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Preface

The present publication is in the nature of a survey, therefore the presentation
is similar to articles in the mathematical cncyclopediae.

The authors did not intend to give a systematic presentation of all relevant
problems on the basis of some single method, but rather have attempted to
include different methods of establishing the various propositions, indicating
their characteristic differences.

All basic methods and results are presented in detail; moreover, the
indications given in the paper will allow a more or less experienced
mathematician to construct proofs by himself of nearly all the results given.

The Authors.
—5—

§ 1. THE HERMITE-JACOBI METHOD
1. The origin of the method

The first application of the law of inertia of quadratic forms to the
investigation of the roots of algebraic equations is found in the proof which
Jacobi [5] supplicd to the well-known theorem by Borchardt [4].7

I. The number of different pairs of complex-conjugate roots of the real
polynomial '

f(x) = agx"+a,x"" 1+ ...a, = aglx—a,)(x—a)... (x—a,)
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is equal to the number of variations in sign in the sequence of determinants

So 51 Sp—-1
s s ses aee S So S
A"= 1 2 .n -..A2= $ Sl A1=SO;A0=1
1 52
Sp—1 Sa Sap-2

where s,-Newton sum:s, = o +a%+...a5k = 0,1,2,..).

In this theorem Borchardt has assumed that there are no zcros in the
sequence A,...A,, A of numbers. He obtained this theorem, taking as basis
Sturm’s [68] theorem and Sylvester’s analysis of the Sturm functions.

Jacobi, using the theory of quadratic forms, arrived at more detailed results.
His method consisted in the following:

Consider the quadratic form

IngEl

J=Y (xo+tx, +02Xo+ - +af  x, )

k=1

It is easy to sce that
n—1
J= Z Sk+1 Xk X1
k=0
Each pair of squares, corresponding to two complex-conjugate roots, gives
sums of the form:

(P + Qi)? +(P—Qi)? = 2P*—2Q?

where P and Q are real, lincar functions of the variables xq, Xy, --.5 Xp—1- Thus,
if among the roots there are p different real

{ This proof was published by Borchardt after Jacobi’s death.
—6—

and q different pairs of complex-conjugate roots, then the number of positive
squares of the form J equals p + ¢, and the number of negative squares equals q.
Therefore, the following theorem is valid: ’

1. If m is the number of positive, and v is the number of negative squares of the
form J, then the polynomial f(x) has v different pairs of complex-conjugate roots
and n—v different real roots.
On the other hand, he (Jacobi [35]) has established the following identity:
X3, X X2,

F= QXX = —— + —r-! .
k..“;o MO DDy T DD,y D,_,D,

+|.|+
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268 M. G. KREIN AND M. A. NAIMARK

where
(oo *tt Qo1
a a . cee
Dy=1;Dy =app D2 = 00 ol w..D, = (1
10 Q11 . :
ar—-lO Qe qp-
r = rank of the form F, and
1 oF
dgo Qg *tt Qog-y 5‘3?
0
Xk—l— (k=1,2, ’r)a
1 OF
Q1,0 G-1,1 gy k-1 3%
Xk—1

where it is assumed that D, # 0 (k = 0, 1,...,7). It follows from this identity
that the number of negative squares of the quadratic form F equals the number
of alternations in sign in the sequence (1).

Taking, as basis, this theorem I it follows from theorem II, and it is sufficient
to assume, that there are no two consecutive zeros in this scquence.}

Independently from Jacobi, Hermite [29], [30], [31] arrived at the method
of forms and developed most extensively this method and found important
applications. Taking as basis the law of inertia of quadratic forms, discovered
by Sylvester [73] in 1852 and, before Sylvester, :

1 The point is, that Gundelfinger [22] generalized the Jacobi rule for the case in which, in this
sequence, two conseculive zeros are absent, and he proved that on both sides of the zero-term are
terms with different signs, so that any sign could be ascribed to the zero-term. Note, moreaver, that
the analysis by Fro‘benius [16] of the Bezout forms (see pp. 21, 22).

always gives the means of determining from the entire sequence of major
minors Ay, Ay, A, ... A,...the numbers and v.

By the way, r = n+v equals the number of the last of the minors, which is
different from zero for any m:

n—1

m
J= Y spaxexr= Y, (Xo+oxX;+...0] " xpo)?
LI=0 j=1

(For the application of this rule see Baur [2].)
—T7—

by Jacobi [36], and generalizing it over the Hermitian forms, Hermite arrives
at rules for the separation of both real and complex roots of algebraic
cquations purely algebraically, and generalizes Sturm’s theorcm over systems
of cquations. He also succeeds with the establishment, in a purely algebraic
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SYMMETRIC AND HERMITIAN FORMS 269

way, of separate results from the index theory of Cauchy. He gives rules for the
determination of the number of roots in a rectangle, circle and in an endless
multitude of other algebraic curves. All.analyscs by this brilliant algebraist
have a certain methodological significance formulated by him in the letter to
Borchardt, (see [31], p. 39) “La théorie des formes quadratiques vient ainsi
donner pour ces théor¢mes des démonstrations indépendants de toute
considérations de continuité...” (translated as: “The theory of quadratic
forms thus gives the means of proving all these thcorems independently of any
considerations of continuity....”)

2. The separation of real roots

Let us present the Hermite method, in its application to the problem of the
separation of real roots,} in a slightly generalized way, as has been done by
many later authors. Let

W, (x) = bP x4 bPX" A4 e +b® (k=01,...,(n—1)
be linearly independent real polynomials, so that the determinant
b5~ # 0.
To cach equation
f(x) = gox"+a,x" "' 4+ +a, =0,

with real coefficients, with roots a,, &, ..., &, we ascribe a quadratic form in
the variables X, Xy, +«sXp-1+

H = 3 o) xa¥ole) 3, ¥ie)+ -+ X ¥am @)

i=1
n—1 n

. = Z XXy [y = Z Z(aj)\yk(aj)\yl(aj)]-
kI=0 j=1

where #(x)is an arbitrarily chosen rational function which is not zero at any of
the pojnts «;. The coeflicients ¢y, as symmetric functions of the a;, belong to the
same ficld as the coefficients of the functions ¥, f and z. It is easy to obtain the
formula:

Yoley) Walay)

.lyo(aj..) ‘P (o3 j,‘)

b S 1(“,'.)

A= EZ(“}.)X(“};)-- e .
W afay)

v

11In this question, as Kronecker [43] observes quite justly, one should place near the name of
Hermite the name of Sylvester, who, using only one insignificant hint given him by Hermite (see
Sylvester [74], p. 483) has by himself developed and generalized this method quite independently.
It is even possible that the idea of the application of forms to the theory of algebraic equations
occurred to Hermite himsell not only in connection with his analysis of arithmetics over the forms,
but also in connection with Sylvester’s [72] represcntation of the Sturm functions.
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270 M. G. KREIN AND M. A. NAIMARK
—8—

for the kth principal minor A, = [¢,;]6™! of this form, where the summation is

- extended over all possible combinations of k valuesjy, ja, ..., jkfrom1,2,...,n.

If B, B3, -- ., B, are all the differcnt real roots of the equation f(x) = 0 with

respective multiplicities by ... h,, and if 74, 71372, 7253 Vo Foarc allits pairs of

different complex-conjugate roots with respective multiplicities g, ... g,, then,
assuming:

Ry = xq¥o(B)+ " +XuWuilB) (k=1,2,....p)
P +iQy = /1y [xo¥olr) + -+ + X Vo7l k=1,2,...,9)

we obtain
p q
H= Y haBIRE+ Y. 29.[P}—QF]
k=1 k=1

Here, as the matrix [|b{||3™* is non-singular, the rank of the matrix

(o)l = 1650 - o~ * N1 F

“equals the rank of the matrix [lok = ! || i.c. equals p 4 2q. Consequently, the rank r
of the form H also equals p+2q. Hence, since the forms R,, P;, O, are linearly
independent, the following theorem results:

II1. Theorem of Hermite [30]-Sylvester [74]. If m is the number of positive and
vis the number of negative squares of the form H, and q is the number of different
pairs of complex-conjugate roots of the equation f(x) = 0, then the latter has
n—q different real roots for which y(x) > 0 and v—q different real roots for
which y(x) < 0.
Let us now give the most interesting results which can be obtained by
selecting the functions x, W, (k =0, 1, ..., n—1) in diffcrent ways:
a) Suppose that y(x) = x?*, ¥(x) = x (k =0, 1, ..., n—1) then we obtain
n~1
H= Z Sap+k+1%Xk X0
k=0
This form can replace the one in Theorem II, then this theorem can be
generalized to some extent.
b) Assume that z(x) = t—x, ¥,(x) = x*(k =0, 1, ..., n—1) then we obtain
n-1

Hty= Y, (Spaat—Scsr+1)XeXs
k1=0

It follows from Theorem III that the number of different real roots of the
polynomial f(x)—i.e. roots that are in the interval (q, b) [on the assumption
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SYMMETRIC AND HERMITIAN FORMS 271

that a and b do not coincide with any of the roots of f(x)] equals the difference
of the numbers of negative squares of the forms H(a) and H(b).

Wherefrom we arrive at the rule, obtained by Joachimstal [39] in a different
way:

1 The superscript indicates the row number.
—_9

IV. The number of different real roots in the interval (a,b) of the polynomial f(x)
equals the loss in the number of variations in sign when proceeding froma to b in
the series of polynomials

1, 8,(t), 85(t), ..., 6,(t)

where [see (2)]
. o S S ree  §
So t—S8; S)i—s; Sp—1t—S ° ' ’
5y t—s;, Spt—S3 T Sil—Sie . S27
Ak(’) = vor = *
) Sg-1 Sk Sak-1
Si—1 t—S; Skt-"sk+1 Szk*lt_SZk—l | - lk
- k—1 2
| aj, aj‘

1 o; a’f-l
= Z(t_ajl)(t""ajz)"'(t—ajk) " eee "

ves k~
1 afk ajk

k=12..71

1

.
if, in this series, there are no two consecutive zerosatt =aort =b.

This theorem may also be extended to the more general case of the series of
functions 1, 8,(t), ..., 8,() which is obtained when 7(x) = (t—x) ¢(x), where
¢(x) is any rational function taking positive values at x = &;; then to s, will

correspond the generalized sums s, = Zq&(a,)a}. Joachimstal, studying the
1

series 1, &), 0% ... limited himself to the case of simple roots (r = n) and
assumed that all the determinants |s, 157 ' (p =0, 1,2,..., n) differ from zero.
As he has shown, with these assumptions, the functions d;(¢) will form common
Sturm sequences with linear quotients, from which Theorem IV will result, All
these limitations can be removed (see p. 20).

1 .
¢) Take y(x) = —tt;; ¥ (x) = px)*k=0,1,...,n— 1) where ¢(x)is such a

real polynomial that the remainders on division of ¢(x)* by f(x) form a system
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272 M. G. KREIN AND M. A. NAIMARK

of linearly independent functions. In this case, according to (2),

_ ¢ Wd(e).. $a)] -
Ak(t) a .h;.ik (t"‘ah)"‘(t—aj“) ’
where 1V is

1 oz, - z’i
zZ, "t Z3
‘V(Zl, Zay eeny Zk) =

1 z, -z
— 10—

In Theorem IV Joachimstal’s polynomials &,(t) can be rcplaced by the
polynomials A,(t). Thus, this system of polynomials, similar to the system 1,
5,(t) ... 6,(t) of polynomials, behaves analogously to the Sturm sequence.
Hermite [30] was the first to construct this system.

d) It is possible to obtain sequences of Sturm functions by a suitable
. sclection of the functions y and ¥ to within positive multiplicative factors and,
consequently, to prove the Sturm theorem by purely algebraic means (sce
Sylvester [74], p. 485).

Assume, for simplicity, that the polynomial f(x) has no multiple roots.
Suppose:

_hx) 1

=70 = W, (x) = x*

%(x) k=01...,n—1)

Si(x)
J(x)
polynomial f(x). In this case the minors A, (1), multiplicd by f{t), coincide with
the so-called Sylvester functions

1(“}.)f1(ajz)---f1(°¢jk) 2 _ A 1
T Fan) o oSG o Se—ap) -~ o)

which, in the case of lincar quotients, (the so-called “regular case™) in the Sturm
algorithm differ from Sturm functions only by positive factors, as was first
discovered by Sylvester [72], and proved by Sturm [71]. As a consequcnce of
the fundamental Theorem III we obtain the result that the number of real
roots of the polynomial f(x) in the interval (a, b) equals the loss in the number
of variations in sign in the series 1, 0,(2), 05(1), ..., 0,(2).

In the regular case, the Sturm theorem is thus proved purely algebraically,
without considerations of continuity.

> 0 for all roots of the

where f,(x) has been chosen in such a way that

0,(1) = 3>
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Hattendor(T [24], [25] succeeded in proving that, for the irregular case also,
the loss of the number of variations in sign in the transition oftfromatobin
the sequence of Sylvester functions is identical with the corresponding loss in
the Sturm sequence. That completed the first purely algebraic proof of the
Sturm theorem. However, this approach appeared extremely clumsy. Later,
Kronecker [42], [43] gave an elegant and short proof of the Sturm theorem,
involving, however, the Sylvester functions (sce Kronecker [43b], p. 105) but,
again, for the regular case only. For the irregular case he succeeded in the same
only for an infinitc interval (—co, 00) (sce Kronecker [43a], p. 124).

In § 2 a purely algebraical proof of the Sturm theorem for the most general
casc will be given, based upon the analysis of the Bezoutiant (sce p. 22).

¢) Brioschi [7] considered the form H on the assumption that yz(x) =

w(x . - .
(t-'-x)"‘ﬁ(g;))- where i is an odd numbcr, positive or negative,

— 11—

w(x), 0(x) arc two real polynomials, having the same sign for the real roots of
the polynomial f(x). With that the problems discussed in sections b) and c)
became combined. The possibility of such generalization was evident by itself.

3. The separation of the solutions of a system of equations

Hermite's method, with which one can construct an infinite number of
sequences of functions, cach equivalent to the Sturm sequence, has, morcover,
the essential advantage that it can be extended—as Hermite 29] himself has
shown—to the case of several cquations in several unknowns. Let

Ux,»)=0, V(xy=0 ()
be two real algebraic equations of degrees n, and n, respectively; let

(‘11, ﬁl)’ (aZsﬂz); eery (amﬂn)

be their general solutions. With this system of equations let us associate the
quadratic form:

(n = nyny)

H= i Z(ajrpj)[xO\PO(aj’ﬁj)+xl\yl(aﬁﬂj)+ +xn—1lyn—l(dj’ﬂj)]2

=t

n=1
= Z Cuxixi;

K1=0 [Cu - 121 1 B¥ulay B ¥ B 1)]

where x(x,y) is some real rational function, different from oo at the
points (a;, B;), and ¥, (x, y) are real integral functions. The coefficients of this
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274 M. G. KREIN AND M. A. NAIMARK

form can be computed from the coefficicnts of the functions U, V,  and ¥,
k=0,1,2,...,n—1). '

Assuming that the rank of the matrix ¥, («;, #;)|| is #, we obtain the result
(sec likewise pp. 7, 8) that the number of negative (positive) squares of the form
H equals the number of pairs of complex-conjugate solutions for which
#(x,y) # 0 plus that number of real solutions for which y(x, y) < 0 (x(x, y) > 0).
Thus, ifit is known beforchand that all the solutions of the system are rcal, then
it will be possible to find out how many solutions arc inside, outside or on the
algebraic curve y(x, ) = 0. Here, by the inner and outer domains of the curve
arc meant the sets of points for which z(x,y) < 0 and y(x, y) > 0 respectively.

Assuming that

1
(t-x)(s—y)’
we obtain the Hermite thecorem:

2%, y) = Yilxp) =0y (k=0,1,...,n—1)

V. If v(s, 1) denotes the number of negative squares of the form

n 1 SRR |
.; t—a;)s—f) [Z xk‘l’;] ’ $;=dlph) (j=1,2,...,n)

k=0
—12—

then the number of solutions of the system satisfying, at the same time, the
inequalitiesa < x < b, ¢ < y < d is equal to

1 [v(a,©)—v(a,d)—v(b,c)+v(b, d)].

The number (s, t) equals the number of variations in sign in the series of
» . 13
major minors

M= ¥ U CINELIN

G t=25) . (t—a)5—B;)..-5—F;) (k=0,1,...,n; A4, = 1).

Without giving a proof, Hermite [29] asserts that the functions I,
A(,3), ..., A,(t,5) possess, besides the property stated in Theorem V, many
other properties which are similar to properties of Sturm functions.

Assuming z(x,y) = (t—x)"(s—y)* with p,q arbitrary odd numbers, and
leaving ¥, arbitrary, it is possible to obtain as functions A, sequences which
have the same meaning for a rectangle as the Sturm sequence, rather than
trying to obtain expressions analogous to the Sylvester functions in the case of
one variable.

The evaluation of the symmetric functions Cy, in practice is very difficult.
For the casc in which x(x, ) is a polynomial, this evaluation reduces to the
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n
determination of the sums Y. of B4, In some cases one can use Jacobi's method

J=1
[34] for the cvaluation of the coefficients Cy;.
The simplest form H for the determination of the number of solutions in a
rectangle can be obtained by assuming: '

o =0t—x)6-y, Fxn=y (*=01..,n=1).

In this casc Cyy = stSy 11 —STh 11— Sks14 1+ Tiar41

n n
where Sk = Z ﬁ'ﬁ T, = Z “jﬂ?
1 1
and wherefrom
tSo—To tS; -1, = 15-T,
tS; - T, t1S;— T, - tSis1— Ty
A(t,s) =]. . .
tS,‘_l——'ﬂ_l, tSk—T;‘ Tt tSZk—l_'FZk.—l
1, S, ceny st

These functions are analogous to the Joachimstal functions d,(t) (see p. 9).
They were first introduced by Hermite [29] for a particular system of two
equations, after him Brioschi [7] introduced them for the general case.

— 13—

It is necessary to note at the end of this section that Hermitc'’s idea, as
presented here, can by no means be considered to be exhausted. The system of
equations (3) has not always n = n,n, different solutions, there exists no
general rule for the selection of the functions W, so that the matrix [['¥,{a;, 8;)
would not be singular, etc.

§ 2. THE FUNDAMENTAL PROPERTIES AND APPLICATIONS
OF BEZOUTIANTS '

1. The Bezout matrix
With the polynomials
f(x) = agx"+a;x" "'+ --+a, ag#0
g(x) = box"+bx" "1+ +b, bpZO0
let us associate the form

n—1

B(f;g; X0y X3 eees xn—l) = —B(g’f;x()vxh ooy xn—l) = Z Cri X Xq
ki=0
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which Sylvester [74] named “Bezoutiant”, and whose coefficients are com-

puted from a,, b, in the following way:
Cu=dogs141+dipsrt  Fdirsy (di = 8,1y —a, 1 by ).

As Cayley [11] observed, the numbers ¢, are the cocflicients of x*y' of the

S(X)g(y)—f(Mg(x)

integral function , that is
x—y
X - x) !
S(X)g(»)—=f(a( )= Z CaXy';
x—y kI=0

therefore this function is named the “generating function” of the Bezoutiant.
The following propositions ensue:

VI. The determinant of the Bezoutiant equals the resultantt of f and g,
multiplied by (—1)", that is,

Gy @y *** duy @, 0 0 ---0])
0 a - a5 a,_y a, 0 --- 0 ( "
n—1 _¢_ 1\, —_ (— 1V 0 o - Qo ay ) ;'3 Toant )
leuls™" =(—1) ng-( 1) by b, b,_, b, 0 0 £ 0 )
0 by - by—y b,y b, -0
e ¢ aa ( ,1
0 0 i bo bl bz b3 ve bn J

VII. The defect of the Bezoutiant equals the degree of the greatest common
divisor of the polynomials f and g.

t To use the common terminology, the determinant R, on the r.h.s. could be called resultant of
the polynomials f and g only when the polynomials f and g are of the same degree. However, it is
easy to show that, if the degree m of the polynomial g is less than the degree n of f, then R, differs
from the common resultant by the factor a§~" (sec Frobenius [16], p. 419).

— 14 —

Before showing how these propositions may be established, let us associate
the Bezoutiant with the form

n-1

S 95 Xos X150y Xp—1) = —S(g, f; Xgs Xpyeues Xpoq) = Z Si+1X5 Xy
ki=0

where the numbers sq, sy, ..., 5,,-, are determined from the expansion
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and, consequently, from the recurrence formulae:

by = gSk—1+a;1Sk—2+ "+ a5, (k=0,1,2,..) “4)
We obtain
g0  g(x)
S0 —S()glx) _ 1) f(y)f ()’) 7
xX—=y -y
=f(x)f(y)kiosk+,x-‘*+*>y-"+"

@
— z Sk+'(aoxn-—k—l+alxn—k—2
k=0

fodax T Y gy a2 e ay T T

n—1
= Z Skﬂ(aox"—k—“*‘“lx"_k_z‘*‘ o oAy !
xI=0

Fayy T Gy gy)

wherefrom
S, g; ttgy Uy vy Ug—1) = B(f, @3 Xo» X5 2205 Xp—1) (5)
with
Up = AgXp—y + 01Xy p+ "+ 051 Xg
= AoXp—ot *** +a,-2Xg
L O R PR EE (6)
Uy = AoXo

As the determinant of this transformation cquals aj # 0, it follows from (5)
that:

VII. Theforms S(f,g) and B(f, g) have the same number of positive and negative

squares.

Assuming, in (5), Xo =Xy ="'""X,.p-y =0 and, consequently, by (6),
U,y = Uy_p =+u,=0,and observmgthat the discriminant of the truncated
form B, thus obtamed equals the discriminant of the corresponding truncated
form S multiplied by the square of the determinant of the transfor-

—15—

mation of the remaining variables u into the variables x, we obtain:
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cn—p.n—p cn-p,n—l
R,=]. . = ajls; 48! (M
Cn—l,n—p cn—l,n'-l

On the other hand, Hurwitz [33] has found an extremely simple expression for
the determinant a3fls; , |5~ in terms of the polynomials fand g, namely

@ by O 0 0 0
Ry= sl =|® P G o ° @

A2p-1 b2p—1 A2p-2 b2p—2 Tt Gp bp

{a, = b, = 0 when k > n).
This formula is obtained from the equalities:

1 0 0 0 0
0 1 0o 0 0
_ plp—1) 0 O 1 0 0
2p+1 p—1 _(_ 2p+1
ag®” IS +ilb (=1) % a 0 s, Sp~2 Sp-1 S2p-2
00 s Sp—2 S2p-3
00 S_1 S Sp-1
a 0 0[]1 0 O : 0
a, dg 0 0 S-1 So SZP_z
) 01 0 0
=(=1y 0.0 sy oL sy
00 Sy Sp-y
a, a,—, ap 00 1 : 0
a, 0 0 -0 0
a, bo ag -0 0
:(-—l)p a, b1 a, 0 0
Azp bap-y Gy, p 9
aq b, . 0 0
a, bl ap bO 0 0
=a0 .
aZp—l b2p—l aP bp
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if one multiplics the determinants row-wisc and takes account of the formulae
().

When p = nwe obtain the proposition VI from (8). In order to prove VII, let
us designate by D(x) = dox?+ - +d,(d, = 1) the greatest common divisor of
the functions f and g; further let f(x) = D(x)f%x), g(x) = D(x)g°(x).

It follows from the identity

"i‘ kg _ JX¥)90)—S()g(x) J%x)g°0) =/°0)9°)

k.z=ocux ) X—y D(x)D(y) X—y
n—g=1
=D(X)D(y) Y, chxty
ki=0
n—qg-1
= Y cQdox?TE+d xt T e 1 d XY oyt +d
kI=0

NP +dqx’)

that
B(f, 3 X0s X1y eees Xam1) = BU% 0% tig, thyy oy Uy g y)
when
Uy = dyXo+d,_ 1 X1+ +dox,
u, = doxy+ - +d X +doXg4q
Upgoy = dgXpy_q-1+ " +doXp-y.

No'determinant of the form B(f°, g°), being the “resultant” of f® and g°, differs
from zero; hence the rank of the form B(/, g), which is equal to the rank of the
form B(f°, g°), equals n—g. q.e.d.

Observe that
0
g'(x) g(x) So . Sy
P T TR e
consequently, because of (7);
| -1 “2n- —1 g(n—q) _
Ry-g=leulg=1i= ad" Vs ple T = @?Fﬁlcl?zl’é -2,
0.

Wherefrom;

IX. The rank of the Bezoutiant equals the order of the last major minor of the
matrix |y ||5~ 1 which does not vanish if, in constructing the consecutive major
minors, one starts from the lower right-hand corner.
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In deriving Theorem VII, we used the property that the resultant vanishes
when, and only when, f and g have a greatest common divisor. However, this
theorem can be proven without using this property of the resultant by
“splitting” the Bezoutiant according to the Sturm algorithm (see p. 22, also the
proof given by Haupt [26], p. 268). After this proof, the characteristic property
of the resultant can be thought of as a consequence of Theorem VII.

2. Signature of the Bezoutiant and index of the fraction g/f

Let us, after Cauchy [9], denote by J5 R(x) the index of the function R(x) in the
interval (a,b), that is, the difference between the number of times the real
function R(x) suffers discontinuity from —oo to + oo as x passes from a to b
and the number of times it suffers discontinuity from + co to —co.

If the roots « of the polynomial f(x) are simple, then

p90) _ gl
et = 2 ey

Now let us state the following important and interesting fact:

X. Thesignature p of the Bezoutiant of the real polynomials f and g (that is, also,
of the form S(f, 9)) equals the index of the fraction g/fin the interval (— o, o) Le.
g(x)
p=Jre="°
Jx)
In case the roots of f(x) are simple, the proposition follows from the general
Theorem 111 @nd the formula

Jx)g0)—SM9x) _ < gl f(x) fO)

) ) X—=y r=1 (o) x— o y—a
where the r.h.s. could be replaced with B(f, g; X0, X1,-- -, Xa—1) if,on the Lh.s,, in
each of the polynomialsf(x)/(x — &) and f (y)/(y —a,) x' and ' are replaced with
x(1=012,...,n-1).

The formula (9) may be found in Darboux [13]; this formula follows from
the expansion

©)

2 gly) 1
w=1 S (o) x—o,

9() _ bo

f(x) B do

t For the case when f(x) has simple roots, the property of the Bezoutiant asserted in the theorem
has been found by Sylvester in 1853 (see [74], p. 511) and by Hermite [31] in 1854 (see pp. 47-48).
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When f(x) has multiple roots, the reasoning becomes more complicated. In
this case it is more convenient to consider the form S instead of the Bezoutiant.
Hurwitz [33] has found the signaturc of the form S(f, g) by means of an
extremely beautiful method. We present it:

Suppose ©(z) = Xo+x,2+Xx,22 + - +X,2" !
then '

+F—l(x0v Xipy eves xn-l)z+F0(x0s vy xn—l)

S, g Xos e ver Xn=
+ (s g “oz X .)+“_’ (10)

902 2y ...
e

thus, S(f, g; Xo» X1, - -+ » Xu— 1) €quals the sum of the residues of the Lh.s. of (10)
with respect to all the poles of the function g(2)/ f(2).
Now, suppose z = a is some pole of g(z)//(2) of order /, and let

glat+t) ¢, &

S+ &4
Ofa+1) = Op(0) + O, ()t + O, + ...,

where Oy(a), O4(x), ... arc, cvidently, some linear forms in the variables
Xo» X1 -+ +3 Xn—1. The residue with respect to the point « will then be

€1 102420,-2060 + -2 20(@0@; -1 +0O; -2+ )

This residue, depending on the parity of 2, can be expressed as:
‘ OWot @y + +0, Fumr  (1=20)
or .
GO‘P0+®,‘P,+---+®,,_1‘P,,_1+co@5 (A =2u+1),

where Wo, ¥y, .. . are some linear functions 0f Xg, X1» .« .5 Xp—y. I ot is real, then
the functions © and ¥ are real, and the residue can be expressed in the form:

HOp+Wo)? —HOo— Yo+ +HOp—s +¥,-)
—HO, =¥, (=2p,
or '
1O +Wo)? —4(O—Wo¥+ +4O,-y +\Pp"'l)2
Y@, ~W, P cO  (A=2u+1),
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In this way, if 2 is even, the residue with respect ta ais represented by a form
whose signature is zero; if 2 is odd then the signature of the form = sgn c.

Since, to each complex pole « there corresponds a complex-conjugate pole
with complex-conjugate residue, it is not difficult to see that the sum of the
residues for two complex-conjugate poles is represented by a real quadratic
form in the variables x,, Xy, ..., X, With signature cqual to zero.

Thus, the signature of S(f, g; Xg, Xy, .-, X, 1) cquals the sum of the sgn ¢ for
o 9(X)
S 1) q.e.d.

It was tacitly assumed in our proof that all forms ® and ¥ were lincarly
independent ; however, if that were not the case, then the form S would have
rank less than the sum of the orders of all poles, which is impossible because of
Theorem V.

By the way, it follows from the theorem just proved that

all poles of odd order, that is, = J

0 when n = 2p

11
sgn a, when n = 2p+1 (n

signature S(f, 1) = {

Also from this thcorem the elegant theorem of Hurwitz [33] is obtained :

XI. Inorder that the roots of the polynomials f(x) and g(x) be all single, real and
alternate, it is necessary and sufficient that the sequence of determinants

a bp 0 O -+ 0 O

a; bl dg bo A 0 0 ap bo 1

e e e e P ey by T

0 0 . . DR ¢ 1)} bo

L}
contain either alternation of signs only, or constancy of signs only.
. . - g
Indeed, if f and g satisfy the conditions of the theorem, then J ‘fm% = +n.
) n—1

If we take g = f*, then in the form S(f, /) = ), Si4:%Xp, the values s, are

ki=0
Newton sums, and we again obtain the Theorem II of Jacobi, and hence the
Theorem 1 of Borchardt.

However, as we know, the form S(f, f”) is equivalent to the Bezoutiant
B(f, f') which can be transformed into the form

1 1
B(j;f’) = ;B(f,f')-i‘;l-(naox,,-l +(n—' l)alx,,_z-l" b +a,,_1x0)2,

where f(x) = nf(x)— xf(x). From here the Sylvester theorem follows (sce [ 74],
.p. 513).
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XIL. The number of negative squares in the Bezoutiant B(f, f*) equals the
number of different pairs of complex-conjugate roots of the polynomial f(x).

Sylvester, when establishing this theorem, was assuming that f(x) had only
simple roots; one year later this theorem was found by Hermite (see [31],
p. 51), using the method of the generating function for constructing B({f, [).
However, it is necessary to point out that Sylvester did not know at that time
the association between the forms S(/, f’) and B(f, f*); while, without doubt,
Hermite did know it.

3. Determination of the index in a finite interval

Suppose that the degree of g is lower than that of f. Designate by p, = &, —V;
the signature of the Bezoutiant B, = B(/, (t—x)g), where t is a real parameter.
After Theorem X

p=a2 M o S
thus
g o4
Poy = J'_'x.% s SR
. g g )
Py, = Jf-aoj-—‘,l?}—‘]tz "f
wherefrom
(4

vh—vlz = %(plz_ph) = Jl?f'

By-the way, it follows from this cquality, with g = f”, another thcorem, also
discovered by Hermite [31];

X111. The number of different real roots of the polynomial f(x) in the interval
(t,,,) equals the loss of the number of negative squares of the form B(f, (¢ — x)f),
when t transits from ty to t,.

Because B(f, (¢ —x) /) is equivalent to S(f, (t —x)f*), this Hermite theorem,
(as we will sce later) follows from the J oachimstal Theorem IV and vice-versa.
With respect to this theorem, see also Jamamoto [37])-1

Consider the form S, equivalent to the form B,; becausc

(t—x)g(x) tso—$y 151 =52 +
& % =2
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it follows that

n—1

S, =8(f,(t—x)9) = Y, (tSis1—Sksr141)X X1
ki=0
It follows from this that the index J,}? j’;equals the loss in the number of the sign

variations in the sequence of functions

1 By the way, the final result of the Jamamoto note is wrong.

—21 —

t50_51 "= [S,._.l--s,
Do(t) = 1, D(t) = tsg—5y, ..., D,(t) ={.

IS,-1—5; [S3p-2—S2,-1

if, in this sequence, there are neither two consecutive zeros at t = ¢, nor at
t = t,. This proposition is a generalization of the Proposition IV, for, if f(x)
has all roots different, then

n
5;= glou) alj‘;

B =1L ()
but, if g(x) = f'(x), and f(x) has multiple or simple roots, then the s; will be

n
Newton sums:s; = Y, af.
- k=1

It is possible to show that, if not all determinants |s, . ;™' (p=1,...,7)
are equal to zero, then all quotients gy, ..., g, in the Sturm algorithm:

« f=afi—foui=afa—fan- -2
= ‘Ir-»lf;-n_—f;s fi-1=a, (/1 =9)

—are linear, and vice-versa ; then the functions Dy, D,,..., D, differ by positive

factors only (Markov A., [49], Frobenius [16], Joachimstal [39]) from the
denominators of the consecutive convergents of the continued fraction:

L 1
S a —?_.__L
g

that is, from the functions:

ql’ _l’ 0
i ] y —1’ [ _l
JO(I)= lv.ll(t)=qla ...,],.(t)= . -q2

0 0 o - gq

oo
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(re these functions see also p. 23). Naturally, in this case, no two consecutive
functions D,{t) vanish.

If, however, an irregular case ariscs, then, as it is possible to see from the
example (see c.g. the Loewy note to the Sturm [68] Mémoirc), f = x*—1,
g=f"t=0, several consecutive D, can vanish simultaneously. However,
Hattendorff [25] gave a rule for this case also which allows onc to determine

the index of % in any arbitrary interval. It is true that Hattendorff limited his

proof to the case of simple roots. Kronecker [43b] extended Hattendorfl’s
analysis, when he considered the most general case and studicd in detail the
structure of the functions D,. The Kronecker-Hattendorfl formula is written:

Jx‘.z% = '%kgl {sgn D, _1(12)Di{t;)—sgn Dy - 1(t1)D(t1)}

—22

Frobenius [ 16] has given a new, very interesting basis for some of the results
of HattendorfT and Kronecker, in connection with his remarkable investi-
gations on the determination of the rank and signature of Hankel forms (see
also Petr [60]).

4. The association of the Bezoutiant with the Sturm theorem

It is possible to prove the Sturm theorem purcly algebraically using
Bezoutiants. Let us apply the Sturm theorem to the functions f and g = f.

f=afi—fa L= Q2fo—f3 o fi-2 = Gy-1—Jo -1 = s fs (12)

It is easy to see that

Tt — L) —F B —x)A()

x—y

= F)f 2O+ L[N —x)e— y)q_ﬂ%:_;l;f_(xl

LiX)E=NL0)=L0)E—x) (%)

x—=y

— [N L) +LXA0]+

where

gf(x) = M;

x—t
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hence
B(f, (t—x)/1) = qu(t)uf —2usu + BT, 1 06, -, i)
+B(f1, (t=X)f25 Xo» o5 Xpmny=1)
where
= /) 1, u= L) 1,0 = AE=x) 1, ..., Uf.l.)—z
= [ fix)e—x)x""*1,

Transforming in a similar way B(f;, (t —x)f3), then B[ f;, (t—x) f5] a.s.0o.—
we shall obtain

n, = degree of q,.

(] s—1 s
B(f, (t—x)f;) = Z Q-2 Z Wl 4y + Z B(g¥, 1; v, ..., o¥¥)_)).
k=1 k=1 k=1

The forms u, v are linearly independent, because their number equals the rank
of the Bezoutiant B,. According to the corollary (11) of Theorem X, the number
of negative squares of the third summand is independent of ¢, hence, v, —v,,
= N, — N,,, where N, designates the number of negative squares in the Jacobi
form

s s—1
z qu(Huf -2 Z Wellp ey (13)
k=1 k=1

1 The transition from x* to x, is designated by [~ |.
_23_

But N,, according to the Gundelfinger-Jacobi rule (see p. 7), equals the number
of sign alternations in the sequence

@ —1 0 0
_.l q, cve 0 0

o -1
l,qr,,lq_ll g

0 0 —1 gq,

and thus, in the Sturm sequence

.I;(t)r .’;—1(‘): f;—z(‘), crey f(t)s

which differs from the first sequence only by the factor f(f). Thus the Sturm
theorem is proved for the general form into which Cauchy [9] arranged it.

t
XIV. The index of the fraction %(5)- in the interval (¢, t;) equals the loss of the

number of sign alternations in the Sturm sequence, when t goes over from ty to t,.
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RTAC]
When fl (t) f (t)’ Jn f([)
f(t)in the interval (¢, ¢,),and in such cases we obtain the proposition which is
usually brought to mind when discussing the Sturm theorem (see e.g. Grave
[21], p. 385).
It was Kronecker's idea to apply Jacobi forms, i.e. forms of the type

gives the number of real roots of the polynomial

n—1

Z Axi—2 Z ByXy Xy 41

k=1 k=1
to the problems of the separation of roots; however, he arrived at them in a
different way, and obtained the Sturm theorem only for the case of linear
quotients (see [43b], p. 105). The proof of the Theorem X1V given in this paper
belongs to the authors [41a] of this papcr.

In order to calculate the number of negative squares of the form (13), it is
possible to use any system of major minors; specifically, if we take major
minors starting from the upper corner—then we obtain the system of functions
jo = 1,ja1(th 20,5 Js(2), which have been discussed on page 21. The fact that
the sequence of functions j;, being a common Sturm sequence for the functions
jy and j,,, is such that the loss of the number of sign alternations in the

interval (t,, t,) also equals J;? —f;, Sturm knew already, (sce Sturm [71], p. 367,

Sylvester [75], p. 446).
For the regular case, when q,(x) = mx+ny, the following identity exists

B(f, f)=my [ A0 24my [ L0 124 +m A 12149
because

SOOI _, 000+ ILICERI

= my fi() i)+ - FmSoX) L)

24

Because the degrees of the polynomials f;(x), f2(x),..., f(x) decrease by one,
the linear functions [ fi(x) 1,..., [ fi(x) 1,arenothing more than those
lincar functions which are obtained when B(f, fy) is resolved into a sum of
squares by means of the well-known Lagrange [44] method. From here,
Darboux, assuming the roots of f(x) to be simple, obtained very wittily
Sylvester’s formulae for the Sturm functions, as well as the representation of
these functions in terms of the cocfficients of the polynomials fand fy,asfound
by Cayley [10].
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The Sturm Theorem X1V follows also from the formula (14) for the interval
(— o0, ) (for a regular case).

5. A transformation of the Bezoutiant

Again assuming all roots of f(x) to be distinct, we can casily obtain an
associated form of the Bezoutiant from the formula (see p. 17)

n 2
BUS, g5 Xopovn xp_g) = 3 S0 () _I

k=1 () X =0y

Assuming:

133 G(af) f(x) —1 ...
Xy = 26x,‘ p: 1f(aj) |(x——ak‘|(a°ak e ta,y),

we obtain easily (see Darboux [13])

n 1
B = —_—
kZ:l gl S (o)
nil n al]:
= Siex XXy, where 8§ = ), ———.
jito THETITH * ,‘é:lg(a,)f(a,)

(Xo+ou X 4+ +ap ' X, )

This transformation of the Bezoutiant into Hankel form was known already to
Jacobi [34a]. It is possible to prove, that also for a general casec when the
polynomial f(x) has multiple roots, the associated form for the Bezoutiant is

n-1

some Hankel fotm (sce Frobenius [16]). The form Y, sH,‘X ;X plays an
k=0

important part in the detailed investigations of Kronecker [43] on Sturm
functions ; however, this form can be encountered even earlier in Hermite [31].

§ 3. THE HERMITE METHOD FOR THE SEPARATION
OF COMPLEX ROOTS AND ITS DEVELOPMENT

1. Hermite's results

As Hermite has shown in his famous letter to Borchardt [31], the method of
forms enables us to separate the complex roots of algebraic equations with
complex coefficients; however, here, instead of the theory of common
quadratic forms one has to apply the theory of a new, more general class of
forms which have been introduced into science also by
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—25—

Hermite—Hermitian forms. In this letter, at first, Hermite solves the following
problem:
Given an algebraic equation

f(x) = apx"+a,x" "'+ +a,=0

with arbitrary complex coefficients, it is required to determine how many roots
this equation has in the upper half-plane.
In order to solve this problem Hermite considers the expression

_STOIOTE 5y
Xy k=0

where F(x) = @px"+@x""* + +- +4, is the polynomial with complex-
conjugate coefficients.}
From this generating function Hermite constructs the form

n—1

HU, Xor ooos Xa—1) = 2, AuXuXy

kil=0

where the coefficients A, as it is easy to see, are real; and hc proves the
following theorem:

XV. Ifnis the number of positive, v is the number of negative squares of the form
H(S: Xo» - +» Xa—1), then [(x) has exactly n—mn—v roots in common with f(x),
and, moreover, there are mwroots more in the upper half-plane and v roots more in
the lower.} ‘

+In order to prove this we will use the method, for whose origin we are
obliged to Liénard and Chipart [48] and by which, as Fujiwara [18] observed,
nearly all problems discussed in this paper could be combined. We stipulate
that the variables x, ..., X,—; can also be complex, and by H{f; X053 Xn-1)

n-1
we understand the Hermite form ), A,;x,%;. Let
ki=0

D(x) = dox?+d,x?~ '+ -+ +d,
be the greatest common divisor of the polynomials f(x) and f(x); without
limiting the generality one can consider it to be real, so that f(x) = f°(x)D(x),

7(x) = F°(x)D(x), where f(x), f°(x) are mutually prime.
From the identity

_JWTO) L0V _ s SOWT0) =100

X—y xX—y
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it follows that

H(f; Xos +vvs Xamy) = H(f; 1,

AR ] un—p— 1)’

t In the following complex-conjugate values will be designated by the bar.
1 Hermite considered only the case in which f and f have no common factors and / has only
simple roots.
— 26—
where:
o= [ D(x) | =dxo+d,_ X+ +dox,
ll, = r—XD(x)—l = dpxl + s +(ilxp+doxp+ 1

---------------------------------------------------

“n-p—l = I_xrl“p—lD(x)—I = dpxn-p—l + +d0x‘n—1

are lincarly independent. Hence the forms H(f) and H(f°) have thc same
signatures and ranks; therefore, in order to prove the theorem it is sufficient to
consider only the case in which f(x) and f(x) arc mutually prime.

Let f(x) = f;(x)f5(x), where f; and f, are complex or real polynomials of
degrees n; and ny(n = n, +n,) respectively; then, replacing in the identity

_JRI0-0x) _ SiN10)=£0)/1(x)

xX—y - 'f2(x)f2(y) —y
—ififi(x) f2 (x)]l(J: :i 2(9)/2(x)

x* by x, and y* by %,, we will obtain:
H(f; X5 evvs Xp—y) = H{fy5 g, «ovy Uy, — )+ H{f3; 0o, ...
where the linear fgrmsT
o= [ o) 1,oisttn—y= X" 15
vo=[ Jix) 1,..0, Un-1 = [x=" 1)1

arc linearly independent, because their determinant differs only by a factor
from the resultant of the mutually prime functions fi(x) and f3(x). As it is
possible also, in turn, to “split” the forms H(f,) and H(f5); we have

1
= H(f; Xy ores xu—l) = H(x_al; Ul)
Qoo

’ vnz— l):

ot —

+H(x—o0y; U+ +H(x—a,; U)= 3 ;
k=1

Uk Ulu
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where «y, ..., o, are the roots of f(x) and Uy, ..., U, are linearly independent
linear forms in the variables Xo, - .., X, ;- From this expansion of the form H
into a sum of squares the Theorem XV follows immediately.

The “splitting” of the form H(f) corresponding to the expansion of f in
factors is the central idca which characterizes the Liénard-Chipart method.
Hermite himself has proved his theorem, proceeding from the form

n

z

ki=10— %

Ck EI: |

1 With regard to the symbol [~ | sec the footnote on p. 22.
Y

the signature and rank of which could easily be determined, and then
transforming it into the form H. However, this method of proof requires

“superfluous limitations (see the footnote , p. 25).

The Hermite form can be represcnted as a Bezoutiant of two rcal
polynomials. Let f = g-+ih, where g and h are real polynomials. Let us
supposc that the degree of g is not less than the degree of h, for otherwise, we
would consider if instead of f. Then it follows from the identity

_ &0 =S 0) () _ _,969h()—9()h(x)

xX—y X—y

that
H(f; Xgp eoes Xp—1) = —2B(g, 15 X5 -5 Xp—y)-

Ffom herc we obtain a theorem mentioned by Sturm [69], [70] alrcady in his
mémoire on the Cauchy investigations.

XVI. ‘The index J E’mg (the degree of g not less than the degree of h) equals the
difference between tie number of zeros of the function f = g+ihlocated in the
lower and the upper half-planes. -

The method of proof belongs to Hermite [31], who limited himself to the
discussion of the case in which ¢ has only simple roots, since for this case only
he had at his disposal the Theorem X, which he derived from the Jacobi
formula.

It follows from this theorem:

XVIL Ifallrootsof f = g+ihareintheupper haif-plane, then all roots of g and
h are different, real, and alternate among themselves and vice-versa.
The first part of this theorem is known in the literature under the name
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Biehler [3]-Hermite [32], because these authors gave a proof which is not
connccted with Theorem X (re this thcorem see the works by Laguerre [45],
Jentzsch [38]). .

Hermite also showed [31] how, by means of his Theorem XV, it is possible
to determine how many roots of the equation f(x) = 0 are in the domains
determined by the inequalities V(x, y) > 0 and V(x, y) < 0, where V(x, y)is the
imaginary part of some rational function ¢(z)(z = x+iy). In order to obtain
that, one has to construct the equation F(z) =0 whose roots arc thc
expressions ¢(ey), ..., ¢(a,) (see, e.g. Grave [21]). The number of positive
(negative) squares of H(F) equals the number of those &, which are located in
the domain V(x,y) > 0 (V(x,y) < 0).

If, for cxample, to take with Hermite

" (2) = (z—E~in)?, then V(x,y) = (x—&)(y—1).

Wherefrom, if (£, n) designates the number of positive squares of the
respective form H(F), then the number of roots of the

—28 —
equation f(x) = 0 which lic in the rectangle &, < x < &,,n9, <y <1, equals

(G, ) — (€10 112) — (&2 1) + 7l 1))

In a similar way it is possible to obtain the number of roots in an infinite strip,
in a circle, in a circular ring, etc.

2. The Hurwitz problem

If it is desired to determine the number of roots of a given equation f(x) =0
located in the left half-plane, then it is necessary to construct the form
H(f; xg, - .+, Xn—1), Where J(x) = f(ix).

It is easy to see that the form H(f’ x,, ..., x,_,) can be transformed into a
form R(f; &o,- .., &a— ) by setting &, = i*x, (k = 0,...,n—1). Theform R has, as
its generating expression, the function

RE, 1) =f(§)f('1)—cf:;€)f(—fz) E=ix, 1=1i)

i.e. is obtained from R(¢, i) by substitution of & by &,, #* by £,. Assume now
that the polynomial f(x) is real; let further

gx)=a,_,ta,_sx+a,_sx*+..., h(x)=a,+a,_,x+...,

Supplied by The British Library - "The world's knowledge”

U,

- -

.

i S

e g e e e

consequent

IR(x,

we obtain
IR[f; x,

In order 1
sufficient th
independen
Then, apply
p. 15, form

XVIIL Inc

have negatit

be positive.

Hurwitz
technician £
The methoc
Liénard anq
himself) dif!
considered,
dircctly (sec

The posi
alternation
of signs by 1
from the pc
Chipart [48



f which is not
Lagucrre [45],
/, 1t is possible
1 the domains
‘¢ V(x,y)is the
rder to obtain
roots are the

er of positive
are located in

juares of the

y <1, equals

(infinite strip,

tion f(x)=0
uct the form

ormed into a
orm R has, as

.

Assume now

SYMMETRIC AND HERMITIAN FORMS 293

consequently f(x) = h(x?)+xg(x?). From the identity
| _ LG =S (=S (=)

1 =
oy xAg(?) -~ hyDg(x) | x2g(x)h(%)—y*g(r)h(x?)
= XY xz_},z + x—y?

we obtain
%R [f» Xo, ..

In order that all roots of f be located in the left half-plane it is necessary and
sufficient that the form R(f) be positive definite and, consequently, that the
independent forms B(h, g; x,, X3, Xs,...} and B(xg, h; xq, X1, ...) would be also.
Then, applying the rules for the computation of minors of the Bezoutiant (sce
p. 15, formula (8)), we arrive at the Hurwitz [33] thcorem.

ey Xp=1] = B(h, g; x4, X3, Xs5 ...)+ B(xg, It; xg, X3, X4, ...).

XVIIL. In order that all roots of the real equation
apX"+a,x"" 14 - +a,(a, > 0)
have negative real part, it is necessary and sufficient that all determinants

a, ay - Ay
a, a; as
g a; a
0 a; a;

Qg Qy °°° Qzu-3

a, a
1 ,..,|0 a G, _ala, =0 for k>n
1 2n-3 k

a
b ay 4a

’

0o 0 - a,
be positive.

—20_—

Hurwitz discovered this theorem on the suggestion of the renowned scholar-
technician Stodola [67] who applied it to a problem on the theory of turbines.
The method of proof given here is in principle the same as the method used by
Liénard and Chipart; the Hurwitz method (or the method used by Hurwitz
himself) differs only in that, instead of the forms B, the respective forms S are
considered, and instead of Hermite’s theorem, the Theorem X is applied
dircctly (sec p. 17, see also Fujiwara [17]).

The positiveness of the Bezoutiant is associated with a certain order of
alternation of the roots of the polynomials (sec the Theorem X1); using the rule
of signs by Descartes (see, c.g. Grave [21], p. 352), it is also possible to obtain
from the positiveness of the Bezoutiants B(l, g) and B(xg, ) the Liénard-
Chipart [48] criterion:
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XIX. Inorder that all roots of the pol ynomial f(x) lie in the left half-plane, it is
necessary and sufficient that the quadratic form B(h, 9) be positive definite, and
that all coefficients of the polynomial h(x) have the same sign as ap.

Liénard and Chipart have established this theorem by means of many
“considerations on continuity”; however, that is not necessary. Moreover,
Liénard and Chipart studied the relationship between the rank and the
signature of B(h, g) and the structure of the set of roots of f.

In connection with some problems in the theory of vibrations the English
mechanic Routh [63], [64] worked out, independcntly of the Hurwitz studies,
a practical algorithm which allows one to detcrmine the number of roots of a
real equation in the left and in the right half-planes.

1. Schur [66] has proposed another completely original algorithm for
determining'whether a rcal polynomial has allits roots in the left half-planc or
not. Not without some interest are the investigations carried out by the Italian
mathematician Orlando [54], (55}, [56], [57], [58]), [59] (see also Liénard
[47]) in conncction with the Hurwitz thcorem.

As Fujiwara [18] observed, it is possible to obtain the following general
result from the Hermite thecorem:

XX. In order that all roots of the real polynomial f(x} lie inside the angle
—0 < arg x < 0, it is necessary and sufficient that the Hermitian form, which
has as its generating function the expression

_ S S

X—y

be positive definite.

L}

3. The Schur-Cohn problem and the theory of symmetrical
polynomials

It is possible td associate with each complex polynomial

-1
fZ)=apz"+ " +a, 2 polynomial /X2 = z"/(;) =az"+ - +do.

According to M. Krein’s [41] terminology the polynomial /(z) is called

symmetrical if £*(z) = 7).
—30—
The greatest common divisor of the polynomials /(2), /*(2) can differ froma

symmetrical polynomial only by a constant factor. In order that a polynomial
may be symmetrical, or would differ from symmetrical by a constant factor, it
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is necessary and sufficient that, to each root o having |a] # 1, the polynomial
| e
has a root a* = 7 with the same multiplicity as a.

Let us associate, as Schur [65] and Cohn [12] do, with each polynomial /(z)
the Hermitian form

.y[)(f;XO,...,xn_l) = Z laoxj+al:Cj+1.+ cec +a,,_._,-x,,|2
=1

n
- '21 X4y 1 Xp0 g + 000 a5,
"=

having as its generating polynomial the expression

LX)/ 0) =/ 0)
1—xy

As f* = f¥ /3 follows from /= /, /,, it is possible, using the Liénard-Chipart
(see Fujiwara [18]) method, to prove, completely analogously as the Hermite
theorem was proved, the following proposition:

XVa. Ifnis the number of positive and v is the number of negative squares of the

Jorm S, then the polynomial /(z) has n—n—v roots in common with ¢*(z), and
besides them, m roots lying inside the unit circle (|z| < 1) and v roots outside this
circle.

It follows from this theorem that, in order that all roots of /(z) be inside of
the unit circle, it is necessary and sufficient that the form 5#(/) be positive
definite. This result has been discovered by Schur, when he carried out his
beautiful investigations on bounded functions, regular inside the unit circle
(see Schur [65]). Cohn [12] has obtained the general Theorem XVa for the
case in which / and £* do not have a greatest common divisor, and also he
obtained it not by way of purely algebraical reasoning, for he used the Rouché
[62] thcorem (see for this thcorem e.g., Gursa [23], p. 99). In the most general
form, dnd using the Liénard-Chipart method, this theorem is proved by
Fujiwara [18].

As the form 5 may be transformed into the Bezoutiant 4, so the form o#
may be transformed into a form constructed from two symmetrical poly-
nomials, which serves as a Bezoutiant in these problems. Let us define, for this
purpose, two symmetrical polynomials ¢ and # by the equalities

=gty f*=gi

SNy
= —31—

Then, denoting by %(g,%4;X¢,...,X,~,) the form with the generating
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polynomial

g X)£0) —7()4(x)

Bxy) =i 1—xy

we obtain easily
H(f 3 X0re s Xn=1) = 28B(g, £ X0s+-+3Xn-1)-

In turn, the form 4 is transformed from the Toeplitz form

n—1

T (g, £illgyensllymy) = 3, Cogthlly  (Cox =)
k=0

where the numbers “c” are determined from the expansion
/i(z)

—1 -
#@)

by means of the transformations

(Co = C+é)s

Hg = g'lx0+gn—1xl + o +goxn—l
u = JnXy +“.+glxn—l

---------------------------------------

Uy g = GnXn-1

where g(z) = goz"+g42" " +. o+ G
As Herglotz [28] has shown it is possible to establish a theorem analogous
to Theorem X:

£
Xa. Theindex qf the fraction— @ =2 along the unit circle, when going in the positive

#2)

direction, equals the signature of the form 7.
To prove this Herglotz proceeds from the fact that the form 7 can be
represented as an integral over the unit circumference as follows:

'd/_(fyﬂ;xo,-n,xn_l)_-—§f§2; () ()tiz

where 0(z) = Xo-+X,2+ *** +X,-,2"~ % This formula corresponds to a certain
extent to the Hurwitz formula (sec p. 18):

h(z) 0? . (J() 02 )
o @Mz = E Res {7 0°)

Combining the Theorems Xa and XVa, we obtain a theorem on the index for
a circle:

S(g, 3 Xpse 00y Xn=1)— E;;

XVla. The i

positive direci
outside and i

Theorem |
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/
XVlia. The index of the quotient Z along the wnit circle, when going in the

positive direction, equals the difference betweenthe numbersofrootsof f = g+ it
outside and inside the unit circle.

—_3)

Theorem XVIa can bc obtained from Theorem XVI by mcans of the

xX—
transformation z = —: transforming the unit circle |z| < 1 into the upper
X

£(z) h(x)
_ g(x)’
where h(x) and g(x) are real polynomials, and S(x) = g(x)+ih(x) = (x

half-plane I(x) > 0;indeed with this transformatio

+i)" ;—:) Morcover, it is possible to transform the forms J#(¢) and 7 (/)

into H(f) and S(f). Indecd, assuming
S pr(3
A » S =+ f(x+i)

thus

Tomtesirpo(55)

we obtain the identity

Y o (TG A T4 O f(Y)f())-f())]'(x}
(et =) 1—uw 2(x—y)

from which it follows, that
1
H(f; gy -evrllg—1) = EH(f; XoseeesXn-1)

with
g = [ (x+i" V| =x,-1—(n—1ix,_2+,...
uy = [+ 2(x—i) |
oy = [ (x—iy"1.

Thus, the Theorems Xa, XVa, XVIa can be obtained by transforming the
corresponding functions and forms from the Theorems X, XV, XVIL
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The fact that, to the transformation of the functions by means of the linear
fraction substitution corresponds a certain transformation of the forms,
Hermite (see [31], p. 51) knew already.

Theorem XT has also its counterpart, which follows from Theorem Xa:

XIa. Inorder that all roots of two symmetrical polynomials, 7 and / be different,
lie on the circumference of the unit circle and alternate, it is necessary and
sufficient that the form %(g, /) be definite [28], [41].

in

@ .

A trigonometric polynomial G(¢)=e"2 4(e'®) corresponds to each
symmetrical polynomial #(z) of degrec n, so that, depending on whether # is
even or odd, G(¢) will have the form:

o+ Y, (a, cos kp+b, sinkg)  (n=2m) (A)
k=1
— 33—
or

i [ak cos (k—l)qb-i-b,‘ sin (k—-l-)gb] (n=2m-1). (B)
k=1 2 2

Thus, with Theorem Xla it is possible to find out if the roots of two
trigonometrical polynomials alternate. It is easy to see that the derivative

ing
G'(¢) = —ie™2 g4(e"), where g4(2) =g #(2)—24(2) is an anti-symmetrical
polynomial, i.e., #3(z) = — #,5(2), and hence ig,(z) is a symmetrical polynomial.

From the equality

#(@) —g(0) 4
@(‘7,/2; la,'”,an—l) - if(a) ‘(a) f_(a) ‘(a)
1 —ox
it follows that the right hand side preserves its sign if # and £ have all their
alternating roots among themselves on the unit circle. Wherefrom im-
mediately the theorem [41] follows:

XXla. If the roots of the symmetrical polynomials g(z) and /(z) (of the
trigonometrical polynomials G(¢) and H(¢p)) all lie on the circumference of the
unit circle (all are real) and alternate, then the roots of the polynomials 44(z) and
45(2)(G'(¢) and H'(¢)) also possess the same properties.

This theorem corresponds to A, Markov’s [50], [51] theorem.

XXL Ifthe roots of two real polynomials g(x) and h(x) are all real and alternate,
then, the roots of their derivatives g'(x), h'(x) also alternate.
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This theorem follows also from the fact that the expression
gX)h(x)—h'(x)g(x) = Blg,h; 1,%,...,x" ")

preserves its sign if g and ) possess the required property (sec Theorem X);
however, it follows also, for example, as D. Grave [20] has noticed, from the
Hermite-Bichler theorem, (sce p. 29) for, if the roots of f = g+ih are in the
upper (or lower) half-plane, then the roots of f* = g +ih' will be there also.

z . it ci
7 6(2)) along the circumference of the unit circle
4

in the positive dircction cquals the number of roots g(z) has on thc samc

As the index of the fraction i

. zZ) s
circle, and as y"((z)) = 30 +5_,245-,22+ ..., where 5, are the Newton sums
7
(k=0,+1,+2,...;5_; = §), then according to Theorem Xa, a theorem first

formulated by Herglotz [28] is true:

a. Ifmis the number of positive, v is the number of negative squares of the form
n—1

T =Y s %X, that is of the form
k1=0

~34—

B(g,ig53 X0+ -2 Xn— 1), Lhen the symmetric polynomial p(x) has n—v different
roots on the circumference of the unit-circle and v pairs of different roots located
as mirror images in this circle.

This theorem is analogous to the Borchardt theorem (sec p. 5); it could be
proved in a way cntirely similar to the proof by Jacobi (see Krein [41]).
However, it could be also obtained by means of Liénard-Chipart method,
proceeding from the fact, that if g = g, ¢, then g5 = g2+ 21525

It is casy to obtain the identity [41]

. 1 ' ) ’ -
) '0/)'(.7".76;"0““’}"!—1):’_]‘?/(7 ;xo,---,xn—z)'*'#?(x)”y ()

from which the Cohn [12] theorem follows

XXIL. The number of roots of the symmetrical polynomial 4(z) inside the unit
circle equals the number of different roots of its derivative #'(z) outside this circle.
Cohn has obtained this theorem with the help of the Rouché [62] theorem
and many tedious “continuity considerations”. :
From the identity

Hf+ 2% XgreresXn-1) = (1 —IDH(f s Xpse s Xn=1)
it follows that, when |2] < 1, the polynomials #(z) and f(z)+2/*(z) have the
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same number of the roots inside the unit circle.t Wherefrom, with

a,

)

the algorithmic rule by Schur [65] is obtained:

XXIII. A polynomial /(z) = apz"+ -+ +a, has all its roots inside the unit circle,
when, and only when, |a,} < |ag| and the polynomial /,(z), determined from the
equality

2/1(2) = do/(2) — a,/*(2)

possesses the same property.
Immediately from this rule the Encstrom [14], [15] thcorem follows, which
is often named the Kakeya [40] theorem:

XXIV. Ifay > a; > -+ > a, > 0, then all roots of the equation
apz"+az" '+ +a,=0

are inside the unit circle.

This theorem is well known in its applications to the theory of functions (see
Landau [46a], p. 20; [46b], p. 26).

Cohn [12] expanded the Schur rule, giving algorithms by means of which
the numbers of roots of a polynomial outside and inside the unit circle can be
calculated.

§ 4. ASSOCIATION WITH SOME PROBLEMS OF FUNCTION
THEORY

Let us show that the problems touched upon in our paper have a close relation

to that part of the theory of the functions of a complex variable which is known
. as the theory of bounded functions.

+ Cohn [12] obtains the same proposition as a direct corollary of the Rouché theorem, for, on
the unit circle, |/(2)l = |/*(2)|; the proof given in the text has the advantage of being purely
algebraic.

— 35—

If f(x) = h(x)—wg(x), where g and hare real polynomials and wis a complex
number, then

W—1w

H(f)= B(h,g).

i
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Let the roots of the polynomials h and g alternate; then the form B(h,g) is
definite, and, not violating gencrality, it could be thought to be positive. But
then the form H(f) would be positive or ncgative depending on w being in the
upper or in the lower half-planc. Consequently, because of the Hermite
Theorem XV, all roots of the equation f(x) = 0, that is also of the equation

Lgl%% = w lic together with w in the upper or the lower half-planc. In other

) h(x) . ) . . . .
words, the function w = ;]—E—x% is a Nevanlinna-Pick function, that s, a function

which n-ply maps the upper half-plane again into the upper half-plane. It is
possible to show that this condition is also sufficient to ensure that the roots of

h(x) and g(x) alternate (see Pick [611).
Let us show that the values of the function w in different complex points are

related by remarkable inequalities. -Let us make a transformation in the
Bezoutiant B(h,g; Xgs+++s Xn-1)

- X, = E i+ &+ (k=01,...,n—1)

where zy,2,,..., 2, arc arbitrary but distinct complex numbers from the upper
half-plane. Then, the Bezoutiant B(h, g) becomes

g, —hg now—W ——
y AT E = Y (G99
k=1 ZkT % kj=1 Zk—%j

(hk = h(zk)’ gy = g(zk)r W = W(Z&)).
From here it follows that all determinants

W,‘—\TI] P

p=1,...,n

Y

Zk—Zj 1

are positive, Pick [61] has proved the following theorem:
XXV. In order that there exist a rational fimction w of degree n taking values

Wiy ee, Wyint the points zy,..., 2z, and mapping the upper half-plane into itself, it is
necessary and sufficient that all the determinants

J
z,‘—fj

—v.lP
Wx— V) (p=1,....n)

1

be positive.
—36—

Moreover, he has proved that this system is preserved if the class of rational
functions discussed is enlarged to the class of functions which are regularin the
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upper half-planc and which are not reducible to rational functions of degree
lower than n.}

Similar results can be obtained by considering the symmetrical polynomials
g(2) and £(z), with alternating roots, and, together with them, also the
functions which map the unit circle into the upper half-plane. '

As it is known, Carathéodory [8] first studied such functions (see also,
Herglotz [27]). .

Finally, the problems discussed are closely related to the Schur theory of
functions which map the unit circle into a unit circle. Indeed, if a polynomial
/(z) has all roots inside the unit circle, ie.

/(Z)=a0(z_al).”(z'"an) (lak| < 1’k= 1,...,"),
then
752 = ag(1—a,2)-+ (1 —&,2),
and, conscquently, the function
f2) _ap & z—o
Fo=L1Z=22T] —%
O = 50~ 7 b 1=z

maps the unit circle into the n-fold unit circle. This proposition can be
reversed.
If, now, with the generating expression

= co+c,z+""

1-F(x)F(y) _ &
1—xy - k.lz=0 Cuxky'

one constructs an infinite Hermitian form

w
1 -
) Z Cuxy %y

kI=0

then it is easy to show that this form, by means of the transformation

1 These results by Pick could be slightly generalized, namely, it is possible to establish:

In order that there exist a rational function w of degree < n or a general regular function in the
upper half-plane, taking the values wy, w3,... w, in the points z,, 2,,..., 2, (/(z;) > 0)and mapping
the upper half-plane into itself, it is necessary and sufficient that the Hermitian form

r Wy—W
L&

rj=1 LT3

be non-negative. Observe, also, that Pick’s investigations have been considerably deepened in a
particular direction by the work of Nevanlinna [52], [53].

—37—

o= [ x*/*x)" | (k=0,1,..)
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goes over into the form S#(/; ttg, - .-, Ua- ,) which is positive. Thus, the form

m .
Y Cuxi¥%
k=0
is non-negative and has rank n. Schur [65] has proved a more general
proposition: _
In order that a function F(z) = co+¢,2+ " be regular in the unit circle and
map it into itself, it is necessary and sufficient that the form

w
L= Z C,‘,ka‘
k=0

be non-negative. If the form L is non-negative and has finite rank n; then the
/@)
n, all roots of which lie inside the unit circle.

It is in connection with this theorem that Schur arrived at the result
mentioned on page 34.

It is possible to pose a problem:

where A(z) is a polynomial of degree

function F(z) is always represented as

/(z)
7@
the case in which ¢(z) has a given number of roots inside the unit circle, with the
remaining roots outside of this circle? Here T. Takagi [76], [77] has obtained
an interésting result and, independently of him, N. Achiezer [1].

Finally, lct us observe, concluding this paper, that many propositions with
respect to the roots of polynomials, as for example, Borchardt’s theorem,

A}

Hurwitz theorem, etc. could be generalized to the case of integral trans-
cendental functions.

Grommer first obtained fundamental results in this respect.

Grommer's work was simplificd and partially complementcd by Kritikos,
N. G. Tschebotarev, A. F. Kravchuk and Fujiwara (sce the additional list of
literature).

in

What characteristic function-theorctical properties has the quotient

Note by N. I. Achiezer with respect to his paper. ‘On a ‘minimum’
problem of function theory and on the number of roots of an
algebraic equation which are inside the unit circle”.t

Thanks to the courtesy of M. G. Krein, who drew my attention to the papers
by Takagi “On an Algebraic Problem Related to an Analytic Thcorem of
Carathéodory and Féjér and on an Allied Theorem of Landau”} and
“Remarks on an Algebraic Problem™, § 1 have learned that the problem which I
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discussed in §§ 2-3 of the paper named in the title of this note has been studied
before me in the above mentioned works by Takagi.

The method which I have used differs from Takagi’s method and, as it scems
to me, is of some interest, for I proceed exclusively from the principle of the
argument and discuss not only the problem with the Carathéodory-Féjér

+ Communications of the Academy of Science, U.S.S.R. (1931), No. 9, pp. 1 169-1189.
{ Japanese Journal of M athematics, Vol. 1(1924), pp. 83-93.
§ Ibid., Vol. 11 (1925), pp. 13-17.

38—

conditions, but, also, with the Pick (§5) conditions, and I also take some
conditions froim the theorem from which Takagi procecds.t

However, 1, as also Takagi in his first paper, missed the possibility of an
exceptional case, which Takagi calls irregular in his second paper, in which the
rational fractions, discussed in my paper, do not exist.

For an'irregular case, the study which Takagi gave in his sccond paper, the
lemma and theorem of my § 2 and the similar statements of my § 5 are no
longer valid, as well as the propositions corresponding to these statements in

the first paper by Takagi.
Nevertheless, the basic Theorem 3, the reasoning of § 4, and Theorem 6 of

my paper are valid also for the irrcgular case; this could be casily proved by

means of considerations of continuity, as Takagi also points out.
N. ACHIEZER

et

1 In his study Takagi assumes as known certain results by Carathéodory-Féjér, as well as the
algebraic theorems by Schur-Cohn, which I obtain using all the time the same method.
<

—39—
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