homological epimorphisms where not all chain maps
can be be lifted [18].

In the final part of this paper, we introduce the derived analogue of an almost
module category in the sense of [10]. In fact, there is a striking parallel between
almost rings and smashing localizations: both concepts depend on an idempotent
ideal. Given a ring R and an idempotent ideal a, the category of almost modules
is by definition the quotient

Mod (R, a) = Mod R/(a⊥),

where Mod R denotes the category of right R-modules and a⊥ denotes the Serre
subcategory of R-modules annihilated by a. Given an idempotent ideal I of Kb(R)
which satifies ΣI = I, the objects in D(R) which are annihilated by I form a
triangulated subcategory, and we call the quotient category

D(R, I) = D(R)/(I⊥)

an almost derived category. It turns out that the almost derived categories are,
up to equivalence, precisely the smashing subcategories of D(R). Moreover, as
one should expect, the derived category of an almost ring is an almost derived
category.

THEOREM 3. Let R be a ring and a be an idempotent ideal such that a ⊗R a is
flat as left R-module. Then the maps in Kb(R) which annihilate all suspensions of
the mapping cone of the natural map a⊗R a → R form an idempotent ideal A, and
D(R, A) is equivalent to the unbounded derived category of Mod (R, a).

Acknowledgments. I would like to thank Ragnar Buchweitz, Bernhard Keller,
and Amnon Neeman for several stimulating discussions during a visit to the Math-
ematical Sciences Institute in Canberra in July 2003. In addition, I am grateful
to the referee for a number of helpful comments.

1. Modules. The homological properties of an additive category C are re-
flected by properties of functors from C to various abelian categories. In this
context, the abelian category Ab of abelian groups plays a special role, and this
leads to the concept of a C-module. In this section we give definitions and fix
some terminology.

Let C and D be additive categories. We denote by Hom (C,D) the category
of functors from C to D. The natural transformations between two functors form
the morphisms in this category, but in general they do not form a set. A category
will be called large to point out that the morphisms between fixed objects are
not assumed to form a set.
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A C-module is by definition an additive functor Cop → Ab into the category
Ab of abelian groups, and we denote for C-modules M and N by HomC (M, N)
the class of natural transformations M → N. We write Mod C for the category
of C-modules which is large, unless C is small, that is, the isomorphism classes
of objects in C form a set. Note that Mod C is an abelian category. A sequence
L → M → N of maps between C-modules is exact if the sequence LX → MX →
NX is exact for all X in C. We denote for every X in C by HX = C(−, X) the
corresponding representable functor and recall that HomC (HX , M) ∼= MX for
every module M by Yoneda’s lemma. It follows that HX is a projective object in
Mod C.

A C-module M is called finitely presented if it fits into an exact sequence

C(−, X) −→ C(−, Y) −→ M → 0

with X and Y in C. Note that HomC (M, N) is a set for every finitely presented C-
module M by Yoneda’s lemma. The finitely presented C-modules form an additive
category with cokernels which we denote by mod C.

Now let F: C → D be an additive functor. This induces the restriction functor

F∗: ModD −→ Mod C, M �−→ M ◦F,

and its left adjoint

F∗: Mod C −→ ModD

which sends a C-module M, written as a colimit M = colimα∈MX C(−, X) of
representable functors, to

F∗M = colimα∈MX D(−, FX).

Note that every C-module can be written as a small colimit of representable
functors provided C is small. The finitely presented C-modules are precisely the
finite colimits of representable functors. We denote the restriction of F∗ by

F�: mod C −→ modD

and observe that F� is the unique right exact functor mod C → modD sending
C(−, X) to D(−, FX) for all X in C.

Finally, we define

Ann F = the ideal of all maps φ ∈ C with Fφ = 0, and

Ker F = the full subcategory of all objects X ∈ C with FX = 0.

Recall that an ideal I in C consists of subgroups I(X, Y) in C(X, Y) for every
pair of objects X, Y in C such that for all φ in I(X, Y) and all maps α: X′ → X
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and β: Y → Y ′ in C the composition β ◦φ ◦α belongs to I(X′, Y ′). Note that all
ideals in C are of the form Ann F for some additive functor F.

Given any class Φ of maps in C, we say that an object X in C is annihilated
by Φ, if Φ ⊆ Ann C(−, X). We denote by Φ⊥ the full subcategory of objects in
C which are annihilated by Φ.

2. Cohomological functors and ideals. Let C be an additive category and
suppose mod C is abelian. Note that mod C is abelian if and only if every map
Y → Z in C has a weak kernel X → Y , that is, the sequence C(−, X) → C(−, Y) →
C(−, Z) is exact. In particular, mod C is abelian if C is triangulated. A functor
F: C → A to an abelian category A is called cohomological if it sends every
weak kernel sequence X → Y → Z in C to an exact sequence FX → FY → FZ
in A. If C is a triangulated category, then a functor F: C → A is cohomological
if and only if F sends every exact triangle X → Y → Z → ΣX in C to an exact
sequence FX → FY → FZ → FΣX in A. The Yoneda functor

HC : C −→ mod C, X �→ HX = C(−, X)

is the universal cohomological functor for C. More precisely, for every abelian
category A, the functor

Hom (HC ,A):Hom (mod C,A) −→ Hom (C,A)

induces an equivalence

Homex (mod C,A) −→ Homcoh (C,A),

where the subscripts ex = exact and coh = cohomological refer to the appropriate
full subcategories; see [9, 35] and also [21, Lemma 2.1].

Following [21], we call an ideal I in C cohomological if there exists a
cohomological functor F: C → A such that I = Ann F. For example, if F: C → D
is an exact functor between triangulated categories, then Ann F is cohomological
because Ann F = Ann (HD ◦F). Note that the cohomological ideals of C form
a complete lattice, provided C is small. For instance, given a family (Ii)i∈Λ of
cohomological ideals, we have

inf Ii =
⋂

i

Ii,

because
⋂

i Ii = Ann F for

F: C −→
∏

i

Ai, X �→ (FiX)i∈Λ
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where each Fi: C → Ai is a cohomological functor satisfying Ii = Ann Fi. We
obtain sup Ii by taking the infimum of all cohomological ideals J with Ii ⊆ J

for all i ∈ Λ.

3. Flat epimorphisms. The concept of a flat epimorphisms generalizes the
classical notion of an Ore localization. We study flat epimorphisms of additive
categories, following the idea that an additive category may be viewed as a ring
with several objects. Given a flat epimorphism C → D, it is shown that the maps
in D are obtained from those in C by a generalized calculus of fractions. There
is a close link between flat epimorphisms and quotients of abelian categories.
It is the aim of this section to explain this connection which is summarized in
Theorem 3.10. We start with a brief discussion of quotients of abelian categories.

Let C be an abelian category. A full subcategory B of C is called a Serre
subcategory provided that for every exact sequence 0 → X′ → X → X′′ → 0 in C,
the object X belongs to B if and only if X′ and X′′ belong to B. The quotient C/B
with respect to a Serre subcategory B is by definition the localization C[Φ−1],
where Φ denotes the class of maps φ in C such that Kerφ and Cokerφ belong to
B; see [11, 12]. The localization functor Q: C → C/B yields for every category
E a functor

Hom (Q, E):Hom (C/B, E) −→ Hom (C, E)

which induces an isomorphism onto the full subcategory of functors F: C → E
such that Fφ is invertible for all φ ∈ Φ. Note that C/B is abelian and Q is exact
with Ker Q = B. Up to an equivalence, a localization functor can be characterized
as follows.

LEMMA 3.1. Let F: C → D be an exact functor between abelian categories.
Then the following are equivalent.

(1) F induces an equivalence C/Ker F → D.
(2) For every abelian category A, the functor

Hom (F,A):Homex (D,A) −→ Homex (C,A)

induces an equivalence onto the full subcategory of exact functors G: C → A
satisfying Ker F ⊆ Ker G.

Proof. See [11, III.1].

An exact functor between abelian categories satisfying the equivalent con-
ditions of Lemma 3.1 is called an exact quotient functor. There is a further
characterization in case the functor has a right adjoint.

LEMMA 3.2. Let F: C → D be an exact functor between abelian categories and
suppose there is a right adjoint G:D → C. Then F is a quotient functor if and only
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if G is fully faithful. In this case, G identifies D with the full subcategory of objects
X in C satisfying C( Ker F, X) = 0 and Ext1C ( Ker F, X) = 0.

Proof. See Proposition III.3 and Proposition III.5 in [11].

Next we analyze an additive functor F: C → D in terms of the induced functor
F�: mod C → modD.

LEMMA 3.3. Let F: C → D be an additive functor between additive categories
and suppose F�: mod C → modD is an exact quotient functor of abelian categories.

(1) Every object in D is a direct factor of some object in the image of F.
(2) For every mapα: FX → FY inD, there are mapsα′: X′ → Y and π: X′ → X

in C such that Fα′ = α ◦Fπ and Fπ is a split epimorphism.

Proof. The functor F�: mod C → modD is, up to an equivalence, a localiza-
tion functor. Therefore the objects in modD coincide, up to isomorphism, with
the objects in mod C. Moreover, the maps in modD are obtained via a calculus
of fractions from the maps in mod C; see [12, I.2.5].

(1) Fix an object Y in D. Then D(−, Y) ∼= F�M for some M in mod C. If M
is a quotient of C(−, X), then F�M is a quotient of D(−, FX). Thus Y is a direct
factor of FX.

(2) Fix a map α: FX → FY . The corresponding map D(−,α) in modD is a
fraction, that is, of the form

D(−, FX) = F�C(−, X)
(F�σ)−1

−→ F�M
F�φ−→ F�C(−, Y) = D(−, FY)

for some M in mod C; see [12, I.2.5]. Choose an epimorphism ρ: C(−, X′) → M for
some X′ in C. Now define α′: X′ → Y by C(−,α′) = φ ◦ ρ, and define π: X′ → X by
C(−,π) = σ ◦ ρ. Clearly, Fπ is a split epimorphism since D(−, FX) is a projective
object in modD.

Remark 3.4. Conditions (1) and (2) in Lemma 3.3 imply that every map in
D is a direct factor of some map in the image of F. To be precise, we say that a
map α: X → X′ is a direct factor of a map β: Y → Y ′ if there is a commutative
diagram

X

α
��

ε �� Y

β
��

π �� X

α
��

X′
ε′ �� Y ′

π′ �� X′

such that π ◦ ε = idX and π′ ◦ ε′ = idX′ .

Recall that an additive functor F: C → D is an epimorphism of additive
categories, or simply an epimorphism, if G ◦F = G′ ◦F implies G = G′ for any
pair G, G′:D → E of additive functors.
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LEMMA 3.5. Let F: C → D be an additive functor between additive categories
having the following properties:

(1) Every object in D belongs to the image of F.
(2) For every mapα: FX → FY inD, there are mapsα′: X′ → Y and π: X′ → X

in C such that Fα′ = α ◦Fπ and Fπ is a split epimorphism.
Then F is an epimorphism.

Proof. Let G, G′:D → E be a pair of additive functors satisfying G ◦F =
G′ ◦F. The first condition implies that G and G′ coincide on objects, and the
second condition implies that G and G′ coincide on maps. Thus G = G′.

Next we explain the notion of a flat functor. A Cop-module M is called flat
if for every map β: Y → Z in C and every y ∈ Ker (Mβ), there exists a map
α: X → Y in C and some x ∈ MX such that (Mα)x = y and β ◦α = 0. We call an
additive functor F: C → D flat if the Cop-module D(X, F−) is flat for every X in
D. The functor F is two-sided flat if F and Fop: Cop → Dop are flat.

We use the exact structure of a module category in order to characterize flat
functors. Recall that Mod C is an abelian category, and that a sequence L → M →
N of C-modules is exact if the sequence LX → MX → NX is exact for all X in
C. A sequence in mod C is by definition exact if it is exact when viewed as a
sequence in Mod C. We record without proof a number of equivalent conditions
which justify our terminology.

LEMMA 3.6. Let F: C → D be an additive functor between additive categories.
Suppose mod C is abelian. Then the following are equivalent.

(1) D(X, F−) is a flat Cop-module for every X in D.
(2) F preserves weak kernels.
(3) F�: mod C → modD sends exact sequences to exact sequences.

LEMMA 3.7. Let F: C → D be an additive functor between small additive
categories. Then F is flat if and only if F∗: Mod C → ModD is an exact functor.

Given an additive functor F: C → D, we continue with a criterion on F such
that F�: mod C → modD is an exact quotient functor.

LEMMA 3.8. Let F: C → D be an additive functor between small additive
categories. Suppose mod C is abelian. If F is flat and F∗: ModD → Mod C is
fully faithful, then modD is abelian and F�: mod C → modD is an exact quotient
functor of abelian categories.

Proof. The functor F∗: Mod C → ModD is exact because F is flat, and it
is a quotient functor because F∗ is fully faithful. This follows from Lemma 3.2
since F∗ is the right adjoint of F∗. We conclude that modD is abelian and that
the restriction F� = F∗|mod C to the category of finitely presented modules is an
exact quotient functor, for instance by [20, Theorem 2.6].
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Definition 3.9. Let F: C → D be an additive functor between additive cate-
gories. We call F an epimorphism up to direct factors, if there exists a factorization
F = F2 ◦F1 such that:

(1) F1 is an epimorphism and bijective on objects, and
(2) F2 is fully faithful and every object in D is a direct factor of some object

in the image of F2.

The following result summarizes our discussion and provides a characteriza-
tion of flat epimorphisms.

THEOREM 3.10. Let F: C → D be an additive functor between additive cate-
gories. Suppose mod C is abelian and F is flat. Then the following are equivalent.

(1) The category modD is abelian and the exact functor F�: mod C → modD,
sending C(−, X) to D(−, FX) for all X in C, is a quotient functor of abelian cate-
gories.

(2) Every object in D is a direct factor of some object in the image of F. And
for every map α: FX → FY in D, there are maps α′: X′ → Y and π: X′ → X in C
such that Fα′ = α ◦Fπ and Fπ is a split epimorphism.

(3) F is an epimorphism up to direct factors.

Proof. (1) ⇒ (2): Apply Lemma 3.3.
(2) ⇒ (3): We define a factorization

C F1−→ D′ F2−→ D

as follows. The objects of D′ are those of C and F1 is the identity on objects. Let

D′(X, Y) = D(FX, FY)

for all X, Y in C, and let F1α = Fα for each map α in C. The functor F2 equals
F on objects and is the identity on maps. It follows from Lemma 3.5 that F1

is an epimorphism. The functor F2 is fully faithful by construction, and F2 is
surjective up to direct factors on objects by our assumption on F.

(3) ⇒ (1): Assume that F is an epimorphism up to direct factors. We need
to enlarge our universe so that C and D become small categories. Note that this
does not affect our assumption on F, by Lemma A.6. It follows from Proposi-
tion A.5 that F∗: ModD → Mod C is fully faithful, and Lemma 3.8 implies that
F�: mod C → modD is a quotient functor.

4. Cohomological quotient functors. In this section we introduce the con-
cept of a cohomological quotient functor between two triangulated categories.
This concept generalizes the classical notion of a quotient functor C → C/B
which Verdier introduced for any triangulated subcategory B of C; see [35].
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Definition 4.1. Let F: C → D be an exact functor between triangulated cat-
egories. We call F a cohomological quotient functor if for every cohomological
functor H: C → A satisfying Ann F ⊆ Ann H, there exists, up to a unique iso-
morphism, a unique cohomological functor H′:D → A such that H = H′ ◦F.

Let us explain why a quotient funtor C → C/B in the sense of Verdier is a
cohomological quotient functor. To this end we need the following lemma.

LEMMA 4.2. Let F: C → D be an exact functor between triangulated categories
and suppose F induces an equivalenceC/B → D for some triangulated subcategory
B of C. Then Ann F is the ideal of all maps in C which factor through some object
in B.

Proof. The quotient C/B is by definition the localization C[Φ−1] where Φ is
the class of maps X → Y in C which fit into an exact triangle X → Y → Z → ΣX
with Z in B. Now fix a map ψ: Y → Z in Ann F. The maps in C/B are described
via a calculus of fractions. Thus Fψ = 0 implies the existence of a map φ: X → Y
in Φ such that ψ ◦φ = 0. Complete φ to an exact triangle X → Y → Z′ → ΣX.
Clearly, ψ factors through Z′ and Z′ belongs to B. Thus Ann F is the ideal of
maps which factor through some object in B.

Example 4.3. A quotient functor F: C → C/B is a cohomological quotient
functor. To see this, observe that a cohomological functor H: C → A with
Ker H containing B factors uniquely through F via some cohomological functor
H′: C/B → A; see [35, Corollaire II.2.2.11]. Now use that

B ⊆ Ker H ⇐⇒ Ann F ⊆ Ann H,

which follows from Lemma 4.2.

It turns out that cohomological quotients are closely related to quotients of
additive and abelian categories. The following result makes this relation precise
and provides a number of characterizations for a functor to be a cohomological
quotient functor.

THEOREM 4.4. Let F: C → D be an exact functor between triangulated cate-
gories. Then the following are equivalent.

(1) F is a cohomological quotient functor.
(2) The exact functor F�: mod C → modD, sending C(−, X) to D(−, FX) for

all X in C, is a quotient functor of abelian categories.
(3) Every object in D is a direct factor of some object in the image of F. And

for every map α: FX → FY in D, there are maps α′: X′ → Y and π: X′ → X in C
such that Fα′ = α ◦Fπ and Fπ is a split epimorphism.

(4) F is up to direct factors an epimorphism of additive categories.
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Proof. All we need to show is the equivalence of (1) and (2). The rest then
follows from Theorem 3.10. Fix an abelian category A and consider the following
commutative diagram

Homex (modD,A)

Hom (HD ,A)
��

Hom (F�,A) �� Homex (mod C,A)

Hom (HC ,A)
��

Homcoh (D,A)
Hom (F,A) �� Homcoh (C,A),

where the vertical functors are equivalences. Observe that Hom (HC ,A) identifies
the exact functors G: mod C → A satisfying Ker F� ⊆ Ker G with the cohomo-
logical functors H: C → A satisfying Ann F ⊆ Ann H. This follows from the fact
that each M in mod C is of the form M = Im C(−,φ) for some map φ in C. We
conclude that the property of F� to be an exact quotient functor, is equivalent to
the property of F to be a cohomological quotient functor.

We complement the description of cohomological quotient functors by a char-
acterization of quotient functors in the sense of Verdier.

PROPOSITION 4.5. Let F: C → D be an exact functor between triangulated
categories. Then the following are equivalent.

(1) F induces an equivalence C/Ker F → D.
(2) Every object in D is isomorphic to some object in the image of F. And for

every map α: FX → FY in D, there are maps α′: X′ → Y and π: X′ → X in C such
that Fα′ = α ◦Fπ and Fπ is an isomorphism.

Proof. Let B = Ker F and denote by Q: C → C/B the quotient functor, which
is the identity on objects. Given objects X and Y in C, the maps X → Y in C/B
are fractions of the form

X
(Qπ)−1

−→ X′
Qα′−→ Y

such that Fπ is an isomorphism. This shows that (1) implies (2). To prove the
converse, denote by G: C/B → D the functor which is induced by F. The de-
scription of the maps in C/B implies that G is full. It remains to show that G is
faithful. To this end choose a map ψ: Y → Z such that Fψ = 0. We complete ψ
to an exact triangle

X
φ−→ Y

ψ−→ Z −→ ΣX

and observe that Fφ is a split epimorphism. Choose an inverse α: FY → FX and
write it as Fα′ ◦ (Fπ)−1, using (2). Thus Q(φ ◦α′) is invertible, and ψ ◦φ ◦α′ = 0
implies Qψ = 0 in C/B. We conclude that G is faithful, and this completes the
proof.
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5. Flat epimorphic quotients. In this section we establish a triangulated
structure for every additive category which is a flat epimorphic quotient of some
triangulated category.

THEOREM 5.1. Let C be a triangulated category, and let D be an additive cat-
egory with split idempotents. Suppose F: C → D is a two-sided flat epimorphism
up to direct factors satisfying Σ( Ann F) = Ann F. Then there exists a unique trian-
gulated structure on D such that F is exact. Moreover, a triangle ∆ in D is exact if
and only if there is an exact triangle Γ in C such that ∆ is a direct factor of FΓ.

Note that an interesting application arises if one takes for D the idempotent
completion of C. In this case, one obtains the main result of [2].

The proof of Theorem 5.1 is given in several steps and requires some prepa-
ration. Assuming the suspension Σ:D → D is already defined, let us define the
exact triangles in D. We call a triangle ∆ in D exact, if there exists an exact
triangle Γ in C such that ∆ is a direct factor of FΓ, that is, there are triangle maps
φ: ∆ → FΓ and ψ: FΓ → ∆ such that ψ ◦φ = id∆.

From now on assume that F: C → D is a two-sided flat epimorphism up
to direct factors, satisfying Σ( Ann F) = Ann F. We simplify our notation and
identify C with the image of the Yoneda functor C → mod C. The same applies to
the Yoneda functor D → modD. Moreover, we identify F� = F and Σ� = Σ. Note
that modD is abelian and that F: mod C → modD is an exact quotient functor
by Theorem 3.10. In particular, the maps in modD are obtained from maps in
mod C via a calculus of fractions.

LEMMA 5.2. The category modD is an abelian Frobenius category, that is,
there are enough projectives and enough injectives, and both coincide.

Proof. We know from Lemma B.1 that mod C is a Frobenius category because
we have an equivalence I: (mod C)op → mod (Cop) which extends the identity
functor Cop → Cop. The functor I identifies Ker F with Ker (Fop). In fact, a
module M = Imφ in mod C with φ in C belongs to Ker F if and only if Fφ = 0.
Thus I induces an equivalence (modD)op → mod (Dop). It follows that modD is
a Frobenius category.

Let us construct the suspension for D.

LEMMA 5.3. There is an equivalence Σ′: modD → modD making the follow-
ing diagram commutative.

mod C
Σ

��

F �� modD
Σ′

��
mod C F �� modD

The equivalence Σ′ is unique up to a unique isomorphism.
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Proof. Every object in modD is isomorphic to FM for some M in mod C.
And every map α: FM → FN is a fraction, that is, of the form

FM
Fφ−→ FN′

(Fσ)−1

−→ FN.

Now define Σ′(FM) = F(ΣM) and Σ′α = F(Σσ)−1 ◦F(Σφ).

We shall abuse notation and identify Σ′ = Σ. Now fix M, N in modD. We
may assume that M = FM′ and N = FN′. We have a natural map

κM′,N′ : HomC (M′, N′) −→ Ext3C (ΣM′, N′)

which is induced from the triangulated structure on C; see Appendix 16. This
map induces a natural map

κM,N : HomD (M, N) −→ Ext3D (ΣM, N)

since every map FM′ → FN′ is a fraction of maps in the image of F. Recall that
κM = κM,M( idM). Let

∆: X α−→ Y
β−→ Z

γ−→ ΣX

be a triangle in D and put M = Kerα. We call ∆ pre-exact, if γ induces a map
Z → ΣM such that the sequence

0 −→ M −→ X α−→ Y
β−→ Z −→ ΣM −→ 0

is exact in modD and represents κM ∈ Ext3D (ΣM, M).
We know from Proposition B.2 that a triangle in C is exact if and only if

it is pre-exact. The exact triangles in D arise by definition from exact triangles
in C. Also, pre-exact triangles are preserved by F: C → D, and they are pre-
served under taking direct factors. It follows that every exact triangle in D is
pre-exact.

LEMMA 5.4. Given a commutative diagram

X

φ
��

α �� Y

ψ
��

β �� Z
γ �� ΣX

Σφ
��

X′
α′ �� Y ′

β′ �� Z′
γ′ �� ΣX′

(5.1)

inD such that both rows are pre-exact triangles, there exists a map ρ: Z → Z′ such
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that the completed diagram commutes. Moreover, if φ2 = φ and ψ2 = ψ, then there
exists a choice for ρ such that ρ2 = ρ.

Proof. Let M = Kerα and M′ = Kerα′. The pair φ,ψ induces a map
µ: M → M′ and we obtain the following diagram in modD.

κM: 0 �� Ω−2M

Ω−2µ
��

�� Z �� ΣM ��

Σµ
��

0

κM′ : 0 �� Ω−2M′ �� Z′ �� ΣM′ �� 0.

(5.2)

Here we use a dimension shift to represent κM and κM′ by short exact sequences.
This is possible since modD is a Frobenius category. The map κM,N is natural in
M and N, and therefore κM,µ(κM) = κµ,M′(κM′). This implies the existence of a
map ρ: Z → Z′ making the diagram (5.2) commutative. Note that we can choose
ρ to be idempotent if µ is idempotent. It follows that the map ρ completes the
diagram (5.1) to a map of triangles.

LEMMA 5.5. Every map X → Y in D can be completed to an exact triangle
X → Y → Z → ΣX.

Proof. A map in D is a direct factor of some map in the image of F by
Theorem 3.10; see also Remark 3.4. Thus we have a commutative square

FX′
Fα ��

φ
��

FY ′

ψ

��
FX′

Fα �� FY ′

such that φ and ψ are idempotent and the map X → Y equals the map Imφ →
Imψ induced by Fα. We complete α to an exact triangle ∆ in C and extend
the pair φ,ψ to an idempotent triangle map ε: F∆ → F∆, which is possible by
Lemma 5.4. The image Im ε is an exact triangle in D, which completes the map
X → Y .

We are now in the position to prove the octahedral axiom for D. Note that we
have already established that D is a pre-triangulated category. We say that a pair
of composable maps α: X → Y and β: Y → Z can be completed to an octahedron



COHOMOLOGICAL QUOTIENTS 1207

if there exists a commutative diagram of the form

X
α �� Y

β

��

�� U ��

��

ΣX

X
β ◦α �� Z ��

γ

��

V ��

��

ΣX

Σα
��

W

δ
��

W

��

δ �� ΣY

ΣY �� ΣU

such that all triangles which occur are exact.
We shall use the following result due to Balmer and Schlichting.

LEMMA 5.6. Let α: X → Y and β: Y → Z be maps in a pre-triangulated
category. Suppose there are objects X′, Y ′, Z′ such that

X � X′

[
α 0
0 0

]
−→ Y � Y ′ and Y � Y ′

[
β 0
0 0

]
−→ Z � Z′

can be completed to an octahedron. Then α and β can be completed to an octahe-
dron.

Proof. See the proof of Theorem 1.12 in [2].

LEMMA 5.7. Every pair of composable maps in D can be completed to an
octahedron.

Proof. Fix two maps α: X → Y and β: Y → Z in D. We proceed in two steps.
First assume that X = FA, Y = FB, and Z = FC. We use the description of the
maps in D which is given in Theorem 3.10. We consider the map β: Y → Z and
obtain new maps ψ: B′ → C and π: B′ → B in C such that Fψ = β ◦Fπ and Fπ is
a split epimorphism. We get a decomposition FB′ = Y �Y ′ and an automorphism
ε: Y � Y ′ → Y � Y ′ such that Fψ ◦ ε =

[
β 0

]
. The same argument, applied to

the composite

X α−→ Y

[
idY
0

]
−→ Y � Y ′,

gives a map φ: A′ → B′ in C, a decomposition FA′ = X�X′, and an automorphism

δ: X�X′ → X�X′ such that Fφ ◦ δ =

[
α 0
0 0

]
. We know that the pair φ,ψ in C can be

completed to an octahedron. Thus Fφ and Fψ can be completed to an octahedron
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in D. It follows that
[
α 0
0 0

]
and

[
β 0

]
can be completed to an octahedron. Using

Lemma 5.6, we conclude that the pair α,β can be completed to an octahedron.
In the second step of the proof, we assume that the objects X, Y , and Z are

arbitrary. Applying again the description of the maps in D, we find objects X′,
Y ′, and Z′ in D such that X � X′, Y � Y ′, and Z � Z′ belong to the image of F.
We know from the first part of the proof that the maps

X � X′

[
α 0
0 0

]
−→ Y � Y ′ and Y � Y ′

[
β 0
0 0

]
−→ Z � Z′

can be completed to an octahedron. From this it follows that α and β can be
completed to an octahedron, using again Lemma 5.6. This finishes the proof of
the octahedral axiom for D.

Let us complete the proof of Theorem 5.1.

Proof of Theorem 5.1. We have constructed an equivalence Σ:D → D, and
the exact triangles in D are defined as well. We need to verify the axioms (TR1)
– (TR4) from [35]. Let us concentrate on the properties of D, which are not
immediately clear from our set-up. In Lemma 5.5, it is shown that every map in
D can be completed to an exact triangle. In Lemma 5.4, it is shown that every
partial map between exact triangles can be completed to a full map. Finally, the
octahedral axiom (TR4) is established in Lemma 5.7.

Remark 5.8. The crucial step in the proof of Theorem 5.1 is the verification of
the octahedral axiom. An elegant alternative proof has been pointed out by Amnon
Neeman. We sketch this proof which uses the following equivalent formulation of
the octahedral axiom [29, Definition 1.3.13]: Every partial map φ: Γ → ∆ between
exact triangles can be completed to a map of triangles such that its mapping cone
is an exact triangle.

Suppose now that φ: Γ → ∆ is a partial map between exact triangles in D.
We use the description of the maps in D which is given in Theorem 3.10. Thus
we find two contractible exact triangles Γ′, ∆′ in D and a partial map φ̄: Γ̄ → ∆̄
between exact triangles in C such that Fφ̄ is isomorphic to

Γ� Γ′

[
φ 0
0 0

]
−→ ∆� ∆′.

The partial map φ̄ can be completed in C to a map such that its mapping cone

is an exact triangle Ē. Thus
[
φ 0
0 0

]
can be completed to a map ψ in D such that
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its mapping cone is isomorphic to FĒ and therefore exact. The composite

Γ can−→ Γ� Γ′ ψ−→ ∆� ∆′ can−→ ∆

extends φ and we claim that its mapping cone E is exact. In fact, Γ′ and ∆′ are
contractible and therefore FĒ ∼= E � E′ where E′ is contractible.

6. A criterion for exactness. Given an additive functor C → D between
triangulated categories, it is a natural question to ask when this functor is exact.
We provide a criterion in terms of the induced functor mod C → modD and the
extension κM in Ext3 (Σ�M, M) defined for each M in mod C; see Appendix 16.
There is an interesting consequence. Given any factorization F = F2 ◦F1 of an
exact functor, the functor F2 is exact provided that F1 is a cohomological quotient
functor.

PROPOSITION 6.1. Let F: C → D be an additive functor between triangulated
categories. Then F is exact if and only if the following holds:

(1) The right exact functor F�: mod C → modD, sending C(−, X) toD(−, FX)
for all X in C, is exact.

(2) There is a natural isomorphism η: F ◦ΣC → ΣD ◦F.
(3) F�κM = Ext3D (η�M , F�M)(κF�M) for all M in mod C.

Here, we denote by η� the natural isomorphism F� ◦Σ�C → Σ�D ◦F� which extends
η, that is, η�C(−,X) = D(−, ηX) for all X in C.

Proof. Suppose first that (1) – (3) hold. Let

∆: X α−→ Y −→ Z −→ ΣCX

be an exact triangle in C. We need to show that F sends this triangle to an exact
triangle in D. To this end complete the map Fα to an exact triangle

FX Fα−→ FY −→ Z′ −→ ΣD(FX).

Now let M = Ker C(−,α). We use a dimension shift to represent the class κM

by a short exact sequence corresponding to an element in Ext1C (Σ�CM, Ω−2M).
Analogously, we represent κF�M by a short exact sequence. Next we use the
exactness of F� to obtain the following diagram in modD:

F�κM: 0 �� F�(Ω−2M) �� D(−, FZ) �� F�(Σ�CM) ��

η�M
��

0

κF�M: 0 �� Ω−2(F�M) �� D(−, Z′) �� Σ�D(F�M) �� 0.
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The diagram can be completed by a map D(−, FZ) → D(−, Z′) because F�κM =
Ext3D (η�M , F�M)(κF�M). Let φ: FZ → Z′ be the new map which is an isomorphism,
since η�M is an isomorphism. We obtain the following commutative diagram

FX
Fα �� FY �� FZ ��

φ

��

F(ΣCX)

ηX
��

FX
Fα �� FY �� Z′ �� ΣD(FX)

and therefore F∆ is an exact triangle. Thus F is an exact functor. It is not difficult
to show that an exact functor F satisfies (1) – (3), and therefore the proof is
complete.

COROLLARY 6.2. Let F: C → D and G:D → E be additive functors between
triangulated categories. Suppose F and G ◦F are exact. Suppose in addition that
F is a cohomological quotient functor. Then G is exact.

Proof. We apply Proposition 6.1. First observe that G�: modD → mod E is
exact because the composite G�F� = (GF)� is exact and F� is an exact quotient
functor, by Theorem 4.4. Denote by ηF: F�Σ�C → Σ�DF� and ηGF: (G�F�)Σ�C →
Σ�E (G�F�) the natural isomorphisms which exists because F and GF are exact. In
order to define ηG: G�Σ�D → Σ�EG�, we use again the fact that F�: mod C → modD
is an exact quotient functor. Thus every object in modD is isomorphic to F�M
for some M in mod C. Moreover, any morphism F�M → F�N is a fraction, that
is, of the form

F�M
F�φ−→ F�N′

(F�σ)−1

−→ F�N.

Now define ηG
F�M as the composite

ηG
F�M: (G�Σ�D)F�M

(G�ηF
M)−1

−→ (G�F�Σ�C)M
ηGF

M−→ (Σ�EG�)F�M.

The map is natural, because ηF and ηGF are natural transformations, and maps
F�M → F�N come from maps in mod C. A straightforward calculation shows
that G�κN = Ext3D (ηG

N , G�N)(κG�N) for all N = F�M in modD. Thus G is exact
by Proposition 6.1.

7. Exact quotient functors. The definition of a cohomological quotient
functor between two triangulated categories involves cohomological functors to
an abelian category. It is natural to study the analogue where the cohomological
functors are replaced by exact functors to a triangulated category.

Definition 7.1. Let F: C → D be an exact functor between triangulated cate-
gories. We call F an exact quotient functor if for every triangulated category E
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and every exact functor G: C → E satisfying Ann F ⊆ Ann G, there exists, up to
a unique isomorphism, a unique exact functor G′:D → E such that G = G′ ◦F.

The motivating examples for this definition are the quotient functors in the
sense of Verdier.

Example 7.2. A quotient functor F: C → C/B is an exact quotient functor.
To see this, observe that an exact functor G: C → D with Ker G containing
B factors uniquely through F via some exact functor G′: C/B → D; see [35,
Corollaire II.2.2.11]. Now use that

B ⊆ Ker G ⇐⇒ Ann F ⊆ Ann G,

which follows from Lemma 4.2.

We want to relate cohomological and exact quotient functors.

LEMMA 7.3. Let F: C → D be a cohomological quotient functor, and denote
by D′ the smallest full triangulated subcategory containing the image of F. Then
the restriction F′: C → D′ of F has the following properties.

(1) F′ is a cohomological quotient functor.
(2) F′ is an exact quotient functor.

Proof. (1) Use the characterization of cohomological quotient functors in
Theorem 4.4.

(2) For simplicity we assume D′ = D. Let G: C → E be an exact functor
satisfying Ann F ⊆ Ann G. Then the composite HE ◦G with the Yoneda functor
factors through F because F is a cohomological quotient functor. We have the
following sequence of inclusions

E ⊆ Ē ⊆ mod E

where Ē denotes the idempotent completion of E . We obtain a functor D →
mod E and its image lies in Ē , since every object in D is a direct factor of some
object in the image of F. Thus we have a functor G′:D → Ē which is exact
by Corollary 6.2. Our additional assumption on F implies that Im G′ ⊆ E . We
conclude that G factors through F via an exact functor D → E .

The following example has been suggested by B. Keller. It shows that there
are exact quotient functors which are not cohomological quotient functors.

Example 7.4. Let A be the algebra of upper 2 × 2 matrices over a field k,
and let B = k × k. We consider the bounded derived categories C = Db(mod A)
and D = Db(mod B). Restriction along the algebra homomorphism f : B → A,

(x, y) �→
[

x 0
0 y

]
, induces an exact functor F: C → D which is an exact quotient
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functor but not a cohomological quotient functor. In fact, f has a left inverse

A → B,
[

x z
0 y

]
�→ (x, y), which induces a right inverse G:D → C for F. Thus every

exact functor F′: C → E satisfying Ann F ⊆ Ann F′ factors uniquely through F,
by Lemma 7.5 below. However, the exact functor F�: mod C → modD extending
F does not induce an equivalence mod C/Ker F� → modD.

Let us describe mod C. To this end denote by 0 → X1 → X3 → X2 → 0
the unique non-split exact sequence in mod A involving the simple A-modules X1

and X2. This sequence induces an exact triangle X1 → X3 → X2 → ΣX1 in C.
Note that each indecomposable object in C is determined by its cohomology and
is therefore of the form ΣnXi for some n ∈ Z and some i ∈ {1, 2, 3}. Thus the
indecomposable objects in mod C are precisely the objects of the form

C(−, ΣnXi)/radj C(−, ΣnXi) with n ∈ Z, i ∈ {1, 2, 3}, j ∈ {0, 1},

where rad0 M = M and rad1 M is the intersection of all maximal subobjects of
M. The restriction functor mod A → mod B sends 0 → X1 → X3 → X2 →
0 to a split exact sequence. Thus F kills the map X2 → ΣX1 in C, and we
have that F�M = 0 for some indecomposable M in mod C if and only if M ∼=
C(−, ΣnX2)/rad C(−, ΣnX2) for some n ∈ Z. It follows that the canonical functor

∐
n∈Z

mod A −→ mod C/Ker F�, (Mn)n∈Z �−→
∐
n∈Z

C(−, ΣnMn)

is an equivalence.
We have seen that mod C/Ker F� is not a semi-simple category, whereas in

modD every object is semi-simple. More specifically, the cohomological functor

H: C −→ mod C −→ mod C/Ker F�

does not factor through F via some cohomological functor D → mod C/Ker F�,
even though Ann H = Ann F. We conclude that F is not a cohomological quotient
functor.

LEMMA 7.5. Let F: C → D be an additive functor between additive categories
which admits a right inverse G:D → C, that is, F ◦G = IdD. Suppose F′: C → E is
an additive functor satisfying

(1) Ann F ⊆ Ann F′, and
(2) for all X, Y in C, FX = FY implies F′X = F′Y.
Then F′ factors uniquely through F via the functor F′ ◦G:D → E .

Proof. We have for an object X in C that FGFX = FX. Thus F′GFX = F′X.
Given a map φ in C, we have F((GFφ) − φ) = 0 and therefore F′((GFφ) −
φ) = 0. Thus F′GFφ = F′φ. It follows that (F′ ◦G) ◦F = F′. The uniqueness
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of the factorization follows from the fact that F is surjective on objects and
morphisms.

8. Exact ideals. Given a cohomological quotient functor F: C → D, the
ideal Ann F is an important invariant. In this section we investigate the collection
of all ideals which are of this form.

Definition 8.1. Let C be a triangulated category. An ideal I of C is called
exact if there exists a cohomological quotient functor F: C → D such that I =
Ann F.

The exact ideals are partially ordered by inclusion and we shall investigate
the structure of this poset. Recall that an ideal I in a triangulated category C
is cohomological, if there exists a cohomological functor F: C → A such that
I = Ann F.

THEOREM 8.2. Let C be a small triangulated category. Then the exact ideals
in C form a complete lattice, that is, given a family (Ii)i∈Λ of exact ideals, the
supremum sup Ii and the infimum inf Ii exist. Moreover, the supremum coincides
with the supremum in the lattice of cohomological ideals.

Our strategy for the proof is to use a bijection between the cohomological
ideals of C and the Serre subcategories of mod C. We proceed in several steps
and start with a few definitions. Given an ideal I of C, we define

Im I = {M ∈ mod C | M ∼= Im C(−,φ) for some φ ∈ I}.

The next definition is taken from [3].

Definition 8.3. Let C be a triangulated category. An ideal I of C is called

saturated if for every exact triangle X′ α→ X
β→ X′′ → ΣX′ and every map

φ: X → Y in Sc, we have that φ ◦α,β ∈ I implies φ ∈ I.

The following characterization combines [21, Lemma 3.2] and [3, Theorem 3.1].

LEMMA 8.4. LetC be a triangulated category. Then the following are equivalent
for an ideal I of C.

(1) I is cohomological.
(2) I is saturated.
(3) Im I is a Serre subcategory of mod C.
Moreover, the map J �→ Im J induces a bijection between the cohomological

ideals of C and the Serre subcategories of mod C.

Proof. (1) ⇒ (2): Let I = Ann F for some cohomological functor F: C → A.

Fix an exact triangle X′ α→ X
β→ X′′ → ΣX′ and a map φ: X → Y in C. Suppose

φ ◦α,β ∈ I. Then Fα is an epimorphism, and therefore Fφ ◦Fα = 0 implies
Fφ = 0. Thus φ ∈ I.
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(2) ⇒ (3): Let 0 → F′ → F → F′′ → 0 be an exact sequence in mod C.
Using that I is an ideal, it is clear that F ∈ Im I implies F′, F′′ ∈ Im I. Now
suppose that F′, F′′ ∈ Im I. Using that mod C is a Frobenius category, we find
maps φ: X → Y and α: X′ → X such that F = Im C(−,φ) and F′ = Im C(−,φ ◦α).
Now form exact triangles

W
χ−→ X

φ−→ Y −→ ΣW and X′ �W

[
α χ

]
−→ X

β−→ X′′ −→ Σ(X′ �W)

in C, and observe that F′′ = Im C(−,β). We have φ ◦
[
α χ

]
and β in I. Thus

φ ∈ I since I is saturated. It follows that F = Im C(−,φ) belongs to Im I.
(3) ⇒ (1): Let F be the composite of the Yoneda functor C → mod C with

the quotient functor mod C → mod C/Im I. This functor is cohomological and
we have I = Ann F.

We need some more terminology. Fix an abelian category A. A Serre sub-
category B of A is called localizing if the quotient functor A → A/B has a
right adjoint. If A is a Grothendieck category, then B is localizing if and only
if B is closed under taking coproducts [11, Proposition III.8]. We denote for any
subcategory B by lim−→B the full subcategory of filtered colimits lim−→Xi in A such
that Xi belongs to B for all i.

Now let C be a small additive category and suppose mod C is abelian. Given
a Serre subcategory S of mod C, then lim−→S is a localizing subcategory of Mod C;
see [20, Theorem 2.8]. This has the following consequence which we record for
later reference.

LEMMA 8.5. Let C be a small triangulated category and I be a cohomological
ideal of C. Then lim−→ Im I is a localizing subcategory of Mod C.

Proof. Use Lemma 8.4.

We call a Serre subcategory S of mod C perfect if the right adjoint of the
quotient functor Mod C → Mod C/lim−→S is an exact functor. We have a corre-
spondence between perfect Serre subcategories of mod C and flat epimorphisms
starting in C. To make this precise, we call a pair F1: C → D1 and F2: C → D2

of flat epimorphisms equivalent if Ker F�1 = Ker F�2 .

LEMMA 8.6. Let C be a small additive category and suppose mod C is abelian.
Then the map

(F: C → D) �−→ Ker F�

induces a bijection between the equivalence classes of flat epimorphisms starting
in C, and the perfect Serre subcategories of mod C.
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Proof. We construct the inverse map as follows. Let S be a perfect Serre sub-
category of mod C and consider the quotient functor Q: Mod C → Mod C/lim−→S.
Observe that Q preserves projectivity since the right adjoint of Q is exact. Now
define D to be the full subcategory formed by the objects QC(−, X) with X in
C, and let F: C → D be the functor which sends X to QC(−, X). It follows that
F∗: Mod C → ModD induces an equivalence Mod C/lim−→S → ModD. Thus F is
a flat epimorphism satisfying S = Ker F�.

LEMMA 8.7. Let C be a small additive category and suppose mod C is abelian.
If (Si)i∈Λ is a family of perfect Serre subcategories of mod C, then the smallest Serre
subcategory of mod C containing all Si is perfect.

Proof. For each i ∈ Λ, let Mi be the full subcategory of C-modules M
satisfying HomC ( lim−→Si, M) = 0 = Ext1C ( lim−→Si, M). Note that the right adjoint

adjoint of the quotient functor Q: Mod C → Mod C/lim−→Si identifies Mod C/lim−→Si

with Mi; see Lemma 3.2. Let S = supSi. Then the full subcategory lim−→S is the
smallest localizing subcategory of Mod C containing all Si. Let M be the full
subcategory of C-modules M satisfying HomC ( lim−→S, M) = 0 = Ext1C ( lim−→S, M).
We claim that M =

⋂
iMi. To see this, let Ii be the full subcategory of in-

jective objects in Mi. Note that a C-module M belongs to lim−→Si if and only if
HomC (M, Ii) = 0, and M belongs to Mi if and only if the modules I0, I1 in a
minimal injective resolution 0 → M → I0 → I1 belong to Ii. Let I =

⋂
i Ii. Then

we have that a C-module M belongs to lim−→S if and only if HomC (M, I) = 0,
and M belongs to

⋂
iMi if and only if the modules I0, I1 in a minimal injective

resolution 0 → M → I0 → I1 belong to I. This proves M =
⋂

iMi. It follows
that the inclusion M→ Mod C is exact because each inclusion Mi → Mod C is
exact. Thus S is a perfect Serre subcateory.

PROPOSITION 8.8. Let C be a small triangulated category, and let I be an ideal
in C satisfying ΣI = I. Then the following are equivalent.

(1) I is an exact ideal.
(2) Im I is a perfect Serre subcategory of mod C.
(3) There exists a flat epimorphism F: C → D such that Ann F = I.

Proof. (1)⇒ (2): Suppose I is an exact ideal, that is, there is a cohomological
quotient functor F: C → D such that I = Ann F. Then F is a flat epimorphism
by Theorem 4.4. Now observe that Im I = Ker F�. Thus Im I is perfect by
Lemma 8.6.

(2) ⇒ (3): Apply again Lemma 8.6 to obtain a flat epimorphisms F: C → D
with Ann F = I.

(3) ⇒ (1): We may assume that idempotents in D split. It follows from
Theorem 5.1 that D is a triangulated category and that F is an exact functor.
Moreover, Theorem 4.4 implies that F is a cohomological quotient functor. Thus
I is an exact ideal.
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We collect our findings to obtain the proof of the theorem from the beginning
of this section.

Proof of Theorem 8.2. Let (Ii)i∈Λ be a family of exact ideals in C and consider
the corresponding Serre subcategories Si = Im Ii of mod C which are perfect by
Proposition 8.8. It follows from Lemma 8.7 that S = supSi is perfect. There is
a cohomological ideal I in C satisfying S = Im I and we have I = sup Ii in the
lattice of cohomological ideals by Lemma 8.4. Applying again Proposition 8.8,
we see that the ideal I is exact. This completes the proof.

9. Factorizations. Let C be a triangulated category. If B is a full triangu-
lated subcategory of C, then the quotient functor Q: C → C/B in the sense of
Verdier is a cohomological and exact quotient functor (in the sense of Defini-
tion 4.1 and Definition 7.1). This fact motivates the following definition.

Definition 9.1. Let F: C → D be an exact functor between triangulated cate-
gories. We call F a CE-quotient functor if F is a cohomological quotient functor
and an exact quotient functor.

The terminology refers to the properties “cohomological” and “exact.” In
addition, we wish to honor Cartan and Eilenberg. In this section we study the
collection of all CE-quotient functors starting in a fixed triangulated category.
Given a pair F1: C → D1 and F2: C → D2 of CE-quotient functors, we define

F1 ∼ F2 ⇐⇒ there exists an equivalence G:D1 → D2 such that F2 = G ◦F1,

F1 ≥ F2 ⇐⇒ there exists an exact functor G:D1 → D2 such that F2 = G ◦F1.

We obtain a partial ordering on the equivalence classes of CE-quotient functors,
which may be rephrased as follows.

F1 ∼ F2 ⇐⇒ Ann F1 = Ann F2,

F1 ≥ F2 ⇐⇒ Ann F1 ⊆ Ann F2.

The ideals of the form Ann F arising from CE-quotient functors F: C → D form
a complete lattice. This has been established in Theorem 8.2, and we obtain the
following immediate consequence.

THEOREM 9.2. Let C be a small triangulated category.
(1) The equivalence classes of CE-quotient functors starting in C form a com-

plete lattice.
(2) The assignment F �→ Ann F induces an anti-isomorphism between the

lattice of CE-quotient functors starting in C and the lattice of exact ideals of C.
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(3) Given a family (Fi)i∈Λ of CE-quotient functors, we have

Ann ( inf
i∈Λ

Fi) = sup
i∈Λ

( Ann Fi)

where the supremum is taken in the lattice of cohomological ideals of C.

Proof. The ideals of the form Ann F for some CE-quotient functor F: C → D
are precisely the exact ideals of C. This follows from Lemma 7.3. Now apply
Theorem 8.2.

The completeness of the CE-quotient functor lattice yields a canonical fac-
torization for every exact functor between two triangulated categories.

COROLLARY 9.3. Let C be a small triangulated category. Then every exact func-
tor F: C → D to a triangulated category D has a factorization

C
Q �� C′ F′ �� D

having the following properties:
(1) Q is a CE-quotient functor and F′ is exact.
(2) Given a factorization

C
Q′ �� C′′ F′′ �� D

of F such that Q′ is a CE-quotient functor and F′′ is exact, there exists, up to a
unique isomorphism, a unique exact functor G: C′′ → C′

C′′
F′′

�����������

G

��

C

Q′
�����������

Q

������������ D

C′
F′

������������

such that Q = G ◦Q′ and F′′ ∼= F′ ◦G.

Proof. We obtain the CE-quotient functor Q: C → C′ by taking the infimum
over all CE-quotient functors Q′: C → C′′ admitting a factorization

C
Q′ �� C′′ F′′ �� D.

Note that F factors through Q because Ann Q ⊆ Ann F. This follows from the
fact that Ann F is cohomological and Ann Q′ ⊆ Ann F for all Q′.



1218 HENNING KRAUSE

10. Compactly generated triangulated categories and Brown represen-
tability. We recall the definition of a compactly generated triangulated category,
and we review a variant of Brown’s Representability Theorem which will be
needed later on.

Let S be a triangulated category and suppose that arbitrary coproducts exist
in S. An object X in S is called compact if for every family (Yi)i∈I in S, the
canonical map

∐
i S(X, Yi) → S(X,

∐
i Yi) is an isomorphism. We denote by Sc

the full subcategory of compact objects in S and observe that Sc is a triangulated
subcategory of S. Following [28], the category S is called compactly generated
provided that the isomorphism classes of objects in Sc form a set, and for every
object X in S we have S(C, X) �= 0 for some C in Sc.

A basic tool for studying a compactly generated triangulated category S is
the cohomological functor

HS :S −→ ModSc, X �→ HX = S(−, X)|Sc

which we call restricted Yoneda functor. Our notation does not distinguish be-
tween the Yoneda functor HS :S → modS and the restricted Yoneda functor.
However, the meaning of HS and HX for some X in S will be clear from the
context.

Next we recall from [22] a variant of Brown’s Representability Theorem [6];
see also [17, 28, 8]. Let S be a triangulated category with arbitrary products. An
object U in S is called a perfect cogenerator if S(X, U) = 0 implies X = 0 for
every object X in S, and for every countable family of maps Xi → Yi in S, the
induced map

S
(∏

i

Yi, U

)
−→ S

(∏
i

Xi, U

)

is surjective provided that the map S(Yi, U) → S(Xi, U) is surjective for all i.

PROPOSITION 10.1 (Brown representability). Let S be a triangulated category
with arbitrary products and a perfect cogenerator U.

(1) A functor H:S → Ab is cohomological and preserves all products if and
only if H ∼= S(X,−) for some object X in S.

(2) S coincides with its smallest full triangulated subcategory which contains
U and is closed under taking all products.

Proof. See Theorem A in [22].

There is an immediate consequence which we shall use.

COROLLARY 10.2. LetS be a triangulated category with arbitrary products and
a perfect cogenerator U. An exact functor S → T between triangulated categories
preserves all products if and only if it has a left adjoint.
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Proof. The left adjoint of a functor F:S → T sends an object X in T to the
object in S representing T (X, F−).

Take as an example for S a compactly generated triangulated category. Then

U =
∐

C∈Sc

C

is a perfect cogenerator for Sop. If I is an injective cogenerator for ModSc, then
the object V satisfying

HomSc (HS−, I) ∼= S(−, V)

is a perfect cogenerator for S. Note that V exists because Sop is perfectly cogen-
erated.

11. Smashing localizations. We establish for any compactly generated tri-
angulated category S a bijective correspondence between the smashing localiza-
tions of S and the cohomological quotients of Sc.

This result is divided into two parts. In this section we show that any smashing
localization induces a cohomological quotient. Let us recall the relevant defini-
tions.

An exact functor F:S → T between triangulated categories is a localization
functor if it has a right adjoint G such that F ◦G ∼= IdT . Note that the condition
F ◦G ∼= IdT is equivalent to the fact that F induces an equivalence S/Ker F → T ,
where S/Ker F denotes quotient in the sense of Verdier [35]. It is often useful to
identify a localization functor F:S → T with the idempotent functor L:S → S
defined by L = G ◦F. The L-acyclic objects are those in Ker F and the L-local
object are those which are isomorphic to some object in the image of G. The
localization F is called smashing if G preserves all coproducts which exist in
T . (If S carries a smash product ∧:S × S → S with unit S, then LX = X ∧ LS
provided F is smashing.)

THEOREM 11.1. Let S be a compactly generated triangulated category and
F:S → T be an exact functor between triangulated categories. Then F is a smash-
ing localization if and only if the following holds:

(1) T is a compactly generated triangulated category.
(2) F preserves coproducts.
(3) F induces a functor Fc:Sc → Tc which is a cohomological quotient functor.

We need some preparation before we can give the proof of this result.

LEMMA 11.2. LetS be a compactly generated triangulated category and F:S →
T be an exact functor between triangulated categories. Suppose F preserves co-
products. Then the right adjoint of F preserves coproducts if and only if F preserves
compactness.
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Proof. Combine the definition of compactness and the adjointness isomor-
phism; see [28, Theorem 5.1].

LEMMA 11.3. Let F:S → T be an exact functor between compactly generated
triangulated categories. Suppose F has a right adjoint G: T → S which preserves
coproducts. Then the following diagram commutes:

S
HS

��

F �� T
HT

��

G �� S
HS

��
ModSc

(Fc)∗ �� Mod Tc
(Fc)∗ �� ModSc.

Proof. See Proposition 2.6 in [21].

We are now in the position that we can prove the main result of this section.

Proof of Theorem 11.1. Suppose first that F is a smashing localization. Thus
F has a right adjoint G which preserves coproducts. This implies that F induces a
functor Fc:Sc → Tc, by Lemma 11.2. Using the adjointness formula T (FX, Y) ∼=
S(X, GY), one sees that T is generated by the image of Fc. Thus T is compactly
generated. It remains to show that Fc is a cohomological quotient functor. To
this end denote by M the class of Tc-modules M such that the natural map
((Fc)∗ ◦ (Fc)∗)M → M is an isomorphism. Observe that (Fc)∗ ◦ (Fc)∗ composed
with the Yoneda embedding Tc → Mod Tc equals the composite HT ◦F ◦G|Tc ,
by Lemma 11.3. Our assumption implies F ◦G ∼= IdT , and therefore M contains
all representable functors. Note that (Fc)∗ preserves colimits because they are
defined pointwise, and (Fc)∗ preserves colimits because it is a left adjoint. Thus
the composite (Fc)∗ ◦ (Fc)∗ preserves all colimits and therefore M is closed under
taking colimits. We conclude that

(Fc)∗ ◦ (Fc)∗ ∼= IdMod Tc

since every module is a colimit of representable functors. Thus Fc is up to di-
rect factors an epimorphism by Proposition A.5, and therefore a cohomological
quotient functor by Theorem 4.4.

Now suppose that F satisfies (1) – (3). An application of Brown’s Repre-
sentability Theorem shows that F has a right adjoint G, since F preserves co-
products. Moreover, G preserves coproducts by Lemma 11.2, since F preserves
compactness. It remains to show that F ◦G ∼= IdT . To this end denote by T ′ the
class of objects X in T such that the natural map (F ◦G)X → X is an isomorphism.
Our assumption on Fc implies

(Fc)∗ ◦ (Fc)∗ ∼= IdMod Tc .
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Using again Lemma 11.3, we see that Tc ⊆ T ′. The objects in T ′ form a tri-
angulated subcategory which is closed under taking coproducts. It follows that
T ′ = T since T is compactly generated. This finishes the proof.

12. Smashing subcategories. Let S be a compactly generated triangulated
category. In this section we complete the correspondence between smashing lo-
calizations of S and cohomological quotients of Sc. In order to formulate this,
let us define the following full subcategories of S for any ideal I in Sc:

Filt I = {X ∈ S | every map C → X, C ∈ Sc, factors through some map in I},

I
⊥ = {X ∈ S | S(φ, X) = 0 for all φ ∈ I}.

THEOREM 12.1. Let S be a compactly generated triangulated category, and let
I be an exact ideal in Sc. Then there exists a smashing localization F:S → T
having the following properties:

(1) The right adjoint of F identifies T with I⊥.
(2) Ker F = Filt I.
(3) Sc ∩ Ann F = I.

The proof of this result requires some preparation. We start with descriptions
of Filt I and I⊥ which we take from [21].

LEMMA 12.2. Let I be an ideal in Sc and X be an object in S.
(1) X ∈ Filt I if and only if HX ∈ lim−→ Im I.

(2) X ∈ I⊥ if and only if HomSc ( Im I, HX) = 0.

Proof. For (1), see Lemma 3.9 in [21]. (2) follows from the fact that
HomSc (−, HX) is exact when restricted to modSc.

Now suppose that I is a cohomological ideal in Sc and observe that L =
lim−→ Im I is a localizing subcategory of ModSc, by Lemma 8.5. Thus we obtain

a quotient functor Q: ModSc → ModSc/L which has a right adjoint R; see [11,
Proposition III.8]. Note that R identifies ModSc/L with the full subcategory M
of Sc-modules M satisfying HomSc (L, M) = 0 = Ext1Sc

(L, M); see Lemma 3.2.
Moreover, every Sc-module M fits into an exact sequence

0 −→ M′ −→ M −→ (R ◦Q)M −→ M′′ −→ 0

with M′, M′′ in L.

LEMMA 12.3. An object X in S belongs to I⊥ if and only if HomSc (L, HX) =
0 = Ext1Sc

(L, HX).
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Proof. Suppose X ∈ I⊥. Then we have HomSc (L, HX) = 0 because
HomSc ( Im I, HX) = 0 by Lemma 12.2. Thus we have an exact sequence

0 −→ HX −→ (R ◦Q)HX −→ M −→ 0.

We claim that M = 0. For this it is sufficient to show that every map φ: M′ →
M from a finitely presented module M′ is zero. The map φ factors through
some M′′ in Im I because M ∈ L. Now we use that Ext1Sc

(−, HX) vanishes on
finitely presented modules; see [21, Lemma 1.6]. Thus M′′ → M factors through
(R ◦Q)HX . However, HomSc (L,M) = 0, and this implies φ = 0. Therefore M = 0,
and HX belongs to M. Thus the proof is complete because the other implication
is trivial.

LEMMA 12.4. Let I be an ideal in Sc satisfying ΣI = I. If I is exact or I2 = I,
then I⊥ is a triangulated subcategory of S which is closed under taking products
and coproducts.

Proof. Clearly, I⊥ is closed under taking products and coproducts. Also,
Σ(I⊥) = I⊥ is clear. It remains to show that I⊥ is closed under forming exten-
sions. Let

X α−→ Y
β−→ Z

γ−→ ΣX

be a triangle in S with X and Y in I⊥, which induces an exact sequence

0 −→ Coker Hα −→ HZ −→ Ker HΣα −→ 0

in ModSc. The modules annihilated by I form a subcategory which is automat-
ically closed under subobjects and quotients. The subcategory is closed under
extensions if I2 = I. Thus HZ is annihilated by I because Coker Hα and Ker HΣα
are annihilated by I. It follows that Z belongs to I⊥. Now suppose that I is exact.
We apply Proposition 8.8 to see that the category M of Sc-modules M satisfying
HomSc (L, M) = 0 = Ext1Sc

(L, M) is closed under taking kernels, cokernels, and
extensions. Thus Coker Hα and Ker HΣα belong to M, and therefore HZ as well.
We conclude again that Z belongs to I⊥. This finishes the proof.

We are now in the position that we can prove Theorem 12.1.

Proof of Theorem 12.1. We know from Lemma 8.5 that L = lim−→ Im I is a
localizing subcategory of ModSc. Denote by R the right adjoint of the quotient
functor ModSc → ModSc/L. Recall that R identifies ModSc/L with the full
subcategory M of Sc-modules M satisfying HomSc (L, M) = 0 = Ext1Sc

(L, M).
The quotient ModSc/L is an abelian Grothendieck category. Thus there is an
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injective cogenerator, say I, and we denote by U the object in S satisfying

HomSc (HS−, RI) ∼= S(−, U).

Let T = I⊥, which is a triangulated subcategory of S and closed under taking
products and coproducts by Lemma 12.4. We claim that U is a perfect cogenerator
for T . To see this, let X be an object in T satisfying S(X, U) = 0. We have
HX ∈ M by Lemma 12.3, and therefore HX = 0 since RI is a cogenerator for
M. Thus X = 0. Now let Xi → Yi be a set of maps in T such that the map
S(Yi, U) → S(Xi, U) is surjective for all i. Using the fact that RI is an injective
cogenerator for M, we see that each map HXi → HYi is a monomorphism.
Thus their product is a monomorphism, and therefore the map H∏

i Xi
→ H∏

i Yi

is a monomorphism. We conclude that the map S(
∏

i Yi, U) → S(
∏

i Xi, U) is
surjective, since RI is an injective object. Now we can apply Corollary 10.2.
It follows that the inclusion T → S has a left adjoint F which is a smashing
localization since T is closed under taking coproducts.

It remains to describe Ker F and Ann F. To this end let X be an object in
S. We have FX = 0 iff S(X, U) = 0 iff HomSc (HX , RI) = 0 iff HX ∈ L iff
X ∈ Filt I, by Lemma 12.2. Now let φ: X → Y be a map in Sc. Suppose first that
Fφ = 0. Then S(φ, U) = 0. Now we have that S(φ, U) = 0 iff HomSc (Hφ, RI) = 0
iff Im Hφ ∈ L iff Im Hφ ∈ Im I iff φ ∈ I. Conversely, suppose φ ∈ I. Then
FY ∈ I⊥ implies S(φ, FY) ∼= T (Fφ, FY) = 0. Clearly, this implies Fφ = 0. Thus
Sc ∩ Ann F = I, and the proof is complete.

Combining Theorem 11.1 and Theorem 12.1, one obtains a bijection between
smashing localizations of S and exact ideals of Sc. It is convenient to formulate
this in terms of smashing subcategories. Recall that a subcategory of S is smash-
ing if it of the form Ker F for some smashing localization functor F:S → T . Note
that the kernel Ker F of any localization functor F is a localizing subcategory,
that is, Ker F is a full triangulated subcategory which is closed under taking co-
products. Thus a subcategory R of S is smashing if and only if R is a localizing
subcategory admitting a right adjoint for the inclusion R → S which preserves
coproducts.

COROLLARY 12.5. Let S be a compactly generated triangulated category. Then
the maps

I �→ Filt I and R �→ {φ ∈ Sc | φ factors through some object in R}

induce mutually inverse bijections between the set of exact ideals of Sc and the set
of smashing subcategories of S.

A similar result appears as Theorem 4.9 in [21]. However, the proof given
there is not correct for two reasons: it uses an unnecessary assumption and relies
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on an erroneous definition of an exact ideal. (The error occurs in Lemma 4.10.
The claim that f ∗(µ) is an isomorphism is only correct if f is a cohomological
quotient functor.)

Let us formulate further consequences of Theorem 12.1 about cohomological
quotient functors. I am grateful to B. Keller for pointing out to me the following
simple description of the exact ideals of Sc.

COROLLARY 12.6. Let S be a compactly generated triangulated category. Then
an ideal I of Sc is exact if and only if the following conditions hold.

(1) ΣI = I.
(2) I is saturated.
(3) I is idempotent, that is, I2 = I.

Proof. Suppose first that I is exact. Applying Corollary 12.5, the ideal I is
the collection of maps in Sc which factor through an object in Filt I. Now fix
a map φ: X → Y in I. Then φ factors through an object Y ′ in Filt I via a map
φ′: X → Y ′, and φ′ factors through a map φ1: X → Y ′′ in I since Y ′ belongs to
Filt I. Thus φ = φ2 ◦φ1, and φ2: Y ′′ → Y belongs to I because it factors through
an object in Filt I.

Now suppose that I satisfies (1) – (3). The proof of Theorem 12.1 works
with these assumptions, thanks to Lemma 12.4. The conclusion of Theorem 12.1
shows that I = Ann Fc for some smashing localization F:S → T . Thus I is
exact because Fc is a cohomological quotient functor by Theorem 11.1.

One may think of the following result as a generalization of the localization
theorem of Neeman-Ravenel-Thomason-Trobaugh-Yao [27, 31, 34, 38]. To be
precise, Neeman et al. considered cohomological quotient functors of the form
Sc → Sc/R0 for some triangulated subcategoryR0 of Sc and analyzed the smash-
ing localization functor S → S/R where R denotes the localizing subcategory
generated by R0.

COROLLARY 12.7. Let S be a compactly generated triangulated category, and
let F:Sc → T be a cohomological quotient functor.

(1) The category R = Filt ( Ann F) is a smashing localizing subcategory of
S and the quotient functor S → S/R induces a fully faithful and exact functor
T → S/R making the following diagram commutative.

Sc
F ��

inc
��

T

��
S can �� S/R

(2) The triangulated category S/R is compactly generated and (S/R)c is the
closure of the image of T → S/R under forming direct factors.
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(3) There exists a fully faithful and exact functor G: T → S such that

S(X, GY) ∼= T (FX, Y)

for all X in Sc and Y in T .

Proof. The ideal Ann F is exact and we obtain from Theorem 12.1 a smash-
ing localization functor Q:S → S/R. The induced functor Qc:Sc → (S/R)c

is a cohomological quotient functor with Ann Qc = Ann F, by Theorem 11.1.
The proof of Lemma 7.3 shows that Qc factors through F, since idempotents in
(S/R)c split. Moreover, the functor T → S/R is fully faithful since it induces
an equivalence mod T → mod (S/R)c. Note that every compact object in S/R
is a direct factor of some object in the image of Qc by Theorem 4.4. To obtain
the functor G: T → S, take the fully faithful right adjoint S/R → S of Q, and
compose this with the functor T → S/R.

13. The telescope conjecture. The telescope conjecture due to Bousfield
and Ravenel is originally formulated for the stable homotopy category of CW-
spectra; see [5, 3.4], [31, 1.33] (and [23] for an unsuccessful attempt to disprove
the conjecture). The stable homotopy category is a compactly generated trian-
gulated category. This fact suggests the following formulation of the telescope
conjecture for a specific triangulated category S which is compactly generated.

TELESCOPE CONJECTURE. Every smashing subcategory of S is generated as a
localizing subcategory by objects which are compact in S.

Recall that a subcategory of S is smashing if it is of the form Ker F for
some smashing localization functor F:S → T . Note that Ker F is a localizing
subcategory of S, that is, Ker F is a full triangulated subcategory which is closed
under taking coproducts. A localizing subcategory of S is generated by a class
X of objects if it is the smallest localizing subcategory of S which contains X .

The telescope conjecture in this general form is known to be false. In fact,
Keller gives an example of a smashing subcategory which contains no non-zero
compact object [18]; see also Section 15. However, there are classes of compactly
generated triangulated categories where the conjecture has been verified.

We have seen that smashing subcategories of S are closely related to cohomo-
logical quotients of Sc. It is therefore natural to translate the telescope conjecture
into a statement about cohomological quotients. Roughly speaking, the telescope
conjecture for S is equivalent to the assertion that every flat epimorphism Sc → T
is an Ore localization. We need some preparation in order to make this precise.

LEMMA 13.1. LetS be a compactly generated triangulated category and F:S→
T be a smashing localization functor. Then the following are equivalent.

(1) The localizing subcategory Ker F is generated by objects which are compact
in S.
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(2) The ideal Sc ∩ Ann F of Sc is generated by identity maps.

Proof. Let R = Ker F and I = Sc ∩ Ann F.
(1) ⇒ (2): Suppose R is generated by compact objects. Then every object

in R is a homotopy colimit of objects in R ∩ Sc; see [28]. Let φ: X → Y be a
map in I. It follows from Lemma 4.2 that φ factors through a homotopy colimit
of objects in R ∩ Sc. Thus φ factors through some object in R ∩ Sc since X is
compact. We conclude that I is generated by the identity maps of all objects in
R∩ Sc.

(2) ⇒ (1): Let R0 be a class of compact objects and suppose I is generated
by the identity maps of all objects in R0. Let R′ be the localizing subcategory
which is generated by R0. This category is smashing and we have a localization
functor F′:S → T ′ with R′ = Ker F′. Clearly, Ann Fc ⊆ Ann F′c since idX be-
longs to Ann F′c for all X in R0. On the other hand, R′ ⊆ R since R0 ⊆ R. Thus
Ann F′c ⊆ Ann Fc by Lemma 4.2, and Ann F′c = Ann Fc follows. We conclude
that R′ = R because Theorem 12.1 states that a smashing subcategory is deter-
mined by the corresponding exact ideal in Sc. Thus R is generated by compact
objects.

PROPOSITION 13.2. Let F: C → D be an exact functor between triangulated
categories. Then the following are equivalent.

(1) F induces an equivalence C/Ker F → D.
(2) F induces an equivalence C[Φ−1] → D where Φ = {φ ∈ C | Fφ is an iso}.
(3) F is a CE-quotient functor and the ideal Ann F is generated by identity

maps.

Proof. We put B = Ker F and denote by Q: C → C/B the quotient functor.
(1) ⇔ (2): The quotient C/B is by definition C[Ψ−1] where Ψ is the class of

maps X → Y in C which fit into an exact triangle X → Y → Z → ΣX with Z in
B. The exactness of F implies that Ψ is precisely the class of maps φ in C such
that Fφ is invertible.

(1) ⇒ (3): We have seen in Example 4.3 and Example 7.2 that Q is a CE-
quotient functor. Lemma 4.2 implies that the ideal Ann Q is generated by the
identity maps of all objects in B.

(3) ⇒ (1): The functor F induces an exact functor C/B → D. Now suppose
that Ann F is generated by identity maps. Then Ann F is generated by the identity
maps of all objects in B, and therefore Ann Q = Ann F by Lemma 4.2. Thus Q
factors through F by an exact functor D → C/B since F is an exact quotient
functor. The uniqueness of D → C/B and C/B → D implies that both functors
are mutually inverse equivalences.

LEMMA 13.3. Let F: C → D be a cohomological quotient functor. Then the
following are equivalent.

(1) F induces a fully faithful functor C/Ker F → D.
(2) The ideal Ann F is generated by identity maps.
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Proof. Let D′ be the smallest full triangulated subcategory of D containing
the image of F. It follows from Lemma 7.3 that the induced functor F′: C → D′
is a CE-quotient functor. Now the assertion follows from Proposition 13.2 since
Ann F = Ann F′.

We obtain the following reformulation of the telescope conjecture. Note in
particular, that the telescope conjecture becomes a statement about the category
of compact objects.

THEOREM 13.4. Let S be a compactly generated triangulated category. Then
the following are equivalent.

(1) Every smashing subcategory ofS is generated by objects which are compact
in S.

(2) Every smashing subcategory of S is a compactly generated triangulated
category.

(3) Every exact ideal in Sc is generated by idempotent elements.
(4) Every CE-quotient functor F:Sc → T induces an equivalence Sc/Ker F →

T .
(5) Every cohomological quotient functor F:Sc → T induces a fully faithful

functor Sc/Ker F → T .
(6) Every two-sided flat epimorphism F:Sc → T satisfying Σ( Ann F) = Ann F

induces an equivalence Sc[Φ−1] → T where Φ = {φ ∈ Sc | Fφ is an iso}.

Proof. We use the bijection between smashing subcategories of S and exact
ideals of Sc; see Corollary 12.5. Recall that an ideal is by definition exact if it is
of the form Ann F for some cohomological functor F:Sc → T .

(1) ⇔ (2): The inclusion R → S of a smashing subcategory preserves com-
pactness.

(1) ⇔ (3): Apply Lemma 13.1. Note that any ideal in Sc which is generated
by idempotent maps is also generated by identity maps. This follows from the
fact that idempotents in Sc split.

(3) ⇔ (4): Apply Proposition 13.2.
(3) ⇔ (5): Apply Lemma 13.3.
(5) ⇒ (6): Let F:Sc → T be a two-sided flat epimorphism satisfying

Σ( Ann F) = Ann F. Composing it with the idempotent completion T → T̄ gives
a cohomological quotient functor Sc → T̄ , by Theorem 4.4 and Theorem 5.1.
Now use that Sc[Φ−1] = Sc/Ker F. Thus Sc[Φ−1] → T is fully faithful, and it
is an equivalence since F is surjective on objects by Lemma A.3.

(6) ⇒ (5): Let F:Sc → T be a cohomological quotient functor, and denote
by T ′ the full subcategory of T whose objects are those in the image of F. The
induced functor Sc → T ′ is a flat epimorphism. Now use again that Sc[Φ−1] =
Sc/Ker F. Thus the induced functor Sc/Ker F → T is fully faithful.

Remark 13.5. Let C be a triangulated category and F: C → D be a flat functor
satisfying Σ( Ann F) = Ann F. Then Φ = {φ ∈ C | Fφ is an iso} is a multiplica-
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tive system, that is, Φ admits a calculus of left and right fractions in the sense
of [12].

We say that an additive functor C → D is an Ore localization if it induces
an equivalence C[Φ−1] → D for some multiplicative system Φ in C. Using this
terminology, Theorem 13.4 suggests the following reformulation of the telescope
conjecture.

COROLLARY 13.6. The telescope conjecture holds true for a compactly gen-
erated triangulated category S if and only if every two-sided flat epimorphism
F:Sc → T satisfying Σ( Ann F) = Ann F is an Ore localization.

The reformulation of the telescope conjecture in terms of exact ideals raises
the question when an idempotent ideal is generated by idempotent elements. This
follows from Corollary 12.6 where it is shown that the exact ideals are precisely
the idempotent ideals which satisfy some natural extra conditions.

COROLLARY 13.7. The telescope conjecture holds true for a compactly gener-
ated triangulated category S if and only if every idempotent and saturated ideal I

of Sc satisfying ΣI = I is generated by idempotent elements.

The problem of finding idempotent generators for an idempotent ideal is a
very classical one from ring theory. For instance, Kaplansky introduced the class
of SBI rings, where SBI stands for “suitable for building idempotent elements”
[15, III.8]. Also, Auslander asked the question for which rings every idempotent
ideal is generated by an idempotent element [1, p. 241]. One can show for an
additive category C, that every idempotent ideal is generated by idempotent ele-
ments provided that C is perfect in the sense of Bass [24]. Recall that C is perfect
if every object in C decomposes into a finite coproduct of indecomposable objects
with local endomorphism rings, and, for every sequence

X1
φ1−→ X2

φ2−→ X3
φ3−→ · · ·

of non-isomorphisms between indecomposable objects, the composition φn ◦ . . .
◦φ2 ◦φ1 is zero for n sufficiently large. Note that the category Sc of compact
objects is perfect if and only if every object in S is a coproduct of indecomposable
objects with local endomorphism rings [21, Theorem 2.10].

14. Homological epimorphisms of rings. A commutative localization R →
S of an associative ring R is always a flat epimorphism. For noncommutative lo-
calizations, there is a weaker condition which is often satisfied. Recall from [13]
that a ring homomorphism R → S is a homological epimorphism if S ⊗R S ∼= S
and TorR

i (S, S) = 0 for all i ≥ 1. Homological epimorphisms frequently arise in
representation theory of finite dimensional algebras, in particular via universal
localizations [7, 32].
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In recent work of Neeman and Ranicki [30], homological epimorphisms ap-
pear when they study the following chain complex lifting problem for a ring
homomorphism R → S. We denote by Kb(R) the homotopy category of bounded
complexes of finitely generated projective R-modules.

Definition 14.1. Fix a ring homomorphism R → S.
(1) We say that the chain complex lifting problem has a positive solution,

if every complex Y in Kb(S) such that for each i we have Yi = Pi ⊗R S for
some finitely generated projective R-module Pi, is isomorphic to X⊗R S for some
complex X in Kb(R).

(2) We say that the chain map lifting problem has a positive solution, if for
every pair X, Y of complexes in Kb(R) and every map α: X ⊗R S → Y ⊗R S in
Kb(S), there are maps φ: X′ → X and α′: X′ → Y in Kb(R) such that φ ⊗R S is
invertible and α = α′ ⊗R S ◦ (φ⊗R S)−1 in Kb(S).

The following observation shows that both lifting problems are closely re-
lated. In fact, it seems that the more general problem of lifting maps is the more
natural one.

LEMMA 14.2. Given a ring homomorphism R → S, the chain complex lifting
problem has a positive solution whenever the chain map lifting problem has a
positive solution.

Proof. Fix a complex Y in Kb(S). We proceed by induction on its length
�(Y) = n. If n = 0, then Y is concentrated in one degree, say i, and therefore
Y = X ⊗R S for X = Pi. If n > 0, choose an exact triangle Y1 → Y2 → Y → ΣY1

with �(Yi) < n for i = 1, 2. By our assumption, we have Yi
∼= Xi ⊗R S for some

complexes X1 and X2 in Kb(R). Moreover, using the positive solution of the chain
map lifting problem, the map X1⊗R S → X2⊗R S is of the form α⊗R S ◦ (φ⊗R S)−1

for some maps φ: X′1 → X1 and α: X′1 → X2 in Kb(R). We complete α to an exact
triangle X′1 → X2 → X → ΣX′1 and conclude that Y ∼= X ⊗R S.

The example of a proper field extension k → K shows that both lifting
problems are not equivalent. In fact, the chain complex lifting problem for k → K
has a positive solution, but the chain map lifting problem does not.

The proof of Lemma 14.2 suggests the following reformulation of the chain
complex lifting problem.

LEMMA 14.3. Given a ring homomorphism R → S, the chain complex lifting
problem has a positive solution if and only if the full subcategory of Kb(S) formed
by the objects in the image of −⊗R S is a triangulated subcategory.

Proof. Clear.

We continue with a reformulation of the chain map lifting problem.
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PROPOSITION 14.4. Let R → S be a ring homomorphism and denote by K the
full subcategory of Kb(R) formed by the complexes X such that X ⊗R S = 0. Then
the following are equivalent.

(1) The chain map lifting problem has a positive solution.
(2) The functor −⊗R S induces a fully faithful functor Kb(R)/K → Kb(S).

Proof. (1) ⇒ (2): Denote by D the full subcategory of Kb(S) which is
formed by all objects in the image of −⊗R S. Using the description of the maps
in D, we observe that D is a triangulated subcategory of Kb(S). It follows from
Proposition 4.5 that F induces an equivalence Kb(R)/K → D.

(2) ⇒ (1): The maps in Kb(R)/K can be described as fractions; see for
instance Proposition 4.5. The functor Kb(R)/K → Kb(S) being full implies the
positive solution of the chain map lifting problem.

Given a ring homomorphism R → S, we shall see that the problem of lifting
complexes and their maps is closely related to the question, when the derived
functor −⊗L

R S is a smashing localization.
Let us denote by D(R) the unbounded derived category of R. Note that the

inclusion Kb(R) → D(R) induces an equivalence Kb(R) → D(R)c.

THEOREM 14.5. For a ring homomorphism R → S the following are equivalent.
(1) The derived functor −⊗L

R S: D(R) → D(S) is a smashing localization.
(2) The functor −⊗R S: Kb(R) → Kb(S) is a cohomological quotient functor.
(3) The map R → S is a homological epimorphism.

Proof. The functor F = −⊗L
R S: D(R) → D(S) has a right adjoint G: D(S) →

D(R) which is simply restriction of scalars, that is, G = R HomS (S,−). Clearly,
G preserves coproducts. Thus F is a smashing localization if and only if F
is a localization functor. Note that F is a localization functor if and only if
F ◦G ∼= IdD(S). Moreover, F ◦G is exact and preserves coproducts. Using infinite
devissage, one sees that F ◦G ∼= IdD(S) if and only if the canonical map X⊗L

R S →
X is an isomorphism for the complex X = S which is concentrated in degree 0.
Clearly, this condition is equivalent to S ⊗R S ∼= S and TorR

i (S, S) = 0 for all
i ≥ 1. This proves the equivalence of (1) and (3). The equivalence of (1) and (2)
follows from Theorem 11.1 since F|Kb(R) = −⊗R S.

We obtain the following conditions for solving the chain map lifting problem.

THEOREM 14.6. Given a ring homomorphism R → S, the chain map lifting
problem has a positive solution if and only if

(1) R → S is a homological epimorphism, and
(2) every map φ in Kb(R) satisfying φ ⊗R S = 0 factors through some X in

Kb(R) such that X ⊗R S = 0.

Proof. Suppose first that (1) and (2) hold. Condition (1) says that F =
− ⊗R S: Kb(R) → Kb(S) is a cohomological quotient functor. This follows from
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Theorem 14.5. Applying Lemma 13.3, we conclude from (2) that F induces a
fully faithful functor Kb(R)/Ker F → Kb(S). The positive solution of the chain
map lifting problem follows from Proposition 14.4.

Now suppose that the chain map lifting problem has a positive solution. The
description of the maps in the image Im F of F implies that the full subcate-
gory formed by the objects in Im F is a triangulated subcategory of Kb(S). It
contains a generator of Kb(S) and therefore every object in Kb(S) is a direct
factor of some object in Im F. Now we apply Theorem 4.4 and see that F is a
cohomological quotient functor. Thus (1) holds by Theorem 14.5. The induced
functor Kb(R)/Ker F → Kb(S) is fully faithful by Proposition 14.4. It follows
from Lemma 13.3 that (2) holds. This finishes the proof.

COROLLARY 14.7. Let R be a ring such that the telescope conjecture holds true
for D(R). Then the chain map lifting problem has a positive solution for a ring
homomorphism f : R → S if and only if f is a homological epimorphism.

Note that the telescope conjecture has been verified for D(R) provided R is
commutative noetherian [26]. On the other hand, Keller has given an example
of a ring R such that the telescope conjecture for D(R) does not hold [18].
Let us mention that the validity of the telescope conjecture is preserved under
homological epimorphims.

PROPOSITION 14.8. Let R → S be a homological epimorphism. If the telescope
conjecture holds for D(R), then the telescope conjecture holds for D(S).

Proof. The derived functor F = −⊗L
R S: D(R) → D(S) is a smashing localiza-

tion by Theorem 14.5. Now suppose that G: D(S) → T is a smashing localization.
A composite of smashing localizations is a smashing localizations. Thus Ker F is
generated by a class X of compact objects since the telescope conjecture holds
for D(R). It follows that Ker G is generated by FX .

The work of Neeman and Ranicki [30] on the problem of lifting chain com-
plexes is motivated by some applications in algebraic K-theory. In fact, they
generalize the classical long exact sequence which is induced by an injective Ore
localization. More precisely, they show that every universal localization f : R → S
which is a homological epimorphism induces a long exact sequence

· · · −→ K1(R) −→ K1(S) −→ K0(R, f ) −→ K0(R) −→ K0(S)

in algebraic K-theory [30, Theorem 10.11]. Our analysis of the chain map lift-
ing problem suggests that being a homological epimorphism and satisfying the
additional hypothesis (2) in Theorem 14.6 is the crucial property for such a se-
quence. We sketch the construction of this sequence which uses the machinery
developed by Waldhausen in [36]. Our exposition follows closely the ideas of
Thomason-Trobaugh [34] and Neeman-Ranicki [30].
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We fix a ring homomorphism f : R → S. Denote by W(R) the complicial bi-
Waldhausen category of bounded chain complexes of finitely generated projective
R-modules [34, 1.2.11]. We denote by K(R) the corresponding Waldhausen K-
theory spectrum K(W(R)); see [34, 1.5.2]. Note that K(R) is homotopy equivalent
to the Quillen K-theory spectrum of the exact category proj R of finitely generated
projective R-modules [34, 1.11.2]. The algebraic K-groups Kn(R) = πnK(R) are
by definition the homotopy groups of the spectrum K(R). Now let W(R, f ) be the
complicial biWaldhausen subcategory of W(R) consisting of those complexes X
in W(R) such that X ⊗R S is acyclic, and put K(R, f ) = K(W(R, f )).

THEOREM 14.9. Let f : R → S be a homological epimorphism and suppose f
satisfies condition (2) in Theorem 14.6. Then f induces a sequence

W(R, f ) −→ W(R) −→ W(S)

of exact functors such that

K(R, f ) −→ K(R) −→ K(S)

is a homotopy fibre sequence, up to failure of surjectivity of K0(R) → K0(S). In
particular, there is induced a long exact sequence

· · · −→ K1(R) −→ K1(S) −→ K0(R, f ) −→ K0(R) −→ K0(S)

of algebraic K-groups.

Proof. The proof is modeled after that of Thomason-Trobaugh’s localization
theorem [34, Theorem 5.1]. We recall that a complicial biWaldhausen category
comes equipped with cofibrations and weak equivalences [34, 1.2.11]. The cofi-
brations of W(R) are by definition the chain maps which are split monomorphism
in each degree, and the weak equivalences are the quasi-isomorphisms. We de-
fine a new complicial biWaldhausen category W(R/f ) as follows. The underlying
category is that of W(R), the cofibrations are those of W(R), and the weak equiv-
alences are the chain maps whose mapping cone lies in W(R, f ). We denote by
K(R/f ) the K-theory spectrum of W(R/f ) and obtain an induced sequence

W(R, f ) −→ W(R) −→ W(R/f )

of exact functors such that

K(R, f ) −→ K(R) −→ K(R/f )

is a homotopy fibre sequence by Waldhausen’s localization theorem [34, 1.8.2].
The functor W(R) → W(S) factors through W(R) → W(R/f ) and induces an
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exact functor W(R/f ) → W(S). Note that any exact functor A → B between
complicial biWaldhausen categories induces a homotopy equivalence of K-theory
spectra K(A) → K(B) provided the functor induces an equivalence Ho (A) →
Ho (B) of the derived homotopy categories [34, 1.9.8]. Observe that Ho (W(R)) =
Kb(R). Moreover, W(R) → W(R/f ) induces an equivalence

Ho (W(R))/Ho (W(R, f )) ∼−→ Ho (W(R/f )).

Thus we have the following commutative diagram

Ho (W(R, f ))

�
��

�� Ho (W(R))

�
��

�� Ho (W(R/f ))

�
��

�� Ho (W(S))

�
��

K �� Kb(R) �� Kb(R)/K �� Kb(S),

where K denotes the full subcategory of Kb(R) consisting of all complexes X
such that X⊗R S = 0. Next we use our assumption about the ring homomorphism
f and apply Proposition 14.4 and Theorem 14.6. It follows that W(R/f ) → W(S)
induces a functor

Ho (W(R/f )) −→ Ho (W(S))

which is an equivalence up to direct factors. We conclude from the cofinality
theorem [34, 1.10.1] that

K(R, f ) −→ K(R) −→ K(S)

is a homotopy fibre sequence, up to failure of surjectivity of K0(R) → K0(S).

15. Homological localizations of rings. Let R be an associative ring and
let Φ be a class of maps between finitely generated projective R-modules. The
universal localization of R with respect to Φ is the universal ring homomorphism
R → S such that φ ⊗R S is an isomorphism of S-modules for all φ in Φ; see
[7, 32]. To construct S, one formally inverts all maps from Φ in the category
C = proj R of finitely generated projective R-modules and puts S = C[Φ−1](R, R).
The following concept generalizes universal localizations.

Definition 15.1. We call a ring homomorphism f : R → S a homological lo-
calization with respect to a class Φ of complexes in Kb(R) if

(1) X ⊗R S = 0 in Kb(S) for all X in Φ, and
(2) given any ring homomorphism f ′: R → S′ such that X⊗R S′ = 0 in Kb(S′)

for all X in Φ, there exists a unique homomorphism g: R → R′ such that f ′ = g ◦ f .

Any universal localization is a homological localization. In fact, any map
φ: P → Q between finitely generated projective R-modules may be viewed as a
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complex of length one by taking its mapping cone Coneφ. If R → S is a ring
homomorphism, then φ⊗R S is an isomorphism if and only if ( Coneφ)⊗R S = 0
in Kb(S).

The following example, which I learned from A. Neeman, shows that a
homological localization need not exist.

Example 15.2. Let k be a field and R = k[x, y]. Let P be the complex

· · · −→ 0 −→ R

[
x
y

]
−→ R� R

[
y −x

]
−→ R −→ 0 −→ · · ·

which is a projective resolution of R/(x, y). Then we have P ⊗R R[x−1] = 0
and P ⊗R R[y−1] = 0. Now suppose there is a homological localization R → S
with respect to P. Viewing R[x−1] and R[y−1] as subrings of k(x, y), we have
R[x−1] ∩ R[y−1] = R. Therefore the identity R → R factors through R → S. This
is a contradiction and shows that the homological localization with respect to P
cannot exist.

Next we consider an example of a homological epimorphism which is not
a homological localization. Keller used this example in order to disprove the
telescope conjecture for the derived category of a ring [18]. Let us explain the
idea of Keller’s example. He uses the following observation.

LEMMA 15.3. Let R be a ring and a be a two-sided ideal which is contained in
the Jacobson radical of R. Then X ⊗R R/a = 0 implies X = 0 for every X in Kb(R).

Proof. Using induction on the length of the complex X, the assertion follows
from Nakayama’s lemma.

In [37], Wodzicki has constructed an example of a ring R such that the
Jacobson radical r is non-zero and satisfies

TorR
i (R/r, R/r) = 0 for all i ≥ 1.

Thus R → R/r is a homological epimorphism which induces a cohomological
quotient functor

F = −⊗R R/r: Kb(R) −→ Kb(R/r)

satisfying Ker F = 0 and Ann F �= 0. It follows that R → R/r is not a homological
localization since Ker F = 0. Moreover, Theorem 13.4 shows that the telescope
conjecture does not hold for D(R).

One can find more examples along these lines, as R. Buchweitz kindly pointed
out to me. Take any Bézout domain R, that is, an integral domain such that every
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finitely generated ideal is principal. We have for every ideal a

TorR
1 (R/a, R/a) ∼= a/a2 and TorR

i (R/a,−) = 0 for all i > 1.

Thus for any idempotent ideal a, the natural map R → R/a is a homological epi-
morphism. Specific examples arise from valuation domains, which are precisely
the local Bézout domains.

Our interest in homological localizations is motivated by the following ob-
servation, which shows that the positive solution of the chain map lifting problem
forces a ring homomorphism to be a homological localization.

PROPOSITION 15.4. Let f : R → S be a ring homomorphism and suppose the
chain map lifting problem has a positive solution. Then f is a homological local-
ization.

Proof. Denote by Φ the set of complexes X in Kb(R) such that X⊗RS = 0, and
denote by K the corresponding full subcategory. We have seen in Proposition 14.4
that −⊗R S: Kb(R) → Kb(S) induces a fully faithful functor Kb(R)/K → Kb(S).
Now suppose that f ′: R → S′ is a ring homomorphism satisfying X ⊗R S′ = 0 for
all X in Φ. Then −⊗R S′ factors through the quotient functor Kb(R) → Kb(R)/K
via some functor G: Kb(R)/K → Kb(S′). Clearly, G induces a homomorphism
g: S → S′ such that f ′ = g ◦ f . The uniqueness of g follows from the uniqueness
of G.

In [30], Neeman and Ranicki show that the chain complex lifting problem
has a positive solution for every universal localization which is a homological
epimorphism. We give an alternative proof of this result which is based on the
criterion for lifting chain maps in Theorem 14.6.

THEOREM 15.5. The chain map lifting problem has a positive solution for every
homological epimorphism R → S which is a universal localization.

We need some preparation for the proof of this result. Fix a homological
epimorphism R → S, and suppose it is the universal localization with respect
to a class Φ of maps in the category C = proj R of finitely generated projective
R-modules. Thus we have proj S = C[Φ−1]. We denote by Cone Φ = {Coneφ |
φ ∈ Φ} the corresponding class of complexes of length one in Kb(R) = Kb(C),
and we write 〈Cone Φ〉 for the thick subcategory generated by Cone Φ. Finally,
denote by T the idempotent completion of the quotient Kb(C)/〈Cone Φ〉, which
one obtains for instance from Corollary 12.7 by embedding Kb(C)/〈Cone Φ〉 into
the derived category D(R).

LEMMA 15.6. The composite Q: Kb(C) → Kb(C)/〈Cone Φ〉 → T has the fol-
lowing properties.

(1) T (Σn(QX), QY) = 0 for all X, Y in C and n > 0.
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(2) The functor Q|C : C → T factors through the localization C → C[Φ−1].
(3) The functor C[Φ−1] → T extends to an exact functor Kb(C[Φ−1]) → T .
(4) The functor−⊗R S: Kb(C) → Kb(C[Φ−1]) factors through Q: Kb(C) → T .

Proof. (1) The functor Q: Kb(C) → T is a cohomological quotient functor.
Thus we can apply Corollary 12.7 and obtain a fully faithful and exact “right
adjoint” Q′: T → D(R) such that

T (QA, B) ∼= D(R)(A, Q′B) for all A ∈ Kb(R) and B ∈ T .

To compute T (Σn(QX), QY) for X, Y in C, it is sufficient to consider the case
X = R = Y . We have

T (Σn(QR), QR) ∼= D(R)(ΣnR, (Q′ ◦Q)R) ∼= H−n((Q′ ◦Q)R).

Now we apply Corollary 3.31 from [30] which says that TorR
n (S, S) = 0 for all

n > 0 implies H−n((Q′ ◦Q)R) = 0 for all n > 0.
(2) The functor Kb(C) → Kb(C)/〈Cone Φ〉 makes the maps in Φ invertible

by sending the objects in Cone Φ to zero. Therefore C → T factors through the
localization C → C[Φ−1].

(3) This follows from the “universal property” of the homotopy category
Kb(C[Φ−1]) which is the main result in [19]. More precisely, any additive functor
F:D → Ā from an additive category D to the stable category of a Frobenius cate-
gory A extends to an exact functor Kb(D) → Ā provided that Ā(Σn(FX), FY) = 0
for all X, Y in D and n > 0. Note that we are using (1) and the fact that T can
be embedded into the stable category of a Frobenius category.

(4) We have Kb(S) = Kb(C[Φ−1]) and X ⊗R S = 0 for all X ∈ Cone Φ since
R → S is the universal localization with respect to Φ. Thus −⊗R S factors through
the quotient functor Kb(C) → Kb(C)/〈Cone Φ〉. Moreover, −⊗R S factors through
T since idempotents in Kb(C[Φ−1]) split.

The following commutative diagram summarizes our findings from
Lemma 15.6.

C

��

�� C[Φ−1] ��

��

Kb(C[Φ−1])

F
��������������

Kb(C)

T
��

Q �� T

G��������������

Kb(C[Φ−1])

(15.1)
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Proof of Theorem 15.5. We want to apply Theorem 14.6 and use the diagram
(15.1). More precisely, we need to show that Ann T = Ann Q, because this im-
plies condition (2) in Theorem 14.6 since T = −⊗R S and Ann Q is generated by
identity maps. We claim that Q = F ◦T . This follows from the “universal prop-
erty” of the homotopy category Kb(C) since Q|C = F ◦T|C ; see [16]. We obtain
that Q = F ◦G ◦Q, and this implies F ◦G ∼= IdT since both functors agree on
Kb(C)/〈Cone Φ〉. Thus G is faithful and we conclude that Ann T = Ann Q. This
completes the proof.

Remark 15.7. I conjecture that Theorem 15.5 remains true if one replaces
“universal localization” by “homological localization.”

16. Almost derived categories. Almost rings and modules have been in-
troduced by Gabber and Ramero [10]. Here, we analyze their formal properties
and introduce their analogue for derived categories. Let us start with a piece of
notation. Given a class Φ of maps in some additive category C, we denote by

Φ⊥ = {X ∈ C | C(φ, X) = 0 for all φ ∈ Φ}

the full subcategory of objects which are annihilated by Φ.
Throughout this section we fix an associative ring R. We view elements of R

as maps R → R. Thus a⊥ for any ideal a of R denotes the category of R modules
which are annihilated by R.

The formal essence of an almost module category can be formulated as fol-
lows.

PROPOSITION 16.1. Let A be a full subcategory of a module category Mod R.
Then the following are equivalent.

(1) A is a Serre subcategory, and the inclusion has a left and a right adjoint.
(2) There exists an idempotent ideal a of R such that A = a⊥.
In this case, the quotient category Mod R/A is the category of almost modules

with respect to a, which is denoted by Mod (R, a).

Proof. The proof of the first part is straightforward; see for instance [1,
Proposition 7.1]. The second part is just the definition of an almost module
category from [10].

The following result is the analogue of Proposition 16.1 for triangulated
categories.

THEOREM 16.2. LetR be a full subcategory of a compactly generated triangu-
lated category S. Then the following are equivalent.

(1) R is a triangulated subcategory, and the inclusion has a left and a right
adjoint.

(2) There exists an idempotent ideal I ofSc satisfying ΣI = I, such thatR = I⊥.
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In this case, the left adjoint of the quotient functor S → S/R identifies S/R
with a smashing subcategory of S. Moreover, every smashing subcategory of S
arises in this way.

Proof. Let us denote by F:R → S the inclusion functor.
(1) ⇒ (2): The left adjoint E:S → R of the inclusion R → S is a smashing

localization functor since E ◦F ∼= IdR. It follows from Theorem 12.1 and its
Corollary 12.6 that I = Sc ∩ Ann E is an idempotent ideal satisfying ΣI = I and
I⊥ = R.

(2) ⇒ (1): Lemma 12.4 implies that I⊥ = R is a triangulated subcategory.
Let us replace I by the ideal J of all maps in Sc annihilating R. Thus J is a
cohomological ideal satisfying ΣJ = J and J⊥ = R. The proof of Theorem 12.1
shows that R is perfectly cogenerated. Thus the inclusion F:R → S has a
left adjoint by Corollary 10.2, since F preserves all products. Theorem 11.1
implies that R is compactly generated. Thus F has a right adjoint by the dual of
Corollary 10.2, since F preserves all coproducts.

Now let us prove the second part. Suppose first that (1) – (2) hold. Then the
left adjoint E:S → R of the inclusion R → S is a smashing localization functor.
It follows that the left adjoint of the quotient functor S → S/R identifies S/R
with Ker E, which is by definition a smashing subcategory.

Finally, suppose that T is a smashing subcategory of S. Let I be the idempo-
tent ideal of all maps in Sc which factor through some object in T . Then R = I⊥

is a triangulated subcategory of S, and the inclusion R → S has a left and a
right adjoint. It follows that the left adjoint of the quotient functor S → S/R
identifies S/R with T . This finishes the proof.

Let us complete the parallel between module categories and derived cate-
gories. Thus we consider the unbounded derived category D(R) of the module
category Mod R. Comparing the statements of Proposition 16.1 and Theorem 16.2,
we see that the formal analogue of an almost module category is a triangulated
category of the form

D(R, I) = D(R)/(I⊥)

for some idempotent ideal I of Kb(R) satisfying ΣI = I. We call such a category
an almost derived category.

Next we show that the derived category of an almost module category is an
almost derived category.

COROLLARY 16.3. Let R be a ring and a be an idempotent ideal such that
a⊗R a is flat as left R-module. Denote by A the maps in Kb(R) which annihilate all
suspensions of the mapping cone of the natural map a⊗R a → R. Then we have

A
2 = A and D( Mod (R, a)) = D(R, A).
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Proof. The quotient functor F: Mod R → Mod (R, a) has a left adjoint E, and
we have

(E ◦F)M = M ⊗R (a⊗R a);

see for instance [33, p. 200]. The extra assumption on a implies that E is exact.
Taking derived functors, we obtain an adjoint pair of exact functors

RF: D( Mod R) −→ D( Mod (R, a)) and LE: D( Mod (R, a)) −→ D( Mod R)

such that RF ◦LE ∼= IdD( Mod (R,a)). It follows that LE identifies D( Mod (R, a))
with a smashing subcategory R of D(R). Now observe that the mapping cone
Cone (a⊗R a → R) generates D(R)/R. In fact, the canonical map

R −→ Cone (a⊗R a → R)

is an isomorphism in D(R)/R since (LE ◦RF)R = a ⊗R a. Therefore A is the
exact ideal corresponding to R which is idempotent by Corollary 12.6. Moreover,
the localization functor RF identifies D(R)/(A⊥) with D( Mod (R, a)).

We know that the derived category of a ring is compactly generated. This is
no longer true for almost derived categories [18]. In deed, the telescope conjecture
expresses the fact that all almost derived categories are compactly generated.

COROLLARY 16.4. The telescope conjecture holds for the derived category D(R)
of a ring R if and only if every almost derived category D(R, I) is a compactly
generated triangulated category.

Appendix A. Epimorphisms of additive categories. An additive functor
F: C → D between additive categories is called an epimorphism of additive cate-
gories, or simply an epimorphism, if G ◦F = G′ ◦F implies G = G′ for any pair
G, G′:D → E of additive functors. In this section we characterize epimorphisms
of additive categories in terms of functors between their module categories. This
material is classical [25], but we need it in a form which slightly generalizes the
usual approach.

LEMMA A.1. Let F: C → D be an additive functor between additive categories.
Suppose the restriction F∗: ModD → Mod C is full and F is surjective on objects.
Then F is an epimorphism.

Proof. Let G, G′:D → E be a pair of additive functors satisfying G ◦F =
G′ ◦F. Clearly, G and G′ coincide on objects since F is surjective on objects.
Now choose a map α: X → Y in D. We need to show that Gα = G′α. The
functor G′ induces a C-linear map

γ: F∗D(−, Y) −→ (F∗ ◦G∗)E(−, GY),
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which is defined by

γC:D(FC, Y) −→ E(G(FC), GY), φ �→ G′φ

for each C in C. The fact that F∗ is full implies that γ = F∗δ for some D-linear
map δ:D(−, Y) → G∗E(−, GY). In particular, δX = γC for some C in C satisfying
FC = X. Thus we obtain the following commutative diagram

D(Y , Y)
δY ��

D(α,Y)
��

E(GY , GY)

E(Gα,GY)
��

D(X, Y)
δX �� E(GX, GY)

which shows Gα = G′α if we apply it to idY . We conclude that G = G′.

LEMMA A.2. Let F: C → D be an additive functor between additive cate-
gories. Suppose F is an epimorphism and bijective on objects. Then the restriction
F∗: ModD → Mod C is fully faithful.

Proof. Let M, N be a pair of D-modules. We need to show that the canonical
map

(F∗)M,N : HomD (M, N) −→ HomC (F∗M, F∗N)

is bijective. Given a family φ = (φX)X∈D of maps φX: MX → NX, we define a
D-module Hφ by

HφX = MX � NX and Hφα =

[
Mα 0

Nα ◦φY − φX ◦Mα Nα

]

for each object X and each map α: X → Y in D. Note that

(φX)X∈D: M −→ N

is D-linear if and only if Hφ = M � N.
To prove that (F∗)M,N is surjective, fix a C-linear map

ψ = (ψX)X∈C : F∗M −→ F∗N.

For each X in D put φX = ψF−1X . We have Hφ ◦F = (M � N) ◦F since ψ is
C-linear. Thus φ is D-linear because Hφ ◦F = (M � N) ◦F implies Hφ = M � N.
We have F∗φ = ψ and conclude that the map (F∗)M,N is surjective.

To prove that (F∗)M,N is injective, choose a non-zero map φ: M → N. Thus
Imφ �= 0. We have Im (F∗φ) = F∗( Imφ) �= 0 and therefore F∗φ �= 0. It follows
that (F∗)M,N is injective.
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LEMMA A.3. Let F: C → D be an additive functor between additive categories.
If F is an epimorphism, then F is surjective on objects.

Proof. Suppose there is an object D in D which does not belong to the
image of F. We construct a new additive category E which contains D as a full
subcategory and has one additional object, denoted by D′. Let E(X, D′) = D(X, D)
and E(D′, X) = D(D, X) for all X in D, and let E(D′, D′) = D(D, D). Now define
G:D → E to be the inclusion, and define G′:D → E by G′X = GX for all X in
D, except for X = D, where we put G′D = D′. Clearly, G ◦F = G′ ◦F but G �= G′.
Thus an epimorphism is surjective on objects.

LEMMA A.4. Let F: C → D be an additive functor between small additive
categories. If the restriction F∗: ModD → Mod C is faithful, then every object in
D is a direct factor of some object in the image of F.

Proof. The restriction F∗ has a left adjoint F∗: Mod C → ModD. The assump-
tion on F∗ implies that for each D-module M the natural map (F∗ ◦F∗)M → M
is an epimorphism. Now fix an object Y in D. Every module is a quotient of a
coproduct of representable functors. Thus we have an epimorphism

∐
i∈Λ
C(−, Xi) −→ F∗D(−, Y),

and applying F∗ induces an epimorphism

∐
i∈Λ
D(−, FXi) −→ (F∗ ◦F∗)D(−, Y) −→ D(−, Y).

Using Yoneda’s lemma, we see that Y is a direct factor of F(
∐

i∈Γ Xi) for some
finite subset Γ ⊆ Λ.

PROPOSITION A.5. Let F: C → D be an additive functor between small additive
categories. Then F∗: ModD → Mod C is fully faithful if and only if there is a
factorization F = F2 ◦F1 such that

(1) F1 is an epimorphism and bijective on objects, and
(2) F2 is fully faithful and every object in D is a direct factor of some object in

the image of F2.

Proof. Suppose first that F∗ is fully faithful. We define a factorization

C F1−→ D′ F2−→ D

as follows. The objects of D′ are those of C and F1 is the identity on objects. Let

D′(X, Y) = D(FX, FY)
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for all X, Y in C, and let F1α = Fα for each map α in C. The functor F2 equals
F on objects and is the identity on maps. It follows that F2 is fully faithful and
surjective up to direct factors on objects, by Lemma A.4. Thus (F2)∗ is fully
faithful, and this implies that (F1)∗ is fully faithful, since F∗ = (F2)∗ ◦ (F1)∗. We
conclude from Lemma A.1 that F1 is an epimorphism.

Now suppose F admits a factorization F = F2 ◦F1 satisfying (1) and (2). Then
(F1)∗ is fully faithful by Lemma A.2, and (F2)∗ is automatically fully faithful.
Thus F∗ is fully faithful.

The property of being an epimorphism is invariant under enlarging the uni-
verse.

LEMMA A.6. Let U and V be universes in the sense of Grothendieck [11, I.1],
and suppose U ⊆ V. If F: C → D is an epimorphism of additive U-categories, then
F is an epimorphism of additive V-categories.

Proof. Let G, G′:D → E be a pair of additive functors into a V-category E
satisfying G ◦F = G′ ◦F. We denote by F the smallest additive subcategory of E
containing the image of G and G′. Observe that F is a U-category since D is a
U-category. Thus the restrictions D → F of G and G′ agree by our assumption
on F. It follows that G = G′.

Appendix B. The abelianization of a triangulated category. Let C be a
triangulated category. In this section we discuss some properties of the abelian-
ization mod C of C. Most of this material can be found in work of Freyd [9] and
Heller [14] about the formal properties of the stable homotopy category.

LEMMA B.1. Let C be a triangulated category. Then the category mod C is
an abelian Frobenius category, that is, there are enough projectives and enough
injectives, and both coincide.

Proof. The representable functors are projective objects in mod C by Yoneda’s
lemma. Thus mod C has enough projectives. Using the fact that the Yoneda func-
tors C → mod C and Cop → mod (Cop) are universal cohomological functors, we
obtain an equivalence (mod C)op → mod (Cop) which sends C(−, X) to C(X,−)
for all X in C. Thus the representable functors are injective objects, and mod C
has enough injectives.

The triangulated structure of C induces some additional structure on mod C.
This involves the equivalence Σ�: mod C → mod C which extends Σ: C → C.
By abuse of notation, we identify Σ� = Σ. Using this internal grading, the cate-
gory mod C is (3,−1)-periodic [9]. Thus we obtain a canonical extension κM in
Ext3C (ΣM, M) for every module M in mod C. Under some additional assumptions,
this extension is induced by a Hochschild cocycle of degree (3,−1); it plays a
crucial role in [4].
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PROPOSITION B.2. Let C be a triangulated category.
(1) Given a pair M, N of objects in mod C, there is a natural map

κM,N : HomC (M, N) −→ Ext3C (ΣM, N)

and we write κN = κN,N( idN).
(2) Let

∆: X α−→ Y
β−→ Z

γ−→ ΣX

be a sequence of maps in C and let N = Ker C(−,α). Then ∆ is an exact triangle if
and only if the map γ induces a map C(−, Z) −→ ΣN such that the sequence

0 −→ N −→ C(−, X)
C(−,α)−→ C(−, Y)

C(−,β)−→ C(−, Z) −→ ΣN −→ 0

is exact in mod C and represents κN.

Proof. (1) Let M = Coker C(−,β) be a an object in mod C and complete
β: Y → Z to an exact triangle X → Y → Z → ΣX to obtain a projective
resolution

· · · → C(−, Y) → C(−, Z) → C(−, ΣX) → C(−, ΣY) → C(−, ΣZ) → ΣM → 0

of ΣM. The map κM,N takes by definition a map φ: M → N to the element
in Ext3C (ΣM, N) which is represented the composition of φ with the projection
C(−, Z) → M.

(2) Fix a sequence

∆: X α−→ Y
β−→ Z

γ−→ ΣX

in C and let N = Ker C(−,α). Suppose first that ∆ is an exact triangle. The
definition of κN implies that the induced sequence

ε∆: 0 −→ N −→ C(−, X)
C(−,α)−→ C(−, Y)

C(−,β)−→ C(−, Z) −→ ΣN −→ 0

is exact in mod C and represents κN . Conversely, suppose that ε∆ is exact and
represents κN . Complete α to an exact triangle

∆′: X α−→ Y
β′−→ Z′

γ′−→ ΣX

in C. We use dimension shift and replace both sequences ε∆ and ε∆′ by short
exact sequences

0 → Ω−2N → C(−, Z) → ΣN → 0 and 0 → Ω−2N → C(−, Z′) → ΣN → 0.
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These represent the same element in Ext1C (ΣN, Ω−2N), and we obtain therefore
an isomorphism φ: Z → Z′ which induces an isomorphism of triangles ∆ → ∆′.
Thus ∆ is an exact triangle.

Let us explain a more conceptual way to understand the natural map κM,N .
To this end denote by mod C the stable category of mod C, that is, the objects are
those of mod C and

HomC (M, N) = HomC (M, N)/P(M, N)

where P denotes the ideal of all maps in mod C which factor through some
projective object. Taking syzygies in mod C induces an equivalence

Ω: mod C −→ mod C

since mod C is a Frobenius category. Moreover,

HomC (ΩnM, N) ∼= ExtnC (M, N) ∼= HomC (M, Ω−nN) for all M, N and n > 0.

The map κM,N induces a natural isomorphism

HomC (M, N) −→ Ext3C (ΣM, N),

and composing this with the natural isomorphism

Ext3C (ΣM, N) −→ HomC (ΣM, Ω−3N)

induces a natural isomorphism between

Σ̄: mod C −→ mod C and Ω−3: mod C −→ mod C.

Note that the natural map κM,N can be reconstructed from the natural isomorphism
Σ̄ ∼= Ω−3.

Added in Proof. The paper [30] of Neeman and Ranicki which inspired the
present work has been substantially revised and is now published with a slightly
different title: Noncommutative localisation in algebraic K-theory. I, Geom. Topol.
8 (2004), 1385–1425.
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