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§ 0 Introduction

The s-cobordism Theorem provides a strong tool for the classification of
manifolds. The basic idea of its application to the classification of mani-
folds is the following: Given two closed manifolds M and N one first has
to decide whether they are bordant by a manifold W with OW =M+ N.
Then, in a second step one tries to transform W into an s-cobordism w'.

If this is possible then, if dimM >4, M and N are diffeomorphic.

More precisely one asks whether in the bordism class of W rel. boundary
there is contained an s-cobordism. As by the Morse Lemma every bordism is
the union of a sequence of addition of handles [26] which means that

W is transformed into w' by a sequence of surgeries it is natural to study
surgical modifications: Embed " x0™ 7" into W (dim W =m =5), cut it

out and replace it by Dr+1 xSm'r'1. This is very natural as for r< (m-1)/2
it has the same effect for the homotopy groups of W of dim £ r as attaching
a (r+1)- cell: the element represented by s x { 0} is killed. On the other
hand W 1is an s-cobordism if and only if the homotopy groups r,(W,M) and
r . (1,N) vanish (by Poincaré duality it is enough to repuire this for

# & "'/2) and the Whitehead torsion vanishes.

Thus one tries to kill T, (W,M) and T.(W,N) for *.s.m/2 by a sequence

of surgeries. At least for ¥-<:(m-1)/2 the facts indicated above imply

that one can do it if certain informations are at hand: Given &e Trr(w,M)
it must be possible to represent ® by an embedding s xp™" C—3u or
equivalently that ©& is in the image of 1Tr(W) —_> 1Tr(w,M) and that

there exists a representative B e'1Tr(w) which has stable trivial nor-

mal bundle.



The fundamental idea of Browder [47 and Novikov &97 is to prepare these
informations by the following data: Let f : W—> B be a map whose restriction

to M and N is a simple homotopy equivalence and which is covered by a bundle

map f : V(W) —> § where § is some stable vector bundle over B.We call

(f,f) a normal map and the restrictions to M and N simple normal smoothings.
Iy -1
Then we obtain a splitting W f> B (F M) > M of the inclusion M — W

leading to an isomorphism between Ker f, : TTr(W)-—%>7Tr(B) and 1rr(w, M)
and similar to T (W,N). On the other hand elements in Ker fe have trivial
normal bundles. Thus one can kill Ker f, for r ¢:(m-1)/2 by a sequence of
surgeries leaving the problem of killing the kernel in dim [m/z? ([67 ,d¢1).
In general this kernel can't be killed but there are obstructions which

in the 1-connected case considered by Browder and Novikov are rather simple,
given by the signature and Arf-invariant and in the non-simply connected

case studied by Wall [44)more complicated invariants in his L-groups.

This approach seems to be perfect for the classification of manifolds
especially in the reformulation of Sullivan in terms of the Spivak normal
bundle [3%] . But even if there are a lot of famous results obtained with
this method the applications to the problem of deciding whether given
manifolds M and N are diffeomorphic are rather limited. One reason is that
the approach of Browder and Novikov requires some data which are not easy to
obtain: First one has to decide whether M and N are homotopy equi valent,
then one has to choose a homotopy equivalence f and a bundle map'? into

a Poincaré complex B (=M) and to extend it to a bordism W. Finally one has
to compute the surgery obstruction of W in Lm. And if this is non-trivial
one has to repeat this process by changing all data (f,f) and W. 0 ne can
only conclude that M and N are not diffeomorphic if the surgery obstruction

is non-trivial for all choices.




If we look againat the informations collected n the approach of Browder
and Novikov to guarant that one can kill 7Tr(w,M) and 1Tk(W,N) for
r £ (m-1)/2 we see that it is not necessary to require for the map
f : W—> B that the restrictions to M and N are homotopy-equivalences, A
[(m-1)/2] -equivalence is enough as this also implies Ker Trr(W) —4>1Tr(B)

isomorphic to 1rr(w,M) for r <.(m-1)/2.

T.(f)-0
A map (F,F): (M, »(M))—> (8, §) is called a normal k-smoothing in (B,§) # r c&+f

if f is a (k+1)-equivalence. If (f,F): (W, ¥(W)) —> (B, §) is a normal
map such that the restriction to 9 W = M + N are normal k-smoothings of
M and N and if k+1 2 [(m-I)/z] the remarks above imply that we can
kill 1Tr(w,M) and 1T}(N,N) forr < (m—1)/2. Qur aim is to find an ob-
struction for killing these homotopy groups for r = [nvz-]. As for

k <« m the information of a normal k-smoothing is weaker than a normal
smoothing one expects more difficult obstructions. But this is not the
case if k g:(m--1)/2 with one slight modification. As we don't have the
notion of a simple normal k-smoothing we have to put some extra Whitehead

grosp timilar foa
torsion information into the obstruction sitting in a“Wall group denoted

as L;’1:(1r1(8), w1(§ }). This is related to the ordinary Wall group

L; (1r1(B), w1( f)) by an exact sequence (see § 4):

0—> Ly (W) —> L3’ T (W) —>un( ).

If m = 2n is even and k = n the obstruction sits even in a quotient group
of L>>T (ar,u). Let S = S(M) be the subgroup of A = z[w )] repre-

senting the elements u(Sn), where S" is an immersed sphere in M x I re-



presenting an element of Ker 1r'1(M)-;—) frn(B) and umnfhe self-inter-
section number in Q@  ~ (as defined in [417 , § 5). Then we define
L;’z.(1r,w,5) as thé-;loup of stable isomorphism classes of (-1)n-quadratic
forms {A ,u) where u has values in A/c. In the case k = n the obstruction
sits in L;’t'(1r1(8), w1(§ ), S(M)). A similar group was introduced by

Bak L[1] for purely algebraic reasons. Our results show that such groups

are also useful for the geometry.

If k = [(m—1)/2] -1 the obstruction behaves as expected and is formulated
in terms of a very complicated abelian monoid denoted as l;’t (T ,w) or

Itmibar

1;’t (m ,w,5) if m is even and S < AYas above.

It is surprising that for m = 2n+1 odd this obstruction disappears if we

allow stabilization of M and N by connected sum with (Sn xSn)ls. If
]

M #r (S xS") is diffeomorphic to N # r (S xS") we call M and N

stably diffeomorphic. So, the result is in this case that M and N are

stably diffeomorphic if and only if they are (n-1)-normally bordant (Theo-
rem 2.1) and the question of a stable classification is reduced to homoto-
py theory, especially stable homotopy theory. In the moment, this is the

case with the most applications.

As it is comparatively easy to decide whether M and N are stably
diffeomorphic one would like to solve the cancellation problem for connec-
ted sumwith (5" xs™)'s. 1f £: M # r (" xs") —>N # r (s" xs") is a diffeo-
morphism o we denote the composition

~J/

AT = (r(s” xs) —> T (r(s"xs™)) > 7 (N (SMxS")) 57T (r(8"xs™) )= A



by J}(f). If \9(f) is an isometry with respect to the hamiltonian form

( A,u) on j\zr, B (f) represents an element in Lzﬁ:a ( n’1(M), w1(M)).

If this vanishes then M and N are diffeomorphic (s-cobordant if n=2)
(Theorem 3.1, see the reformulation at the end of § 4). It is perhaps inte-
resting to note that the obstruction ﬂ} f) occurs naturally as an isometry
whereas the obstructions for W in L2n+1 (7, (B), w1(§ )) considered '
above is better understood as a formation. In general the cancellation

problem of s" xs" seems to be very difficult even if L2n+1 (7 (M) W, (M))

vanishes (compare [21]).

It is natural to ask for a given (B, § ) whether there exists a normal
k-smoothing in (B, f ). If B is a n-dimensional CW-complex (n 2 5)and

k = n this is the questin of the existence of a closed n-dimensional mani-
fold homotopy equivalent to B. In this case B has to be a finite Poin-
caré-complex. If we only look for a normal k-smoothing we only require

k-partial Poincaré duality: There exists eHn(B;Et) called a k-partial

fundamental class such that © & : Hn'r(B; K )-———)Hr(B; K ) is an isomor-

phism for r < k+1 and n-r < k+1, surjective for r=k+1 and injective for
r=n-k-1 (this definition shouldn't be mixed with partial Poincaré complexes
in the sense of [13] where duality between the low and high dimensions is

required). Furthermore we require that B has finite ([nﬂf:+ﬂ‘-skeleton.

Then if (M,f,F) is a map into (B, f ) such that f, [M] = & is a k-partial
fundamental class (this replaces the degree 1 condition and (M,f,T) is
then called a k-admissible map) there is an obstruction in an abelian group
a monotd

B 8), w,(§)) for k > [n/,] and in 1, (B), wy(§)) for
[n/z] which vanishes if and only if (M,f,f) is bordant to a normal

k-smoothing. If k = ["/2] -1 there is no obstruction. If B is a finite



Poincaré complex and k=n we have the original problem of Browder, Novikov and
Wall and obtain an invariant in LE (T 1(8), w1(§ )). In general, for kK< n,
as we only assume that B has finite ([nji)+4) -skeleton some finitees ob-

. ) . . . . . h
struction is contained in the invariant in ﬂﬁ or lﬁ(

If one applies the approach described above to the question whether M-

and N are diffeomorphic the problem occursto find a (B, f ) to compare

M and N in. This should be universal in the sense that if M and N
have a handle decomposition with same k-skeleton then both manifolds should
admit a normal k-smoothing in (B, f ). The right answer to this problem is
to consider the k-th step of a Postnikov decomposition of the normal GauB

map IJM. This is a commutative diagram

by
//T/}7 l’ b where p: B —> B0 is a (k+1)-co-connected fibration

M — BO
M

(homotopy groups of the fibre vanish in dimension 2 k+1) and S;M is a

(k+1)-equivalence. This fibration B —3 B0 is uniquely determined by M

and k and denoted by Bk(M), the normal k-type of M. If we-restrict B to
BO(N), N >> 2n, we can take for f the pullback of the universal vector
bundle over BO(N). But instead of working with the bundle f and pairs
(f,F) one can equivalently work with homotopy lifts H;M of Yy (see the
discussion in §1). We will wark with this notation which seems to be very
natural in our context. If one prefers one can everywhere replace 37M by

a pair (f,f) or a pair (f, &), & a framing of VM -f*f . In the language
of lifts a normal k-smoothing in B, B —>B0 a fibration,is a homotopy lift

v M of the normal GauB map into B which is a (k+1)-equivalence. We de-

note the set of normal k-smoothings in B by ngx’ With this notation
1



the classification approach described above can be formulated more syste-
matically (see Theorem 7.3). We also have relative versions for manifolds

with boundary.

Given a fibration B —> B0, we denote the set of diffeomorphism classes
(s-cobordism classes, if the dimension is 4) of n-dimensional manifolds M
admitting a normal k-smoothing in B Dby m?\,K' The difference between
stxand ]ﬂﬁmis measured by the group of fibre homotopy self equivalences
of B, Aut (B,).This acts on Nsﬁxby composition and the orbit space is iso-

morphic to mﬁK(Pmposition 7.4),if B —BO is (Kea)— co-connecteod .
!

With these notations the principle of classifying manifolds with our approach
can be formulated as follows. Given M and N decide whether they have the
same normal k-type B (for some k 2 ["/2] -1),cheose normal k-smoothings 'V'M
and —V'N in B and decide whether (M, ¥ y) and (N, V) are contained in

the same orbit under the action of Aut (8,p).

This is perhaps a good place to explain the basic philosophy of the approach.
In a way we classify manifolds with prescribed k-skleton (given by a nor-
mal k-type B). If k = [n/z] -1 (what we always assume) duality phenomena
should control a lot of informations about the manifolds which have this
k-skeleton. For instance Poincaré duality is the explanation why the ob-
struction for replacing a bordism W between M and N by a s-cobor-
dism is contained in the same group if only k 2 [n/z] .

P
Our results can be considered as a generalization of ([41],55 and § 6).
All basic ideas follow from Wall as well as from Browder [57] and Novi-

kov [29] and, of course, from Kervaire and Milnor [15] . The experts will



notice some differences, for instance in the proof that the surgery ob-
structions are bordism invariants which in the evea{;lb{%\;‘;;.efollows easily
from our Theorem 2.1. I have tried to give a rather self-contained presen-
tation meaning that it should be readable if one knows the basic ideas of
surgery below the middle dimension as described very well in Browder's
book ( ££3, § IV, 1). Another information one has to take from the lite- '
rature is the definition of the intersection - and self intersection forms
contained in ( 441 , § 5 or [347], § 5). I have collected all necessary
iiformations about the obstruction groups (monoids) in § 4 but for some

proofs I have referred to [33]. The basic definitions and properties of

Whitehead groups should be taken from [22] .

If one generalizes a general theory this needs a justification: Some

problem must be solved with it or it must give more insiqh{into the topic.
I hope that a little bit both is true. Some applications of this approach
had been obtained before I had formulated it in this generality. For in-
stance my computation of the bordism group of diffeomorphisms can be con-

sidered as an application of this”approach. I have collectédAthisvand
some other applications in § 8.

The paper is organized as follows. After introducing the basic notations
and definitions in § 1, we prove the stable classification Theorem 2.1

(up to connected sum with s" xS"|s) in § 2. This is the shortest way to
a result which allows already some interesting applications. On the other
hand the proof is a good exercise for the methods used to produce s-cobor-
disms including the control of whitehead torsion. § 3 deals with the ques-

tion of cancelling (Sn xsn)'s and brings in the odd Wall obstruction groups
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in a very natural way. §§ 5 und 6 contain the main technical results sepa-
rately for even- and odd-dimensional manifolds. Finally in § 7 the results
are collected in form of exact sequences and the relation between normal

k-smoothings and manifolds of type B is pro ved.

I began to think about this approach during a stay in Aarhus, summer 1981.
I finished it more or less when I visited the Max-Planck-Institut / SFB in
Bonn from September 1981 to September 1982. 1 would like to thank both
places for the invitation as well as the mathematicians there for several
fruitful discussions, especially with Ib Madsen. In the winter term 1982/83
and in the summer term 1983 1 gave a course about it in Mainz. I would like
to thank my students and assistents, especially Stephan Stolz, for their

interest and stimulating contributions.
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§ 1 Normal k-smoothings

We will formulate our results in the smooth category. Everything works
with appropriate modifications over PL or TOP (replace the differentiable

normal bundle by the corresponding PL- or TOP-bundles).

Let p: B—3B0 be a fibration s.t. B is connected and has the homotopy of
a CW-complex. Consider a n-dimensional manifold (M, 9M) embedded into

N

(R,x RV, {0} xRY), N >>2n where aM meets {0} xR’ transversally.

normeal
Denote the corresponding”GauB map by Vy- We are going to study homotopy
lifts i of Wy
VA B
BN
M ——— BO
R(Y
If (M, 3M) is in a different way embedded into (IR+ xﬂy, {0} leN) we
can join the two embeddings by an isotopy. The isotopy leads to a homo-
t
topy between Yy and VM, the GauB map corresponding to the second em-
bedding. If one lifts this homotopy extending a given lift i7M and re-
]
stricts to Mx 1Y one gets a homotopy lift of )IM. As two isotopies
between two embeddings are themselves isotopic one obtains a map from the

homotopy lifts of ‘VM to the homotopy lifts of VM which is bijective.

A B-structure on M is an equivalence class of such homotopy lifts where

I
two lifts of " and vy are equivalent if they correspond to each other
under the map defined above. We will always consider a B-structure as given

by a representative SJM. A pair (M, i?M) is denoted as a n-dimensional

B-manifold.
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The restriction of a B-structure VM to the boundary defines a B-mani-
fold 9(M, VM): =(9M, _V_MI'«)M)' A B-structure VM on Mx {o} ¢ MxI
(straighten the angle if M has a boundary ( [97, p.9)) can be exten-
ded to MxI. Its restriction to Mx {1} is denoted as the inverse of

Yy : - V- For (M,- V) we write - (M, V).

If (M, -ﬂM) is a B-manifold and f: N—>M a diffeomorphism then f in-
duces a B-structure on N : i VM' Two B-structures (M, '}"M) and (N, ?N)

are diffeomorphic if there exists a diffeomorphism f : N —> M with
f"‘

-{'M = :'TN' If £ :3(M, VM) —>N, -VN) is a diffeomorphism then there
is a B-structure on M Uf N extending the given B-structure on M and N.

We write for this B-manifold: (M, _V'M) U (N, TN).

Two closed B-manifolds (M, ;M) and (N, —JN) are called B-bordant if there
exists a compact B-manifold (W, Vw) with OW =M+ N and Vw |M= VM
and _\7w l NT T VN‘ The set of these bordism classes forms a group de-

noted by S?E (For more details compare [3%7 ) [23J ).

If there exists a B-bordism (W, —ﬁw) between (M, VM) and (N, -{;N) which
is a s-cobordism (i.e. the inclusions M —> W and N—>W are simple homo-

topy equivalences [2 $3) then (M, VM) and (N, VN) are called s-cobordant.

A n-dimensional B-manifold (M, VM) is called a normal k-smoothing in B

if ¥ M is a (k+1)-equivalence. The set of s-cobordism classes of n-dimen-

sional normal k-smoothings in B is denoted by NSan. There is an obvious

map

B ___ s OB
NS,k SEn )
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One can also introduce relative versions. Let (V, 37V) be a B-manifold. A

relative B-manifold is a triple (M, VM,f) where f: (3M, T’IJM) — (v, V)

is a diffeomorphism. Two compact relative B-manifolds (M, §5M,f) and

-—

(N, 'vN,g) are called B-bordant rel. boundary if there exists a B-manifold

(W, vw) with 8N=Mg\_)1f N, leM= vMand Vw|N=-vN. If in
addition W is a s-cobordism we call (M, §7M) and (N, V}“ s-cobordant rel.

boundary.

Given a closed (n-1)-dimensional B-manifold (V, :;V) we denote the set of
B-bordism classes rel. boundary of compact relative B-manifolds by g}éB,V)
and the corresponding set of s-cobordism classes rel. boundary of compact

relative normal k-smoothings by NSéBEV). Again we have a map

If kK 20 and (M,'V'M) a normal k-smocothing in B then M is orientable
if and only if p'* W, = 0 in H1(8222), where Wy € H1 (BO;Z@) is the first
Stiefel-Whitney class. Or equivalently if p*( Y-BO(N)) is orientable,

the stable universal vector bundle. We will alWays assHMéwthat B has'a

base point * and that P*(X‘BO(N)) is oriented in * , called a local orien-

tation of B. Furthermore we will equip all manifolds with a base point

(normally without special mention) and require all maps into B to be base

point preserving. Thus a B-structure induces a local orientation on M.

One further convention: We will always assume that B 1is connected. For

our purpose, to classify manifolds, this is no real restriction as one can

study the components separately.
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Remark 1.1 : A Postnikov decomposition of a map f : X—> Y between

connected CW-complexes is a diagram

U €& -

k-1

-
«— W &—

-~ &= €.

v

X >

where B, —>B, 4 is a fibration with fibre a (Kr,,k) and X —> B, 2

(k+1)-equivalence (compare {31, Theorem 5.3.1).

Given another Postnikov decomposition

~

then the fibrations Bk-——> Y and B'k —>Y are fibre homotopy equivalent

O & -0

k-1

e &—

|
Y

(this follows from [3], Corollary 5.3.8).

Thus we obtain for connected M.
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Lemma + Definition 1.2 : Let Bk-——> BO be a (k+1)-co-connected fibration, i.e.

Trr(F) = 0 for r>k, and we assume that B, has the homotopy type of a

5%

i) A diagram M -1;—4> BO is a normal k-smoothing if and only if it is

CW-complex.

M
the k-th step of a Postnikov decomposition of M —>B0.
Y,
M

ii) The fibre homotopy equivalence class of the fibration Bk-——%>BO is an
invariant of M. We call it the normal k-type of M. Notation: Bk(M).

o~
The case of k-€onnected fibrations is most interesting as it is the univer-
sal situation.

It is sometimes useful to work with the following equivalent description
of B-manifolds (normal k-smoothings)

For a fibration B —B0 one can consider the sequence of fibrations
B| BO(N) —35BO(N). A B-manifold (normal k-smoothing) can be described as

a compatible sequence of pairs (fN,°<N), N >> dim M, fy: M—> BIBO(N)
amap and X, a trivialisation of ¥\ (M) - fN* X(BIBO(N))’ where V(M)
is the N-dimensional normal bundle of M and X'(B |BO(N)) is the pullback
of the N-dimensional universal bundle. As the sequence (fN, NN) is compatible
with the diagram B IBO(N) —> B |BO(N+1)

l J

BO(N) ———> BO(N}4)

the maps fN fit together to a map f: M—>B = lim B IBO(N+1)' For a

N—> 00
k-normal smoothing we require that f is a (k+1)-equivalence.

¥ . .
The trivialisation &, of vN(M) - fN f(B\BO(N)) is equivalent to an

isomorphism VN(M)-——} fa 3’(8 lBO(Ni)WhiCh itself is equivalent to an
explicit homotopy between the maps )h and p o f. If one lifts this
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homotopy and restricts to the map covering pef one gets for each N>»n a 1ift
Vy M-—)BIBO(N) . These 1ifts fit together to a 1ift Yy : M —B which is

a B-structure on M (a normal k-smoothing). We normally will work with the defi-
nition of B-manifolds and normal k-smoothings in terms of homotopy 1ifts of

the normal GauB map but sometimes it is more convenient to think of it as a

sequence (fN,(xN)

Example : Let X be a n-dimensional Poinvaré complex and ¢ a stable vector
bundle over X or equivalently a map § : X —3B0. Consider the n-th step of

a Postnikov decomposition of f .

P

X ——————? B0

As f is a (n+1)-equivalence we consider X as the n-skeleton of a CW-decom-

position of B and € as an inclusion.

Let (M,:QM) be a n-dimensional normal n-smoothing in B. Then we can modify

—V-M by a homotopy into a map g, SO that im gcX. Then g : M—>X is a

homotopy equivalence or a smoothing of M in X.

Thus we obtain a map NSE n —_— Sh(X), where Sh(X) is the set of smoothings.
(h stands for homotopy equivalence. If one considers simple homotopy equiva-

lences, the set of smoothings is denoted as S>(X).)

B (xf) B, (%"

!
A bundle isomorphism ™ : § ——>§ induces a bijection NS ———)NSn n

so that the diagram
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NS (x ) \ Nsnnr(]x,ﬁ)

\/

commutes. Especially the group of bundle automorphisms of § acts on

B

Nsn,n

. This group is isomorphic to {X,O} (§ is a stable vecto¥ bundle),

SO [X,d] acts on NSE n and we have a map
B /ry q—YSM(X)

n,n ’[X,0}
defined for the isomorphism class of f .

Given a smoothing g : M —>» X one obtains a normal n-smoothing in Bn(X,(g'1)*y(M)).

Thus the map

(X,§)
?ek\(‘)}(ﬁ N /[X J ——>S )

is surjective. It is not difficult to show that it is also injective.

Lemma 1.3 : The construction above gives a bijection

B, (X.§)
e gy I

Thus our program can be considered as an extension of the results of

Browder, Novikov and Wall about smoothings of manifolds.
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§ 2 Stable classification of normal (n-1)-smoothings on 2n-manifolds

Two zn-dimensional manifolds M an M' are called stably diffeomorphic if

there exist r,s eNs.t. M # ro(s" x s ")y 2 M # s-(S" x s"). This connected
sum is well definedeven if M an M' are non-oriented as s" x s" admits an .
orientation reversing diffeomorphism. The difference r-s is measured by the
Euler characteristig. If a diffeomorphism f : 9M——>9M' is given we say

be
f can“stably extended if there exists a diffeomorphism M # r*(Sn xS T‘)———)

M # s(S" x S") extending f.

We want to introduce this stabilization process for normal (n-1)-smoothings.
Let B—> B0 be a fibration of pointed spaces. A B-strucutre on N ,Vsn .
is called elementary if (Vsn)*[s"] =0 in 1rn(8). An elementary B-structure
will be denoted as (Sn,b(). (Warning:& is not uniquely determined by

this property. The differnt &'s correspond to framings on Sn.) The compo-

m+1 m+1

sition s" x D — " —9‘+B is a B-structure on s" x D . We denote its

restriction to the boundary by (s" x M ox).

Given two B-manifolds (M,—V'M) and (N,VN) one can form their connected sum
— — is
denoted by (M, VM) 4F (N, VN). This®well defined in terms of the local orien-

tations on M an N (see §1).

Given a 2n-dimensional normal smoothing (M, VM) in B and a B-mani-

fold (Sn x S7, ) as above, the connected sum (M,VM) # (Sn x ST, ) is
again a normal (n-1)-smoothing. We say (M,-y'M) and (M',VM,) are stably s-
cobordant if there exist elementary B-structures 0(1,...,O(r and 131,..., BS
on S" s.t. (M,VM) # (s" x Sn,°&1)# s # (ST x S™, ) and (M‘,VM.)

# (" x S",$1)# o #(S" x 8", B.) are s-sobordant.
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By the s-cobordism Theorem [44] (the stable s-cobordism Theorem, if
n=2 [32 7] ) stably s-cobordant manifolds are stably diffeomorphic.
Given a closed (2n-1)-dimensional B-manifold (V, ifv) we denote the set of
stable scobordism classes of relative 2n-dimensional normal (n-1)-
smoothings in B by
(B,V)
NSt,,

As (S" xS", %) bounds (s" an+4, &) it is zero bordant. Thus we have a map

(B,V) SB(B,V)
NSth 2n
There is an obvious condition for the existence of a normal k-smoothing of

B namely B must have a CW-decomposition with finite (k+1)-skeleton.

Theorem 2.1: If B —>» B0 is a fibration of pointed spaces and B has up

to homotopy equivalence a CW-decomposition with finite n-skeleton

B,V)

5 (B,V)
n gz2n

(
NSt

is a bijection for n 2 2.

Remark 2.2: If one has two 2n-dimensional simple smoothings in sS(X),

X a Poincaré complex: f: M —> X and g: N —> X, which are normally cobor-
dant then one can deduce from results of Wall [41] that they are stably
diffeomorphic, if n = 3. The argument is the following. In ( [44] , Theorem
6.5) Wall proves that the bordism is rel. boundary bordant to a bordism W
of the following form. w1 = N1LJ w2 with w1 =Mx I with r trivial n-

handles attached and w2 = N x I with r trivial n-handles attached. Thus
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M#r(S“xSn)¥w1ﬂw2’é’N#r(SnxSn).

Theorem 2.1 shows that even under far weaker conditions and also for n=2,
namely if one has two 2n-dimensional normal (n-1)-smoothings in (B,V) which
are bordant in 922n (B,v), then M and N are stably s-cobordant
and thus . stably diffeomorphic. (For n=2 one has to apply the stable
s-cobordism theorem [323J ). It is perhaps a little bit surprising that

no L-group like obstructions occur at the stable classification of manifolds.

Proof of Theorem 2.1: A) Surjectivity.

As we will use this and the corresponding odd-dimensional statement later

again we will formulate it as a seperate Lemma.
Lemma 2.3 : Suppose that B has finite [n/Z]-skeleton. A B-manifold (Mn, ')'J'M)

is bordant rel. boundary to (M', Vy,) s.t. Yy is a [n/2} -equivalence.

Proof :

The idea is'simple;‘ Given a relative n-dimensional B-manifold (M, ?M) we
! —
first replace it in its bordism class by a manifold (M, \lM') such that

'Vhf is surjective in homotopy groups up to dimension n/x. Then we kill the

kernel by surgery.

For the first step it is enough to find a closed zero-bordant B-manifold
which is surjective in homotopy up to dimension n/2. Take the connected sum
t

with it to obtain (M , 37M'). tet X bea finite [} skeleton of B. Thicken

X up to a compact n+1-dimensional manifold NX so that
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is homotopy commutative. This can for instance be obtained by replacing cells
of X by handles and choosing the framings so that the diagram above bef

comes homotopy commutative (or use [44] ). As X —> NX is a homotopy
equivalence, NX admits a B-structure, in fact a normal ([9-1)—smoothing as

X —>»B is a[g]-equivalence. Then @NX is the desired zero-bordant B-mani-
fold. For 9NX is a normal([§]~1)-smoothing as JINX—>NX is a m-equivalence.

For the second step we assume now T'M induces surjections 1rr(M) —>1rr(B)
for r €[rya}For r <[g,]we can kill the kernel by a finite sequence of surge-
ries. More precisely we assume inductively that in addition 1rr(M)-—-)1rr(B)

is an isomorphism for r< m. Then if m <Lg]we have a short exact sequence
2

0 —>T (B,M) ——>1rm (M) ———)'n'm (B) — 0.

m+1

By the Hurewicz isomorphism one knows that

m+1

as A -modules where A= Z ['n'1(B)] is the group ring and H (B,M; A )

m+1
is the ordinary homology of the universal cover with (left) /A -module struc-
ture given by the covering transformations. As B has finitelgl-skeleton the

A -modul H (B,M; A) is finitely generated. Surgery on a set of genera-

m+1
tors kills the kernel of (M) —> mw (B) (See [516I1.1). This leads to a
B-manifold (M, V') which is B-bordant to (M, V) such that
TFr(M')-———>1rr(B) is an isomorphism for r< m. As m <[gja general position
argument shows that the maps Trr(M')-—-) -n-r(B) for rélg_]are again surjec-

tive.
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B) Injectivity

Let (N2n+1, Siw) be a zero bordism of M Y, N. Then 1rr(w) ——+>1q,(8) is
surjective for r £ n. By Legn»1a.2Fg fwe can kill the kernel for

r «n by a sequence of surgeries in W. Thus we can assume that 'Vh,ﬂv——éB

is a n-equivelence.

To obtain a s-cobordism we have to kill 1rn(w,M) and 1Tn(N,N), so that the
resulting homotopy equivalences M —> W and N —> W are simple. For this we

use the following modification of subtraction of trivial handles: Consider

an embedding sn xD"+1C—>w. Join 9(s" an+1) and M (or N) by an embedded

n+1) and M (or N) transversally in

2n

thickened are I x p2" meeting a(s" xD
{0} «x 02" and {1} x 02" Remove S" x0™' and 1 x D" from W and
straighten the resulting angles (compare [97], p. 9). The resulting mani-
fold w' has boundary Q(N)#Sn xSn, where the connected sum takes place in

M (in N). If s" x {0} — W —>»B is null-homotopic then the B-structure

efemenlery
on S" xD"J'1 is given by some B strucueton s" as described at the beginning
}
of this §. Thus in this case W 1is a bordism befween
M, Ty # (" xs", ) end (N, V)

(or with M and N interchanged).

Thus we are finished if we can find a finite sequence of such disjoint em-
beddings sn an+1 c—3W with S" — W —8 null-homotopic and s.t. if
we remove these trivial handles joining them either with M or N the

resulting manifold is a relative s-cobordism.

Again as in part A) the A -modules 1rn(W,M) and nh(w,N) are finitely gene-

rated. Choose a set of generators of 7rn(N,M). From the exact sequences
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7Th+1(B’w)

SN

T M) — W) — W M) —> 0

~

T (8)

l

0

and the fact that 'nh(M) ———)1rn(B) is surjective it follows that
1rn+1(B,w) ————>7rn(w,M) is surjective. Thus we can find counterimages of
the generators of 1rn(w,M) in 1rn(W) mapping to zero in "h(B)' Thus
they can be represented by disjoint embeddings (Sn an”)i C W. Join them

]
with M and remove them to obtain W .

It is obvious that Vw. = Vw |w' : w'-——)B is again a n-equivalence.

By Hurewicz isomorphism and excision we have isomorphisms ™ (N' M#r(S"xS"))
T (0 Mir(s™xsTh AL) 2 H (WML ((S o™ 1) wIx0?");4) = {0}, as the
(S xD"”)i form a set of generators of Hn(N,M;Z\) (Consider the long exact
homology sequence of the triple).

MN\ avhh-vy coefpaenis K
Poincaré duality (compare [44], Theorem 2.1) implies that H (w N; K)

2 H2n+1'r(N',M#r(S xS K) = {0} for r >n. On the other hand it vanishes
for r < n by assumption. Thus Hn(w',N;l<) is the only possibly non-vani-
shing homology group and consequently is a stably free A-module ( [44],
Lemma 2.3),1f K=A.

It is easy to see that if we add to our system of generators of 7rn(w,M)

n+1

used before to kill this group a set of spheres s xD sitting unlinked
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2n+1 n+1

in a ball D CW then for each S" xD we enlarge Hn(w',N;JL) by direct

1
sum with A . Thus we can assume that Hn(w JN;A) is a free A -module.

1
If one distinguishs a basis of Hn(w ,N;l\))the Whitehead torsion of (w',N)
takly
is defined ([28), P-3%3 ). Obviouslj}bne can always choose a basis so
that the torsion vanishes. Following Wall such a basis is called preferred ‘

( [44]3, §2).

S
As before we can represent such a preferred basis byYdisjoint embeddings
L}
(Sn xD"+1)i<: W mapping to zero in 1rn(B). Join them with N and re-

move the union of them denoted by U to obtain W .

We claim that W is a s-cobordism between M#r(s" xS") and N#s(s" xs").
This is equivalent to: 7r1(M#r(S" x3")) — 1r1(w') and 1r1(N#s(Sn xs™) ) (w")
are isomorphisms, H*(w",N#s(Sn xS");A) = {0} and the Whitehead torsion

T (W' N#s(S" xS")) vanishes (compare (3¢7,4.24.

The first condition is obviously fullfilled. For the second and third we
first remark that excision induces an isomorphism

Hv(w",N#s(Sn xs"):A) —> H (W ,NUU; A ) and that the Whitehead torsion
of both pairs is the same if they are acyclic. We sonsider the homology

sequence:

..... s H NG A) S H(NVUNA) —

Hn(w',N;jl ) —» Hn(w',N UU; A) —» ...

By assumption the only non-vanishing homology groups of (N UU,N) and

(w',N) are in dimension n, when both modules are j\s. A basis of
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H (N U U,N; A) is given by the (S" x {0} ); which is a pref erred basis
(the Whitehead torsion vanishes). By assumption the image of these basis

elements forms a preferred basis for Hn(w',N;j\ ).

ALl this implies that H (W ,NU U; A) = {0} and that the Whitenead tor-
sion of the acyclic complex given by the exact homology sequence is 0. By
the additivity formula for the Whitehead torsion ([zg],ﬂanmia this implies:
T (W Ns(s" xs")) = T N UU) = THLN) - T(NUUN) = 0.

qg.e.d.

By Theorem 2.1 there is raised the following natural question: Can one intro-
duce a geometrically defined group structure on NStgn such that the map

into g?gn is a group isomorphism?

Let X be a fixed finite (n-1-skeleton of B or equivalently consider a
fixed (n-1-equivalence of a finite CW-complex X of dimension n-1 to B.

If 1FM : Mzn-——>B is a normal (n-1)-smoothing then by obstruction theory

there is a lift X — M s.t. the diagram

X
e/// \\N commutes.
M “—V—M) B

One can choose X —» M as an embedding. We denote a regular neighbourhood
of such an embedding by UM(X). Consider the same information for another
normal (n-1)-smoothing 'VN : N —>B. Then UM(X) and UN(X) are diffeomor-
phic as B-manifolds. Thus the union along the boundary M - UM(n\J N - UN(X)

is again a B-manifold. It is easy to check that it is a normal (n-1)-smoo-
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thing. Further by constructivohwilf i;bordant to (M‘, VM) + “(N, VN). Thus
by Theorem 2.1 the stable s-cobordism class of M - UM(X)\IN - UN(X)is in-
dependent of all choices and denoted by [M, VM] #y [N, V. This is
the desired geometric addition on NStgn. As NStgn > SZgn is a homo-

morphism and this map is bijective, ( NStgn, #X) is an abelian group.
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§ 3 Cancellation of S"x "

In the last chapter we have seen that under comparatively weak conditions
M and N are stably diffeomorphic. On the other hand, under the stronger
condition that M and N are normally cobordant there exists an obstruction
in the L-group L§n+1(1r1(M), v, (M) for M and N to be s-cobordant ( [44] ).
We will describe under certain conditions for a diffeomorphism
f:M# r(Sn)tsn)——>N # r(s" x s™) invariants in the Whitehead group
wh(rr1(M)) and in L§n+1 (7r1(M»\%m». If they vanish, M and N are s-co-
bordant (diffeomorphic for dim M >4).

7-—*_v_ﬁhevhéggngéﬁonical s&iittings Hn(M # r(Sn X S");j\) = Hn(M;j&) ® j\zr and

Trn(M # r(Sn X S")) = 1rh(M) ® _/&Zr which are compatible with the Hurewicz map.

Wall ( [44}, §5) had defined a (-1)"-quadratic form (A ,u) for immersed
spheres "o yM. (For the algebraic notation of a quadratic form com-

pare §4). Geometrically A is given by intersections measured in -nﬁ(M),
thus A, B)e A=z [1!'1(M)] . 4 is given by self-intersections which
are only well defined up to indeterminacy, thus p(Xx) € A/{a-(-1)"5}= Qbﬂ"'
If n # 1,3,7 every element in 1rn(M) with stably trivial normal bundle

can be represented by a unique immersion with (unstable) trivial normal
bundle (compare L‘$4], p.44). Thus if K'ﬂh(M) is the kernel of the nor-

mal GauBl map Trn(M)-—-—>'nh(BO), we get for n # 1,3,7 a quadratic form
~(A,u) on K‘n‘n(M). The basic property of u is that for & € Krrn(M) if
p(ox) = 0 then the immersion can be represented by an embedding with

trivial normal bundle. If n = 1,3,7, A is also defined but p is only

well defined if we impose on elements of KTrn(M) an additional structure,

a stable framing. All we do in this chapter for n # 3,7 can be extended

to case n = 3,7 with appropriate modifications. For simplicity we do

this only for 1-connected manifolds. In the situation above the restriction o
of (A,u) to r(s" x S") in 1rn(M # r(s" x Sn)) is the hyperbolic form or

hamiltonian H?_1)n (for the notation compare §4).
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IfF £ 0 M#r(S" x S") —N # r(s" x S") is a diffeomorphism we identify
1\'1(M) and 11'1(N) by f,. Then our condition is that the composii;ion

Hi_pyn => T (M) @ Ky LA T,(N) @ Hy_j)n —>Hi_qyn

or equivalently the corresponding sequence with homology groups is an iso-
metry (with respect to (A,u)). We denote this composition by ¥(f). If
\9(1‘) is invertible the Whitehead torsion in wh(1r1(M)) is defined and

called the Whitehead torsion of f on r(Snx Sn): T(f). If this vanishes

then J(f) is a simple isometry of H:.: representing an element of
S _ " " C e

L2n+1 (1r1(M), W 1(M)) = SU YA%ZSL{")(A) (for the definition: compare
(1411 ,§ 6) or § 4). We denote this element in LS 1 (Tl'1(M), w1(M)) by

2n+
[He)] .

Theorem 3.1: Let f : M # r(SnxSn)-—)N # r(SnXS") be a diffeomorphism

and n# 1,30r7 . . If HFf) : Ky 2 Hpis a simple (T(f) = 0)
isometry and [19(1‘)] € L§n+1(7r1(M), w1(M)) vanishes then M and N are
diffeomorphic under a diffeomorphism extending fi aM: 3 M-——-—)aN (s-cobor-
dant rel. boundary, if n = 2). If n=3 or 7 and M is 1-connected we obtain the

same conclusion if J(f) is an isometry of the intersection form.
Remark: In § 4 we will combine the two invariants —(f) and [ﬂ(f)] to a

single invariant and give a reformulation of this theorem.

Proof: If [l}(f)] =0 in L2‘n+1(1f1(M),w1(M)) then after eventually

further stabilization we can assume that V(f) = Id. For [19 (f)] = 0 &
g

G (f) €RSU(

s aselfdiffeomorphismg : M # (r‘+s)($"xSn) preserving the basepoint,

A). For every matrix Xe RSlf(A) one can find for an appropriate
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inducing the identity on Tr1(M) so that 5}(g) = e Id. This is proved
in the more difficult case n = 2 in ([8] , Theorem A.2) and the same
g'1 CM# (res)(S"x SN —

N # (r+s)(S" xS") fulfils: \?(f') = Id. 5 n=3,7 and 7, (1) s 1-connectedl a ainiler
argument ghout Hhat (f F(f) is an isametry Wwe con replace it by £' with 9(f') = Tl

proof extends to n > 2. Then f'= (f#ld) o

Now, we consider the bordism rel. boundary
n n+1 n+t _on
Mx 1 g (ST x DT )Y N x1g (0™ xs")

between M and N. We claim that this is a relative s-cobordism if

V() =

For this we write the bordism as X \1{ Y. Obviously 1T1(M) ——-—-)1T1(X \fJ Y)
and T (N) —> T (X ¢ Y) are isomorphisms. To show that H(X Y% Y,N; AA)
vanishes and that (X‘g Y,N) has trivial Whitehead torsion we consider the

exact homology sequence:

; YY,Y; ; Uy N:
= Hn+1(X¥Y,N,[\) - Hn+1(XfY,Y,Z\) ——aHn(Y,N,]&) «—)Hn(xfy,N,j&)__>‘

0 » #£ n+1
A * = n+l

and the disks 4f‘§ X Dn+1 represent a preferred basis in dimension n+1.

By excision H (X¥¥,¥; A) = H(x,mer (" xs"); A) = {

0 «#£n
Ar*=n
form a preferred basis in dimension n. By construction the boundary map

f%(f) restricted to the half rank subspace ( {()} X Zl)r. If '6L(f)=ld

n
By construction H*(Y,N;l\ ) = l{ and the spheres {*} X S

it is a simple isomorphism and by the same argument as at the end of the
proof of Proposition 2.3 it follows that H*(XgY,N;zﬁ) = { 0}' and (X%Y,N)

has trivial Whitehead torsion.
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One might think that this result is completely theoretical as one almost
never has an explicit diffeomorphism f to check the conditions, especially
that 1}(1’) is an isometry. But there are some cases where this is automati-

cally the case.

43,3
.;4.
Proposition 3.2: If (A ,u) vanishes on K']rn(M) and k’"’n(N) (krn(M) =

= Ker( Yyl @ T, (M) — T ,(B0)) then for each
diffeomorphism f: M (S" xSN) —> Ni#tr (s" xS"), \9(1’) is an isometry.

If n = 3,7 and M is 1-connected, J(f) is an isometry of the intersevtion form.

Proof: The radical of ()\,u) on K'rrn (M#r(S" x$")) is by assumption Ktrr'](M).

Thus if we divide out the radical, the isometry f,: K'rrn(M#r(Sn xS")) >

klrn(N#lr'(Sn xS") induces an isometry H:—) H: which is \9'(f).

q.e.d.

Besides trivial cases like Kn‘n(M) and K (N) = {0] the condition of
this Proposition is for instance fulfilled if Kﬂ‘n( ? M)—yKTr (M) and
Kmry(? N)—> km (N) are surjective and p vanishes on l(n‘n(M) and

K'n'n(N). For, the image of K'n‘n( 2 M)-—-—)K'trn(M) is always contained in
the radical of ) . Sometimes one can apply this by the following con-

siderations also to closed manifolds.

Let M2" = XY ¥ and N°" = X \J Y and K (9 X) —> K (X) and
as above
! i . -~
K*n-n( 9 X )——-)K'rrn(X ) be surjective and p the trivial map. Then M

is diffeomorphic to N if the diffeomorphism g'1 e f . X —» IX can

] ]
be extended to a diffeomorphism X —>X . Suppose that X and X have



31

the same normal (n-1) type B, (see Lemma-Definition 1.2). If X Xl

1, ¢
bounds a B-manifold s.t. the restrictions of the B-structures to X and

Xl are normal (n-1)-smoothings then 9'1 o f extends stably to X. By Pro-
position 3.2 there are obstructions in Wh( Tr1(x)) and L£B+1( 7r1(x), w1(x))

and if they vanish (for instance if X is 1-connected) g'1 o f extends to X.
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§ 4 Definition of the surgery obstruction groups (monoids).

In § 1 we have introduced the map

If B 1is a Poincaré complex and k = n the image of this map is contained
in the subset of S?éB’V) represented by degree + 1 maps. In §5 we will
generalize the concept of degree + 1 maps to so called k-admissible maps.
We denote the subset of S?gB’v) represented by k-admissible maps by

A r(ll?EV) . Every normal k-smoothing is k-admissible,thus the map above

. (B,V)
ends in AQn,k .

The typical scheme of a surgery classification is to introduce obstruc-
tion groups (monoids) L and L', a map AQI(]BIEV) —> L' such that the
fibre over 40} is the image of the map above and to define an action

of L on NSéBkv) such that the orbit space injects into A S?éBﬁv) .

This is often written in form of an "exact" sequence

L—nsBeV) —sa @

(B,V)
n,k n,k L

If k=n and B is given by a finite Poincaré complex with boundary V to-

gether with a stable vector bundle over it then as discussed in § 1 we

]
are in the situation of Wall's book [44]) and thus L and L are then
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ordinary obstruction groups. More precisely as NSéBﬁV) corresponds then

to smoothings (and not to simple smoothings) L‘ is then Lz (7r,w) whereas

L is Lﬁ+1 (7,w) in the notation of ([44] , § 17 D)which we will denote
s,T

b,Y Ln+1 (Tr,W).

1
One would expect that L and L are more complicated if k < n. Surprising- '

ly this is not the case for L as long as k 2 ["/2] . In fact the groups

LS,-C

L fork 2 [n/z] are all the same group N1

(1r,w) except for n odd and

k = [n/2] where it is surprisingly even easier namely a quotient of

s,T

ST (1 ,1,5).

this group denoted by L
L' is also unexpectedly easy if k > [n/2] namely equal to a group
Lz’p (w.w). If k= [ n/z] L' is more complicated, it is then an abe-

lian monoid lg’p(1r,w).

The upper indices s, T and h,p shall indicate that these groups sit in
the first case between the Wall group LS and the Whitehead group Wh and
the other case between the Wall group Lh and the projective class group
E;. Thus besides the ordinary Wall group obstructions our obstruction
contains some information about Whitehead torsion (a finiteness obstruc-

tion).

If one goes over to K = [n/Z] -1 the picture changes $w rther. Then

the map NSéBiX} 1 -1 — GE#B’V) is surjective by Lemma 2.3. The ob-
2 15T

. . s, T . .
struction monoids 12n+1(1r,w) and on (1 ,w,S) in which elements of a
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fibre of NSr(‘B’Yr)]/Z]——»Qr(]B’V) can be classified up to an indeterminacy
s,T

are far more complicated than L’

Nl (7r,w). As usual all groups and monoids

are periodic of order 4 in n.

tet A=2z[w) be agroup ring and w: T ———>12 a homomorphism. Let

- : Z[™Y —> Z[7) be the involution sending g€ ™  to w(g) g'1.

§ollowing
(The“definitions can be extended in a natural way to rings A with invo-

lution). Tf A=(a;;)is @ metrix, A= (&), Tf Mis o Left A-modube
we denobe Ha dunl lept A-modste by M* (compare [333,p-102).
The basic ingrediants of our definition are quadratic forms and formations
(compare [443,[32], [4],la))For a fixed € = + 1 consider a subgroup S ¢ A
such that i)a € S = a+ g£a=0 ii)a €S =»b-a-b eS for
all be A and iii) S contains the group {a - £3]a eA} The pro-
perties guarant that for [a) ¢ MN/s, a + £ 3 is awell defined
element of A and that for [a7 € A/S andb ¢/ , b -[a]- b is
well defined. If we don't specify S we mean {a - EE} in which case
A/S is denoted by Q, in ( [441, § 5). A subgroup S as above is called a

form parameter in {41 .

A € -quadratic form over (A ,S) consists of a triple (M, A ,/4.) where

M is a left A -module, X: Mx M —> A ag-hermitian form and
M M— A/,5 a quadratic refinement of A . That means A and/‘4 have
to fulfill the following properties:
i) For Yye M fixed themap Mi—> A, x —> A(x,y), is a
A\ - homomorphism.

i) AGLy) = (D8 A T
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i11) A(x) = m(x) + (-1)k/4(x)_ éA .

iv) /A;(x+y)
v) /4(a X)

il

M)+ uly) + o LA )]

a'/A(x)-Ef forxeMandaeA .

such

For S = {a - £ "5} ¥ forms were introduced in ( [441, § 5),for general S

they are studied in L[ 471 and [2] where they are called S-quadratic modules.

hamiltonian)

An important special case is the & -hyperbolic form (

Hf =H o ...eH ( r summands), Hg = (Ao , 2= ( 2 8 ),
//4 (e) = /A&(f) =0 € z\/s) where (e,f) is the canonical basis of A xlﬁ..

A form isomerphic to HE is called trivial. We call (M,A 7&() projective or

free if M has this property. (M,z\,/k) is called weakly based if an equi-

valence class of bases is distinguished where two bases are equivalent if

the transformation matrix has vanishing Whitehead torsion in Wh(Tr). We say

£

that (M, A y“‘) is non-singular if the adjoint of A is an isomorphism. If

(M, X ,/M) is weakly based, non-singular and the adjoint of A is a simple

isomorphism, then (M,A vf&) is based. We always assume that HE is based

by the e fi.

] t ]
(M,A,u) and (M , A ,u ) are stably equivalent if for some r and s,

] t ]
(M, A ,u) e Hg is isomorphic to (M , A ,u ) e Hy . If M and M are
weakly based we require that the isomorphism is simple (trivial Whitehead

torsion in Wh(1)).

We define Lzﬁt (m,w) as the set of stable equivalence classes of weakly
based non-singular (-1)n—quadratic forms over A. Let S be as above.

Then Lzﬁr (m,w,S) is the set of stable equivalence classes of weakly
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based non-singular (-1)n-quadr‘atic forms over (A ,S). If S = {a—(—1)n E'aeA}
fo .

then L;_r’lt (,w,S) is of course equal L%t (qr,w). In general we have a

map Léat (r,w) ——-)LZ&t (7,w,S). One can easily show that this map is

surjective.

Orthogonal sum defines an abelian monoid-structure on these sets. They are
even groups. This follows easily if one compares them with the Wall groups

S
L2n

jective homomorphism, it is enough to show that L;ﬁz:(1r,w) is a group. Re-

(m,w). First we note that as LZﬁt (m,.Ww) —> LZ&‘ (mr,w,S) is a sur-

call that the Wall group LG (r,w) is the set of stable equivalence
classes of based non-singular (—1)n-quadratic forms over A with group

structure given by orthogonal sum. (If one forgets the bases one obtains

h
2n

and the image is the kernel of the homomorphism L;az (17 ,w) — Wh( )mapping

LY (+r,w)). We have an obvious injective homomorphism Lgn (m,w)— L;at(wuw)
(M,A,u) to the Whitehead torsion of the adjoint of AT A*). Thus L;az:(1r,w)
is a group if the image in Wh(7r) is a subgroup. The image is represented by

all non-singular matrices A over I\ such that A = (—1)"A* (meaning that

A defines a (-1)n-hermitian form) and A of the form B + (-1)"B* form

some matrix B (meaning that A has a quadratic refinement or that A is

even). It is easy to show that these matrices form a group. .

We summarize these considerations inthe following Lemma which plays the

role of the Rothenberg exact sequence in our context.

Lemma 4.1: We have exact sequences of abelian groups



0—> L3 (W) —> L5 (W) —Hh@n

Bak [4] has computed the kernel of the horizontal map. We will describe this

at the end of this chapter.

To define l:_"‘_r(-rr,w,S), S as above, we consider triples (V(—t M —E)N,/\ U)
$® 9: M- VOW injechve, N

M a finitely generated A -module,>V and W based modules, A V—>N

a simple isomorphism such that the induced form on M is (-1)n—symmetric

and p : M —T—> /\/S a quadratic refinement of this form. If (M,A ,u) is a

weakly based non-singular § -quadratic form over (A ,S) we can consider

it as such a triple : (M 419— M lg—)M,IX,u) where. the left M is equipped

with the given basis and the right M is based such that A: V—> w* is

simple. Especially H%_1)n is contained in the set of those triples and we

can define the stable equivalence relation as above. We define l;ﬁn (1r,w,S)

as the abelian monoid under orthogonal sum of stable equivalence classes of

such triples (V&— M — W, A,u). The construction above defines an in-

jective homomorphism Léat (,w,S) —> lér’]t (1 ,w,S).
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Finally we define Lgap(1r,w) as the group of stable equivalence classes

of finitely generated projective non-singular (-1)n-quadratic forms over

M . If we replace projective modules by lattices (i.e. free as abelian

groups) we obtain the monoid lgﬁp(1r,w). The fact that Lgﬁp(n:w) is a

group follows similarly as for t;at(m:w) from:

~ . .
Lemma 4.2: There is an exact sequence of groups, where K,(W) is theprojective

class group:

0 —>L) () —315P (mw) —> K ().

[M,20]—> In]

Proof: All we have to show is that every element in im Lgﬁp (1 ,w)—>
E6(1r) has an inverse in this image, so that the image is a subgroup.

Let M be in the image and N an inverse in E;(Tr): Me N is free. We
have to show that N @ j\? for some s admits a quadratic form. But

Ne j\s =Ne N e M* where we have a quadratic form given by the ortho-

gonal sum of the hyperbolic form on N e N’P and the dual of the given

form on M.

To define the odd L-groups (monoids) we recall and slightly modify some

definition from [337. In this part we assume that all quadratic forms
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are free. A lagrangian of a non-singular £ -quadratic form (M,/\,u) is a
and lL=°

direct summand L€ Ms.t. L =L 7 A non-singular & -quadratic form is

trivial if and only if it has a lagragian. ([33], Theorem 1.1). If L is
a lagrangian of (M, A,u) then a lagrangian L| is called a hamiitonian
complement if M =L e L'. The adjoint of A defines then an isomorphism

L '"")(L')*. If L is based we consider the (dual) basis on L' induced
by this isomorphism. The sum of these bases on L and LI defines a pre-
ferred basis on M depending only on the given basis on L. If L and M

are based in this way we call ((M, A,u,),L) a based lagranian.

m“/ql'aﬁ
, . L.
A sublagrangian of (M,A ,u) is a submodule Lc M s.t. L€ L “(in contrast

to [33] we don't require L to be a direct summand). A & -formation is
a triple ((M,A u),F,G), (M, A,u) a non-singular £ -quadratic form, F a

lagrangian and G a sublagrangian. A formation is non-singular if also 6

is a lagrangian. The formation (Hy ,(Ax {0} )", ({0} xA)") is called
hamiltonian, every formation isomorphic to a hamiltonian is called trivial.

A € -formation is weakly based if ((M, A,u,),F) is based and @ is free and

based. If in addition ((M,A,u), G ) is based then the formation is called
based. The hamiltonian formation is based by the standard bases. A

£ -formation is elementary if it is isomorphic to (H" ,(A x{o})",

{x + (C- £C¥* )x |x € (A X {O} )r}) where C is a homomorphism

(A xA(O} )r——e>( {0} X 1&)r. The elementary formations are based by the
standard bases. Two € -formations ((M, A,u).F, G ) and ((M , A',u'),F',(:,')

L1} ] ) 1
are weakly isomorphic if (M,F,6) is isomorphic to (M ,F ,6 ) and F and

F" have a common hamiltonian complement. If the formations are (weakly)
based we require that the isomorphism preserves the bases and the induced
bases on the common hamiltonian agree. (The notion weakly isomorphic is

! ] ] H [} ]
not needed in [387 . The reason is that if (M ,F , G ) and (M ,F ,G )
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are non-singular, L a common hamiltonian complement of F' and F'' then
if L' is a hamiltonian complement of G', (M',F',G') @ (-M,L,L') and
(M',F'*,G') @ (-M,L,L') are both elementary or equivalently the formations

have the same imverse in the L-group.)

Two ¢~ formations X and X' are stably elementary equivalent if there exist

trivial formations A and A' and elementary formations B and B' such that
X @ A®B is weakly isomorphic to X' @ A' @ B'. As discussed above we cah

replace weakly isomorphic by isomorphic if X and X' are non-singular.

To demonstrate the effect of the relation "weakly isomorphic" we prove the

following Lemmas.

Lemma 4.3 : Let ((M,Al,u),F,G) be a non-singular g -formation and ((M, A ,u),
G,H) be a e-formation. Then ((M, 4 ,u),F,G) @ ((M, A,u),G,H) is stab{xﬂgqui-

£(¢n< nhfy
valent to ((M, A,u),F,H).

Proof : Verbally the same as the proof of ([33], Lemma 3.3) where the

special case of this proof follows from our weak isomorphism relation.
q.e.d.
Lemma 4.4 : Let A be an isometry of HE and (H:,(A x{0})",6) an g -formation.

Then (HY, (A x§031)7,6) @ (H], (A x{0})",A(A x{01)") and (Hg, (A x{0})",A(6))

are stably elementary equivalent.

- v r
Proof : By 4.3 :(Hf,(A x{0})",A(6)) and (HY . (A x40} )", A(4 x{o}) )(D(H,_,A(Ax{o}),
A(A x40})") are stably equivalent.

q.e.d.
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Now we can define the odd L - groups (monoids). u;ﬁfi(1r,w) is the set of

stable elementary equivalence classes of non-singular weakly based (-1)"-

formations. Orthogonal sum defines the structure of an abelian momoid.

As in the case of even L - groups one can show that L2n+1(7T w) is a group.

The Wall group LS (1r,w) is defined as L 1 above replacing weakly

2n+1 2n+

based formations by based formations. There is an obvious injective homo-
morphism L2n+1(1r W) —> L2n+1(1r,w) and the image 1s the kernel of the

homomorphism 3T (m,w) —>Wh( ) mapping ((M, A,u),F,G) to the White-

2n+1
head torsion of the transformation matrix between the given basis on M and

the basis induced on M from the basis of G as described above. This trans-
formation matrix is a unitary transformation of Hg . We denote the stable
group of unitafy transformations by uE(A).

Thus we have a short exact sequence:

0= LS n+1(1r w) —> L (1r,w) —>» Wh (™

2n+1

and L25+1(1r,w) is an abelian group. The image of the map on the right side is

the subgroup represented by Ut (A).

n n
Originally Wall defined L3 (*,w) as the quotient SU('1) (/&)/Rsu('1) (A)

2n+1
where SU%(A) is the subgroup of UE'(/\) with trivial Whitehead torsion
and RSU% (A) (RU(A) in the notation of([41],§6)) generated by simple iso-

metries of Hr preserving (l\x{O})r by a simple isomorphism and by the iso-

rmUyc:(g'”

an isomorphism ul~ -1)" (j\)/RSU( " (A) —>L n+1( w) mapping A €
U:(A) to ( H?,(A x §94)7,A(A x40})"), where HE and (A x40})" are equipped

) of H; . The same arguments as in ([33),Theorem 5.6) give

with the standard bases and A(A x{0})" with the image of the standard

basis under A. (That the map is a homom orphism follows from Lemma 4.4.)
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We summarize these considerations as follows.

Lemma 4.5 : There is a commutative diagram of exact sequences of abelian

groups: (¢ = (-1)"):

J J
0 —> SUS(A) —> US(A) —> Wh ()

J I

s $,T
0— L2n+1(1r W) ——>L2n+1(1r,w) —>Wh (7

d |

0 0

To define lgﬁ;ﬂ(Tr,w) we consider g-quasi-formations: triples ((M,A ,u),F,G),

F a based lagrangian and G a half rank based direct summand in M (no lagran-

gian!). In a similar way as above the relation of stable elementary
equivalence is defined. We define 15551(1r,w) as the abelian monoid

under orthogonal sum of stable elementary equivalence classes of (—1)"-

s,T

quasi-formations over A. We have an injective homomorphism L2n+

3 15T (1 .w).

2n+1

1(7" W)

s5,T
As for L2n+

matrices. Let GLr(A) be the group of invertible 2rx2r-matrices overA.

(9r ,w) we have an interpretation of 15’1:(1r,w) in terms of
1 2n+1

This should be considered as automorphisms of HE (not respectingdand y ).
GL(A )e= lim GLr(A). We have a map GL(A)——)I;”]E1(TI",W), AeGLr(A)

r ~p 0©
is mapped to (H:,([\X{O})rJA(A x{0})"). A given ((M,A ,u),F,G) is iso-
morphic to (H:,(jﬂx{O})r,G') which is in the image of this map: Extend

the given basis of G' to a basis of Hg and take the transformation matrix
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to the standard basis. Thus the map is surjective. A and A' are mapped to
the same quasi formation if and only if there exists a Té€ GLr(A) such that
A' =ATand T ,(Ax{O})r is a simple automorphism of this subspace. We
denote the subgroup of GL(A) of such matrices by TsL(A) ( the little s
points to the fact that T I(A x{O})r is a simple automorphism but T

itself is not simple ).

n
Thus we have an induced map GL(A )/ onto 157%, (1 ,u). rsu¢-1) (A)
TsL(A) 2n+1

acts from the left and we also get a map poye( 2 )\GL(A)/TSL(A)
1557
zn+4(

T ,Ww). For, by 4.4, B*A with B€RSUt(A) and A€GL(A) is mapped to
(HE, (A x{oh)",A(A x40} ))e (Hf,(A x{a)".B(A x{0})") and the last formation
is equivalent to zero in 13T(m,w).

LnA

Lemma 4.6 : The map of double cosets

RSUF (A )\GL(A)/TSL(A) —> (T ,w)

N4

is an isomorphism of abelian monoids under orthogonal sum.

Proof : If A and A'€GL(A) are mapped to the same element in llsn’:(‘rr,w)

there exist B & SU‘I:(I\) preserving (A x{O})l (thus B€RSUE(A)),r,r

0 0
€ Nand matrices X =( and X' =( O) such that B(Aere eX)

o 1)
c-ec* 4 C-2¢'" 1
and(A'er's eX') are mapped to the same quasi formation. Thus there exists
a T€ TsL(A) such that B{Iders’eX)}AT = (Ider'é e X')A'. The injectivity

follows as ro* eXé€ RSUz(A).
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h,p
2n+1

lence classes of non-singular (-1)n-formations ((M, A ,u),F,G) over A

Finally we define L (1r,w) as the group of stable elementary equiva-
where we require F is free. If G 1is also free we obtain Wall's group
2n+1(1r, ). If we only require that G 1is a sublagrangian we obtain

the monoid l 1(1T,w) Again, that L2n+1(1r w) is a group follows from

2n+

Lemma 4.7: There is an exact sequence of groups

0 —> 2n+1(7r W) ~—)L2n+1('“"w) —_>"Z;)(Tr)

[, A Fo6] +——>]61

Proof: As for Lemma 4.1. a) we have to show that G € im L2n+1(n,w)-€bE;CR)

has an inverse in the image. Let H be an inverse of G in R;(1T). Then
*
He G is contained in the image, as it is a hamiltonian in the forma-
* *
tion ((He Ge H @ G , hyperbolic form), He G o {0} o 40},
* *
He 40y @ 40Y @G ). Thus He 6 e G is contained in the image. As

G* @ G =M is free we are finished.

q.e.d.

Obviously all elements in the different odd L-groups (monoids) can be

represented by formations (HE AN X 4_0} )r,G). On the set of these

formations we have a left action of RSU£ (A) : (B,(HQ AAx {0} )¥,
G)) r—-{>u1t (N x {()} ,B(G)). Similar considerations as for the proof

of Lemma 4.6 show that the orbit space is isomorphic to the correspon-
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ding odd L-groups (monoids) if we restrict G appropriately.

Lemma 4.8: £ = (—1)".

L§n+1’ if (HZ ,G) is a based lagrangian
if G is a lagrangian and based

15"c if G is a half rank direct summand

(Hg. (Ax40})".6)f 2n+1°
Rsu® (Ax{ £ §

h . . . !\ ’

L2n+1’ if Gise« ™ ST and free
h,p . .

Lopgqs 1F G IS o ey

Lophys if Gis @ fuiyrngin

Most of the obstruction groups defined in this chapter are contained
already in the literature. I mentioned already those groups which were
defined by Wall in [44] . In several cases there were no geometric
applications known. For instance Bak [1] introduced similar groups like
our L;ﬁt (1r,w,S) for purely algebraic reasons. In this as well as in the
other cases we will give geometric applications in the next chapters. Bak
introduced the group of stably equivalence classes of based non-singular

)n
(A2S)paseq - [+7]
which I will denote by LG(ﬂr,w,S). If § €§' are form parameters Bak

(-1)"-quadratic forms over (/A ,S) denoted by WGHJ('1

computes the kernel of the surjective map Lgn(1r,w,5) — L;n(1r;w,8')
in terms of an exact sequence ([4], §11). 1f /L is a so called trace
noetherian ring (which is for instance true if 7T is finite) ([4] ,p.202)

the answer is very explicit: The kernel is then isomorphic to

(Sl/g@h S'l) / {a8b-b®a, a®b - a@baB} where A operates
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on S'/S from the left by x }-——}). x} and from the right by x k—-)&x)
( [1] , Theorem 1.2). Obviously the maps Lgn('ﬂ',w,S) %L;n(u‘,w,S')

and L;[’]T (1c,w,S) — L;r’]r('n',w,S') have same kernel. Thus we obtain

Theorem 4.9 (Bak ["] , Theorem 1.2): If S €S' are form parameters and

A\ is trace neotherian (for instance T finite) there is a split exact

sequence

~» L3:T (mw,S) —25 T (mw,S') ~30

0—> (S'/e ®, S'/c) -
S TA S/{aw-baa, asb-agba b} 2n

The map on the left side is given by (& (-1)")

It

[a]+— [Ao A (? io) sey) = a and u(ey) = b ]

Example 4.10: T = L1y . If n is even the only form parameter group

is {0} . If n is odd there are two form parameter groups:
S=2#Z¢Z =\ and S' = Z. L;n(1 » S=2 ZZ) is the ordinary surgery
obstruction group in the 1-connected case and isomorphic to Ez L44),

[€] . It is easy to check that L3 (1 5 S' = Z)= {o}.

Bak defined corresponding odd-dimensional surgery obstruction groups with

respect to a form parameter S. In our situation we only need the additional

case S = /La+3}' 4+ Z and only the corresponding monoid denoted by lg’r(-lr,w, Z)
The definition is obvious: equivalence classes of quasi formations ((M, A ,1),F,G)

where T is a quadratic refinement with values in 'A'/{a+é'} + 7"

The following diagram describes the obvious maps between the different ob-

struction groups (monoids). The vertical sequences in the diagram are exact.
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E =m€—-0

L> (,w) /L (1 .w)
15T (ww) €« LT (W) NP w) 1P (o w)
h(T) % (m)

and we have maps:
S,T s, T s, T
15T (o) —» Lo (T,0,8) > 11 (T,.5)

where the kernel of the map on the left side is described by Bak (I "] ,

5T
compare Theorem 4.9) , end we have @ mep 1:';‘(7.“5 - 1,',,“ (mw, 2),

We finish this chapter with a reformulation of Theorem 3.1. If
f:M# r‘(Sn x ") —>N # r(s" x s") is a diffeomorphism and 19(f):
HZ-—-} Hg is an isometry then &(f) defines an element in LSZr’nz(Tri(M)’W(M))‘

By the exact sequence of Lemma 4.5, 19(f) = 0 if and only if ¥(f) = 0 and

l9(f) vanishes in L;n+1(1r1(M),w1(M)). Thus we obtain:

Reformulation of Theorem 3.1: Let f : M # r(s" x ) —>N # r'(Sn x M)

be a diffeomorphism, n # 1,3,7. Suppose that J(f) is an isometry. If
; ; £,T .
\9‘(f) vanishes in L2n+1(‘n'1(M),w1(M)) then flaM : IM—> IN extends

to a diffeomorphism (relative s-cobordism, if n = 2) between M and N.



48

§ 5 Classification of normal k-smoothings i

Let p : B—> B0 be a fibration and (V,’Vv) a fixed closed (n-1)-dimensional
B-manifold. We are going to study the following problem: Given a relative
n-dimensional compact B-manifold (M,?hpf), under which conditions is it -
B-bordant rel. boundary to a relative normal k-smoothing (i.e.':iM is a
(k+1)-equivalence)? Classify the relative normal k-smoothings within a

given bordism class.

There is an obvious necessary condition on (B,V). Suppose (M,‘?M,f) is

a normal k-smoothing, k = [n/2]. The local orientation of B induces a local

R
N

orientation on M. This specifies a generator [M, aM]of Hn(M,aM;Zt)
the homology group with twisted integer coefficients (compare [43]).
Denote the image of [M, @M] under V,, by weH (B,V;Z"). Consider the

commutative diagram , where K is some coefficient module over A

H.(M,3 M;K) —>H (B,V; K)
T f\[”l’“] T N §
W T3 k) ¢— HT(B5K)

where we identify 7r1(M) and 'ni(B) by VM and A= 72[11'1(8)] . If r<k+d
and Hhes att
and n-r <k+1 then all maps except nu'sre isomorphisms. If r = k+1,0& is sur-

jective, if r = n-k-1 it is injective.

Given a map Vn'1 —> B, V a closed manifold, w : ﬂ](B) —Z,a homomor-
phismus such that the composition W1(V)-—4>w1(8) ——9'Zé is the first Stiefel-
Whitney class of V and & eHn(B,V;Zt) we call (B;V;w,& ) a n-dimensional

relative k-partial Poincaré complex (assume k 2 n/2) if the map n & ful-
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fils the properties above and d(X ) € Hn_1(V;Zt) is a fundamental class

of V. We call i then a k-partial fundamental class. If B—>B0 is a fi-

bration we always assume that w is the homomorphism w1(B) : n](B)

—> 7r1(BO) = Z, without mentioning it further. If (B,V,&) is a k-par-
tial Poincaré complex for all k then it is a Poincaré complex in the
ordinary sense. For instance as used above all compact manifolds are

Poincaré complexes ([41], Theorem 2.1).

If B—> B0 is a fibration, (V,¥ ) a closed B-manifold, a relative B-
v
manifold (M, V.f) is k-admissible if (V). [M, dM] = & is a k-partial

fundamental class. This generalizes the degree one condition for normal
maps into a Poincaré complex. The homolgy class (¥ M)*[M,GM] € Hn(B,V;Zt)
is a bordism invariant. We denote the set of bordism classes represented

by k-admissible maps by AQ (%Y 1f k=[n/d]-1, every' (M,5,,f) is k-ad-

missible and thus ASléB&v) = S?éB’V).

To formulate our results we have to introduce some invariants. Let

(M,'VM,f) be a n-dimensional k-admissible relative (B,V)-manifold

or (M,’FM) a n-dimensional B-bordism rel. boundary between two relative

normal (k-1)-smoothings (M V., ,f.) and (M ;7" ,f.) in (B,V). We assume
0 M0 0 1 M1 1

B to have finite [n/2]+ 1-skeleton. By Lemma 2.3 we can assume up to

bordism rel. boundary that VM is a[n/Z] -equivalence.

In this chapter we study the case n even, n=2m. We consider the homotopy

sequence

™ q(B.V) = (M) — T (B) —> 0

As mentioned in §3 there is a (-1)m - quadratic form (A ,u) defined on
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immersions S" 2—» M. Every element of 1rm+1(B,M) determines an immersion
s™ x D" 29 M (L441, p.10). Thus (A,u) is defined on r_ ,(B,M). In

most cases (.. .(B,M), A,u) will represent our even-dimensional surgery

m+1
obstruction.

In some cases we have to replace 1ﬁn+1(B,M) by a quotient of K1ﬁ“(M),

meaning here the kernel of Trm(M)Eh>'nh#B). Ifm#1,3,7 (A,u) is also

defined on K'ﬂh(M) as discussed in §3. If m = 3,7 it is not difficult to

show that (A,u) is defined on K T (M) = 1rm+1(B,M)/1rm+1(B) if for all
X € Trm+1(B), wm+1(o<* p*§") = 0. The reason for this is that for

m = 3,7 the value of u on 1qn+1(B) is determined by this Stiefel Whitney

number. If this Stiefel Whitney number is non-trivial for some X then we

get a form 1 : KTC (M) —> A/<a+é' ZSE C’-—/Z;- In this case the

quadratic form y works as good to control surgery as u. For then

W(x) = 0 implies x can be represented by an embedding with framed

normal bundle such that we can do surgery on it compatible with the

B-structure.

To decide in which obstruction group or monoid the invariant sits we have
to study 1rm+1(B,M) and A. As (B,M) is m—connected,'nh+1(B,M) -4 Hm+1(B,M;/\)
by the Hurewicz isomorphism and is finitely generated as B has finite

(m+1)-skeleton. We first investigate the case where (M,V&,f) is a k-ad-

missible map and k>m. We will show that then Hm+1(B,M;1\) is projective.
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m+2(

This is true if H B,M) vanishes with all coefficients in a A -module

( [31] , Lemma 2.3). This follows by partial Poincaré duality from the

following diagram with arbitrary coefficient module:

Hm+1(B)'L—> Hm+1(M) — Hm+2(B,V) - Hm+2(B) N Hm+2(M)

lus I l \Lns

Ho_q(B,V) <§—- Ho_ (M, 3M) Ho o(B,V) €z Hy o(MIM)

If k > m partial Poincaré duality implies that the sequence
0 —> o (B,M;A) —>H (M A) —> H(B;A) —> 0

is short exact and splits. This implies that the form A on Hm+1(B,M;jL)
is non-singular (compare [4.4]) , Lemma 2.2). Furthermore it implies that

Hm+1(B,M;}&) is free as abelian group, a lattice.




52

If B is a finite Poincaré complex we are in the situation of Wall's book.
Then a similar argument as above shows that Hm+1(B,M;[\) is the only
non-vanishing homology group and thus is stably free (E41] , Lemma 2.3).

We can stabilize Hm+1
(B,M; A ) if we make connected sum of M with r‘(Sm x SM) as described in
§2. Thus we can assume in this case Hm+1(BJ4LA) to be free.

Thus the € -quadratic form (T (B,M), A ,u) represents an element in

m+1
hp . _ P o . . h
12m(1r1(B),w1(B)) if k =m, in LZm(1r1(B),w1(B)) if k>m and in LZm(u](B),w1(B))
if B is a finite Poincaré complex. We will show that this is a bordism

invariant and denote it by 9(M,§7M,f). If k = m-1 we define it as zero.

Now we study the case where (M,VM) is a B-bordism between two (2m-1)-dimen-

sional relative normal (k-1)-smoothings (MO,)IMO,fO) and (M1,)/M1,f1),

k 2m-1. As (B,M) is assumed to be m-connected and (B,Mi) is at least
(m-1)-connected, (M,Mi) is {(m-1)-connected. Poincaré duality implies

that Hm(M,Mi;K) is then the only non-vanishing homology group (In this -
case we have Poincaré duality: H*(M,Mi; K) <££ Hzm'*(M,Mi;\<) where i is
counted mod 2;).Thus as above Hm(M,Mi;A.) is stably free and we assume

that it is free. We can choose a preferred class of bases on Hm(M,Mi;jl)

(Whitehead torsion vanishes). Finally as (M,Mi) is (m-1)-connected,

Poincaré duality implies the intersection form
At H (MG A) x M A) —— A

is non-singular and simple ([ﬂJ] ,Theorem 2.1). This intersection form

is related to the intersection form on nh(M) by: Alx,y) = A(iox,i1y)
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where x,ye-;rm(M) and iO, 11 are the maps 11;n(M)_—-)7rm(M,Mi).

If k>m our surgery obstruction will again be represented by ( m+1(B,M),

A,1). We have to show that T

m+1(B,M) is free with a preferred bais

and A is non-singular to obtain an element in L;&r(n](B),w1(B)). We will

see that the boundary homomorphism H_. .(B,M;A)—> Hm(M,Mi;zx) is an

m+1
isomorphism. This implies by the non-singularity of A Hm(M,MO;jﬁ) X
Hm(M,M1;1\)-——1>jl that A is non-singular on Hm+1(B,M;44.) = 4(B.M).
The preferred basis on Hm+1(M,M0;1\) is obtained from the preferred basis

on H (M M - ) under this isomrphism. We denote the corresponding ele-

ment in L2m (1r1(B),w1(B)) by @(M,VM). The isomorphism Hm+1(B,M;A)

Hm(M,Mi;/\ ) follows from the diagram of exact suquences with A -coef-

ficients:
0
m+1 (B, Ml\\\is
H (M ) —> H (M) —> Hm(M,M ) —0
> 1
Ho(B)

Remark 5.1 : The definition is not symmetric in M0 and M1 . The only dif-
ference is the preferred basis. The Whitehead torsion of the base change

is the torsion of the composite isomorphism

Hm(M,MO;A ) &— HmH(B,M;A) —>H_(M,M3 A) .




simple
If B is a Poincaré complex and YM and VM are simple isomorphisms
0 1

then this Whitehead torsion vanishes and we obtain the ordinary Wall sur-
gery obstruction in L;m('rr1(8),w1(B)). A si.milar asymmetry will occur

for the odd-dimensional surgery obstructior;“s.‘ The reason for introducing
Ls’t is that the Whitehead torsion of a normal k-smoothing is in general

not defined so that we don't have a definition of simple normal k-smoothings.

If kK = m or m-1 our surgery obstruction sits in Lszl;'t( '1T1(B),w1(B),‘S'):»or
15, F(7r;(B) W (B),S). We have to define S. On the image of KT (9 M) —>
KT, (M) the intersection form A vanishes. If m # 3,7 or m= 3,7 and
wm+1(k*p*5) = 0 for all XK€ 1rm+1(B) we have the quadratic refinement

u of A defined on K1rm(M). uois, restricted to the image

im K1rm(9 M) —> K'rrm(M) , a homomorphism. Especially 1t isma homomorphism

on im K'ﬂ'm(MO) N im Kn'm(M1). We denote S(M) as the subgroup of A which

projects to the image of p on this intersection submodule. As p is there

a homomorphism S(M) fulfils our properties for S.If m = 3 or 7 and wm+1(k*p*f)
# 0 for some K eu‘mH(B) we have to work with p instead of p. We replace

S(M) then by its sum with Ze\ Tn He Sollewing we will not give sepevaie arpuments for
Hes cuse o3 everything Watke will appropriate mooli fi cafrons. -
If k = m we will show im K (Mg) = im K (M,) in K, (M). S(M) is then

equal to S(Mi x 1). The map 'ﬂ'm(M) -———)'ﬂ'm(M,Mi) induces an isomorphism

~
= ). Thi f the diagram
K‘ll'm(M)/K -"'m(MO) -——)Trm(M,Ml) This follows from iag

i 1(B,M)

|

T (M) — T (M) — T (M.H;) —>0

S

T (8)

b

0
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The form (A u) on K‘n‘ (M) induces a form over (4, S(M x I) on KT (M)/KTT (M)
0

representing an element ©(M, VM) € L (1r (B),w(B),S(Mg x I) = S(M, x )).

To show that im KTﬁn(MO) = im K'ﬂm(M1) we assume there exists x € im KTfm(MO)
but x¢in|K1Tm(M1)(or if we interchange the role of Moand M1).Then X re-
presents a non-trivial element in "h(M’M1l- As A is non-singular and?ﬂ“(M)
—> T (1,Mg) s surjective there exists a yem (M) s.t. Alx,y) # 0. This
is a contradiction as x vanishes in ."n(M’MO) and thus A(x,y) =

Crea )
Finally if k = , 1nduces amap KT (M)/Krr (M )nl<1r -—%A/S(M)
again denoted as u:fk1r (M)/K - (M ) A K (M ) is a f1n1te1y generated
A - module as the finitely generated A- module Hm+1(B M; A) maps sur-

jectively onto KT (M). Our surgery obstruction is in this case @(M,‘VM),

represented by (T (M M yé— KT (M)/K'zr (M ) o KT (M )——>rr (M,M ),

A, u‘/)‘ in 12’ ('n' (B),w (B)JS(M)) whereA o (M Mo ) x1r (M M )—-)A is the
intersection form.

Before we formulate the main result for even-dimensional manifolds we
introduce the following notation: An element of lga (1 ,w,S) is zero
bordaiit if there is a representative (V¢ M — W, A,u) which has a based
submodule UChds.t.'i)lJcUJ',ii) the image of U in V and W denoted as

U, and Uw is a direct summand and A induces a simple isomorphism Uv-—-}

v

(W/Uw)* and iii) |y =0 erfly=0-

Remark : If the element is in the image of LZ;Z(TT,W,S) then it is zero

bordant if and only if it is trivial.
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Theorem 5.2: m > 3.

b

a) Let (Mzm,iiM,f) be a 2m-dimensional k-admissible (k = m-1) relative

(B,V)-manifold, where B has finite m+1-skeleton. Then the invariant

o}y , k = m-1
(

1 ’p(1r1(B), wi(B)), k=m

Lgm (171(8), w1(B)), k = 2m and B a finite Poincaré
L_ complex

is a bordism invariant rel. boundary.
Q(M,'f’M,f) =0 & (M, ;M’f) is bordant rel. boundary to a normal k-
smoothing.

b) Let (M,33M) be a 2m-dimensional B-bordism rel. boundary between two
relative normal (k-1)-smoothings (Mo,'i"M ,fo) and (Mi’gM ,f1) in (B,V),
0 1

where again B has finite (m+1)-skeleton.

Then for k = m,m-1 the subgroup S{M) € A (which as we have shown above

for k = m is equal to S(M0 x I) = S(M1 x 1)) and the invariant

15:F (1w (B), wy(B), S(M), Kk =m-1,me3,?
_ 15T (ry(B), wy(B), S(M) ,  k=m ,m#?
oM, ¥,) €
L5 (y(8), wy(B)), k>m

5 (w(B), Wy(B) 'y on and B a finite simple
m Poincaré complex



- eds ¢
is a bordism invariant rel. boundary.I¥ k=m-4 orm and m=3,? “‘“":‘ ""‘e;‘“: m‘f
w (B Ty P SWnyy ("), %>, 6 +riviee. % net we have foreplece He phehuckim moneid Lytotp
™o 4 !

by 1.:':(1:,1\:., ScY+ &) or L:':(-';‘u‘ scH)+2).
(M,')"'M) is bordant rel. boundary to a s-cobordism &

e(M,ia'M) =0 if kem

o(M, VM) zero bordant if k = m-1.

Proof: Suppose (M, VM,f) or (M, ;M) bordant rel. boundary to (N, ?N,f)
or (N,VN) and assume that VN is also a m-equivalence. That means that
(M, VM) and (N, 7N) are normal (m-1)-smoothings which are bordant rel.
boundary. Theorem 2.1 implies that they are . stably s-cobordant.
This implies that S(M) = S(N) and @ (M, ¥ \,,f) = @ (N, V ,q) and

-

0 (M,VM) =0 (N, V).

Now, suppose 8 (M, TfM,f) = 0. We will show that we can make (B,M) then
(m+1)-connected by a sequence of surgeries. Partial Poincaré duality im-
plies then that we have obtained a normal k-smoothing. Similarly if

0 (M, V,) =0 (ora (M, V) zero bordant, if k=m-1) we will Kill T, (M:M,)
by a sequence of surgeries. Then Poncaré duality implies that M 1is a
h-cobordism. Working carefully with preferred bases M will even be a

s-cobordism.
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We will carry the proof through for the case @ (M, Yy M) zero bordant and
k = m-1. All other cases can with some obvious modifications be proved in

the same way.

After possibly stabilizing M by a connected sum with (Sn xSn)|s we can
assume that for (T m(M’Mo) & K Tr'"(M)/KTm(Mo) A K"'m(M1) —>1rm(M,M1),A,h)
there exists a based submodule U € K 'n'm(M)/K."m(Mo) P Kvm(M1) with the
properties i) - iii) in the definition of “zero bordant" above. The defini-
tion of S(M) implies that we can find XqseoesXy € K ‘1rm(M) representing

a basis of U and ”(Xi) =0 in Q(_”n. As also A (Xi’xj) = 0 one can
find disjoint embeddings (s" xDm)i representing Xi( [Aa4], Theorem 5.2 or
[34], Proposition 5.2; this is proved there only for a single element but
the same Whitney trick argument shows that one can choose the (Sm xD’")i
disjointly). Furthermore we can assume the embeddings compatible with the
B-structure ( [53 , § I¥.4 ) so that we can make surdery with them.

We claim that the resulting B-manifold (M, -)7M-') is a s-cobordism.

]
It is clear that 'n'1(Mi) ——)1r1(M ) is an isomorphism. To compute
Hy (M' ,M1;A ) we consider the following exact sequences with A -coeffi-

cients. Write X= U (s™xD™);

ns1 (M M-X)

l d
0—> H_(M-X,M,) —> H (MM ) —La b (M%) = H oy (MK M) 0
J Jus

Ho (M ,My) Ho g (M M)

v

0

H
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"

~ ~
By excision H, (M,M-i) H, (X, 9 X) where X means the counterimage of
the univercad tovens
X in M. Thus H, (M,M-X) is trivial except for * = m where it is /\k
with basis ( {*} xDm)i or * = 2m where it is again ,/xk with basis

Ksm xDm)ijﬂJhis basis represents a preferred basis of H* (M,M-i).

Similarly H* (M',M-ﬁ) has a preferred basis represented by (Dm+1 X (*} )i

in dimension m+1 and by B0m+1 xSm'1)iﬁﬂindimension 2m.

With respect to this basis the homomorphism Hm(M,M1)—al9 Hm(M,M—f) is given
by x —>(A (x,x1),..., A (x,xk)). If we denote the image of U in Hm(M’Mi)

by U, condition ii) of the definition of zero bordant in 15

implies
that Hm(M,M1) splits as U1 ® Hm(M’M1)/U and that j 1is a simple isomor-
1
phism from H_(M,M )/ to Hm(M,M-i). Thus H__, (M-X,M,) and with it
] 1 e B
Hm_1(M ,M1) vanishes. Furthermore Hm(M-X,M1) is isomorphic to U1 and if we
equip Hm(M—i,M1) with the preferred basis of U1 then d: Hm+1(M',M-§)

Hm(M-i,M1) is a simple isomorphism.

~
As H,(MyM,) vanishes for * £ m, H2m(M,M-§)-i:—> HZm_1(M-§,M1). If we
equip HZm_1(M-§,M1) with the preferred basis of HZm(M,M-i) then d: H,

(M',M-i)———>rbm_1(M-§,M1) is a simple isomorphism.

These considerations imply that H*(M',M1) = {()} and that the Whitehead
torsion of the acyclic complex given by the based horizontal and vertical
homology sequences vanishes. As (M,M1) and (M,M-i) have trivial Whitehead
torsion the additivity formula implies that (M-i,M1) has trivial torsion.
The same argument applied to the vertical sequence implies that (Ml,M1)

1
has trivial torsion. Thus M is a s-cobordism.
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If (M, 9 M,f) is bordant rel. boundary to a normal k-smoothing then ob-

viously 8 (M, Y M,f) = 0 and if (M,'V'M) is bordant rel. boundary to a

s-cobordism then it is clear that O(M, V'M) = 0 except in the case k=m-1.

The difficulty there comes from the fact that @ M, V M) is only defined affer #rans for-
ming 9 yinio @ m-equivalence. Thus if M = My xI and VMO is a (m-1)-equi-

valence 0 (M0 xI, 7lﬁf) is only defined if we first transform it into a

0
m-equivalence.

Given (M, ¥ M)’ 'V'M a m-equivalence, which is bordant to a s-cobordism

and suppose that the bordism is obtained by a sequence of surgeries on
disjoint embeddings (Sm xDm)i as above. Then the considerations above show
in turn that 0 (M,'§'M) is zero bordant..But there is always after possibly
stabilizing (M, ¥ M) by connected sum with (s" xSm)ls a bordism of this
type between (M, V'M) and a s-cobordism (N, TVN) if (M, M) is bordant

to (N, ¥ N). Namely by similar considerations as in Lemma 2.3 we can trans-

form (N, ;71“) by surgeries on disjoint embeddings (Sm"1 xDm+1)

i into a

. ' 1 , m
normal (m-1)-smoothing (N, T;N )% by surgeries on (D" xS )i' On the other
hand, as (N', 37N') and (M, §7M) are bordant normal (m-1)-smoothings they

are stably diffeomorphic by Theorem 2.1. This ends the proof of Theorem 5.2.

.
+ In durn (N,-V'N) is o“o.«'neo( from (N,VNn\
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§ 6 Classification of  normallsmoothings I1

In this chapter we want to extend our results to the odd-dimensional case.
Suppose that (M,'v'M,f) is a (2m+1)-dimensional k-admissible relative (B,V)-

manifold or that (M,:Q is a B-bordism between two 2m-dimensional relative

M)
normal (k-1)-smoothings in (B,V) and that B has finite (m+1)-skeleton. By
Lemma 2.3 we can assume up to bordism rel. boundary that §M is a m-

equivalence.

We begin by describing the surgery obstruction for a normal k-map

(M,VM,f), k 2 m. By assumption we have an exact sequence

d

T, (B.M) —S T (M) T (8)— 0

m+1

As m .(B,M) ¥H

-~ (B,M;J&))this A -module is finitely generated. Choose

m+1
disjoint embeddings (s" x Dm+1)i c¢M, 1<1i <k, re presenting a system of
generators of im d and compatible with the B-structure ( [51, §1v4).

fovr me3?

m+1)i = U. On mqn(aii) we have the (—1)m-quadratic form

We denote kf(sm xD
( A,u). This vanishes on the kernel of the inclusion from 9W into a bounding
manifold ([44] ,p. 52). If we consider the inclusion 3('1 — a we obtain
as kernel a lagrangian denoted by F. If we consider the inclusion

rm(:&)-»rrm(m-w we obtain a sublagrangian G. If k=m our surgery

obstruction will be respresented by ((ﬂ}n(azl),A,u), F,G) in

h —
125:1(171(8). Wy(B)) denoted as O(M,V,f).
If m = 3,7 the quadratic refinement u 1is defined on qrh+1(3, g'ﬁ), As
discussed in § 5 this induces a form u on T (3 U) = Trm+1(B,91H/1rm+1(B)

*
if the homomorphism T . (B)—» 12, [ 3 »—»{wm+1(p ¥). x> is trivial.

m+1

As for every manifold M of dimension < 2m+1 the map 1Tm+1(M) —_ Zé,

x > <wm+1(M),o(> is trivial, the vanishing of L (B) —> ZZ is a

+1
necessary condition for the existence of a manifold of dimension < 2m+1 of
normal k-type B if k > m.It is easy to see that if k > m and there exists

any k-admissible B-manifold B has this property.
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If kK > m wewill show that G is a direct summand , G = GJ' and thus

O(M,')'IM ,f) is contained in the obstruction group Lgl;lg1(11'1(8), w,(B)).

To show that G = G J'and G is a direct summand we first note that
~ o ~
Ker ‘l‘m(?)ll) -———)Trm(M-U) is equal to Ker Hm(all)-——> Hm(M-ﬁ; N).
This follows by diagram chasing from the commutative diagram:
0
o & v oo
T (B,M-U) == H_  (B,M-U; A)

l |

w(al) =mal) —> mod) — el A)

! I}

wE) — 6 A

The isomorphism in the diagram follows as by assumption (B,M-ﬁ) is m-
[o] o
connected. The injectivity of Hm+1(B,M-U;J&) —> Hm(M—U;j\)follows as

k-partial Poincaré duality implies that

Hm+2(M-U;A)—) Hm+2(B;A) is surjective.

~ (o]
Next we will show that Im Hm(9 U —> Hm(M-U;I\) is projective which
implies that G is a direct summand. For this we will show that this

image is equal to Hm B,M-ﬁ;/&). If k > m, k-partial Poincaré duality

+1

(
implies that Hm+2(B,M-U

) vanishes with all coefficients. Thus

Q
Hm+1(B,M-U;1\) is projective ([44], Lemma 2.3).
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To determine Im Hm(OlU ———$er(M-ﬁ;1\) as Hm+1(B,M-ﬁ;I\)we observe that

the sequence
Hy (W —> H (M-U) —>H (B) —> 0

is exact. This follows from the diagram:

:l_,J i I

H) — W —»H,® —>0

in which both vertical sequences and the lower horizontal sequence are

exact, the latter follows from the fact that Hm(ﬁ) generates Ker

H (M) —> H_(B).

SR

Finally we have to show that G = G™ . The diagram

Lo ~
G c G c Hm(a )

J IS us

i (AW /)" = 1 31 7 9" S>HaT)

in which the vertical maps are given by the pairing A shows that
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L ook L - o
G=6G"&» 6 ——)(Hm(a W) /g) is surjective. We consider the following

diagram with A -coefficients:
o] [o] ~ [o] j* [o]
Ho (M=U) = H (M-U,3 1) —>H (3 U) —> H (M-U, M) —>H_(M-U, AL U M)

Tsu '[s "

H™(M-0,21 v M — HM(M-U, DM)
J

~ [»]
The sequence is exact as Hm(a u) -—>'Hm(M-U,3l4) factorizes through
Hm+1(B,M—U):

H (9 W) —> H_,(B,H-U) >—3H (H-U,V) and thus Ker H (D L — Hm(M-ﬁ,'aM)
= Ker (3 U) —>H_(1-U).

-~ *
We have to show that G —> (Hm(Q W /G) is surjective. By the diagram
. * ~
G = Koker j and Hm(Q\L) /G = Ker j, and the map corresponds to the
Kronnecker pairing. Thus we are finished if the Kronnecker pairing in-

duces a surjection

* *
Koker j ——MKer j,) .

We note that Ker j, = Ker Hm+1(B,M—U) ——)tMH4(B,M—U /alﬂ which follows

from the obvious diagram and the information proved above. We have the
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. S B
similar statement for Koker j . Furthermore the same argument used above
projective. As Hm+1(B,M-U)-—i> Hm+1(B,M—U /3 U) is surjective this implies

to show that H_. ,(B,M-U) is projective shows that H

m+1 m+1

that the map splits. Thus we have the following diagram:

(8.0 /) = W™ (B,M-0) — Koker 57 —3 0

L J |

(B,M-U /au)* 3 H L (B,M-U) => (Ker j¥) —>0

Hm+1 m+1

As (B,M-U) is m-connected the map Hm+1(B,M—U) > H (B,M-U)* is sur-

* m+1
*
jective implying Koker j —> (Ker j*) surjective.

If B is a finite Poincaré complex then the same type of arguments shows that
G is a lagrangian (in general G willonly be stably free but one can stabilize
it by adding new unlinked 0-homotopic embeddings s™ x Dm+1 c—>»M to the

given system of embeddings as described in the proof of Theorem 2.1) and we

h

obtain an element O(M,ﬁiM,f) €& Ly . ,(T,(B), w,(B)) as in Wall's book.

Now, we describe the surgery obstruction of a B-bordism (M, 37M) between
two 2m-dimensional relative normal (k-1)-smoothings in a (k-1)—bartial Poin-
caré complex (B,V,X) with finite (m+1)-skeleton, k= m. Again we assume
that (B,M) is m-connected. As (B,Mi) is at least m-connected, (M,Mi) is

(m-1)-connected and 7Th(M) —-€>7Tm(M,Mi) is surjective.

We have the following diagram of exact sequences:
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'n'm‘(‘B,M)

| ™\

T (M) —— (M) —m, (M) —0

|

T,(8)

l

0

It implies 1rm+1(B,M)-——e>1rm(M,Mi) is surjective. As (B,M) is m-connected

and B has finite (m+1)-skeleton 1rm+1(B,M) L Hm+1(B,M; A) is finitely
generated. We choose disjoint embeddings (Sm xDm+1)i € M as above represen-
ting generators of im d aend denote Y(S"n D"H).- by 4.

As discussed at the beginning of this chapter the definition of u on Trm(a ﬂ)
needs some explanation if m = 3,7. We have explained this if the homomorphism

*
(p o), &> is trivial which holds automatically

(B) —» Z,, X v+» W

et 2’ m+1
if k > m. If this is non-trivial we replace u by NTR 1rm(aﬁ') _;'A/{a«\’a'} + 7
as discussed in § 5. In this case the obstruction will be contained in

15”'(1r1(3)), w1(B), ZZ). To simplify arguments we will not mention this special

2m+1
case in the following arguments separately. The necessary modifications are

obvious. -
We consideg the exact sequence with N -coefficients:

o, (M-0, 20 UM ) —>H (3 T) —rH mOm).

We will show i) that this sequence vanishes except for x = 0,2m where the
left or right maps are obviously isomorphisms and the corresponding modules
are free with a canonical geometric basis and for x = m. In this case we will
show that all terms are stably free and after stabilization we equip these
moduls with a preferred basis such that the Whitehead torsion of all three pah1f30.
ii) G = H (M-ﬁ, U LIMO) is a half rank submodule in Hm( ] ﬁ) (if k=m-1,

m+1

this in only true if the Euler mumbers e(M_) and e(M,) agree) and iii)
0" pased 1
( A ,u) vanishes on G, if k2 m, thus it is a*lagrangian in this case.

oM,V M) is then the element represented by ( 1Tn# ) U), F,G) in

5, T . . .5, T ,
Lomey (m@.wa)if k2 m and in 1o (m ), Wha)if k = m-1.




(N

o]

i) It is enough to show that Hm(M-U,MO) is stably free. This module is un-
changed if we join all components of AU with M0 by a thickened arc as des-
cribed in the proof of Theorem 2.1. But then it is a simple consequence of
Poincaré duality and the fact that (M,Mi) is (m-1)-connected to show that the
m-th homology groups are the only non vanishing modules with arbitrary co-

efficients. Then by ( [41] , Lemma 2.3) the module is stably free.

- o o
ii) From now on we assume that Hm+1(M-U, JU U Mo) and Hm(M-U,MO) are free
o

with a preferred basis. We have to show that rankjL Hm+1(M-U, PRIA MO;I\)
o . . -]

= ranklklﬂn(M-U,Mo;zﬁ.) or by Poincaré-duality that rankj\ Hm(M-U,M1,J\ )
L]

= rankl\ H (M-U, M : A). As the modules are free this is equivalent to :

rank H (M U,M,; Z ) = rankzZ H (M U M Z ). As M0 and M1 have same Betti-

3 1’

numbers up to dim m-1 this is equivalent to: e(Mo) = e(M1). This is fulfilled

if k= m and we require it for k = m-1.

iii) We have to show for k = m that (A ,u) vanishes on

Ker Hm( 9 U)-——a-Hm(M-ﬁ,Mo;z\ ) or as the spaces are (m-1)-connected on
Ker 1rm(‘9 U)——~> Tﬁn(NLﬁ,MO). On the other hand ( A ,u) vanishes on
Ker 'n‘m( Sﬁ) —-y’rrm(M-ﬁ). ( [441, p.52). Thus we are finished if
Ker ’n'm( ) — Wm(M-fJ,MO) is contained in Ker ’rrm( QTJ')—-)T\'m(M-ﬁ).

But this follows from the commutative diagram:

o

(9 U) —sr (m-3,m,)
j /-n' (m-0)
A(B) &g TfMy).

In analogy to the even-dimensional case we introduce the following notation:
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Cor 1!,1 ('";“02»
Lmed

An element of 1 (r w)vis zero bordant if it has a representative of

2m+1

the form ( ( e (A x {o})", {x+C(x)|x€({0}xA)r}'),
C: ((0} A — (A x {0} )" a homomorphism. This looks similar to an

elementary formation but it is only equivalent (after interchanging A x {0}
with {0} X A) if C is of the form A + A*. Again elements in the image of

2m+1 (T,w) — 12m+1 ( 7 ,w) are zero bordant if and only if they are

trivial.

Now we are ready to prove the main result in the odd dimensional case.

Theorem 6.1: m2 2.

a) Let (M2m+1,')7M,f) be a (2m+1)-dimensional k- admissible (k =m-1) (B,V)-

manifold, where B has finite (m+1)-skeleton. Then the invariant

m-1

{0} k

-— 2m+1(1r1(8) W (B)) k =m
I21m21('“'1(3)s w,(B)) k>m

Lg 1(-1r1(B), w1(B)) k = 2m+1 and B a finite Poincaré
M+ complex

is a bordism invariant rel boundary.

o—

O(M, VvV =0 &M, VM,f) is bordant rel. boundary to a normal

wf)
k-smoothing.
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b) Let (M,Sﬁﬁ be a (2m+1)-dimensional B-bordism rel. boundafy between
two relative normal (k-1)-smoothings (MO,Jﬂ%; fo) and (M1,>'M1,f1) in
(B,V), where again B has finite (m+1)-skeleton. If k = m-1 we require

e(Mo) = e(M1). Then the invariant

1525, (1w, (8), w,(B)) Kk =m-1,m=3,F

2m+1
oM, ¥y € LS T (r,(B), w,(B)) Kk =m
M amett BT Ny 2
L§m+1(1f1(5), wy(B)) k=2m+1 and B a finite simple

Poincaré complex

is a bordism invariant rel. boundary. T§ kem-4 and me3,? the same holds of

T (B By , Kt Loty (#1733 B Frivin b T mot we have fo reptce the monoicl by
4

L Yoo 2. N
(M, %) is bordant rel. boundary to a s-cobordism S

0(M, ) =0 if k=m

a(M, Dh) zero bordant if k = m-1

Proof: To show that © (M, ¥V M,f) and 8 (M, ;;M) are bordism invariants we

m+1)

first study the change of the system of embeddings U = l{(Sm xD Let

i
V = L)(Sm xDm+1)j be an other set of embeddings s.t. (s" xDm+1)j generates
J

im W (B,M)-——;»Trm(M). We can assume that U 0 V = @ und thus consider

m+1
UV V. The invariant is independent of the embeddings if it agrees for



U and U UV. It is even enough to show that it agrees for U and U to-
gether with an additional disjoint embedding sm xDm+1 s Ms.t. S" x {*}

represents an element of im 1Tm+1(B,M) —> 'rrm(M).

let U' = U US" x0™!. We have to study the kernel of T (3 U') > -0
(or to ’Ir'm(M—ﬁI ,Mo) where the arguments are similar). We denote the kernel .

of Trm( ? U) —> 'n[‘n(M-ﬁ) by G and the standard basis of s xs" by

e =S"x{*} and f = {*} xs". As U generates im W, (B,M)—>r (M)

there exist x €& 1rm( ? U), ae A s.t. e+a-.f +xé€ GI = Ker n‘m(aﬁ')
—-—)'n'm(M—ﬁ'). And for every y €& G there exists by e A s.t. y + by- f
GGI. by can be computed in terms of the x above and of y: by = - A(X,y).
For, x + e + a:f € Ker T _( Z)TJ')-% Tm(M-fJ') and y + b);fe Ker 1rm( OTI')
————)'n'm(M—TJ') (or —->1rm(M-'l’J',MO)) = 0 = A(x+eta-f , y¢ by t) =

= A(x,y) + by. It is easy to check that the element e + a«f + x and the

elements { y =Ax,y)*f |y € 6} generate G .

We will show that (T (9 U'), A ,m), F, 6') is isomorphic to

(. ( 3U),A,u), F,G)e (H(_”m, A x40}, 40} x A) under a simple
isometry preserving F by a simple isomorphism. This isometry is given by
T8 U) eH \ym —> T (U ) = T, (3V)eH _ym,

yew (9U) >y - A,y)ef, @ > x + e+ asf, fr—>f.

Now, the bordism invariance follows by the same argument as in ( [44], §6).
We first note that surgery on (Sm xDm+1)ireplaces 0 M,y M’f) or

4

v, 0

oMY y) by the product with (od‘ . Thus by Lemma 4.6 the
\\4

element in the surgery obstruction group (monoid) is unchanged. But in

]
( [411, p. 61) it is prooved that if M and M are bordant rel.
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under @ ‘u‘ah@y conneckdl bordiz w

1 Iucll
boundary then one can pass form M to M by a sequence of “surgeries, compat-

ible with the B-structure. As we are free in the choice of our system of

generators of imTr (B,M) — Tnn(M) we can assume that the surgeries

m+1
1
are all performed on (s" xDm+1) s contained in U.

Now, suppose © (M,VM,f) =0, 0 (M, VM) =0 if k2mor 8 (M, VM) zero
bordant if k = m-1. As in the even-dimensional case the proof is very simi-
lar in all these situations and we carry only the case 0 (M, V M) zero bor-

dant and k = m-1 through.

If 0 (M,'V'M) is zero bordant it is after stabilizing with hamiltonian and

elementary formations within the bordism class isomorphic to (H'(P_”n, (Ax ,{0})r’

'{x + C(x) | X € (4071 x A )r}) for some homomorphism. C: ({ 0] X A)r

_—> (Iﬁ X {0} )r_ (Weakly isomorphic can here be replaced by isomorphic

]
as the first lagrangian (A x {0} )" is the same.) Let s assume for a moment

that we can realize the stabilization process geometrically so that 6 (M,37M)

is itself isomorphic to the quasi-formation above.

The claim is that under these conditions M 1is already an s-cobordism.

For this we consider the exact sequences with A -coefficients:

0

|

Hm+1(M—U,MO\J 9 U)

~ ~N ~
(U 90 — H (2 1)

\ o 1
y

0



Similar considerations concerning preferred bases as in the proof of Theo-

rem 5.2 show that (M,Mo) is contractible with trivial Whitehead torsion if
. o~ ~ o

and only if the map Hm+1(U, 2U)—> Hm(M-U,MO) is a simple isomorphism

where Hm(M-ﬁ,MO) is in such a way based that the vertical sequence has tri-

vial Whitehead torsion. But this is obviously the case if @ (M, ¥ M) is of

the form assumed above.

We have shown already in the proof of Theorem 2.1 how one can stabilize
with hamiltonian formations. Instead of adding an elementary formation
(HE‘_”n, (Ax {0\ )', {x + (C- (—A)nC*)-x ' x € (A x {0} )"})we can add
with its image unter the action of r-G’ (replacing x € (1\ x‘éo} )r by

x & ({0} xA)") as we can realize the action of r G~ geometrically
by surgeries. To realize the addition with this formation we first stabi-
lize with a r-dimensional hamiltonian formation by adding to U T times i
null-momotopic unlinked.(sm xDm+1) . This corresponds to the case C = 0.
The general case can be obtained if one changes the framings of these em-
beddings appropriately and introduces linkings between (Sm xDm+1)i and

by the connected sum of (s" x0™ )

" replacing (Sm xDm”)i i

m _am+l
(S" xD )j j
) . . . . m
and <, 3 times a thickening of the embedding ({ *] xS )j (compare [}‘4],

p. 58).

Finally we have for k = m-1 to show that if (M, KTM) is bordant rel. boun-
dary to a s-cobordism then 8 UW,STM) is zero bordant (all other cases are
trivial). This case is easier than the even-dimensional case as @ (M, :;M)
is defined without changing the manifold within its bordism class for an

—

s-cobordism. It is easy to see that for an s-cobordism @ (M, ¥ M) is zero

bordant.

q.e.d.
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§ 7 Summary and reformulation of the resuits

In this chapter we are going to study the question which elements in the ob-

struction groups are surgery obstructions, describe an action of

n+1 ('n (B), Wy (B)) on NSﬁB&V) Jeading to an exact sequence relating
NSﬁB&V) andl\SEﬁBév) and finally we study the difference between
’ ’

NSﬁBiV) and the set of s-cobordism classes of manifolds which admit a normal-

k-smoothing in (B,V). We always assume that B has finite fn+3/2] -skeleton.

We begin with the additivity formula for 8 (M, ¥ ). Let (M, V) be a B-bordism
rel. boundary between n-dimensional relative normal k-smoothing (Mo, V&k’,fo)

and (M,, ¥, ,f,) and (N, ¥ ) such a bordism between (M,, ¥, ,f,) and
1 M1 1 N 1 M1 1

-—

M,, ¥V, ,f,). Then (M U N, Y. UY,) is a B-bordism rel. boundary between
2 M2 2 M M N

o

M,

o M ’ f

f ) and (MZ’ Mz’ 2)

Proposition 7.1: If k 2[n/2) then @ (M U N, D U ¥,) (sitting in
M
0

( 7r1(B), w1(B), S(Mo x 1)) if n is odd and

s, T
L " (TT (B), Wy (B) or Ln+1

[n/2] ) is equal to & (M, E;M) + 9 (N, V N

Proof: If n = 2m-1 is odd the obstruction is represented by a & -quadratic

form on H__, (B,M; A ) or on K T m(M)/K‘ﬂ m(Mo) . As (B,Mi) is m+1-connected

H BMUN; A ) Y Hovq BM;A) o H (B,N; A) and K T, (M UN)/K.,rm(MO)

m+1 m+1

and the forms split as orthogonal

T W ) © KT 0/ o)

Sum..
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If n=2m is even, 6 (M, VM) is represented by the & -formations on
T ( 9l ) represented by the kernel of the map into Tm(M-fJ) where U repre-

sents a system of generators of the image of T 11 (B,M) ¥ Moot B,M; A\ ) in

. . a .
T (M). As (B,M;) is (ms1)-connected, H .y (B.M VN A)y#u , BMA)®
Hopy (Bals M) so,if V generates im Trm+1(B,N) —> T (M), UU V generates
im T (B,MVN) — T (MU N) and the kernels slit as the direct sum.

g.e.d.

If k = [n/Z] ~ 1, the additivity problem seems to be more difficult.

Proposition 7.2: Let (Mo’ VM ,f) be a n-dimensional relative normal k-smoothing
0

k =[n/2] , n25. For every 8 € T

T (o, (B),wy () (L317 ( 4 (B),wy (B),

S(Mo x 1)) if n is odd and k = [n/2] ) there exists a relative normal k-smoothing.
(M1, VM ,f) with IM = M, and a B-bordism (M, ¥V M) rel. boundary between
1

My and M,, such that 8 (M, VM) = 8 . Up to bordism rel.boundary (M, VM) is

uniquely determined by 8. Especially (M1, v M f) is up to s-cobordism completely

1’

determined by 8.

Proof: This is proved in ( [44] , Theorem 5.8 and Theorem 6.5) for the case of

simple normal n-smoothings (= simple normal homotopy equiva]ences) in a finite

Poincaré complex B. The proof extends verbally to our situation.

g.e.d.

Thus we get an action of Lf‘lr (7 1(B),w1(B)) on NSE‘B:l’(V) for k = [n/2]

(k >[n/2] if n is odd), (8, [M, V,.fl) [M,, V.1, where (M), Y 4>f)
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is as in Proposition 7.2. If k = [n/Z] , h odd and k2,6 e ebstructions art confarned

in inf (1r1(B), w1(B), S(M0 x 1)).Then S(M1 x 1) = S(M0 x 1), as both are

equal to S(M).

Given S ¢ we denote the subset of NSt(] I’(V) represented by (M vM ,f) with
S(M, x 1) =S by NSABQV’S) (similarly ASI(B v S)) Thus, if k = [n/Z] and n
odd.we obtain an action of Lnif( 1(B), w1(B),S) on NSr(lBkV S)

(kw z,t)

With these preparations we can reformulate our Theorems 5.2 and 6.1 as follows

Theorem 7.3: Let B —> B0 be a fibration st. B has finite (2] + 4) -skeleton

and (V, 37V) a fixed (n-1)-dimensional B-manifold.

(a form po.romﬂ!f)

scA=z [ 1 (8)] a subgroup as described in the beginning of § 4\./n = 5.

The following sequences are exact in the sense that the map on the left side
corresponds to the action defined above, exact meaning that the orbit space

injects into the bordism group.

A) B a finite Poincare complex (k = n)

L5:T (1 4 (B) 4wy (B)) -—>Ns(B V) 5 A Sfo‘ V) 8, L: (r,(B),n,(8))

n+1

B) k >[n/2]

2T (v, (8)wy (8)) —>1sy!) — R E NOFAG)

n,

¢) k= [n2\and n = 2m.

57T (8) g (8)) —yhs) Y-S OUR S LY MORAO)

e ”



= [n/Z] and n = 2m-1and m=+ 3,7

T B,V,S sV ©
(T (8) o, (8),5) — nsPV+S) 5 aQBVsS) 2o 4P (or (8) oy (8))

It = 3,7 the corresponding slatement it com fained in Theorems €.2 and (.4.
E) For k = [n/2] -1 andn >4 ,n= 5,6,13,14

(8,V) B,V
Nsn, [n/2] - 1___> §2£ )

is surjective and elements in a fibre are up to an indeterminacy classified

n+1

If (M’qu) is a B-bordism rel. boundary between (MO’ Mo,fo) and (M 1 M1,f1)

(with e(MO) = e(M1), if n is even) then (M,37M) is bordant rel. boundary

1iif(1r1(B),w1(B)) (or 1s’t(1r1(B),w1(B),S) if n is odd) which means:

to an s-cobordism if and only if ©(M, 7»0 vanishes in 1:;?(1r1(8),w1(3))

(in 1n+1(1r (B),w1(B),S(M)) if n is odd).

1t n= 56,143,149 the cowupmda‘n; Sstatt menys are comteined in Tesrems S22and 6.4 .«

F) Similary if n = 4,in the cases A) - C) elements in the fibres of the map
lNS4’k'_‘ﬁ> 524 are up to an indeterminacy classified in L§’1’(1r1(8),w1(8))
(or L3> T (1 4 (B),my(B),S).

Remark: If we replace smooth by topological manifolds then A) - C) of
Theorem 7.3 is true for n = 4 if 1r1(B) is poly finite-cyclic. This follows
from the extension of topological surgery to dimension 4 by Freedman and

Quinn [42] .

Remark: In case B) the sequence has an extension to the left. This and appli-

cations to block-diffeomorphism is discussed in [46].

Theorem 7.3 provides a method for classifying normal k-smoothings in (8,V)

B —> BO a fibration. It is perhaps more natural to classify all manifolds M
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which admit a normal k-smoothing in (B,V). We call such a manifold of normal

k-type (B,V). The set of diffeomorphism classes (s-cobordism classes, if n = 4)

of manifolds of normal k-type (B,V) is denoted by mr(]Bl’(V). There is a pro-

jection map

(B,V) (B,V)
NS,k —_> mn,k .

Let Autﬂa,p)u(ﬁv)be the group of homotopy classes of fibre homotopy self equivalen-

ces h of B —> BO such that h o')"v = Vv. This group operates
on NS'(]BIQV) as well as on AS?r(lBl’(v) by composition,
(hy (M, ¥ ,F))F—>(M, h oV, f).

refahive
Proposition 7.4: Let (M, V) be a fixed normal k-smoothing and B —%B0

a (k+1)-coconnected fibration (&> VM a Postnikov-factorization). The map

hv¥~—h o VM defines a bijection between Aut (B, p) rel VY and the different normal

v
k-smoothing of M.

(8,V)
Thus NSn,k /Aut({B,p)reIVV) = nl

Proof: If VM is another normal k-smoothing,the uniqueness of a Postnikov
decomposition ( [37 , Corollary 5.3.8) implies that there exists a unique
fibre homotopy equivalence h: B —> B such that h o VM and V;d are homotopic

over BO. Thus the map h ¥ h o VM is bijective.
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Remark: If one considers the set of (simple) smoothings Sh(X) (s3(X))

of a Poincaré complex X then the set of diffeomorphism classes (s-cobordism
classes in dimension 4) of manifolds {simply) homotopy equivalent to X is the
orbit space under the action of Aut (X) (AutS (X) = group of simple self
equivalence).

If we define the set of 2n-dimensional stable diffeomorphism classes of mani-

folds admitting a relative normal (n-1)-smoothing in (B,V) by URSt(B V), ns=2,

we obtain for a n-co-connected fibration B —» B0 an jdentification:

(8,V) (B,V) .
NSt, . /Aut((B p)reli—%mSt or by Theorem 2.1 :

1
(B,V) == (B,V)
Theorem 7.5 : WSty = Q) /Aut((B,p)relvv)

It should be remarked that Aut ((B,p)reliiv) operates linearly‘on S?;g’v).

With these results one ‘can try to decide whether two compact manifolds M and N

of dimension 2 5 with diffeomorphic boundary are diffeomorphic:

Check if M and N have same normal k-type for some k 2[%] - 13 B (M) = B (N) =

B —> B0. Choose normal k-smoothings S;M and 'VN to obtain elements in
(B,V)
Nsn,k .
Compute this set by Theorem 7.3 and check whether M, ¥ M) and (N,'Vpaare in

the same orbit under Aut({B,p)rel ;V)’

If n = 2m is even one can use instead Theorem 7.5 to decide the stable diffeo-
morphism problem and can try then to cancel the (S" x s™)'s with the

methods of § 3.



One main problem of this approach is of course to decide whether

Bk(M) = Bk(N). This is more or less equivalent to deciding if M and N
have homotopy equivalent (k+1)-skeleton and same nemal bundle over the
(k+1)-skeleton. Similary Aut(Bk(M)ﬂis more or less the group of homotopy
self equivalence classes of a (k+1)-skeleton together with an isomorphism

of the normal bundle.

More precisely, given a map p: X —>Y we denote by Autk(Y,p) the semigroup of
homotopy classes of pairs (f,h), where f: X—>X is a (k+1)-equivalence and

h a homotopy between p and p o f. If p is the constant map we denote the
semigroup by Autk(X). If p: B-——§>BO is (k+1)-coconnected and X a (k+1)-

skeleton of B we denote plx again by p.

We obtain a map Autk( X ,p) —> Aut B as follows. Consider the composition
iof: X —> B. h gives a homotopy between p o i o f and p. The restric-
tion of a lift of this homotopy to X X { 1} gives a map g: X ~=—>B
commuting with p. As p: B—> BO is (k+1)-connected fhis map extends to a unique
automorphism of B. Obviously this map Autk( X ,p)—> Aut B is surjective.
It is easy to see that Autk( X ,p) fits into two exact sequences SO that we
obtain

Proposition 7.6: Let B—>BO be (k+1)-coconnected and X a (k+1)-skeleton

of B. There is a surjective map Autk( X ,p) —»Aut B and we have exact

sequences:

[ x .0l —> au( X ,p) = Aut( X ) —¥Ko(X )

and

0 Daut (X) —yhur (X ) —PEnd TV T4 K-
+
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Thus the unstable homotopy theory needed for this approach is the classifi-
cation of k-complexes and their automorphisms for some k o [n/z] . The rest
is stable homotopy theory computing SEg e 1rn(M yB) (by Pontrjagin Thom
construction, see f37] ) and algebra to determine the L-group (monoids)
and of course the determination of the maps in the exact sequences which is

often a very difficult problem.

The difference to the information needed for the approach of Browder and
Novikov is rather clear if one considers stably parallelizable manifolds.

Then Bk(M) = Pk(M) x B0 £ k+2 > -EZ—'BO < k+2™> —>»B0 where Pk(M) is the
k*th stage of a Postnikov tower of M (M -—+>Pk(M) a (k+1)-equivalence

and 'ﬂ}(Pk(M)) = {0} for r 2 k+1) and BO < k+2Y is the (k+1)-connected
cover of BO. The smaller k is the smaller is the information of unstable

homotopy theory one needs and the latter seems to be the most difficult

part.

The following two exact sequences might be useful in computing Aut((B,p)rel??v).

Proposition 7.7: Let p: B«~—>»B0 be a fibration with B homotopy equivalent

to a CW-complex. 7\, : V—3B a B-structure on some manifold V. Then we have

exact sequences

- 11-1(BB) _51r1(BOBx'BV) —_ Aut((B,p)rel?v) -y Aut B ——s‘!rO(BOBx'BV)
and
o m,(80°%) xmy(8Y) —yw,(80") — m (80%xBY) —5m (B0°)x W (BY) > m (s

— - (80%'8Y) —» w (80%) x W (") > w (80"
where BOBx'BV is given by the fibre square
B v

808x'8Y ——— B

L, !

8O — 5 80

The base points in the sets of maps are given by Id in BB, 37V in Bv, p in BOB
and p o ¥ n go'.

Proof: The result follows from the fact g% - BOBx'BA is a Serre fibration
(compare Spanier: Algebraic Topology, p.416, Corollary 10).

g.e.d.

Yy
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§ 8 Some applications

In this chapter we want to demonstrate how the results of this paper can
be used for solving certain problems. Some applications were obtained be-
fore I developped the machinery in this generality, for instance the com-
putation of bordism groups of diffeomorphisms. To a certain extent these

results were the motivation for the research which led to this paper.

Our aim in this chapter is not to give a complete survey about known
applications but to demonstrate typical cases at some rather simple
examples. In some cases we only sketch the proof and refer to the original

article for details. Another good example to demonstrate the difference

between the ordinary surgery approach and ours is the appllcatlon to the
classification of 1-connected manifolds up to finite ambiguity extending

to corresponding results of Sullivan. This is carried through in ['22].

1) Bordism of diffeomorphisms. Let Ag (An) be the bordism group of

(orientation preserving) self diffeomorphisms (M,f) on (oriented) closed
n-manifolds modulo those bounding a self diffeomorphism on a compact

manifold Y [17].

There are two obvious invariants, the bordism class of M and of the
mapping torus Mf: =M x I/(X 0) ~ (f(x),1)" It was first proved by my-
self in the oriented category [4¢] and with different methods by Frank

Quinn (L34], [17]) in both categories that for n odd these invariants

determine the bordism class.

Theorem 8.1: The homomorphisms
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Agn-1 —> W, e i, . [M’f] —> ([M, Im]) and

AZn-1 — QZn-1 ® §12n ’ [M’f] > ( lM] s [Mf] )

are injective.

Proof: The case n = 1 is trivial thus we assume n > 1. If S_M] =0

then M = @Y. By Lemma 2.3 we can assume wy: Y — BO (or Y —>BSO
in the oriented case) is a n-equivalence. Here we consider the trivial
fibration B = BO —> B0 or the orientation covering B = BSO —>» B0 in

the oriented case.

1f [M:] =0 then Y Y Y bounds a B-manifold. For YU, Y and M¢ are
bordant, a bordism is given by identifying N10'L¥ Y)x I two copies of
Y embedded into (¥ V¢ Y) x {1} such that the image of the embedding

is the complement of a bicollar of Q@Y.

By Theorem 2.1 f extends to a diffeomorphism F: Y # r(Sn X Sn) —_—
Y # r(s" x s").

q.e.d.

Remark: If (Mzn,f) is an even-dimensional diffeomorphism (n > 1) and
[M] =0, [Mf] = 0 the same argument as above shows that M bounds
a B = BO (or BSO)-manifold Y s.t. the normal bundle map is a n-equivalence
and Y U,

f
Theorem 5.2. There is an obstruction (N,37w) < lgﬁ:;(7r1(8), wy(B), S(W)).

Y bounds a B-manifold (w,i?w). Now we are in the situation of
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In general this obstruction is non-trivial. For there is a third invariant,
the isometric structure of a diffeomorphism represented in the correspon-
ding Witt group by the operation of the diffeomorphism on Hn(M; ZZ) as

an isometry of the intersection form. The isometric structure is a sur-
jective map onto this Witt group which is not finitely generated. This

implies that the monoids 13622 (1r,w,S) are not finitely generated even

if 9r is the trivial group. But one can show that if the isometric struc-
ture of (M,f) vanishes Q(W,SFW) is zero bordant if W is chosen appro-
priately. In the oriented case this is carried through in [4?], again
in both categories F. Quinn gave a different computation in 341, B2)).
In all cases the image of the invariants can be computed by similar

methods.

Other computations of stable diffeomorphism classes and applications are

contained in [49), [20], [307 . .

II) Complete intersections. This is a report about the results of my

student Claudia Traving [34]. For d = (d;,....d.) € N" we denote the
corresponding smooth complete ?ntersection given as the set of zeros of
r-homogenous polynomi.ﬁ?g};cx‘:(g_) c d:?““} dim 0 Xn(_d_) = n. The diffeo-
morphism class of xn(g) is independent of these polynomials depending only
of d.

C. Traving has given a classification up to diffeomorphism of a certain
class of complete intersections. She applies the methods of § 2 and 3.
For this one has to determine the normal (n-1)-type of xn(g). According

to Lefschetz the map i: xn(g)—-;c:P‘° representing a generator of

H2(Xn(_d_);ZZ) ® 77 is a n-equivalence and
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the stable normal bundle of Xn(g) = i* g (n,d), where
£ (n.gd) = o ol (n+r+1) H, H the Hopf bundle. It is not
difficult to show this implies that the normal (n-1)-type of xn(g) is
given by the fibration B = ¢P™x BO(n+1) s‘_S[‘_’EB%BO, where p:

BO < n+1> —> B0 is the n-connected cover of BO.

To classify complete intersections up to stable diffeomorphism one has

to decide whether two complete intersections of same normal (n-1)-type

B are B-bordant. For this she determines the filtration in the classical
Adams spectral sequence of the element in the B-bordism group represented
by a complete intersection. If the filtration of a torsion element of the
B-bordism group is higher than a certain vanishing line then the element
is trivial. Thus if two complete intersections are bordant in the ratio-
nal B-bordism group (which can be controlled by characteristic numbers)
and have such a high Adams filtration they are B-bordant and thus by

Theorem 2.1 stably diffeomorphic.

It turns out that under these conditions the complete intersections are

even diffeomorphic. For this she applies Proposition 3.2. If n is

even Libgober and Wood ([24], Theorem B) have proved that Xn(g) = N1&$y2

where w1 is a disk bundle over EFH/Z‘ If the Adams filtration is high

enough the manifold w2 is completely determined by the stable diffeo-

morphism type. If xn(g;) is another complete intersection which is stab-

ly diffeonorphic to X (d) then X (d') = W, \H,. By assumption oy
|

N1 -—g>w1 extends to a stable diffeomorphism. In this situation the con-

ditions of Proposition 3.2 are fulfilled and as the odd L-groups of the

trivial group are zero one can cancel the S"/Z X S"/2 "5, A similar
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argument works for n odd.

This was the idea of C. Travings main result:

Theorem 8.2 ([39]): Write the total degree d = dge--ed, = -rr [Jv(b).
If for all p & Yn + %-+-%, y(p) ;;(2n+1)/2(p_1)+1 and the sgégnﬁolds for
d' then two complete intersections X (d) and X (d') with n >2 are diffeo-
morphic if and only if the total degrees are the same : d = d', the
Pontrjagin classes pi(f (n,d)) = p; (€ (n,d")) for i & ["/21 and the

Euler characteristics are the same : e(X (d)) = e(X (d')).

I11) Simply connected 4-manifolds. The classification of the h-cobordism

classes of 1-connected smooth 4-manifolds by the intersection form is well
known Lﬁol [44] . We want to give another computation using the normal
2-type as a demonstration of the methods summarized in § 7. Another reason
is to discuss the difference to the computation of [44]which shows some

typical information.

The normal 2-type of a 1-connected smooth 4-manifold M can easily be
described. We denote the fibration p: K(Tr,(M) ,2) x B Spin—> B0 given

by the sum of a complex line bundle g over K(1r2(M),2) with second
Stiefel-Whitney class equal to w2(M) and the universal Spin-bundle by
B(1ré(M), w2(M)). This is the normal 2-type of M. For, if k: M —%>K(ﬂé(M),2)
is the characteristic map then the difference of the normal bundle of M

and the pull back of f under k has vanishing second Stiefel-Whitney

class. Thus the classifying map of this difference bundle factorizes

over B Spin by a map f: M —> B Spin. Obviously the map k x f is a
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normal 2-smoothing of M in B(Trz(M), w2(M)).

We abbreviate B('TI‘Z(M), w2(M)) by B. By Theorem 7.3 we have an exact

sequence

37T ({e}) —INsy , —» R,

As Lg’t (4e}) = Lg {e} =0 we have an injective map

NSS 2-—) S?.B. By Pontrjagin-Thom construction 92 7T4(M fA M Spin).
If we consider the Atiyah-Hirzebruch spectral sequence (with coefficients

ﬁzpin) we obtain exact sequences:

0 —F) =5 Q, — Hy(k: )

——

W) M)

*

M,V T > (

and

0 HRPM o F, DKok x(w) O

where FE is the kernel of the map 513 —> Hy(K; Z), K=K (1Tr,(M), 2) and
(x(wz) is the dual of the map HZ(K;ZZZ) —_> H4(K;ZZZ), W, = w2(M).

v w

X k——)xz + XWy
q? 2[)1" is isomorphic to Z, the isomorphism is given by the signature
divided by 16. I w,(M) = 0, Kok & (w,) = 0. This follows as K = T ep™
and thus its cohomology is a polynomial algebra. If wz(M) £0,

Kok ®¢ (wz) = ZZZ' In this case the sequence is non-split and thus in
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both cases Fﬁ Y 7ZZ under the signature divided by 16 and divided by 8 in
the second case. That the sequence is non split is equivalent to the exist-
ence of a B-manifold in FE with signature 8. It is easy to construct two
B-structures ¥ and V' on eP? such that 3¢ V) [([P2] = (v')s [(IP'ZJ in
H4(K;ZZ ) (Hint: consider the case K = (P> and W, £ 0). Thus 3[(IP2,—\7]-

L([PZ, vl  is contained in Fg and it has signature 8.

If (N,VN) is a normal 2-smoothing in B the class (VN)* [N] e Hy(K; Z2)

is equivalent to the intersection form on N: If x, y € HZ(N;E) y<xvy, [N])::.
£ '\7"* x'U’le* y', (VN)* [N]S as (—)TN)*: He(K; ZZ) —> HE(N; Z) is an
isomorphism. On the other hand given the intersection form the formula above
determines (VN)* [ N) as H*(K;ZZ) ES H*('IT(IP""‘;ZZ) is a polynomial ring.

Thus the B-bordism class of a normal 2-smoothing in B is completely de-
termined by the intersection form. By the injection NSE,ZCL—)<522 the iso-
morphism class of a normal 2-smoothing in B is determined by the inter-

section form.

The normal 2-type of a smooth 1-connected 4-manifold M is determined by
ﬂé(M) and wz(M). As wz(M) is determined by the intersection form we finally

obtain another proof of

Theorem 8.3 ( [40), [44]): Two 1-connected smooth 4-manifolds are h-cobor-

dant if and only if they have isomorphic intersection forms.
If one applies the results of Browder and Novikov to prove this result one

has first to decide whether M and N are homotopy equivalent. This is

(33 )
equivalent to show'that M and N have isomorphic intersection forms as
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was proved by Milnor [2f]using the methods of Whitehead. Even if the

proof is not difficult it is more complicated than determining the normal

2-type. The next step with this program is to determine the set of smoothings

S(M). This is done by Wall ( [44] , Theorem 16.5): S(M) = Ker(H,(M; Z,) —Z, ) -
X > <w2(M),x >

Thus a smoothing in M is not determined by the intersection form. But
Wall shows that S(M) consists only of self equivalences of M and thus
one obtains the result above. Again this is not difficult in this case

but in our proof above no operation of Aut (B,p) has to be considered.

Remark: The diffeomorphism classification of smooth 1-connected 4-mani-
folds is still open as well as a complete answer to the question which
forms can be realized by intersection forms of smooth 1-connected 4-mani-
folds. In the last years S. Donaldson [40] has made a big breakthrough
concerning this problem showing that various forms cannot be realized.
The homeomorphism classification of 1-connected 4-manifolds was given by

Freedmann [41].

IV) Inertia group. We have introduced 4 types of obstruction groups

S, T
Ln

(monoids) for the classification of manifolds: (1T, W), 1:“t (7 .w),

L§61:(11,w,5), l;ﬁz:(1r,w,5). We want to finish our examples of appli-
cations with a result using the group Lgﬁz'(rr,w,S) to demonstrate that
the concept of form parameters is useful for geometric problems.

1

Suppose n odd, n # 1,3,7 and M2n- is 1-connected and that there is

an embedding s™ into M x I with normal bundle the tangent bundle of ",
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This means p(s") = 1 €z, =Q_, [s]. Thus S(Ms)P= Z and as mentioned
at the end of § 4 we know L;"f( {e}y , S(MI) = {o%.

Now suppose that N2n-1 is another manifold with the same property which
has a normal (n-1)-smoothing in B__,(M) which is bordant to some normal
(n-1)-smoothing of M in Bn_1(M). Then by Theorem 7.3 the obstruction
to transforming a bordism into a h-cobordism is contained in L261:({ ey ,S(MxD)

={0"j and thus M and N are diffeomorphic (n23).

For instance let 2'2"'1 be the Kervaire sphere generating bP2n [1s] and
M as above. Then M#JF and M admit bordant normal (n-1)-smoothings
as described above. A bordism is given by M x I l; X, X a framed manifold
with 2X =3 . Thus M #X ¥ M or 3 is contained in the inertia
group I(M): In fact we obtain a slightly stronger result.

Theorem 8.4: Let M**! be a closed manifold, k#1,3 with the following

property: There exists ®e T, (M) = T, 1(M x R) with pi ) =
[1] eA/{a+'a'}' Then M #3 is diffeomorphic to M where ¥ is the Kervaire

sphere.

Remark: This property is fulfilled if there exists an embedding
k41 shably Hrivied
) ¢ M x R with non-trivial™normal bundle. If M is highly con-

nected the same result was proved in ( [ 36] , Satz 15.4). A special case

namely if M is the Stiefel manifold given by the sphere bundle of the

2k+1

tangent bundle over S was proved in £7] .
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Proof: By construction ( [41] , §5) M#3 is the image in the set AUM)
of manifolds normally homotopy equivalent to M under the action of the non-
trivial element in L4k+2 AeY = Z, on M. The existence of an & with
(o) = Lﬂ implies Z € S(M). Thus we have a homomorphism

Lit,o (4 €Y, ) => Lypts (70, (M)W (M),S(M)). As g, (e} .z) = 0

the statement follows from the commutative diagram

Lakas 4e¥ > ALM)
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