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INTRODUCTION

In this book we present some basic concepts and results from algebraic and
differential topology. We do this in the framework of differential topology.
Homology groups of spaces are one of the central tools of algebraic topology.
These are abelian groups associated to topological spaces which measure cer-
tain aspects of the complexity of a space.

The idea of homology was originally introduced by Poincaré in 1895
[Po] where homology classes were represented by certain global geometric
objects like closed submanifolds. The way Poincaré introduced homology in
this paper is the model for our approach. Since some basics of differential
topology were not yet far enough developed, certain difficulties occurred with
Poincaré’s original approach. Three years later he overcame these difficulties
by representing homology classes using sums of locally defined objects from
combinatorics, in particular singular simplices, instead of global differential
objects. The singular and simplicial approaches to homology have been very
successful and up until now most books on algebraic topology follow them
and related elaborations or variations.

Poincaré’s original idea for homology came up again many years later,
when in the 1950’s Thom [Th 1] invented and computed the bordism groups
of smooth manifolds. Following on from Thom, Conner and Floyd [C-F] in-
troduced singular bordism as a generalized homology theory of spaces in
the 1960’s. This homology theory is much more complicated than ordinary
homology, since the bordism groups associated to a point are complicated
abelian groups, whereas for ordinary homology they are trivial except in
degree 0. The easiest way to simplify the bordism groups of a point is to

ix



INTRODUCTION

generalize manifolds in an appropriate way, such that in particular the cone
over a closed manifold of dimension > 0 is such a generalized manifold.
There are several approaches in the literature in this direction but they
are at a more advanced level. We hope it is useful to present an approach
to ordinary homology which reflects the spirit of Poincaré’s original idea
and is written as an introductory text. For another geometric approach to
(co)homology see [B-R-S].

As indicated above, the key for passing from singular bordism to or-
dinary homology is to introduce generalized manifolds that are a certain
kind of stratified space. These are topological spaces S together with a de-
composition of S into manifolds of increasing dimension called the strata of
S. There are many concepts of stratified spaces (for an important paper
see [Th 2]), the most important examples being Whitney stratified spaces.
(For a nice tour through the history of stratification theory and an alterna-
tive concept of smooth stratified spaces see [Pf].) We will introduce a new
class of stratified spaces, which we call stratifolds. Here the decomposition
of S into strata will be derived from another structure. We distinguish a
certain algebra C of continuous functions which plays the role of smooth
functions in the case of a smooth manifold. (For those familiar with the
language of sheaves, C is the algebra of global sections of a subsheaf of the
sheaf of continuous functions on S.) Others have considered such algebras
before (see for example [S-L]), but we impose stronger conditions. More
precisely, we use the language of differential spaces [Si] and impose on this
additional conditions. The conditions we impose on the algebra C provide
the decomposition of S into its strata, which are smooth manifolds.

It turns out that basic concepts from differential topology like Sard’s
theorem, partitions of unity and transversality generalize to stratifolds and
this allows for a definition of homology groups based on stratifolds which
we call “stratifold homology”. For many spaces this agrees with the most
common and most important homology groups: singular homology groups
(see below). It is rather easy and intuitive to derive the basic properties of
homology groups in the world of stratifolds. These properties allow compu-
tation of homology groups and straightforward constructions of important
homology classes like the fundamental class of a closed smooth oriented man-
ifold or, more generally, of a compact stratifold. We also define stratifold
cohomology groups (but only for smooth manifolds) by following an idea of
Quillen [Q], who gave a geometric construction of cobordism groups, the co-
homology theory associated to singular bordism. Again, certain important
cohomology classes occur very naturally in this description, in particular
the characteristic classes of smooth vector bundles over smooth oriented

x



INTRODUCTION i

manifolds. Another useful aspect of this approach is that one of the most
fundamental results, namely Poincaré duality, is almost a triviality. On the
other hand, we do not develop much homological algebra and so related
features of homology are not covered: for example the general Künneth the-
orem and the universal coefficient theorem.

From (co)homology groups one can derive important invariants like the
Euler characteristic and the signature. These invariants play a significant
role in some of the most spectacular results in differential topology. As a
highlight we present Milnor’s exotic 7-spheres (using a result of Thom which
we do not prove in this book).

We mentioned above that Poincaré left his original approach and defined
homology in a combinatorial way. It is natural to ask whether the definition
of stratifold homology in this book is equivalent to the usual definition of
singular homology. Both constructions satisfy the Eilenberg-Steenrod ax-
ioms for a homology theory and so, for a large class of spaces including all
spaces which are homotopy equivalent to CW -complexes, the theories are
equivalent. There is also an axiomatic characterization of cohomology for
smooth manifolds which implies that the stratifold cohomology groups of
smooth manifolds are equivalent to their singular cohomology groups. We
consider these questions in chapter 20. It was a surprise to the author to find
out that for more general spaces than those which are homotopy equivalent
to CW -complexes, our homology theory is different from ordinary singular
homology. This difference occurs already for rather simple spaces like the
one-point compactifications of smooth manifolds!

The previous paragraphs indicate what the main themes of this book will
be. Readers should be familiar with the basic notions of point set topology
and of differential topology. We would like to stress that one can start read-
ing the book if one only knows the definition of a topological space and
some basic examples and methods for creating topological spaces and con-
cepts like Hausdorff spaces and compact spaces. From differential topology
one only needs to know the definition of smooth manifolds and some basic
examples and concepts like regular values and Sard’s theorem. The author
has given introductory courses on algebraic topology which start with the
presentation of these prerequisites from point set and differential topology
and then continue with chapter 1 of this book. Additional information like
orientation of manifolds and vector bundles, and later on transversality, was
explained was explained when it was needed. Thus the book can serve as
a basis for a combined introduction to differential and algebraic topology.

x



INTRODUCTION

It also allows for a quick presentation of (co)homology in a course about
differential geometry.

As with most mathematical concepts, the concept of stratifolds needs
some time to get used to. Some readers might want to see first what strati-
folds are good for before they learn the details. For those readers I have col-
lected a few basics about stratifolds in chapter 0. One can jump from there
directly to chapter 4, where stratifold homology groups are constructed.

I presented the material in this book in courses at Mainz (around 1998)
and Heidelberg Universities. I would like to thank the students and the as-
sistants in these courses for their interest and suggestions for improvements.
Thanks to Anna Grinberg for not only drawing the figures but also for careful
reading of earlier versions and for several stimulating discussions. Also many
thanks to Daniel Müllner and Martin Olbermann for their help. Diarmuid
Crowley has read the text carefully and helped with the English (everything
not appropriate left over falls into the responsibility of the author). Finally
Peter Landweber read the final version and suggested improvements with a
care I could never imagine. Many thanks to both of them. I had several
fruitful discussions with Gerd Laures, Wilhelm Singhof, Stephan Stolz, and
Peter Teichner about the fundamental concepts. Theodor Bröcker and Don
Zagier have read a previous version of the book and suggested numerous
improvements. The book was carefully refereed and I obtained from the
referees valuable suggestions for improvements. I would like to thank these
colleagues for their generous help. Finally, I would like to thank Dorothea
Heukäufer and Ursula Jagtiani for the careful typing.

iix



Chapter 0

A quick introduction
to stratifolds

In this chapter we say as much as one needs to say about stratifolds in or-
der to proceed directly to chapter 4 where homology with Z/2-coefficients
is constructed. We do it in a completely informal way that does not replace
the definition of stratifolds. But some readers might want to see what strat-
ifolds are good for before they study their definition and basic properties.

An n-dimensional stratifold S is a topological space S together with a
class of distinguished continuous functions f : S → R called smooth func-
tions. Stratifolds are generalizations of smooth manifolds M where the
distinguished class of smooth functions are the C∞-functions. The distin-
guished class of smooth functions on a stratifold S leads to a decomposition
of S into disjoint smooth manifolds Si of dimension i where 0 ≤ i ≤ n, the
dimension of S. We call the Si the strata of S. An n-dimensional stratifold
is a smooth manifold if and only if Si = ∅ for i < n.

To obtain a feeling for stratifolds we consider an important example.
Let M be a smooth n-dimensional manifold. Then we consider the open
cone over M

◦
CM := M × [0, 1)/M×{0},

i.e., we consider the half open cylinder over M and collapse M × {0} to a
point.

1



2 0. A quick introduction to stratifolds

Now, we make
◦

CM an (n + 1)-dimensional stratifold by describing its dis-
tinguished class of smooth functions. These are the continuous functions

f :
◦

CM → R,

such that f |M×(0,1) is a smooth function on the smooth manifold M × (0, 1)
and there is an ε > 0 such that f |M×[0,ε)/M×{0} is constant. In other words,

the function is locally constant near the cone point M × {0}/M×{0} ∈
◦

CM .

The strata of this (n + 1)-dimensional stratifold S turn out to be S0 =
M ×{0}/M×{0}, the cone point, which is a 0-dimensional smooth manifold,

Si = ∅ for 0 < i < n+ 1 and Sn+1 = M × (0, 1).

One can generalize this construction and make the open cone over any

n-dimensional stratifold S an (n+1)-dimensional stratifold
◦

CS. The strata

of
◦

CS are: (
◦

CS)0 = pt, the cone point, and for 1 ≤ i ≤ n + 1 we have

(
◦

CS)i = Si−1 × (0, 1), the open cylinder over the (i− 1)-stratum of S.

Stratifolds are defined so that most basic tools from differential topology
for manifolds generalize to stratifolds.

• For each covering of a stratifold S one has a subordinate partition
of unity consisting of smooth functions.

• One can define regular values of a smooth function f : S → R

and show that if t is a regular value, then f−1(t) is a stratifold of
dimension n − 1 where the smooth functions of f−1(t) are simply
the restrictions of the smooth functions of S.

• Sard’s theorem can be applied to show that the regular values of a
smooth function S → R are a dense subset of R.

As always, when we define mathematical objects like groups, vector
spaces, manifolds, etc., we define the “allowed maps” between these objects,
like homomorphisms, linear maps, smooth maps. In the case of stratifolds
we do the same and call the “allowed maps” morphisms. A morphism
f : S → S′ is a continuous map f : S → S′ such that for each smooth
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function ρ : S′ → R the composition ρf : S → R is a smooth function on S.
It is a nice exercise to show that the morphisms between smooth manifolds
are precisely the smooth maps. A bijective map f : S → S′ is called an iso-
morphism if f and f−1 are both morphisms. Thus in the case of smooth
manifolds an isomorphism is the same as a diffeomorphism.

Next we consider stratifolds with boundary. For those who know what
an n-dimensional manifold W with boundary is, it is clear that W is a topo-
logical space together with a distinguished closed subspace ∂W ⊆ W such

that W−∂W =:
◦
W is a n-dimensional smooth manifold and ∂W is a (n−1)-

dimensional smooth manifold. For our purposes it is enough to imagine the
same picture for stratifolds with boundary. An n-dimensional stratifold T
with boundary is a topological space T together with a closed subspace ∂T,

the structure of a n-dimensional stratifold on
◦
T = T − ∂T, the structure

of an (n − 1)-dimensional stratifold on ∂T and an additional structure (a
collar) which we will not describe here. We call a stratifold with boundary
a c-stratifold because of this collar.

The most important example of a smooth n-dimensional manifold with
boundary is the half open cylinder M × [0, 1) over a (n − 1)-dimensional
manifold M , where ∂M = M × {0}. Similarly, if S is a stratifold, then we
give S×[0, 1) the structure of a stratifold T with ∂T = S×{0}. In the world
of stratifolds the most important example of a c-stratifold is the closed cone
over a smooth (n− 1)-dimensional manifold M . This is denoted by

CM := M × [0, 1]/M×{0},

where ∂CM := M×{1}. More generally, for an (n−1)-dimensional stratifold
S one can give the closed cone

CS := S× [0, 1]/S×{0}

the structure of a c-stratifold with ∂CS = S× {1}.

If T and T′ are stratifolds and f : ∂T → ∂T′ is an isomorphism one can
paste T and T′ together via f . As a topological space one takes the disjoint
union T�T′ and introduces the equivalence relation which identifies x ∈ ∂T
with f(x) ∈ ∂T′. There is a canonical way to give this space a stratifold
structure. We denote the resulting stratifold by

T ∪f T′.

If ∂T = ∂T′ and f = id, the identity map, we write

T ∪T′
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instead of T ∪f T′.

Instead of gluing along the full boundary we can glue along some com-
ponents of the boundary, as shown below.

If a reader decides to jump from this chapter straight to homology (chap-
ter 4), I recommend that he or she think of stratifolds as mathematical ob-
jects very similar to smooth manifolds, keeping in mind that in the world
of stratifolds constructions like the cone over a manifold or even a stratifold
are possible.



Chapter 1

Smooth manifolds
revisited

Prerequisites: We assume that the reader is familiar with some basic notions from point set topology and

differentiable manifolds. Actually rather little is needed for the beginning of this book. For example,

it is sufficient to know [Jä, ch. 1 and 3] as background from point set topology. For the first chapters,

all we need to know from differential topology is the definition of smooth (= C∞) manifolds (without

boundary) and smooth (= C∞) maps (see for example [Hi, sec. I.1 and I.4)] or the corresponding

chapters in [B-J] ). In later chapters, where more background is required, the reader can find this in

the cited literature.

1. A word about structures

Most definitions or concepts in modern mathematics are of the following
type: a mathematical object is a set together with additional information
called a structure. For example a group is a set G together with a map
G × G → G, the multiplication, or a topological space is a set X together
with certain subsets, the open subsets. Often the set is already equipped
with a structure of one sort and one adds another structure, for example a
vector space is an abelian group together with a second structure given by
scalar multiplication, or a smooth manifold is a topological space together
with a smooth atlas. Given such a structure one defines certain classes of
“allowed” maps (often called morphisms) which respect this structure in a
certain sense: for example group homomorphisms or continuous maps. The
real numbers R admit many different structures: they are a group, a field, a
vector space, a metric space, a topological space, a smooth manifold and so

5



6 1. Smooth manifolds revisited

on. The “allowed” maps from a set with a structure to R with appropriate
structure frequently play a leading role.

In this section we will define a structure on a topological space by speci-
fying certain maps to the real numbers. This is done in such a way that the
allowed maps are the maps specifying the structure. In other words, we give
the allowed maps (morphisms) and in this way we define a structure. For
example, we will define a smooth manifold M by specifying the C∞-maps
to R. This stresses the role played by the allowed maps to R which are of
central importance in many areas of mathematics, in particular analysis.

2. Differential spaces

We introduce the language of differential spaces [Si], which are topological
spaces together with a distinguished set of continuous functions fulfilling cer-
tain properties. To formulate these properties the following notion is useful:
if X is a topological space, we denote the set of continuous functions from
X to R by C0(X).

Definition: A subset C ⊂ C0(X) is called an algebra of continuous func-
tions if for f, g ∈ C the sum f+g , the product fg and all constant functions
are in C.

The concept of an algebra, a vector space that at the same time is a
ring fulfilling the obvious axioms, is more general, but here we only need
algebras which are contained in C0(X).

For example, C0(X) itself is an algebra, and for that reason we call C a
subalgebra of C0(X). The set of the constant functions is a subalgebra. If
U ⊂ Rk is an open subset, we denote the set of functions f : U −→ R, where
all partial derivatives of all orders exist, by C∞(U). This is a subalgebra in
C0(U). More generally, if M is a k-dimensional smooth manifold then the
set of smooth functions on M , denoted C∞(M), is a subalgebra in C0(M).

Continuity is an example of a property of functions which can be decided
locally, i.e., a function f : X −→ R is continuous if and only if for all x ∈ X
there is an open neighbourhood U of x such that f |U is continuous. The
following is an equivalent—more complicated looking—formulation where
we don’t need to know what it means for f |U to be continuous. A function
f : X → R is continuous if and only if for each x ∈ X there is an open
neighbourhood U and a continuous function g such that f |U = g|U . Since
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this formulation makes sense for an arbitrary set of functions C, we define:

Definition: Let C be a subalgebra of the algebra of continuous functions
f : X → R. We say that C is locally detectable if a function h : X −→ R

is contained in C if and only if for all x ∈ X there is an open neighbourhood
U of x and g ∈ C such that h|U = g|U .

As mentioned above, the set of continuous functions C0(X) is locally
detectable. Similarly, if M is a smooth manifold, then C∞(M) is locally
detectable.

For those familiar with the language of sheaves it is obvious that (X,C)
is equivalent to a topological space X together with a subsheaf of the
sheaf of continuous functions. If such a subsheaf is given, the global
sections give a subalgebra C of C0(X), which by the properties of a sheaf
is locally detectable. In turn, if a locally detectable subalgebra C ⊂ C0(X)
is given, then for an open subset U of X we define C(U) as the functions
f : U → R such that for each x ∈ U there is an open neighbourhood V and
g ∈ C with g|V = f |V . Since C is locally detectable, this gives a presheaf,
whose associated sheaf is the sheaf corresponding to C.

We can now define differential spaces.

Definition: A differential space is a pair (X,C), where X is a topo-
logical space and C ⊂ C0(X) is a locally detectable subalgebra of the algebra
of continuous functions (or equivalently a space X together with a subsheaf
of the sheaf of continuous functions on X) satisfiying the condition:

For all f1, . . . , fk ∈ C and smooth functions g : Rk −→ R, the function

x 	→ g(f1(x), . . . , fk(x))

is in C.

This condition is clearly desirable in order to construct new elements of
C by composition with smooth maps and it holds for smooth manifolds by
the chain rule. In particular k-dimensional smooth manifolds are differential
spaces and this is the fundamental class of examples which will be the model
for our generalization to stratifolds in the next chapter.
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From a differential space (X,C), one can construct new differential
spaces. For example, if Y ⊂ X is a subspace, we define C(Y ) to contain
those functions f : Y −→ R such that for all x ∈ Y , there is a g : X −→ R

in C such that f |V = g|V for some open neighbourhood V of x in Y . The
reader should check that (Y,C(Y )) is a differential space.

There is another algebra associated to a subspace Y in X, namely the
restriction of all elements in C to Y . Later we will consider differential
spaces with additional properties which guarantee that C(Y ) is equal to the
restriction of elements in C to Y , if Y is a closed subspace.

For the generalization to stratifolds it is useful to note that one can de-
fine smooth manifolds in the language of differential spaces. To prepare for
this, we need a way to compare differential spaces.

Definition: Let (X,C) and (X ′,C′) be differential spaces. A homeo-
morphism f : X −→ X ′ is called an isomorphism if for each g ∈ C′ and
h ∈ C, we have gf ∈ C and hf−1 ∈ C′.

The slogan is: composition with f stays in C and with f−1 stays in C′.
Obviously the identity map is an isomorphism from (X,C) to (X,C). If
f : X → X ′ and f ′ : X ′ → X ′′ are isomorphisms then f ′f : X → X ′′ is an
isomorphism. If f is an isomorphism then f−1 is an isomorphism.

For example, if X and X ′ are open subspaces of Rk equipped with the
algebra of smooth functions, then an isomorphism f is the same as a diffeo-
morphism from X to X ′: a bijective map such that the map and its inverse
are smooth (= C∞) maps. This equivalence is due to the fact that a map
g from an open subset U of Rk to an open subset V of Rn is smooth if and
only if all coordinate functions are smooth. (For a similar discussion, see
the end of this chapter.)

3. Smooth manifolds revisited

We recall that if (X,C) is a differential space and U an open subspace, the
algebra C(U) is defined as the continuous maps f : U → R such that for
each x ∈ U there is an open neighbourhood V ⊂ U of x and g ∈ C such
that g|V = f |V . We remind the reader that (U,C(U)) is a differential space.
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Definition: A k-dimensional smooth manifold is a differential space
(M,C) where M is a Hausdorff space with a countable basis of its topology,
such that for each x ∈ M there is an open neighbourhood U ⊆ M , an open
subset V ⊂ Rk and an isomorphism

ϕ : (V,C∞(V )) → (U,C(U)).

The slogan is: a k-dimensional smooth manifold is a differential space
which is locally isomorphic to Rk.

To justify this definition of this well known mathematical object, we
have to show that it is equivalent to the definition based on a maximal
smooth atlas. Starting from the definition above, we consider all isomor-
phisms ϕ : (V,C∞(V )) → (U,C(U)) from the definition above and note
that their coordinate changes ϕ−1ϕ′ : (ϕ′)−1(U ∩ U ′) → ϕ−1(U ∩ U ′) are
smooth maps and so the maps ϕ : V → U give a maximal smooth atlas on
M . In turn if a smooth atlas ϕ : V → U ⊂ M is given, then we define C as
the continuous functions f : M → R such that for all ϕ in the smooth atlas
fϕ : V → R is in C∞(V ).

We want to introduce the important concept of the germ of a function.
Let C be a set of functions from X to R, and let x ∈ X. We define an
equivalence relation on C by setting f equivalent to g if and only if there
is an open neighbourhood V of x such that f |V = g|V . We call the equiva-
lence class represented by f the germ of f at x and denote this equivalence
class by [f ]x. We denote the set of germs of functions at x by Cx. This
definition of germs is different from the standard one which only considers
equivalence classes of functions defined on some open neighbourhood of x.
For differential spaces these sets of equivalence classes are the same, since
if f : U → R is defined on some open neighbourhood of x, then there is a
g ∈ C such that on some smaller neighbourhood V we have f |V = g|V .

To prepare for the definition of stratifolds in the next chapter, we recall
the definition of the tangent space at a point x ∈ M in terms of derivations.
Let (X,C) be a differential space. For a point x ∈ X, we consider the germs
of functions at x, Cx. If f ∈ C and g ∈ C are representatives of germs at
x, then the sum f + g and the product f · g represent well-defined germs
denoted [f ]x + [g]x ∈ Cx and [f ]x · [g]x ∈ Cx.
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Definition: Let (X,C) be a differential space. A derivation at x ∈ X
is a map from the germs of functions at x

α : Cx −→ R

such that

α([f ]x + [g]x) = α([f ]x) + α([g]x),

α([f ]x · [g]x) = α([f ]x) · g(x) + f(x) · α([g]x),
and

α([c]x · [f ]x) = c · α([f ]x)
for all f, g ∈ C and [c]x the germ of the constant function which maps all
y ∈ X to c ∈ R.

If U ⊂ Rk is an open set and v ∈ Rk, the Leibniz rule says that for
x ∈ U , the map

αv : C∞(U)x −→ R

[f ]x 	−→ dfx(v)

is a derivation. Thus the derivative in the direction of v is a derivation which
justifies the name.

If α and β are derivations, then α+ β mapping [f ]x to α([f ]x) + β([f ]x)
is a derivation, and if t ∈ R then tα mapping [f ]x to tα([f ]x) is a derivation.
Thus the derivations at x ∈ X form a vector space.

Definition: Let (X,C) be a differential space and x ∈ X. The vector
space of derivations at x is called the tangent space of X at x and denoted
by TxX.

This notation is justified by the fact that if M is a k-dimensional smooth
manifold, which we interpret as a differential space (M,C∞(M)), then the
definition above is one of the equivalent definitions of the tangent space
[B-J, p. 14]. The isomorphism is given by the map above associating to a
tangent vector v at x the derivation which maps f to dfx(v). In particular,
dimTxX = k.

We have already defined isomorphisms between differential spaces. We
also want to introduce morphisms. If the differential spaces are smooth
manifolds, then the morphisms will be the smooth maps. To generalize the
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definition of smooth maps to differential spaces, we reformulate the defini-
tion of smooth maps between manifolds.

IfM is anm-dimensional smooth manifold and U is an open subset of Rk

then a map f : M −→ U is a smooth map if and only if all components fi :
M −→ R are in C∞(M) for 1 ≤ i ≤ k. If we don’t want to use components
we can equivalently say that f is smooth if and only if for all ρ ∈ C∞(U)
we have ρf ∈ C∞(M). This is the logic behind the following definition.
Let (X,C) be a differential space and (X ′,C′) another differential space.
Then we define a morphism f from (X,C) to (X ′,C′) as a continuous
map f : X −→ X ′ such that for all ρ ∈ C′ we have ρf ∈ C. We denote the
set of morphisms by C(X,X ′). The following properties are obvious from
the definition:

(1) id : (X,C) −→ (X,C) is a morphism,

(2) if f : (X,C) −→ (X ′,C′) and g : (X ′,C′) −→ (X ′′,C′′) are mor-
phisms, then gf : (X,C) −→ (X ′′,C′′) is a morphism,

(3) all elements of C are morphisms from X to R,

(4) the isomorphisms (as defined above) are the morphisms

f : (X,C) −→ (X ′,C′)

such that there is a morphism g : (X ′,C′) −→ (X,C) with gf =
idX and fg = idX′ .

We define the differential of a morphism as follows.

Definition: Let f : (X,C) → (X ′,C′) be a morphism. Then for each
x ∈ X the differential

dfx : TxX → Tf(x)X
′

is the map which sends a derivation α to α′ where α′ assigns to [g]f(x) ∈ C′
x′

the value α([gf ]x).

4. Exercises

(1) Let U ⊆ Rn be an open subset. Show that (U,C∞(U)) is equal to
(U,C(U)) where the latter is the induced differential space struc-
ture which was described in this chapter.

(2) Give an example of a differential space (X,C(X)) and a subspace
Y ⊆ X such that the restriction of all functions in C(X) to Y
doesn’t give a differential space structure.

(3) Let (X,C(X)) be a differential space and Z ⊆ Y ⊆ X be two sub-
spaces. We can give Z two We can give Z two differential structures:



12 1. Smooth manifolds revisited

First by inducing the structure from (X,C(X)) and the other one
by first inducing the structure from (X,C(X)) to Y and then to
Z. Show that both structures agree.

(4) We have associated to each smooth manifold with a maximal atlas
a differential space which we called a smooth manifold and vice
versa. Show that these associations are well defined and are inverse
to each other.

(5) a) Let X be a topological space such that X = X1∪X2, a union of
two open sets. Let (X1, C(X1)) and (X2, C(X2)) be two differential
spaces which induce the same differential structure on U = X1∩X2.
Give a differential structure on X which induces the differential
structures on X1 and on X2.
b) Show that if both (X1, C(X1)) and (X2, C(X2)) are smooth man-
ifolds and X is Hausdorff then X with this differential structure is a
smooth manifold as well. Do we need to assume thatX is Hausdorff
or it is enough to assume that for both X1 and X2?

(6) Let (M,C(M)) be a smooth manifold and U ⊂ M an open subset.
Prove that (U,C(U)) is a smooth manifold.

(7) Prove or give a counterexample: Let (X,C(X)) be a differential
space such that for every point x ∈ X the dimension of the tangent
space is equal to n, then it is a smooth manifold of dimension n.

(8) Show that the following differential spaces give the standard struc-
ture of a manifold on the following spaces:
a) Sn with the restriction of all smooth maps f : Rn+1 → R.
b) RPn with all maps f : RPn → R such that their composition
with the quotient map π : Sn → RPn is smooth.
c) More generally, let M be a smooth manifold and let G be a finite
group. Assume we have a smooth free action of G on M . Give a
differential structure on the quotient space M/G which is a smooth
manifold and such that the quotient map is a local diffeomorphism.

(9) Let (M,C(M)) be a smooth manifold and N be a closed subman-
ifold of M . Show that the natural structure on N is given by the
restrictions of the smooth maps f : M → R.

(10) Consider (Sn, C) where Sn is the n-sphere and C is the set of
smooth functions which are locally constant near (1, 0, 0, . . . , 0).
Show that (Sn, C) is a differential space but not a smooth manifold.

(11) Let (X,C(X)) and (Y,C(Y )) be two differential spaces and f :
X → Y a morphism. For a point x ∈ X:
a) Show that composition induces a well-defined linear map Cf(x) →
Cx between the germs.
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b) What can you say about the differential map if the above map
is injective, surjective or an isomorphism?

(12) Show that the vector space of all germs of smooth functions at a
point x in Rn is not finite dimensional for n ≥ 1.

(13) Let M,N be two smooth manifolds and f : M → N a map. Show
that f is smooth if and only if for every smooth map g : N → R

the composition is smooth.

(14) Show that the 2-torus S1×S1 is homeomorphic to the square I× I
with opposite sides identified.

(15) a) Let M1 and M2 be connected n-dimensional manifolds and let
φi : B

n → Mi be two embeddings. Remove φi(
1
2B

n) and for each

x ∈ 1
2S

n−1
i identify in the disjoint union the points φ1(x) and φ2(x).

Prove that this is a connected n-dimensional topological manifold.
b) If Mi are smooth manifolds and φi are smooth embeddings show
that there is a smooth structure on this manifold which outside
Mi \ φi(

1
2D

n) agrees with the given smooth structures.

One can show that in the smooth case the resulting manifold
is unique up to diffeomorphism. It is called the connected sum,
denoted by M1#M2 and does not depend on the maps φi.

One can also show that every compact orientable surface is dif-
feomorphic to S2 or a connected sum of tori T 2 = S1×S1 and every
compact non-orientable surface is diffeomorphic to a connected sum
of projective planes RP2.





Chapter 2

Stratifolds

Prerequisites: The main new ingredient is Sard’s Theorem (see for example [B-J, chapt. 6] or [Hi,

chapt. 3.1]). It is enough to know the statement of this important result.

1. Stratifolds

We will define a stratifold as a differential space with certain properties. The
main feature of these properties is that there is a natural decomposition of
a stratifold into subspaces which are smooth manifolds. We begin with the
definition of this decomposition for a differential space.

Let (S,C) be a differential space. We define the subspace Si := {x ∈
S | dimTxS = i}.

By construction S =
⊔

iS
i, i.e., S is the disjoint union (topological sum)

of the subsets Si. We shall assume that the dimension of TxS is finite for all
points x ∈ S. In chapter 1 we introduced the differential spaces (Si,C(Si))
given by the subspace Si together with the induced algebra. Our first con-
dition is that this differential space is a smooth manifold.

1a) We require that (Si,C(Si)) is a smooth manifold (as defined in chap-
ter 1).

Once this condition is fulfilled we write C∞(Si) instead of C(Si). This
smooth structure on Si has the property that any smooth function can lo-
cally be extended to an element of C. We want to strengthen this property

15
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by requiring that in a certain sense such an extension is unique. To for-
mulate this we note that for points x ∈ Si, we have two sorts of germs of
functions, namely Cx, the germs of functions near x on S, and C∞(Si)x, the
germs of smooth functions near x on Si, and our second condition requires
that these sets of germs are equal. More precisely, condition 1b is as follows.

1b) Restriction defines for all x ∈ Si, a bijection

Cx
∼=−→ C∞(Si)x

[f ]x −→ [f |Si ]x.

Here the only new input is the injectivity, since the surjectivity follows from
the definition. As a consequence, the tangent space of S at x is isomorphic
to the tangent space of Si at x. In particular we conclude that

dimSi = i.

Conditions 1a and 1b give the most important properties of a stratifold.
In addition we impose some other conditions which are common in similar
contexts. To formulate them we introduce the following terminology and
notation.

We call Si the i-stratum of S. In other concepts of spaces which are
decomposed as smooth manifolds, the connected components of Si are called
the strata but we prefer to collect the i-dimensional strata into a single stra-
tum. We call

⋃
i≤rS

i =: Σr the r-skeleton of S.

Definition: A k-dimensional stratifold is a differential space (S,C), where
S is a locally compact (meaning each point is contained in a compact neigh-
bourhood) Hausdorff space with countable basis, and the skeleta Σi are closed
subspaces. In addition we assume:

(1) the conditions 1a and 1b are fulfilled, i.e., restriction gives a smooth
structure on Si and for each x ∈ Si restriction gives an isomor-
phism

i∗ : Cx
∼=→ C∞(Si)x,

(2) dimTxS ≤ k for all x ∈ S, i.e., all tangent spaces have dimension
≤ k,

(3) for each x ∈ S and open neighbourhood U ⊂ S there is a nonneg-
ative function ρ ∈ C such that ρ(x) �= 0 and supp ρ ⊆ U (such a
function is called a bump function).
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We recall that the support of a function f : X → R is supp f :=
{x | f(x) �= 0}, the closure of the points where f is non-zero.

In our definition of a stratifold, the dimension k is always a finite num-
ber. One could easily define infinite dimensional stratifolds where the only
difference is that in condition 2, we would require that dimTxS is finite for
all x ∈ S. Infinite dimensional stratifolds will play no role in this book.

Let us comment on these conditions. The most important conditions are
1a and 1b, which we have already explained previously. In particular, we
recall that the smooth structure on Si is determined by C which gives us a
stratification of S, a decomposition into smooth manifolds Si of dimension
i. The second condition says that the dimension of all non-empty strata is
less than or equal to k. We don’t assume that Sk �= ∅ which, at first glance,
might look strange, but even in the definition of a k-dimensional manifold
M , it is not required that M �= ∅.

The third condition will be used later to show the existence of a partition
of unity, an important tool to construct elements of C. To do this, we will
also use the topological conditions that the space is locally compact, Haus-
dorff, and has a countable basis. The other topological conditions on the
skeleta and strata are common in similar contexts. For example, they guar-
antee that the top stratum Sk is open in S, a useful and natural property.
Here we note that the requirement that the skeleta are closed is equivalent

to the requirement that for each j > i we have Si∩Sj = ∅. This topological
condition roughly says that if we “walk” in Si to a limit point outside Si,
then this point sits in Sr for r < i. These conditions are common in similar
contexts such as CW -complexes.

We have chosen the notation Σj for the j-skeleton since Σk−1 is the sin-
gular set of S in the sense that S − Σk−1 = Sk is a smooth k-dimensional
manifold. Thus if Σk−1 = ∅, then S is a smooth manifold.

We call our objects stratifolds because on the one hand they are strat-
ified spaces, while on the other hand they are in a certain sense very close
to smooth manifolds even though stratifolds are much more general than
smooth manifolds. As we will see, many of the fundamental tools of differ-
ential topology are available for stratifolds. In this respect smooth manifolds
and stratifolds are not very different and deserve a similar name.
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Remark: It’s a nice property of smooth manifolds that once an algebra
C ⊂ C0(M) is given for a locally compact Hausdorff spaceM with countable
basis, the question, whether (M,C) is a smooth manifold is a local question.
The same is true for stratifolds, since the conditions 1 – 3 are again local.

2. Local retractions

To obtain a better feeling for the central condition 1b, we give an alternative
description. If (S,C) is a stratifold and x ∈ Si, we will construct an open
neighborhood Ux of x in S and a morphism rx : Ux → Ux ∩ Si such that
rx|Ux∩Si = idUx∩Si . (Here we consider Ux as a differential space with the
induced structure on an open subset as described in chapter 1.) Such a map
is called a local retraction from Ux to Vx := Ux ∩ Si. If one has a local
retraction r : Ux → Ux ∩ Si =: Vx, we can use it to extend a smooth map
g : Vx → R to a map on Ux by gr. Thus composition with r gives a map

C∞(Si)x −→ Cx

mapping [h] to [hr], where we represent h by a map whose domain is con-
tained in Vx. This gives an inverse of the isomorphism in condition 1b given
by restriction.

To construct a retraction we choose an open neighborhood W of x in
Si such that W is the domain of a chart ϕ : W −→ Ri (we want that
imϕ = Ri and we achieve this by starting with an arbitrary chart, which
contains one whose image is an open ball which we identify with Ri by
an appropriate diffeomorphism). Now we consider the coordinate functions
ϕj : W −→ R of ϕ and consider for each x ∈ W the germ represented by
ϕj . By condition 1b there is an open neighbourhood Wj,x of x in S and an

extension ϕ̂j,x of ϕj |Wj,x∩Si . We denote the intersection
⋂i

j=1Wj,x by Wx

and obtain a morphism ϕ̂x : Wx −→ Ri such that y 	→ (ϕ̂1,x(y), . . . , ϕ̂i,x(y)).
For y ∈ Wx ∩ Si we have ϕ̂x(y) = ϕ(y). Next we define

r : Wx −→ Si

z 	→ ϕ−1ϕ̂x(z).

For y ∈ Wx ∩ Si we have r(y) = y. Finally we define Ux := r−1(Wx ∩ Si)
and

rx := r|Ux : Ux → Ux ∩ Si = Wx ∩ Si =: Vx

is the desired retraction.

We summarize these considerations.
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Proposition 2.1. (Local retractions) Let (S,C) be a stratifold. Then for
x ∈ Si there is an open neighborhood U of x in S, an open neighbourhood V
of x in Si and a morphism

r : U → V

such that U ∩ Si = V and r|V = id. Such a morphism is called a local
retraction near x.

If r : U → V is a local retraction near x, then r induces an isomorphism

C∞(Si)x → Cx,

[h] 	→ [hr],

the inverse of i∗ : Cx → C∞(Si)x.

The germ of local retractions near x is unique, i.e., if r′ : U ′ → V ′

is another local retraction near x, then there is a U ′′ ⊂ U ∩ U ′ such that
r|U ′′ = r′|U ′′ .

Note that one can use the local retractions to characterize elements of C,
namely a continuous function f : S → R is in C if and only if its restriction
to all strata is smooth and it commutes with appropriate local retractions.
This implies that if f : S → R is a nowhere zero morphism then 1/f is in
C.

3. Examples

The first class of examples is given by the smooth k-dimensional manifolds.
These are the k-dimensional stratifolds with Si = ∅ for i < k. It is clear
that such a stratifold gives a smooth manifold and in turn a k-dimensional
manifold gives a stratifold. All conditions are obvious (for the existence of
a bump function see [B-J, p. 66], or [Hi, p. 41].

Example 1: The most fundamental non-manifold example is the cone
over a manifold. We define the open cone over a topological space Y as

Y × [0, 1)/(Y ×{0}) =:
◦

CY . (We call it the open cone and use the notation
◦

CY to distinguish it from the (closed) cone CY := Y × [0, 1]/(Y × {0}).)
We call the point Y ×{0}/Y×{0} the top of the cone and abbreviate this as pt.
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Let M be a k-dimensional compact smooth manifold. We consider the open
cone overM and define an algebra making it a stratifold. We define the alge-

bra C ⊂ C0(
◦

CM) consisting of all functions in C0(
◦

CM) which are constant
on some open neighbourhood U of the top of the cone and whose restriction

to M × (0, 1) is in C∞(M × (0, 1)). We want to show that (
◦

CM,C) is a
(k + 1)-dimensional stratifold. It is clear from the definition of C that C
is a locally detectable algebra, and that the condition in the definition of
differential spaces is fulfilled.

So far we have seen that the open cone (
◦

CM,C) is a differential space.
We now check that the conditions of a stratifold are satisfied. Obviously,

◦
CM is a Hausdorff space with a countable basis and, since M is compact,

◦
CM is locally compact. The other topological properties of a stratifold are
clear. We continue with the description of the stratification. For x �= pt,
the top of the cone, Cx is the set of germs of smooth functions on M × (0, 1)

near x, Tx(
◦

CM) = Tx(M × (0, 1)) which implies that dimTx(
◦

CM) = k + 1.
For x = pt, the top of the cone, Cx consists of simply the germs of constant
functions. For the constant function 1 mapping all points to 1, we see for
each derivation α, we have α(1) = α(1 · 1) = α(1) · 1 + 1 · α(1) implying

α(1) = 0. But since α([c] · 1) = c ·α(1), we conclude that Tpt(
◦

CM) = 0 and

dimTpt(
◦

CM) = 0. Thus we have two non-empty strata: M × (0, 1) and the

top of the cone.

The conditions 1 and 2 are obviously fulfilled. It remains to show the
existence of bump functions. Near points x �= pt the existence of a bump
function follows from the existence of a bump function in M × (0, 1) which

we extend by 0 to
◦

CM . Near pt we first note that any open neighbourhood
of pt contains an open neighbourhood of the form M × [0, ε)/(M × {0}) for
an appropriate ε > 0. Then we choose a smooth function η : [0, 1) → [0,∞)
which is 1 near 0 and 0 for t ≥ ε (for the construction of such a function see
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[B-J, p. 65]). With the help of η, we can now define the bump function

ρ([x, t]) := η(t)

which completes the proof that (
◦

CM,C) is a (k+1)-dimensional stratifold.
It has two non-empty strata: Sk+1 = M × (0, 1) and S0 = pt.

Remark: One might wonder if every smooth function on a stratum extends
to a smooth function on S. This is not the case as one can see from the open

cone
◦

CM , where M is a compact non-empty smooth manifold. A smooth
function on the top stratum M × (0, 1) can be extended to the open cone if
and only if it is constant on M × (0, ε) for an appropriate ε > 0.

Example 2: Let M be a non-compact m-dimensional manifold. The one-
point compactification of M is the space M+ consisting of M and an
additional point +. The topology is given by defining open sets as the open
sets of M together with the complements of compact subsets of M . The
latter give the open neighbourhoods of +. It is easy to show that the one-
point compactification is a Hausdorff space and has a countable basis. (For
more information see e.g. [Sch].)

On M+, we define the algebra C as the continuous functions which
are constant on some open neighbourhood of + and smooth on M . Then
(M+,C) is an m-dimensional stratifold. All conditions except 3 are obvi-
ous. For the existence of a bump function near + (near all other points use
a bump function of M and extend it by 0 to +), let U be an open neighbour-
hood of +. By definition of the topology, M − U =: A is a compact subset

of M . Then one constructs another compact subset B ⊂ M with A ⊂
◦
B

(how?), and, starting from B instead of A, a third compact subset C ⊂ M

with B ⊂
◦
C. Then B and M −

◦
C are disjoint closed subsets of M and there

is a smooth function ρ : M → (0,∞) such that ρ|B = 0 and ρ|
M−

◦
C
= 1. We

extend ρ to M+ by mapping + to 1 to obtain a bump function on M near +.
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Thus we have given the one-point compactification of a smooth non-
compact m-dimensional manifold M the structure of a stratifold S = M+,
with non-empty strata Sm = M and S0 = +.

Example 3: The most natural examples of manifolds with singularities
occur in algebraic geometry as algebraic varieties, i.e., zero sets of a fam-
ily of polynomials. There is a natural but not completely easy way (and
for that reason we don’t give any details and refer to the thesis of Anna
Grinberg [G]) to impose the structure of a stratifold on an algebraic vari-
ety (this proceeds in two steps, namely, one first shows that a variety is a
Whitney stratified space and then one uses the retractions constructed for
Whitney stratified spaces to obtain the structure of a stratifold, where the
algebra consists of those functions commuting with appropriate representa-
tives of the retractions). Here we only give a few simple examples. Consider
S := {(x, y) ∈ R2 |xy = 0}. We define C as the functions on S which are
smooth away from (0, 0) and constant in some open neighbourhood of (0, 0).
It is easy to show that (S,C) is a 1-dimensional stratifold with S1 = S−(0, 0)
and S0 = (0, 0).

x 

Example 4: In the same spirit we consider S := {(x, y, z) ∈ R3 |x2 +
y2 = z2}. Again we define C as the functions on S which are smooth
away from (0, 0, 0) and constant in some open neighbourhood of (0, 0, 0).
This gives a 2-dimensional stratifold (S,C), where S2 = S − (0, 0, 0) and
S0 = (0, 0, 0).

x  + y  − z   = 02 2 2T

Example 5: Let (S,C) be a k-dimensional stratifold and U ⊂ S an
open subset. Then (U,C(U)) is a k-dimensional stratifold. We suggest that

 
 
 . = 0y
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the reader verify this to become acquainted with stratifolds.

Example 6: Let (S,C) and (S′,C′) be stratifolds of dimension k and �.
Then we define a stratifold with underlying topological space S×S′. To do
this we use the local retractions (Proposition 2.1). We define C(S × S′) as
those continuous functions f : S×S′ −→ R which are smooth on all products
Si×(S′)j and such that for each (x, y) ∈ Si×(S′)j there are local retractions
rx : Ux −→ Si∩Ux and ry : Uy −→ (S′)j∩Uy for which f |Ux×Uy = f(rx×ry).
In short, we define C(S×S′) as those continuous maps which commute with
the product of appropriate local retractions onto Si and (S′)j. The detailed
argument that (S×S′,C(S×S′)) is a (k+ �)-dimensional stratifold is a bit
lengthy and not relevant for further reading and for that reason we provide
it in Appendix A. Both projections are morphisms.

In particular, if (S′,C′) is a smooth m-dimensional manifold M , then
we have the product stratifold (S×M,C(S×M)).

Example 7: Combining example 6 with the method for constructing
example 1, we construct the open cone over a compact stratifold (S,C).

The underlying space is again
◦

CS. We consider the algebra C ⊂ C0(
◦

CS)

consisting of all functions in C0(
◦

CS) which are constant on some open neigh-
bourhood U of the top of the cone pt and whose restriction to S× (0, 1) is
in C(S × (0, 1)). By arguments similar to those used for the cone over a

compact manifold, one shows that (
◦

CS,C) is a (k+1)-dimensional stratifold.

Example 8: If (S,C) and (S′,C′) are k-dimensional stratifolds, we
define the topological sum whose underlying topological space is the dis-
joint union S � S′ (which is by definition S × {0}

⋃
S′ × {1}) and whose

algebra is given by those functions whose restriction to S is in C and to S′

is in C′. It is obvious that this is a k-dimensional stratifold.

Example 9: The following construction allows an inductive construc-
tion of stratifolds. We will not use it in this book (so the reader can skip
it), but it provides a rich class of stratifolds. Let (S,C) be an n-dimensional
stratifold and W a k-dimensional smooth manifold with boundary together
with a collar c : ∂W × [0, ε) → W . We assume that k > n. Let f : ∂W → S
be a morphism, which we call the attaching map. We further assume that
the attaching map f is proper, which in our context is equivalent to requir-
ing that the preimages of compact sets are compact. Then we define a new
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space S′ by gluing W to S via f :

S′ := W ∪f S.

On this space, we consider the algebra C′ consisting of those functions
g : S′ → R whose restriction to S is in C, whose restriction to the inte-

rior of W ,
◦
W := W − ∂W is smooth, and such that for some δ < ε we

have gc(x, t) = gf(x) for all x ∈ ∂W and t < δ. We leave it to the reader
to check that (S′,C′) is a k-dimensional stratifold. If S consists of a single
point, we obtain a stratifold whose underlying space is W/∂W , the space
obtained by collapsing ∂W to a point. If W is compact and we apply this
construction, then the result agrees with the stratifold from example 2 for
◦
W . Specializing further to W := M × [0, 1), where M is a closed manifold,
we obtain the stratifold from example 1, the open cone over M .

Applying this construction inductively to a finite sequence of i-dimen-
sional smooth manifolds Wi with compact boundaries equipped with col-
lars and morphisms fi : ∂Wi → Si−1, where Si−1 is inductively constructed
from (W0, f0), . . . , (Wi−1, fi−1), we obtain a rich class of stratifolds. Most
stratifolds occurring in “nature” are of this type. This construction is very
similar to the definition of CW -complexes. There we inductively attach cells
(= closed balls), whereas here we attach arbitrary manifolds. Thus on the
one hand it is more general, but on the other hand more special, since we
require that the attaching maps are morphisms.

In this context it is sometimes useful to remember the data in this con-
struction: the collars and the attaching maps. More precisely we pass from
the collars to equivalence classes of collars called germs of collars, where
two collars are equivalent if they agree on some small neighbourhood of
the boundary. Stratifolds constructed inductively by attaching manifolds
together using the data: germs of collars and attaching maps, are called
parametrized stratifolds or p-stratifolds.

Example 10: It is not surprising that the same space can carry different
structures as stratifolds. For example, the open cone over Sn is homeomor-
phic to the open disc Bn+1, which is on the one hand a smooth manifold
and on the other hand by the construction of the cone above a stratifold
with two non-empty strata, the point 0 and the rest. There are in addition
very natural structures on Bn+1 as a differential space, which don’t give
stratifolds. For example consider the algebra of smooth functions on Bn+1

whose derivative at 0 is zero. The tangent space at a point x �= 0 is Rn+1,
whereas the tangent space at 0 is zero. Thus we obtain a decomposition
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into two strata as in the case of the cone, namely 0 and the rest. But this
is not a stratifold since the germ at 0 contains non locally constant functions.

From now on, we often omit the algebra C from the notation of
a stratifold and write S instead of (S,C) (unless we want to make
the dependence on C visible). This is in analogy to smooth manifolds
where the single letter M is used instead of adding the maximal atlas or,
equivalently, the algebra of smooth functions to the notation.

4. Properties of smooth maps

By analogy to maps from a smooth manifold to a smooth manifold, we call
the morphisms f from a stratifold S to a smooth manifold smooth maps.

We now prove some elementary properties of smooth maps.

Proposition 2.2. Let S be a stratifold and fi : S → R be a family of smooth
maps such that supp fj is a locally finite family of subsets of S. Then

∑
fi

is a smooth map.

Proof: The local finiteness implies that for each x ∈ S, there is a neigh-
bourhood U of x such that supp fi ∩U = ∅ for all but finitely many i1, . . . ,
ik. Then it is clear that

∑
fi|U = fi1 |U + · · ·+ fik |U . Since fi1 + · · ·+ fik is

smooth, we conclude from the fact that the algebra of smooth functions on
S is locally detectable, that the map is smooth.
q.e.d.

We will now construct an important tool from differential topology,
namely the existence of subordinate partitions of unity. This will make
the role of the bump functions clear.

Recall that a partition of unity is a family of functions {ρi : S → R≥0}
such that their supports form a locally finite covering of S and

∑
ρi = 1.

It is called subordinate to some covering of S, if for each i the support
supp ρi is contained in one of the covering sets.

Proposition 2.3. Let S be a stratifold with an open covering. Then there
is a subordinate partition of unity consisting of smooth functions (called a
smooth partition of unity).

Proof: The argument is similar to that for smooth manifolds [B-J, p. 66].

We choose a sequence of compact subspaces Ai ⊂ S such that Ai ⊂
◦
Ai+1
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and
⋃

Ai = S. Such a sequence exists since S is locally compact and has a

countable basis [Sch, p. 81)]. For each x ∈ Ai+1−
◦
Ai we choose U from our

covering such that x ∈ U and take a smooth bump function ρix : S → R≥0

with supp ρix ⊂ (
◦
Ai+2 − Ai−1) ∩ U . Since Ai+1 −

◦
Ai is compact, there is a

finite number of points xν such that (ρixν
)−1(0,∞) covers Ai+1 −

◦
Ai. From

Proposition 2.2 we know that s :=
∑

i,ν ρ
i
xν

is a smooth, nowhere zero func-

tion and {ρixν
/s} is the desired subordinate partition of unity.

q.e.d.

As a consequence, we note that S is a paracompact space.

To demonstrate the use of this result, we give the following standard
applications.

Proposition 2.4. Let A ⊂ S be a closed subset of a stratifold S, U an open
neighbourhood of A and f : U → R a smooth function. Then there is a
smooth function g : S → R such that g|A = f |A.

Proof: The subsets U and S − A form an open covering of S. Consider a
subordinate smooth partition of unity {ρi : S → R≥0}. Then for x ∈ U we
define

g(x) :=
∑

supp ρi⊂U

ρi(x)f(x),

and for x /∈ U we put g(x) = 0.
q.e.d.

Here is another useful consequence.

Proposition 2.5. Let Y be a closed subspace of S. Then C(Y ) is equal to
the restrictions of elements of C to Y .

Proof: By definition f : Y → R is in C(Y ) if and only if for each y ∈ Y
there is a function gy ∈ C and an open neighbourhood Uy of y in S such that
f |Uy∩Y = g|Uy∩Y . Since Y is closed, the subsets Uy for y ∈ Y and S − Y
form an open covering of S. Let {ρi : S → R} be a subordinate smooth
partition of unity. Then for each i there is a y(i) such that supp ρi ⊂ Uy(i)

or supp ρi ⊆ S− Y . We consider the smooth function defined on Y

F :=
∑

supp ρi⊂Uy(i)

ρigy(i).
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For z ∈ Y we have

F (z) =
∑

supp ρi⊂Uy(i)

ρi(z)gy(i)(z) =
∑
i

ρi(z)f(z) = f(z).

Here we have used that for z ∈ Y , if supp rhoi ⊂ S \ Y then ρi(z) = 0, and
that if ρi(z) �= 0 then gy(i)(z) = f(z).
q.e.d.

5. Consequences of Sard’s Theorem

One of the most useful fundamental results in differential topology is Sard’s
Theorem [B-J, p. 58], [Hi, p. 69], which implies that the regular values of
a smooth map are dense (Brown’s Theorem). As an immediate consequence
of Sard’s theorem for manifolds, we obtain a generalization of Brown’s The-
orem to stratifolds.

We recall that if f : M → N is a smooth map between smooth man-
ifolds, then x ∈ N is called a regular value of f if the differential dfy is
surjective for each y ∈ f−1(x).

Definition: Let f : S → M be a smooth map from a stratifold to a smooth
manifold. We say that x ∈ M is a regular value of f , if for all y ∈ f−1(x)
the differential dfy is surjective, or, equivalently, if x is a regular value of
f |Si for all i.

The equivalence of the two conditions comes from the fact that the tan-
gent spaces of x in Si and in S agree and also the differentials of f and f |Si

at x are the same.

Let f : M → N be a smooth map between smooth manifolds. The
image of a point y ∈ M where the differential is not surjective is called a
critical value. Sard’s theorem says that the set of critical values has measure
zero. This implies that its complement, the set of regular values, is dense
(Brown’s theorem). Since a finite union of sets of measure zero has measure
zero, we deduce the following generalization of Brown’s Theorem:

Proposition 2.6. Let g : S → M be a smooth map. The set of regular
values of g is dense in M .

Regular values x of smooth maps f : M → N have the useful property
that f−1(x), the set of solutions, is a smooth manifold of dimension dimM−
dimN . An analogous result holds for a smooth map g : S → M , where S
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is a stratifold of dimension n and M a smooth manifold without boundary
of dimension m. Consider a regular value x ∈ M . By 2.5 we can identify
Cg−1(x) with the restriction of the smooth functions of S to g−1(x).

Proposition 2.7. Let S be a k-dimensional stratifold, M an m-dimensional
smooth manifold, g : S → M be a smooth map and x ∈ M a regular value.
Then (g−1(x),C(g−1(x))) is a (k −m)-dimensional stratifold.

Proof: We note that for each y ∈ g−1(x) the differential dgy : TyS →
TxM as defined at the end of chapter 1 is surjective. This uses the property
that TyS = TyS

i if y ∈ Si. From this we conclude that dimTyg
−1(x) ≤

dimTyS−m. On the other hand, Tyg
−1(x) contains Ty((g|Si)−1(x)) and so

the dimensions must be equal:

dimTyg
−1(x) = dimTyS−m.

Thus g−1(x)i−m = (g|Si)−1(x), the stratification being induced from the
stratification of S.

The topological conditions of a stratifold are obvious. To show condition
1, we have to prove that

C(g−1(x))y → C∞(g−1(x)i−m)y

[f ] 	→ [f |g−1(x)i−m ]

is an isomorphism. We give an inverse by applying Proposition 2.1 to choose
a local retraction r : U → V of S near y. The morphism gr is a local
extension of g|V and g|U is another extension implying, by condition 1,
that there exists a neighbourhood U ′ of y such that gr|U ′ = g|U ′ . Thus
r|g−1(x)∩U ′ : g−1(x)∩U ′ → g−1(x)i−m is a morphism. Now we obtain an in-

verse of C(g−1(x))y → C∞(g−1(x)i−m)y by mapping [f ] ∈ C∞(g−1(x)i−m)
to fr|g−1(x)∩U ′ ]. We have to show that [fr|g−1(x)∩U ′ ] is in C(g−1(x))y, i.e.,

is the restriction of an element of Cy. But since g−1(x)i−m is a smooth

submanifold of Si, we can extend [f ] to a germ [f̂ ] ∈ (Si)y and so [f̂ r] is

in Cy and [f̂ r|g−1(x)] = [fr|g−1(x)∩U ′ ]. Since r|g−1(x)∩U ′ is a local retraction,

the map [f ] 	→ [fr|g−1(x)∩U ′ ] is an inverse ofC(g−1(x))y → C∞(g−1(x)i−m)y.

This establishes condition 1. The second condition is obvious and for
condition 3 we note that bump functions are given by restriction of appro-
priate bump functions on S.
q.e.d.

The next result will be very useful in proving properties of homology. It
answers the following natural question. Let S be a connected k-dimensional
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stratifold and A and B non-empty disjoint closed subsets of S.

A

B

S

The question is whether there is a non-empty (k−1)-dimensional strati-
fold S′ with underlying topological space S′ ⊂ S−(A∪B) as in the following
picture. If so, we say that S′ separates A and B in S.

´S
A

B

S

The positive answer uses several of the results presented so far. We
first note that there is a smooth function ρ : S → R which maps A to 1
and B to −1. Namely, since S is paracompact, it is normal [Sch, p. 95]
and thus there are disjoint open neighbourhoods U of A and V of B. Defin-
ing f as 1 on U and −1 on V , the existence of ρ follows from Proposition 2.4.

Now we apply Proposition 2.6 to see that the regular values of ρ are
dense. Thus we can choose a regular value t ∈ (−1, 1). Proposition 2.7
implies that ρ−1(t) is a non-empty (k− 1)-dimensional stratifold which sep-
arates A and B. Thus we have proved a separation result:

Proposition 2.8. Let S be a k-dimensional connected stratifold and A and
B disjoint closed non-empty subsets of S. Then there is a non-empty (k−1)-
dimensional stratifold S′ with S′ ⊂ S− (A∪B). That is, S′ separates A and
B in S.

6. Exercises

(1) Give a stratifold structure on the real plane R2 with 1-stratum
equal to the x-axis and 2-stratum its complement. Verify that all
the axioms of a stratifold hold.
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(2) Let (R,C) be the real line with the algebra of smooth functions
which are constant for x ≥ 0. Is it a differential space? Is it a
stratifold?

(3) Define f : R → R by f(x) = 0 for x ≤ 0 and f(x) = xe−
1
x2

for x > 0. Note that f is smooth. Since f is monotone for
0 ≤ x, it has an inverse f−1 : [0,∞) → [0,∞) which is continu-
ous and, when restricted to (0,∞), it is smooth. Define a function
F : [0,∞) × [0,∞) → R by F (x, y) = f(f−1(x) − y). F has the
following properties:
1) F is well defined and continuous.
2) It is smooth when restricted to (0,∞)× (0,∞).
3) F (x, 0) = x.
4) F (x, y) = 0 for x ≤ f(y).
We extend F to be F : R × [0,∞) → R by setting F (x, y) =
−F (−x, y) for negative x.
a) Verify that F is well defined, continuous and smooth when re-
stricted to R× (0,∞), F (x, 0) = x, and F (x, y) = 0 for |x| ≤ f(y).
b) Denote by C the set of functions g : R × [0,∞) → R which are
continuous, smooth when restricted to R × (0,∞), smooth when
restricted to R × {0} (considered as a manifold) and locally com-
mute with F , that is g(x, y) = g(F (x, y), 0) for some neighborhood
of the x-axis. Show that (R× [0,∞),C) is a differential space and
a stratifold of dimension 2.

(4) Let (R2,C) be the real plane with the algebra of smooth functions
which are constant for x ≥ 0. Is it a differential space? Is it a
stratifold?

(5) Give a differential structure on the Hawaiian earring and on its
spherical analog, having two strata.
The Hawaiian earring in R2 is the subspace H =

⋃
S( 1n , (

1
n , 0)),

where S(r, (x, y)) is the circle of radius r around the point (x, y).
Note that all these circles have a common point which is (0, 0). The
spherical analog is the subspace of R3 which is the union of spheres
instead of circles and is defined in a similar way.

(6) Let M be a manifold of dimension n with boundary and a collar.
Show that it has a structure of a stratifold with two strata. (Hint:
This is a special case of one of the examples below.)

(7) Let (S,C),(S′,C′) be two stratifolds. Give a stratifold structure on
the following topological spaces:
a) ΣS, the suspension of S where ΣS = S× I/ ∼ where we identify
(a, 0) ∼ (a′, 0) and also (a, 1) ∼ (a′, 1) for all a, a′ ∈ S.
b) More generally, on the join of S and S′ which is denoted by
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S ∗ S′ := S × S′ × I/ ∼ where we identify (a, b, 0) ∼ (a, b′, 0) and
also (a, b, 1) ∼ (a′, b, 1) for all a, a′ ∈ S and b, b′ ∈ S′ (the suspension
is a special case since ΣS = S ∗ S0).

(8) a) Let (S,C) be a k-dimensional stratifold and let f : S̃ → S be
a covering map. Show that there is a unique way to define a k-

dimensional stratifold structure on S̃ such that f will be a local
isomorphism.
b) Let (S,C) be a k-dimensional stratifold. Assume that a finite
group acts on S via morphisms. Show that if the action is free
the quotient space S/G has a unique structure of a k-dimensional
stratifold such that the quotient map is a local isomorphism.

(9) Let (S,C) be a k-dimensional stratifold. Show that the inclusion
map of each stratum f : Si ↪→ S is a morphism and the differential
dfx is an isomorphism for all x ∈ Si.

(10) Show that the composition of morphisms is again a morphism.

(11) Prove the statement from the second section that for a stratifold
(S,C) a map f is in C if and only if f |Si ∈ C(Si) for all i and it
commutes with local retractions.

(12) Show that the map C∞(Si)x → Cx given by a local retraction is
an inverse to the restriction map Cx → C∞(Si)x.

(13) Let (S,C) be a k-dimensional stratifold and U ⊆ S an open subset.
Show that the induced structure on U gives a stratifold structure
on U .

(14) Show that the cone over a p-stratifold can be given a p-stratifold
structure.





Chapter 3

Stratifolds with
boundary: c-stratifolds

Stratifolds are generalizations of smooth manifolds without boundary, but
we also want to be able to define stratifolds with boundary. To motivate the
idea of this definition, we recall that a smooth manifold W with boundary
has a collar, which is a diffeomorphism c : ∂W × [0, ε) → V , where V is
an open neighbourhood of ∂W in W , and c|∂W = id∂W . Collars are useful
for many constructions such as gluing manifolds with diffeomorphic bound-
aries together. This makes it plausible to add a collar to the definition of
a manifold with boundary as additional structure. Actually it is enough to
consider a germ of collars. We call a smooth manifold together with a germ
of collars a c-manifold. Our stratifolds with boundary will be defined as
stratifolds together with a germ of collars, and so we call them c-stratifolds.

Staying with smooth manifolds for a while, we observe that we can de-
fine manifolds which are equipped with a collar as follows. We consider
a topological space W together with a closed subspace ∂W . We denote

W − ∂W by
◦
W and call it the interior. We assume that

◦
W and ∂W are

smooth manifolds of dimension n and n− 1.

Definition: Let (W,∂W ) be a pair as above. A collar is a homeomorphism

c : Uε → V,

where ε > 0, Uε := ∂W × [0, ε), and V is an open neighbourhood of ∂W
in W such that c|∂W×{0} is the identity map to ∂W and c|U−(∂W×{0}) is a

33
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diffeomorphism onto V − ∂W .

The condition requiring that c(Uε) is open avoids the following situation:

c(  W   [0,   ))x ε

Namely, it guarantees that the image of c is an “end” of W .

What is the relation to smooth manifolds equipped with a collar? If
W is a smooth manifold and c a collar, then we obviously obtain all the
ingredients of the definition above by considering W as a topological space.
In turn, if (W,∂W, c) is given as in the definition above, we can in an obvi-

ous way extend the smooth structure of
◦
W to a smooth manifold W with

boundary. The smooth structure on W is characterized by requiring that c
is not only a homeomorphism but a diffeomorphism. The advantage of the
definition above is that it can be given using only the language of manifolds
without boundary. Thus it can be generalized to stratifolds.

Let (T, ∂T) be a pair of topological spaces. We denote T−∂T by
◦
T and

call it the interior. We assume that
◦
T and ∂T are stratifolds of dimension

n and n− 1 and that ∂T is a closed subspace.

Definition: Let (T, ∂T) be a pair as above. A collar is a homeomorphism

c : Uε → V,

where ε > 0, Uε := ∂T × [0, ε), and V is an open neighbourhood of ∂T in
T such that c|∂T×{0} is the identity map to ∂T and c|Uε−(∂T×{0}) is an iso-
morphism of stratifolds onto V − ∂T.

Perhaps this definition needs some explanation. By examples 5 and 6
in §1 the open subset Uε − (∂T × {0}) can be considered as a stratifold.
Similarly, V − ∂T is an open subset of T and thus, by example 5 in §2, it
can be considered as a stratifold.
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We are only interested in a germ of collars, which is an equivalence class
of collars where two collars c : Uε → V and c′ : U ′

ε′ → V ′ are called equiv-
alent if there is a δ < min{ε, ε′}, such that c|Uδ

= c′|Uδ
. As usual when we

consider equivalence classes, we denote the germ represented by a collar c
by [c].

Now we define:

Definition: An n-dimensional c-stratifold T (a collared stratifold) is a
pair of topological spaces (T, ∂T) together with a germ of collars [c] where
◦
T = T−∂T is an n-dimensional stratifold and ∂T is an (n−1)-dimensional
stratifold, which is a closed subspace of T. We call ∂T the boundary of T.

A smooth map from T to a smooth manifold M is a continuous func-

tion f whose restriction to
◦
T and to ∂T is smooth and which commutes with

an appropriate representative of the germ of collars, i.e., there is a δ > 0
such that fc(x, t) = f(x) for all x ∈ ∂T and t < δ.

We often call T the underlying space of the c-stratifold.

As for manifolds, we allow ∂T to be empty. Then, of course, a c-
stratifold is nothing but a stratifold without boundary (or better with an
empty boundary). In this way stratifolds are incorporated into the world of
c-stratifolds as those c-stratifolds T with ∂T = ∅.

The simplest examples of c-stratifolds are given by c-manifolds W . Here

we define T = W and ∂T = ∂W and attach to
◦
T and ∂T the stratifold and

collar structures given by the smooth manifolds. Another important class of
examples is given by the product of a stratifold S with a c-manifold W . By
this we mean the c-stratifold whose underlying topological space is S×W ,

whose interior is S ×
◦
W and whose boundary is S × ∂W , and whose germ

of collars is represented by idS × c, where [c] is the germ of collars of W .
We abbreviate this c-stratifold by S×W . In particular, we obtain the half
open cylinder S × [0, 1) or the cylinder S × [0, 1]. A third simple class of
c-stratifolds is obtained by the product of a c-stratifold T with a smooth
manifold M . The underlying topological space of this stratifold is given by

T × M with interior
◦
T × M and boundary ∂T × M and germ of collars

[c× idM ], where [c] is the germ of collars of T.
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The next example is the (closed) cone C(S) over a stratifold S. The
underlying topological space is the (closed) cone T := S× [0, 1]/S×{0} whose
interior is S × [0, 1)/S×{0} and whose boundary is S × {1}. The collar is
given by the map S× [0, 1/2) → C(S) mapping (x, t) to (x, 1− t).

In contrast to manifolds with boundary, where the boundary can be
recognized from the underlying topological space, this is not the case with
c-stratifolds. For example we can consider a c-manifold W as a stratifold
without boundary with algebra C given by the functions which are smooth
on the boundary and interior and commute with the retraction given by
a representative of the germ of collars. Here the strata are the boundary
and the interior of W . On the other hand it is—as mentioned above—a
c-stratifold with boundary ∂W . In both cases the smooth functions agree.

The following construction of cutting along a codimension-1 stratifold
will be useful later on. Suppose in the situation of Proposition 2.7, where
g : S → R is a smooth map to the reals with regular value t, that there is an
open neighbourhood U of g−1(t) and an isomorphism from g−1(t)×(t−ε, t+ε)
to U for some ε > 0, whose restriction to g−1(t) × {0} is the identity map
to g−1(t). Such an isomorphism is often called a bicollar. Then we con-
sider the spaces T+ := g−1[t,∞) and T− := g−1(−∞, t]. We define their

boundary as ∂T+ := g−1(t) and ∂T− := g−1(t). Since
◦
T+ and

◦
T− are

open subsets of S they are stratifolds. The restriction of the isomorphism
to g−1(t)× [t, t+ ε) is a collar of T+ and the restriction of the isomorphism
to g−1(t)× (t− ε, t] is a collar of T−. Thus we obtain two c-stratifolds T+

and T−. We say that T+ and T− are obtained from S by cutting along
a codimension-1 stratifold, namely along g−1(t).

Now we describe the reverse process and introduce gluing of strati-
folds along a common boundary. Let T and T′ be c-stratifolds with the

g−1(t)S

R

g

T+ T−
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same boundary, ∂T = ∂T′. By passing to the minimum of ε and ε′ we can
assume that the domains of the collars are equal: c : ∂T × [0, ε) → V ⊂ T
and c′ : ∂T′ × [0, ε) → V ′ ⊂ T′. Then we consider the topological space
T ∪∂T=∂T′ T′ obtained from the disjoint union of T and T′ by identifying
the boundaries. We have a bicollar (in the world of topological spaces), a
homeomorphism ϕ : ∂T× (−ε, ε) → V ∪V ′ by mapping (x, t) ∈ ∂T× (−ε, 0]
to c(x,−t) and (x, t) ∈ ∂T× [0, ε) to c′(x, t).

With respect to this underlying topological space, we define the algebra
C(T∪∂T=∂T′T′) to consist of those continuous maps f : T∪∂T=∂T′T′ → R,

such that the restrictions to
◦
T and

◦
T′ are in C(

◦
T) and C(

◦
T′) respectively,

and where the composition fϕ : ∂T× (−ε, ε) → R is in C(∂T× (−ε, ε)). It
is easy to see that C(T ∪∂T=∂T′ T′) is a locally detectable algebra. Since
the condition in the definition of differential spaces is obviously fulfilled,
we have a differential space. Clearly, T ∪∂T=∂T′ T′ is a locally compact
Hausdorff space with countable basis. The conditions (1) – (3) in the def-

inition of a stratifold are local conditions. Since they hold for
◦
T,

◦
T′, and

∂T × (−ε, ε) and ϕ is an isomorphism, they hold for T ∪∂T=∂T′ T′. Thus
(T ∪∂T=∂T′ T′,C(T ∪∂T=∂T′ T′)) is a stratifold.

One can generalize the context of the above construction by assuming
only the existence of an isomorphism g: ∂T → ∂T′ rather than ∂T =
∂T′. Then we glue the spaces via g to obtain a space T ∪g T

′. If in the
definition of the algebra C(T ∪∂T=∂T′ T′) we replace the homeomorphism
ϕ by ϕg : ∂T × (−ε, ε) → V ∪ V ′ mapping (x, t) ∈ ∂T × (−ε, 0] to c(x,−t)
and (x, t) ∈ ∂T × [0, ε) to c′(g(x), t), then we obtain a locally detectable
algebra C(T ∪g T

′). The same arguments as above used for g = id imply
that (T ∪g T

′,C(T ∪g T
′)) is a stratifold. We summarize this as:

Proposition 3.1. Let T and T′ be k-dimensional c-stratifolds and let g :
∂T → ∂T′ be an isomorphism. Then

(T ∪g T
′,C(T ∪g T

′))

is a k-dimensional stratifold.

Of course, if g is an isomorphism between some components of the
boundary of T and some components of the boundary of T′, we can glue
as above via g to obtain a c-stratifold, whose boundary is the union of the
complements of these boundary components (see Appendix B, §2).



38 3. Stratifolds with boundary: c-stratifolds

Finally we note that if f : T → R is a smooth function and s is a regular
value of f | ◦

T
and f |∂T, then f−1(s) is a c-stratifold with collar given by

restriction.

1. Exercises

(1) Let (T, ∂T) be a compact c-stratifold of dimension n with an empty
n − 1 stratum such that the (n − 1)-stratum of ∂T in non-empty.
Show that ∂T is not a retract of T, that is, there is no morphism
r : T → ∂T which is the identity on ∂T and commutes with the
collar. (Hint: Look at the preimage of a regular value in the top
stratum.)

(2) Let (S, ∂S) and (T, ∂T) be two c-stratifolds. Construct two c-
stratifolds having ∂S × ∂T as a boundary. What is the space ob-
tained by gluing both stratifolds along the common boundary in
the case of (Dn+1, Sn) and (Dm+1, Sm)?

(3) a) LetM be a smooth manifold and letMs = (M,C) be some strat-
ifold structure on the topological space M . Show that dimMs ≤
dimM . Is the identity map id : Ms → M in this case always a
morphism?
b) Is there a c-stratifold structure on (M × I, ∂) with ∂ = M �Ms

where M has the manifold structure and Ms is M with some strat-
ifold structure?



Chapter 4

Z/2-homology

Prerequisites: We use the classification of 1-dimensional compact manifolds (e.g. [Mi 2, Appendix]).

1. Motivation of homology

We begin by motivating the concept of a homology theory. In this book
we will construct several homology theories which are all in the same spirit
in the sense that they all attempt to measure the complexity of a space X
by analyzing the “holes” in X. Initially, one thinks of a hole in a space as
follows: let Y be a topological space and L a non-empty subspace. Then
we say that X := Y − L has the hole L. We call such a hole an extrinsic
hole since we need to know the bigger space Y to say that X has a hole.
We also want to say what it means that X has a hole without knowing Y .
Such a hole we would call an intrinsic hole. The idea is rather simple: we
try to detect holes by fishing for them with a net, which is some other space
S. We throw (= map) the net into X and try to shrink the net to a point.
If this is not possible, we have “caught” a hole. For example, if we consider
X = Rn − 0, then we would say that X is obtained from Rn by introducing
the hole 0. We can detect the hole by mapping the “net” Sn−1 to X via
the inclusion. Since we cannot shrink Sn−1 in X continuously to a point,
we have “caught” the hole without using that X sits in Rn.

This is a very flexible concept since we are free in choosing the shape
of our net. In this chapter our nets will be certain compact stratifolds.
Later we will consider other classes of stratifolds. Further flexibility will

39
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come from the fact that we can use stratifolds of different dimensions for
detecting “holes of these dimensions”. Finally, we are free in making precise
what we mean by shrinking a net to a point. Here we will use a very rough
criterion: we say that a net given by a map from a stratifold S to X can be
“shrunk” to a point if there is a compact c-stratifold T with ∂T = S and
one can extend the map from S to T. In other words, instead of shrinking
the net, we “fill” it with a compact stratifold T.

To explain this idea further, we start again from the situation where
the space X is obtained from a space Y by deleting a set L. Depending
on the choice of L, this may be a very strange space. Since we are more
interested in nice spaces, let us assume that L is the interior of a compact

c-stratifold T ⊂ Y , i.e., L =
◦
T. Then we can consider the inclusion of ∂T

into X = Y − L as our net. We say that this inclusion detects the hole

obtained by deleting
◦
T if we cannot extend the inclusion from ∂T to X to

a map from T into X.

We now weaken our knowledge of X by assuming that it is obtained
from Y by deleting the interior of some compact c-stratifold, but we do not
know which one. We only know the boundary S of the deleted c-stratifold.
Then the only way to test if we have a hole with boundary—the boundary
of the deleted stratifold—is to consider all compact c-stratifolds T having
the same boundary S and to try to extend the inclusion of the boundary to
a continuous map from T to X. If this is impossible for all T, then we say
that X has a hole.

We have found a formulation of “hole” which makes sense for an ar-
bitrary space X. The space X has a hole with the boundary shape of a
compact stratifold S without boundary if there is an embedding of S into
X which cannot be extended to any compact c-stratifold with boundary S.
Furthermore, instead of fishing for holes with only embeddings, we consider
arbitrary continuous maps from compact stratifolds S to X. We say that
such a map catches a hole if we cannot extend it to a continuous map of
any compact c-stratifold T with boundary S. Finally, we collect all the
continuous maps from all compact stratifolds S of a fixed dimension m to
X modulo those extending to a compact c-stratifold with boundary S, into
a set. We find an obvious group structure on this set to obtain our first
homology group; denoted SHm(X;Z/2).
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X

f(S)

The idea for introducing homology this way is essentially contained in
Poincaré’s original paper from 1895 [Po]. Instead of using the concept of
stratifolds, he uses objects called “variétés”. The definition of these objects
is not very clear in this paper, which leads to serious difficulties. As a
consequence, he suggested another combinatorial approach which turned
out to be successful, and is the basis of the standard approach to homology.
The original idea of Poincaré was taken up by Thom [Th 1] around 1950
and later on by Conner and Floyd [C-F] who introduced a homology theory
in the spirit of Poincaré’s original approach using smooth manifolds. The
construction of this homology theory is very easy but computations are much
harder than for ordinary homology. In this book, we use these ideas with
some technical modification to realize Poincaré’s original idea in a textbook.

2. Z/2-oriented stratifolds

We begin with the construction of our first homology theory by following the
motivation above. The elements of our homology groups for a topological
space X will be equivalence classes of certain pairs (S, g) consisting of an
m-dimensional stratifold S together with a continuous map g : S → X. The
equivalence relation is called bordism.

Before we define bordism, we must introduce the concept of an isomor-
phism between pairs (S, g), and (S′, g′).

Definition: Let X be a topological space and g : S → X and g′ : S′ → X
be continuous maps, where S and S′ are m-dimensional stratifolds. An
isomorphism from (S, g) to (S′, g′) is an isomorphism of stratifolds f :
S → S′ such that

g = g′f.

If such an isomorphism exists, we call (S, g) and (S′, g′) isomorphic.

For a space X, the collection of pairs (S, g), where S is an m-dimensional
stratifold and g : S → X a continuous map, does not form a set. To see
this, start with a fixed pair (S, g) and consider the pairs (S× {i}, g), where
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i is an arbitrary index. For example, we could take i to be any set. Thus,
there are at least as many pairs as sets and the class of all sets is not a set.
But we have

Proposition 4.1. The isomorphism classes of pairs (S, g) form a set.

The proof of this proposition does not help with the understanding of
homology. Thus we have postponed it to the end of Appendix A (as we have
done with other proofs which are more technical and whose understanding
is not needed for reading the rest of the book).

We now introduce the operation which leads to homology groups. Given
two pairs (S1, g1) and (S2, g2), their sum is

(S1, g1) + (S2, g2) := (S1 � S2, g1 � g2),

where g1 � g2 : S1 � S2 → X is the disjoint sum of the maps g1 and g2. If T
is a c-stratifold and f : T → X a map, we abbreviate

∂(T, f) := (∂T, f |∂T).

We will now characterize those stratifolds from which we will construct
our homology groups. There are two conditions we impose: Z/2-orientability
and regularity.

Definition: We call an n-dimensional c-stratifold T with boundary S = ∂T

(we allow the possibility that ∂T is empty) Z/2-oriented if (
◦
T)n−1 = ∅,

i.e., if the stratum of codimension 1 is empty.

We note that if (
◦
T)n−1 = ∅, then Sn−2 = ∅. The reason is that via c

we have an embedding of U = Sn−2 × (0, ε) into (
◦
T)n−1 and so U = ∅ if

(
◦
T)n−1 = ∅. But if U = ∅ then also Sn−2 = ∅. Thus the boundary of a
Z/2-oriented stratifold is itself Z/2-oriented.

Remark: It is not clear at this moment what the notion “Z/2-oriented”
has to do with our intuitive imagination of orientation (knowing what is
“left” and “right”). For a connected closed smooth manifold, we know what
“oriented” means [B-J]. If M is a closed manifold, this concept can be
translated to a homological condition using integral homology. It is equiv-
alent to the existence of the so-called fundamental class. Our definition of
Z/2-oriented stratifolds guarantees that a closed smooth manifold always
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has a Z/2-fundamental class as we shall explain later.

3. Regular stratifolds

We distinguish another class of stratifolds by imposing a further local con-
dition.

Definition: A stratifold S is called a regular stratifold if for each x ∈ Si

there is an open neighborhood U of x in S, a stratifold F with F0 a single
point pt, an open subset V of Si, and an isomorphism

ϕ : V × F → U,

whose restriction to V × pt is the identity.

A c-stratifold T is called a regular c-stratifold if
◦
T and ∂T are regular

stratifolds.

To obtain a feeling for this condition, we look at some examples. We
note that a smooth manifold is a regular stratifold. If S is a regular stratifold
and M a smooth manifold, then S ×M is a regular stratifold. Namely for
(x, y) ∈ S×M , we consider an isomorphism ϕ : V ×F → U near x for S as
above and then

ϕ× id : (V × F)×M → U ×M

is an isomorphism near (x, y). Thus S×M is a regular stratifold. A similar
consideration shows that the product S×S′ of two regular stratifolds S and
S′ is regular.

Another example of a regular stratifold is the open cone over a compact
smooth manifold M . More generally, if S is a regular stratifold, then the

open cone
◦

CS is a regular stratifold: by the considerations above the open
subset S× (0, 1) is a regular stratifold and it remains to check the condition

for the 0-stratum, but this is clear as we can take U = F =
◦

CS and V = pt.

It is obvious that the topological sum of two regular stratifolds is regular.

Thus the constructions of stratifolds using regular stratifolds from the
examples in chapter 2 lead to regular stratifolds.
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It is also obvious that gluing regular stratifolds together as explained in
Proposition 3.1 leads to a regular stratifold. The reason is that points in the

gluing look locally like points in either
◦
T,

◦
T

′
or ∂T × (−ε, ε). Since these

stratifolds are regular and regularity is a local condition, the statement fol-
lows.

Finally, if S is a regular stratifold and f : S → R is a smooth map with
regular value t, then f−1(t) is a regular stratifold. To see this, it is enough
to consider the local situation near x in Si and use a local isomorphism ϕ to
reduce to the case, where the stratifold is V ×F for some i-dimensional man-
ifold V and F0 is a point pt. Now we consider the maps f and (f |V×pt) p1,
where p1 is the projection to V , and note that they agree on V × pt, which
is the i-stratum of V ×F. By condition 1b of a stratifold there is some open
neighbourhood W of pt in F such that the maps agree on V × W . Thus
f |V×W = (f |V×pt) p, where p is the projection from V ×W to V . Since t is

a regular value of f |V×pt, we see that f−1(t) ∩ (V ×W ) = f |−1
V×pt(t) ×W

showing that the conditions of a regular stratifold are fulfilled. Since we will
apply this result in the next chapter, we summarize this as:

Proposition 4.2. Let S be a regular stratifold, f : S → R a smooth function
and t a regular value. Then f−1(t) is a regular stratifold.

The main reason for introducing regular stratifolds in our context is the
following result. A regular point of a smooth map f : S → R is a point x in
S such that the differential at x is non-zero.

Proposition 4.3. Let S be a regular stratifold. Then the regular points of
a smooth map f : S → R form an open subset of S. If in addition S is
compact, the regular values form an open set.

Proof: To see the first statement consider a regular point x ∈ Si. Since Si

is a smooth manifold and the regular points of a smooth map on a smooth
manifold are open (use the continuity of the differential to see this), there
is an open neighbourhood U of x in Si consisting of regular points. Since
S is regular, there is an open neighbourhood Ux of x in S isomorphic to
V × F, where V ⊂ U is an open neighbourhood of x in Si, such that f
corresponds on V × F to a map which commutes with the projection from
V ×F to V (this uses the fact that a smooth map has locally a unique germ
of extensions to an open neighbourhood). But for a map which commutes
with this projection, a point (x, y) ∈ V × F is a regular point if and only
if x is a regular point of f |V . Since V is contained in U and U consists of
regular points, Ux also consists of regular points, which finishes the proof
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the first statement.

If the regular points are an open set then the singular points, which are
the complement, are a closed set. If S is compact, the singular points are
compact, and so the image under f is closed implying that the regular values
are open.
q.e.d.

4. Z/2-homology

We call a c-stratifold T compact if the underlying space T is compact.
Since ∂T is a closed subset of T, the boundary of a compact regular strati-
fold is compact.

Definition: Two pairs (S0, g0) and (S1, g1), where Si are compact, m-
dimensional Z/2-oriented, regular stratifolds and gi : Si → X are continuous
maps, are called bordant if there is a compact (m + 1)-dimensional Z/2-
oriented regular c-stratifold T, and a continuous map g : T → X such that
(∂T, g) = (S0, g0) + (S1, g1). The pair (T, g) is called a bordism between
(S0, g0) and (S1, g1).

S0 S1T g(T)

g

X

We will later see why we imposed the condition that the stratifolds
are Z/2-oriented and regular (the latter condition can be replaced by other
conditions as long as an appropriate version of Proposition 4.3 holds). If we
did not require that the c-stratifolds be compact, we would obtain a single
bordism class, since otherwise we could use (S × [0,∞), gp) as a bordism
between (S, g) and the empty stratifold (where p is the projection from
S× [0,∞) to S).

Proposition 4.4. Let X be a topological space. Bordism defines an equiva-
lence relation on the set of isomorphism classes of compact, m-dimensional,
Z/2-oriented, regular stratifolds with a map to X. Moreover, the topological
sum

(S0, g0) + (S1, g1) := (S0 � S1, g0 � g1)
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induces the structure of an abelian group on the set of such equivalence
classes. This group is denoted by SHm(X;Z/2), the m-th stratifold ho-
mology group with Z/2-coefficients or for short m-th Z/2-homology.
As usual, we denote the equivalence class represented by (S, g) by [S, g].

We will show in chapter 20 that for many spaces stratifold homology
agrees with the most common and most important homology groups: sin-
gular homology groups.

Proof: (S, g) is bordant to (S, g) via the bordism (S × [0, 1], h), where
h(x, t) = g(x). We call this bordism the cylinder over (S, g). We observe
that if S is Z/2-oriented and regular, then S × [0, 1] is Z/2-oriented and
regular. Thus the relation is reflexive. The relation is obviously symmetric.

To show transitivity we consider a bordism (W, g) between (S0, g0) and
(S1, g1) and a bordism (W′, g′) between (S1, g1) and (S2, g2), where W, W′

and all Si are regular Z/2-oriented stratifolds. We glue W and W′ along S1

as explained in Proposition 3.1. The result is regular and Z/2-oriented. The
boundary of W ∪S1 W

′ is S0 � S2. Since g and g′ agree on S1, they induce
a map g ∪ g′ : W∪S1 W

′ → X, whose restriction to S0 is g0 and to S2 is g2.
Thus (S0, g0) and (S2, g2) are bordant, and the relation is transitive.

´WW

Next, we check that the equivalence classes form an abelian group with
respect to the topological sum. We first note that if (S1, g1) and (S2, g2) are
isomorphic, then they are bordant. A bordism is given by gluing the cylin-
ders (S1 × [0, 1], h) and (S2 × [0, 1], h) via the isomorphism considered as a
map from ({1}×S1) to (S2×{0}) (as explained after Proposition 3.1). Since
the isomorphism classes of pairs (S, g) are a set and isomorphic pairs are
bordant, the bordism classes are a quotient set of the isomorphism classes,
and thus are a set.

The operation on SHm(X;Z/2) defined by the topological sum satisfies
all the axioms of an abelian group. The topological sum is associative and
commutative. An element (S, g) represents the zero element if an only if
there is a bordism (T, h) with ∂(T, h) = (S, g). The inverse of [S, g] is given
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by [S, g] again, since [S, g]+[S, g] is the boundary of (S× [0, 1], h), the cylin-
der over (S, g).
q.e.d.

Remark: By the last argument, each element [S, g] in SHm(X;Z/2) is 2-
torsion, i.e., 2[S, g] = 0. In other words, SHm(X;Z/2) is a vector space over
the field Z/2.

Here we abbreviate the quotient group Z/2Z, which is a field, as Z/2.
Later we will define SHm(X;Q), which will be a Q-vector space. This indi-
cates the role of Z/2 in the notation of homology groups.

To obtain a feeling for homology groups, we compute SH0(pt;Z/2), the
0-th homology group of a point. A 0-dimensional stratifold is the same
as a 0-dimensional manifold, and a 1-dimensional c-stratifold that is Z/2-
oriented, is the same as a 1-dimensional manifold with a germ of collars
since the codimension-1 stratum is empty and there is only one possible
non-empty stratum. We recall from [Mi 2, Appendix)] that a compact 1-
dimensional manifold W with boundary has an even number of boundary
points. Thus the number of points modulo 2 of a closed 0-dimensional
manifold is a bordism invariant. On the other hand, an even number of
points is the boundary of a disjoint union of intervals. We conclude:

Theorem 4.5. SH0(pt;Z/2) ∼= Z/2. The isomorphism is given by the
number of points modulo 2. The non-trivial element is [pt, id].

There is a generalization of Theorem 4.5; one can determine SH0(X;Z/2)
for an arbitrary space X. To develop this, we remind the reader of the fol-
lowing definition:

Definition: A topological space X is called path connected if any two
points x and y in X can be connected by a path, i.e., there is a continuous
map α : [a, b] → X with α(a) = x and α(b) = y.

The relation on X which says two points are equivalent if they can be
joined by a path is an equivalence relation. The equivalence classes are
called the path components of X. A path connected space is connected
(why?) but the converse is in general not true (why?) although it is, for
example, true for manifolds (why?).

The number of path components is an interesting invariant of a topolog-
ical space. It can be computed via homology. Recall that since all elements
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of SHm(X;Z/2) are 2-torsion, we consider SHm(X;Z/2) as a Z/2-vector-
space.

Theorem 4.6. The number of path components of a topological space X
is equal to dimZ/2 SH0(X;Z/2). A basis of SH0(X,Z/2) (as Z/2-vector
space) is given by the homology classes [pt, gi], where gi maps the point to
an arbitrary point of the i-th path component of X.

Proof: We recall that Z/2-oriented c-stratifolds of dimension ≤ 1 are the
same as manifolds with germs of collars. Choose for each such path compo-
nent Xi a point xi in Xi. Then we consider the bordism class αi := [pt, xi],
where the latter means the 0-dimensional manifold pt together with the
map mapping this point to xi. We claim that the bordism classes αi form a
basis of SH0(X;Z/2). This follows from the definition of path components
and bordism classes once we know that for points x and y in X, we have
[pt, x] = [pt, y] if and only if there is a path joining x and y. If x and y can
be joined by a path then the path is a bordism from (pt, x) to (pt, y) and so
[pt, x] = [pt, y]. Conversely, if there is a bordism between [pt, x] and [pt, y],
we consider the path components of this bordism that have a non-empty
boundary. We know that each such path component is homeomorphic to
[0, 1] ([Mi 2], Appendix). Since the boundary consists of two points, there
can be only one path component with non-empty boundary and this path
component of the bordism is itself a path joining x and y.
q.e.d.

As one can see from the proof, this result is more or less a tautology.
Nevertheless, it turns out that the interpretation of the number of path com-
ponents as the dimension of SH0(X;Z/2) is very useful. We will develop
methods for the computation of SH0(X;Z/2) which involve also higher ho-
mology groups SHk(X;Z/2) for k > 0 and apply them, for example, to
prove a sort of Jordan separation theorem in §6.

One of the main reasons for introducing stratifold homology groups is
that one can use them to distinguish spaces. To compare the stratifold ho-
mology of different spaces we define induced maps.

Definition: For a continuous map f : X → Y , define f∗ : SHm(X;Z/2) →
SHm(Y ;Z/2) by f∗([S, g]) := [S, fg].
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By construction, this is a group homomorphism. The following proper-
ties are an immediate consequence of the definition.

Proposition 4.7. Let f : X → Y and g : Y → Z be continuous maps.
Then

(gf)∗ = g∗f∗

and

id∗ = id.

One says that SHm(X;Z/2) together with the induced maps f∗ is a
functor (which means that the two properties of Proposition 4.7 are ful-
filled). These functorial properties imply that if f : X → Y is a homeomor-
phism, then f∗ : SHm(X;Z/2) → SHm(Y ;Z/2) is an isomorphism. The
reason is that (f−1)∗ is an inverse since (f−1)∗f∗ = (f−1f)∗ = id∗ = id and
similarly f∗(f−1)∗ = id.

We earlier motivated the idea of homology by fishing for a hole using a
continuous map g : S → X. It is plausible that a deformation of g detects
the same hole as g. These deformations play an important role in homology.
The precise definition of a deformation is the notion of homotopy.

Definition: Two continuous maps f and f ′ between topological spaces X
and Y are called homotopic if there is a continuous map h : X × I → Y
such that h|X×{0} = f and h|X×{1} = f ′. Such a map h is called a homo-
topy from f to f ′.

One should think of a homotopy as a continuous family of maps ht : X →
Y , x 	→ h(x, t) joining f and f ′. Homotopy defines an equivalence relation
between maps which we often denote by �. Namely, f � f with homotopy
h(x, t) = f(x). If f � f ′ via h, this implies f ′ � f via h′(x, t) := h(x, 1− t).
If f � f ′ via h and f ′ � f ′′ via h′, then f � f ′′ via

h′′(x, t) :=

{
h(x, 2t) for 0 ≤ t ≤ 1/2
h′(x, 2t− 1) for 1/2 ≤ t ≤ 1.

The reader should check that this map is continuous.

The set of all continuous maps between given topological spaces is huge
and hard to analyze. Often one is only interested in those properties of a
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map which are unchanged under deformations. This is the reason for intro-
ducing the homotopy relation.

As indicated above, Z/2-homology cannot distinguish objects which are
equal up to deformation. This is made precise in the next result which is
one of the fundamental properties of homology and is given the name ho-
motopy axiom:

Proposition 4.8. Let f and f ′ be homotopic maps from X to Y . Then

f∗ = f ′
∗ : SHm(X;Z/2) → SHm(Y ;Z/2).

Proof: Let h : X × I → Y be a homotopy between maps f and f ′ from X
to Y . Consider [S, g] ∈ SHm(X). Then the cylinder (S× [0, 1], h ◦ (g × id))
is a bordism between (S, fg) and (S, f ′g), and thus f∗[S, g] = f ′

∗[S, g].
q.e.d.

We mentioned above that homeomorphisms induce isomorphisms be-
tween SHm(X;Z/2) and SHm(Y ;Z/2). This can be generalized by intro-
ducing homotopy equivalences. We say that a continuous map f : X →
Y is a homotopy equivalence if there is a continuous map g : Y → X such
that gf and fg are homotopic to idX and idY , the identity maps on X and
Y respectively. Such a map g is called a homotopy inverse to f . Roughly,
a homotopy equivalence is a deformation from one space to another. For
example, the inclusion i : Sm → Rm+1 − {0} is a homotopy equivalence
with homotopy inverse given by g : x 	→ x/||x||. We have gi = idSm and
h(x, t) = tx + (1 − t) x

||x|| is a homotopy between ig and idRm+1−{0}. A ho-

motopy equivalence induces an isomorphism in stratifold homology:

Proposition 4.9. A homotopy equivalence f : X → Y induces isomor-
phisms f∗ : SHk(X;Z/2) → SHk(Y ;Z/2) for all k.

The reason is that if g is a homotopy inverse of f then Propositions 4.7
and 4.8 ensure that g∗ is an inverse of f∗.

A space is called contractible if it is homotopy equivalent to a point.
For example, Rn is contractible. Thus for contractible spaces one has an iso-
morphism between SHn(X;Z/2) and SHn(pt;Z/2). This gives additional
motivation to determine the higher homology groups of a point. The answer
is very simple:
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Theorem 4.10. For n > 0 we have

SHn(pt;Z/2) = 0.

Proof: Since there is only the constant map to the space consisting of a
single point we can omit the maps in our bordism classes if the space X
is a point. Thus we have to show that each Z/2-oriented compact regular
stratifold S of dimension > 0 is the boundary of a Z/2-oriented compact
regular c-stratifold T. There is an obvious candidate, the closed cone CS
defined in chapter 2, §2. This is obviously Z/2-oriented since S is Z/2-
oriented and the dimension of S is> 0. (If dimS = 0, then the 0-dimensional
stratum, the top of the cone, is not empty in a 1-dimensional stratifold, and
so the cone is not Z/2-oriented!) We have seen already that the cone is
regular if S is regular.

q.e.d.

This is a good place to see the effect of restricting to Z/2-oriented strat-
ifolds. If we considered arbitrary stratifolds, then even in dimension 0 the
homology group of a point would be trivial. But if all the homology groups
of a point are zero, then the homology groups of any nice space are also zero.
This follows from the Mayer-Vietoris sequence which we will introduce in
the next chapter. Similarly, the homology groups would be uninteresting
if we did not require that the stratifolds are compact since, as we already
remarked, the half open cylinder S × [0, 1) could be taken to show that [S]
is zero.

5. Exercises

(1) Let S and S′ be two stratifolds which are homeomorphic. Assuming
that S is Z/2- orientable, does it follow that S′ is Z/2-orientable?

(2) Show directly that the gluing of two regular stratifolds along a
common boundary is regular.

(3) Give a condition for a p-stratifold with two strata to be regular.

(4) Where did we use regularity?

(5) Show that the stratifold S from exercise 3 in chapter 2 is not reg-
ular. Construct a smooth function to R where the regular points
are not open. Construct a stratifold S and a smooth function to
R, such that the regular values are not open. (Hint: Modify the
construction of the stratifold from exercise 3 in chapter 2 to ob-
tain a stratifold structure on the upper half plane together with
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a retraction to the 1-stratum R whose critical values are 1/n for
n = 1, 2, . . ..)

(6) Let S be a compact m-dimensional Z/2-oriented regular stratifold.
Give a necessary and sufficient condition such that [S, id] = 0.

(7) Classify all compact connected oriented zero, one and two dimen-
sional p-stratifolds up to homeomorphism.

(8) Let f : X → Y be a continuous map between two topological
spaces.
a) Show that if Xα is a path component in X then f(Xα) is con-
tained in a path component of Y .
b) We saw that SH0(X;Z/2) and SH0(Y ;Z/2) are vector spaces
having a basis in one-to-one correspondence to their path compo-
nents. Show that f∗ : SH0(X;Z/2) → SH0(Y ;Z/2) maps the basis
element corresponding to a path component Xα in X to the basis
element corresponding to the path component in Y that contains
f(Xα).

(9) Let X = S1×S1 be a torus with an embedding of the open ball B2.
Remove the open ball 1

2B
2 from X. Let S denote the boundary of

X, thus S is homeomorphic to S1. Show that the inclusion of S in
X is not homotopic to the constant map but it is bordant to zero,
that is the inclusion map S → X represents the zero element in
SH1(X;Z/2).

(10) a) Show that the identity map and the antipodal map A : S2n+1 →
S2n+1 are homotopic. (Hint: show this first for n = 0.)
b) Show that a map f : Sn → X is homotopic to a constant map
if and only if it can be extended to a map from Dn+1.
c) A subset U ⊆ Rn is called star-shaped if there is a point x ∈ U
such that for every y ∈ U the interval joining x and y is contained
in U . If U is star-shaped, show that any two maps fi : X → Uare
homotopic. Deduce that each star-shaped set is contractible.

(11) Show that Sn is not contractible but S∞ is contractible (S∞ =⋃
Sn with the topology τ such that a subset U ⊆ S∞ is open if

and only if U ∩ Sn is open in Sn for all n).

(12) Let X be a topological space and A be a subspace. A is called a
retract of X if there is a continuous map r : X → A such that
r|A = id. Show that in this case r∗ is surjective and i∗ is injective
where i : A → X is the inclusion. Deduce that if A is a retract
of X and SHn(X;Z/2) = {0} then SHn(A;Z/2) = {0} and if
SHn(A;Z/2) �= {0} then SHn(X;Z/2) �= {0}. Show that if X is
contractible and A is a retract of X then A is contractible.
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(13) Let X be a topological space and A a subspace. We say that A is
a deformation retract of X if there is a homotopy H : X × I → X
such that the restriction of H to A× I is the projection on the first
factor, and for every x ∈ X we have H(x, 0) = x and H(x, 1) ∈ A.
Clearly, if A is a deformation retract of X then it is a retract of X.
a) Show that if A is a deformation retract of X then A is homotopy
equivalent to X.
b) Denote by h1 = H|X×{1} and i the inclusion of A. Show that
h1∗ and i∗ are isomorphisms.

(14) Show that the following spaces are homotopy equivalent:
a) Rn \ {0} and Sn−1.
b) The 2-torus after identifying one copy of S1 to a point and S2∨S1

(S2 ∨ S1 = S2 � S1/(1, 0, 0) ∼ (1, 0)).
c) Sn × Sm \ {pt} and Sn ∨ Sm.

(15) Let M be the manifold obtained from RPn (CPn) by removing one
point. Can you find a closed manifold which is homotopy equivalent
to M?





Chapter 5

The Mayer-Vietoris
sequence and homology
groups of spheres

1. The Mayer-Vietoris sequence

While on the one hand the definition of SHn(X;Z/2) is elementary and in-
tuitive, on the other hand it is hard to imagine how one can compute these
groups. In this chapter we will describe an effective method which, in com-
bination with the homotopy axiom (4.8), will often allow us to reduce the
computation of SHn(X;Z/2) to our knowledge of SHm(pt;Z/2). We will
discuss interesting applications of these computations in the next chapter.

The method for relating SHn(X;Z/2) to SHm(pt;Z/2) is based on
Propositions 4.7, 4.8 and 4.9, and the following long exact sequence. To for-
mulate the method, we have to introduce the notion of exact sequences.
A sequence of homomorphisms between abelian groups

· · · → An
fn−→ An−1

fn−1−→ An−2 → · · ·

is called exact if for each n ker fn−1 = im fn.

For example,

0 → Z
·2→ Z → Z/2 → 0

55
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is exact where the map Z → Z/2 is the reduction mod 2. The zeros on
the left and right side mean in combination with exactness that the map

Z
·2→ Z is injective and Z → Z/2 is surjective, which is clearly the case. The

exactness in the middle means that the kernel of the reduction mod 2 is the
image of the multiplication by 2, which is also clear.

To get a feeling for exact sequences, we observe that if we have an exact
sequence

A
0→ B

f→ C
0→ D,

then f is injective (following from the 0-map on the left side) and surjective
(following from the 0-map on the right side). Thus, in this situation, f is
an isomorphism. Of course, if there is only a 0 on the left, then f is only
injective, and if there is only a 0 on the right, then f is only surjective.

Another elementary but useful consequence of exactness concerns se-
quences of abelian groups where each group is a finite dimensional vector
space over a field K and the maps are linear maps. If

0 → An → An−1 → · · · → A1 → A0 → 0

is an exact sequence of finite dimensional K-vector spaces and linear maps,
then:

n∑
i=0

(−1)i dimK Ai = 0,

the alternating sum of the dimensions is 0. We leave this as an elementary
exercise in linear algebra for the reader.

To formulate the method, we consider the following situation. Let U and
V be open subsets of a space X. We want to relate the homology groups
of U , V , U ∩ V and U ∪ V . To do so, we need maps between the homol-
ogy groups of these spaces. There are some obvious maps induced by the
different inclusions. In addition, we need a less obvious map, the so-called
boundary operator d : SHm(U ∪ V ;Z/2) → SHm−1(U ∩ V ;Z/2). We begin
with its description. Consider an element [S, g] ∈ SHm(U ∪ V ;Z/2). We
note that A := g−1(X−V ) and B := g−1(X−U) are disjoint closed subsets
of S.
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(t)

U

g(S)

g

A B

S

V

-1ρ

By arguments similar to the proof of Proposition 2.8, there is a sepa-
rating stratifold S′ ⊂ S − (A ∪ B) of dimension m − 1 (the picture above
explains the idea of the proof of 2.8, where S′ = ρ−1(t) for a smooth function
ρ : S → R with ρ(A) = 1 and ρ(B) = −1 and t a regular value) and we
define

d([S, g]) := [S′, g|S′ ].

We will show in Appendix B (the proof is purely technical and plays no
essential role in understanding homology) that this construction gives a well-
defined map

d : SHm(U ∪ V ;Z/2) → SHm−1(U ∩ V ;Z/2).

If we apply this construction to a topological sum, it leads to the topo-
logical sum of the corresponding pairs and so this map is a homomorphism.

Proposition 5.1. The construction above assigning to (S, g) the pair (S′, g|S′)
gives a well defined homomorphism

d : SHm(U ∪ V ;Z/2) → SHm−1(U ∩ V ;Z/2).

This map is called the boundary operator.

Now we can give the fundamental tool for relating the homology groups
of a space X to those of a point:

Theorem 5.2. For open subsets U and V of X the following sequence
(Mayer-Vietoris sequence) is exact:

· · ·SHn(U ∩ V ;Z/2) → SHn(U ;Z/2)⊕ SHn(V ;Z/2) → SHn(U ∪ V ;Z/2)

d−→ SHn−1(U ∩ V ;Z/2) → SHn−1(U ;Z/2)⊕ SHn−1(V ;Z/2) → · · ·
It commutes with induced maps.

Here the map SHn(U ∩ V ;Z/2) → SHn(U ;Z/2)⊕ SHn(V ;Z/2) is α 	→
((iU )∗(α), (iV )∗(α)) and the map SHn(U ;Z/2)⊕ SHn(V ;Z/2) → SHn(U ∪
V ;Z/2) is (α, β) 	→ (jU )∗(α)− (jV )∗(β).
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We give some explanation. The maps iU and iV are the inclusions from
U ∩ V to U and V , the maps jU and jV are the inclusions from U and V
to U ∪ V . The sequence extends arbitrarily far to the left and ends on the
right with

· · · → SH0(U ;Z/2)⊕ SH0(V ;Z/2) → SH0(U ∪ V ;Z/2) → 0.

Finally, the last condition in the theorem means that if we have a space X ′

with open subspaces U ′ and V ′ and a continuous map f : X → X ′ with
f(U) ⊂ U ′ and f(V ) ⊂ V ′, then the diagram

· · · → SHn(U ∩ V ;Z/2) −→ SHn(U ;Z/2)⊕ SHn(V ;Z/2) →

↓ (f |U∩V )∗ ↓ (f |U )∗ ⊕ (f |V )∗

· · · → SHn(U
′ ∩ V ′;Z/2) −→ SHn(U

′;Z/2)⊕ SHn(V
′;Z/2) →

−→ SHn(U ∪ V ;Z/2)
d−→ SHn−1(U ∩ V ;Z/2) → · · ·

↓ (f |U∪V )∗ ↓ (f |U∩V )∗

−→ SHn(U
′ ∪ V ′;Z/2)

d−→ SHn−1(U
′ ∩ V ′;Z/2) → · · ·

commutes. That is to say that the two compositions of maps going from the
upper left corner to the lower right corner in any rectangle agree.

The reader might wonder why we have taken the difference map (jU )∗(α)−
(jV )∗(β) instead of the sum (jU )∗(α) + (jV )∗(β), which is equivalent in our
situation since for all homology classes α ∈ SHm(X;Z/2) we have α = −α.
The reason is that a similar sequence exists for other homology groups (the
existence of the Mayer-Vietoris sequence is actually one of the basic axioms
for a homology theory as will be explained later) where the elements do not
have order 2, and thus one has to take the difference map to obtain an exact
sequence. We will give the proof in such a way that it will extend verbatim
to the other main homology groups in this book—integral homology—so
that we don’t have to repeat the argument.

The idea of the proof of Theorem 5.2 is very intuitive but there are some
technical points which make it rather lengthy. We now give a short proof
explaining the fundamental steps. Understanding this short proof is very
helpful for getting a general feeling for homology theories. In Appendix B we
add the necessary details which may be skipped in a first reading of the book.
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Short proof of Theorem 5.2: We will show the exactness of the Mayer-
Vietoris sequence step by step. We first recall that a sequence

A
f→ B

g→ C

is exact if and only if gf = 0 (i.e., im f ⊂ ker g) and ker g ⊂ im f .

We first consider the sequence

SHn(U ∩ V ;Z/2) → SHn(U ;Z/2)⊕ SHn(V ;Z/2) → SHn(U ∪ V ;Z/2).

Obviously the composition of the two maps is zero. To show the other in-
clusion, we consider [S, g] ∈ SHn(U ;Z/2) and [S′, g′] ∈ SHn(V ;Z/2) such
that ([S, g], [S′, g′]) maps to zero in SHn(U ∪ V ;Z/2). Let (T, h) be a zero
bordism of [S, jUg] − [S′, jV g′]. Then we separate T using Proposition 2.8
along a compact regular stratifold D with h(D) ⊂ U ∩ V . We will show in
the detailed proof that we actually can choose T such that there is an open
neighbourhood U of D in T and an isomorphism of D× (−ε, ε) to U , which
on D × {0} is the identity map. In other words: a bicollar exists (this is
where we apply the property that homology classes consist of regular strat-
ifolds). Then, as explained in §4, we can cut along D to obtain a bordism
(T−, h|T−) between (S, g) and (D, h|D) as well as a bordism (T+, g|T+)
between (D, h|D) and (S′, g′). Thus [D, h|D] ∈ SHn(U ∩ V ;Z/2) maps to
([S, g], [S′, g′]) ∈ SHn(U ;Z/2)⊕ SHn(V ;Z/2).

S

Sg(    )

g

S

g(S)

D

U V

T

´

´

Next we consider the exactness of

SHn(U∪V ;Z/2)
d→ SHn−1(U∩V ;Z/2) → SHn−1(U ;Z/2)⊕SHn−1(V ;Z/2).

The composition of the two maps is zero. For this we show in the detailed
proof that, as above, we can choose a representative for the homology class
in U ∪ V such that we can cut along the separating stratifold defining the
boundary operator. The argument is demonstrated in the following figure.
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g

S

U

D
D D

g(S)

V V
U

zero bordism
zero bordism

The other inclusion is demonstrated by the same pictures read in reverse
order, where instead of cutting we glue.

Finally, we prove the exactness of

SHn(U ;Z/2)⊕ SHn(V ;Z/2) → SHn(U ∪ V ;Z/2)
d→ SHn−1(U ∩ V ;Z/2).

If [S, g] ∈ SHn(U ;Z/2), we show d(jU )∗[S, g] = 0. This is obvious by the
construction of the boundary operator since we can choose ρ and the regular
value t such that the separating regular stratifold D is empty. By the same
argument d(jV )∗ is the trivial map.

To show the other inclusion we consider [S, g] ∈ SHn(U ∪ V ;Z/2) with
d([S, g]) = 0. We will show in Appendix B that we can choose (S, g) in such
a way that the regular stratifold S is obtained from two regular c-stratifolds
S+ and S− with same boundary D by gluing them together along D. Fur-
thermore, we have g(S+) ⊂ U and g(S−) ⊂ V .

If d([S, g]) = 0, there is a compact regular c-stratifold Z with ∂Z = D
and an extension of g|D to r : Z → U ∩ V . We glue S+ and S− to Z to
obtain S+∪DZ and S−∪DZ, and map the first to U via g|S+∪r and the sec-
ond to V via g|S−∪r. This gives an element of SHn(U ;Z/2)⊕SHn(V ;Z/2).

SS

S Z S Z

g

U

g(S)

D

S

V U V

We are finished if in U ∪ V the difference of these two bordism classes is
equal to [S, g]. For this we take the c-stratifolds (S+ ∪D Z) × [0, 1] and
(S− ∪D Z)× [1, 2] and paste them together along Z× 1.

+ -

+ -
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+S S-Z Z

We will show in Appendix A that this stratifold can be given the structure
of a regular c-stratifold with boundary S+∪DZ+S−∪DZ+S+∪DS−. Since
S+ ∪D S− = S and our maps extend to a map from this regular c-stratifold
to U∪V , we have a bordism between [S+∪DZ, g|S+∪r]+[S−∪DZ, g|M−∪r]
and [S, g].
q. e. d.

As an application we compute the homology groups of a topological
sum. Let X and Y be topological spaces and X � Y the topological sum
(the disjoint union). Then X and Y are open subspaces of X � Y and
we denote them by U and V . Since the intersection U ∩ V is the empty
set and the homology groups of the empty set are 0 (this is a place where
it is necessary to allow the empty set as k-dimensional stratifold whose
corresponding homology groups are of course 0) the Mayer-Vietoris sequence
gives short exact sequences:

0 → SHk(X;Z/2)⊕ SHk(Y ;Z/2) → SHk(X � Y ;Z/2) → 0,

where the zeroes on the left and right side correspond to SHn(∅;Z/2) = 0
and SHn−1(∅;Z/2) = 0, respectively. The map in the middle is (jX)∗−(jY )∗.
As explained above, exactness implies that this map is an isomorphism:

(jX)∗ − (jY )∗ : SHn(X;Z/2)⊕ SHn(Y ;Z/2) → SHn(X � Y ;Z/2).

Of course, this also implies that the sum (jX)∗ + (jY )∗ is an isomorphism.

2. Reduced homology groups and homology groups of
spheres

For computations it is often easier to split the homology groups into the
homology groups of a point and the “rest”, which will be called reduced
homology. Let p : X → pt be the constant map to the space consisting of

a single point. The n-th reduced homology group is S̃Hn(X;Z/2) :=
ker (p∗ : SHn(X;Z/2) → SHn(pt;Z/2)). A continuous map f : X → Y
induces a homomorphism on the reduced homology groups by restriction to

the kernels and we denote it again by f∗ : S̃Hn(X;Z/2) → S̃Hn(Y ;Z/2).



62 5. The Mayer-Vietoris sequence and homology groups of spheres

If X is non-empty, there is a simple relation between the homology and the
reduced homology of X:

SHn(X;Z/2) ∼= S̃Hn(X;Z/2)⊕ SHn(pt;Z/2).

The isomorphism sends a homology class a ∈ SHn(X;Z/2) to the pair
(a − i∗p∗(a), p∗a), where i is the inclusion from pt to an arbitrary point in
X. For n > 0 this means that the reduced homology is the same as the
unreduced homology, but for n = 0 it differs by a summand Z/2.

Since it is often useful to work with reduced homology, it would be
nice to know if there is also a Mayer-Vietoris sequence for reduced homol-
ogy. This is the case. We prepare for the argument by developing a useful
algebraic result. Consider a commutative diagram of abelian groups and
homomorphisms

A1
f1−→ A2

f2−→ A3
f3−→ A4

↓h1 ↓h2 ↓h3 ↓h4
B1

g1−→ B2
g2−→ B3

g3−→ B4

where the horizontal sequences are exact and the map h1 is surjective. Then
we consider the sequence

ker h1
f1|−→ ker h2

f2|−→ ker h3
f3|−→ ker h4

where the maps fi| are fi|ker hi
. The statement is that the sequence

ker h2
f2|−→ ker h3

f3|−→ ker h4

is again exact. This is proved by a general method called diagram chasing,
which we introduce in proving this statement. We chase in the commuta-
tive diagram given by Ai and Bj above. The first step is to show that
im f2| ⊂ ker f3| or equivalently (f3|)(f2|) = 0. This follows since f3f2 = 0.
To show that ker f3| ⊂ im f2|, we start the chasing by considering x ∈ ker h3
with f3(x) = 0. By exactness of the sequence given by the Ai, there is y ∈ A2

with f2(y) = x. Since h3(x) = 0 and h3f2(y) = g2h2(y), we have g2h2(y) = 0
and thus by the exactness of the lower sequence and the surjectivity of h1,
there is z ∈ A1 with g1h1(z) = h2(y). Since g1h1(z) = h2f1(z), we conclude
h2(y−f1(z)) = 0 or y−f1(z) ∈ ker h2. Since f2f1(z) = 0, we are done since
we have found y − f1(z) ∈ ker h2 with f2(y − f1(z)) = f2(y) = x.

With this algebraic information, we can compare the Mayer-Vietoris se-
quences for X = U ∪ V with that of the space pt given by U ′ := pt =: V ′ :
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· · · → SHn(U ∩ V ;Z/2) → SHn(U ;Z/2)⊕ SHn(V ;Z/2) →
↓ ↓

→ SHn(U
′ ∩ V ′;Z/2) → SHn(U

′;Z/2)⊕ SHn(V
′;Z/2) →

→ SHn(X;Z/2) → SHn−1(U ∩ V ;Z/2)
↓ ↓

→ SHn(U
′ ∪ V ′;Z/2) → SHn−1(U

′ ∩ V ′;Z/2) → · · · .

Since U ′ ∩ V ′ = U ′ = V ′ = U ′ ∪ V ′ = pt, all vertical maps are surjective
if U ∩ V is non-empty (and thus U and V as well), and therefore by the
argument above, the reduced Mayer-Vietoris sequence

· · · → S̃Hn(U ∩ V ;Z/2) → S̃Hn(U ;Z/2)⊕ S̃Hn(V ;Z/2)

→ S̃Hn(X;Z/2) → S̃Hn−1(U ∩ V ;Z/2) → · · ·
is exact if U ∩ V is non-empty.

Now we use the homotopy axiom (Proposition 4.8) and the reduced
Mayer-Vietoris sequence to express the homology of the sphere Sm := {x ∈
Rm+1 | ||x|| = 1} in terms of the homology of a point. For this we decompose
Sm into the complement of the north pole N = (0, ..., 0, 1) and the south
pole S = (0, ..., 0,−1), and define Sm

+ : Sm − {S} and Sm
− := Sm − {N}.

The inclusion Sm−1 → Sm
+ ∩Sm

− mapping y 	−→ (y, 0) is a homotopy equiva-
lence with homotopy inverse r : (x1, . . . , xm+1) 	−→ (x1, . . . , xm)/||(x1,...,xm)||
(why?). Both Sm

+ and Sm
− are homotopy equivalent to a point, or equiva-

lently the identity map on these spaces is homotopic to the constant map
(why?). Since Sm

+ ∪ Sm
− is Sm, the reduced Mayer-Vietoris sequence gives

an exact sequence

· · · → S̃Hn(S
m
+ ∩ Sm

− ;Z/2) → S̃Hn(S
m
+ ;Z/2)⊕ S̃Hn(S

m
− ;Z/2)

→ S̃Hn(S
m;Z/2)

d−→ S̃Hn−1(S
m
+ ∩ Sm

− ;Z/2) → · · · .
If we use the isomorphisms induced by the homotopy equivalences above
this becomes

· · · → S̃Hn(S
m−1;Z/2) → S̃Hn(pt;Z/2)⊕ S̃Hn(pt;Z/2)

→ S̃Hn(S
m;Z/2)

d−→ S̃Hn−1(S
m−1;Z/2) → · · · .

Since S̃Hk(pt;Z/2) = 0, we obtain an isomorphism

d : S̃Hn(S
m;Z/2)

∼=−→ S̃Hn−1(S
m−1;Z/2)
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and so by induction:

S̃Hn(S
m;Z/2)

∼=−→ S̃Hn−m(S0;Z/2).

The space S0 consists of two points {+1} and {−1} which are open subsets
and by the formula above for the homology of a topological sum we have

S̃Hn(S
0;Z/2) ∼= SHn(pt;Z/2). We summarize:

Theorem 5.3.
S̃Hn(S

m;Z/2) ∼= SHn−m(pt;Z/2)

or
SHn(S

m;Z/2) ∼= SHn(pt;Z/2)⊕ SHn−m(pt;Z/2).

In particular, for m > 0 we have for k = 0 or k = m

SHk(S
m;Z/2) = Z/2

and
SHk(S

m;Z/2) = 0

otherwise.

It is natural to ask for an explicit representative of the non-trivial ele-
ment in SHm(Sm;Z/2) for m > 0. For this we introduce the fundamental
class of a compact Z/2-oriented regular stratifold. Let S be a n-dimensional
Z/2-oriented compact regular stratifold. We define its fundamental class
as [S]Z/2 := [S, id] ∈ SHn(S,Z/2). As the name indicates this class is im-
portant. We will see that it is always non-zero. In particular, we obtain
for each compact smooth manifold the fundamental class [M ]Z/2 = [M, id].
In the case of the spheres the non-vanishing is clear since by the inductive
computation one sees that the non-trivial element of SHm(Sm;Z/2) is given
by the fundamental class [Sm]Z/2.

As an immediate consequence of Theorem 5.3 the spheres Sn and Sm

are not homotopy equivalent for m �= n, for otherwise their homology groups
would all be isomorphic. In particular, for n �= m the spheres are not home-
omorphic. In the next chapter, we will show for arbitrary manifolds that
the dimension is a homeomorphism invariant.

3. Exercises

(1) Let 0 → A
f−→ B

g−→ C → 0 be an exact sequence of abelian groups.
a) Show the the following are equivalent:

i) There is a map C
s−→ B such that g ◦ s = idC .

ii) There is a map B
p−→ A such that p ◦ f = idA.

iii) There is an isomorphism B
h−→ A⊕C such that h◦f(a) = (a, 0)
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and g ◦ h−1(a, c) = c.
In this case we say that this is a split exact sequence.
b) Show that if all groups are vector spaces and all maps are linear
then the sequence splits.
c) Show that if C is free then the sequence splits.

(2) Prove the five lemma: Assume that the following diagram is com-
mutative with exact rows:

A1 → A2 → A3 → A4 → A5

↓ f1 ↓ f2 ↓ f3 ↓ f4 ↓ f5
B1 → B2 → B3 → B4 → B5

a) Show that if f2, f4 are injective and f1 is surjective then f3 is
injective.
b) Show that if f2, f4 are surjective and f5 is injective then f3 is
surjective.
Conclude that if f2, f4 are isomorphisms, f1 is surjective and f5 is
injective then f3 is an isomorphism.
Remark: This lemma is usually used when f1, f2, f4, f5 are isomor-
phisms.

(3) Let 0 → An → An−1 → · · · → A0 → 0 be an exact sequence of

vector spaces and linear maps. Show that
∑n

k=0 (−1)k dim(Ak) =
0.

(4) Let 0 → Z/2 → A → Z/2 → 0 be an exact sequence of abelian
groups. What are the possibilities for the group A? What can you
say if you know that the maps are linear maps of Z/2 vector spaces?

(5) Compute SHn(X;Z/2) for the following spaces using the Mayer-
Vietoris sequence. If possible represent each class by a map from a
stratifold.
a) The wedge of two circles S1 ∨S1 or more generally the wedge of
two pointed spaces (X,x0) and (Y, y0). Assume that both x0 and
y0 have a contractible neighborhood.
Remark: A pointed space (X,x0) is a topological space X together
with a distinguished point x0 ∈ X. The wedge of two pointed
spaces (X,x0) and (Y, y0) is the pointed space (X�Y/x0 ∼ y0, [x0])
and denoted by X ∨ Y .
b) The two dimensional torus T 2 = S1 × S1 or more generally the
n-torus which is the product of n copies of S1.
c) The Möbius band which is the space obtained from I × I after
identifying the points (0, x) and (1, 1 − x) for every x ∈ I, where
I = [0, 1].
d) Let M1 and M2 be two smooth n-dimensional manifolds. Com-
pute the homology of M1#M2 as defined in the exercises in ch. 1.
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e) Any compact surface (using that an orientable surface is either
homeomorphic to S2 or a connected sum of copies of S1 × S1, and
a non-orientable surface is homeomorphic to a connected sum of
copies of RP2).
f) Any compact orientable surface with one point removed.
g) R2 with n points removed. What about if we remove an infinite
discrete set?

(6) Let X be a topological space.
a) Compute SHn(X×S1;Z/2) or more generally SHn(X×Sk;Z/2)
in terms of SHm(X;Z/2).

b) Compute S̃Hn(ΣX;Z/2) (the suspension of X) or more gener-

ally S̃Hn(Σ
kX;Z/2) (the kth iterated suspension of X) in terms of

S̃Hn(X;Z/2), where the suspension is defined in the exercises in
chapter 2.
c) Compute SHn(TX;Z/2) (the suspension of X modulo both end
points) or more generally SHn(T

kX;Z/2) (where we define T kX
by induction, T kX = T (T k−1X)) in terms of SHm(X;Z/2).

(7) Let M be a non-empty connected closed n-dimensional manifold.
Construct a map f : M → Sn with

f∗ : SHn(M ;Z/2) → SHn(S
n;Z/2)

non-trivial. (Hint: Use the fact that Sn is homeomorphic to Dn

with the boundary collapsed to a point.)

(8) Determine the map SHn(S
n;Z/2) → SHn(RP

n;Z/2) induced by
the quotient map Sn → RPn.



Chapter 6

Brouwer’s fixed point
theorem, separation,
invariance of dimension

Prerequisites: The only new ingredient used in this chapter is the definition of topological manifolds

which can be found in the first pages of either [B-J] or [Hi].

1. Brouwer’s fixed point theorem

Let Dn := {x ∈ Rn| ||x|| ≤ 1} be the closed unit ball and Bn := {x ∈
Rn| ||x|| < 1} be the open unit ball.

Theorem 6.1. (Brouwer) A continuous map f : Dn → Dn has a fixed
point, i.e., there is a point x ∈ Dn with f(x) = x.

Proof: The case n = 0 is clear and so we assume that n > 0. If there is a
continuous map f : Dn → Dn without fixed points, define g : Dn → Sn−1

by mapping x ∈ Dn to the intersection of the ray from f(x) to x with Sn−1

(give a formula for this map and see that it is continuous, Exercise 1).

x

f(x)

g(x)
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Then g|Sn−1 = idSn−1 , the identity on Sn−1.

Now let i : Sn−1 → Dn be the inclusion and consider

id = id∗ = (g ◦ i)∗ = g∗ ◦ i∗,
a map

S̃Hn−1(S
n−1;Z/2)

i∗−→ S̃Hn−1(D
n;Z/2)

g∗−→ S̃Hn−1(S
n−1;Z/2).

By Theorem 5.3 we have S̃Hn−1(S
n−1;Z/2) = Z/2. Thus the identity on

S̃Hn−1(S
n−1;Z/2) is non-trivial. On the other hand, since Dn is homotopy

equivalent to a point, S̃Hn−1(D
n;Z/2) ∼= S̃Hn−1(pt;Z/2) = {0}, implying

a contradiction.
q.e.d.

2. A separation theorem

As an application of the relation between the number of path components
of a space X and the dimension of SH0(X;Z/2), we prove a theorem which
generalizes a special case of the Jordan curve theorem (see, e.g., [Mu]). A
topological manifoldM is called closed if it is compact and has no boundary.

Theorem 6.2. Let M be a closed, path connected, topological manifold of
dimension n − 1 and let f : M × (−ε, ε) → U ⊂ Rn be a homeomorphism
onto an open subset U of Rn. Then Rn − f(M) has two path components.

In other words, a nicely embedded closed topological manifold M of
dimension n − 1 in Rn separates Rn into two connected components. Here
“nicely embedded” means that the embedding can be extended to an embed-
ding of M × (−ε, ε). If M is a smooth submanifold, then it is automatically
nicely embedded [B-J].

Proof: Denote Rn − f(M) by V . Since U ∪ V = Rn and SH1(R
n;Z/2) ∼=

SH1(pt;Z/2) = 0 (Rn is contractible), the Mayer-Vietoris sequence gives
the exact sequence

0 → SH0(U∩V ;Z/2) → SH0(U ;Z/2)⊕SH0(V ;Z/2) → SH0(R
n;Z/2) → 0.

Now, U∩V is homeomorphic to M×(−ε, ε)−M×{0} and thus has two path
components. Then Theorem 4.6 implies SH0(U ∩ V ;Z/2) is 2-dimensional.
The space U is homeomorphic to M × (−ε, ε) which is path connected im-
plying that the dimension of SH0(U) is 1. Since the alternating sum of the
dimensions is 0 we conclude dimZ/2 SH0(V ;Z/2) = 2, which by Theorem
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4.6 implies the statement of Theorem 6.2.
q.e.d.

As announced earlier, although the result is equivalent to a statement
about SH0(R

n−f(M);Z/2), the proof uses higher homology groups, namely
the vanishing of SH1(R

n;Z/2).

3. Invariance of dimension

An m-dimensional topological manifold M is a space which is locally home-
omorphic to an open subset of Rm. This is the case if and only if all points
m ∈ M have an open neighbourhood U � m which is homeomorphic to Rm.
A fundamental question which arises immediately is whether the dimension
of a topological manifold is a topological invariant. That is, could it be that
M is both an m-dimensional manifold and an n-dimensional manifold for
n �= m? In particular, are there n and m with n �= m but with Rm ∼= Rm?
In this section we answer both these questions in the negative.

The key idea which we use is the local homology of a space. To define
the local homology of a topological space X at a point x ∈ X, we consider
the space X ∪X−xC(X−x), the union of X and the cone over X−x, where
CY = Y × [0, 1]/Y×{0} and we identify Y ×{1} in CY with Y . Observe that
X ∪X−x C(X − x) = C(X) − (x × (0, 1)). We define the local homology
of X at x as SHk(X ∪ C(X − x);Z/2). We will use the local homology of
a topological manifold to characterize its dimension. For this, we need the
following consideration.

Lemma 6.3. Let M be a non-empty m-dimensional topological manifold.
Then for each x ∈ M we have

S̃Hk(M ∪ C(M − x);Z/2) ∼=
{

Z/2 k = m
0 otherwise.

Proof: Since M is non-empty, there is an x ∈ M and so we choose a
homeomorphism ϕ from the open ball Bm to an open neighborhood of x.
We apply the Mayer-Vietoris sequence and decompose M ∪ C(M − x) into
U := C(M − x) and V := ϕ(Bm − {0}) × (12 , 1] ∪ {x}. The projection of
V to ϕ(Bm) is a homotopy equivalence and so V is contractible. Also U is
contractible, since it is a cone. U ∩V is homotopy equivalent (again via the
projection) to ϕ(Bm − {0}) and so U ∩ V is homotopy equivalent to Sm−1.
The reduced Mayer-Vietoris sequence is

· · · → S̃Hk(U ;Z/2)⊕ S̃Hk(V ;Z/2) → S̃Hk(M ∪ C(M − x);Z/2)

→ S̃Hk−1(U ∩ V ;Z/2) → · · · .
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Since S̃Hk(U ;Z/2) and S̃Hk(V ;Z/2) are zero and S̃Hk−1(U ∩ V ;Z/2) ∼=
S̃Hk−1(S

m−1;Z/2), we have an isomorphism

S̃Hk(M ∪ C(M − x);Z/2) ∼= S̃Hk−1(S
m−1;Z/2)

and the statement follows from 5.3.
q.e.d.

Now we are in position to characterize the dimension of a non-empty
topological manifold M in terms of its local homology. Namely by 6.3 we

know that dimM = m if and only if S̃Hm(M ∪C(M − x);Z/2) �= 0, where
x is an arbitrary point in M . If f : M → N is a homeomorphism, then f
can be extended to a homeomorphism g : M ∪C(M−x) → N ∪C(N−g(x))
and so the corresponding local homology groups are isomorphic. Thus

dimM = dimN.

We summarize our discussion with:

Theorem 6.4. Let f : M → N be a homeomorphism between non-empty
manifolds. Then

dim M = dim N.

Remark: Let Y ⊂ X be a subspace, then the reduced homology of X ∪
C(Y ) is called the relative homology of Y ⊂ X and it is denoted by

SHk(X,Y ;Z/2) := S̃Hk(X ∪ C(Y );Z/2).

4. Exercises

(1) Give a formula for the map g : Dn → Sn−1 described in Theorem
6.1 and prove that it is continuous.

(2) LetA ∈ Mn(R) be a matrix whose entries are positive (non-negative).
Show that A has a positive (non-negative) eigenvalue.



Chapter 7

Homology of some
important spaces and
the Euler characteristic

1. The fundamental class

Given a space X it is very useful to have some explicit non-trivial homology
classes. The most important example is the fundamental class of a com-
pact m-dimensional Z/2-oriented regular stratifold S which we introduced
as [S]Z/2 := [S, id] ∈ SHm(S;Z/2). We have shown that for a sphere the
fundamental class is non-trivial. In the following result, we generalize this.

Proposition 7.1. Let S be a compact m-dimensional Z/2-oriented regular
stratifold with Sm �= ∅. Then the fundamental class [S]Z/2 ∈ SHm(S;Z/2)
is non-trivial.

Proof: The 0-dimensional case is clear and so we assume that m > 0. We
reduce the proof of the statement to the special case of spheres where it is
already known. For this we consider a smooth embedding ψ : Bm ↪→ Sm,
where Bm is the open unit ball, and we decompose S as ψ(Bm) =: U
and S − ψ(0) =: V . Then U ∩ V = ψ(Bm − 0). We want to determine
d([S]Z/2), where d is the boundary operator in the Mayer-Vietoris sequence
corresponding to the covering of S by U and V . We choose a smooth function
η : [0, 1] → [0, 1], which is 0 near 0, 1 near 1 and η(t) = t near 1/2, and then
define ρ : S → [0, 1] by mapping ψ(x) to η(||x||) and S − imψ to 1. Then

71
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1/2 is a regular value of ρ and by definition of the boundary operator we
have

d([S]Z/2) = [ρ−1(1/2), i] ∈ SHm−1(U ∩ V ),

where i : ρ−1(1/2) → U ∩ V is the inclusion. Thus it suffices to show that
[ρ−1(1/2), i] �= 0. Since ψ| 1

2
Sm−1 is a homeomorphism from 1

2S
m−1 = {x ∈

Rm | ||x|| = 1/2} to ψ(12S
m−1) = ρ−1(1/2), we have

[ρ−1(1/2), i] = ψ∗[
1

2
Sm−1, id] = ψ∗[

1

2
Sm−1]Z/2.

The inclusion ρ−1(1/2) → U ∩V is a homotopy equivalence and thus we are
finished since [12S

m−1]Z/2 �= 0.
q.e.d.

2. Z/2-homology of projective spaces

The most important geometric spaces are the classical Euclidean spaces Rn

and Cn, the home of affine geometry. It was an important breakthrough
in the history of mathematics when projective geometry was invented.
The basic idea is to add certain points at infinity to Rn and Cn. The effect
of this change is not so easy to describe. One important difference is that
projective spaces are compact. Another is that the intersection of two hyper-
planes (projective subspaces of codimension 1) is always non-empty. Many
interesting spaces, in particular projective algebraic varieties, are contained
in projective spaces so that they are the “home” of algebraic geometry. In
topology they play an important role for classifying line bundles and so are
at the heart of the theory of characteristic classes.

Many important questions can be formulated and solved using the ho-
mology (and cohomology) of projective spaces. Before we compute the ho-
mology groups, we have to define projective spaces. They are the set of all
lines through 0 in Rn+1 or Cn+1. The lines which are not contained in Rn×0
or Cn × 0 are in a 1− 1 correspondence with Rn or Cn, where the bijection
maps a point x in Rn or Cn to the line given by (x, 1). Thus Rn resp. Cn

is contained in RPn resp. CPn. The lines which are contained in Rn × 0 or
Cn × 0 are called points at infinity. They are parametrized by RPn−1 resp.
CPn−1. Thus we obtain a decomposition of RPn as Rn ∪RPn−1 and CPn as
Cn ∪ CPn−1.

To see that the projective spaces are compact, we give a slightly different
definition by representing a line by a vector of norm 1.
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We begin with the complex projective space CPm. This may be de-
fined as a quotient space of S2m+1 = {x = (x0, . . . , xm) ∈ Cm+1| ||x|| = 1},
where || || is the standard norm on Cm+1, by the equivalence relation ∼
where x ∼ y if and only if there is a complex number λ such that λx = y. In
other words two points in S2m+1 are equivalent if they span the same line
in Cm+1. The space CPm is a topological manifold of dimension 2m and
one can introduce a smooth structure in a natural way [Hi, p. 14]. Actu-
ally, here the coordinate changes are not only smooth maps but holomorphic
maps, and thus CPm is what one calls a complex manifold, but we don’t
need this structure and consider CPm as a smooth manifold.

To compute its homology, we decompose it into open subspaces

U := {[x] ∈ CPm | xm �= 0}
and

V := {[x] ∈ CPm | |xm| < 1}.
The reader should check the following properties: U is homotopy equivalent
to a point (a homotopy between the identity on U and a constant map is
given by h([x], t) := [tx0, . . . , txm−1, xm]), and the inclusion of CPm−1 into
V is a homotopy equivalence. A homotopy between the identity on V and a
map from V to CPm−1 is given by h([x], t) := [x0, . . . , xm−1, txm]. Further-
more, the intersection U ∩ V is homotopy equivalent to S2m−1. The reason
is that we actually have a homeomorphism from U to the open unit ball
by mapping [(x0, . . . , xm)] to (x0/xm, . . . , xm−1/xm) and under this home-
omorphism U ∩ V is mapped to the complement of 0, which is homotopy
equivalent to S2m−1.

Thus the homotopy axiom together with the Mayer-Vietoris sequence
for Z/2-homology gives an exact sequence:

· · · → S̃Hk(S
2m−1;Z/2) → S̃Hk(CP

m−1;Z/2)

→ S̃Hk(CP
m;Z/2) → S̃Hk−1(S

2m−1;Z/2) → · · · .
Since S̃Hr(S

2m−1;Z/2) = 0 for r �= 2m− 1, we conclude inductively:

Theorem 7.2. SHk(CP
m;Z/2) ∼= Z/2 for k even and k ≤ 2m, and is 0

otherwise. The nontrivial homology class in SH2n(CP
m;Z/2) for n ≤ m is

given by [CPn, i], where i is the inclusion from CPn to CPm.

The last statement follows from Proposition 7.1.

To compute the homology of the real projective space

RPm := Sm/x ∼ −x,
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which is a closed smooth m-dimensional manifold [Hi, p. 13], we use the
same approach as for the complex projective spaces. We decompose RPm

as U := {[x] ∈ RPm | xm+1 �= 0} and V := {[x] ∈ RPm | |xm+1| < 1}. A
similar argument as above shows: U is homotopy equivalent to a point, and
the inclusion from RPm−1 to V is a homotopy equivalence. Furthermore,
the intersection U ∩ V is homotopy equivalent to Sm−1.

The decomposition RPm = U ∪ V gives an exact sequence:

S̃Hk(S
m−1;Z/2) → S̃Hk(RP

m−1;Z/2)
i∗→ S̃Hk(RP

m;Z/2)

→ S̃Hk−1(S
m−1;Z/2) → S̃Hk−1(RP

m−1;Z/2).

This implies that for k different fromm orm−1 the inclusion RPm−1 → RPm

induces an isomorphism i∗ : S̃Hk(RP
m−1;Z/2)→S̃Hk(RP

m;Z/2). Since by

Proposition 7.1 S̃Hm(RPm;Z/2) �= 0 and S̃Hm−1(S
m−1;Z/2) ∼= Z/2 and by

induction S̃Hm(RPm−1;Z/2) = 0, we conclude that S̃Hm(RPm;Z/2) ∼= Z/2

and that S̃Hm(RPm;Z/2) → S̃Hm−1(S
m−1;Z/2) is an isomorphism. Thus

i∗ : S̃Hm−1(RP
m−1;Z/2)→S̃Hm−1(RP

m;Z/2) is injective. Inductively we
have shown:

Theorem 7.3. SHk(RP
m;Z/2) ∼= Z/2 for k ≤ m, and 0 otherwise. The

nontrivial element in SHk(RP
m;Z/2) ∼= Z/2 for k ≤ m is given by [RPk, i]Z/2

where i is the inclusion from RPk to RPm.

3. Betti numbers and the Euler characteristic

The Betti numbers are important invariants of topological spaces and for
some topological spaces X one can use them to define the Euler character-
istic.

Definition: Let X be a topological space. The k-th Z/2-Betti number is
bk(X;Z/2) := dimZ/2 SHk(X;Z/2).

A topological space X is called Z/2-homologically finite, if for all
but finitely many k, the homology groups SHk(X;Z/2) are zero, and finite
dimensional in the remaining cases.

For a Z/2-homologically finite space X, we define the Euler charac-
teristic as e(X) :=

∑
i(−1)ibi(X;Z/2).

At the end of this chapter we will prove that all compact smooth mani-
folds are Z/2-homologically finite and thus their Euler characteristic can be
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defined.

The computations in the previous section imply:

i) Suppose m > 0. Then bk(S
m;Z/2) = 1 for k = 0 or k = m and 0

otherwise. Thus e(Sm) = 2 for m even and e(Sm) = 0 for m odd.

ii) bk(CP
m;Z/2) = 1 for k even and 0 ≤ k ≤ 2m and bk(CP

m;Z/2) = 0
else. Thus e(CPm) = m+ 1.

iii) bk(RP
m;Z/2) = 1 for 0 ≤ k ≤ m and bk(RP

m;Z/2) = 0 otherwise.
Thus e(RPm) = 1 for m even and e(RPm) = 0 for m odd.

The significance of the Euler characteristic cannot immediately be seen
from the above definition. To indicate its importance we list the following
fundamental properties without proof.

i) The Euler characteristic is an obstruction to the existence of nowhere
vanishing vector fields on a closed smooth manifold. However, if such a vec-
tor field exists, then the Euler characteristic vanishes. We will show that
Sm has a nowhere vanishing vector field if and only if m is odd.

ii) The Euler characteristic has to be even if a closed smooth manifold
is the boundary of a compact smooth manifold. An example of a closed
smooth manifold with odd Euler characteristic is given by one of the ex-
amples above, the Euler characteristic of RP2k is 1. Thus RP2k is not the
boundary of a compact smooth manifold.

iii) For a finite polyhedron, the Euler characteristic can be computed
from its combinatorial data: It is the alternating sum of the number of k-
dimensional faces.

The following property is very useful for computing the Euler character-
istic without knowing the homology.

Theorem 7.4. Let U and V be Z/2-homologically finite open subspaces of a
topological space X, and suppose also that U ∩V is Z/2-homologically finite.
Then U ∪ V is Z/2-homologically finite and

e(U ∪ V ) = e(U) + e(V )− e(U ∩ V ).
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Proof: The result follows from the Mayer-Vietoris sequence. On the one
hand, exactness of the sequence implies that U ∪ V is Z/2-homologically
finite. The formula is a consequence of the fact we explained earlier: let

0 → An
fn−→ An−1

fn−1−→ · · · f1−→ A0 → 0 be an exact sequence of finite
dimensional K-vector spaces, where K is some field. Then

n∑
i=0

(−1)i dim Ai = 0.

Applying this formula to the exact Mayer-Vietoris sequence, we obtain

e(U ∪ V ) = e(U) + e(V )− e(U ∩ V ).

q.e.d.

We finish this chapter by proving the previously claimed result that
compact manifolds are Z/2-homologically finite.

Theorem 7.5. A compact smooth c-manifold is Z/2-homologically finite.

Proof: It is enough to prove this for closed manifolds since the case of
non-empty boundary can be reduced to the closed case as we now explain.
Let W be a compact c-manifold with non-empty boundary. The double
W ∪∂W W is a closed manifold. Assuming the closed case, W ∪∂W W and
∂W are Z/2-homologically finite. We decompose W ∪∂W W as U ∪V , where
U is the union of one copy of W together with the bicollar used in the gluing
and V is the union of the other copy of W together with the bicollar. The
spaces U and V are both homotopy equivalent to W and U ∩V is homotopy
equivalent to ∂W and so a similar argument as in the proof of Theorem 7.4
shows that if U ∪ V and U ∩ V are Z/2-homologically finite, then U and V
are Z/2-homologically finite. Since W is homotopy equivalent to U (or V ),
it has the same homology groups and so is Z/2-homologically finite.

To prove the theorem for a closed manifold M , we embed M into RN for
some N [Hi, Theorem I.3.4] and consider a tubular neighbourhood U ([Hi]
Theorem IV.5.2). Let r : U → M be the projection of the normal bundle to
M which is a retraction onto M , that is, r(x) = x for all x ∈ M . Now we
choose for each point x ∈ M an open cube in U containing x. Since M is
compact, we can cover M by finitely many cubes Ci:

M ⊂
⋃

Ci ⊂ U.

The union of finitely many open cubes is Z/2-homologically finite. This
follows inductively. It is clear for a single cube. We suppose that the union
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of k − 1 cubes is Z/2-homologically finite. If we add another cube then the
intersection of the new cube with the union of the k−1 cubes is a union of at
most k−1 cubes since the intersection of two cubes is again a cube or empty.
Thus Theorem 7.4 implies that the union of k cubes is Z/2-homologically
finite.

Since r|⋃Ci
is a retraction, we conclude that the homology groups of⋃

Ci are mapped surjectively onto the homology groups of M , which fin-
ishes the argument.
q.e.d.

4. Exercises

(1) Compute the Euler characteristic of the 2-torus, or more generally
of any space of the form X × S1.

(2) Let X be a topological space and let {U1, U2, . . . , Un} be an open
covering such that all intersections are Z/2-homologically finite
spaces. Show that:

e(X) =
∑
i

e(Ui)−
∑
i<j

e(Ui ∩ Uj)

+
∑

i<j<k

(e(Ui ∩ Uj ∩ Uk) + · · ·+ (−1)n+1e(U1 ∩ U2 · · · ∩ Un)).

(3) Let M be a compact smooth manifold, and M̃ → M be a finite
covering space. Show that if the preimage of each point consists of

k points than e(M̃) = k · e(M). Deduce that if G is a finite group
of order k and k doesn’t divide e(N) then there is no free G-action
on the compact smooth manifold N . Show that the only group
acting freely on S2n is Z/2. Show that if N has a free S1-action
then e(N) = 0. Can you classify all groups with a free action on
the real projective plane?





Chapter 8

Integral homology and
the mapping degree

Prerequisites: The only new ingredient used in this chapter is the definition of the orientation of smooth

manifolds, which can be found in [B-J] or [Hi].

1. Integral homology groups

In this chapter, we will introduce integral stratifold homology. This is a
most powerful tool in topology which is fundamental for studying all sorts
of problems. The definition is completely analogous to that of Z/2-homology,
the only difference being that we require the top-dimensional strata of our
stratifolds to be oriented.

Definition: An oriented m-dimensional c-stratifold is an m-dimensional

c-stratifold T with
◦
T

m−1

= ∅ and an orientation on
◦
T

m

.

An orientation on T induces an orientation of ∂T which is fixed by re-
quiring that the collar of T preserves the product orientation on (∂T)m−1×
(0, ε). If we reverse the orientation of

◦
T

m

, we call the corresponding oriented
stratifold −T.

We would like to note that there are different ways to orient the bound-
ary of a smooth manifold W in the literature. Our convention is equivalent

79
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to the one which characterizes the orientation of the boundary at a point
x ∈ ∂W in the boundary by requiring that a basis of the tangent space of
the boundary at x is compatible with the orientation we want to define, if
this basis followed by an inward pointing normal vector is the given orienta-
tion of W at x. An other often used convention is that an outward pointing
normal vector followed by the oriented basis we want to define is the ori-
entation of W at x. This convention differs from ours by the sign (−1)n,
where n = dimW . The orientation convention plays later on a role, when
we define the boundary operator in the Mayer-Vietoris sequence, where one
would obtain a different operator from ours differing by a sign (−1)n, where
n is the degree of the homology group on which the operator is defined.

In complete analogy with the case of smooth manifolds, we define bor-
dism groups of compact oriented m-dimensional regular stratifolds denoted
SHm(X):

SHm(X) := {(S, g)}/bord,

where S is an m-dimensional compact, oriented, regular stratifold and g :
S → X is a continuous map. The relation “bord” means that two such
pairs (S, g) and (S′, g′) are equivalent if there is a compact oriented reg-
ular c-stratifold T with boundary S � (−S′) and g � g′ extends to a map
G : T → X. The role of the negative orientation on S′ is the following. To
show that the relation is transitive, we proceed as for Z/2-homology and
glue a bordism T between S and S′ and a bordism T′ between S′ and S′′

along S′. We have to guarantee that the orientations on the top stratum of
T and of T′ fit together to give an orientation of the top stratum of T∪S′T′.
This is the case if the orientations on S′ induced from T and T′ are opposite.

With this clarification the proof that the relation is an equivalence rela-
tion is the same as for Z/2-homology (Proposition 4.4). It is useful to note
that −[S, f ] = [−S, f ], i.e., the inverse of (S, f) is given by changing the
orientation of S.

If f : X → Y is continuous, we define f∗ : SHm(X) → SHm(Y ) by com-
position just as we did for Z/2-homology. In this way we obtain functors
from spaces to abelian groups and these functors again form a homology
theory. This means that homotopic maps induce the same map in inte-
gral homology and that there is a Mayer-Vietoris sequence commuting with
induced maps (for the definition of a homology theory see also the next
chapter). The construction of the boundary operator in the Mayer-Vietoris
sequence which we gave for Z/2-homology extends once we convince our-
selves that the constructions used there (like cutting and gluing) transform
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oriented regular stratifolds into oriented regular stratifolds. But these facts
are obvious once we have fixed an orientation on the preimage of a regu-
lar value s of a smooth map f : M → R on an oriented manifold M . We
orient such a preimage by requiring that the orientation of it together with
a vector v in the normal bundle to f−1(s) is an orientation of M , if the
image of v under the differential of f is positive. Further we note that as
for Z/2-homology one can define reduced stratifold homology groups

S̃Hk(X) as the kernel of the map from SHk(X) to SHk(pt) and that one
has an analogous Mayer-Vietoris sequence for reduced homology groups.

Theorem 8.1. The functor which assigns the abelian group SHm(X) to
the space X defines a homology theory. This functor is called integral
stratifold homology or, for short, integral homology.

To determine the integral homology groups of a point, we first note that
for m > 0 the cone over an oriented regular stratifold S is an oriented reg-
ular stratifold with boundary S. Thus for m > 0 we have SHm(pt) = 0.
To determine SH0(pt), we remind the reader that an orientation of a 0-
dimensional manifold assigns to each point x a number ε(x) ∈ ±1, and
that the boundary of an oriented interval [a, b] has an induced orientation
such that ε(a) = −ε(b) [B-J]. Thus, if a compact 0-dimensional mani-
fold M is the boundary of a compact oriented 1-dimensional manifold, then∑

x∈M ε(x) = 0. In turn, if
∑

x∈M ε(x) = 0, then we can group the points
of M into pairs with opposite orientation and take as null bordism for these
pairs a union of intervals. Since oriented regular stratifolds of dimension 0
and 1 are the same as oriented manifolds, we conclude:

Theorem 8.2. The map
SH0(pt) → Z

mapping [M, g] to
∑

x∈M ε(x) is an isomorphism. Furthermore for m �= 0
we have

SHm(pt) = 0.

Since an oriented regular stratifold is automatically Z/2-oriented we have
a forgetful homomorphism

SHk(X) → SHk(X;Z/2).

We will discuss this homomorphism at the end of this chapter.

As with Z/2-homology, we say that a space X is homologically finite
if for all but finitely many k, the homology groups SHk(X) are zero and the
remaining homology groups are finitely generated. The same argument as
for Z/2-homology implies that compact smooth manifolds are homologically
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finite. We define the Betti numbers bk(X) as the rank of SHk(X). This is
an important invariant of spaces. We recall from algebra that the rank of an
abelian group G is equal to the dimension of the Q-vector space G⊗Q (for
some basic information about tensor products, see Appendix C). It is useful
here to remind the reader of the fundamental theorem for finitely gen-
erated abelian groups G, which says that G is isomorphic to Zr⊕ tor(G),
where tor(G) = {g ∈ G |ng = 0 for some natural number n �= 0} is the tor-
sion subgroup of G. Since tor(G)⊗Q = 0, the number r is equal to the rank
of G. The torsion subgroup T is itself isomorphic to a sum of finite cyclic
groups: tor(G) ∼=

⊕
i Z/ni. If X is homologically finite, then bk(X) is zero

for all but finitely many k and finite otherwise.

Using the Mayer-Vietoris sequence, one computes the integral homology
of the sphere Sm for m > 0 as for Z/2-homology. The result is:

SHk(S
m) ∼=

{
Z k = 0,m
0 otherwise.

A generator of SHm(Sm) is given by the homology class [Sm, id]. Here we
orient Sm as the boundary of Dm+1, which we equip with the orientation
induced from the standard orientation of Rm+1. (Note that this orientation
on Sm is characterized by the property that a basis of TxS

m belongs to the
orientation if and only if it gives the standard orientation of Rm+1 when
followed by an inward pointing normal vector.)

As a first important application of integral homology we define the de-
gree of a map from a compact, oriented, m-dimensional, regular stratifold to
a connected, oriented, m-dimensional, smooth manifold M . We start with
the definition of the fundamental class.

Definition: Let S be a compact oriented m-dimensional regular stratifold.
The fundamental class of S is [S, id] ∈ SHm(S). We abbreviate it as
[S] := [S, id].

If we change the orientation of S passing to −S, then the fundamen-
tal class changes orientation as well: [−S] = −[S]. Under the homomor-
phism SHm(S) → SHm(S;Z/2), the fundamental class maps to the Z/2-
fundamental class: [S] 	→ [S]Z/2. This implies that the fundamental class is
non-trivial. But one actually knows more:
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Theorem 8.3. Let S be a compact oriented m-dimensional regular strati-
fold. Then k[S] ∈ SHm(S) is non-trivial for all k ∈ Z − {0} (we say that
[S] has infinite order) and [S] is primitive (i.e., not divisible by any r > 1).

Proof: The proof is similar to the proof of Proposition 7.1. The case
m = 0 is trivial. For m > 0, we take an orientation-preserving embedding
i : Dm → Sm ofDm into the top stratum of S. As in the proof of Proposition
7.1 this gives rise to a decomposition S = U ∪ V with U = i(Dm) and V =
S − i(0). The associated Mayer-Vietoris sequence gives a homomorphism

from SHm(S) = S̃Hm(S) → S̃Hm−1(S
m−1) mapping [S] to [Sm−1] (where

we have oriented Sm−1 as the boundary of Dm). The statement now follows
by induction.
q.e.d.

2. The degree

Now we define the degree and begin by defining it only for maps from
compact oriented m-dimensional regular stratifolds S to Sm. Recall that we
have SHm(Sm) ∼= Z generated by [Sm] for all m > 0.

Definition: Let S be a compact oriented m-dimensional regular stratifold,
m > 0, and f : S → Sm be a continuous map. Then we define

deg f := k ∈ Z

where [S, f ] = k[Sm].

In other words, f∗([S]) = deg (f)[Sm]. By construction, homotopic maps
have the same degree. For h : Sm → Sm, we see that h∗ : SHm(Sm) →
SHm(Sm) is multiplication by deg h. As a consequence, we conclude that
the degree of the composition of two maps f, g : Sn → Sn is the product of
the degrees:

deg(fg) = deg(f)deg(g).

One can generalize the definition of the degree to maps from S to a
connected oriented m-dimensional smooth manifold M : namely one chooses
an orientation-preserving embedding of a disc Dm into M and considers the

map p : M → Sm = Dm/Sm−1 which is the identity on
◦
D

m

and maps the
rest of M to the point Sm−1/Sm−1. Then we define the degree of f : S → M
as

deg (f) := deg pf.

Since any two orientation-preserving embeddings of Dm into M are isotopic
[B-J], the definition of the degree of f is independent of the choice of this
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embedding.

To get a feeling for the degree, we compute it for the map zm : S1 → S1,
where we consider S1 as a subspace of C and map z to zm. The degree of
zm is k, where [S1, zm] = k · [S1] ∈ SH1(S

1). We will show that k = m. We
have to construct a bordism between [S1, zm] and m · [S1]. The following
figure and commentary which follows explain how this can be done.

Here we remove |m| small open balls of equal radius, B1, . . . Bm, fromD2.
The centers of the balls are equally distributed around a circle concentric
with the boundary of D2. The space obtained from D2 by removing these
balls is a bordism between ∂D2 ∼= S1 and

⋃m
i=1 ∂Bm

∼= S1 � · · · � S1︸ ︷︷ ︸
|m|

. To

construct a map from this bordism to S1, we map the curved lines joining
the small circles with the large circle to the image of the endpoint in the large
circle under the map zm. We extend this to a map on the whole bordism
by mapping the rest constantly to 1 ∈ S1. If m is positive, this induces
the identity map id : S1 → S1 on each small circle. Thus we conclude
[S1, zm] = m · [S1, id] = m · [S1]. If m is negative, the induced map on
each circle is z−1 = z = (z1,−z2). Thus for m < 0 we obtain that the
degree of zm is −m · deg z−1. The degree of z−1 is −1. To see this we prove
that [S1, z] = −[S1, z−1]. A bordism between these two objects is given by
W := (S1 × [0, 1/2]) ∪z−1 ((−S1) × [1/2, 1]) and the map which is given by
z∪z−1. The point here is that z−1 reverses the orientation (why?) and thus
is an orientation-preserving diffeomorphism between S1 and (−S1) giving
∂W = S1 � S1, where both S1’s have the same orientation. We summarize
with

Proposition 8.4. The degree of zm : S1 → S1 is m.

From this one can deduce the fundamental theorem of algebra.

Theorem 8.5. Each complex polynomial f : C → C of positive degree has
a zero.

Proof: We can assume that f(z) = a0 + a1z + · · · + an−1z
n−1 + zn. If

a0 = 0, then z = 0 is a zero, and so we assume a0 �= 0. We assume that
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f has no zero and consider the map S1 → S1, z 	→ f(z)/|f(z)|. This map
is homotopic to a0/|a0| under the homotopy f(tz)/|f(tz)|. On the other
hand, it is also homotopic to zn under the following homotopy. For t �= 0 we
take f(t−1z)/|f(t−1z)|. As t tends to 0, this map tends to zn. We obtain a
contradiction since the degree of a0/|a0| is zero while the degree of zn is n
by Proposition 8.4.
q.e.d.

Consider now the reflection on S1 ⊂ C, which maps a complex number
z = (z1, z2) to (z1,−z2) = z̄. Since z = z−1, we conclude from Proposition
8.4 that the degree of this reflection is −1. Using the inductive computation
of SHm(Sm), we conclude that the degree of the reflection map Sm → Sm

mapping (z1, z2, . . . , zm+1) 	−→ (z1,−z2, z3, . . . , zm+1) is also −1. Since all
reflection maps

si : S
m → Sm

mapping (z1, . . . , zm+1) to (z1, . . . , zi−1,−zi, zi+1, . . . , zm+1) are conjugate
to s2, we conclude that for each i the degree of si is −1. Since −id =
s1 ◦ · · · ◦ sm+1, we conclude

Proposition 8.6. For m > 0 the degree of the antipodal map on Sm is
(−1)m+1.

As a consequence, for m even the identity is not homotopic to −id. This
fact leads to the answers to an important question: Which spheres admit a
nowhere vanishing continuous vector field? Recall that the tangent bundle
of Sm is TSm = {(x,w) ∈ Sm × Rm+1 | w ⊥ x}. For those who are not fa-
miliar with tangent bundles, we suggest taking the right side as a definition.
But we also suggest that you convince yourself that for each x the vectors
w with w ⊥ x fit with the intuitive notion of the tangent space of Sm at x.

A continuous vector field on a smooth manifold M is a continuous
map v : M → TM such that pv = id, where p is the projection of the
tangent bundle. In the case of the sphere a nowhere vanishing continuous
vector field is the same as a map v : Sm → Rm+1 − {0} with v(x) ⊥ x for
all x ∈ Sm. Replacing v(x) by v(x)/||v(x)||, we can assume that v(x) ∈ Sm

for all x ∈ Sm. If Sm admits a nowhere zero continuous vector field then
H : Sm × I → Sm mapping (x, t) 	→ (cos(π · t))x + (sin(π · t)) · v(x) is a
homotopy between id and −id. But this is not possible if m is even. Thus
we have proven
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Theorem 8.7. There is no nowhere vanishing continuous vector field on
S2k.

For S2 this result runs under the name of the hedgehog theorem and
says that it is impossible to comb the spines of a hedgehog continuously.

On S2k+1 there is a nowhere vanishing vector field, for example:

v(x1, x2, . . . , x2k+1, x2k+2) := (−x2, x1,−x4, x3, . . . ,−x2k+2, x2k+1),

or in complex coordinates

v(z1, . . . , zk+1) := (iz1, . . . , izk+1).

Thus we have shown:

There exists a nowhere vanishing vector field on Sm if and only if m is
odd.

Remark: This is a special case of a much more general theorem: there
is a nowhere vanishing vector field on a compact m-dimensional smooth
manifold M if and only if the Euler characteristic e(M) vanishes. Note that
this is consistent with our previous calculation that the Euler characteristic
of Sm is 0 if m is odd, and 2 if m is even.

3. Integral homology groups of projective spaces

We want to compute the integral homology of our favorite spaces. We recall
that for m > 0 we have

SHk(S
m) ∼=

{
Z k = 0,m
0 otherwise.

.

We treat complex projective spaces inductively as we did for Z/2-homology.
Using the decomposition of CPm into U and V as in the proof of Theorem
7.2 we conclude from the Mayer-Vietoris sequence:

Theorem 8.8. SHk(CP
m) ∼= Z for k even and 0 ≤ k ≤ 2m and 0 otherwise.

The non-trivial homology class in SH2n(CP
m) for n ≤ m is given by [CPn, i],

where i is the inclusion from CPn to CPm.

Finally we compute the integral homology of RPm.
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Theorem 8.9. SHk(RP
m) ∼= Z for k = 0 and k = m, if m is odd.

SHk(RP
m) ∼= Z/2 for k odd and k < m. The other homology groups are

zero. Generators of the non-trivial homology groups for k odd are repre-
sented by [RPk, i], where i is the inclusion.

Proof: Again we use from §7 the decomposition of RPm into U and V with
U homotopy equivalent to a point, V homotopy equivalent to RPm−1, and
U ∩ V homotopy equivalent to Sm−1. Then we conclude from the Mayer-
Vietoris sequence by induction that for k < m− 1 we have isomorphisms

i∗ : SHk(RP
m−1) ∼= SHk(RP

m).

To finish the induction we consider the exact sequence obtained from the
Mayer-Vietoris sequence

0 → S̃Hm(RPm) → S̃Hm−1(S
m−1)

→ S̃Hm−1(RP
m−1) → S̃Hm−1(RP

m) → 0.

If m is odd, we conclude by induction that SHm(RPm) ∼= Z and from The-
orem 8.3 that [RPm] = [RPm, id] is a generator. Here we use the fact that
RPm is orientable and we orient it in such a way that dpx : TxS

m → TxRP
m

is orientation-preserving. Since by induction SHm−1(RP
m−1) = 0, we have

SHm−1(RP
m) = 0.

If m is even, we first note that 2i∗([RP
m−1]) = 0. The reason is that

the reflection r([x1, . . . , xm]) := [−x1, x2, . . . , xm] is an orientation-reversing
diffeomorphism of RPm−1. Thus [RPm−1] = [−RPm−1, r] = −r∗([RP

m−1]).
Now consider the homotopy h([x], t) := [cos(πt)x1, x2, . . . , xm, sin(πt)x1] be-
tween i and ir. Thus i∗([RP

m−1]) = −i∗([RP
m−1]).

Next we note that i∗([RP
m−1]) �= 0 since it represents a non-trivial

element in Z/2-homology by Theorem 7.3, i.e., it is not even the bound-
ary of a non-oriented regular stratifold with a map to RPm. Then the
statement follows from the exact Mayer-Vietoris sequence above. We al-
ready know that SHm−1(S

m−1) and SHm−1(RP
m−1) are infinite cyclic and

that i∗([RP
m−1]) ∈ SHm−1(RP

m) is non-trivial. Thus SHm−1(RP
m) is

cyclic of order 2 generated by i∗([RP
m−1]) and the map SHm−1(S

m−1) →
SHm−1(RP

m−1) is non-trivial which implies that SHm(RPm) = 0.
q.e.d.
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4. A comparison between integral and Z/2-homology

An oriented stratifold S is automatically Z/2-oriented. Thus we have a
homomorphism

r : SHn(X) −→ SHn(X;Z/2)

for each topological space X and each n. One often calls it reduction mod
2. This homomorphism commutes with induced maps and the boundary
operators, i.e., if f : X −→ Y is a continuous map, then

f∗r = rf∗ : SHn(X) −→ SHn(Y ;Z/2),

and if X = U ∪ V , then

rdZ = dZ/2r : SHn(U ∪ V ) −→ SHn−1(U ∩ V ;Z/2),

where dZ/2 and dZ are respectively the boundary operators in the Mayer-
Vietoris sequences for Z/2-homology and integral homology. A map r (for
each space X and each n) fulfilling these two properties is called a natural
transformation from the functor integral homology to the functor Z/2-
homology. Below and in the next chapter, we will consider other natural
transformations.

If we want to use r to compare integral homology with Z/2-homology,
we need information about the kernel and cokernel of r. The answer is given
in terms of an exact sequence, the Bockstein sequence .

Theorem 8.10. There is a natural transformation

d : SHn(X;Z/2) −→ SHn−1(X)

and, if X is a smooth manifold or a finite CW -complex (as defined in the
next chapter), then the following sequence is exact:

· · · → SHn(X)
·2−→ SHn(X)

r−→ SHn(X;Z/2)
d−→ SHn−1(X) −→ · · · .

Since we will not apply the Bockstein sequence in this book, we will not
give a proof. At the end of this book, we will explain the relation between
our definition of homology and the classical definition using singular chains.
The groups are naturally isomorphic if X is a smooth manifold or a finite
CW -complex (we will define finite CW -complexes in the next chapter). We
will prove this in §20. If one uses the classical approach, the proof of the
existence of the Bockstein sequence is simple and it actually is a special case
of a more general result. Besides reflecting different geometric aspects, the
two definitions of homology groups both have specific strengths and weak-
nesses. For example, the description of the fundamental class of a closed
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smooth (oriented) manifold is simpler in our approach whereas the Bock-
stein sequence is more complicated.

The Bockstein sequence gives an answer to a natural question. Let X
be a topological space such that all Betti numbers bk(X) are finite and only
finitely many are non-zero. Then one can consider the alternating sum∑

k

(−1)kbk(X).

The question is what is the relation between this expression and the Euler
characteristic

e(X) =
∑
k

(−1)kbk(X;Z/2).

Theorem 8.11. Let X be a compact smooth manifold or a finite CW -
complex. Then bk(X) is finite and non-trivial only for finitely many k, and

e(X) =
∑
k

(−1)kbk(X).

Proof: We decompose SHk(X) ∼= Zr(k) ⊕Z/2a1 ⊕ · · · ⊕Z/2as(k) ⊕ T , where
T consists of odd torsion elements. Then the kernel of multiplication with
2 is (Z/2)s(k) and the cokernel is

(Z/2)s(k) ⊕ (Z/2)r(k).

Thus we have a short exact sequence

0 → (Z/2)s(k) ⊕ (Z/2)r(k) → SHk(X;Z/2) → (Z/2)s(k−1) → 0

implying that dimSHk(X;Z/2) = s(k) + s(k − 1) + r(k), and from this we
conclude the theorem by a cancellation argument.
q.e.d.

5. Exercises

(1) Let T and T ′ be two oriented c-stratifolds with ∂T = −∂T ′. Show
that there is a unique orientation on T ∪∂T T ′ which restricts to
the orientations on T and T ′ .

(2) Answer questions 5 and 6 in chapter 5 but now for integral homol-
ogy.

(3) Let X be a pointed path connected space. Look at the definition
of the fundamental group in any textbook. Show that there is
a natural map π1(X, ∗) → SH1(X) and that it is surjective with
kernel containing the commutator subgroup of π1(X, ∗). Show that
the kernel actually equals the commutator subgroup.
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(4) Let f : M → N be a smooth map between two closed oriented
manifolds. Assume that the preimage of some regular value y con-
sists of n points {x1, x2, . . . , xn}. If x is a regular value then the
differential map df |x is an isomorphism of vector spaces. We define
sign(f |x) to be 1 if this isomorphism is orientation-preserving and
−1 otherwise. Show that the degree of f is equal to

∑
sign(f |xk

).
(Hint: Start by showing this in the case N = Sk and n = 1.)

(5) Let M be a closed oriented manifold and let π : M̃ → M be
a covering map with fibre consisting of k points. Show that if
π is orientation-preserving then the degree of π is k and if π is
orientation-reversing then the degree is −k.

(6) Let f : X → Y be a map between two spaces. Define the mapping
cone Cf = CX ∪f Y . There is a map f ′ : X → Cf induced by the
inclusion from X to CX. Show that f ′

∗ = 0.

(7) Compute the integral homology of the mapping cone of the map
f : Sn → Sn of degree k.

(8) Let S be a stratifold and S′ an oriented stratifold which is homeo-
morphic to S. Does it follow that S is orientable? Is this the case
if the codimension 1-stratum of S is empty?

(9) The spaces RP2 and S1 ∨ S2 have the same Z/2 homology. Are
they homotopy equivalent? Is there a map between those spaces
inducing this isomorphism?

(10) Give an example of a map between two spaces f : X → Y such

that f∗ : S̃Hk(X) → S̃Hk(Y ) is the zero map, but f is not null
homotopic.

(11) Show that for every continuous map f : S2n → S2n there is a point
x ∈ S2n such that f(x) = x or f(x) = −x. (Hint: Otherwise
construct a homotopy between the identity map and the map −id :
x 	→ −x.) Deduce that every continuous map f : RP2n → RP2n

has a fixed point.

(12) Let M be a manifold and f : M → M a diffeomorphism. Define
the mapping torus Mf to be Mf = M × I/(x, 0) ∼ (f(x), 1).
a) Give a smooth structure to Mf .
b) Compute Hk(Mf ) using the Mayer-Vietoris sequence in terms
of the homology of M and f∗.
c) Show that if M is oriented and f orientation-preserving then the
product orientation on M×(0, 1) can be extended to an orientation
on Mf .
d) Suppose thatMf is orientable; isM orientable and f orientation-
preserving?
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(13) Let

(
a b
c d

)
∈ SL(2,Z) and f(A) : S1×S1 → S1×S1 be defined

by (x, y) 	→ (xayb, xcyd). Compute Hk((S
1 × S1)f(A)).





Chapter 9

A comparison theorem
for homology theories
and CW -complexes

1. The axioms of a homology theory

We have already constructed two homology theories. We now give a general
definition of a homology theory.

Definition: A homology theory h assigns to each topological space X a
sequence of abelian groups hn(X) for n ∈ Z, and to each continuous map
f : X → Y homomorphisms f∗ : hn(X) → hn(Y ). One requires that the
following properties hold:

i) id∗ = id, (gf)∗ = g∗f∗, i.e., h is a functor,

ii) if f is homotopic to g, then f∗ = g∗, i.e., h is homotopy invariant,

iii) for open subsets U and V of X there is a long exact sequence
(Mayer-Vietoris sequence)

· · · → hn(U ∩ V ) → hn(U)⊕ hn(V ) → hn(U ∪ V )

d−→ hn−1(U ∩ V ) −→ hn−1(U)⊕ hn−1(V ) → · · ·
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commuting with induced maps (the Mayer-Vietoris sequence is natural).
Here the map hn(U ∩ V ) → hn(U) ⊕ hn(V ) is α 	→ ((iU )∗(α), (iV )∗(α)),
the map hn(U) ⊕ hn(V ) → hn(U ∪ V ) is (α, β) 	→ (jU )∗(α) − (jV )∗(β) and
the map d is a group homomorphism called the boundary operator. Note
that d is an essential part of the homology theory.

The maps iU and iV are the inclusions from U ∩V to U and V , the maps
jU and jV are the inclusions from U and V to U ∪ V . The Mayer-Vietoris
sequence extends arbitrarily far to the left and to the right.

As before we say that hn is a functor from the category of topological
spaces and continuous maps to the category of abelian groups and group
homomorphisms. If one requires that hn(X) = 0 for n < 0, such a theory is
called a connective homology theory. The additional requirement that
hn(pt) = 0 for n �= 0 is called the dimension axiom. A homology theory
is called an ordinary homology theory if it satisfies the dimension axiom
and a generalised homology theory if it does not.

2. Comparison of homology theories

We want to show that under appropriate conditions two homology theories
are equivalent in a certain sense. We begin with the definition of a natural
transformation between two homology theories A and B.

Definition: Let A and B be homology theories. A natural transforma-
tion τ assigns to each space X homomorphisms τ : An(X) → Bn(X) such
that for each continuous map f : X → Y the diagram

An(X)
τ−→ Bn(X)

↓ f∗ ↓ f∗

An(Y )
τ−→ Bn(Y )

commutes.

We furthermore require that the diagram

An(U ∪ V )
τ−→ Bn(U ∪ V )

↓ dA ↓ dB

An−1(U ∩ V )
τ−→ Bn−1(U ∩ V )

commutes, where dA and dB are the boundary operators.
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A natural transformation is called a natural equivalence if for each
X the homomorphisms τ : An(X) → Bn(X) are isomorphisms.

In the following chapters, we will sometimes consider two homology the-
ories and a natural transformation between them, and we may want to check
whether this is a natural equivalence — at least for a suitable class of spaces.
It turns out that this can very easily be decided for the spaces we consider:
one only has to check that τ : An(pt) → Bn(pt) is an isomorphism for all n.

To characterize such a class of suitable spaces, we introduce the notion
of homology with compact supports. A space is called quasicompact if each
open covering has a finite subcovering. If the space is also Hausdorff, then
is is called compact.

Definition: A homology theory h is a homology theory with compact
supports (also called a compactly supported homology theory if for
each homology class x ∈ hn(X) there is a compact subspace K ⊂ X and
β ∈ hn(K) such that x = j∗(β), where j : K → X is the inclusion, and if
for each compact K ⊂ X and x ∈ hn(K) mapping to 0 in hn(X), there is a
compact space K ′ with K ⊂ K ′ ⊂ X such that i∗(x) = 0, where i : K → K ′

is the inclusion.

For example, integral homology and Z/2-homology are theories with
compact supports since the image of a quasicompact space under a contin-
uous map is quasicompact.

A first comparison result is the following:

Proposition 9.1. Let h and h′ be homology theories with compact supports
and let τ : h → h′ be a natural transformation such that τ : hn(pt) → h′n(pt)
is an isomorphism for all n. Then τ is an isomorphism τ : hn(U) → h′n(U)
for all open U ⊂ Rk.

The proof is based on the 5-Lemma from homological algebra which
we now recall.
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Lemma 9.2. Consider a commutative diagram of abelian groups and ho-
momorphisms

A −→ B −→ C −→ D −→ E
↓ ↓∼= ↓ f ↓∼= ↓
A′ −→ B′ −→ C ′ −→ D′ −→ E′

where the horizontal lines are exact sequences, the maps from B and D are
isomorphisms, the map from A is surjective and the map from E is injective.
Then the map f : C → C ′ is an isomorphism.

Proof: This is a simple diagram chasing argument. We demonstrate the
principle by showing that C → C ′ is surjective and leave the injectivity as
an exercise to the reader. For c′ ∈ C ′ consider the image d′ ∈ D′ and the
pre-image d ∈ D. Since E injects into E′, the element d maps to 0 in E,
and thus there is c ∈ C mapping to d. By construction f(c)− c′ maps to 0
in D′. Thus there is b′ ∈ B′ mapping to f(c) − c′. We take the pre-image
b ∈ B and replace c by c − g(b), where g is the map from B to C. Then
f(c−g(b))−c′ = f(c)−fg(b)−c′ = f(c)−g′(b′)−c′ = f(c)−f(c)+c′−c′ = 0,
where g′ is the map from B′ to C ′.
q.e.d.

With this lemma we can now prove the proposition.

Proof of Proposition 9.1: Let U1 and U2 be open subsets of a space X
and suppose that τ is an isomorphism for U1, U2 and U1 ∩ U2. Then the
Mayer-Vietoris sequence together with the 5-Lemma imply that τ is an iso-
morphism for U1 ∪ U2.

Now consider a finite union of s open cubes (a1, b1)×· · ·× (ak, bk) ⊂ Rk.
Since the intersection of two open cubes is again an open cube or empty, the
intersection of the s-th cube Us with U1 ∪ · · · ∪ Us−1 is a union of at most
s− 1 open cubes. Since each cube is homotopy equivalent to a point pt, we
conclude inductively over s that τ is an isomorphism for all U ⊂ Rk which
are a finite union of s cubes.

Now consider an arbitrary U ⊂ Rk and x ∈ h′n(U). Since h′n has com-
pact supports, there is a compact subspace K ⊂ U such that x = j∗(β)
with β ∈ h′n(K). Cover K by a finite union V of open cubes such that
K ⊂ V ⊂ U and denote the inclusion from K to V by i. Then, by the
consideration above, i∗(β) is in the image of τ : hn(V ) → h′n(V ). Now
consider the inclusion from V to U to conclude that x is in the image of
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τ : hn(U) → h′n(U). Thus τ is surjective.

For injectivity, one argues similarly. Let x ∈ hn(U) such that τ(x) = 0.
Then we first consider a compact subspace K in U such that x = j∗(β) with
β ∈ hn(K). Then, since j∗(τ(β)) = 0 in h′n(U), there is a compact set K ′

such that K ⊂ K ′ ⊂ U and τ(β) maps to 0 in h′n(K
′). By covering K ′ with

a finite number of cubes in U , we conclude that β maps to 0 in this finite
number of cubes since τ is injective for this space. Thus x = 0.
q.e.d.

Applying the Mayer-Vietoris sequence and the 5-Lemma again, one con-
cludes that in the situation of Proposition 9.1 one can replace U by a space
which can be covered by a finite union of open subsets which are homeo-
morphic to open subsets of Rk.

Corollary 9.3. Let h and h′ be homology theories with compact supports and
τ : h → h′ be a natural transformation. Suppose that τ : hn(pt) → h′n(pt)
is an isomorphism for all n. Then for each topological manifold M (with
or without boundary) admitting a finite atlas τ : hn(M) → h′n(M) is an
isomorphism for all n.

In particular, this corollary applies to all compact manifolds. One can
easily generalize this result by considering spaces X = R ∪f Y which are
obtained by gluing a compact c-manifold R (i.e., a manifold together with
a germ class of collars) via a continuous map f : ∂R → Y to a space Y for
which τ is an isomorphism. For then we decompose R∪f Y into U := R−∂R
and V , the union of Y with the collar of ∂R in R. Then U is a manifold
with finite atlas, U ∩V is homotopy equivalent to ∂R, a manifold with finite
atlas and V is homotopy equivalent to Y . Thus the corollary above together
with the Mayer-Vietoris sequence and the 5-Lemma argument imply that τ
is an isomorphism hn(R ∪f Y ) → h′n(R ∪f Y ).

Definition: We call a space X nice if it is either a topological manifold
(with or without boundary) with finite atlas or obtained by gluing a compact
topological manifold with boundary to a nice space via a continuous map of
the boundary.

Corollary 9.4. Let h, h′ and τ be as above. Then for each nice space X
and for all n the homomorphism τ : hn(X) → h′n(X) is an isomorphism.
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3. CW -complexes

Motivated by the definition of nice spaces, we now introduce another class of
objects called (finite) CW -complexes which lead to nice spaces. Of course,
CW -complexes are useful in many aspects of algebraic topology aside from
comparing homology theories.

Definition: An m-dimensional finite CW -complex is a topological space
X together with subspaces ∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm = X.
In addition we require that for 0 ≤ j ≤ m, there are continuous maps

f j
r = Sj−1

r −→ Xj−1 and homeomorphisms

φj : (

sj⊔
r=1

Dj
r) ∪(

⊔
fj
r )

Xj−1 ∼= Xj

where Dj
r = Dj = {x ∈ Rj | ||x|| ≤ 1}, Sj−1 = ∂Dj

r and sj is a non-negative
integer (if sj = 0 then we set Xj = Xj−1). We call X0, X1, . . . , Xm a
CW -decomposition of the topological space X and we call the subspaces

φj(B
j
r) the j-cells of X. We denote a CW -complex simply by X.

We see that a finite m-dimensional CW -complex can be obtained from a
finite set of points with discrete topology by first attaching a finite number
of 1-cells, followed by a finite number of 2-cells, . . . , and finally a finite
number of m-cells. All the k-cells are attached via continuous maps from
their boundaries to Xk−1, the space already constructed from the cells of
dimension less than or equal to (k − 1).

Remark: One can generalize the definition to non-finite CW -complexes
which are obtained from an arbitrary discrete set by attaching an arbitrary
number of 1-cells, 2-cells and so on.

Examples:
1) X = Sm, X0 = · · · = Xm−1 = pt, Xm = Dm ∪ pt.

2) Let f j : Sj−1 −→ RPj−1 be the canonical projection. Then we have a
homeomorphism

Dj ∪fj RPj−1 −→ RPj

mapping x ∈ Dj to [x1, . . . , xj ,
√
1− Σx2j ] and [x] ∈ RPj−1 to [x, 0]. Thus

Xj := RPj (0 ≤ j ≤ m) gives a CW -decomposition of RPm.
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3) Similarly, Xj := CP[j/2] gives a CW -decomposition of CPn.

Here is a first instance showing that it is useful to consider CW -decompo-
sitions.

Theorem 9.5. A finite CW -complex X is homologically and Z/2-homo-
logically finite. Denote the number of j-cells of a finite CW -complex X by
βj. Then:

e(X) =
m∑
j=0

(−1)j · βj .

Proof: We prove the statement inductively over the cells. Suppose that Y
is homologically finite and Z/2-homologically finite. Let f : Sk−1 → Y be a
continuous map and consider Z := Dk∪f Y . We decompose Z = U ∪V with

U =
◦
Dk and V = Z − {0}, where 0 ∈ Dk. The space U ∩ V is homotopy

equivalent to Sk−1, U is homotopy equivalent to a point, and V is homotopy
equivalent to Y .

The Mayer-Vietoris sequence implies that Z is homologically and Z/2-
homologically finite, thus, by Theorem 7.4,

e(Z) = e(Y ) + e(pt)− e(Sk−1)
= e(Y ) + 1− (1 + (−1)k−1)
= e(Y ) + (−1)k,

which implies the statement.
q.e.d.

Remark: In this case as well as in many other instances, it is enough to
require that X is homotopy equivalent to a finite CW -complex.

4. Exercises

(1) Let h be a homology theory. Prove the following:
a) If f : A → B is a homotopy equivalence then f∗ is an isomor-
phism.
b) For every two topological spaces there is a natural map hn(A)⊕
hn(B) → hn(A �B) and it is an isomorphism.
c) hn(∅) = 0 for all n.

(2) Let h be a homology theory.
a) If hn(pt) = 0 for all n, what can you say about h?
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b) If there exists a non-empty space with hn(X) = 0 for all n, what
can you say about h?

(3) Which of the following are homology theories? Prove or disprove:
a) Given a topological space A define for every topological space
X the homology groups hn(X) = SHn(X × A) and for a map
f : X → Y the homomorphism SHn(X × A) → SHn(Y × A) in-
duced by the map f × id : X ×A → Y ×A.
b) Given a topological space A define for every topological space
X the homology groups hn(X) = SHn(X � A) and for a map
f : X → Y the homomorphism SHn(X � A) → SHn(Y � A) in-
duced by the map f � id : X �A → Y �A.
c) Define for every topological spaceX the homology groups hn(X) =
SHn(X × X) and for a map f : X → Y the homomorphism
SHn(X×X) → SHn(Y ×Y ) induced by the map f × f : X×X →
Y × Y .

(4) Define for every topological space a series of functors hn(X) =
SHn(X)⊗ Z/2 with the boundary operator d⊗ Z/2.
a) Show that there is a natural transformation

η : hn(X) → SHn(X;Z/2).

b) Is η a natural isomorphism?
c) Is h a homology theory?

(5) Let h and h′ be two homology theories. Show that h ⊕ h′ is a
homology theory.

(6) Let h be a homology theory. Show that h′ defined by h′n(X) =
hn+k(X) for a given k is a homology theory.

(7) Let X be a topological space and f1 : M1 → X, f2 : M2 → X be
two continuous maps from closed manifolds of dimension n. We say
that the two maps are bordant if there is a compact manifold M
with boundary equal to M1 �M2 and a map f : M → X such that
f |Mi = fi. Define Nn(X) to be the set of bordism classes of maps
f : Mn → X where Mn is a closed manifold of dimension n and f
is a continuous map. Show that N∗ is a homology theory with the
boundary operator d defined in a similar way to the one we defined
for SHn. Show that N1(pt) is trivial and N2(pt) is generated by
RP2.

(8) a) Define SHp
n(X) in a similar way to the way we defined SHn(X),

but instead of stratifolds we use p-stratifolds and the same for strat-
ifolds with boundary. Show that this is a homology theory. What
can you say about its connection to SHn(X)?
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b) Show that every class in SHp
n(X) for n ≤ 2 can be represented

by a map from a stratifold which is actually a manifold.





Chapter 10

Künneth’s theorem

Prerequisites: in this chapter we assume that the reader is familiar with tensor products of modules. The

basic definitions and some results on tensor products relevant to our context are contained in Appendix

C.

1. The cross product

We want to compute the homology of X × Y . To compare it with the
homology of X and Y , we construct the ×-product SHi(X) × SHj(Y ) →
SHi+j(X × Y ). If [S, g] ∈ SHk(X) and [S′, g′] ∈ SH�(Y ) we construct an
element

[S, g]× [S′, g′] ∈ SHk+�(X × Y )

and similarly for Z/2-homology.

For this we take the cartesian product of S and S′ (considered as a strat-
ifold by example 6 in chapter 2) and the product of g and g′.

If S and S′ are regular of dimension k and l and Z/2-oriented, then the
product is regular and the (k+ �−1)-dimensional stratum

⊔
i+j=k+�−1(S

i×
(S′)j) = (Sk × (S′)�−1)� (Sk−1× (S′)�) is empty which means that S×S′ is
also Z/2-oriented. Thus [S×S′, g× g′] is an element of SHk+�(X×Y ;Z/2).
If S and S′ are oriented then the (k + �)-dimensional stratum is Sk × (S′)�

and carries the product orientation. Thus [S × S′, g × g′] is an element
of SHk+�(X × Y ). This is the construction of the ×-products or cross

103
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products :

SHi(X)× SHj(Y ) → SHi+j(X × Y )

and

SHi(X;Z/2)× SHj(X;Z/2) → SHi+j(X × Y ;Z/2)

which are defined as

[S, g]× [S′, g′] := [S× S′, g × g′].

The following Proposition follows from the definition of the ×-product:

Proposition 10.1. The ×-products are bilinear and associative.

Since the ×-products are bilinear they induce maps from the tensor
product

SHi(X;Z/2)⊗Z/2 SHj(Y ;Z/2) −→ SHi+j(X × Y ;Z/2)

and

SHi(X)⊗ SHj(Y ) −→ SHi+j(X × Y ).

(We denote the tensor product of abelian groups by ⊗ and of F -vector
spaces by ⊗F .)

We sum the left side over all i, j with i+j = k to obtain homomorphisms

× :
⊕

i+j=k

SHi(X)⊗ SHj(Y ) → SHk(X × Y )

and

× :
⊕

i+j=k

SHi(X;Z/2)⊗Z/2 SHj(Y ;Z/2) → SHk(X × Y ;Z/2).

It would be nice if these maps were isomorphisms. For Z/2-homology,
we will show this under some assumptions on X, but for integral homology
these assumptions are not sufficient. The idea is to fix Y and to consider
the functor

SHY
k (X) := SHk(X × Y )

where for f : X → X ′ we define

f∗ : H
Y
k (X) → HY

k (X ′)
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by (f × id)∗. This is obviously a homology theory: the Mayer-Vietoris
sequence holds since

(U1 × Y ) ∪ (U2 × Y ) = (U1 ∪ U2)× Y,

(U1 × Y ) ∩ (U2 × Y ) = (U1 ∩ U2)× Y.

Furthermore this is a homology theory with compact supports.

For X a point the maps × above are isomorphisms. Thus we could try
to prove that they are always an isomorphism for nice spaces X by applying
the comparison result Corollary 9.4 if

X 	−→
⊕

i+j=k

SHi(X)⊗ SHj(Y ) =: hYk (X)

were also a homology theory and, similarly, if

X 	−→
⊕

i+j=k

SHi(X;Z/2)⊗Z/2 SHj(Y ;Z/2) =: hYk (X;Z/2)

were a homology theory. Here, for f : X → X ′, we define

f∗ =
⊕

i+j=k

((f∗ ⊗ id) : SHi(X)⊗ SHj(Y ) → SHi(X
′)⊗ SHj(Y )).

The homotopy axiom is clear but the Mayer-Vietoris sequence is a prob-
lem. It would follow if for an exact sequence of abelian groups

A
f→ B

g→ C

and an abelian group D the sequence

A⊗D
f⊗id−→ B ⊗D

g⊗id−→ C ⊗D

were exact. But this is in general not the case. For example consider

0 → Z
·2−→ Z

and D = Z/2 giving

0 → Z/2Z
·2−→ Z/2Z

which is not exact since ·2 : Z/2Z → Z/2Z is 0. If instead of abelian groups
we work with vector spaces over a field F , the sequence

A⊗F D
f⊗F id−→ B ⊗F D

g⊗F id−→ C ⊗F D

is exact. It is enough to show this for short exact sequences 0 → A → B →
C → 0 by passing to the image in C and dividing out the kernel in A. Then
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there is a splitting s : C → B with gs = id and a splitting p : B → A with
pf = id. These splittings induce splittings of

A⊗F D
f⊗F id−→ B ⊗F D

g⊗F id−→ C ⊗F D,

implying its exactness.

The sequence is also exact if D is a torsion-free finitely generated abelian
group. Namely then D ∼= Zr for some r. It is enough to check exactness
for r = 1, where it is trivial since A ⊗ Z ∼= A. For larger r we use that
A⊗ (D ⊕D′) ∼= (A⊗D)⊕ (A⊗D′).

Thus, if all homology groups of Y are finitely generated and torsion-free,
the functor hYk (X) is a generalized homology theory. And since SHk(X;Z/2)
is a Z/2-vector space we conclude that for any fixed space Y the functor
hYk (X;Z/2) is a homology theory. To obtain some partial information about
the integral homology groups of a product of two spaces, if SHk(Y ) is not
finitely generated and torsion-free, we define rational homology groups.

Definition: SHm(X;Q) := SHm(X) ⊗ Q. For f : X → Y we define
f∗ : SHm(X;Q) → SHm(Y ;Q) by f∗ ⊗ id : SHm(X)⊗Q → SHm(Y )⊗Q.

By the considerations above the rational homology groups define a ho-
mology theory called rational homology. Since the rational homology
groups are Q-vector spaces (scalar multiplication with λ ∈ Q is given by
λ(x⊗ μ) := x⊗ λμ), the functor

X 	−→
⊕

i+j=k

SHi(X;Q)⊗ SHj(Y ;Q) =: hYk (X;Q)

is a homology theory. By construction it has compact supports.

2. The Künneth theorem

To apply Corollary 9.4 we have to check that the maps × : hYk (X;Z/2) →
SHY

k (X;Z/2), × : hYk (X) → SHY
k (X) and × : hYk (X;Q) → SHY

k (X;Q)
commute with induced maps and the boundary operator in the Mayer-
Vietoris sequence, in other words, that these maps are natural transfor-
mations. The proof is the same in both cases and so we only give it for
Z/2-homology:
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Lemma 10.2. The maps

× : hYk (X;Z/2) → SHY
k (X;Z/2)

define a natural transformation.

Proof: Everything is clear except the commutativity in the Mayer-
Vietoris sequences. Let U1 and U2 be open subsets of X and consider for i+
j = k the element [S, f ]⊗ [Z, g] ∈ SHi(U1∪U2)⊗SHj(Y ). By our definition
of the boundary operator in the Mayer-Vietoris sequence of SHi(X) we
can decompose the stratifold S (after perhaps changing it by a bordism) as
S = S1 ∪ S2 with ∂S1 = ∂S2 =: Q, where f(S1) ⊂ U1 and f(S2) ⊂ U2.
Then d([S, f ]) = [Q, f |Q]. Thus d([S, f ]⊗ [Z, g]) = [Q, f |Q]⊗ [Z, g]. On the
other hand [S, f ]× [Z, g] = [S×Z, f × g] and, since S×Z = (S1 ∪ S2)×Z,
we conclude: d([S× Z, f × g]) = [Q× Z, f |T × g]. Thus the diagram

SHi(U1 ∪ U2)⊗ SHj(Y )
×−→ SHi+j((U1 ∪ U2)× Y )

↓ d ↓ d

SHi−1(U1 ∩ U2)⊗ SHj(Y )
×−→ SHi+j−1((U1 ∩ U2)× Y )

commutes.
q.e.d.

Now the Künneth Theorem is an immediate consequence of Corollary
9.4:

Theorem 10.3. (Künneth Theorem) Let X be a nice space (see page
95). Then for F = Q or Z/2Z

× :
⊕

i+j=k

SHi(X;F )⊗F SHj(Y ;F ) → SHk(X × Y ;F )

is an isomorphism. The same holds for integral homology if for all j the
groups SHj(Y ) are torsion-free and finitely generated.

We note that the Kunneth theorem stated here holds for all spaces X
which admit decompositions as finite CW -complexes since all these spaces
are nice. In a later chapter we will identify the stratifold homology of CW -
complexes with the homology groups defined in a traditional way using sim-
plices. The world of chain complexes is more appropriate for dealing with
the Künneth Theorem and there one obtains a general result computing the
integral homology groups of a product of CW -complexes.
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As an application we prove that for nice spaces X the Euler character-
istic of X × Y is the product of the Euler characteristics of X and Y .

Theorem 10.4. Let X and Y be Z/2 homologically finite and X a nice
space. Then

e(X × Y ) = e(X) · e(Y ).

Proof: By the previous theorem the proof follows from

Lemma 10.5. Let A = (A0, A1, . . . , Ak) and B = (B0, . . . , Br) be se-
quences of finite-dimensional Z/2-vector spaces. Then for C = C(A,B) =
(C0, C1, . . . , Ck+r) with Cs :=

⊕
i+j=s Ai ⊗Bj, we have

e(C) = e(A) · e(B)

where e(A) :=
∑

i(−1)i dimAi and similarly for e(B) and e(C).

Proof: The proof is by induction over k and for k = 0 the result is clear. Let
A′ be given by A0, A1, . . . , Ak−1. Then e(A′)+(−1)k dimAk = e(A). Define
C ′ as C(A′, B). Then Cs = C ′

s for s ≤ k and Ck+j = C ′
k+j ⊕ (Ak ⊗Bj).

Thus,
e(C) = e(C ′) + (−1)k dimAk e(B)

= e(A′) · e(B) + (−1)k dimAk e(B)
= e(A) · e(B).

q.e.d.

Another application is the computation of the homology of a prod-
uct of two spheres Sn × Sm for n and m positive. Since the homology
groups of Sm are torsion-free, the Künneth theorem implies Hk(S

n×Sm) =⊕
i+j=k Hi(S

n)⊗Hj(S
m). Using the fact that A⊗ Z ∼= A for each abelian

group A we obtain

Hk(S
n × Sm) ∼=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z k = 0, n+m
Z k = n, if n �= m
Z k = m, if n �= m
Z⊕ Z k = n = m
0 otherwise.

With the ×-product we also obtain a basis for the homology groups
of Sn × Sm. Let x be a point in Sn and y be a point in Sm. Then
[(x, y), i] generates H0(S

n × Sm), [Sn × y, i] generates Hn(S
n × Sm) and

[x × Sm, i] generates Hm(Sn × Sm) for n �= m, and these elements are a
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basis of Hn(S
n×Sn), if n = m, and finally the fundamental class [Sn×Sm]

generates Hn+m(Sn × Sm). Here i always stands for the inclusion.

These examples agree with our geometric intuition that the manifolds
giving the homology classes “catch” the corresponding holes.

3. Exercises

(1) Compute the homology of the following spaces. Can you represent
its elements by maps from stratifolds?
S1 ×S1, or more generally T k = S1 ×S1 × · · · ×S1, the product of
k copies of S1.

(2) Let X be a homologically finite space. Denote by P (X) =
∑

akx
k

the polynomial with ak = rank(SHk(X)).
a) Show that for homologically finite spaces P (X × Y ) = P (X) ×
P (Y ).
b) Compute P (Sn) and conclude that Sn is not homeomorphic to
the product of two manifolds of positive dimensions.

(3) Compute the integral homology of RP2 × RP2. Does the Künneth
formula hold? Can you explain this?





Chapter 11

Some lens spaces and
quaternionic
generalizations

1. Lens spaces

In this chapter we will construct a class of manifolds that, on the one hand,
gives more fundamental examples to play with and, on the other hand, is
the basis for some very interesting aspects of modern differential topology.
Some of these aspects will be discussed in later chapters.

The manifolds under consideration have various geometric features. We
will concentrate on one aspect: they are total spaces of smooth fibre bun-
dles. A smooth fibre bundle is a smooth map p : E → B between smooth
manifolds such that for each x ∈ B there are: an open neighbourhood U of
x, a smooth manifold F and a diffeomorphism ϕ : p−1(U) → U × F with
p|p−1(U) = p1ϕ where p1 is the projection from U × F onto U . Such a ϕ is

called a local trivialization of p. For a point x ∈ B we call Ex := p−1(x)
the fibre over x. Observe that ϕ|Ex defines a diffeomorphism from Ex to F .

We begin with some bundles over S2 with fibre S1. Let k be an integer.
Decompose S2 as D2 ∪S1 D2 and define

Lk := D2 × S1 ∪fk D
2 × S1

111
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where fk : S1 × S1 → S1 × S1 is the diffeomorphism mapping (z1, z2) to
(z1, z

k
1z2). Here we consider S1 as a subgroup of C∗. The map is a diffeo-

morphism since (z1, z2) 	→ (z1, z
−k
1 z2) is the inverse map. Lk is equipped

with a smooth structure. It is called a lens space. Is it orientable? This
is easily seen without deeper consideration for the following reason. Since
S1 × S1 = ∂(D2 × S1) is connected, fk is either orientation-preserving or
orientation-reversing (by continuity of the orientation and of dfx the orien-
tation behaviour cannot jump). If it were orientation-reversing, we are done
by orienting both copies of D2 × S1 in D2 × S1 ∪f D2 × S1 equally. If it
is orientation-preserving, we are also done by orienting the second copy of
D2×S1 in D2×S1∪fD

2×S1 opposite to the first one, making fk artificially
orientation-reversing.

Of course, by computing d(fk)x in our example we can decide if fk is
orientation-preserving. For this consider S1×S1 as a submanifold of C∗×C∗

and extend fk to the map given by the same expression on C∗ × C∗. Then
(dfk)(z1,z2) is given by the complex Jacobi matrix⎛

⎝ 1 0

kzk−1
1 z2 zk1

⎞
⎠ .

To obtain the map on T(z1,z2)(S
1 × S1) we have to restrict this map to

z⊥1 × z⊥2 = T(z1,z2)(S
1 × S1). We give a basis of T(z1,z2)(S

1 × S1) by (iz1, 0)
and (0, iz2) and use this basis as our standard orientation. We have to
compare the orientation given by d(fk)(z1,z2)(iz1, 0) and d(fk)(z1,z2)(0, iz2)

at the point fk(z1, z2) = (z1, z
k
1z2) with that given by (iz1, 0) and (0, izk1z2).

But d(fk)(z1,z2)(iz1, 0) = (iz1, kiz
k
1z2) and d(fk)(z1,z2)(0, iz2) = (0, izk1z2).

The change of basis matrix is (
1 0
k 1

)
and it has a positive determinant. Thus fk is orientation-preserving and to
orient Lk we have to consider it as D2 × S1 ∪fk −D2 × S1. From now on,
we consider Lk as an oriented 3-manifold with this orientation.

There are different natural descriptions of lens spaces. Although we
don’t need it, we shall give another description of Lk for k > 0. For this we
consider the 3-sphere S3 as the subspace of C2 consisting of pairs (v1, v2)
with |v1|+ |v2| = 1 where |vi| is the norm of the complex number vi, i = 1 or
2. The group of k-th roots of unity in S1 is Gk = {z ∈ S1 | zk = 1} and this
acts on C2 by z · (v1, v2) = (zv1, zv2). Clearly this action preserves S3 ⊂ C2.
We consider the space S3/Gk

:= S3/∼ , where (v1, v2) ∼ (w1, w2) if and only
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if there is a z ∈ Gk such that z · (v1, v2) = (w1, w2). For example, S3/G2 is
the projective space RP3. It is not difficult to identify S3/Gk

with Lk. As a
hint one should start with the case k = 1 and identify S3 = S3/G1 with L1.
Once this is achieved, one can use this information to solve the case k > 1.

We consider the map p : Lk → S2 = D2 ∪ −D2 mapping (z1, z2) ∈
D2 × S1 to z1 and (z1, z2) ∈ −D2 × S1 to z1. This is obviously well defined
and by construction of the smooth structures on Lk and on D2 ∪−D2 = S2

it is a smooth map. Actually, by construction p : Lk → S2 is a smooth fibre
bundle.

We want to classify the manifolds Lk up to diffeomorphism. For this we
first compute the homology groups. We prepare for this with some general
considerations. As above, consider two smooth c-manifolds W1 and W2 and
a diffeomorphism f : ∂W1 → ∂W2. Then consider the open covering of
W1 ∪f W2 given by the union of W1 and the collar of ∂W2 in W2, denoted
by U , and of W2 and the collar of ∂W1 in W1, denoted by V . Obviously,
the inclusions from W1 to U and from W2 to V as well as from ∂W1 to
U ∩ V are homotopy equivalences. With this information we consider the
Mayer-Vietoris sequence and replace the homology group of U , V and U ∩V
by the isomorphic homology group of W1, W2 and ∂W1:

· · · → SHk(∂W1) → SHk(W1)⊕ SHk(W2)

→ SHk(W1 ∪f W2)
d→ SHk−1(∂W1) → · · ·

where the map from SHk(W1) ⊕ SHk(W2) to SHk(W1 ∪ W2) is the dif-
ference of the maps induced by inclusions. The map from SHk(∂W1) to
SHk(W1) is (j1)∗, where j1 is the inclusion from ∂W1 to W1, and the map
from SHk(∂W1) to SHk(W2) is (j2)∗f∗, where j2 is the inclusion from ∂W2

to W2.

Applying this to Lk implies that SHr(Lk) = 0 for r > 3 and we have an

isomorphism SH3(Lk)
d→ SH2(S

1 × S1) ∼= Z. Since the fundamental class
[Lk] ∈ SH3(Lk) is a primitive element, we conclude

SH3(Lk) = Z[Lk],

the free abelian group of rank 1 generated by the fundamental class [Lk].
The computation of SH2 and SH1 is given by the exact sequence:

0 → SH2(Lk) → SH1(S
1 × S1) → SH1(S

1)⊕ SH1(S
1) → SH1(Lk) → 0

in which the map from SH1(S
1 ×S1) to the first component is (p2)∗, where

p2 is the projection onto the second factor, and the map from SH1(S
1×S1)

to the second component is (p2)∗(fk)∗. By the Künneth Theorem 10.3 we
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have seen that SH1(S
1 × S1) = Z[S1, i1] ⊕ Z[S1, i2], where i1(z) = (z, 1)

and i2(z) = (1, z). If α is an element of SH1(S
1 × S1), the coefficients of

α with respect to the basis [S1, i1] and [S1, i2] are (p1)∗(α) ∈ SH1(S
1) = Z

and (p2)∗(α) ∈ SH1(S
1) = Z.

Thus

(fk)∗[S
1, i1] = deg(p1fki1)[S

1, i1] + deg(p2fki1)[S
1, i2]

and

(fk)∗[S
1, i2] = deg(p1fki2)[S

1, i1] + deg(p2fki2)[S
1, i2].

From Proposition 8.4 we know the corresponding degrees and conclude
that with respect to the basis [S1, i1] and [S1, i2] of SH1(S

1 × S1) the map
(fk)∗ is given by (

1 0
k 1

)
.

With this information the exact sequence above gives

0 → SH2(Lk) → Z⊕ Z → Z⊕ Z → SH1(Lk) → 0,

where the map Z⊕ Z → Z⊕ Z is given by the matrix(
0 1
k 1

)
.

The kernel of this linear map is 0 and the cokernel Z/|k|Z (exercise). Thus
we have shown that SH2(Lk) = 0 and SH1(Lk) ∼= Z/|k|Z generated by
i∗[S1] where i : S1 → Lk is the inclusion of any fibre.

Proposition 11.1. The homology of Lk is

SHr(Lk) ∼=

⎧⎨
⎩

0 r > 3, r = 2
Z r = 0, 3
Z/|k|Z r = 1

where SH1(Lk) is generated by [S1, j] and j : S1 → D2 × S1 ⊂ Lk maps z
to (0, z).

As a consequence, |k| is an invariant of the homeomorphism type or
even the homotopy type of Lk. On the other hand, we observe that the
diffeomorphism c : S1 × S1 → S1 × S1 which maps (z1, z2) to (z1, z̄2) where
z̄2 is the conjugate of z2, satisfies c ◦ fk = f−k ◦ c. It follows that we may
construct a diffeomorphism from Lk to L−k which is conjugation on each
fibre and which on each D2 × S1 has the form (w1, z2) 	→ (w1, z̄2). Thus we
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conclude:

Proposition 11.2. Lk is diffeomorphic to Lq if and only if |k| = |q|.

2. Milnor’s 7-dimensional manifolds

Now, we generalize our construction by passing from the complex numbers
to the quaternions H. Recall that H is the skew field which as an abelian
group is R4 with basis 1, i, j, k and multiplication defined by the relations
i2 = j2 = k2 = −1 and ij = −ji, ik = −ki, jk = −kj and ij = k, jk =
i, ki = j. It is useful to consider H as C × C with 1 = (1, 0), i = (i, 0), j =
(0, 1) and k = (0, i). Then the multiplication is given by the formula

(z1, z2) · (y1, y2) = (z1y1 − ȳ2z2, y2z1 + z2ȳ1).

The unit vectors of H ∼= C2 give the 3-sphere, S3 = {(z1, z2) | z1z̄1 +
z2z̄2 = 1}, and form a multiplicative subgroup of H. In contrast to S1 ⊂ C,
this subgroup is not commutative. This is the reason why we have more
possibilities when we generalize our construction of Lk to the quaternions.

Let k and � be integers. Then we define a diffeomorphism

fk,� : S3 × S3 −→ S3 × S3

(x, y) 	−→ (x, xkyx�)

and define

Mk,� := D4 × S3 ∪fk,� −D4 × S3.

The map fk,� is a diffeomorphism since it has inverse f−k,−�. As in the case
of lens spaces, one can show that fk,� is orientation-preserving, and thus one
has to take the opposite orientation on the second copy of D4×S3 to orient
Mk,� in a consistent way. As for lens spaces the projection onto D4 ∪ −D4

gives a smooth fibre bundle p : Mk,� → S4. We call these manifolds Milnor
manifolds, since they were investigated by Milnor in his famous paper “On
manifolds homeomorphic to the 7-sphere” [Mi 1].

We can compute SHr(Mk,�) in the same way as SHr(Lk) once we know
the induced map

(fk,�)∗ : SH3(S
3 × S3) → SH3(S

3 × S3).
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To compute this, consider two maps f, g : S3 → S3. We compute the degree
of

f · g : S3 −→ S3

x 	−→ f(x) · g(x).

Lemma 11.3. For continuous maps f, g : S3 → S3 the degree of f · g is

deg(f · g) = deg f + deg g.

Proof: Consider the diagonal map � : S3 → S3 × S3 mapping x 	→
(x, x). The map on homology induced by Δ maps the fundamental class [S3]
to [S3, i1] + [S3, i2], where i1(q) = (q, 1) and i2(q) = (1, q) (one can either
construct a bordism between the two classes or use the Künneth theorem).
The map μ : S3 ×S3 → S3 sending (q1, q2) to f(q1) · g(q2) induces a map in
homology mapping [S3, i1] to deg f · [S3], and [S3, i2] to deg g · [S3] (exer-
cise). Thus since f · g = μ ◦ (f × g), we see that deg f · g = deg f + deg g.
q.e.d.

With this information one concludes that, with respect to the basis
[S3, i1] and [S3, i2] of SH3(S

3×S3), the induced map of fk,� on SH3(S
3×S3)

is given by the matrix (
1 0

k + l 1

)
.

From this, as in the case of Lk, one can compute the homology of Mk,� and
obtains:

Proposition 11.4. SHr(Mk,�) = 0 for r > 7 and r = 1, 2, 5 and 6, whereas

SH0(Mk,�) = Z

SH7(Mk,�) = Z · [Mk,�]

SH3(Mk,�) ∼= Z/|k + �| · Z

SH4(Mk,�) =

{
Z k + � = 0
0 otherwise.

Thus |k+�| is an invariant of the homotopy type. In contrast to Lk, this
is not enough to distinguish the manifolds Mk,�. In the next chapters we
will develop various techniques of general interest which will have surprising
implications for the manifoldsMk,�. In fact, we shall see that these manifolds
serve as wonderful motivating examples which illustrate highly important
theories concerning the structure of manifolds.
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3. Exercises

(1) Show that the diffeomorphism type of fibres of a smooth fibre bun-
dle doesn’t change on connected components.

(2) Let p : E → B be a smooth fibre bundle. Show that if dimE =
dimB and B is connected a smooth fibre bundle is a covering and
that a covering with a countable number of sheets by a smooth
map is a smooth fibre bundle.

(3) For a smooth manifold M and a self-diffeomorphism f consider the
mapping torus Mf . Show that p2 : Mf → [0, 1] = S1 is a smooth
fibre bundle.

(4) A map p : E → M between smooth manifolds is called proper if
the preimage of each compact subset is compact. Ehresmann’s
theorem says that a proper smooth submersion p : E → M (i.e.,
all points in M are regular values) is a smooth fibre bundle.
Is the condition proper needed?

(5) a) Show that the Klein bottle S1×S1/τ , where τ(x, y) = (−x, ȳ)
is the total space of a smooth fibre bundle over S1. Determine its
fibre.
b) Show that it is homeomorphic to the connected sum RP2 # RP2.
c) Show that this bundle is non-trivial, i.e., not isomorphic to the
product bundle.

(6) Show that Lk is diffeomorphic to S3/Gk
with the action as explained

in this chapter.

(7) Show that the cokernel of the map Z ⊕ Z → Z ⊕ Z given by the
matrix (

0 1
k 1

)
is Z/|k|Z.

(8) Show that the two multiplications on H in terms of R4 and C2

agree.

(9) Show that S3 ⊂ H is not commutative. Determine its center.

(10) Show that the map explained in this chapter μ : S3 × S3 → S3

mapping (q1, q2) to f(q1)·g(q2) induces a map in homology mapping
[S3, i1] to deg f · [S3] and [S3, i2] to deg g · [S3].

(11) Give a detailed proof of Proposition 11.4.
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(12) Let p : E → M be a differentiable fibre bundle with E and M
compact, M connected and fibre F . Show that

e(E) = e(M)e(F ).

(Hint: You are allowed to use that M has a finite good atlas (for
the definition see chapter 14).)



Chapter 12

Cohomology and
Poincaré duality

Prerequisites: We assume that the reader knows what a smooth vector bundle is [B-J], [Hi].

1. Cohomology groups

In this chapter we consider another bordism group of stratifolds which at
first glance looks like homology. It is only defined for smooth manifolds
(without boundary). Similar groups were first introduced by Quillen [Q]
and Dold [D]. They consider bordism classes of smooth manifolds instead
of stratifolds.

The main difference between the new groups and homology is that we
consider bordism classes of non-compact stratifolds. To obtain something
non-trivial we require that the map g : T → M is a proper map. We recall
that a map between paracompact spaces is proper if the preimage of each
compact space is compact. A second difference is that we only consider
smooth maps. For simplicity we only define these bordism groups for ori-
ented manifolds. (Each manifold is canonically homotopy equivalent to an
oriented manifold, namely the total space of the tangent bundle, so that one
can extend the definition to non-oriented manifolds using this trick, see the
exercises in chapter 13.)

Definition: Let M be an oriented smooth m-dimensional manifold without
boundary. Then we define the integral cohomology group SHk(M) as

119
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the group of bordism classes of proper smooth maps g : S → M , where S
is an oriented regular stratifold of dimension m− k, addition is by disjoint
union of maps and the inverse of [S, g] is [−S, g] (of course we also require
that the maps for bordisms are proper and smooth and that the stratifolds
are oriented and regular).

The reader might wonder why we required that M be oriented. The def-
inition seems to work without this condition. This will become clear when
we define induced maps. Then we will understand the relationship between
SHk(M) and SHk(−M) better.

The relation between the grade, k, of SHk(M) and the dimension m−k
of representatives of the bordism classes looks strange but we will see that
it is natural for various reasons.

If M is a point then g : S → pt is proper if and only if S is compact.
Thus

SHk(pt) = SH−k(pt) ∼= Z, if k = 0, and 0 if k �= 0.

In order to develop an initial feeling for cohomology classes, we consider
the following situation. Let p : E → N be a k-dimensional, smooth, oriented
vector bundle over an n-dimensional oriented smooth manifold. Then the
total space E is a smooth (k+n)-dimensional manifold. The orientations of
M and E induce an orientation on this manifold. The 0-section s : N → E
is a proper map since s(N) is a closed subspace. Thus

[N, s] ∈ SHk(E)

is a cohomology class. This is the most important example we have in
mind and will play an essential role when we define characteristic classes.
A special case is given by a 0-dimensional vector bundle where E = N
and p = id. Thus we have for each smooth oriented manifold N the class
[N, id] ∈ SH0(N), which we call 1 ∈ SH0(N). Later we will define a multi-
plication on the cohomology groups and it will turn out that multiplication
with [N, id] is the identity, justifying the notation.

Is the class [N, s] non-trivial? We will see that it is often non-trivial but
it is zero if E admits a nowhere vanishing section v : N → E. Namely then
we obtain a zero bordism by taking the smooth manifold N × [0,∞) and
the map G : N × [0,∞) → E mapping (x, t) 	→ tv(x). The fact that v is
nowhere vanishing implies that G is a proper map. Thus we have shown:
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Proposition 12.1. Let p : E → N be a smooth, oriented k-dimensional vec-
tor bundle over a smooth oriented manifold N . If E has a nowhere vanishing
section v then [N, s] ∈ SHk(E) vanishes.

In particular, if [N, s] is non-trivial, then E does not admit a nowhere
vanishing section.

In the following considerations and constructions it will be helpful for
the reader to look at the cohomology class [N, s] ∈ SHk(E) and test the
situation with this class.

2. Poincaré duality

Cohomology groups are, as indicated for example in Proposition 12.1, a use-
ful tool. To apply this tool one has to find methods for their computation.
We will do this in two completely different ways. The fact that they are
so different is very useful since one can combine the information to obtain
very surprising results like the vanishing of the Euler characteristic of odd-
dimensional, compact, smooth manifolds.

The first tool, the famous Poincaré duality isomorphism, only works
for compact, oriented manifolds and relates their cohomology groups to the
homology groups. Whereas in the classical approach to (co)homology the
duality theorem is difficult to prove, it is almost trivial in our context. The
second tool is the Kronecker pairing which relates the cohomology groups to
the dual space of the homology groups. This will be explained in chapter 14.

Let M be a compact oriented smooth m-dimensional manifold. (Here
we recall that if we use the term manifold, then it is automatically with-
out boundary; in this book, manifolds with boundary are always called
c-manifolds. Thus a compact manifold is what in the literature is often
called a closed manifold, a compact manifold without boundary.) If M is
compact and g : S → M is a proper map, then S is actually compact. Thus
we obtain a homomorphism

P : SHk(M) → SHm−k(M)

which assigns to [S, g] ∈ SHk(M) the class [S, g] considered as element of
SHm−k(M). Here we only forget that the map g is smooth and consider it
as a continuous map.



122 12. Cohomology and Poincaré duality

Theorem 12.2. (Poincaré duality) For a closed smooth oriented m-
dimensional manifold M the map

P : SHk(M) → SHm−k(M)

is an isomorphism

Proof: For the proof we apply the following useful approximation result for
continuous maps from a stratifold to a smooth manifold. It is another nice
application of partitions of unity.

Proposition 12.3. Let f : S → N be a continuous map, which is smooth
in an open neighbourhood of a closed subset A ⊂ S. Then there is a smooth
map g : S → N which agrees with f on A and which is homotopic to f rel.
A.

Proof: The proof is the same as for a map f from a smooth manifold M
to N in [B-J, Theorem 14.8]. More precisely, there it is proved that if we
embed N as a closed subspace into an Euclidean space Rn then we can find
a smooth map g arbitrarily close to f . The proof only uses that M supports
a smooth partition of unity. Finally, sufficiently close maps are homotopic
by ([B-J] Satz 12.9).
q.e.d.

As a consequence we obtain a similar result for c-stratifolds.

Proposition 12.4. Let f : T → M be a continuous map from a smooth
c-stratifold T to a smooth manifold M , whose restriction to ∂T is a smooth
map. Then f is homotopic rel. boundary to a smooth map.

The proof follows from 12.3 using an appropriate closed subset in the

collar of
◦
T for the subset A.

We apply this result to finish our proof. If g : S → M represents an
element of SHm−k(M), we can apply Proposition 12.3 to replace g by a
homotopic smooth map g′ and so [S, g] = P ([S, g′]). This gives surjectivity
of P . Similarly we use the relative version 12.4 to show injectivity. Namely,
if for [S1, g1] and [S2, g2] in SHk(M) we have P ([S1, g1]) = P ([S2, g2]), there
is a bordism (T, G) between these two pairs, where G is a continuous map
whose restriction to the boundary is smooth. We apply Proposition 12.4 to
replace G by a smooth map G′ which agrees with the restriction of G on the
boundary. Thus [S1, g1] = [S2, g2] ∈ SHk(M) and P is injective.
q.e.d.
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By considering bordism classes of proper maps on Z/2-oriented regu-
lar stratifolds we can define Z/2-cohomology groups for arbitrary (non-
oriented) smooth manifolds as we did in the integral case. The only differ-
ence is that we replace oriented regular stratifolds by Z/2-oriented regular
stratifolds which means that Sn−1 = ∅ and that no condition is placed on
the orientability of the top stratum. The corresponding cohomology groups
are denoted by

SHk(M ;Z/2).

The proof of Poincaré duality works the same way for Z/2-(co)homology:

Theorem 12.5. (Poincaré duality for Z/2-(co)homology) For a clo-
sed smooth oriented manifold M the map

P : SHk(M ;Z/2) → SHm−k(M ;Z/2)

is an isomorphism.

As mentioned above, we want to provide other methods for comput-
ing the cohomology groups. They are based on the same ideas as used for
computing homology groups, namely to show that the cohomology groups
fulfill axioms similar to the axioms of homology groups. One of the ap-
plications of these axioms will be an isomorphism between SHk(M) ⊗ Q

and Hom(SHk(M),Q) and an isomorphism of Z/2-vector spaces between
SHk(M ;Z/2) and Hom(SHk(M ;Z/2),Z/2). The occurrence of the dual
spaces Hom(SHk(M),Q) and Hom(SHk(M ;Z/2),Z/2) indicates a differ-
ence between the fundamental properties of homology and cohomology. The
induced maps occurring should reverse their directions. We will see that this
is the case.

3. The Mayer-Vietoris sequence

One of the most powerful tools for computing cohomology groups is, as it is
for homology, the Mayer-Vietoris sequence. To formulate it we have to define
for an open subset U of a smooth oriented manifold M the map induced by
the inclusion i : U → M . We equip U with the orientation induced from
M . If g : S → M is a smooth proper map we consider the open subset
g−1(U) ⊂ S and restrict g to this open subset. It is again a proper map
(why?) and thus we define

i∗[S, g] := [g−1(U), g|g−1(U)].



124 12. Cohomology and Poincaré duality

This is obviously well defined and gives a homomorphism i∗ : SHk(M) →
SHk(U). This map reverses the direction of the arrows, as was motivated
above. If V is an open subset of U and j : V → U is the inclusion, then by
construction

j∗i∗ = (ij)∗.

The next ingredient for the formulation of the Mayer-Vietoris sequence
is the coboundary operator. We consider open subsets U and V in a smooth
oriented manifoldM , denote U∪V byX and define the coboundary operator

δ : SHk(U ∩ V ) → SHk+1(U ∪ V )

as follows. We introduce the disjoint closed subsets A := X − V and B :=
X − U . We choose a smooth map ρ : U ∪ V → R mapping A to 1 and B
to −1. Now we consider [S, f ] ∈ SHk(U ∩ V ). Let s ∈ (−1, 1) be a regular
value of ρf . The preimage D := (ρf)−1(s) is an oriented regular stratifold
of dimension n−1 sitting in S. We define δ([S, f ]) := [D, f |D] ∈ SHk+1(X).
It is easy to check that f |D is proper.

ρ-1 (t)

RI

ρ

t

V

U

As with the definition of the boundary map for the Mayer-Vietoris sequence
in homology, one shows that δ is well defined and that one obtains an exact
sequence. For details we refer to Appendix B.

At first glance this definition of the coboundary operator looks strange
since f(D) is contained in U ∩ V . But considered as a class in the coho-
mology of U ∩ V it is trivial. It is even zero in SHk+1(U) as well as in
SHk+1(V ). The reason is that in the construction of δ we can decompose S
as S+ ∪D S− with ρ(S+) ≥ s and ρ(S−) ≤ s (as for the boundary operator
in homology we can assume up to bordism that there is a bicollar along D).
Then (S−, f |S−) is a zero bordism of (D, f |D) in U (note that f |S− is proper
as a map into U and not into V ). Similarly (S+, f |S+) is a zero bordism of

(D, f |D) in V . But in SHk+1(U ∪ V ) it is in general non-trivial.

We summarize:
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Theorem 12.6. (Mayer-Vietoris sequence for integral cohomology)
The following sequence is exact and commutes with induced maps:

· · · → SHn(U ∪ V ) → SHn(U)⊕ SHn(V )

→ SHn(U ∩ V )
δ−→ SHn+1(U ∪ V ) → · · · .

The map SHn(U∪V ) → SHn(U)⊕SHn(V ) is given by α 	→ (j∗U (α), j
∗
V (α)),

the map from SHn(U)⊕SHn(V ) to SHn(U ∩V ) by (α, β) 	→ i∗U (α)−i∗V (β).

4. Exercises

(1) Compute the cohomology groups SHk(Rn) for k ≥ 0. (Hint: For
SH0(Rn) construct a map to Z by counting points with orientation
in the preimage of a regular value. For degree > 0 apply Sard’s
theorem.) What happens for k < 0?

(2) Let f : M → N be a submersion (i.e., the differential dfx at each
point x ∈ M is surjective). Let [g : S → N ] be a cohomology class
in SHk(N). Show that the pull-back {(x, y) ∈ (M × S) | (f(x) =
g(y)} is a stratifold and that the projection to the first factor is
a proper map. Show that this construction gives a well defined
homomorphism f∗ : SHk(N) → SHk(M). (This is a special case
of the induced map which we will define later.)

(3) Let M be a smooth manifold. Show that the map p∗ : SHk(M) →
SHk(M ×R) is injective. (Hint: Construct a map SHk(M ×R) →
SHk(M) by considering for [g : S → M × R] a regular value of
p2g.) We will see later that p∗ is an isomorphism; try to prove this
directly.





Chapter 13

Induced maps and the
cohomology axioms

Prerequisites: in this chapter we apply one of the most powerful tools from differential topology, namely

transversality. The necessary information can be found in [B-J], [Hi].

1. Transversality for stratifolds

We recall the basic definitions and results concerning transversality of man-
ifolds. Let M , P and Q be smooth manifolds of dimensions m, p and q,
and let f : P → M and g : Q → M be smooth maps. Then we say that
f is transverse to g if for all x ∈ P and y ∈ Q with f(x) = g(y) = z we
have df(TxP ) + dg(TyQ) = TzM . If g : Q → M is the inclusion of a point z
in M then this condition means that z is a regular value of f . It is useful
to note that the transversality condition is equivalent to the property that
f×g : P×Q → M×M is transverse to the diagonal Δ = {(x, x)} ⊂ M×M .
Similarly, as for preimages of regular values, one proves that the pull-back,
which we denote here by (P, f) � (Q, g) := {(x, y) ∈ (P ×Q) | f(x) = g(y)},
is a smooth submanifold of P×Q of dimension p+q−m [B-J], [Hi]. We call
(P, f) � (Q, g) the transverse intersection of (P, f) and (Q, g). Later on
we will generalize this construction to the case, where P is a stratifold.

If all three manifolds are oriented then there is a canonical orientation
on (P, f) � (Q, g). To define this we begin with the case where g is an em-
bedding. In this case we consider the normal bundle of g(Q) and orient it in
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such a way that the concatenation of the orientations of TQ and the normal
bundle give the orientation of M . In turn if an orientation of the normal
bundle and of M is given we obtain an induced compatible orientation of Q.
Now we note that in this case (P, f) � (Q, g) is diffeomorphic to a subman-
ifold of P under the projection to the first factor and the normal bundle of
(P, f) � (Q, g) in P is the pull-back of the normal bundle of Q in M and we
equip it with the induced orientation, i.e., the orientation such that the iso-
morphism between the fibres of the normal bundle induced by the differential
of f is orientation-preserving. By the considerations above this orientation
of the normal bundle induces an orientation on (P, f) � (Q, g). If g is not
an embedding we choose an embedding of Q into RN (equipped with the
canonical orientation) for some integer N and thicken M and P , replacing
them by M ×RN and P ×RN , and replace f by f × id. The map given by
g on the first component and by the embedding to RN on the second gives
an embedding of Q into M ×RN and f × id is transverse to this embedding
and the preimage is canonically diffeomorphic to (P, f) � (Q, g). Thus the
construction above gives an orientation on (P, f) � (Q, g). This orientation
depends neither on the choice of N nor the embedding to RN , since any two
such embeddings are isotopic if we make N large enough by stabilization
passing from RN to RN+1. This definition of an induced orientation has the
useful property that if f ′ : P ′ → P is another smooth map transverse to
(P, f) � (Q, g), then the induced orientations on (P ′, f ′) � ((P ′, f) � (Q, g))
and (P ′, ff ′) � (Q, g) agree.

To shorten notation we often write f � g instead of (P, f) � (Q, g). If
M , P and Q are oriented we mean this manifold with the induced orienta-
tion.

If we replace P by a smooth c-manifold with boundary and f is a smooth
map transverse to g and also f |∂P is transverse to g, then (P, f) � (Q, g) :=
{(x, y) ∈ (P×Q) | f(x) = g(y)} is a smooth c-manifold of dimension p+q−m
with boundary f |∂P � g. We obtain a similar statement if instead of ad-
mitting a boundary for P we replace Q by a c-manifold with boundary and
require that f is transverse to the smooth c-map g as well as being trans-
verse to g|∂Q.

The transversality theorem states that if f : P −→ M and g : Q −→ M
are smooth maps then f is homotopic to f ′ such that f ′ is transverse to
g [B-J], [Hi]. More generally, if A ⊂ P is a closed subset and for some
open neighbourhood U of A the maps f |U and g are transverse, then f is
homotopic rel. A (i.e., the homotopy maps (x, t) ∈ A× I to f(x)) to f ′ such
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that f ′ is transverse to g.

A similar argument implies the following statement:

Theorem 13.1. Let f : P −→ M and g1 : Q1 −→ M, . . . , gr : Qr −→ M be
smooth maps such that for some closed subset A ⊂ P and open neighbourhood
U of A the maps f |U and gi are transverse for i = 1, . . . , r. Then f is
homotopic to f ′ rel. A in such a way that f ′ is transverse to gi for all i.

We want to generalize this argument to maps f : P −→ M , where as
before P is a smooth manifold, and g : S −→ M is a morphism from a
stratifold to M . The definition for transversality above generalizes to this
situation. Equivalently we say that f is transverse to g if and only if
f is transverse to restrictions of g to all strata. If f is transverse to g,
then we obtain a stratifold denoted by g � f whose underlying space is
{(x, y) ∈ S × P | f(x) = g(y)}. The algebra is given by C(g � f), the re-
striction of the functions in S× P to this space. The argument for showing
that this is a stratifold is the same as for the special case of the preimage
of a regular value (Proposition 2.5). The strata of g � f are g|Si � f . The
dimension of g � f is dimP + dimS − dimM . If S is a regular stratifold,
then g � f is regular, the isomorphisms of appropriate local neighborhoods
of the strata with a product being given by restrictions of the corresponding
isomorphisms for S× P .

As a consequence of the transversality theorem for manifolds we see:

Theorem 13.2. Let f : P −→ M be a smooth map from a smooth manifold
P to M and g : S −→ M be a morphism from a stratifold S to M . Let
A be a closed subset of P and U an open neighbourhood such that f |U is
transverse to g. Then f is homotopic rel. A to f ′ such that f ′ is transverse
to g.

Proof: We simply apply Theorem 13.1 to replace f by f ′ (homotopic
to f rel. A) such that f ′ is transverse to all g|Si .
q.e.d.

2. The induced maps

We return to our construction of cohomology and define the induced maps.
Let f : N → M be a smooth map between oriented manifolds and let
[S, g] be an element of SHk(M). Then we replace f by a homotopic map
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f ′ : N → M which is transverse to g and consider f ′ � g. This is a regular
stratifold of dimension n + dimS − m = n + m − k − m = n − k. The
stratum of dimension n− k − 1 is empty. The projection to N gives a map
g′ : g � f ′ → N . This is a proper map (why?). The orientations of M ,
N and S induce an orientation of f ′ � g, as explained above. This is the
place where we use the orientation of the manifold M . Thus the
pair (g � f ′, g′) represents an element of SHk(N).

Using Theorem 13.2 we see that the bordism class of (g � f ′, g′) is un-
changed if we choose another map f ′

1 homotopic to f and transverse to g.
Namely then f ′ and f ′

1 are homotopic. We can assume that this homotopy is
a smooth map, and that there is an ε > 0 such that h(x, t) = f ′(x) for t < ε
and h(x, t) = f ′

1(x) for t > 1− ε (such a homotopy is often called a technical
homotopy). By Theorem 13.2 we can further assume that this homotopy h
is transverse to g. Then (g � h, g′) is a bordism between (g � f ′, g′) and
(g � f ′

1, g
′).

For later use (the proof of Proposition 13.5) we note that this argument
implies that the induced map is a homotopy invariant.

Next we show that if (S1, g1) and (S2, g2) are bordant, then (g1 � f ′, g′1)
is bordant to (g2 � f ′, g′2), where f ′ is homotopic to f and transverse to g1
and to g2 simultaneously (by the argument above we are free in the choice
of the map which is transverse to a given bordism class). Let (T, G) be a
bordism between (S1, g1) and (S2, g2). Then again using the fact that we
are free in the choice of f ′ we assume that f ′ is also transverse to G. Then
(G � f ′, G′) is a bordism between (g1 � f ′, g′1) and (g2 � f ′, g′2). Thus we
obtain a well defined induced map

f∗ : SHk(M) → SHk(N)

mapping

[S, g] 	→ [g � f ′, g′]

where f ′ is transverse to g and g′ is the restriction of the projection onto
N . This construction respects disjoint unions and so we have defined the
induced homomorphism in cohomology for a smooth map f : N → M .
As announced above this induced map in cohomology reverses its direction.
By construction this definition agrees for inclusions with the previous def-
inition used in the formulation of the Mayer-Vietoris sequence. Here one
has to be careful with the orientation and we suggest that the reader checks
that the conventions lead to the same definition.
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The role of the orientation of the manifolds is reflected by the following
induced maps. Let f : N → M be an orientation-preserving diffeomorphism.
Then by construction f∗([S, g]) = [S, f−1g]. If f reverses the orientation,
f∗([S, g]) = [−S, f−1g]. In particular if we consider as f the identity
map from M to −M equipped with opposite orientation, we see
that f∗([S, g]) = [−S, g]. (In this context one should not write id for the
identity map, whose name in the oriented world should be reserved for the
identity map from M to M , where both are equipped with the same orien-
tation.)

If M and N are not oriented the same construction gives us an induced
map

f∗ : SHk(M ;Z/2) → SHk(N ;Z/2)

mapping

[S, g] 	→ [g � f ′, g′].

An important case of an induced map is the situation considered in
the previous chapter of a smooth oriented vector bundle p : E → N of
rank k over an oriented manifold. We introduced the cohomology class
[N, s] ∈ SHk(E). We want to look at s∗([N, s]) ∈ SHk(N). To obtain this
class we have to approximate s by another map s′ which is transverse to
s(N) ⊂ E (one can actually find s′ which is again a section [B-J]). Then
s′(N) � s(N) is a smooth submanifold of s(N) = N of dimension n−k. Let
i : s′(N) � s(N) → s(N) = N be the inclusion; then we obtain

s∗([N, s]) = [s′(N) � s(N), i] ∈ SHk(N).

This class is called the Euler class of E and is abbreviated as

e(E) := s∗([N, s]) = [s′(N) � s(N), i] ∈ SHk(N).

In the next chapter we will investigate this class in detail. From Propo-
sition 12.1 we conclude:

Proposition 13.3. Let p : E → N be a smooth oriented k-dimensional
vector bundle. If E has a nowhere vanishing section then e(E) = 0.



132 13. Induced maps and the cohomology axioms

3. The cohomology axioms

We will now formulate and prove properties of cohomology groups which are
analogous to the axioms of a homology theory. Apart from the fact that in-
duced maps change direction the main difference is that we have only defined
cohomology groups for smooth manifolds and induced maps of smooth maps.

If f : N → M and h : P → N are smooth maps, such that f is trans-
verse to g : S → M , where S is a regular stratifold, and h is transverse
to g′ : f � g → N , then fh : P → M is transverse to g : S → M and
fh � g = h � g′ (with induced orientations as explained at the beginning of
this chapter). This implies the following:

Proposition 13.4. Let f1 : M1 → M2 and f2 : M2 → M3 be smooth maps.
Then

f∗
1 f

∗
2 = (f2f1)

∗.

Furthermore by definition:

id∗ = id.

Here we stress again that we have reserved the name id for the identity
map from M to M , both equipped with the same orientation!

Apart from the change of direction, these are the properties of a functor
assigning to a smooth manifold an abelian group and to a smooth map a
homomorphism between these groups reversing its direction. To distinguish
it from a functor in the previous sense we call it a contravariant functor.
To make notation more symmetric, a functor in the previous sense is often
also called a covariant functor.

To compare the Mayer-Vietoris sequence of different spaces it is useful
to know that induced maps commute with the coboundary operator. Since
the construction of the coboundary operator for cohomology is completely
analogous to that for homology the same argument implies this statement.

The property of a contravariant functor (Proposition 13.4) is—in anal-
ogy to homology—the first fundamental property of a cohomology theory.
The other two are the homotopy axiom and the Mayer-Vietoris sequence
which we have already constructed. The homotopy axiom was also already
shown when we proved that the induced map is well defined:
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Proposition 13.5. Let f : N → M and g : N → M be homotopic smooth
maps. Then

f∗ = g∗ : SHk(M) → SHk(M).

A contravariant functor SHk(M) assigning to each smooth manifold
abelian groups and to each smooth map an induced map such that the
statements of Theorems 12.6, 13.4, 13.5 hold and where the coboundary
operator in the Mayer-Vietoris sequence commutes with induced maps, is
called a cohomology theory for smooth manifolds and smooth maps. Thus
cohomology as defined here is a cohomology theory.

As for homology one can use the cohomology axioms to compute the
cohomology groups for many spaces, such as spheres and complex projec-
tive spaces. For compact oriented manifolds without boundary one can use
Poincaré duality and reduce it to the computation of homology groups.

4. Exercises

(1) Construct an orientation on the total space of the tangent bundle
of a smooth manifold M , which has the property that for an open
subset U ⊂ M the construction agrees with the restriction of the
orientation to the total space of the tangent bundle of U and that
if f : M → N is a diffeomorphism, then df : TM → TN is an
orientation-preserving diffeomorphism. We further require that for
M = Rn the orientation of TRn = Rn×Rn agrees with the standard
orientation. Show that this orientation is unique.

(2) If M is a non-orientable manifold define SHk(M) by SHk(TM).
Show that if M is oriented then p∗ : SHk(M) → SHk(TM), where
TM is oriented as above, is an isomorphism. This way we extend
the definition for oriented manifolds to arbitrary manifolds.

(3) For a map f : M → N consider the map f̂ := sfp : TM → TN ,
where p : TM → M is the projection and s : N → TN is the zero-
section. Define the induced map f∗ : SHk(N) = SHk(TN) →
SHk(M) = SHk(TM) as f̂∗. Show that this way we obtain a con-
travariant functor for arbitrary smooth manifolds. Show that this
is a cohomology theory which extends our definition for oriented
manifolds. Could you use the differential df instead of f̂?

(4) Compute the cohomology groups of RPn.

(5) Let p1 : M × N → M and p2 : M × N → N be the projections
on the first and second factor. Show that for [S, f ] ∈ Hk(M) and
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[S′, f ′] ∈ Hr(N)

p∗1([S, f ]) = [S ×N, f × id]

and
p∗2([S

′, f ′]) = [M × S′, id× f ′].



Chapter 14

Products in
cohomology and the
Kronecker pairing

1. The cross product and the Künneth theorem

So far the basic structure of cohomology is completely analogous to that of
homology. The essential difference was the change of the direction of the
maps induced between cohomology groups. In this chapter we will introduce
a new structure on cohomology called the cup product. As before we assume
in this chapter that all manifolds are oriented.

The cup product is derived from the ×-product which is defined up to
sign as was the ×-product in homology. Let M and N be smooth oriented
manifolds of dimension m and n respectively. If [S1, g1] ∈ SHk(M) and
[S2, g2] ∈ SH�(N), we define

[S1, g1]× [S2, g2] := (−1)�(m−k)[S1 × S2, g1 × g2] ∈ SHk+�(M ×N).

The sign looks strange at first glance, but it is needed to give a pleasant
expression when interchanging the factors, as we will discuss in the next
paragraph. As in homology the ×-product or cross product

× : SHk(M)× SH�(N) → SHk+�(M ×N)

is a bilinear and associative map (check associativity). It is also natural,
i.e., for a smooth map f : M ′ → M and g : N ′ → N and α ∈ SHk(M) and
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β ∈ SH�(N) we have:

(f × g)∗(α× β) = f∗(α)× g∗(β),

exercise (6).

In the same way one defines the ×-product for Z/2-cohomology (one can
of course omit the signs here):

× : SHk(M ;Z/2)× SH�(N ;Z/2) → SHk+�(M ×N ;Z/2).

This fulfills the same properties as the product above.

As announced, we study the behavior of the ×-product under a change
of the factors. For this we consider the flip diffeomorphism τ : N × M →
M × N mapping (x, y) to (y, x), where M and N are oriented manifolds
having dimensions m and n, respectively. Then τ changes the orientation
by (−1)mn. Thus by the interpretation of induced maps for diffeomorphisms,
if [S, f ] ∈ SHk(M) and [S′, f ′] ∈ SH�(N), then

τ∗([S× S′, f × f ′]) = (−1)mn[S× S′, τ−1(f × f ′)].

To compare this with [S′×S, f ′× f ] we consider the flip map τ ′ from S×S′

to S′ × S and note that τ−1(f × f ′) = (f ′ × f)τ ′. Since τ ′ changes the

orientation by the factor (−1)dimS dimS′
= (−1)(m−k)(n−�), we conclude that

τ∗([S× S′, f × f ′]) = (−1)mn(−1)(m−k)(n−�)[S′ × S, (f ′ × f)]

= (−1)m�+nk+k�[S′ × S, (f ′ × f)].

Now we combine these signs with the sign occurring in the definition of the
×-product to obtain:

τ∗([S, f ]× [S′, f ′]) = τ∗((−1)�(m−k)([S×S′, f ×f ′])) = (−1)nk[S′×S, f ′×f ]

= (−1)k�[S′, f ′]× [S, f ].

Thus we have the equality

τ∗([S, f ]× [S′, f ′]) = (−1)k�([S′, f ′]× [S, f ]).

The ×-product is a very useful tool. For example – as for homology
– the ×-product is used in a Künneth theorem for rational cohomology
and for Z/2-cohomology. Here we define the rational cohomology groups
SHk(M ;Q) := SHk(M)⊗Q. By elementary algebraic considerations simi-
lar to the arguments for rational homology groups one shows that rational
cohomology fulfills the axioms of a cohomology theory. The proof of the
Künneth Theorem would be the same as for homology if we had a compari-
son theorem like Corollary 9.4. The proof of Corollary 9.4 used the fact that
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homology groups are compactly supported. This is not the case for cohomol-
ogy groups. But the inductive proof of Corollary 9.4 based on the 5-Lemma
goes through in cohomology if we can cover M by finitely many open subsets
Ui such that we know that the natural transformation is an isomorphism for
all finite intersections of these subsets. This leads to the concept of a good
atlas of a smooth manifold M . This is an atlas {ϕi : Ui → Vi} such that all
non-empty finite intersections of the Ui are diffeomorphic to Rm. But Rm is
homotopy equivalent to a point and, if we assume that for a point we have an
isomorphism between the cohomology theories, the induction argument for
the proof of Corollary 9.4 works for cohomology, if M has a finite good atlas:

Proposition 14.1. Let M be a smooth oriented manifold admitting a finite
good atlas. Let h and h′ be cohomology theories and τ : h → h′ be a natural
transformation which for a point is an isomorphism in all degrees. Then
τ : hk(M) → (h′)k(M) is an isomorphism for all k.

One can show that all smooth manifolds admit a good atlas (compare
[B-T, Theorem 5.1]). In particular all compact manifolds admit a finite
good atlas.

If we combine Proposition 14.1 with the argument for the Künneth iso-
morphism in homology we obtain:

Theorem 14.2. (Künneth Theorem for cohomology) Let M be a
smooth oriented manifold admitting a finite good atlas. Then for F equal
to Z/2 or equal to Q, for each smooth oriented manifold N the ×-product
induces an isomorphism

× :
⊕

i+j=k

SH i(M ;F )⊗F SHj(N ;F ) → SHk(M ×N ;F ).

If all cohomology groups of N are torsion-free and finitely generated, then
the same holds for integral cohomology.

2. The cup product

The following construction with the cross product is the main difference
between homology and cohomology since it can only be carried out for co-
homology. Let Δ : M → M ×M be the diagonal map x 	→ (x, x). Then we
define the cup product as follows

�: SHk(M)× SH�(M) → SHk+�(M)
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([S1, g1], [S2, g2]) 	→ Δ∗([S1, g1]× [S2, g2]).

The cup product has the following property, which one often calls graded
commutativity:

[S1, g1] � [S2, g2] = (−1)k�[S2, g2] � [S1, g1].

This follows from the behavior of the ×-product under the flip map τ shown
above together with the fact that τΔ = Δ.

There is also a neutral element, namely the cohomology class [M, id] ∈
SH0(M). To see this we consider [S, g] ∈ SHk(M). Then [M, id]× [S, g] =
[M × S, id × g]. To determine Δ∗([M × S, id × g]) we note that id × g is
transverse to Δ and so Δ∗([M × S, id× g]) = [S, g], i.e., [M, id] is a neutral
element. This property justifies our previous notation:

1 := [M, id] ∈ SH0(M)

and we have

1 � [S, g] = [S, g].

Similarly, one shows

[S, g] � 1 = [S, g].

Furthermore we note that the naturality of the ×-product implies the
naturality of the ×-product:

f∗([S1, g1] � [S2, g2]) = f∗([S1, g1]) � f∗([S2, g2]).

From the corresponding properties of the ×-product one concludes that the
cup product is bilinear and associative.

We defined the cup product in terms of the ×-product. One can also
derive the ×-product from the cup product. Let α ∈ SHk(M) and β ∈
H�(N), then

p∗1(α) ∪ p∗2(β) = α× β.

This is exercise (5).

The following is a useful observation for the computation of the ∪-
product. Let M be an oriented manifold and suppose that [N1, g1] ∈
SHk(M) and [N2, g2] ∈ SH�(M) are cohomology classes with Ni smooth
manifolds. Then we can obtain the cup product by considering as before
g := g1 × g2. But instead of making the diagonal transverse to g and then
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taking the transverse intersection we can keep the diagonal Δ unchanged,
approximate g instead by a map g′ transverse to Δ and take the transverse
intersection. It is easy to use the transversality theorem to prove the exis-
tence of a bordism between the two cohomology classes obtained by making
Δ transverse to g or by making g transverse to Δ. Furthermore we can
interpret the latter transverse intersection as the transverse intersection of
g1 and g2, i.e., we approximate g1 by g′1 transverse to g2 and then we obtain:

Lemma 14.3. Let [N1, g1] ∈ SHk(M) and [N2, g2] ∈ SH�(M) be coho-
mology classes with Ni smooth manifolds such that g1 is transverse to g2.
Then

[N1, g1] � [N2, g2] = [g1 � g2, g1p1],

where p1 is the projection to the first factor.

A priori this identity is only clear up to sign and we have to show that
the sign is +. To do this, it is enough to consider the case, where g1 and g2
are embeddings (replace M by M × RN for some large N and approximate
gi by embeddings) and after identifying the Ni with their images under gi,
we assume that the Ni are submanifolds of M . The orientation of N1 ∩
N2 ⊂ N1 (which with the inclusion to M represents [g1 � g2, g1p1]) at
x ∈ N1 ∩ N2 is given by requiring that TxN1 = Tx(N1 ∩ N2) ⊕ νx(N2,M)
(where ν(N2,M) is the normal bundle ofN2 inM) preserves the orientations
induced from the orientation of Ni and M . On the other hand Δ∗([N1 ×
N2, g1×g2]) is represented byN1∩N2 together with the inclusion toM which
we identify with Δ(M). The orientation at x ∈ N1 ∩N2 of N1 ∩N2 ⊂ M is
given by requiring that the decomposition Tx(N1 ∩N2)⊕ νx(N1 ×N2,M ×
M) = TxΔ(M) = TxM preserves the orientation. We have to determine the
orientation of νx(N1×N2,M×M) in terms of the orientations of νx(N1,M)
and νx(N2,M). Comparing the orientations of TxN1 ⊕ νx(N1,M)⊕TxN2 ⊕
νx(N2,M) = TxM ⊕ TxM and TxN1 ⊕ TxN2 ⊕ νx(N1,M) ⊕ νx(N2,M) =
T(x,x)(M ×M), we see that as oriented vector spaces νx(N1×N2,M×M) =

(−1)(m−n1)n2νx(N1,M) ⊕ νx(N2,M), where m = dimM . Combining this
with the identity

Tx(N1 ∩N2)⊕ νx(N1,M)⊕ νx(N2,M) = TxM

we obtain

(−1)(m−n1)n2Tx(N1∩N2)⊕νx(N1,M)⊕νx(N2,M) = TxM = TxN1⊕νx(N1,M).

Comparing this with the orientation of N1 ∩N2 ⊂ N1 we conclude that

(−1)(m−n1)n2Tx(N1 ∩N2)⊕ νx(N1,M)⊕ νx(N2,M)

= Tx(N1 ∩N2)⊕ νx(N2,M)⊕ νx(N1,M)
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and so we conclude that the orientations differ by

(−1)(m−n1)n2(−1)(m−n1)(m−n2) = (−1)m(m−n1) = (−1)mk,

where k = m − n1. This is the sign we introduced when defining the ×-
product and so we have shown that the sign in the formula is correct.

For example we can use this to compute the cup product structure for
the complex projective spaces CPn. Since these are closed oriented smooth
manifolds we have by Poincaré duality SH2k(CPn) = SH2n−2k(CP

n), which
by Theorem 8.8 is Z generated by [CPn−k, i], where i is the inclusion map-
ping [z0, . . . , zn−k] to [z0, . . . , zn−k, 0, . . . , 0]. To compute the cup product
[CPn−k, i] � [CPn−l, j] we have to replace i by a map which is transverse to
j. This can easily be done by choosing an appropriate alternative embed-
ding, namely i′([z0, . . . , zn−k]) := [0, . . . , 0, z0, . . . , zn−k]. This represents the
same homology class since the inclusions are homotopic. The map i′ is trans-
verse to j and so the cup product is represented by [i′(CPn−k)∩j(CPn−l), s],
where s is again the inclusion. The intersection is CPn−k−l and the map is
up to a permutation the standard embedding. We conclude that

[CPn−k, i] � [CPn−l, i] = [CPn−k−l, i].

As a consequence we put x := [CPn−1, i] ∈ SH2(CPn) and conclude:

xr = [CPn−r, i] ∈ SH2r(CPn),

where xr stands for the r-fold cup product. In particular xn = [CP0, i], the
canonical generator of SH2n(CPn).

It is useful to collect all cohomology groups into a direct sum and denote
it by

SH∗(M) :=
⊕
k

SHk(M).

The cup product induces a ring structure on SH∗(M) by:

(
∑
i

αi)(
∑
j

βj) :=
∑
k

(
∑

i+j=k

αi � βj),

where αi ∈ SH i(M) and βj ∈ SHj(M). In this way we consider SH∗(M) a
ring called the cohomology ring. The computation above for the complex
projective spaces can be reformulated as:

SH∗(CPn) = Z[x]/xn+1.

This ring is called a truncated polynomial ring.
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We also introduce the Z/2-cohomology ring as

SH∗(M ;Z/2) :=
⊕
k

SHk(M ;Z/2).

Using a similar argument one shows that

SH∗(RPn;Z/2) = (Z/2)[x]/xn+1,

where x ∈ SH1(RPn;Z/2) is the non-trivial element.

3. The Kronecker pairing

Now we can prove the announced relation between cohomology and ho-
mology groups. Let M be an oriented smooth m-dimensional manifold.
The first step is the construction of the so-called Kronecker homomorphism
from SHk(M) to Hom (SHk(M),Z). The map is induced by a bilinear map
SHk(M)×SHk(M) → Z. To describe this let [S1, g1] ∈ SHk(M) be a coho-
mology class and [S2, g2] ∈ SHk(M) be a homology class. Applying Propo-
sition 12.4 we can approximate g2 by a smooth map and so we assume from
now on that g2 is smooth. We consider g = g1×g2 : (−1)mkS1×S2 → M×M .
The sign changing the orientation of S1×S2 is compatible with the sign in-
troduced in the definition of the ×-product.

Let Δ : M → M ×M be the diagonal map. We want to approximate Δ
by a smooth map Δ′ which is transverse to g1 × g2 in such a way that the
transverse intersection Δ′ � (g1 × g2) is compact. To achieve this we note
that since g1 is proper, and S2 is compact the intersection im(g1×g2)∩im(Δ)
is compact. Namely, we define C0 := {x ∈ S1| g1(x) ∈ im(g2)}, which is
compact since S2 is compact and g1 is proper. Thus g1 × g2(C0 × S2) is
compact. But im(g1 × g2) ∩ im(Δ) is a closed subset of (g1 × g2)(C0 × S2)
and so is compact. Since Δ is proper, C1 := Δ−1(im(g1 × g2) ∩ im(Δ)) is

compact. We choose compact subsets C2 ⊂ C3 ⊂ M such that C1 ⊂
◦
C2

and C2 ⊆
◦
C3. Then A := M −

◦
C2 is a closed subset which is contained in

the open subset U := M − C1. Since im(g1 × g2) ∩ Δ(U) = ∅, the map
Δ|U is transverse to g1 × g2. We approximate Δ by a transverse map Δ′,
which agrees with A on Δ. By construction, Δ′ � (g1 × g2) ⊂ C2 ×S1 ×S2.
The set D := {x ∈ S1| g1(x) ∈ im(p1Δ

′(C2))} is compact since p1(Δ
′(C2)) is

compact and g1 is proper. But Δ
′ � (g1×g2) ⊂ C2×D×S2 is a closed subset

of a compact space and so is compact. It is a zero-dimensional stratifold
and oriented. We consider the sum of the orientations of this stratifold,
where we recall that we equipped S1 × S2 with (−1)mk times the product
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orientation. In this way we attach to a cohomology class [S1, g1] ∈ SHk(M)
and a homology class [S2, g2] ∈ SHk(M) an integer denoted by

〈[S1, g1], [S2, g2]〉 ∈ Z.

A transversality argument similar to the one that was used to show that
that f∗ is well defined implies that this number is well defined, if we assume
the same transversality condition for the bordisms.

This construction gives a bilinear map which we call the Kronecker
pairing or Kronecker product:

〈· , ·〉 : SHk(M)× SHk(M) → Z.

If M is a compact m-dimensional smooth manifold there is the follow-
ing relation between the cup product, Poincaré duality and the Kronecker
pairing:

Proposition 14.4. Let [S1, g1] ∈ SHk(M) and [S2, g2] ∈ SHm−k(M) be
cohomology classes. Then

〈[S1, g1], P ([S2, g2])〉 = 〈[S1, g1] � [S2, g2], [M ]〉.

This useful identity follows from the definitions.

The Kronecker pairing gives a homomorphism

SHk(M) → Hom (SHk(M),Z)

by mapping [S1, g1] ∈ SHk(M) to the homomorphism assigning to [S2, g2] ∈
SHk(M) the outcome of the Kronecker pairing 〈[S1, g1], [S2, g2]〉. We call
this the Kronecker homomorphism:

κ : SHk(M) → Hom(SHk(M),Z).

The Kronecker homomorphism from SHk(M) to Hom (SHk(M),Z) com-
mutes with induced maps f : N → M :

〈f∗([S1, g1]), [S2, g2]〉 = 〈[S1, g1], f∗([S2, g2])〉
for all [S1, g1] ∈ SHk(M) and [S2, g2] ∈ SHk(N).

The Kronecker homomorphism also commutes with the boundary oper-
ators in the Mayer-Vietoris sequence. The argument is the following. Let
U and V be open subsets of M and let M := U ∪ V . Choose a sepa-
rating function ρ : U ∪ V → R as in the definition of δ. For [S1, g1] ∈
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SHk(U ∩ V ) and [S2, g2] ∈ SHk−1(U ∪ V ) we choose a common regu-
lar value s of ρg1 and ρg2. This gives a decomposition of S1 = (S1)+ ∪
(S1)− and S2 = (S2)+ ∪ (S2)− as in the definition of δ in Chapter 12, §3.
Then δ([S1, g1]) = [∂(S1)+, g1|∂(S1)+ ] and d([S2, g2]) = [∂(S2)+, g2|∂(S2)+ ].
We consider the oriented regular stratifold (S1)+ × (S2)+ with boundary
(∂(S1)+ × (S2)+)∪∂(S1)+×∂(S2)+ −((S1)+ × ∂((S2)+)). (The product of two
bounded stratifolds has, like the product of two bounded smooth manifolds,
corners. There is a standard method for smoothing the corners which is
based on collars. Thus the same can be done for stratifolds. Smoothing of
corners is explained in a different context in appendix A.) Now we approx-
imate the diagonal map Δ : X → X ×X by a map Δ′ which is transverse
to g1 × g2 : (S1)+ × (S2)+ → X × X and to the restrictions of g1 × g2 to
∂((S1)+ × (S2)+) and to ∂(S1)+ × ∂(S2)+. We consider the bounded strat-
ifold (S1 × S2, g1 × g2) � (X,Δ′). This is a 1-dimensional stratifold with
boundary (S1×S2, g1×g2)|∂((S1)+×(S2)+) � (X,Δ′). Since Δ′ is transverse to
∂(S1)+×∂(S2)+ the dimension of (∂(S1)+×∂(S2)+, g1|∂(S1)+ ×g2|∂(S2)+) �
(X,Δ′) is −1, implying that the boundary of (S1 × S2, g1 × g2) � (X,Δ′) is

(∂(S1)+ × S2, g1|∂(S1)+ × g2) � (X,Δ′)

+(−S1 × ∂(S2)+, g1 × g2|∂(S2)+) � (X,Δ′)

(the sign comes from the sign in the decomposition of the boundary of
(S1)+ × (S2)+). The number of oriented intersection points of (∂(S1)+ ×
S2, g1|∂(S1)+ × g2) � (X,Δ′) is the Kronecker pairing of δ([S1, g1]) and
[S2, g2]. The number of oriented intersection points of (S1 × ∂(S2)+, g1 ×
g2|∂(S2)+) � (X,Δ′) is the Kronecker pairing of [S1, g1] and d([S2, g2]). Thus
these two numbers agree.

These considerations imply that the Kronecker homomorphism gives a
natural transformation

κ : SHk(M) → Hom(SHk(M),Z).

Unfortunately Hom(SHk(M),Z) is not a cohomology theory. The rea-
son is that if A → B → C is an exact sequence then in general the induced
sequence Hom(C,Z) → Hom(B,Z) → Hom(A,Z) is not exact. But by a sim-
ilar argument as for taking the tensor product with Q the induced sequence
Hom(C,Q) → Hom(B,Q) → Hom(A,Q) is exact. Thus Hom(SHk(X),Q) is
a cohomology theory. We call the corresponding Kronecker homomorphism

κQ : SHk(M) → Hom(SHk(M),Q).

In a similar way we can define the Kronecker pairing for the Z/2-
(co)homology groups of a (not necessarily orientable) manifold M . The
only difference is that we have to take the number of points mod 2 in the
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transverse intersection instead of the sum of the orientations as before. From
the Kronecker product we obtain as before a natural transformation

κZ/2 : SH
k(M ;Z/2) → Hom(SHk(M ;Z/2),Z/2),

where now both sides are cohomology theories.

For M a point both these natural transformations are obviously isomor-
phisms. Thus we obtain from Proposition 14.1:

Theorem 14.5. (Kronecker Theorem) For all smooth oriented mani-
folds M admitting a finite good atlas, the Kronecker homomorphism is an
isomorphism:

κQ : SHk(M ;Q) ∼= Hom(SHk(M),Q)

and if M is not oriented:

κZ/2 : SH
k(M ;Z/2) ∼= Hom(SHk(M ;Z/2), Z/2).

In particular this theorem applies to all compact oriented manifolds.
There is also a version of the Kronecker Theorem for integral cohomology,
but the Kronecker homomorphism is not in general an isomorphism. It
is still surjective and the kernel is isomorphic to the torsion subgroup of
SHk−1(M). We will not give a proof of this result. One way to prove it is
to use the isomorphism between our (co)homology groups and the classical
groups defined using chain complexes. This will be explained in chapter 20.
The world of chain complexes is closely related to homological algebra and
in this context the integral Kronecker Theorem is rather easy to prove, as a
special case of the Universal Coefficient Theorem for cohomology. One can
also give a more direct proof using linking numbers, but this would lead us
too far from our present context.

As announced before, we want to combine Poincaré duality and the Kro-
necker Theorem for closed (oriented) manifolds to obtain further relations
between their homology and cohomology groups. We now present an exam-
ple of this, and give an immediate application.

If we compose the Kronecker isomorphism with Poincaré duality we ob-
tain the following non-trivial consequence:

Corollary 14.6. Let M be a closed smooth oriented m-dimensional mani-
fold. Then the composition of Poincaré duality with the Kronecker isomor-
phism induces an isomorphism:

SHm−k(M ;Q) ∼= Hom(SHk(M),Q).
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Similarly if M is not necessarily oriented:

SHm−k(M ;Z/2) ∼= Hom (SHk(M ;Z/2),Z/2).

An important consequence of this result is that the Euler character-
istic of an odd-dimensional closed smooth manifold M vanishes. This is
because the Betti numbers bk(M ;Z/2) are equal to bm−k(M ;Z/2) and so
(−1)kbk(M ;Z/2) + (−1)m−kbm−k(M ;Z/2) = 0.

Corollary 14.7. The Euler characteristic of a smooth closed odd-dimen-
sional manifold vanishes.

We earlier quoted a result from differential topology that there is a
nowhere vanishing vector field on a closed smooth manifold if and only if
the Euler characteristic vanishes. As a consequence of the corollary, we
conclude that each closed odd-dimensional smooth manifold has a nowhere
vanishing vector field.

4. Exercises

(1) Let f : S2 → T 2 be a continuous map where S2 is the sphere
and T 2 is the torus. Show that the map f∗ : SHk(S

2;Z/2) →
SHk(T

2;Z/2) is an isomorphism for k = 0 and the zero map for
k > 0.

(2) Show that the spaces CP2 and S2 ∨ S4 have the same integral
homology. Are they homotopy equivalent? (Hint: Replace S2 ∨ S4

by a non-compact homotopy equivalent smooth manifold.)

(3) Consider the quotient map f : S3 → S2 when we consider S3 as the
unit sphere in C2 and S2 as the Riemann sphere CP1. Show that

f∗ : S̃Hk(S
3;Z) → S̃Hk(S

2;Z) is an isomorphism for k = 0 and
the zero map for k > 0 but f is not null homotopic. (Hint: Show
that if this map is null homotopic then CP2 is homotopy equivalent
to S2 ∨ S4.)

(4) Compute all cup products in the cohomology rings H∗(Lk;Z/2)
and H∗(Lk) of the lens spaces Lk.

(5) Let α ∈ SHk(M) and β ∈ H l(N), show that

p∗1(α) ∪ p∗2(β) = α× β.

Hint: Show that p∗1(α) = α× 1 and p∗2(β) = 1× β.

(6) Prove that the ×-product is natural, i.e., for a smooth map f :
M ′ → M and g : N ′ → N and α ∈ SHk(M) and β ∈ SH�(N) we
have:

(f × g)∗(α× β) = f∗(α)× g∗(β).





Chapter 15

The signature

As an application of the cup product, we define the signature of a closed
smooth oriented 4k-dimensional manifold and prove an important property
of the signature. We recall from linear algebra the definition of the signature
or index of a symmetric bilinear form over a finite dimensional Q -vector
space

b : V × V −→ Q.

The signature τ(b) is defined to be the number of positive eigenvalues minus
the number of negative eigenvalues of a matrix representation of b. Equiv-
alently, one chooses a basis e1, . . . , er of V such that b(ei, ej) = 0 for i �= j
and defines τ(b) as the number of ei with b(ei, ei) > 0 minus the number of
ej with b(ej, ej) < 0. This is independent of any choices and a fundamental
algebraic invariant. If we replace b by −b the signature changes its sign:

τ(−b) = −τ(b).

Now we define the signature of a closed smooth oriented 4k-dimensional
manifold M . We have shown in chapter 7, Theorem 7.5, that the Z/2-
homology groups of a closed manifold are finitely generated, the same argu-
ment gives this for integral homology SHk(M). Thus by Poincaré duality
the cohomology group SH2k(M) ∼= SH2k(M) is finitely generated. Recall
that we abbreviated the fundamental class [M, id] ∈ SH4k(M) by [M ]. The
intersection form of M is the bilinear form

S(M) : SH2k(M)× SH2k(M) → Z

147
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mapping

(α, β) 	→ 〈α � β, [M ]〉,
the Kronecker pairing between α � β and the fundamental class. Since

α � β = (−1)(2k)
2
β � α the intersection form is symmetric. Thus, after

taking the tensor product with Q (which just means that we consider the
matrix representing the intersection form with respect to a basis of the free
part of SH2k(M) as a matrix with rational entries) we can consider the
signature τ(S(M)⊗Q) and define the signature of M as

τ(M) := τ(S(M)⊗Q).

If the dimension ofM is not divisible by 4, we set τ(M) = 0. If the dimension
is divisible by 4, it is an important invariant of manifolds as we will see. If
we replace M by −M then we only replace [M ] by −[M ] and thus S changes
its sign implying

τ(−M) = −τ(M).

Since SH2k(S4k) = 0, the signature of spheres is zero. We have com-
puted the cohomology ring of CP2k and we know that SH2k(CP2k) = Zxk

and that 〈x2k, [CP2k]〉 = 1. Thus we have:

τ(CP2k) = 1.

The significance of the signature is demonstrated by the fact that it is
bordism invariant:

Theorem 15.1. (Thom) If a compact oriented smooth manifold M is the
boundary of a compact oriented smooth c-manifold W , then its signature
vanishes:

τ(M) = 0.

The main ingredient of the proof is the following:

Lemma 15.2. Let W be a compact smooth oriented c-manifold of dimension

2k + 1. Let j : ∂W →
◦
W be the map given by j(x) := ϕ(x, ε/2), where ϕ is

the collar of W . Then

ker(j∗ : SHk(∂W ) → SHk(
◦
W ))

∼= im(j∗ : SHk(
◦
W ) → SHk(∂W ) ∼= SHk(∂W )).



15. The signature 149

Proof: If [S, g] ∈ SHk(∂W ) maps to 0 under j∗ there is a compact regular

c-stratifold T with ∂T = S and a map G : T →
◦
W extending j ◦ g. Now

we consider P := T∪∂T×ε/2 ∂T× (0, ε/2] and extend G to a smooth proper

map Ḡ : P →
◦
W in such a way that for t small enough (x, t) is mapped

to ϕ(g(x), t). For some fixed δ > 0 we consider jδ : ∂W →
◦
W by map-

ping x to ϕ(x, δ). For δ small enough (so that the intersection of the image
of T with the image of jδ is empty) we have by construction of [P, Ḡ] that
j∗δ ([P, Ḡ]) = ±[S, g]. Since jδ is homotopic to j we have shown ker j∗ ⊂ im j∗.

To show the reverse inclusion, we consider [P, h] ∈ SHk(
◦
W ). By Sard’s

Theorem h is transverse to ϕ(∂W, δ) for some δ > 0. We denote S = h �
ϕ(∂W × δ). Then j∗δ ([P, h]) = [S, h|S] and — since jδ is homotopic to j
— we have j∗([P, h]) = [S, h|S]. To show that j∗([S, h|S]) = 0 we consider

h−1(
◦
W − (∂W × (0, δ))). We are finished if this is a regular c-stratifold T

with boundary S. Namely then (T, h|T) is a zero bordism of (S, h|S). Now
we assume that S has a bicollar in P . For this we have to replace P by a
bordant regular stratifold as explained in Appendix B (see Lemma B.1 in
the detailed proof of the Mayer-Vietoris sequence). Then it is clear that

h−1(
◦
W − (∂W × (0, δ))) is an oriented regular c-stratifold T with boundary

S which finishes the argument.
q.e.d.

This lemma is normally obtained from the generalization of Poincaré
duality to compact oriented manifolds with boundary, the Lefschetz duality
Theorem. But one only needs this partial elementary information for the
proof of Theorem 15.1.

Combining this lemma with the Kronecker isomorphism (which implies
that after passing to rational (co)homology we have: j∗ = (j∗)∗, where the

last ∗ denotes the dual map) we conclude that for j∗ : SHk(∂W ) → SHk(
◦
W ):

rank(ker j∗) = rank(im((j∗)
∗)).

From linear algebra we know that rank(im j∗) = rank(im((j∗)∗)) and we
obtain:

rank(ker j∗) = rank(im j∗)

and by the dimension formula:

rank(ker j∗) =
1

2
rankSHk(∂W ).
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Applying Lemma 15.2 again we finally note:

rank(im j∗) =
1

2
rankSHk(∂W ).

As the final preparation for the proof of Theorem 15.1 we need the fol-
lowing observation from linear algebra. Let b : V × V → Q be a symmetric
non-degenerate bilinear form on a finite dimensional Q-vector space. Sup-
pose that there is a subspace U ⊂ V with dim U = 1

2 dim V such that, for
all x, y ∈ U , we have b(x, y) = 0. Then τ(b) = 0. The reason is the follow-
ing. Let e1, . . . , en be a basis of U . Since the form is non-degenerate, there
are elements f1, . . . , fn in V such that b(fi, ej) = δij and one can further
achieve that b(fi, fj) = 0. This implies that e1, . . . , en, f1, . . . , fn are linear
independent and thus form a basis of V . Now consider e1 + f1, . . . , en +
fn, e1 − f1, . . . , en − fn and note that, with respect to this basis, b has the
form ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
. . .

2
−2

. . .

−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and thus

τ(b) = 0.

Proof of Theorem 15.1: We first note that for α ∈ im j∗ and β ∈ im j∗

the intersection form S(∂W )(α, β) vanishes. For if α = j∗(ᾱ) and β = j∗(β̄),
then

S(∂W )(α, β) = 〈j∗(ᾱ) � j∗(β̄), [∂W ]〉 = 〈ᾱ � β̄, j∗([∂W ]〉 = 0

since j∗([∂W ]) = 0 (note that W is a zero bordism).

Thus the intersection form vanishes on im j∗. By Poincaré duality the
intersection form S(∂W ) ⊗ Q is non-degenerate. Since the rank of im j∗ is
1
2 rankSH

k(∂W ) the proof is finished using the considerations above from
linear algebra.
q.e.d.
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The significance of Theorem 15.1 becomes more visible if we define bor-
dism groups of compact oriented smooth manifolds. They were introduced
by Thom [Th 1] who computed their tensor product with Q and provided
with this the ground for very interesting applications (for example the sig-
nature theorem, which in a special case we will discuss later). The group
Ωn is defined as the bordism classes of compact oriented smooth manifolds.
More precisely the elements in Ωn are represented by a compact smooth
n-dimensional manifold M and two such manifolds M and M ′ are equiva-
lent if there is a compact oriented manifold W with boundary M � (−M ′).
The sum is given by disjoint union and the inverse of a bordism class [M ]
is [−M ]. Thus the definition is analogous to the definition of SHn(pt), the
difference being that we only consider manifolds instead of regular strati-
folds.

Whereas it was simple to determine SHn(pt), it is very difficult to com-
pute the groups Ωn. This difficulty is indicated by the following consequence
of Theorem 15.1.

The signature of a disjoint union of manifolds is the sum of the signa-
tures, and τ(−M) = −τ(M). Thus we conclude from Theorem 15.1, that

τ : Ω4k(pt) → Z

is a homomorphism. This homomorphism τ : Ω4k(pt) → Z is a surjective
map. The reason is that τ(CP2k) = 1.

Thus we obtain:

Corollary 15.3. For each k ≥ 0 the groups Ω4k(pt) are non-trivial.

It is natural to ask what the signature of a product of two manifolds is.
It is the product of the signatures of the two manifolds:

Theorem 15.4. Let M and N be closed oriented smooth manifolds. Then

τ(M ×N) = τ(M)τ(N).

The proof is based on the Künneth theorem for rational cohomology and
Poincaré duality and we refer to Hirzebruch’s original proof [Hir], p. 85 or
better yet, suggest that readers do the following exercise.
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1. Exercises

(1) Prove Theorem 15.4. (Hint: Apply the Künneth theorem to com-
pute the middle rational cohomology of the product. Decompose
the intersection form as the orthogonal sum of the tensor product
of the intersection forms of the factors and the rest. Show that the
rest is the orthogonal sum of summands which contain a half rank
subspace on which the form vanishes implying that all these terms
have signature zero.)

(2) Show that the signature mod 2 of a closed oriented smooth manifold
M is equal to the Euler characteristic mod 2 (also if the dimension
is not divisible by 4).

(3) Show that the signature of the connected sum M#N is the sum of
the signatures of M and N .

(4) Prove that the signature of a mapping torus Mf is zero, where M is
a closed oriented smooth manifold and f an orientation-preserving
diffeomorphism (see exercise 12 in chapter 8).



Chapter 16

The Euler class

1. The Euler class

We recall the definition of the Euler class. Let p : E → M be a smooth
oriented k-dimensional vector bundle over a smooth oriented manifold M .
Let s : M → E be the zero section. Then e(E) := s∗[M, s] ∈ SHk(M) is
the Euler class of E. The Euler class is called a characteristic class.
We will define other characteristic classes like the Chern, Pontrjagin and
Stiefel-Whitney classes.

By construction the Euler classes of bundles p : E → M and p′ : E′ →
M , which are orientation-preserving isomorphic, are equal. Thus the Euler
class is an invariant of the oriented isomorphism type of a smooth vector
bundle. We also recall Proposition 13.3, that if a smooth oriented bundle E
has a nowhere vanishing section then e(E) = 0. In particular the Euler class
of a positive dimensional trivial bundle is 0. Finally, if we change the orien-
tation of E and f : E → −E is the identity map, then f∗[M, s] = [−M, s],
which implies that, since s and f commute, e(−E) = −e(E).

The following properties of the Euler class are fundamental.

Theorem 16.1. Let p : E → M be a smooth oriented vector bundle. Then,
if −E is E with opposite orientation:

e(−E) = −e(E).

153
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If f : N → M is a smooth map, then the Euler class is natural:

e(f∗E) = f∗(e(E)).

If q : F → M ′ is another smooth oriented vector bundle then

e(E × F ) = e(E)× e(F ),

and if M = M ′,
e(E ⊕ F ) = e(E) � e(F ).

Here we recall that the Whitney sum E ⊕ F := Δ∗(E × F ) is the pull-
back of E ×F under the diagonal map. The fibre of E ⊕F at x is Ex ⊕Fx.

Proof: The first property follows from the definition of the Euler class. For
the second property we divide it up into a series of cases which are more or
less obvious (we suggest that the readers add details as an exercise). We first
consider the case where N ⊂ M is a submanifold ofM and f is the inclusion.
In this case it is clear from the definition that e(f∗E) = f∗e(E). Next
we assume that f is a diffeomorphism and note that the property follows
again from the definition. Combining these two cases we conclude that the
statement holds for embeddings f : N → M . A next obvious case is given
by considering for an arbitrary manifold N the projection p : M ×N → M
and seeing that e(p∗(E)) = p∗(e(E)). Now we consider the general case of
a smooth map f : N → M . Let g : N → M ×N be the map x 	→ (f(x), x).
This is an embedding and pg = f . Thus from the cases above we see:

e(f∗(E)) = e((pg)∗(E)) = e(g∗(p∗(E))) = g∗(e(p∗(E)))

= g∗(p∗(e(E))) = (pg)∗e((E)) = f∗(e(E)).

The property e(E × F ) = e(E) × e(F ) follows again from the definition.
Combining this with the definition of the Whitney sum and naturality we
conclude e(E ⊕ F ) = e(E) � e(F ).
q.e.d.

The following is a useful observation.

Corollary 16.2. Let p : E → M be a smooth oriented vector bundle. If E
is odd-dimensional, then

2e(E) = 0.

Proof: If E is odd-dimensional −id : E → E is an orientation-reversing
bundle isomorphism and thus we conclude that e(E) = −e(E).
q.e.d.
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Remark: The name “Euler class” was chosen since there is a close relation
between the Euler class of a closed oriented smooth manifold M and the
Euler characteristic. Namely:

e(M) = 〈e(TM), [M ]〉,
the Euler characteristic is the Kronecker product between the Euler class of
the tangent bundle and the fundamental class of M . By definition of the
Euler class and the Kronecker product this means that if v : M → TM is a
section, which is transverse to the zero section, then the Euler characteristic
is the sum of the orientations of the intersections of v with the zero section.
This identity is the Poincaré-Hopf Theorem.

In special cases one can compute 〈e(TM), [M ]〉 directly and verify the
Poincaré-Hopf Theorem. We have done this already for spheres. For com-
plex projective spaces one has:

〈e(TCPm), [CPm]〉 = m+ 1

We leave this as an exercise to the reader. Combining it with Proposition
9.5 we conclude:

Theorem 16.3. Each vector field on CPn has a zero.

2. Euler classes of some bundles

Now we compute the Euler class of some bundles. As a first example we
consider the tautological bundle

p : L = {([x], v) ∈ CPn × Cn+1 | v ∈ C · x} → CPn.

This is a complex vector bundle of complex dimension 1, whose fibre over
[x] is the vector space generated by x. By construction the restriction of
the tautological bundle over CPn to CPk for some k < n is the tautological
bundle over CPk. This is the reason which allows us, by abuse of notation,
to use the same name for bundles over different spaces. A complex vec-
tor space V considered as a real vector space has a canonical orientation.
Namely choose a basis (v1, . . . , vn) and consider the basis of the real vec-
tor space (v1, iv1, v2, ivs, . . . , vn, ivn). The orientation given by this basis is
independent of the choice of the basis (v1, . . . , vn) (why?). Using this ori-
entation fibrewise we can consider L as a 2-dimensional oriented real vector
bundle. To compute the Euler class we first consider the case p : L → CP1

and consider the section given by

s : [x0, x1] 	→ ([x0, x1], x0 · x̄1, x1 · x̄1).
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Then
s([x0, x1]) = 0 ⇔ x1 = 0.

To check whether the section is transverse to the zero section and to compute
ε([1, 0]) (the sign coming from the orientations at this point), we choose
local coordinates around this point: ϕ : {([x], v) ∈ CP1 × C2 | v ∈ Cx
and x0 �= 0} → C × C mapping ([x], v) to (x1

x0
, μ), where v = μ(1, x1

x0
).

This map is an isomorphism. With respect to this trivialization, we have
p2ϕs([1, x1]) = p2ϕ([1, x1], (x̄1, x1 · x̄1)) = x̄1. Thus s is transverse to the
zero section and ε([1, 0]) = −1. We conclude:

Proposition 16.4. 〈e(L), [CP 1]〉 = −1.

We return to the tautological bundle p : L → CPn over CPn. The
restriction of p : L → CPn to CP1 is p : L → CP1. Using the naturality of the
Euler class the statement above implies 〈e(L), [CP1, i]〉 = −1. We recall that
we defined x := [CPn−1, i] ∈ SH2(CPn) and showed that 〈x, [CP1, i]〉 = 1.
Thus Proposition 16.4 implies:

e(L) = −x.

As another example we consider the complex line bundle

Ek := D2 × C ∪fk −D2 × C
p1−→ D2 ∪ −D2 = S2,

where fk : S1 ×C → S1 ×C maps (z, v) 	→ (z, zk · v). This bundle is closely
related to lens spaces. If we equip Ek with the Riemannian metric induced
from the standard Euclidean metric on C = R2, the lens space Lk is the
sphere bundle SEk. The bundle Ek can naturally be equipped with the
structure of a smooth vector bundle by describing it as:

C× C ∪gk C× C

with
gk : C∗ × C −→ C∗ × C

(x, y) 	−→ (1/x, xky).

If we consider Ek above as an oriented bundle over D2∪z̄ D
2 instead of over

the diffeomorphic oriented manifold D2 ∪ −D2, we have to describe Ek =

D2×C∪f ′
k
D2×C

p1−→ D2∪z̄D
2 = S2, where f ′

k(z, v) = (z̄, zk·v) = (1/z, zk·v).

This describes Ek as a smooth (even holomorphic) vector bundle over
C ∪ 1

x
C = S2. Now we first compute 〈e(E1), [S

2]〉 by choosing a section

which is transverse to the zero section. For ||x|| < 2 and x ∈ C, the first
copy of C in C ∪ 1

x
C, we define the section as s(x) := (x, x̄) and for z in

the second copy we define s(z) := (z, ρ(||z||)2), where ρ : [0,∞) → (0,∞)
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is a smooth function with ρ(s) = 1/s for s > 1/2. This smooth section has
a single zero at 0 in the first summand and there it intersects transversely
with local orientation −1.

We conclude:

〈e(E1), [S
2]〉 = −1.

From this we compute 〈e(Ek), [S
2]〉 for all k by showing

〈e(Ek+�), [S
2]〉 = 〈e(Ek), [S

2]〉+ 〈e(E�), [S
2]〉.

Consider D3 with two holes as in the following picture, and denote this 3-
dimensional oriented manifold by M :

S    Ix
1

S    Ix
1

Decompose M along the two embedded S1 × I’s and denote the three
resulting areas by M1,M2 and M3. Now construct a bundle over M by
gluing M1×C to M2×C via fk × id : S1×C× I → S1×C× I, and M2×C

to M3 × C via f� × id : S1 × C× I → S1 × C× I to obtain

E := M1 × C ∪fk×id M2 × C ∪f�×id M3 × C
p1−→ M1 ∪M2 ∪M3 = M.

Orient M so that ∂M = S2 + (−S2
1) + (−S2

2), where S2
i are the boundaries

of the two holes. Then the reader should convince himself that

E|S2 = Ek+�

since we can combine the two gluings by fk and f� along the two circles into
one gluing by f� ◦ fk = f�+k. By construction, E|S2

1
= Ek and E|S2

2
= E�.

Next we note that

〈e(E), [∂M ]〉 = 0

since [∂M ] is zero in SH2(M) (M itself is a zero bordism of ∂M). But

〈e(E), [∂M ]〉 = 〈e(E), ([S2] + [−S2
1 ] + [−S2

2 ])〉

= 〈e(E|S2), [S2]〉 − 〈e(E|S2
1
), [S2

1 ]〉 − 〈e(E|S2
2
), [S2

2 ]〉

= 〈e(Ek+�), [S
2]〉 − 〈e(Ek), [S

2]〉 − 〈e(El), [S
2]〉.
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Since 〈e(E), [∂M ]〉 = 0 we have shown:

Lemma 16.5. The map Z → Z mapping k to 〈e(Ek), [S
2]〉 is a homomor-

phism.

Combining this with the fact 〈e(E1), [S
2]〉 = −1, we conclude

Proposition 16.6.

〈e(Ek), [S
2]〉 = −k.

In particular: There is an orientation-preserving bundle isomorphism be-
tween Ek and Er if and only if k = r.

In complete analogy we study the bundle Ek,� over S
4 given as

D4 ×H ∪fk,� −D4 ×H
p1−→ D4 ∪ −D4 = S4

where

fk,�(z, v) = (z, zk · v · z�)
and we use quaternionic multiplication (z ∈ S3). As in the case of Ek over
S4, we show that

〈e(E1,0), [S
4]〉 = −1.

By the same argument as in the case of Ek, one shows

〈e(Ek+k′,l+�′), [S
4]〉 = 〈e(Ek,�), [S

4]〉+ 〈e(Ek′,�′), [S
4]〉

or, in other words, that the map Z×Z → Z mapping (k, �) to 〈e(Ek,�), [S
4]〉

is a homomorphism.

Next we consider the following isomorphism of H, considered as a real
vector space:

(z1, z2) 	→ (z̄1,−z2) =: (z1, z2)

and note that, for z ∈ S3, we have z̄ = z−1. Further x · y = ȳ · x̄. Now
consider the bundle isomorphism

Ek,� → E−�,−k

mapping (x, v) 	→ (x, v̄). Since v 	→ v̄ is orientation-reversing, this implies

Ek,�
∼= −E−�,−k

and so

−〈e(Ek,�), [S
4]〉 = 〈e(E−�,−k), [S

4]〉.
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This implies

〈e(Ek,�), [S
4]〉 = c(k + �)

for some constant c. Since 〈e(E1,0), [S
4]〉 = −1, we conclude c = −1 and

thus we have shown

Proposition 16.7. 〈e(Ek,�), [S
4]〉 = −k − �.

3. The top Stiefel-Whitney class

If we consider n-dimensional smooth vector bundles E which are not neces-
sarily oriented over not necessarily oriented manifolds M we can define the
class wn(E) ∈ SHn(M ;Z/2) as s∗([M, s]). It is called the n-th Stiefel-
Whitney class of E or the top Stiefel-Whitney class. Perhaps a bet-
ter name for the top Stiefel-Whitney class would be to call it the mod 2
Euler class, since it is the version of the Euler class for Z/2-cohomology.
The “n” indicates that there are other Stiefel-Whitney classes wk(E) ∈
SHk(M ;Z/2), which is the case. They are treated in the next chapter.
These classes are zero for k > n, which is why we call wn(E) the top Stiefel-
Whitney class. It has properties analogous to the Euler class. If E and M
are oriented then the top Stiefel-Whitney class is the Euler class considered
(by reduction mod 2) as a class in Z/2-cohomology.

4. Exercises

(1) Let E and F be n-dimensional oriented smooth vector bundles
over n-dimensional closed smooth oriented manifolds M and N .
Construct a smooth oriented vector bundle E#F over M#N such
that the bundle agrees outside the discs used to construct the con-
nected sum with E and F and 〈e(E#F ) , [M#N ]〉 = 〈e(E) , [M ]〉+
〈e(F ) , [N ]〉.

(2) Construct for each integer k an oriented smooth 2-dimensional vec-
tor bundle E over a surface Fg of genus g such that 〈e(E) , [Fg]〉 = k.

(3) Let E be a complex line bundle (the complex dimension of E is 1)
over M . Let v be a non-zero vector in Ex. Show that the basis
(v, iv) determines a well defined orientation of Ex (independent
of the choice of v) and that this makes E an oriented real vector
bundle of real dimension 2. Let F be another complex line bundle.
Show that e(E⊗F ) = e(E)+e(F ), where E⊗F is the vector bundle
obtained by taking fibrewise the tensor product. (Hint: Consider
the vector bundle p∗1(E)⊗ p∗2(F ) over M ×M .)
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(4) Let E be a 2-dimensional vector bundle over Sn. Show that E is
trivial if n > 2. (Hint: You can use that the πi(SO(2)) = 0 for
i > 1.)

(5) Let E be a vector bundle over a simply connected CW -complex X.
Show that E is orientable.

(6) LetM be an n-dimensional smooth manifold with an n-dimensional
oriented smooth vector bundle E over it such that E ⊕ M × R is
isomorphic to M × Rn+1. Show that E is trivial if and only if
e(E) = 0. You are allowed to use that E|M−pt is trivial and that
the statement holds for M = Sn.



Chapter 17

Chern classes and
Stiefel-Whitney classes

Now we define the Chern classes of a complex vector bundle p : E → M
over a smooth oriented manifold M . We remind the reader that a smooth
k-dimensional complex vector bundle is a smooth map p : E → M to-
gether with a C-vector space structure on the fibres which is locally isomor-
phic to U × Ck, where ”isomorphism” means diffeomorphism and fibrewise
C -linear. For example we know that the tautological bundle p : L → CPn is
a 1-dimensional complex vector bundle. If E and F are complex vector bun-
dles the Whitney sum E⊕F is a complex vector bundle. Given two complex
vector bundles E and F one can consider their tensor product E⊗CF which
is obtained by taking fibrewise the tensor product to obtain a new complex
vector bundle [Mi-St]. If E and F are smooth vector bundles then E ⊗C F
is again smooth.

To prepare for the definition of the Chern classes we consider, for a
smooth manifoldM , the homology ofM×CPN , for someN . By the Künneth
Theorem and the fact that SH∗(CPN ) = Z[e(L)]/e(L)N+1 (implying that the

cohomology of CPN is torsion-free) we have for k ≤ N (if M admits a finite
good atlas):

SHk(M × CPN ) ∼= (SHk(M)⊗ Z · 1)⊕ (SHk−2(M)⊗ Z · e(L))

⊕(SHk−4(M)⊗ Z · (e(L) � e(L)))⊕ · · · .
Actually the same result is true for arbitrary manifolds M as one can show
inductively over N using the Mayer-Vietoris sequence. Now let p : E → M
be a smooth k-dimensional complex vector bundle and consider p∗1E⊗C p

∗
2L,

161
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a complex vector bundle over M × CPN for some N ≥ k, where p1 and p2
are the projections to the first and second factor. Since every k-dimensional
complex vector bundle considered as a real bundle has a canonical orienta-
tion, we can consider the Euler class e(p∗1E⊗C p

∗
2L) ∈ SH2k(M×CPN ). Us-

ing the isomorphism above we define the Chern classes ci(E) ∈ SH2i(M)
by the equation

e(p∗1E ⊗C p∗2L) =
k∑

i=0

ci(E)× e(L)k−i.

In other words the Chern classes are the coefficients of e(p∗1E ⊗C p∗2L) if we
consider the Euler class as a “polynomial” in e(L).

Since for the inclusion i : CPN → CPN+1 we know that i∗L is the tauto-
logical bundle over CPN , if L was the tautological bundle over CPN+1, this
definition does not depend on N for N ≥ k.

We prove some basic properties of the Chern classes. The naturality of
the Euler class implies that the Chern classes are natural, i.e., if f : N → M
is a smooth map, then

ck(f
∗(E)) = f∗(ck(E)).

The Chern classes depend only on the isomorphism class of the bundle. Both
these facts imply that the Chern classes of a trivial bundle are zero except
c0 = 1. By restricting the bundle to a point we conclude that for arbitrary
bundles E we have

c0(E) = 1.

By construction ci(E) = 0 for i > k, where k is the complex dimension
of E. Next we note that ck(E) = e(E). To see this, fix a point x0 ∈ CPN

and consider the inclusion

j : M −→ M × CPN

x 	−→ (x, x0).

Then j∗(p∗1E ⊗C p∗2L) = j∗(p∗1E) ⊗C j∗(p∗2L)
∼= j∗(p∗1E) = E, since p2j

is the constant map and so j∗(p∗2L) is the product bundle M × C. On

the other hand j∗ : SH2k(M × CPN ) → SH2k(M) maps SH2k(M) ⊗ Z ·
e(L)0 ∼= SH2k(M) identically to SH2k(M) and the other summands in the
decomposition to 0. Thus e(E) = e(j∗(p∗1E⊗C p

∗
2L)) = j∗(e(p∗1E⊗C p

∗
2L)) =

j∗(ck(E))× e(L)0, and therefore

e(E) = ck(E).
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This property together with the following product formula is a basic
feature of the Chern classes. We would like to know cr(E ⊕ F ) for k and
�-dimensional complex vector bundles E and F over M . For this we choose
N ≥ k + � and note that

p∗1(E ⊕ F )⊗C p∗2L = (p∗1E ⊗C p∗2L)⊕ (p∗1F ⊗C p∗2L).

Then we conclude from

e((p∗1E ⊗C p∗2L)⊕ (p∗1F ⊗C p∗2L)) = e(p∗1E ⊗C p∗2L) � e(p∗1F ⊗C p∗2L)

and the definition of the Chern classes:
k+�∑
i=0

ci(E ⊕ F )× e(L)k+�−i = (

k∑
r=0

cr(E)× e(L)k−r) � (

�∑
s=0

cs(F )× e(L)�−s),

that
ci(E ⊕ F ) =

∑
r+s=i

cr(E) � cs(F ).

A convenient way to write the product formula is to consider the Chern
classes as elements of the cohomology ring SH∗(M) =

⊕
k SH

k(M). We
define the total Chern class as

c(E) :=
∑
k

ck(E) ∈ SH∗(M).

Then the product formula translates to:

c(E ⊕ F ) = c(E) � c(F ).

We summarize these properties as

Theorem 17.1. Let E be a k-dimensional smooth complex vector bundle
over M .
- The Chern classes are natural, i.e., if f : N → M is a smooth map, then

ck(f
∗(E)) = f∗(ck(E)).

- The Chern classes depend only on the isomorphism type of the bundle.
- For i > k we have

ci(E) = 0.

- For i = 0 resp. k we have
c0(E) = 1,

ck(E) = e(E),

in particular c1(L) = −x, where L and x are as in Proposition 16.4.
- If E and F are smooth complex vector bundles over M , then (Whitney
formula)

cr(E ⊕ F ) =
∑

i+j=r

ci(E) � cj(F ),
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or using the total Chern class:

c(E ⊕ F ) = c(E) � c(F ).

One can show that these properties characterize the Chern classes uniquely
[Mi-St].

We conclude this chapter by briefly introducing Stiefel-Whitney classes
(although we will not apply them in this book). The definition is completely
analogous to the definition of the Euler class and the Chern classes. The
main difference is that we will replace oriented or even complex vector bun-
dles by arbitrary vector bundles.

If E is a k-dimensional vector bundle (not oriented) we made the same
construction as for the Euler class with Z/2-cohomology instead of inte-
gral cohomology and defined the highest Stiefel-Whitney class wk(E) :=
s∗[M, s] ∈ SHk(M ;Z/2). This class fulfills the analogous properties that
were shown for the Euler class in Theorem 16.1.

Now we define the lower Stiefel-Whitney classes. This is done in com-
plete analogy to the Chern classes, where we replace the Euler class by the
k-th Stiefel-Whitney class and the tautological bundle over the complex pro-
jective space by the tautological bundle L over RPN . This is a 1-dimensional
real bundle. The Z/2-cohomology of M × RPN is:

SHk(M × RPN ;Z/2) ∼= (SHk(M ;Z/2)⊗ Z/2) · 1

⊕(SHk−1(M ;Z/2)⊗ Z/2) · w1(L)

⊕(SHk−2(M ;Z/2)⊗ Z/2) · (w1(L) � w1(L))⊕ · · · .

Then we define the Stiefel-Whitney classes of a real smooth vector
bundle E of dimension k overM , denoted wi(E) ∈ SH i(M), by the equation

wk(p
∗
1(E)⊗R p∗2(L)) =

k∑
i=0

wi(E)× w1(L)
k−i.

In other words, the Stiefel-Whitney classes are the coefficients of e(p∗1(E)⊗R

p∗2(L)) if we consider the Euler class as a “polynomial” in w1(L). By an
argument similar to the one given for Theorem 17.1 one proves:

Theorem 17.2. Let E be a k-dimensional smooth real vector bundle over
M . Then analogues of the statements in the previous theorem holds. In
particular for i > k:

wi(E) = 0.
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If E and F are smooth vector bundles over M , then (Whitney formula)

wr(E ⊕ F ) =
∑

i+j=r

wi(E) � wj(F ).

1. Exercises

(1) Let E be a complex vector bundle over M . Let Ē be the bundle
with the conjugate complex structure, i.e., multiplication by λ is
given by multiplication with λ̄. Show that

ck(Ē) = (−1)kck(E).

(2) Show that the first Chern class of the tensor product of two complex
vector bundles is the sum of the first Chern classes.

(3) Compute the Chern classes of the bundle over S2 × S2 given by
E := p∗1(L) ⊕ p∗2(L), where L is the tautological bundle over S2 =
CP1.

(4) Construct a complex line bundle F over S2 × S2 with first Chern
class −c1(E), where E is as in the previous exercise.

(5) Show that a complex line bundle E over S2 is trivial if and only if
c1(L) = 0. (You can use that the isomorphism classes of complex
line bundles over S2 are isomorphic as a set to π1(S

1) under the
map which to each element [f ] ∈ π1(S

1) attaches the bundle D2 ×
C∪f D

2×C obtained by identifying (x, y) ∈ S1×C with (x, f(x)y)
in the other copy.)

(6) Let E be a complex vector bundle over Sn ×Sm, whose restriction
to Sn ∨ Sm is trivial. Let p : Sn × Sm → Sn+m be the pinch map
which collapses everything outside a small disc in Sn × Sm to a
point and is the identity on the interior. Construct a bundle F
over Sn+m such that p∗(F ) is isomorphic to E.

(7) Construct a complex vector bundle E over S4 with 〈c2(E), [S4]〉 =
1.





Chapter 18

Pontrjagin classes and
applications to bordism

1. Pontrjagin classes

To obtain invariants for k-dimensional real vector bundles E we simply com-
plexify the bundle, considering

E ⊗R C.

This means that we replace the fibres Ex of E by the complex vector spaces
Ex ⊗R C or equivalently by Ex ⊕ Ex with complex vector space structure
given by i · (v, w) := (−w, v). This is a complex vector bundle of complex
dimension k and we define the r-th Pontrjagin class

pr(E) := (−1)rc2r(E ⊗R C) ∈ SH4r(M).

Here one might wonder why we have not taken c2r+1(E ⊗R C) into ac-
count. The reason is that these classes have order 2, as we will discuss. Also
the sign convention asks for an explanation. One could leave out the sign
without any problem. Probably the historical reason for the sign convention
is that for 2n-dimensional oriented bundles one can show (see exercise 2):

pn(E) = e(E) � e(E).

167
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We prepare for the argument that the classes c2r+1(E⊗RC) are 2-torsion
with some general considerations. If V is a complex k-dimensional vector
space, we consider its conjugate complex vector space V̄ with new scalar
multiplication λ � v := λ̄ · v. Note that the orientation of V̄ , as a real vector
space, is (−1)k times the orientation of V (why?). Taking the conjugate
complex structure fibrewise we obtain for a complex bundle E the conju-
gate bundle Ē. The change of orientation of vector spaces translates to
complex vector bundles giving for a k-dimensional complex vector bundle
that as oriented bundles Ē ∼= (−1)kE. From this one concludes (exercise 1,
chapter 17):

ci(Ē) = (−1)ici(E).

Now we note that since C is as a complex vector space isomorphic to its
conjugate this isomorphism induces an isomorphism:

E ⊗R C ∼= E ⊗R C.

Thus c2r+1(E ⊗R C) = −c2r+1(E ⊗R C) implying 2c2r+1(E ⊗R C) = 0.

Since 2c2r+1(E ⊗R C) = 0, the product formula for the Chern classes
gives the corresponding product formula for the Pontrjagin classes of
real vector bundles E and F :

pr(E ⊕ F ) =
∑

i+j=r

pi(E) � pj(F ) + β,

where 2β = 0.

We introduce the total Pontrjagin class:

p(E) :=
∑
k

pk(E) ∈ SH∗(M)

and rewrite the product formula as:

p(E ⊕ F ) = p(E) � p(F ) + β,

where 2β = 0.

For the computation of the Pontrjagin classes of a complex vector bundle
the following considerations are useful. Let V be a complex vector space.
If we forget that V is a complex vector space and complexify it to obtain
V ⊗R C, we see that V ⊗R C is, as a complex vector space, isomorphic to
V ⊕ V̄ . Namely, V ⊗RC is, as a real vector space, equal to V ⊕V and, with
respect to this decomposition, the multiplication by i maps (x, y) to (−y, x).
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With this we write down an isomorphism

V ⊗R C = V ⊕ V −→ V ⊕ V̄
(x, y) 	−→ (x+ iy, ix+ y).

This extends to vector bundles. For a complex vector bundle E the
fibrewise isomorphism above gives an isomorphism:

E ⊗R C ∼= E ⊕ Ē.

Using the product formula for Chern classes one can express the Pontrjagin
classes of a complex vector bundle E in terms of the Chern classes of E. For
example:

p1(E) = −c2(E⊕ Ē) = −(c1(E) � c1(Ē)+c2(E)+c2(Ē)) = c21(E)−2c2(E).

Now, we compute 〈p1(Ek,�), [S
4]〉, where p : Ek,� → S4 is the R4-bundle

considered in chapter 17. As for the Euler class one shows that

(k, �) 	−→ 〈p1(Ek,�), [S
4]〉

is a homomorphism. Next we observe that p1(Ek,�) does not depend on
the orientation of Ek,� and, since Ek,� is isomorphic to E−�,−k (reversing
orientation), we conclude

〈p1(Ek,�), [S
4]〉 = 〈p1(E−�,−k), [S

4]〉.

Linearity and this property imply that there is a constant a such that

〈p1(Ek,�), [S
4]〉 = a(k − �).

To determine a we compute 〈p1(E0,1), [S
4]〉. Since, for a fixed element x ∈ H,

the map y 	→ y ·x is C -linear, E0,1 is a complex vector bundle. Thus by the
formula above:

p1(E0,1) = −2c2(E0,1) = −2e(E0,1).

From 〈e(Ek,�), [S
4]〉 = −k − � we conclude

〈p1(E0,1), [S
4]〉 = 2

and thus we have proved:

Proposition 18.1.

〈p1(Ek,�), [S
4]〉 = −2(k − �).
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2. Pontrjagin numbers

To demonstrate the use of characteristic classes we consider the follow-
ing invariants for closed smooth 4k-dimensional manifolds M . Let I :=
(i1, i2, . . . , ir) be a sequence of natural numbers 0 < i1 ≤ · · · ≤ ir such that
i1 + · · ·+ ir = k, i.e., I is a partition of k. Then we define the Pontrjagin
number

pI(M) := 〈pi1(TM) � · · · � pir(TM), [M ]〉 ∈ Z.

To compute the Pontrjagin numbers in examples we consider the com-
plex projective spaces and look at their tangent bundles. To determine this
bundle we consider the following line bundle over CPn, the Hopf bundle.
Its total space H is the quotient of S2n+1×C under the equivalence relation
(x, z) ∼ (λx, λz) for some λ ∈ S1. The projection p : H → CPn maps [(x, z)]
to [x]. The fibre over [x] is equipped with the structure of a 1-dimensional
complex vector space by defining [(x, z)] + [(x, z′)] := [(x, z + z′)]. A local
trivialization around [x] is given as follows: Let xi be non-zero and define
Ui := {[y] ∈ CPn | yi �= 0}. Then a trivialization over Ui is given by the
map p−1(Ui) → Ui × C mapping [(x, z)] to ([x], z/xi).

Proposition 18.2. There is an isomorphism of complex vector bundles

TCPn ⊕ (CPn × C) ∼= (n+ 1)H.

Proof: We start with the description of CPn as

Cn+1 − {0}/C∗ = Cn+1 − {0}/∼
where x ∼ λx for all λ ∈ C∗. Let π : Cn+1 − {0} −→ CPn be the canon-
ical projection. This is a differentiable map. Moreover, if we use com-
plex charts for CPn, it even is a holomorphic map. Using local coordi-
nates, one checks that for each x ∈ Cn+1 − {0} the complex differential
dπx : Cn+1 = Tx(C

n+1 − {0}) → T[x]CP
n is surjective.

If for some λ ∈ C∗ we consider the map Cn+1 → Cn+1 given by multi-
plication with λ, its complex differential acts on each tangent space Cn+1 as
multiplication by λ. Thus the differential

dπ : T (Cn+1 − {0}) → TCPn

induces a fibrewise surjective bundle map between two bundles over CPn

[dπ] : (Cn+1 − {0})× Cn+1/∼ → TCPn

where (x, v) ∼ (λx, λv). The bundle

(Cn+1 − {0})× Cn+1/∼ → CPn



2. Pontrjagin numbers 171

given by projection onto the first factor is (n+ 1)H.

To finish the proof, we have to extend the bundle map [dπ] to a bundle
map

(Cn+1 − {0})× Cn+1/∼ → TCPn ⊕ (CPn × C)

which is fibrewise an isomorphism. This map is given by

[x, v] 	−→ ([dπ]([x, v]), ([x], 〈v/||x||, x/||x||〉))

where 〈v, x〉 is the hermitian scalar product Σvi · x̄i and ||x|| =
√

〈x, x〉.

Since the kernel of [dπx] consists of all v which are multiples of x, the
map is fibrewise injective and thus fibrewise an isomorphism, since both
vector spaces have the same dimensions.
q.e.d.

To compute the Pontrjagin classes of the complex projective spaces we
have to determine the characteristic classes of H. Since H is a complex line
bundle, its first Chern class is equal to e(H) ∈ SH2(CPn). Since SH2(CPn)
is generated by e(L) we know that e(H) = k ·e(L) for some k. To determine
k it is enough to consider p : H → CP1 and to compute 〈e(H), [CP1]〉. For
this consider the section [x] → [x, x0] which has just one zero at [x] = [0, 1]
where it is transverse. One checks that the local orientation at this point is
1. We conclude:

〈e(H), [CP1]〉 = 1

and thus

c1(H) = e(H) = −e(L).

Now using the relation between the Pontrjagin and Chern classes of a
complex bundle above we see that

p1(H) = c1(H)2 − 2c2(H) = e(L)2,

since c2(H) = 0. Thus

p(H) = 1 + e(L)2.

With the product formula for Pontrjagin classes and the fact that the
cohomology of CPn is torsion-free and finitely generated, we conclude from
TCPn ⊕ (CPn ×C) = (n+ 1)H that p(TCPn) = p((n+ 1)H) and using the
product formula again:
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Theorem 18.3. The total Pontrjagin class of the complex projective space
CPn is:

p(TCPn) = 1+ p1(TCP
n) + · · ·+ p[n/2](TCP

n) = p(H)n+1 = (1+ e(L)2)n+1

or

pk(TCP
n) =

(
n+ 1

k

)
· e(L)2k.

We use this to compute the following Pontrjagin numbers. We recall
that as a consequence of Proposition 11.3 we saw that e(L) = −x and from
chapter 11 that 〈xn, [CPn]〉 = 1. Thus 〈e(L)2n, [CP2n]〉 = 1 and we obtain
for example:

p(1)(CP
2) = 3,

p(1,1)(CP
4) = 25,

p(2)(CP
4) = 10.

3. Applications of Pontrjagin numbers to bordism

One of the reasons why Pontrjagin numbers are interesting, is the fact
that they are bordism invariants for oriented manifolds. We first note
that they are additive under disjoint union and change sign if we pass
from M to −M (note that the Pontrjagin classes do not depend on the
orientation of a bundle, but the fundamental class does). To see that
Pontrjagin numbers are bordism invariants, let W be a compact oriented
(4k + 1)-dimensional smooth manifold with boundary. Using our collar
we identify an open neighbourhood of ∂W in W with ∂W × [0, 1). Then

T
◦
W |∂W×(0,1) = T∂W × ((0, 1) × R). Thus from the product formula we

conclude: j∗(pi1(TW ) � · · · � pir(TW )) = pi(T∂W ) � · · · � pir(T∂W ),
where j is the inclusion from ∂W to W . From this we see by naturality:

pI(∂W ) = 〈pi1(T∂W ) � · · · � pir(T∂W ), [∂W ]〉
= 〈pi1(TW ) � · · · � pir(TW ), j∗[∂W ]〉 = 0,

the latter following since j∗[∂W ] = 0 (W is a null bordism!). We summarize:

Theorem 18.4. The Pontrjagin numbers induce homomorphisms from the
oriented bordism group Ω4k to Z :

pI : Ω4k −→ Z.

Since pn(TCP
2n) =

(2n+1
n

)
· e(L)2n, the homomorphism p(n) : Ω4n → Z

is non-trivial and we have another proof for the fact we have shown using
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the signature, namely that Ω4k �= 0 for all k ≥ 0.

The existence of a homomorphism Ω4k → Z for each partition I of k nat-
urally raises the question whether the corresponding elements in Hom(Ω4k,Z)
are all linearly independent. This is in fact the case and is proved in [Mi-St].
In low dimensions one can easily check this by hand. In dimension 4 there
is nothing to show. In dimension 8 we consider CP2 × CP2. The tangent
bundle is TCP2 × TCP2 or p∗1TCP

2 ⊕ p∗2TCP
2. Thus by the product for-

mula for the Pontrjagin classes p1(T (CP
2 × CP2)) = p∗13e(L)

2 + p∗23e(L)
2

and p2(T (CP
2 × CP2)) = p∗13e(L)

2 � p∗23e(L)
2 = 9(p∗1e(L)

2 � p∗2e(L)
2) or

9(e(L)2 × e(L)2). By definition of the cross product

〈e(L)2 × e(L)2, [CP2 × CP2]〉 = 〈e(L)2, [CP2]〉 · 〈e(L)2, [CP2]〉 = 1

and so

p(2)(CP
2 × CP2) = 9

and, using p1(TCP
2) = 3e(L)2 we compute:

(p1(T (CP
2 × CP2)))2 = (p∗13e(L)

2 + p∗23e(L)
2)2

= 9p∗1e(L)
4 + 18(p∗1e(L)

2 � p∗2e(L)
2) + 9p∗2e(L)

4

= 18(p∗1e(L)
2 � p∗2e(L)

2) = 18(e(L)2 × e(L)2).

We conclude that

p(1,1)(CP
2 × CP2) = 18.

With this information one checks that the matrix⎛
⎝ p(1,1)(CP

4) p(1,1)(CP
2 × CP2)

p(2)(CP
4) p(2)(CP

2 × CP2)

⎞
⎠ =

(
25 18
10 9

)

is invertible and the two homomorphisms on Ω8 are linearly independent.
We summarize:

Theorem 18.5. The ranks of Ω4 and Ω8 satisfy the inequalities

rank Ω4 ≥ 1

and

rank Ω8 ≥ 2.

For the first inequality we already have another argument using the
signature (Corollary 15.3).
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4. Classification of some Milnor manifolds

For a final application of characteristic classes in this section, we return to
the Milnor manifolds Mk,�. For dimensional reasons, there is just one Pontr-
jagin class which might be of some use, namely p1(TMk,�) ∈ SH4(Mk,�;Z).
Since this group is torsion except for k + � = 0 (Proposition 11.4), we only
look at Mk,−k. Since SH4(Mk,−k) ∼= Z, there is up to sign a unique gen-
erator [V, g] ∈ SH4(Mk,−k). Thus we can obtain a numerical invariant by
evaluating p1(TMk,−k) on [V, g] and taking its absolute value:

Mk,−k 	−→ |〈p1(TMk,−k), [V, g]〉|.
This is an invariant of the diffeomorphism type of Mk,−k.

To compute this number, recall that Mk,� is the sphere bundle of Ek,�.
Thus TMk,�⊕(Mk,�×R) = TD(Ek,�)|Mk,�

= TEk,�|Mk,�
(for the first identity

use a collar of SEk,� = Mk,� in DEk,�). Let j : Mk,� → Ek,� be the inclusion.
Then our invariant is

|〈p1(TMk,−k), [V, g]〉| = |〈j∗p1(TEk,−k), [V, g]〉|

= |〈p1(TEk,−k), j∗[V, g]〉|

= |〈p1(i∗TEk,−k), [S
4]〉|.

The last equality comes from two facts, namely that the map

j∗ : H4(Mk,−k) → H4(Ek,−k)

is an isomorphism (this follows from a computation of the homology of Ek,−k

using the Mayer-Vietoris sequence as for Mk,−k and comparing these ex-
act sequences) and that the inclusion i : S4 → Ek,−k given by the zero
section induces an isomorphism SH4(S

4) → SH4(Ek,−k). To compute
p1(i

∗TEk,−k) = p1(TEk,−k|S4), we note that TEk,�|S4
∼= TS4 ⊕ Ek,�. The

isomorphism is induced by the differential of i from TS4 to TEk,� and by the
differential of the inclusion of a fibre (Ek,�)x to Ek,� giving a homomorphism
T ((Ek,�)x) = Ek,� → TEk,�. With the help of a local trivialization one checks
that this bundle map TS4 ⊕ Ek,� → TEk,�|S4 is fibrewise an isomorphism
and thus a bundle isomorphism.

Returning to the Milnor manifolds, since TS4 ⊕ (S4 × R) = TR5|S4 =
S4 × R5, we note that:

|〈p1(i∗TEk,−k), [S
4]〉| = |〈p1(Ek,−k), [S

4]〉| = 4|k|.
Thus |k| is a diffeomorphism invariant of Mk,−k as was also the case with
Lk. But there is a big difference between the two cases since for Lk we
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have detected |k| as the order of SH1(Lk), whereas all Mk,−k have the same
homology and we have used a more subtle invariant to distinguish them.

Finally, we construct an (orientation-reversing) diffeomorphism from
Mk,� to M−k,−� by mapping D4 × S3 to D4 × S3 via (x, y) 	→ (x̄, y) and
−D4 × S3 to −D4 × S3 via (x, y) 	→ (x̄, y). Thus we conclude:

Theorem 18.6. Two Milnor manifolds Mk,−k and Mr,−r are diffeomorphic
if and only if |k| = |r|.

5. Exercises

(1) Let E be a complex vector bundle over S4k. Give a formula for the
Pontrjagin class pk(E) in terms of c2k(E).

(2) Let E be a 2k-dimensional oriented vector bundle. Prove that
pk(E) = e(E) � e(E).

(3) Let E be a not necessarily oriented 2k-dimensional vector bundle.
Prove that the class represented by pk(E) in Z/2-cohomology is
equal to w2k(E) � w2k(E).

(4) Prove that 〈pk(E), [S4k]〉 is even for all vector bundles E over S4k.
You can use (or better prove it as an application of Sard’s the-
orem) that an r-dimensional vector bundle over Sn with r > n
is isomorphic to F ⊕ (Sn × Rr−n) for some n-dimensional vector
bundle F .





Chapter 19

Exotic 7-spheres

1. The signature theorem and exotic 7-spheres

At the end of the last section we determined those Milnor manifolds for
which SH4(M) ∼= Z. In this chapter we want to look at the other extreme
case, namely where all homology groups of Mk,� except in dimensions 0
and 7 are trivial. By Proposition 11.4 this is equivalent to k + � = ±1.
Then homologically Mk,±1−k looks like S7. We are going to prove that it is
actually homeomorphic to S7, a remarkable result by Milnor [Mi 1]:

Theorem 19.1. (Milnor): The Milnor manifolds Mk,±1−k are homeomor-
phic to S7.

Although the proof of this result is not related to the main theme of this
book we will give it at the end of this chapter for completeness.

This result raises the question whether all manifolds Mk,±1−k are dif-
feomorphic to S7. We will show that in general this is not the case. We
prepare the argument by some considerations concerning bordism groups
and the signature.

In chapter 18 we have introduced Pontrjagin numbers, which turned out
to be bordism invariants for oriented smooth manifolds. We used them to
show that the rank of Ω4 is at least one and the rank of Ω8 is at least two.
Moreover, the Pontrjagin numbers can be used to show that for all k the
products of complex projective spaces CP2i1×· · ·×CP2ir for i1+ · · ·+ir = k

177
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are linearly independent [Mi-St], implying rank Ω4k ≥ π(k), the number of
partitions of k. In his celebrated paper [Th 1] Thom proved that dim Ω4k⊗
Q = π(k).

Theorem 19.2. (Thom) The dimension of Ω4k ⊗ Q is π(k) and the pro-
ducts

[CP2i1 × · · · × CP2ir ]

for i1 + · · ·+ ir = k form a basis of Ω4k ⊗Q.

The original proof of this result consists of three steps. The first is a
translation of bordism groups into homotopy groups of the so-called Thom
space of a certain bundle, the universal bundle over the classifying space for
oriented vector bundles. The main ingredient for this so called Pontrjagin-
Thom construction is transversality. The second is a computation of the
rational cohomology ring. Both steps are explained in the book [Mi-St].
The final step is a computation of the rational homotopy groups of this
Thom space. Details for this are not given in Milnor-Stasheff, where the
reader is referred to the original paper of Serre. An elementary proof based
on [K-K] is sketched in [K-L, p.14 ff].

Now we will apply Thom’s result to give a formula for the signature in
low dimensions. The key observation here is the bordism invariance of the
signature (Theorem 11.6). We recall that the signature induces a homomor-
phism

τ : Ω4k → Z.

Combining this fact with Theorem 19.2 we conclude that the signature can
be expressed as a linear combination of Pontrjagin numbers. For example, in
dimension 4, where Ω4⊗Q ∼= Q, the formula can be obtained by comparing
1 = τ(CP2) with 〈p1(TCP2), [CP2]〉 = 3 and so, for all closed oriented smooth
4-manifolds, one has the formula:

τ(M) =
1

3
〈p1(TM), [M ]〉.

In dimension 8 one knows that there are rational numbers a and b such
that

τ(M) = ap(1,1)(M) + bp(2)(M) = a〈p1(TM)2, [M ]〉+ b〈p2(TM), [M ]〉.

We have computed the Pontrjagin numbers of CP2×CP2 and CP4. We know
already that τ(CP4) = 1 and one checks that also τ(CP2 × CP2) = 1 (or
uses the product formula for the signature). Comparing the values of the
signature and the Pontrjagin numbers for these two manifolds one concludes:
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Theorem 19.3. (Hirzebruch) For a closed oriented smooth 8-dimensional
manifold M one has

τ(M) =
1

45
(7〈p2(TM), [M ]〉 − 〈p1(TM)2, [M ]〉).

Proof: We only have to check the formula for CP4 and for CP2×CP2. The
values for the Pontrjagin numbers were computed at the end of chapter 18
and with this the reader can verify the formula.
q.e.d.

The two formulas above are special cases of Hirzebruch’s famous Sig-
nature Theorem, which gives a corresponding formula in all dimensions
(see [Hir] or [Mi-St]).

One of the most spectacular applications of Theorem 19.3 was Milnor’s
discovery of exotic spheres. Milnor shows that in general Mk,1−k is not
diffeomorphic to S7. His argument is the following: Suppose there is a
diffeomorphism f : Mk,1−k → S7. Since Mk,1−k is the boundary of the disk
bundle DEk,1−k, we can then form the closed smooth manifold

N := DEk,1−k ∪f D8.

We extend the orientation ofDEk,1−k to N (which can be done, since the
disk has an orientation-reversing diffeomorphism) and compute its signature.

The inclusion induces an isomorphism j∗ : SH4(N) ∼= SH4(
◦

DEk,1−k) ∼=
SH4(S4) ∼= Z. We will show that the signature of N is −1 by constructing
a class with negative self-intersection number. To do this we consider the

cohomology class j∗([S4, v]) ∈ SH4(
◦

DEk,1−k), where v is the zero-section.
We also consider v∗(j∗([S4, v])) ∈ SH4(S4). This is equal to the Euler class
of Ek,1−k. By definition the self-intersection SN ([S4, v], [S4, v]) is equal to
〈e(Ek,1−k), [S

4]〉. We have computed this number in Proposition 16.7 and
conclude:

SN ([S4, v], [S4, v]) = −k − (1− k) = −1.

Thus:

τ(N) = −1.

Now we use the Signature Theorem to compute τ(N) in terms of the
characteristic numbers 〈p1(TN)2, [N ]〉 and 〈p2(TN), [N ]〉. Since the map
v∗ : SH4(N) → SH4(S4) is an isomorphism, we conclude that p1(TN) =
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(v∗)−1(p1(TN |S4)). But v∗TN ∼= TS4 ⊕Ek,1−k and then it follows from the
Whitney formula and Proposition 18.1 that

〈v∗(p1(TN)), [S4]〉 = 〈p1(Ek,1−k), [S
4]〉 = −2(2k − 1).

Comparing this information with the Kronecker product 〈v∗([S4, v]), [S4]〉 =
−1 we conclude:

p1(TN) = 2(2k − 1)[S4, v].

Using

SN ([S4, v], [S4, v]) = −k − (1− k) = −1

we have:

〈p21(TN), [N ]〉 = −4(2k − 1)2.

Now we feed this information into the Signature Theorem 19.3:

−1 = τ(N) =
1

45
(7〈p2(TN), [N ]〉+ 4(2k − 1)2).

Since 〈p2(TN), [N ]〉 ∈ Z, we obtain the congruence

45 + 4(2k − 1)2 ≡ 0 mod 7

if Mk,1−k is diffeomorphic to S7. Taking k = 2 we obtain a contradiction
and so have proved:

Theorem 19.4. (Milnor) M2,−1 is homeomorphic, but not diffeomorphic,
to S7.

This was the first example of a so-called exotic smooth structure on a
manifold, i.e., a second smooth structure which is not diffeomorphic to the
given one.

We give another application of the signature formula. Given a topolog-
ical manifold M of dimension 2k one can ask whether there is a complex
structure on M , i.e., an atlas of charts in Ck whose coordinate changes are
holomorphic functions. We suppose now that M is closed and connected. A
necessary condition is that M admits a non-trivial class in SH2k(M). One
can introduce the concept of orientation for topological manifolds and show
that a connected closed n-dimensional manifold is orientable if and only if
a non-trivial class in SHn(M) exists. Thus the necessary condition above
amounts to a topological version of orientability. If k = 1 it is a classical
fact, that all orientable surfaces admit a complex structure. As another
application of the signature formula we show:

Theorem 19.5. S4 admits no complex structure.
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Proof: If S4 is equipped with a complex structure, the tangent bundle is a
complex vector bundle. For a complex vector bundle E we can compute the
first Pontrjagin class using the formula from chapter 18:

p1(E) = −2c2(E).

Thus
p1(TS

4) = −2c2(TS
4) = −2e(TS4),

since c1(TS
4) = 0. Now we use the fact from the Remark after Corollary

12.2 that 〈e(TM), [M ]〉 = e(M) (following from the Poincaré-Hopf Theorem
for vector fields) and conclude:

〈e(TS4), [S4]〉 = e(S4) = 2.

Next we note that τ(S4) = 0 and so we obtain a contradiction from the
signature formula:

0 = τ(S4) = 1/3〈p1(TS4), [S4]〉 = −4/3.

q.e.d.

One actually can show that S2k has no complex structure for k �= 1, 3.
It is a famous open problem whether S6 has a complex structure.

2. The Milnor spheres are homeomorphic to the 7-sphere

We finish this chapter with the proof of Theorem 19.1. It is based on an
elementary but fundamental argument in Morse theory.

Lemma 19.6. Let W be a compact smooth manifold with ∂W = M0 �M1.
If there is a smooth function

f : W → [0, 1]

without critical points and f(M0) = 0 and f(M1) = 1, then W is diffeomor-
phic to M0 × [0, 1].

Proof: We try to give a self-contained presentation, for background
information see [Mi 3]. Choose a smooth Riemannian metric g on TW
(for example, embed W smoothly into an Euclidean space and restrict the
Euclidean metric to each fibre of the tangent bundle). Consider the so-called
normed gradient vector field of f which is defined by mapping x ∈ M
to the tangent vector s(x) ∈ TxM such that

i) dfxs(x) = 1 ∈ R = Tf(x)R,

ii) 〈s(x), v〉g(x) = 0 for all v with dfx(v) = 0.
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This is a well defined function since the dimension of ker dfx is dimM−1
and dfx|ker df⊥

x
is an isomorphism (the orthogonal complement is taken with

respect to gx). Since W , f and g are smooth, this is a smooth vector field
on W .

Now, we consider the ordinary differential equation for a given point
x ∈ W :

ϕ̇(t) = s(ϕ(t)) and ϕ(0) = x,

where ϕ is a smooth function (a path) from an interval to W and as usual
we abbreviate the differential of a path ϕ at the time t by ϕ̇(t).

The existence and uniqueness result for ordinary differential equations
says that locally (using a chart to translate everything into Rm) there is a
unique solution called an integral curve. Furthermore, the solution depends
smoothly on the initial point x and t.

Now, for each x ∈ M0 we consider a maximal interval for which one has
a solution ϕx with initial value x. Then

df(ϕ̇x(t)) = df(s(ϕx(t))) = 1.

Thus

f(ϕx(t)) = t+ c

for some c ∈ R. Since ϕx(0) = x, we conclude c = 0 and so f(ϕx(t)) = t.

Since W is compact, the interval is maximal and since f(ϕx(t)) = t, the
interval has to be [0, 1]. As ϕx depends smoothly on x and t we obtain a
smooth function

ψ : M0 × [0, 1] → W
(x, t) 	→ ϕx(t).

(x,t)ϕ

ϕx

t

f

x

This function is a diffeomorphism since it has an inverse. For this,
consider for y ∈ W the integral curve of the differential equation:

η̇y(t) = −s(ηy(t)) and ηy(0) = y



2. The Milnor spheres are homeomorphic to the 7-sphere 183

(we use the negative gradient field to “travel” backwards). As above, we see
that

f(ηy(t)) = f(y)− t.

The integral curve ηϕx(t) joins ϕx(t) with x and is the time inverse of the
integral curve ϕx. With this information, we can write down the inverse:

ψ−1(y) = (ηy(f(y)), f(y)).

q.e.d.

Proof of Theorem 19.1 after Milnor: For simplicity we only consider
the case Mk,1−k; the other case follows similarly. With Lemma 19.6 we
will give the proof by constructing two disjoint embeddings D7

+ and D7
− in

Mk,1−k and constructing a smooth function

f : Mk,1−k − (
◦
D

7
+ +

◦
D

7
−) → [0, 1]

without critical points. Then by Lemma 19.6 there is a diffeomorphism

ϕ : S6
+ × [0, 1] −→ Mk,1−k − (

◦
D

7
+ +

◦
D

7
−)

with ϕ(x, 0) = x for all x ∈ S6
+.

From this we construct a homeomorphism from Mk,1−k to S7 = D7
+∪D7

−
as follows. We map

x ∈ D7
+ to x ∈ D7

+ ⊂ S7,

ϕ(x, t) to (1− t/2) · x ∈ D7
− forx ∈ S6

+ and t ∈ [0, 1],

x ∈ D7
− to x/2 ∈ D7

− ⊂ S7.

The reader should check that this map is well defined, continuous and bi-
jective. Thus it is a homeomorphism.

Continuing with the proof, we note that

Mk,� = H× S3 ∪fk,� −H× S3

where fk,� : H− {0} × S3 → −H− {0} × S3 maps

(x, y) 	→ (x/||x||2 , x
kyx�/||x||(k+�)).

We have used this description since it gives Mk,� as a smooth manifold.
Now we consider the smooth functions

g : H× S3 −→ R

(x, y) 	−→ y1√
1+||x||2
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and
h : −H× S3 −→ R

(x, y) 	−→ (x·y−1)1√
1+||x·y−1||2

where ( )1 denotes the first component.

If � = 1 − k, the two functions are compatible with the gluing function
fk,1−k and thus

g ∪ h : Mk,1−k −→ R

is a smooth function.

What are the singular points of g and h? The function h has no singular
points but g has singular points (0, 1) and (0,−1), where 1 = (1, 0, 0, 0) ∈ S3.
Thus, 1 and −1 are the only singular values of g ∪ h.

Since ±1/2 are regular values, we can decompose the manifold Mk,1−k

as (g∪h)−1(−∞,−1
2 ]∪(g∪h)−1[−1

2 ,
1
2 ] and (g∪h)−1[12 ,∞) =: D+∪W ∪D−.

We identify D± with D7 as follows: D+ = (g ∪ h)−1(−∞,−1
2 ] = {(x, y) ∈

H × S3 | y1 ≤ −1
2

√
1 + ||x||2} using the fact that y ∈ S3 and so y21 + y22 +

y23 + y24 = 1. From this we conclude that

D+ = {(x, (y2, y3, y4)) | 4 (y22 + y23 + y24) + ||x||2 ≤ 3}
and thus D+ is diffeomorphic to D7. Similarly one shows that D− is dif-
feomorphic to D7. Since g ∪ h|W has no critical points, we may now apply
Lemma 19.6.
q.e.d.

3. Exercises

(1) Prove that there is no complex structure on −CP2, i.e., no com-
plex structure whose underlying oriented manifold has the opposite
orientation of CP2.



Chapter 20

Relation to ordinary
singular (co)homology

1. SHk(X) is isomorphic to Hk(X;Z) for CW -complexes

This chapter has a different character since we use several concepts and re-
sults which are not covered in this book. In particular we assume familiarity
with ordinary singular homology and cohomology.

Eilenberg and Steenrod showed that if a functor on the category of finite
CW -complexes X (actually they consider finite polyhedra, but up to homo-
topy equivalence this is the same as finite CW -complexes) fulfills certain
homology axioms, then there is a unique natural isomorphism between this
homology theory and ordinary singular homology Hk(X), which for a point
is the identity [E-S]. Their axioms are equivalent to our axioms, if in addi-
tion the homology groups of a point are Z in degree 0 and 0 otherwise. Thus
for finite CW -complexes X there is a unique natural isomorphism (which
for a point is the identity)

σ : SHk(X) → Hk(X).

Since SHk(X) is compactly supported one can extend σ to a natural
transformation for arbitrary CW -complexes. Namely, ifX is a CW -complex
and [S, g] is an element of SHk(X), the image of S under g is compact. Thus
there is a finite subcomplex Y in X such that g(S) ⊂ Y . Let i : Y → X
be the inclusion, then we consider i∗(σ([S, g]) ∈ Hk(X), where we consider

185
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[S, g] as element of SHk(Y ). It is easy to see that this gives a well defined
natural transformation

σ : SHk(X) → Hk(X)

for arbitrary CW -complexes X. We use the fact that if (T, h) is a bordism,
then g(T) is contained in some other finite subcomplex Z with Y ⊂ Z.

Theorem 20.1. The natural transformation

σ : SHk(X) → Hk(X)

is an isomorphism for all CW -complexes X and all k.

This natural transformation commutes with the ×-product.

More generally it is enough to require that X is homotopy equivalent
to a CW -complex. All smooth manifolds are homotopy equivalent to CW -
complexes [Mi 3] and so theorem 20.1 holds for all smooth manifolds.

Proof: We know this already for finite CW -complexes. The argument for
arbitrary CW -complexes uses the same idea as the construction of the gen-
eralization of σ. Namely if X is an arbitrary CW -complex and x ∈ Hk(X)
is a homology class then there exists a finite subcomplex Y such that
x ∈ im(Hk(Y ) → Hk(X)). From this we conclude using the result for finite
CW -complexes that x is in the image of σ : SHk(X) → Hk(X). Similarly,
if x ∈ SHk(X) maps to zero under σ, we find a finite CW -complex Z ⊂ X
such that x ∈ im(SHk(Z) → SHk(X)) since SHk(X) has compact supports.
Thus we can assume that x ∈ SHk(Z). Since Hk(X) has compact supports
there is a finite CW complex T ⊂ X such that Z ⊂ T and σ(x) maps to zero
in Hk(T ). From the result for finite CW -complexes we conclude σ(x) = 0
in Hk(T ) and so x = 0.

To show that the natural transformation commutes with the ×-product
we use a description of ordinary singular homology using bordism of regular
oriented parametrized stratifolds (p-stratifolds) instead of arbitrary strati-
folds. The same arguments as for bordism groups of general stratifolds show
that this is a homology theory. However, there is a difference, namely by a
Mayer-Vietoris argument one shows that every closed oriented parametrized
p-stratifold S has a fundamental class in ordinary homology [S] ∈ Hn(S) and
one obtains a natural transformation from the bordism group bases on p-
stratifolds to ordinary homology by mapping (S, f) to f∗([S]) ∈ Hn(X). By
the comparison theorem for homology theories this is an isomorphism. It is
an easy argument with the Künneth formula for ordinary homology to show
that this natural transformation preserves the ×-product. The forgetful map
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(forgetting the parametrization) gives another natural transformation from
homology based on parametrized stratifolds to SHk(X) which preserves the
×-product. Since the natural transformations commute for CW -complexes
(by the fact that for a point they are the identity using the uniqueness re-
sult mentioned above from [E-S]) this shows that the natural transformation
above commutes with the ×-product.
q.e.d.

Remark: A similar argument gives a natural isomorphism

σn : SHk(X;Z/2) → Hk(X;Z/2)

for all CW -complexes X.

2. An example where SHk(X) and Hk(X) are different

We denote the oriented surface of genus g by Fg. For g = 1 we obtain the
torus F1 = T and Fg is the connected sum of g copies of the torus.

We consider the following subspace of R3 given by an infinite connected
sum of tori as in the following picture, where the point on the right side is
removed. We call this an infinite sum of tori. This is a non-compact smooth
submanifold of R3 denoted by F∞. The space in the picture is the one-point
compactification of F∞. This is a compact subspace of R3.

As in example (2) in chapter 2, section 3 (page 21), we make F+
∞ a 2-

dimensional stratifold denoted S by the algebra C consisting of continuous
functions which are constant near the additional point and smooth on F∞.
Obviously, this stratifold is regular and oriented. Thus we can consider the
fundamental class

[S] = [S, id] ∈ SH2(S).

This class has the following property. Let pg : S → Fg be the projection
onto Fg (we map all tori added to Fg to obtain F∞ to a point). Then

(pg)∗([S]) = [Fg]
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(why?). In particular (pg)∗([S]) is non-trivial for all g.

But there is no class α in H2(S) such that pg∗(α) is non-trivial for all
g. The reason is that for each topological space X and each class α in
H2(X) there is a map f : F → X, where F is a closed oriented surface,
such that α = f∗([F ]). This follows from [C-F] using the Atiyah-Hirzebruch
spectral sequence. Now we suppose that we can find f : F → S such that
(pg)∗(α) �= 0 in H2(Fg) for all g. But this is impossible since the degree of
fpg is non-zero and there is no map F → Fg with degree non-zero if the
genus of F is smaller than g. The reason is that if the degree is non-trivial
then the induced map H1(Fg) → H1(F ) is injective (as follows from the
regularity of the intersection form over Q, Corollary 14.6).

We summarize these considerations:

Theorem 20.2. The homology theories SHk(X) and Hk(X) are not equiv-
alent for general topological spaces.

3. SHk(M) is isomorphic to ordinary singular cohomology

We also want to identify our cohomology groups SHk(M) constructed via
stratifolds with the singular cohomology groups Hk(M).

So far we only have defined integral cohomology groups for oriented man-
ifolds. In the exercises of chapter 13 (page 129) we extended the definition
of cohomology groups and induced maps to arbitrary manifolds. We want
to compare this cohomology theory with ordinary singular cohomology on
smooth manifolds.

We use a characterization of singular cohomology on smooth manifolds
from [K-S]. The main result of this paper says that we only have to check the
following condition for such a cohomology theory h for which the cohomology
groups of a point are Z in degree 0 and 0 otherwise.
For i = 1, 2 . . . let Mi be a sequence of smooth manifolds. Then

hk(
⊔

Mi) ∼=
∏
i

hk(Mi),

where the isomorphism from hk(
⊔
Mi) to the direct product is induced by

the inclusions.
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Since this condition holds for our cohomology theory there is a unique
natural isomorphism θ from SHk(M) to Hk(M) inducing the identity on
SH0(pt) [K-S].

In the same paper the multiplicative structure is also characterized. The
standard cup product (or equivalently ×-product) on H∗(M) is character-
ized in [K-S] by the property, that if for a closed oriented manifold M the
class iM is the Kronecker dual to the fundamental class, then for Sk × Sn

we have:

iSk × iSn = iSk×Sn .

One can reformulate this condition without referring to the Kronecker prod-
uct by characterizing iM as the unique class which for each oriented chart ϕ :
U → Rm corresponds to the generator ofHm(Rm,Rm−0) ∼= Hm−1(Sm−1) =
Z under the maps Hm(Rm,Rm − 0) → Hm(U,U − x) ∼= Hm(M,M − x) →
Hm(M). Using this characterization of iM for stratifold cohomology one
can for the product in SH∗(Sk × Sn) check the condition above.

Summarizing we obtain:

Theorem 20.3. There is a unique natural isomorphism θ from the cohomol-
ogy groups of manifolds constructed in this book via stratifolds to ordinary
singular cohomology, commuting with the ×-products and inducing the iden-
tity on cohomology in degree 0.

Since the natural transformation θ respects the cup product we obtain a
geometric interpretation of the intersection form on ordinary singular coho-
mology. Let M be a closed smooth oriented manifold of dimension m. Since
θ respects cup products we conclude:

Corollary 20.4. For a closed smooth oriented m-dimensional manifold M
and cohomology classes x ∈ Hk(M) and y ∈ Hm−k(M) we have the identity:

〈x � y, [M ]〉 = [Sx, gx] � [Sy, gy],

where [Sx, gx] := θ(x) and [Sy, gy] := θ(y) are cohomology classes in SHk(M)

and SHm−k(M) corresponding to x and y via θ and � means the transverse
intersection.

Thus the traditional geometric interpretation of the intersection form
for those cohomology classes on a closed oriented smooth manifold, where
the Poincaré duals are represented by maps from closed oriented smooth
manifolds to M , as a transverse intersection makes sense for arbitrary co-
homology classes.



190 20. Relation to ordinary singular (co)homology

The natural isomorphism between the (co)homology groups defined in
this book and ordinary singular cohomology allows us, for CW -complexes,
to translate results from one of the worlds to the other. Above we have made
use of this by interpreting the intersection form on singular cohomology geo-
metrically. The geometric feature is one of the strengths of our approach to
(co)homology. There are other aspects of (co)homology which are easier and
more natural in ordinary singular (co)homology, in particular those which
allow an application of homological algebra. This is demonstrated by the
general Künneth Theorem or by the various universal coefficient theorems.
It is useful to have both interpretations of (co)homology available so that
one can choose in which world one wants to work depending on the questions
one is interested in.

4. Exercises

(1) Let π : X̃ → X be a covering space with a constant finite number of
points in each fibre. Let S be a compact oriented regular stratifold
of dimension n and f : S → X be a continuous map. One defines

the pull-back f∗(X̃) := {(s, x) ∈ S × X̃ | f(s) = π(x)}. Show that

the projection to the first factor p : f∗(X̃) → S is a covering map

and so f∗(X̃) is a compact oriented regular stratifold of dimension

n where the orientation of f∗(X̃) is the one such that the projection
map will be orientation-preserving. The projection to the second

factor gives a map to X̃ and thus an element in SHn(X̃). Show that

this induces a well defined map SHn(X) → SHn(X̃) denoted by π!

(called the transfer map) and that the composition SHn(X) →
SHn(X̃) → SHn(X) is multiplication by the number of points in
the fibre.



Appendix A

Constructions of
stratifolds

1. The product of two stratifolds

Now we show that (S×S′,C(S×S′)) as defined in chapter 2 is a stratifold.
It is clear that S × S′ is a locally compact Hausdorff space with countable
basis. We have to show that C(S × S′) is an algebra. Let f and g be in
C(S× S′), x ∈ Si and y ∈ (S′)j. Using local retractions one sees that f + g
and fg are in C(S × S′). Obviously, the constant maps are in C(S × S′).
Since we characterize C(S× S′) by local conditions it is locally detectable.
Also the condition in the definition of a differential space is obvious.

Next we show that restriction gives an isomorphism of germs at (x, y) ∈
Si × (S′)j :

C(S× S′)(x,y)
∼=−→ C∞(Si × (S′)j)(x,y).

To see that this map is surjective, we consider f ∈ C∞(Si × (S′)j)
and choose for x a local retraction r : U → V near x of S and for y
a local retraction r′ : U ′ → V ′ near y of S′. Let ρ be a smooth func-
tion on S with support ρ ⊂ U which is constant 1 near x and ρ′ a corre-
sponding smooth function on S′ with support ρ′ ⊂ U ′ which is constant 1
near y. Then ρ(z)ρ′(z′)f(r(z), r′(z′)) (which we extend by 0 to the comple-
ment of U × U ′) is in C(S × S′). (To see this we only have to check for
(z, z′) ∈ U × U ′ that there are local retractions q near z and q′ near z′ such
that f(rq(t), r′q′(t′)) = f(r(t), r′(t′)). But since r is a morphism, we can
choose q such that rq(t) = r(t) and similarly r′q′(t′) = r′(t′) implying the
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statement.) Thus we have found a germ at (x, y) which maps to f under
restriction.

To see that the map is injective, we note that if f ∈ C(S× S′) maps to
zero in C∞(Si× (S′)j)(x,y) it vanishes in an open neighbourhood of (x, y) in

Si×(S′)j and since there are retractions near x and y such that f commutes
with them, f is zero in some open neighbourhood of (x, y) in S× S′.

Having shown that C(S× S′)(x,y)
∼=−→ C∞(Si × (S′)j)(x,y) is an isomor-

phism, we conclude that T(x,y)(S×S′) ∼= T(x,y)(S
i×(S′)j), and so the induced

stratification on S× S′ is given by
⊔

i+j=k S
i × (S′)j . Now condition 1 of a

stratifold also follows from the isomorphism of germs, condition 2 is obvious
and condition 3 follows from the product ρρ′ of appropriate bump functions
of S and S′.

Thus (S× S′,C(S× S′)) is a stratifold.

2. Gluing along part of the boundary

In the proof of the Mayer-Vietoris sequence we will also need gluing along
part of the boundary. If one glues naively then corners or cusps occur (see
the figure at the top of the following page). In a natural way the corners or
cusps can be removed or better smoothed. The central tool for this smooth-
ing is given by collars. The constructions will depend on the choice of a
collar, not just on the corresponding germ. However, up to bordism, these
choices are irrelevant.

Now we return to gluing along part of the boundary. Consider two
c-stratifolds W1 and W2 and suppose that ∂W1 is obtained by gluing two
c-stratifolds Z and Y1 over the common boundary ∂Z = ∂Y1 = N (assuming
that Z and Y1 have collars ϕZ and ϕY1): ∂W1 = Z ∪N Y1. Similarly, we
assume that ∂W2 = Z ∪N Y2 (using collars ϕZ and ϕY2) and that W1 and
W2 have collars η1 and η2. Then we want to make W1 ∪Z W2 a c-stratifold

with boundary Y1∪N Y2. We define
◦

W1 ∪Z W2 as W1∪Z W2−Y1∪N Y2. But
this space is equal to W1 − Y1 ∪ ◦

Z
W2 − Y2, gluing of two c-stratifolds along

the full boundary
◦
Z, which is a stratifold by the considerations above. If

we add the boundary Y1 ∪N Y2 naively and use the given collars, we obtain
“cusps” along N .
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W2W1 Z

N

To smooth along N we first combine ϕZ and ϕY1 to an isomorphism
ϕ1 : N × (−1, 1) → ∂W1 onto its image, where ϕ1(x, t) := ϕZ(x, t) for t ≥ 0
and ϕ1(x, t) := ϕY1(x,−t) for t ≤ 0. ϕ1|N×{0} is the identity map. Simi-
larly, we combine ϕZ and ϕY2 to ϕ2 : N × (−1, 1) → ∂W1 and note that
ϕ2|N×[0,1) = ϕ1|N×[0,1). We denote by α1 : N × (−1, 1) × [0, 1) → W1

the map (x, s, t) 	→ η1(ϕ1(x, s), t). We denote the image by U1. This
map is an isomorphism away from the boundary. Similarly, we define
α2 : N × (−1, 1) × [0, 1) → U2. The union U1 ∪ U2 := UN is an open
neighbourhood of N in W1 ∪Z W2.

Now we pass in R2 to polar coordinates (r, ϕ) and choose a smooth
monotone map ρ : R≥0 → (0, 1], which is equal to 1

2 for r ≤ 1
3 and equal

to 1 for r ≥ 2
3 (it is important to fix this map for the future and use the

same map to make the constructions unique). Then consider the map β1
from (−1, 1) × [0, 1) ⊂ {(r, ϕ)|r ≥ 0, 0 ≤ ϕ ≤ π} to R2 mapping (r, ϕ) to
(r, ρ(r) · ϕ) and similarly β2 mapping (r, ϕ) to (r,−ρ(r) · ϕ). The images of
(−1, 1)× [0, 1) in cartesian coordinates look roughly like

and

Identifying β1([0, 1) × {0}) with β2([0, 1) × {0}) gives a smooth c-manifold
G looking as follows
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where the collar is indicated in the figure. We obtain a homeomorphism
Φ : UN −→ N × G mapping α1(x, s, t) to (x, β1(s, t)) and α2(x, s, t) to
(x, β2(s, t)). The map Φ is an isomorphism of stratifolds outside N . By
construction the collar induced from N × G via Φ and the collars of W1

along ∂W1 − im ϕY1 and of W2 along ∂W2 − im ϕY2 fit together to give a
collar on W1 ∪Z W2 finishing the proof of:

Proposition A.1. For i = 1, 2 let Wi be c-stratifolds such that ∂Wi is
obtained by gluing two c-stratifolds Z and Yi over the common boundary
∂Z = ∂Yi = N :

∂Wi = Z ∪N Yi.

Choose representatives of the germs of collars for Yi and Z.

Then there is a c-stratifold W1 ∪Z W2 extending the stratifold structures
on Wi − (Z ∪ im ϕYi). The boundary of W1 ∪Z W2 is Y1 ∪N Y2.

It should be noted that the construction of the collar of W1 ∪Z W2

depends on the choice of representatives of the collars of Wi, Yi and Z. For
our application in the proof of the Mayer-Vietoris sequence it is important
to observe that the collar was constructed in such a way that, away from
the neighbourhood of the union of the collars of N in Yi and Z, it is the
original collar of W1 and W2.

3. Proof of Proposition 4.1

We conclude this appendix by proving that for a space X the isomorphism
classes of pairs (S, g), where S is an m-dimensional stratifold, and g : S → X
is a continuous map, form a set.

Proof of Proposition 4.1: For this we first note that the diffeomorphism
classes of manifolds form a set. This follows since a manifold is diffeomor-
phic to one obtained by taking a countable union of open subsets of Rm (the
domains of a countable atlas) and identifying them according to an appro-
priate equivalence relation. Since the countable sum of copies of Rm forms a
set, the set of subsets of a set forms a set, and the possible equivalence rela-
tions on these sets form a set, the diffeomorphism classes of m-dimensional
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manifolds are a subset of the set of all sets obtained from a countable dis-
joint union of subsets of Rm by some equivalence relation.

Next we note that a stratifold is obtained from a disjoint union of man-
ifolds, the strata, by introducing a topology (a collection of certain subsets)
and a certain algebra. The possible topologies as well as the possible alge-
bras are a set. Thus the isomorphism classes of stratifolds are a set. Finally
for a fixed stratifold S and space X the maps from S to X are a set, and
so we conclude that the isomorphism classes of pairs (S, g), where S is an
m-dimensional stratifold, and g : S → X is a continuous map, form a set.
q.e.d.





Appendix B

The detailed proof of
the Mayer-Vietoris
sequence

The following lemma is the main tool for completing the proof of the Mayer-
Vietoris sequence along the lines explained in §5. It is also useful in other
contexts. Roughly it says that up to bordism we can separate a regular
stratifold S by an open cylinder over some regular stratifold P. Such an
embedding is called a bicollar, i.e., an isomorphism g : P × (−ε, ε) → V ,
where V is an open subset of S. The most naive idea would be to “replace”
P by P× (−ε, ε), so that as a set we change S into (S−P) ∪ (P× (−ε, ε)).
The proof of the following lemma makes this rigorous.

Lemma B.1. Let T be a regular c-stratifold. Let ρ : T → R be a contin-
uous function such that ρ| ◦

T
is smooth. Let 0 be a regular value of ρ| ◦

T
and

suppose that ρ−1(0) ⊂
◦
T and that there is an open neighbourhood of 0 in R

consisting only of regular values of ρ| ◦
T
.

Then there exists a regular c-stratifold T′ and a continuous map f :
T′ → T with ∂T′ = ∂T, f |∂T′ = id such that f commutes with appro-
priate representatives of the collars of T′ and T. Furthermore, there is an
ε > 0 such that ρ−1(0) × (−ε, ε) is contained in T′ as an open subset and
a continuous map ρ′ : T′ → R whose restriction to the interior is smooth
and whose restriction to ρ−1(0) × (−ε, ε) is the projection to (−ε, ε). The
restriction of f to ρ−1(0)× (−ε, ε) is the projection onto ρ−1(0). In addition

197
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(ρ′)−1(−∞,−ε) ⊂ ρ−1(−∞, 0) and (ρ′)−1(ε,∞) ⊂ ρ−1(0,∞).

If ∂T = ∅, then (T, id) and (T′, f) are bordant.

Proof: Choose δ > 0 such that such that (−δ, δ) consists only of regular
values of ρ.

Consider a monotone smooth map μ : R → R which is the identity for
|t| > δ/2 and 0 for |t| < δ/4.

RI

μ

4 2δδ

Then η : T × R → R mapping (x, t) 	→ ρ(x) − μ(t) has 0 as a regular
value. Namely, for those (x, t) mapping to 0 with |t| < δ we have |ρ(x)| < δ
and thus (x, t) is a regular point of η, and for those (x, t) mapping to 0
with |t| > δ/2 we have μ(t) = t and again (x, t) is a regular point. Thus
T′ := η−1(0) is, by Proposition 4.2, a regular c-stratifold (the collar is
discussed below) containing V := ρ−1(0)× (−δ/4, δ/4). Setting ε = δ/4 we
have constructed the desired subset in T′.

0

T RIx
T T ´

To relate T′ to T, consider the map f : T′ → T given by the restric-
tion of the projection onto T in T × R. This is an isomorphism outside
ρ−1(0) × (−δ/2, δ/2). In particular we can identify the boundaries via this
isomorphism: ∂T′ = ∂T. Similarly we use this isomorphism to induce a
collar on T′ from a small collar of T and so the c-structure on T makes T′ a
regular c-stratifold. Finally we define ρ′ by the projection onto R. The de-
sired properties are obvious and this finishes the proof of the first statement.

If ∂T = ∅, we want to construct a bordism between (T, id) and (T′, f).
For this, choose a smooth map ζ : I → R which is 0 near 0 and 1 near
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1. Then consider the smooth map T × R × I → R mapping (x, t, s) 	→
ρ(x) − (ζ(s)μ(t) + (1 − ζ(s))t). This map again has 0 as regular value and
the preimage of 0 is the required bordism Q. By construction and Propo-
sition 4.2 Q is a regular c-stratifold. The projection from Q to T is a map
r : Q → T, whose restriction to T is the identity on T and whose restriction
to T′ is f . Thus (Q, r) is a bordism between (T, id) and (T′, f).
q.e.d.

Now we apply this lemma to the proof of Proposition 5.1 and the de-
tailed proof of Theorem 5.2, the Mayer-Vietoris sequence.

Proofs of Proposition 5.1 and Theorem 5.2: We begin with the proof
of Proposition 5.1. For [S, g] ∈ SHm(X) we consider (as before Proposition
5.1) the closed subsets A := g−1(X − V ) and B := g−1(X − U). Using a
partition of unity we construct a smooth function ρ : S → R and choose
a regular value s such that ρ−1(s) ⊂ S − (A ∪ B) and A ⊂ ρ−1(s,∞) and
B ⊂ ρ−1(−∞, s). After composition with an appropriate translation we can
assume s = 0. Since S is compact, by Proposition 4.3 the regular values of
ρ form an open set in R.

Thus we can apply Lemma B.1 and we consider S′, f and ρ′. Then
(S, g) is bordant to (S′, gf) (since (S′, f) is bordant to (S, id)) and 0 is a
regular value of ρ′. By construction, ρ−1(0) × (−ε, ε) is contained in S′ as
open neighbourhood of P := (ρ′)−1(0) = ρ−1(0), in other words we have a
bicollar of P. Furthermore by construction gf is equal to g on P = ρ−1(0),
in particular, gf(P) is contained in U ∩ V . In Proposition 5.1 we defined
d([S, g]) as [ρ−1(0), g|ρ−1(0)] and the considerations so far imply that this

definition is the same if we pass from (S, g) to the bordant pair (S′, gf) and
define d([S′, gf ]) as [P, gf |P]: this situation has the advantage that P has
a bicollar.

To show that d is well defined it is enough to show that if (S′, gf) is
the boundary of (T, F ), then [P, g|P] is zero in SHk−1(U ∩ V ). Here T is a
c-stratifold with boundary S′. In particular we can take as T the cylinder
over S and see that d does not depend on the choice of the separating func-
tion or the regular value. We choose a representative of the germ of collars
c of T. Define AT := F−1(A) and BT := F−1(B) and construct a smooth
function η : T → R with the following properties:
1) There is a μ > 0 such that the restriction of η to P × (−μ, μ) is the
projection to (−μ, μ),
2) η(c(x, t)) = η(x),
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3) there is an δ > 0 such that F (η−1(−δ, δ)) ⊂ U ∩ V .
The construction of such a map η is easy using a partition of unity since P
has a bicollar in S′.

By Sard’s theorem there is a t with |t| < min{δ, μ} which is a regular
value of η. Since the restriction of η to P × (−μ, μ) is the projection to
(−μ, μ) we conclude that t is also a regular value of η|S′ . By condition 2) we
guarantee that Q := η−1(t) is a c-stratifold with boundary P×{t}. By con-
dition 3) we know that F (Q) ⊂ U ∩ V and so we see that [P×{t}, F |P×{t}]
is zero in SHk−1(U ∩ V ). On the other hand, obviously [P × {t}, F |P×{t}]
is bordant to [P, g|P]. This finishes the proof of Proposition 5.1.

Now we proceed to the proof of Theorem 5.2. We first show that d
commutes with induced maps. The reason is the following. Let X ′ be a
space with decomposition X ′ = U ′ ∪ V ′ and h : X → X ′ a continuous map
respecting the decomposition. Then if we consider (S, hf) instead of (S, f),
one can take the same separating function ρ in the definition of d and so
d′([S, hf ]) = [ρ−1(s), hf |ρ−1(s)] = h∗([ρ−1(s), f |ρ−1(s)]) = h∗(d([S, f ])).

Now we begin the proof of the exactness by examining

SHn(U ∩ V ;Z/2) → SHn(U ;Z/2)⊕ SHn(V ;Z/2) → SHn(U ∪ V ;Z/2).

Since jU iU = i : U ∩ V → U ∪ V , the inclusion map, and also jV iV = i,
the difference of the composition of the two maps is zero. To show the re-
verse inclusion, consider [S, f ] ∈ SHn(U ;Z/2) and [S′, f ′] ∈ SHn(V ;Z/2)
with (jU )∗([S, f ]) = (jV )∗([S′, f ′]). Let (T, g) be a bordism between [S, f ]
and [S′, f ′], where g : T → U ∪ V . Similarly, as in the proof that d is
well defined, we consider the closed disjoint subsets AT := S ∪ g−1(X − V )
and BT := S′ ∪ g−1(X − U). Using a partition of unity we construct a
smooth function ρ : T → R with ρ(A) = −1 and ρ(B) = 1 and choose a

regular value s such that ρ−1(s) ⊂
◦
T− (AT ∪BT). After composition with

an appropriate translation we can assume s = 0. Since T is compact, by
Proposition 4.3, the regular values of ρ form an open set in R. Applying
Lemma B.1 we can assume after replacing T by T′ that ρ−1(s) has a bicol-
lar ϕ. Then [ρ−1(s), g|ρ−1(s)] ∈ SHn(U ∩ V ) and — as explained in §3 —

(ρ−1[s,∞), g|ρ−1[s,∞)) is a bordism between (S, f) and (ρ−1(s), g|ρ−1(s)) in U .
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Similarly we obtain by (ρ−1(−∞, s]), g|ρ−1(−∞,s])) a bordism between (S′, f ′)

and (ρ−1(s), g|ρ−1(s)) in V . Thus

((iU )∗([ρ
−1(s), g|ρ−1(s)]), (iV )∗([ρ

−1(s), g|ρ−1(s)])) = ([S, f ], [S′, f ′]).

Next we consider the exactness of

SHn(U∪V ;Z/2)
d→ SHn−1(U∩V ;Z/2) → SHn−1(U ;Z/2)⊕SHn−1(V ;Z/2).

By construction of the boundary operator the composition of the two maps
is zero. Namely (ρ−1[s,∞), f |ρ−1[s,∞)) is a null cobordism of d([S, f ]) in U

and (ρ−1(−∞, s], f |ρ−1(−∞,s]) is a zero-bordism of d([S, f ]) in V . Here we

again apply Lemma B.1 and assume that ρ−1(s) has a bicollar.

To show the reverse inclusion, start with [P, r] ∈ SHn−1(U∩V ;Z/2) and
suppose (iU )∗([P, r]) = 0 and (iV )∗([P, r]) = 0. Let (T1, g1) be a zero bor-
dism of (iU )∗([P, r]) and (T2, g2) be a zero bordism of (iV )∗([P, r]). Then we
considerT1∪PT2. Since g1|P = g2|P = r, we can, as in the proof of the tran-
sitivity of the bordism relation, extend r to T1∪PT2 using g1 and g2 and de-
note this map by g1∪g2. Thus [T1∪PT2, g1∪g2] ∈ SHn(U∪V ;Z/2). By the
construction of the boundary operator we have d([T1∪PT2, g1∪g2]) = [P, r].
Using the bicollar one constructs a separating function which near P is the
projection from P× (−ε, ε) to the second factor.

Finally, we prove exactness of

SHn(U ;Z/2)⊕ SHn(V ;Z/2) → SHn(U ∪ V ;Z/2)
d→ SHn−1(U ∩ V ;Z/2).

The composition of the two maps is obviously zero. Now, consider [S, f ] ∈
SHn(U ∪V ;Z/2) with d([S, f ]) = 0. Consider ρ, s and P as in the definition
of the boundary map d and assume by Lemma B.1 that ρ−1(s) has a bicol-
lar. We put S+ := ρ−1[s,∞) and S− := ρ−1(−∞, s]. Then S = S+ ∪P S−.
If d([S, f ]) = [P, f |P] = 0 in SHn−1(U ∩ V ;Z/2) there is Z with ∂Z = P
and an extension of f |P to r : Z → U ∩ V . We glue to obtain S+ ∪P Z
and S− ∪P Z. Since f |P = r|P the maps f |S+ and r give a continuous map
f+ : S+ ∪P Z → U and similarly we obtain f− : S− ∪P Z → V . We are



202 B. The detailed proof of the Mayer-Vietoris sequence

finished if (jU )∗([S+ ∪P Z, f+])− (jV )∗([S− ∪P Z, f−]) = [S, f ]. For this we
have to find a bordism (T, g) such that ∂T = S+ ∪ Z+ S− ∪ Z+ S (recall
that −[P, r] = [P, r] for all elements in SHn(Y ;Z/2)) and g extends the
given three maps on the pieces.

This bordism is given as T := ((S+∪PZ)× [0, 1])∪Z ((S−∪PZ)× [1, 2])
with ∂T = (S+ ∪P Z)× {0}+ (S− ∪P Z)× {2}+ S+ ∪P S−. Here we apply
Lemma A.1 to smooth the corners or cusps. This finishes the proof of The-
orem 5.2.
q.e.d.

Finally we discuss the modification needed to prove the Mayer-Vietoris
sequence in cohomology. Everything works with appropriate obvious mod-
ifications as for homology except where we argue that the regular values of
the separating map ρ form an open set. This used the fact that the stratifold
on which ρ is defined is compact, which is not the case for regular stratifolds
representing cohomology classes. The separating function can be chosen as
we wish, and we show now that we can always find a separating function ρ
and a regular value, which is an interior point of the set of regular values.

Let g : S → M be a proper smooth map and C and D be disjoint closed
subsets of M . We choose a smooth map ρ : M → R which on C is 1 and on
D is −1. We select a regular value s of ρg. The set of singular points of ρg
is closed by Proposition 4.3, and since a proper map on a locally compact
space is closed [Sch, p. 72], the image of the singular points of ρg under g
is a closed subset F of M .

Now we consider a bicollar ϕ : U → M−F of ρ−1(s), where U = {(x, t) ∈
ρ−1(s)×R | |t| < δ(x)} for some continuous map δ : ρ−1(s) → R>0. We can
choose ϕ in such a way that ρϕ(x, t) = t. Now we “expand” this bicollar by
choosing a diffeomorphism from U to ρ−1(s) × (−1/2, 1/2) mapping (x, t)
to (x, η(x, t)), where η(x, ·) is a diffeomorphism for each x ∈ ρ−1(s). Using
this, it is easy to find a new separating function ρ′, such that ρ′ϕ(x, t) = t
and ρ′−1(−1/2, 1/2) = U . By construction the interval (−1/2, 1/2) consists
only of regular values of ρ′f .

We apply this in the proof of the Mayer-Vietoris sequence for cohomol-
ogy as follows. Let U and V be open subsets of M = U ∪ V . We consider
the closed subsets C := M − U and D := M − V . Then we construct ρ′

as above and note that ρ′g is a separating function of A := g−1(C) and
B := g−1(D), and s is a regular value which is an interior point of the set of
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regular values. With this the definition of the coboundary operator works
as explained in chapter 12.

Now we explain why the Mayer-Vietoris sequence is exact. We shall
explain each argument in figuress, with a brief description followed by a
sequence of four figures presented on the immediately following page.

We begin with the exactness of

SHk−1(U ∩ V ) → SHk(U ∪ V ) → SHk(U)⊕ SHk(V ).

Let α ∈ SHk(U ∪V ) (figure A) such that it maps to zero, i.e., there are
stratifolds with boundary and proper maps extending the map representing
α after restricting to U and V respectively. We abbreviate these extensions
by β and γ and write ∂β = j∗U (α) and ∂γ = j∗V (α) (figure B). Now we
restrict β and γ to the intersection U ∩V and glue them (respecting the ori-
entations) along the common boundary to obtain ζ := (−γ|U∩V ) ∪ β|U∩V ∈
SHk−1(U∩V ) (figure C). Using a separating function ρ we determine the im-
age of ζ under the coboundary operator: δ(ζ). Finally we have to show that
δ(ζ) is bordant to α. For this we consider η := β|ρ−1(−∞,s]∪ (−γ|ρ−1[s,∞)),
which gives such a bordism (figure D).
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A
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D

U
V

α ∈ SHk(U ∪ V )

γ

j∗V α = ∂γ

j∗Uα = ∂β

β

ζ := (−γ|U∩V ) ∪ β|U∩V

∈ SHk−1(U ∩ V )

�−1(s) δζ

η := β|�−1(−∞,s]

∪ (−γ|�−1[s,∞))

∂η = α − δζ
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Now we consider the exactness of the sequence (see next page for figures)

SHk(U ∪ V ) → SHk(U)⊕ SHk(V ) → SHk(U ∩ V ).

For this we consider α ∈ SHk(U) and β ∈ SHk(V ) (figure A) such that
(α, β) maps to zero in SHk(U ∩V ). This means there is γ, a stratifold with
boundary together with a proper map to U∩V , such that ∂γ = i∗U (α)−i∗V (β)
(figure B). Next we choose a separating function ρ as indicated in figure B.
Using ρ we consider ζ := α|�−1(−∞,s] ∪ (−δγ) ∪ β|�−1[s,∞) ∈ SHk(U ∪ V )
(figure C). Finally we have to construct a bordism between j∗U (ζ), and α
resp. j∗V (ζ) and β. This is given by the equations j∗Uζ + ∂(γ|�−1[s,∞)) = α
and j∗V ζ − ∂(γ|�−1(−∞,s]) = β (figure D).
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ζ := α|�−1(−∞,s] ∪ (−δγ) ∪ β|�−1[s,∞)

∈ SHk(U ∪ V )

j∗Uζ + ∂(γ|�−1[s,∞)) = α

j∗V ζ − ∂(γ|�−1(−∞,s])

= β
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Finally we consider the exactness of the sequence (see next page for
figures)

SHk(U)⊕ SHk(V ) → SHk(U ∩ V ) → SHk+1(U ∪ V ).

Let α be in SHk(U ∩V ) (and ρ a separating function) such that δα = 0
(figure A). This means that there is a stratifold β with boundary δ(α) and a
proper map extending the given map (figure B). From this we construct the
classes ζ1 := α|�−1(−∞,s] ∪β|U ∈ SHk(U) and ζ2 := (−α|�−1[s,∞))∪ (−β|V ) ∈
SHk(V ) (figure C). Finally we note that i∗U (ζ1)− i∗V (ζ2) = α (figure D).
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Appendix C

The tensor product

We want to describe an important construction in linear algebra, the ten-
sor product. Let R be a commutative ring with unit, for example Z or a
field. The tensor product assigns to two R-modules another R-module. The
slogan is: bilinearity is transferred to linearity. Consider a bilinear map
f : V × W → P between R-modules. Then we will construct another R-
module denoted V ⊗R W together with a canonical map V ×W → V ⊗RW
such that f induces a map from V ⊗R W → P whose precomposition with
the canonical map is f .

Since we are particularly interested in the case of R = Z we note that
a Z-module is the same as an abelian group. If A is an abelian group we
make it a Z-module by defining (for n ≥ 0) n · a := a + · · · + a, where the
sum is taken over n summands, and for n < 0 we define n · a := −(−n · a).

We begin with the definition of V ⊗RW . This is an R-module generated
by all pairs (v, w) with v ∈ V and w ∈ W . One denotes the corresponding
generators by v ⊗w and calls them pure tensors. The fact that these will
be the generators means that we will obtain a surjective map

⊕
(v,w)∈V×W

(v, w) ·R −→ V ⊗R W

mapping (v, w) to v⊗w. In order to finish the definition of V ⊗RW we only
need to define the kernel K of this map. We describe the generators of the

209
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kernel, which are:

(rv, w)− (v, rw) for all v ∈ V,w ∈ W, r ∈ R and
(rv, w)− (v, w)r for all v ∈ V,w ∈ W, r ∈ R and
(v, w) + (v′, w)− (v + v′, w), respectively,
(v, w) + (v, w′)− (v, w + w′) for all v, v′ ∈ V,w,w′ ∈ W.

Let K be the submodule generated by these elements. Then we define the
tensor product

V ⊗R W :=

⎛
⎝ ⊕

(v,w)∈V×W

(v, w) ·R

⎞
⎠/K.

Remark: The following rules are translations of the relations and very
useful for working with tensor products:

r · (v ⊗ w) = (r · v)⊗ w = v ⊗ (r · w)

v ⊗ w + v′ ⊗ w = (v + v′)⊗ w

v ⊗ w + v ⊗ w′ = v ⊗ (w + w′).

These rules imply that the following canonical map is well defined and
bilinear:

V ×W −→ V ⊗R W
(v, w) 	−→ v ⊗ w.

Let f : V ×W → P be bilinear. Then f induces a linear map

f : V ⊗R W −→ P
v ⊗ w 	−→ f(v, w).

This map is well defined since (rv)⊗w−v⊗(rw) 	→ f(rv, w)−f(v, rw) =
r f(v, w) − r f(v, w) = 0 and v ⊗ w + v′ ⊗ w − (v + v′) ⊗ w 	→ f(v, w) +
f(v′, w)− f(v+ v, w) = 0 , respectively, v ⊗w+ v⊗w′ − v⊗ (w+w′) 	→ 0.

In turn, if we have a linear map from V ⊗R W to P , the composition of
the canonical map with this map is a bilinear map from V ×W to P . Thus
as indicated above we have seen the fundamental fact:

The linear maps from V ⊗RW to P correspond isomorphically to the bilinear
maps from V ×W to P .

What is (V ⊕ V ′) ⊗R W? The reader should convince himself that the
following maps are bilinear:
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(V ⊕ V ′)×W −→ (V ⊗R W )⊕ (V ′ ⊗R W )
((v, v′), w) 	−→ (v ⊗ w, v′ ⊗ w)

and

V ×W −→ (V ⊕ V ′)⊗R W and V ′ ×W −→ (V ⊕ V ′)⊗R W
(v, w) 	−→ (v, 0)⊗ w (v′, w) 	−→ (0, v′)⊗ w.

These maps induce homomorphisms

(V ⊕ V ′)⊗R W −→ (V ⊗R W )⊕ (V ′ ⊗R W )
(v, v′)⊗ w 	−→ (v ⊗ w, v′ ⊗ w)

and
(V ⊗R W )⊕ (V ′ ⊗R W ) −→ (V ⊕ V ′)⊗R W
((v ⊗ w1), (v

′ ⊗ w2)) 	−→ (v, 0)⊗ w1 + (0, v′)⊗ w2

and these are inverse to each other. Thus we have shown:

Proposition C.1. (V ⊕ V ′)⊗R W
∼=−→ (V ⊗R W )⊕ (V ′ ⊗R W ).

It follows that

Rn ⊗R Rm = (Rn−1 ⊕R)⊗R Rm ∼= (Rn−1 ⊗R Rm)⊕ (R⊗R Rm)

∼= (Rn−1 ⊗R Rm)⊕ (R⊗R [R⊕ · · · ⊕R]) = (Rn−1 ⊗R Rm)⊕Rm.

Thus dim Rn ⊗R Rm = n ·m and

Rn ⊗R Rm ∼= Rn·m ∼= M(n,m)
ei ⊗ ej 	−→ ei,j

where ei,j denotes the n ×m matrix whose coefficients are 0 except at the
place (i, j) where it is 1.

Example:
R⊗R M ∼= M
r ⊗ x 	→ r · x.

The inverse is x 	→ 1⊗ x.

If R = Z, a Z-module is the same as an abelian group. For abelian
groups A and B we write A⊗B instead of A⊗Z B.

We want to determine Z/n ⊗ Z/m. We prepare this by some general
considerations. Let f : A → B and g : C → D be homomorphisms of
R-modules. They induce a homomorphism

f ⊗ g : A⊗R C → B ⊗R D
a⊗ c 	→ f(a)⊗ g(c),
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called the tensor product of f and g.

If we have an exact sequence of R-modules

· · · → Ak+1 → Ak → Ak−1 → · · ·

and a fixed R-module P , we can tensor all Ak with P and tensor all maps
in the exact sequence with id on P , and obtain a new sequence of maps

· · · → Ak+1 ⊗R P → Ak ⊗R P → Ak−1 ⊗R P → · · ·

called the induced sequence and ask if this is again exact. This is, in general,
not the case and this is one of the starting points of homological algebra,
which systematically investigates the failure of exactness. Here we only
study a very special case.

Proposition C.2. Let

0 → A → B → C → 0

be a short exact sequence of R-modules. Then the induced sequence

A⊗R P → B ⊗R P → C ⊗R P → 0

is again exact. In general the map A⊗R P → B ⊗R P is not injective.

Proof: Denote the map from A → B by f and the map from B to
C by g. Obviously (g ⊗ id)(f ⊗ id) is zero. Thus g ⊗ id induces a homo-
morphism B ⊗R P/(f⊗id)(A⊗RP ) → C ⊗R P . We have to show that this is

an isomorphism. We give an inverse by defining a bilinear map C × P to
B⊗RP/(f⊗id)(A⊗RP ) by assigning to (c, p) an element [b⊗p], where g(b) = c.

The exactness of the original sequence shows that this induces a well defined
homomorphism from C ⊗R P to B ⊗R P/(f⊗id)(A⊗RP ) and that it is an in-

verse of B ⊗R P/(f⊗id)(A⊗RP ) → C ⊗R P .

The last statement follows from the next example.
q.e.d.

As an application we compute Z/n ⊗ Z/m. For this consider the exact
sequence

0 → Z → Z → Z/n → 0

where the first map is multiplication by n, and tensor it with Z/m to obtain
an exact sequence

Z⊗ Z/m → Z⊗ Z/m → Z/n⊗ Z/m → 0
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where the first map is multiplication by n. This translates by the isomor-
phism in the example above to

Z/m → Z/m → Z/n⊗ Z/m → 0

where again the first map is multiplication by n (if n and m are not coprime,
the left map is not injective, finishing the proof of Proposition C.2). Thus
Z/n⊗ Z/m ∼= Z/gcd(m,n), and we have shown:

Proposition C.3.

Z/n⊗ Z/m ∼= Z/gcd(n,m).

If A is a finitely generated abelian group it is isomorphic to F⊕T , where
F ∼= Zk is a free abelian group, and T is the torsion subgroup. The number
k is called the rank of A. A finitely generated torsion group is isomorphic
to a finite sum of cyclic groups Z/ni for some ni > 0. Thus Propositions
C.1 and C.3 allow one to compute the tensor products of arbitrary finitely
generated abelian groups.

Now we study the tensor product of an abelian group with the rationals
Q. Let A be an abelian group and K be a field. We first introduce the
structure of a K-vector space on A⊗K (where we consider K as an abelian
group to construct the tensor product) by: α · (a ⊗ β) := a ⊗ α · β for a in
A and α and β in K. Decompose A = F ⊕ T as above. The tensor product
T ⊗Q is zero, since a⊗ q = n · a⊗ q/n = 0, if n · a = 0. The tensor product
F ⊗Q is isomorphic to Qk. Thus A⊗Q is — considered as Q-vector space
— a vector space of dimension rank A.

Finally we consider an exact sequence of abelian groups

· · · → Ak+1 → Ak → Ak−1 → · · ·
and the tensor product with an abelian group P .

Proposition C.4. Let

· · · → Ak+1 → Ak → Ak−1 → · · ·
be an exact sequence of abelian groups and P either be Q or a finitely gen-
erated free abelian group, then the induced sequence

· · · → Ak+1 ⊗ P → Ak ⊗ P → Ak−1 ⊗ P → · · ·
is exact.
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Proof: The case of a free finitely generated abelian group P can be
reduced to the case P = Z by Proposition C.1. The conclusion now follows
from the isomorphism A⊗ Z ∼= A.

If P = Q we return to Proposition C.2 and note that we are finished if
we can show the injectivity of f ⊗ id : A⊗Q → B⊗Q. Consider an element
of A⊗Q, a finite sum

∑
i ai ⊗ qi, and suppose

∑
i f(ai)⊗ qi = 0. Let m be

the product of the denominators of the qi’s and consider m(
∑

i ai ⊗ qi) =∑
i ai ⊗m · qi. The latter is an element of A⊗Z mapping to zero in B ⊗Q.

Thus its image in B⊗Z is a torsion element (the kernel of B ∼= B⊗Z → B⊗Q

is the torsion subgroup of B (why?)). Since f ⊗ id : A ⊗ Z → B ⊗ Z is
injective, this implies that

∑
i ai ⊗m · qi is a torsion element, so it maps to

zero in A ⊗ Q. Since this is a Q-vector space, m(
∑

i ai ⊗ qi) = 0 implies∑
i ai ⊗ qi = 0.

q.e.d.
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112 Fredi Tröltzsch, Optimal control of partial differential equations: Theory, methods and
applications, 2010

111 Simon Brendle, Ricci flow and the sphere theorem, 2010

110 Matthias Kreck, Differential algebraic topology: From stratifolds to exotic spheres, 2010

109 John C. Neu, Training manual on transport and fluids, 2010
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