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CHAPTER 1

Introduction

Given an n-dimensional Poincaré complex X there is a bijection be-
tween the topological manifold structure set STOP(X) and the n 4+ 1’st
relative homotopy group of a map of simplicial Q-spectra o, : X1 A
L, — Ly(mX), provided that the former is non-empty. See [Ran78].
This group structure arises by algebraic methods, but surgery theory
as in [Wal70] and [Bro72| is geometric. Therefore it is interesting to
look for a geometric definition of a group structure of ST9F(X). The
group structure should fit into the exact sequence of surgery. This is
accomplished when X is a closed 3-dimensional manifold. In this case
the methods used also gives a group structure for the smooth manifold
structure set SO(X).

Chapter 2 reviews surgery theory and describes the necessary changes
in dimension 3. In chapter 3 we define the group structure for the
smooth manifold structure set of a closed 3-dimensional manifold M
and show that it is well defined modulo a technical result. Chapter 4
concerns the exact sequence of surgery and in chapter 5 we see that the
topological case follows as a corollary of the smooth case. Chapter 6
reproves a result of Rong and Wang [RW92]|, a result which is a cen-
tral ingredient in the construction of the operation. Chapter 7 finishes
the technical part of the well definedness proof. Stable uniqueness of
Heegaard splittings is a well known result, see [Sav99]| and [Sin33|,
but appendix A offers a nice Morse-theoretic proof.

There are many people who deserves my gratitude. Two stands out
among the rest. I would especially like to thank professor Bjgrn Jahren

and Sverre André Lunge-Nielsen.
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CHAPTER 2

Preliminaries

2.1. The exact sequence of surgery theory

How can closed smooth manifolds simply homotopy equivalent to a
given closed n-manifold M be described?

We can study this question in the differentiable, the piecewise linear
or the topological category. Let CAT be O, PL or TOP according to
which category we choose to work in.

Two simple homotopy equivalences f; : N; — M, 1 = 1,2 should
be considered to be equal if there is diffeomorphism g : Ny — N; such
that f; og¢ is homotopic to f;. In view of the s-cobordism theorem this
is the same as asserting that there exists an s-cobordism between N;
and Ny and an extension of the maps to the cobordism. At least when

n > 5. Therefore we use the following definition:

DEFINITION 2.1. Define S(M) to be equivalence classes of simple
homotopy equivalences f : N — M from a compact manifold N to
M. Two objects f; : N; — M, 1 = 1,2 are equivalent if there exists a
cobordism V' between N; and N, and a simple homotopy equivalence

fo(V,Ni, Ny) = (M x I, M x{0}, M x {1}) extending the maps f;.

If we need to specify the category we write SYAT(M).
The question we are asking is how to compute the these sets S(M)?

To answer this we start with an object that is easier to compute.

DEFINITION 2.2. A normal map is a triple (f, v, F') where f: N —
M is a degree 1 map, v a vector bundle over M and F' a stable trivi-

alization of 7y © f*v.

To ease the notation we will suppress the bundle data and just
speak of the normal map f: N — M.

DEFINITION 2.3. A normal cobordism consists of a compact mani-
fold V' with boundary the disjoint union of Ny and N,, a degree 1 map
Fo(V,Ni,Ny) = (M x I, M x{0}, M x{1}), a bundle v over M and
a stable trivialization G of 7y & f* pr* v.

3
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Here pr is the projection M x I — M. When restricting a normal
cobordism to the boundary we get two normal maps in the following
manner: Identify 7y |N; with ¢! & 7y, by using the inward normal along
Ny and the outward normal along N,. Restricting f to N; we get
a degree 1 map f; : N; = M. G restricts to a stable trivialization of
'@, @ ffv. Now let F; be a stable trivialization of Ty, @ f¥v such that
id.1 & F; 1s homotopic to the restriction of . We say that V — M x [
is a normal cobordism between f; : Ny — M and f; : Ny — M.

DEFINITION 2.4. Define N'(M) to be the equivalence classes of nor-
mal maps N — M. Two normal maps (fi,v;, F;) are considered to
be equivalent if there is a normal cobordism between (fi, 14, F1) and
(f2,11, Fy) and a stable isomorphism H : vy — 1y such that Fy is
homotopic to the composition

™, B [o12 Zd%H ™, B fon g €

Notice the difference between being normally cobordant and being
equivalent in AV (M), in the latter we also allow more flexibility with
respect to the bundle v over M.

Again we write V94T (M) whenever we need to indicate which cat-
egory we use.

There also exists relative versions. If W is a compact manifold
with boundary then we may define (W rel 9WW) to be the equivalence
classes of normal maps ¢ : V' — W such that g restricted to 9V is some
fixed simple homotopy equivalence f : 9V — dW. Two such normal
maps ¢; : Vi — W are equivalent if there exists a normal cobordism
h : P — W x I between the two normal maps with bundle data as
above and such that 9P =V, UdV; x TU V5 and the restriction of ¢ to
aV; x I'is f x id.

One reason for introducing the sets A'(M) is that they can be com-
puted. The following result is well known, see for example [MMT79|.

THEOREM 2.5. There is a bijection N4 (M) ~ [M,G/CAT)]. In
the relative case there is a bijection NOAT(W rel OW) =~ [W/OW, G /CAT].

Another reason for introducing N (M) is that it may be compared
to S(M). That is we can define a map n(M) : S(M) — N (M) as
follows: Let f: N — M be a simple homotopy equivalence. Let v/ be
a normal bundle for N. Then there is a trivialization I" of ™ & /.
Since f is a homotopy equivalence pullback of bundles by f induces
a isomorphism f* : [M, BCAT] — [N, BCAT]. Choose v such that
fv =1 Using I’ we get a stable trivialization F' of 7z & f*v. The
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same construction works when replacing N with a s-cobordism V' and
f by amap V. — M x I. Thus the map n(M) is well defined.

Now there are two natural questions which arise:

Which elements of A (M) lie in the image of S(M)?
How can elements of S(M) mapping to the same element of

N(M) be classified?

Wall defines the Abelian groups L,,(Z[m1M], wy) to solve these ques-
tions. The groups depend on the fundamental group of M and the first
Stiefel-Whitney class and are periodic in the sense that L, 44(Z[m1 M], wy)
is isomorphic to L,(Z[m1M],wy). One important result is that when

the dimension n is greater than 5 the sequence

e = N(M x T rel OM x 1) = Ly (Z[miM],wy)
— S(M) - N(M) = L,(Z[r M],w)

is exact. See Wall [Wal70].

Denote the map N (M) — L,(Z[m M],w,) by (M). This answers
the first question. The inverse image of the identity under (M) is
equal to the image of S(M) under n(M). The fact that imn(M) is
contained in §(M)~'(0) follows from the definitions. See [Wal70]. To
prove that a normal map N — M with trivial surgery obstruction is
normally cobordant to a simple homotopy equivalence we proceed as
follows. By elementary surgery we may assume that the map is k-
connected where k is the largest integer less than or equal to %n Now
let K (N) be the kernel of Hy(N) — Hy(M) where we use the twisted
coeflicients Z[m M]. Wall shows that we may kill this kernel by surgery
if and only if the surgery obstruction vanishes.

There is a group action y(M) of L,y1(Z[riM],wy) on S(M). This
action answers the second question. Two elements of S(M) maps to
the same element in A (M) if and only if they lie in the same orbit.
Given a simple homotopy equivalence N — M and an element § of
Lpy1(Z[|m M), w1 ) we are actually able to construct a normal cobordism
V' — M x I with surgery obstruction § going from N — M to another
simple homotopy equivalence N' — M which we define to be the image
of N — M under the action of . Well definedness follows since a
normal cobordism with trivial surgery obstruction may be replaced by

an s-cobordism.
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2.2. Group structures on N7°P(M) and
NOAT(M x [ rel OM x I)

In the TO P-category we can give NTOP (M) a group structure. Use
the homotopy equivalence Z x G /TOP ~ Q*Z x G/TOP) to define a
H-space structure on GG/TOP. Then the set [M,G/TOP] has a group
structure. With respect to this group structure the map (M) is a
homomorphism. See [KS77| Essay V theorem C.4.

Consider also the sets N94T(M x I rel 9M x I). They are equiva-
lent to [YM,G/CAT]. ¥M has a coH-space structure which gives rise
to a group structure. In NCAT(M x I rel 9M x I) this corresponds to
taking the disjoint union of two normal maps f;: V; = M x [,1=1,2
and gluing f;7 (M x {0}) — M x {0} to f;' (M x {1}) = M x {1}.
The condition on the boundary ensures well definedness. The result is
another normal map V' — M x [. Additivity of surgery obstructions
with disjoint support assures that the map N1 (M x I rel IM x ) —
L4(Z[mM],w1) is a homomorphism with this group structure.

We have now defined two group structures on N'“AT (M x I rel 9M x
I) = [EM,G/TOP]. The first comes from the H-space structure
on G/TOP, while the second comes from the coH-space structure of

Y M. The two group structures coincide according to theorem II1.5.21
in [Whi78].

2.3. What happens in dimension 37

There are problems with the exact sequence of surgery theory in di-
mension 3. What follows is necessary modifications of S(M). See |[K'T].

The first problem involves lifting normal maps with trivial surgery
obstruction to simple homotopy equivalences. We can do surgery on
l-cyclesin N — M, but this changes the fundamental group of N. The
kernel K7(N) is killed, but this does not imply that the fundamental
groups of N and M are isomorphic by f.. This weakens the conclusion.
We are only able to get simple homology equivalences.

The second problem involves the action of Ly(Z[mM],w1) on a sim-
ple homology equivalence. For every element 6 of L4(Z[m1M],w,) and
simple homology equivalence N — M with coefficients in Z[mM] it is
still possible to construct a normal cobordism with surgery obstruction
0 from N — M to another simple homology equivalence N — M.
But the possible failure of 4-dimensional surgery means that this ac-
tion is only well defined up to normal cobordism with trivial surgery

obstruction, not s-cobordism as was the case for the higher dimensions.
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Therefore we modify the definition of S(M) for dimension 3 to be:

DEFINITION 2.6. For a closed 3-manifold M let S(M) be the set
of simple homology equivalences N — M with coefficients in Z[mM]
where N; — M and Ny — M are considered to be equal if there exists a
normal cobordism V' — M x [ with trivial surgery obstruction between

the two simple homology equivalences.

The relation given above is obviously symmetric and transitive, but
reflexivity is a problem. The reason is the following: A simple homo-
logy equivalence N — M does not necessarily induce an isomorphism
of fundamental groups. The kernel of 1N — 7 M might be a non-
trivial perfect group. If so it is not obvious that the cross product
N x I — M x I with bundle data is a normal cobordism with trivial
surgery obstruction since the map is not 1-connected. Remember from
chapter 5 in [Wal70| that we calculate the surgery obstruction of a
normal cobordism V' — M x [ by first doing surgery below the middle
dimension until the map is 1-connected, then taking the class of K3(V)

in Ly(Z[miM],wq). A small proof is needed here:

LEMMA 2.7. There exists a normal cobordism with trivial surgery

obstruction between two copies of any simple homology equivalence f :

N —- M.

This result also holds if M has boundary.

PRrOOF. Start with N x I — M x I. Represent the kernel of 71 (N x
I) — 7 (M x I) by disjoint embeddings «; : S* x D* — N x [ preferred
by the bundle data. Do surgery on all the «;’s and denote the result
by V.= M x I. If welet Vo = N x I~ J;inta;(S" x D?) then
V =1VU(U; D* x S?). Let 3; : D? x 5% be the embedding representing
the copy of D? x 5% corresponding to a;. For each i there is a direct
summand of K3(V) isomorphic to Z[miM] & Z[m1M]. Let e; be the
element of K3(V') represented by the composition

ST {0l x 2 D xSP Ay

This map S? — V is preferred by the bundle data. And the self
intersection number of ¢; is 0 because ¢; is represented by an embedding.
Since «; represent an element of the kernel of (N x ) — m(M x
I) there exists a 2-chain in N x I with boundary «;]S* x {1}. We
may assume that this 2-chain lies in V5. Gluing §;(D* x {1}) to this
chain we get an element f of Hy(V). Since Hy(Vo) — Ho(N x 1) is
surjective and Hy(N x I) — Ho(M x I) an isomorphism there exists an
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element of Hy(Vp) with the same image in Hy(M x I) as f”. Subtracting
this element form f! we get an element f! of K5(V') such that {e;, f/}
is a preferred base of K3(V) and that u(e;) = 0, A(e;,ej) = 0 and
A(ei, 1) = di5. Thus the submodule H of K3(V') generated by the e;’s
is a subkernel. And lemma 5.3 in [Wal70]| then shows that K3(V') is a
kernel. Hence the surgery obstruction of V. — M x [ is trivial. O

Using definition 2.6 we see that the sequence

e > N(M x T rel OM x I) — Ly(Z[r M], wy)
— S(M) = N (M) — Ls(Z[m M}, w,)
still is exact.

REMARK 2.8. When defining the map n(M) : S(M) — N (M) we
used that f* : [M,BCAT| — [N,BCAT] is an isomorphism when
f+ N — M is a homotopy equivalence. This is true also for homology
equivalences f : N — M since the BC' AT"’s are loop spaces.

In dimension 3 the categories of smooth, piecewise linear and topo-
logical manifolds are all equivalent. But there are differences in di-
mension 4. The smooth and the piecewise linear categories are still
the same, but there exist topological 4-manifolds without any smooth
structure. Hence SO(M) and STL(M) are equal, while STOP(M)
has the same objects, but more equivalences. The map S°(M) —
STOP(M) defined by forgetting the smooth structure is surjective.

NCAT(M) is the same for all categories when M is a 3-manifold.
The reason is that in this range the spaces G/O, G/PL and G/TOP

are equivalent.



CHAPTER 3

An Abelian group-structure on SY(M)

In this chapter we will define a group structure on the smooth
structure set S?(M) for a 3-manifold.

ProprosITION 3.1. Let M = H{U H; be any Heegaard splitting and
choose i to be 1 or 2. Every class in S°(M) contains a representative

f: N —= M such that f|: f~'(H;) — H; is a diffeomorphism.
Proor. This follows directly from theorem 6.8. U

CONSTRUCTION 3.2. Let M be a closed and connected 3-manifold,
fi: Ny — M, 1 =1,2 two homology equivalences and H; U H; a Hee-
gaard splitting of M. Assume that f;| : f7'(H;) — H; is a diffeomor-
phism for i = 1,2. Define N; + N, to be the union of f;'(H;) and
f7'(Hy) identified along the boundary. That is @ € f;'(H;) is equiv-
alent to y € fy'(H,y) if fi(z) = faoly) € Hy N Hy. There also is a map
fi+ f2: Ny + Ny — M defined by

filz) ifx e f7(Hy)

it falle) = {fz(l’) if v € fz_l(Hl)

See figure 3.1.

We can use construction as an addition in the S(M). Given two
elements in S?(M) we choose a Heegaard splitting H; U Hy of M and
pick representatives f; : Ny — M and f; : Ny — M for each of the two
elements such that f;| : f7'(H;) — H; is a diffeomorphism for i = 1, 2.
Now use the construction above to form f; + f2 : Ny + Ny = M. The

main result is:

THEOREM 3.3. With the operation described above the smooth struc-
ture set SO(M) is an Abelian group.

The proof will fill the rest of this chapter. We begin by showing
that Ny + Ny — M is a simple homology equivalence.

LEMMA 3.4. fi+ fo: N1+ Ny — M s a simple homology equiva-
lence.
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£'0,)

£'(H) £'(H)
N'rﬁ/,_ 2 e -

l-l,#'_
M Ch] D

FiGURE 3.1. The operation +.

Proor. Consider manifolds N with a map f into M and a splitting
N = K, U Ky such that K; = f~*(H;) and f: K; N Ky — H, N Hy is
a homeomorphism. Write F' for both K7 N Ky and H; N Hy. We have
Mayer-Vietoris sequences and maps between them

— H;(F) — H;(Kl) e H;(I(z) — H;(N) — H;_l(F) —

| | |

—— HY(F) — HY{(H)) & H}(H,) — H!(M) — H(F) ——

IR

Here the coefficients are Z[r; M] over M and the respective pull backs
over the other spaces. So if two of the three maps N - M, K1 — H;
and Ky — H, are homology equivalences with twisted coefficients in
Z[miM] then the last map also is a homology equivalence with the same
coefficients.

It follows that Ny + Ny — M is a homology equivalence by first
considering the two cases N = N; and N = N; and then the case
N = Ny + Ns.



3.1. THE OPERATION IS WELL DEFINED 11

It remains to show that this homology equivalence is simple. There

is a short exact sequence of the algebraic mapping cones:
0= C(fIF) = CUfIK1) & C(fIK2) = C(f) = 0

These algebraic mapping cones are acyclic and have preferred bases.
Using that 7(C(f[7)) = 0, 7(C(f|K1) & C(f|K2)) = 7(C(f|K1)) +
7(C(f|K3)) and theorem 3.1 in [Mil66] we see that

T(C(f)) = 7(C(f|K1) + 7(C(f]K2))

Thus if two of these three torsions vanishes then the last one must also
be 0. It follows that the homology equivalence Ny + Ny — M is simple
because both Ny — M and Ny — M are. O

3.1. The operation is well defined

The operation is defined on some of the objects in the equivalence
classes of S(M). In this section it will be shown that this is a well
defined operation. There are essentially two choices involved in the
construction of Ny + Ny — M. These are:

i) The choice of representations N — M.
ii) The choice of Heegaard splitting of the manifold M.

So it must be shown that up to the equivalence relation defining S (M)
these choices are irrelevant.

We start by fixing a Heegaard splitting Ay U Hy of M. Given two
classes of S?(M) we may, by proposition 3.1, choose f; : Ny — M
and fy : Ny — M from the first and the second respectively such that
£ (H;) is mapped diffeomorphically to H; by f;. Our first aim is to
show that the class of Ny + Ny — M is independent of this choice.
By symmetry we can fix one of the simple homology equivalences, say
Ny — M, and just consider two different choices of Ny — M. The
following result, theorem 7.17, will be shown in a later chapter:

Assume that f; : Ny — M, f] : N{ - M and f3 : Ny - M
are simple homology equivalences such that the restriction of the maps
to fiH(Hy), fi7'(Hy) and f;'(H,) are diffeomorphism and that there
exists a normal cobordism between f; and f| with trivial surgery ob-
struction then there exists a normal cobordism between f; + f, and
fi + f2 with trivial surgery obstruction.

This shows that the operation 4 is independent of the choice of
representatives N; — M.
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W H,

FIGURE 3.2. Two Heegaard splittings of M differing by
a handle A.

3.1.1. The choice of Heegaard splitting. Now that the first
step of the program is completed we move on to study the effect of
choosing different Heegaard splittings.

Since homotopy is a stronger relation than normal bordism with
trivial surgery obstruction it is clear that we are allowed to deform the

maps N; — M whenever needed.

LEMMA 3.5. If H{ U H}, is a stabilization of the Heegaard splitting
Hy U Hy then the two different sums (N1 + Nz2)' and Ny + Ny obtained
by using the two Heegaard splittings are diffeomorphic over M.

Being diffeomorphic over M means that the following diagram com-

mute

Ni+ Ny ——=M

-

(N7 + Ny

Proor. It suffices to prove this result for the case where H; is H;
union a trivial handle A which lies close to dH;. The case with several
handles follows by induction. Think of M as the union H; U AU H,.
See figure 3.2.

Let F' be the boundary of H;. There exists an embedding of F' x
[—1,1] into M such that F x [0,1] and F' x [—1,0] are collars of the
boundary in H; and H; respectively and the handle A is contained in
F x[0,1].

Now assume that f; restricted to fi'(F x [~1,1]) is an embedding
for 2 = 1,2. If this is not the case the maps f; may be deformed by a
homotopy fixing f!(H;) so that it becomes true.
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Now write N; = f7H(Hy)U fH(A)U f7H(H]) for i = 1,2. Tt is clear
that

N+ Ny = fiH(H) U frH(A)U fy ' (HY)
and
(N1 4+ No)' = [T (Ho) U f7 (AU £ (Hy)

But fi'(A) and f;'(A) are both diffeomorphic to A. The result fol-
lows. 0

LEMMA 3.6. Let G : M x I — M be an isotopy between the Hee-
gaard splittings Hy U Hy and H{ U H}. Then Ny + Ny and (N; + Ny)/,
formed using the Heegaard splittings Hy U Hy and Hj U H) respectively,

are equivalent.

Proor. We can form Ny + Ny — M using some maps f; : N; = M
which have the usual property that f7'(H;) is mapped diffeomorphi-
cally to H; by f;. To form (N; + Nz)' we can then choose the maps
Ghfi © N; — M. Then it is clear that Ny + Ny = (N; + Ny)' and
Ghfi + Gifs is equal to Gy(fi1 + f2), hence a homotopy is given by
Gi(fi + f2) where t € I. O

COROLLARY 3.7. The class of Ny + Ny — M in SO(M) is inde-
pendent of the choice of Heegaard splitting.

ProoF. This follows from the preceding lemmas and the stable
equivalence of Heegaard splittings. See theorem A.1. O

3.2. Verification of the axioms for an Abelian group

We will finnish the proof of theorem 3.3 by verifying that the axioms
for an Abelian group is sattisfied for S°(M) with the operation +.

3.2.1. Identity. The class of the homology equivalence id : M —

M is clearly an identity element for the sum operation.

3.2.2. Associativity. There is an alternative way to view the op-
eration. Let M = H; U H; be a Heegaard splitting. Move the two
pieces slightly apart in order to write M as a union of codimension 0
submanifolds Hy, F' x [ and H; such that HyNF x [ = 0H; = F x {0}
and Hy N F x I =0Hy, = F x {1}.

Now let f; : Ny — M and f; : Ny — M be two homology equiv-
alences. It can be assumed that f7'(H;) — H; is a diffeomorphism
for all 7 and j. Let K be the inverse image of ' x [ under f;. The
interesting part is K; — [ x [. See figure 3.3. It is clear that N; + NV
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| %
m: C_H, WID

FIGURE 3.3. An alternative description of the operation.

can be thought of as the union H; U K; U Ky U Hy. Here we glue at the
appropriate places. This manifold maps to Hy U F' x I U F x [ U H,
which is diffeomorphic to M.

If f3: N3 — M is a simple homology equivalence such that the
restriction of f3 to both f;'(H;) and f;'(H,) are diffeomorphisms
onto their image then it is clear from this construction that both (N; +
Ny) 4+ N3 — M and Ny + (N3 + N3) — M can be identified with the

simple homology equivalence
H1U[X71U[X72U[X73UH2—>H1UF><[UFX[UFX[UHQ
This implies associativity.

3.2.3. Inverse. To prove the existence of an inverse use the de-
scription of the operation given above. Let f': K — F x I be the
composition of f|K : K — F x [ with the map (z,?) — (x,1 — ).
Define N’ to be the disjoint union of Hy, K and H, where x in the
boundary of Hy or H» is identified with y € 9K if f/'(y) = . We can
thus extend f’ to a map N — M. Informally we have removed K from
N and flipped it upside down.

We now want to construct a normal cobordism V' — M x [ with
trivial surgery obstruction between N+ N’ — M and M — M. Notice
that JK is two copies of F. Let V be the union of M x [ and K x [
where F' x [ x {1} in M x [ is identified with one of the copies of
F x I'in 0K x I. If we do the same construction but replace K by
F x I we get a manifold whose smoothing is diffeomorphic to M x [.
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NNy
k| ¥K<T |[K
Vi W4T 1‘F*I*IE.‘ HoxI'
i H
M

L

M
/ FxIxT

MT: HT E“FHI*I : H, xT

M

FIGURE 3.4. The normal cobordism V.

This shows that we can construct a map V' — M x [I. See figure 3.4
Simple calculations using the Mayer-Vietoris sequence shows that this
is a simple homology equivalence. Thus bundle data can be constructed
as in the definition of n(M) in chapter 2. See Remark 2.8.

The boundary of V' has two components. One of the components

is M the other is the sum of N and N’. Thus N' — M is an inverse
for N = M.

3.2.4. Commutativity. Commutativity of the operation follows
from the operations independence of the choice of Heegaard splitting.
It Ny - M and Ny — M are two homology equivalences and M =
HyUH; a Heegaard splitting then Ny 4+ N; — M is formed by removing
H, from Ny and Hy from Ny, but this is the same as using the opposite

Heegaard splitting M = H, U Hy to form Ny + Ny — M. Hence
commutativity follows.
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3. AN ABELIAN GROUP-STRUCTURE ON S°(M)



CHAPTER 4

The mappings of the surgery sequence

4.1. The action of L,(M) on S°(M)

In the surgery sequence we are given an action of Ly(M) on S°(M).
Now that we have a group structure on S?(M) it is natural to ask if

this action gives rise to a group homomorphism.

PROPOSITION 4.1. Let f : N — M represent an element of S°(M)
then § € Ly(M) acts according to the formula:

Of  N=>M)=0id- M —->M)+(f:N—=>M)

ProoOF. Let M = HyU H; be a Heegaard splitting. We can assume
that f~'(H,) is mapped diffeomorphically to H; by f. When doing the
plumbing on f: N — M as described in Wall’s theorem 5.8 [Wal70]
we can ensure that all the action takes place inside f~'(H,) — H;. In

this case the formula above is obvious. O

COROLLARY 4.2. The action of Ly(M) on S°(M) gives a group
homomorphism defined by 0 — 0(id : M — M).

PrOOF. Let 01,0, € Ly(M). Then

The first equality follows since we have a group action, the second

follows from the formula above. O
4.2. The map S°(M) — N(M)

Every simple homology equivalence N — M can be given bundle
data in a canonical way. See chapter 2. We thus have a map from
SP(M) into N(M). N(M) has an Abelian group structure and we
want to investigate if the map is a homomorphism. This is done by
giving a description of the group operation of N (M) analougus to the
definition of the group operation of S°(M).

Since M is a 3-manifold A (M) is independent of C'AT. We con-
centrate on the TOP case:

N(M) ~ [M,G/CAT] ~ [M,G/TOP]
17
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Now we can give a group structure by a H-space structure p : G/TOP x

G/TOP — G|TOP.
Let M = H, U H; be a Heegaard splitting.

PROPOSITION 4.3. Wedge gives an addition [H,/0,G /O] x[Hy/0,G /O] —
[M,G/O] which corresponds to gluing relative normal maps f; : K; —
H; for 1= 1,2 together to a map K1 U Ky — M.

PRrROOF. We trace the proof of the bijection [X/0, G/O] 2 N(X rel 9).
See [IMMT9| theorem 2.23 for the proof.

Let F' be the common boundary of Hy and H,. Given maps g; :
H;/0 — G/O we form g : M — G/O by composing the wedge g1 V g1
with the quotient map M — M/F = H;/0V Hy/d. This map g
is equivalent to specifying a bundle A = M and a fiber homotopy
equivalence t : A — &', And t restricts to an isomorphism over F
since ¢ factorizes through M/F. Moreover the maps ¢; corresponds to
the restriction of A and t to H;. To produce normal maps we make
t transversal to the 0-section of ¢’. This can be done over each H;
separately and we can keep t fixed over F' since it already is transversal
here. Taking the inverse image under ¢ of the 0-sections H;, Hy and
M contained in the trivial bundle we get manifolds Ky, Ky and N
respectively. And the projection 7 : A — M restricts to degree 1 maps
fi i Ky — Hy, fo : Ky — Hyand f: N — M. Since the restriction
of t to F' is an isomorphism the boundaries of the K;’s are mapped
diffeomorphically to F' by the f;’s and N is the union of K; and K,
along the boundary.

Bundle data are constructed as follows. Let A+ be an inverse bundle
for A and let v be a normal bundle of M. Then 7T*()\J‘ @ v) is a normal
bundle for the total space of A\. Fix a trivialization F’ : 7, @& 7\t &
v =2 ¥, Since N is the inverse image under ¢ of the 0-section of &' the
normal bundle of N in the total space of A has a canonical trivialization
vy = &', Now restrict F/ to N and identify 7\|N & 7y G vy = 7y @ &
to get at stable trivialization I of 7y & f*()\L b ).

Restriction to K7 and K gives bundle data for the maps f; and fs.

Now the normal maps f; : K; — H; corresponds to ¢; : H;/0 —
G/O and f: N — M corresponds to the map g : M — G/O. O

LEMMA 4.4. The map N(H; rel ) — N (M) given by gluing the
relative normal map f: K — Hy to «d : Hy — H; is surjective.
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PrOOF. Theorem 6.8 says that any normal map f : N — M is
homotopic to one such that f~'(H;) — H; is a diffeomorphism. Re-
moving the interior of f~!'(Hy) and H, from N and M respectively we
get an element of V' (H; rel J) mapping to f: N — M. O

By symmetry this result is also true for Hy. Therefore if f; : N; —
M are normal maps for 7 = 1,2 we may lift f; to an element f; : K; —

H; of N(H; rel 9). Let fi + fo : Ny + Ny — M denote the result when
we glue the two liftings together.

PROPOSITION 4.5. fi+ f3 is the sum of f; and fy with respect to the
group structure on N'(M) given by the H-space structure on G/TOP.

PrROOF. The relative normal maps f; : K; — H; give maps g; :
H;/OH; — G/TOP while fi; 4+ f, determines the map ¢; V g2 : Hi /O V

Look at the commutative diagram:

g1 Xg2

H/OV Hy)d — H, /0 x H,/0 225 G/TOP x G/TOP —~ G/TOP

M = Mx M2 G/ TOP x GJTOP —~ G/TOP

Here g; is the composition M — H; /0 & G/TOP which corresponds
to f; : Ny — M. The bottom part is the definition of sum in a H-space.
The composition at the top is equal to g1 V gs. U

COROLLARY 4.6. The map S (M) — N(M) is a homomorphism.

ProoOF. This follows by the similarity of the descriptions of the
addition in the two groups. 0
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CHAPTER 5

The topological case

Theorem 3.3 and the corollaries 4.2 and 4.6 show that in the smooth

category we have an exact sequence of Abelian groups:

oo s NO(M x I rel OM x I) — Ly(Z[mi M), w,)
— SO(M) = N (M) — Ls(Z[n,M], w)
In this chapter we show that the result also holds in the topological

case.

THEOREM 5.1. Let M be a closed 3-manifold. The topological struc-
ture set STOT(M) is an Abelian group, the action of Ly(Z[mi M), w;)
on STOP (M) gives a homomorphism defined by 0 — 0(id) and the map
STOP s N(M) is a homomorphism.

Proor. We will show this result by comparing the topological and
the smooth case by the map which forgets the smooth structure.

NO(M x I rel §) — Ly(Z[m1M], w1) — SO (M) — N'(M)

| )

NTOP(M x T rel @) — Ly(Z[m1 M), wy) —= STOP (M) —— N (M)

We have already noticed that the map SO (M) — STOP (M) is surjec-
tive. The image of NO(M x I vel §) in L4(Z[mM],w;) is contained
in the image of NTOP(M x [ rel 3). Let C be the quotient group.

Chasing the diagram above we see that the sequence
0= C —S°M)—= S™P(M) =0

is exact. The map C' — S?(M) is a homomorphism because Ly(Z[miM],w;) —
SP(M) is. Hence STP(M) can be identified with the quotient group
SO(M)/C. Since S°(M) — N(M) is a homomorphism the map
STOP(M) — N(M) must be a homomorphism too. O

21



22

5. THE TOPOLOGICAL CASE



CHAPTER 6

Techniques from differential topology

Corollary 7 in [RW92]| states that for a degree 1 map f: N — M
between closed oriented 3-manifolds and any handlebody H of genus g
in NV, f is homotopic to f; such that f; maps f;'(H) onto H homeo-
morphically.

In what follows techniques from differential topology will be used
to reprove and improve this result. Particulary the condition that the
manifolds must be oriented is removed.

The following transversality theorem is proved in [Boa65]:

THEOREM 6.1. If f : N — M s transversal to a submanifold A in
M when restricted to a closed subset L of N then there is a map fo

homotopic to f relative to L such that fy is transversal to A on all of

N.

It will be used on several occasions.
The first two results describe how maps between manifolds may be

deformed to get a nice inverse image of a point.

LEMMA 6.2. Let f: N — M be a map between compact n-manifolds
of dimension n > 3 taking N to OM and having q € int M as a reg-
ular value. Assume that o : I — N is an embedded path between two
different points in the inverse image of q such that f has opposite ori-
entations at a(0) and (1) with respect to transporting the orientation
along a. If fo is nullhomotopic in M then for any neighborhood U of
a(l) there is a homotopy of f to fi which is fized outside U such that

fil(@) = (@) ~{a(0), a(1)},
The first part of the proof in the same as lemma 5.1.7 in [Hir76].

PROOF. The aim is to construct a homotopy f; from f = fy to a
map f; as described above. This homotopy is a map N x I — M and
will be constructed piece by piece. See figure 6.1. It is already given
on N x 0.

First deform « inside U such that it only meets the inverse image
of ¢ in the end points. Let & : (1,01) — (N x I, N x 0) be « pushed
into N x [ that is & is an embedding such that pr; & = «, the image of

23
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FiGURE 6.1. Constructing the homotopy piece by piece.

a meets N x 0 only in the end points and the tangents of & are normal
to N x 0 at the intersection points. A closed tubular neighborhood, V
of & is the next piece on which the homotopy will be extended to.

Choose a chart ¢ : R® — M sending 0 to q. And let Uy and U; be
the components of f~'(#(R"™)) containing «(0) and «(1). Since ¢ is a
regular value we may assume that the restrictions of f to U; and Us
are diffeomorphisms onto ¢(R"). Identify the union of Uy and U; as a
tubular neighborhood of da([) in N x 0. By theorem 4.6.4 in [Hir76]
there is an extension to V a open tubular neighborhood of a([) in
N x I. All of these neighborhoods may be assumed to be so small that
VcuUxlI.

Choose a trivialization ¢ : V' — I x R” of the tubular neighborhood
V. Restricting to the fibers Uy and U; and composing with the inverse

of f we get linear maps

R 0, B iy xR = R

for e = 0,1. Let A; be the invertible matrices representing these maps.
The sign of the determinant is the same for both Ag and A; since f
has opposite orientation at a(0) and a(1) with respect to transporting
the orientation along a.

So there is a path A : [ — GL(n) between them. This can be
used to extend the homotopy over V, the closed tubular neighborhood
inside V' of radius 1. Just define V — M by

_t
Velx DV MRY S M

where A, : [ x D" — R" is given by matrix multiplication, A.(t,v) =
A(t)v. This defines f;(p) for (p,t) € N x0U V.
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The next piece to extend over is the closed 2-cell €2 C N x I which
is the part of a(I) x I underneath intV. f; is already given on the
boundary of 2. On €2 NV it is a path in ¢(R"~.0) and on ¢*N N x 0
it is the restriction of fa to a subinterval of I. Considering fo as a
map S1 — M we see that it is homotopic to the map S! = d¢? N M,
thus there is a nullhomotopy 3 : D? — M of f,(d€*). And when n > 3
this nullhomotopy may be pushed away from ¢. Use this modified
nullhomotopy to extend f; over e?.

Now fi(p) is defined for (p,t) in N x0UV Ue? Clearly there exists
a retraction 7 : N x I — N x 0U V U e? which is the projection to the
first factor outside U x I and the image of U x I~\intV does not meet
int V. Use this to construct the homotopy. That is we redefine f; to
be fior. O

By repeated use of this lemma the following global result about

degree 1 maps is achieved.

THEOREM 6.3. Let f: N — M be a degree 1 map between compact
n-manifolds, n > 3, taking N to OM and inducing a mo bijection. For
any q € int M there is a homotopy of f to fi rel 0 such that q is a
regular value for fi and f7'(q) is a single point.

ProOOF. It is enough to consider the case where M is path con-
nected.

We start by looking at the orientable case. Deform f such that ¢
becomes a regular value. Now f~'(¢) will consist of a finite number
of points. Since f is degree 1 this number will be odd, that is equal
to 2k — 1 for some positive integer k. Near k of these points f will
be orientation preserving and the function will reverse orientation near
the last k£ — 1 points in f~!(q).

If £ > 1 then we may cancel a pair of these points as follows: Any
degree 1 map is a surjection on fundamental groups so we may choose
a path a : I — N between points in f~!(q) of different orientations
such that fa is a nullhomotopic loop in M. Now lemma 6.2 applied to
a reduces k by 1. This finishes the proof in the orientable case.

If the manifolds are nonorientable then f induces a degree 1 map
f: N — M of double orientable covering spaces. Make ¢ regular by
deforming f. Let g be one of ¢’s liftings. Let 2k — 1 be the number of
points in f~*(q). This is the same as the number of points in f~*(g). If
k > 1 choose a to be a path in N between points in f~1(g) of different
orientation such that fa is nullhomotopic in M. Then by applying
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Co

<

FIGURE 6.2. The disk with two corners.

lemma 6.2 to pa : [ — N k is reduced by 1. Here p: N — N is the

covering space. O

The next step is to consider the inverse image of a path. If a map
behaves well the inverse image should also be a path. And in order
to prove results in this direction a handle exchange theorem is needed,
but first a definition:

DEFINITION 6.4. Let 3 : I — M be a smooth path intersecting a
submanifold Y only at the end points such that the tangent to 3 at an
endpoint is normal to Y. Then [ is called strongly homotopic to zero in
(M,Y) if there is a smooth map + from the 2-disk D with two corners,
see figure 6.2, to M such that ~ restricted to Cy is 3, the inverse image
V_I(Y) is (1 and a normal vector of Cy in D maps under 7. : 7p — 7oy
to a normal vector of Y in M. Here Cy and (' are two different pieces

of 9D having the corners as end points.

LEMMA 6.5. Fvery map o : I — Y into a smooth manifold of
dimension k > 2 such that a(0) # «(l) is homotopic rel end points
to an embedding. If k = 1 then o is homotopic rel end points to an

IMmmersion.

PROOF. Transversality gives the result for £ > 3.

For k = 2 transversality only gives an immersion, but crossings may
be pushed along one branch and thus eliminated. See figure 6.3.

For k = 1 we lift to the universal covering space of Y. Throw away
the components not containing the lifted path &. What is left is just
the real line R. And any path & : I — R is homotopic rel endpoints to
a linear map I — R. This gives an immersion [ — Y. O

Rong and Wang [RW92]| state this theorem:
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‘\.—-\___..3

FIGURE 6.3. Eliminating selfintersections of a path.

THEOREM 6.6. Suppose that a proper map f : N — M between
compact connected n-manifolds is transverse to a proper k-submanifold
Y C M, wheren > 3 and n >k > 0. If there is an smooth embedded
path 3 in N intersecting f~(Y) only in 3(0) and (1) such that the
tangents to 3 at the end points are normal to f~*(Y') and f3 is strongly
homotopic to zero in (M,Y'), then f is homotopic by a homotopy fized
outside a tubular neighborhood of the path 3 to a map fo which is
transverse to Y such that f5'(Y) is diffeomorphic to f=H(Y') with the
points 3(0) and B(1) removed and a 1-handle attached instead.

The analogous result for £ = 0 is lemma 6.2.

ProOOF. We will relate the general situation to an “universal” ex-
ample. The proof will start by describing the example.
Let ¢ : R — R? be an embedded path such that
c(s)=(s+1,—1) for s <6 —1,
e(s)=(1—=s,1)for s >1—4 and
the first coordinate of ¢ has maximum value 1 for s = 0 and this

is the only point where the tangent is vertical.

Here § > 0 is some small real number.

Let Ny be a vector field along ¢ of unit vectors orthogonal to ¢. Let
R? be included in R™ as the first two coordinates. Let Ny, ..., N,_; be
the unit vector fields along ¢ in R™ such that N; points in the direction
of the 1+ 1’th unit vector e;;1 in R”. We may think of the N;’s as maps
R — R™ Choose ¢ > 0 so small that g : R x D"~ of ¢ is given by

g(s, 21, 1) = c(s) + Z z;Ni(s)

defines a tubular neighborhood of ¢ such that g([§ — 1,1 —§] x D?™1)
is contained in the open half plane (0,00) x R. Here D*~! is the disk
of points (xq,... ,2,_1) in R*™* of length less than or equal to ¢.

Let p: R — R be a function such that

p(t) =0fort <1
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p(t) = —2for t > 2,

P = 0 for £ € (—0.3] U [3.00) and (1) < 0 or 1 € (5.3)
and

the equation p'(t) = @ has no more than two solutions when « is

a real number less than 0.

And let g : R — [0,1] be a bump function such that u(s) = 1 for
|s|] <3 and u(s) =0 for |s| > 4.
Define the homotopy f; of ¢ by

e — |l

Je

fils, ) = g(s,z) + p(s)p(t .

Heret € I,z € D" ! and ¢, is the vector (1,0,0,... ,0) € R™ Observe
that this homotopy is fixed when |s| > 4 or [jz|| > 2.

Let P be the k-plane in R” spanned by {ey, e3,€4,... ,ep41}. We
are interested in the inverse image of P under fy and f;.

fo is clearly transversal to P and f;'(P) is seen to be {—1,1} x D¥
where D¥ is the intersection of D"~ with R¥ ¢ R*~!,

Now we verify that f; is transversal to P. Since pr; ; fi(s, 1,22, ...
x;forie =2,... ,n—11tis clear that e;y; lies in the image of the deriv-
ative of f; the only difficulty is to show that e; also lies in the image at
a point of the inverse image of P. Let pr; : R — R be the projection

onto the first coordinate. Consider

e— |
D (s 4o act) = ity els) + by M)+ p()p(C )
We see that (s, z1,...,7,_1) is contained in f;'(P) only if the expres-
sion above is 0. Since pry g(s, #1,... ,2,-1) = pry c(s)+x1 pry Ni(s) >0

if and only if s € [—1,1] and M(S)p(%) < 0 it follows that s must
lie in [—1, 1] for the expression to be 0. Hence u(s) is 1 in the cases we
consider.

First consider the case where s € (§ — 1,1 — §). We fix some unit
vector v = (vy,...,v,—1) in R"™' and define d : [0,¢] — R by

d(r) = pry fi(s,rv)
Computing this we get that

E—7r

d(r) = pry c(s) + rorpry Mi(s) + p(——)

We see that d(0) < 0 and d(¢) > 0. The derivative of d is

)

1 ,e—r
d'(r) = vipr; Ni(s) — g/)/(

e

9 xn—l)
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Recall that p'(t) = 0 for t € (—o0,%] U [2,00) and p'(t) < 0 for

te (i, %) This implies that if vy pry Ni(s) 240 then d is an increasing
function which has a single transverse intersection with 0 € R, and
if vy pry Ni(s) < 0 then d'(0) < 0 while d'(¢) > 0 and d'(r) = 0 has
not more than two solutions, by the last condition on p, so again d is
an increasing function which has a single transverse intersection with
0 € R.

This shows that the intersection of f; with P is transverse for
(s,x) € (§—1,1 —8) x D! and in each fiber {so} x D”~! the in-
verse image f; '(P) is a k — 1-sphere contained in {so} x D¥.

For s € [-1,6 — 1JU[l — ¢, 1] we start by fixing some z € D"~! and
we look at the function d : [-1,6 — 1] U [l — ¢, 1] — R defined by

d(s) = pry fi(s,x)
Computing we get that

e — |l

d(s) = pry e(s) + p( )

We find that the derivative of d is nonzero for all s since %(3) =

e

only for s = 0 which does not lie in the domain of d.

Moreover we see that for sg € [—1,0 — 1] U [l — §, 1] the part of
f71(P) which lies in the fiber {sq} x D"~!is a k — l-sphere contained
in {sg} x DF except for sy = £1. In this case it is an annulus in
{s0} x DF.

Thus f;'(P) is diffeomorphic to f5 ' (P) with the points f; ' (e(—1))
and f;'(c(1)) removed and a 1-handle attached instead.

The condition that ff is strongly homotopic to zero in (M,Y)
ensures that it is possible to find a map ¢ : R® — M such that

& is transversal to Y and ¢7H(Y) = P,
the restriction of ¢ to (—oo,d] x R*! is an embedding if k& > 1
and an immersion if £ =1,

the restriction of f to an appropriate tubular neighborhood T' of
B(I) factorizes through ¢ and the lifting f:T = R is given by

f(s,:z;) =g(2s —1,2)
where (s,z) € I x D*' 2 T and g is the function defined above.
Once we have such a map ¢ and lifting f we use the homotopy f; of
g to deform f by a homotopy which is ¢f; inside T" and fixed outside.

If f was transversal to Y then the resulting map f’ also is transversal
to Y and f7(Y) is f~'(Y) with the points 8(0) and §(1) removed

and a 1-handle glued on instead.
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Let v : D — M be as in definition 6.4. Observing that any homo-
topy of ¥|C; in Y gives rise to a deformation of the strong homotopy
7. Therefore we may assume by lemma 6.5 that +|C; is an embedding
if Kk > 1 and an immersion if k = 1.

Now construct the map ¢ on (—o0,d] x R*™! by letting it be a
tubular neighborhood of the embedded (immersed) path v|C;. It is
clear that we may assume that

o YY) = P and

¢_1(7(D)) = [075] X [_171] x 0
Extend the domain of ¢ to g(R x D*~')U (—o0, ] x R"™! by choosing
an appropriate tubular neighborhood T of 3(I) which we identify with
g([=1,1] x D*') and define ¢ to be f over the image of g. We may
now fill inn a 2-cell in the domain of ¢ and extend the map over this
cell by the strong homotopy . Since v (V) = C; we may assume
that ¢~1(Y) still is P. Finally extend the domain of ¢ to be all of R
by using a retraction from R” to the subset where we have defined ¢

already. O
LEMMA 6.7. Given a degree 1 map f : (N,ON) — (M,0M) be-

tween manifolds of dimension n > 3, two points pg, p1 in AN such that
[ is a local diffeomorphism at py and py and f~'(f(p;)) contains only
pi, i =0,1. Then for any embedded path o : [ — M between f(po) and
f(p1) intersecting OM only at these two points, the intersection being

transversal, there exist homotopy of f to fi relative to a neighborhood

of ON such that f, is a diffeomorphism in a neighborhood of f7'(a(I)).

PRrROOF. In this proof observe that every homotopy can be assumed
to be relative to a neighborhood of ON.

By theorem 6.1 it can be assumed that f meets a(]) transversally.
Then f~'(a(I)) will be a submanifold of dimension 1. The assumptions
concerning the p’s implies that this submanifold consists of one arch
and a finite number of circles. These circles will be eliminated by handle
exchanging. Choose a tubular neighborhood of «([). Pulling this back
by f we get a tubular neighborhood of f~'(a([)) assuming that the
first neighborhood was sufficiently small. Let D be the subbundle of
the tubular neighborhood of f~!(«a(I)) consisting of disks of radius 1.

Restrict f to a map f| : N~intD — M ~int f(D). This has
degree 1 since f: N — M has degree 1, hence it induces a surjection
m(N~int D) — m (M ~int f(D)). Let 3: I — N be a path between
different components of f~!(a(I)). Deforming 3 by a homotopy rel end
points we may assume that there is some § > 0 such that the image of



6. TECHNIQUES FROM DIFFERENTIAL TOPOLOGY 31
B meets D in B([0,8]U[1 —4,1]) and that

B(t) = vy e DC N for t € [0, 4]
a f(1—tjyye DCN forte[l—d1]

Here vy and v are unit vectors in the fiber above 3(0) and £(1) in
the tubular neighborhood of f~!(a(I)). We are interested in finding
an appropriate choice of 3 such that the restriction of ff3 to [§,1 — ¢]
can be deformed down into df(D) by a homotopy relative to the end
points. If this is the case then f3 is clearly strongly homotopic to
zero in (M,a(l)) and using theorem 6.6 will reduce the number of
components in f~!(a(I)) by 1. Such 3 always exists. To see this let ~
be a path in df(D) from fB3(5) to fB(1 —§). Since the map w1 (N ~
int D) — m(M~int f(D)) induced by f]| is surjective we may suppose
that 3 have been chosen so that f3 followed by ~ is nullhomotopic
in M ~int f(D). Inductively this shows that it may be assumed that
f~Hea(I)) is connected.

So one can assume that:

f is transversal to a([).
f~Ha(I)) is an arch.
D C N and E C M are closed tubular neighborhoods of f~(a(1))
and «(I) respectively both diffeomorphic to I x D"
With respect to these diffeomorphisms f restricted to D has the
form f(t,2) = (g(t), hi(x)) where
g:(1,int1,0,1) = (I,int 1,0,1) is a diffeomorphism near
dl and
he : D=1 — D! ig linear.
The aim is to straighten f to a diffeomorphism near f~!(a(I)).
Let gs : I — I be a homotopy from ¢ = go to a diffeomorphism
1 relative to a neighborhood of dI. And let A\; : [ — [ be a smooth
family of bump functions, that is A, is monotonic and constant near
01, such that A\;(0) = 0 and A;(1) = s. Define fs(p) to be f(p) outside
D and let f(t,x) = (gr.q-(jelp(t), he(x)) for (t,z) € I x D' = D.
This is a straightening, that is fo = f and f; is a diffeomorphism near
- a(l). .
This result is the improved version of Rong and Wang’s corollary 7.

See [RW92].

THEOREM 6.8. Let f: N — M be a degree 1 map between compact
3-manifolds taking ON to OM. Then for any handlebody H of genus g
inint M, f is homotopic to fi relative to a neighborhood of the boundary
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such that fy maps f7'(H) onto H diffeomorphically, and if H' C H is
a handlebody such that H is obtained from H' by adding 1-handles and
[ already maps f~'(H') onto H' diffeomorphically, then the homotopy
of f to fi may be assumed to be relative to a neighborhood of H'.

This is proved by essentially the same method as in [RW92] except
that I am working in the differentiable category while Rong and Wang

uses PL techniques.

Proor. If no H' is given then choose H' be a 3-cell of H such
that H can be obtained from H’ by adding 1-handles. f can easily
be deformed such that f| : f~'(H') — H' is a diffeomorphism. Use
Theorem 6.3.

Let H” be H' plus one of the handles. Represent this handle by
a tubular neighborhood of an embedding o : I — M ~int H" which
meets JH"” only in the two points «(0) and «a(1), the intersection being
transversal. Now use lemma 6.7 to deform f relative to a neighbor-
hood of H’ such that f maps a tubular neighborhood D of f~*(a(7))
diffeomorphically onto a tubular neighborhood E of a([l). By isotopy
of tubular neighborhoods F may be assumed to be the 1-handle.

Continue inductively to obtain H. O



CHAPTER 7
Surgery

In this chapter we work in the smooth category.

7.1. Connected sum and normal maps

Let Wi and W5 be smooth path connected compact manifolds. We
want to construct the connected sum of two normal maps ¢; : V; =+ W;
fore=1,2.

Suppose that ¢; is a regular value for the map ¢; contained in the
interior of W; and that g;'(¢;) is a single point p; in V;. Then we may
construct the connected sum as follows. Let U; be neighborhoods of ¢;
in W;. We demand that the closure of U; is contained in a open set in
W, which is diffeomorphic to R™ and that U; is diffeomorphic to R™ by
chosen charts ¢; : U; — R™ which takes ¢; to 0 € R”. Suppose that
the restriction of g; to g7 ' (U;) is a diffeomorphism. If W; is oriented
we demand that ¢; is orientation preserving for ¢+ = 1 and orientation
reversing for ¢ = 2. For unorientable manifolds the choice of orientation
does not matter since there exists a loop with non-trivial first Stiefel-
Whitney class. Let WifW, be the disjoint union of Wi~ {¢} and
Wi~{q2} where we identify @ € Uj~{q:} with y € Us~{ g} if ¢1(x) =
%. We form V;#V; similarly. Just use ¢;¢g; : ¢7'(U;) — R™ instead

There also is a map g1fgq : V1§V — WitW, defined by

atar(p) = {gl(p) for p € Vi~{p}
g2(p)  for p € Vo {pa}

We now want to extend bundle data so that this map becomes
a normal map. The given bundle data are v; a bundle over W, and
F; a stable trivialization of 7v, & ¢71;. Assume that 14 and vy both
are [-dimensional. And that the stable trivializations are maps F; :
v, D giv; — entl,

Let V! be V; where g7 '¢7 ! (int D) has been removed. Let S; C V!
be g '¢7 1 (S"71). Identify the tangent bundle of Vi§V; as the disjoint
union of 7yy and 7y; where we identify v € 7y,|S) with a(v) € 7y,]Ss.
Here o : 7y]S1 — 7yy]S2 is some clutching map over g3 ' ¢y ' d101]51.

33
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Choose a clutching map ' : gfv1|S1 — ¢512]52 such that the following
diagram commutes up to homotopy:

i
v [S1 & g [S1 —— entl

|

Tv|S2 @ gyral| Sy il gntl

By changing for example F, by a homotopy we may suppose that the
diagram actually commutes.

Since the restriction of g; to S; is a diffeomorphism and that g7 ' (g:(S;)) =
S; for both « = 1,2 there exists a clutching map 3 : v1|g:1(S1) —
v2|g2(S2) which pulls back to #'. Use [ to define the bundle v over
WitWs.

Now define F' : 1y, & (q1fig2)* v — "* to be F;|V/ over V! for i =
1,2. Since the diagram above commutes (after [ has been changed)

this map is well defined.

PROPOSITION 7.1. Connected sum defines map NO(W, rel 9) x
NO(W2 rel 0) — NO(WlﬂWQ rel 9). At least when n > 3.

Here ¢;, U; and ¢; are fixed.

PRrROOF. In order to be able to carry out the construction of con-
nected sum there was a list of requirements for the normal maps ¢; :
V; — W;. The most essential of these requirements was that ¢; was a
regular value for g; and that ¢'(¢;) was a single point.

If this holds then we may deform ¢; by a homotopy such that the
restriction of g; to g '(U;) is a diffeomorphism. This follows by unique-
ness of tubular neighborhoods.

Theorem 6.3 ensures that every normal cobordism class contains a
representative g; : V; — W; such that ¢; is regular and g;' () is a single
point p;. We must show that the construction of connected sum does
not depend on the normal map we choose to represent the class. So let
h; : P — W; x I be normal cobordisms between ¢; : V; — W, and an-
other choice ¢/ : V! — W,. We may assume that the F,’s are both path
connected. And by lemma 6.7 we may suppose that h; is transversal to
{@:} x I and the restriction of h; to h;'({q;} x I) is a diffeomorphism
onto its image. Since h; is transversal to {¢;} x [ the restriction of h;
to a tubular neighborhood of h;'({¢:} x I) is a diffeomorphism onto
its image. And by uniqueness of tubular neighborhoods up to isotopy
we may even suppose that this tubular neighborhood is A7 (U; x I).
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Now we repeat the construction of connected sum, but replacing ¢;
by {¢;} x I, U; by U; x I and ¢; by ¢; x pr:U; x [ = R" x [I.

To be more specific we start by forming (WiWs) x I from Wy x [
and Wy x [ by taking the disjoin union of Wy x I~ {¢;} x [ and
Wy x In{q2} x I where we identify (x,t) € Uy x IN{q1} x [ with (y,t) €
Uy x IN{q2} x T'if ¢1(x) = % As before we form P4’ P, similarly.
Take the disjoint union of Pi~hy'({qi} x I) and Py~hy'({ga} x I) and
identify o' € A (Uy x I~{qi} x I) with y' € by (Uy x I~{q} x 1) if
hi(a2") = (x,t), ha(y') = (y,t) and ¢y () = % And we also have
amap hif'hy 1 Pt Py — (W1Ws) x I. The proof that this is a normal

map goes as above. 0

We can describe the argument above as follows: Let S™~! C WiV,
be the n — 1 sphere which separates the manifold into W; and W,
with open disks removed. We write W 4W, as the union W] Ugn—1
W;. We have shown that the map NO(W/! rel 9) — NO(W; rel 9)
given by gluing a disk into a normal map V/ — W/ is a bijection. So
when forming the connected sum of two normal maps V; — W; and
Vo — Wy we first lift them to NO(I/VZ»’ rel 9). Then we glue these two
maps together along S™~' C OW; to obtain a normal map over Wy tW,.
Using the bijection N©(W rel ) ~ [W/d, G/O] the following diagram

describes the operation:
[W1/0,G/0] < [W;/0,G /0]
e
W1/0,G/0] x [W/d, GO — [(WitW2) /9, G/O)
Remember that gluing corresponds to wedge. See 4.3.
PRrROPOSITION 7.2. If 7,_1(G/O) is trivial, where n is the dimen-

ston of the manifolds Wi and Wy, then the map defined in proposi-
tion 7.1 1s surjective.

This result should give the reader associations to the Mayer-Vietoris

sequence.

PRrROOF. According to the remarks above it is enough to show that

the following sequence is exact:
(W1/0,GJO) x [W}/0,G/O] = [(WigW2)/0,G O] 5 [, G/O]
where the map 7* is induced by the inclusion j : S*71 — Wi#W, of the

sphere separating the connected sum into the two pieces W] and WJ.

It is clear that the composition of the two maps are zero.
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If we have some map h : Wi§W, — G/O such that jh : S"7' —
G/O is nullhomotopic, then we may find, by the homotopy exten-
sion property, a homotopy of h such that jh actually equals the con-

stant map. And in this case it is clear that & lies in the image of

(W{/0,G/0] x [W}/0,G/0]. O

PropPOSITION 7.3. The following diagram commutes when n > 4

1S even.

NOWy rel 3) x NO(Wy rel 0) NO(WiW,y rel D)

l l

Lo(Z[miWi],w1) % Lo(Z[miWa), w) ——= L (Z[m W, # m,Wa], w;)

This is a formula for computing the surgery obstruction of a con-
nected sum. A similar result probably holds for n odd, but since the
definition of the [L-groups are different in this case another proof is

needed. For our purposes the even case is sufficient.

PrROOF. We must show that the surgery obstruction of a connected
sum is the direct sum of the surgery obstructions.

For n even the surgery obstruction of a normal map V" — W is
calculated by first doing surgery such that V' — 1 is Z-connected. Let
k = %. Every element in the kernel K}(V) of the induced homomor-
phism Hy(V) — Hi(W) can now be represented by immersed spheres
S¥ — V such that the composition S* — V — W is nullhomotopic.
The bundle data determines which regular homotopy class of immer-
sions we should choose. On Kj(V') there are defined two forms: A, the
intersection form and pu, the self intersection form. The elements of the
groups L, (Z[mW],w;) are equivalence classes of the type (G, A, ) and
the operation is direct sum. The surgery obstruction of V' — W is the
class of (Ki(V), A, p).

So we must show that for a connected sum of two k-connected nor-
mal maps g; : Vi — Wi and ¢z : V3 — W, the class of (K (VigVa), A, u)
is the same as (K,(V1), A1, p1) @& (Ki(V2), Ag, ). This follows easily
form the observation that every immersion o : S* — V; may be de-
formed by a regular homotopy away from the neighborhood ¢ '(U;)
of p; where the connected sum is formed. We must also make sure
that there exists a nullhomotopy of ¢g;a in WigW5. This might fail for
2-manifolds. Since n > 4 we may deform a nullhomotopy of g;a away

from U; in W;.
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There is a small complication here as Ky (Vi14V2), Kip(V1) and K (V2)
are modules over different rings, but we can consider K3 (V1) as a mod-
ule over Z[mW; * mi W3] by letting the elements of m W5 act trivially.
Similarly Kj(Vz) is also a module over Z[m W * w3 Ws). O

REMARK 7.4. The formula holds for 2-manifolds if W, or W5 is a
sphere.

PRrROOF. The condition that at least one of Wy and W5 is a sphere

ensures the existence of nullhomotopies of the g;a’s. O

LEMMA 7.5. If g : 'V — W is a normal map between compact
4-manifolds and the second Stiefel-Whitney class, wso(Tw), is 0 then
the signature of V' is divisible by 16.

ProoF. Let vy be the normal bundle of W and let v be the bun-
dle over W which pulls back to a normal bundle vy for V. We wish to
prove that wy(7y) = 0. Since vy and v both are stably fiber homotopy
equivalent to the Spivak normal bundle there exists a bundle £* clas-
sified by a map W — BO which factorizes through G/O — BO and
such that vy e = v @ 8. We now have that both w;(£%) and wy(&F)
are zero. This implies that wy(vw) = wi(v) and wy(vw) = we(v). We

have the following formula for ws(7y ):
wa(Tv) = (wi(rv))? + wavv)

The same formula holds of W. Since we know that ¢*v is a normal

bundle for V' we have:

wz(1v) = (g7 w1 (V) + g w2 (v) = (g7 w1 (vw))? + g wa(vw) = g wa(Tw)
Thus wy(7v) = 0 and we may apply Rohlin’s theorem to V. See  MK58].
This says that the first Pontrjagin number of V., p[V], is divisible

by 48. By the signature theorem we have that the signature of V' is

o(V) = ipi[V], hence divisible by 16. See [MS74] for the formulas

above and the signature theorem. O

LEMMA 7.6. There exists a normal map V — S* where the signa-
ture of V' is 16.

See also [MMT9| remark 2.16.

PROOF. By theorem 2 of [MKS58] there exists a almost paralleliz-
able manifold V' with signature 16. Almost parallelizable means that
there exists a disk D* C V such that the tangent bundle of V is trivial
over V ~int D*.
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Let vy be the normal bundle of V for some embedding of V in R4+,
Since V' is almost parallelizable we may write vy as the union of the
trivial bundle over V ~\.int D* and the trivial bundle over D* where we
identify according to some clutching map 3 : S® — O(k). Construct
a degree 1 map ¢ : V — S* by sending V ~int D* to the northern
hemisphere Dy of S* and sending D* C V diffeomorphically to the
southern hemisphere D_. Now let v be the bundle over S* obtained
from identifying the trivial k-dimensional bundles over Dy and D_
using the clutching map 5. Now there exists a bundle map vy — v

covering g. So we have a normal map. O

LEMMA 7.7. NO(S%) and N9(S? x 5?) has the same image in the
group L4(Z,0).

PROOF. Let NO(5%) — NO(S? x §?) be the map defined by tak-
ing connected sum with the identity map S? x S? — S§? x S%. By

proposition 7.3 the following diagram commutes:

NO(§4) —= NO(S? x §2)

| |

Ly(Z,0) —— L4(7Z,0)

Hence the image of N9(S%) in L4(Z,0) is contained in the image of
NO(52% x §2).

We know that L4(Z,0) is isomorphic to Z and the surgery obstruc-
tion is é times the difference in signatures. Let g : V — S? x §2
be a normal map. The tangent bundle of S? x S? is trivial hence
w2(Ts2xs2) = 0 and it follows from lemma 7.5 that the signature of V
is divisible by 16. But by the lemma 7.6 there exists a normal map
V' — S% such that the signature of V' equals the signature of V. This
shows that the image of N9(5% x S?) is contained in the image of
NO(SY). O

PROPOSITION 7.8. Let W be a 4-dimenstonal smooth manifold pos-
sibly with boundary. Then the image of NO(W rel 9) in Ly(Z[mW],w;)
is equal to the image of NO(W45? x S? rel 9).

ProoOF. By proposition 7.2 the map
NOW rel 9) x NO(57 x §7) — NO(W452 x S? rel 9)

is surjective. So we may write any normal map ¢ : V' — W#5?% x 52
as the connected sum of a normal map ¢ : V. — W and a normal map
h:T — S? x S2. Now choose some map h': P — S* having —1 times
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the surgery obstruction of h. Denote by A’ : P — S* the normal map
obtained from A’ by switching the orientation. A’ and A’ has opposite

surgery obstructions. It is clear that the connected sum
(GERVE(hER)  (VEPYHTAP) — (WEST)A(S? x S5%) = WS? x 5°

has the same surgery obstruction as ¢’. Hence we have written ¢’ as the
connected sum of a normal map in N'?(W rel 9) and a normal map in
NO(S% x §?) with trivial surgery obstruction. The result now follows
by the commutativity of the diagram:

NOW el 9) x NO(S? x §2) —— NO(WES? x 52 rel 9)

l |

Lo (Z[mW],w1) x L,(Z,0) Lo (Z][m W], w1)

7.2. Submanifolds and normal maps

Let D C W be a submanifold intersecting the boundary of W

transversally.

PROPOSITION 7.9. There is a map NO(W rel ) — NO(D rel 9)

defined by sending a normal map g : V. — W which is transversal to D
to the restriction g| : g~ (D) — D.

PROOF. Start by checking that the restriction g| : ¢7'(D) — D
has degree 1. We show that the degree of the map ¢| depends only
on the homotopy class of ¢ in the following sense. Assume that ¢y is
homotopic to ¢ rel W and that ¢, is transversal to D. Then there
isamap G : V x I — W x [ such that prGg = g and prG; = ¢;
where pr denotes the projection W x I — W. We may assume that GG
is transversal to D x I C W x I. We now get a cobordism G™(D x I)
between g~*(D) and ¢g;' (D) and an extension of the restricted maps
gl and ¢1] to a map G| : G™(D x I) — D x I. This shows that g| and
g1| has the same degree.

Let ¢ € D be a point in the interior of W. Theorem 6.3 says
that we may find a map ¢; : V. — W homotopic to g rel W such
that ¢ is a regular value for g, and g;'(g) consists of a single point.
One implication of the fact that ¢ is a regular value is that g; is already
transversal to D near ¢, so by a small deformation of ¢; we may assume
that ¢y is transversal to D while preserving the property that ¢ is a
regular value and g;'(q) is a single point. Restricting ¢; to g7'(D) we
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see that the degree must be £1 since there exists a point ¢ € D such
that g;|7'(q) is a single point. And by choosing the right orientation
the degree is 1.

We must now show how to define bundle data for the restricted map,
then we go on to show that the map NO(W rel 9) — NO(D rel 9) is
well defined.

Let g : V. — W be a normal map. The following bundle data are
given: v a bundle over W and F' : 7v & ¢"v — ¢ a stable trivialization.
Define n over D to be the direct sum of v|D and the normal bundle
vp(W) of D in W. Since g is transversal to D the inverse image
T = g~'(D) is a submanifold of V and ¢ induces an isomorphism « :
vr(V) = g|*vp(W). Define Fr : 71 & g[*n — ¢ to be the composition

@ gl = 7@ glvp(W) @ g (v|D) 5
rr @ ve(V) @ g (vID) = (v @ gv)|T e
This constructs bundle data for ¢g| : T"— D.

Now assume that & : P — W x [ is a normal cobordism between
two normal maps g : V. — W and ¢ : V! — W, both being transversal
to D. By a small perturbation relative to VU V' € 9P we may also
assume that i : P — W x [ is transversal to D x I. The construction
above shows that | : h™*(D x I) — D x [ is a normal cobordism
between g| : T'— D and ¢'| : T’ — D. Hence the map N'O(W rel 9) —
NO(D rel 9) is well defined. O

PROPOSITION 7.10. Any normal cobordism h : F' — D x I of g| :
T — D may be extended to a normal cobordism of g : V — W.

ProOOF. Let vp(W) be the normal bundle of D in W. And let
pr*vp(W) be the bundle over D x [ obtained by pulling vp(W') back
by the projection pr: D x I — D. We want to thicken o : F' — D x [I.

This is done as follows: Consider the map
h* pr*vp(W) — pr*vp(W)

over h. Let P and @ be the disksubbundles of vectors of length < 1 in
h* pr*vp(W) and pr*vp(W) respectively. The map h : P — Q is the
thickening we are looking for.

Let () be the union of W x I and @ where we identify points in
a tubular neighborhood of D in W x 1 with points over D x 0 in
Q C pr*vp(W). See figure 7.1.

Similarly let P be the union of V x I and P where we make similar

identifications.
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FiGURE 7.1. The manifold Q).

It is clear that there is a map ¢ : P — . Composing with a
homeomorphism ¢) — W x [ we get an extension of the cobordism.

Next we discuss the bundle data. We have given v a bundle over
W, F : v & g'v — ¢ a stable trivialization, the bundle n over D
which is the direct sum of v|D and vp(W), and a stable trivialization
Gp:1mr @R pr*n — e. () is the union of W x I and the cross product
of tubular neighborhood of D and I. So we have a projection map
¢ — W by mapping to the first factor. Let vg be v pulled back
over this map. We want a stable trivialization G of 7p & ¢'"vg. Over
VxI — W xI welet GG correspond to F pulled back over the projection.
To extend over P it is enough to extend over the submanifold /' C P.
Since n = vp(W) @& v|D we see that G gives a stable trivialization of
TG prevp(W)Eh* pr*v|D. But 7p & h* pr* vp(W) is the restriction

of 75 to F'. Hence we can extend bundle data. O

We have the diagram

NO(W rel 9) NO(D rel 9)
L2V (W) LeZlmD)w (D)

Now we could ask if there is a homomorphism L, (Z[m W], w(W)) —
Li(Z[r1 D], w1(D)) which makes the diagram commute. In general the
answer to this question is no as the following examples show.

We will construct two normal maps over S? x S? both having trivial
surgery obstruction such that the restriction to S?x0 has trivial surgery
obstruction for the first map and nontrivial surgery obstruction for the
second normal map.

The first example is just the identity map 5% x §? — §% x §2,
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The next example depends on the construction of a normal map
f:T?% — S? with nontrivial surgery obstruction. Let 7% be the torus
and [ : T? — S? the degree 1 map which sends S'V S C T? to a
basepoint in S? and is injective outside S'V S*. Let i be the trivial r-
dimensional bundle over S? and let Frr : 772 & f*n — 27" be defined as
follows: T? = St x St therefore 772 = 7q1 X 7q1 and 71 has a canonical
trivialization 71 = ¢!, This induces a trivialization 72 = ¢2. And
since 1 1s trivial we have a canonical trivialization of f*n. Putting
these trivialization together we get a trivialization F} : 72 & f*n =
g2t There is a inclusion 7 of S' in SO(2 + r). Define Fr(v) =
i(pry(m(v)))i(pry(m(v)))Ff(v) for v € 7702 & f*n. Here pry : T? — St
and pry : 7% — S is the projection onto the first and second factor of
T? = St x St respectively and 7 : 772 @ f*n — T? is the projection
map of the bundle. The Kervaire invariant,which is equal to the surgery
obstruction, of the normal map f : 7% — S? with n and Fy as bundle
data is nontrivial.

Take the cross product of f : 7% — S? with the identity map
S? — S? to obtain a normal map h : T? x S§% — S§% x §2. It is
clear that the restriction of & to 7? x 0 = ¢g~*(5? x 0) has nontrivial
surgery obstruction. We must now check that the normal map [ itself
has trivial surgery obstruction. In the simply connected 4-dimensional
case the surgery obstruction for a normal map V — W is é times
the difference between the signature of V' and W. We can compute the
signature of 7% x 5% and 52 x 5% as follows: We see that H*(T? x 5?%; Q)
and H?(5% x S%;Q) are free of dimension 2. The fundamental class of
the first and second factor gives generators of the second homology
group. Let b; and by be the dual elements in cohomology. They form

a basis and the matrix ((b; — b;, u)), where p is the fundamental class,

(i)

in both cases. Hence the signature is 0. It follows that the surgery

is

obstruction of the normal map £ : T? x S — S% x S? is trivial.

7.3. Stabilizing the relations of S°(M)

In this section M is a closed 3-manifold.

DEFINITION 7.11. Let 8(M) have the same objects as SO(M).
Two simple homology equivalences f; : Ny — M and f, : Ny — M are
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considered equivalent in S’( M) if there exists a normal map g : V. — W

with trivial surgery obstruction such that

dV is the disjoint union of N; and N,

W is the connected sum of M x [ and a finite number of copies
of S? x S?%, hence W is the disjoint union of two copies of M.
the restriction of g to dV is the disjoin union of f; and f,

There are more relations in S'(M) than in S®(M). But there is
a natural surjection of sets S?(M) — S'(M). In this section we will
prove that this surjection actually is a bijection. This is done by show-
ing that S'(M) fits into a exact sequence similar to the exact sequence
of surgery.

Analogous to the definition of S'(M) we can define N/(M) to be
normal maps N — M where two normal maps f; : Ny — M and
f2 1 Ny — M are considered to be equivalent if there exists a normal
map g : V — W such that

dV is the disjoint union of Ny and N,.

W is the connected sum of M x [ and a finite number of copies
of S? x S?%, hence W is the disjoint union of two copies of M.
the restriction of g to dV is the disjoin union of f; and f5.

Again there is a natural surjection N'(M) — N'(M).

LEMMA 7.12. The natural surjection N (M) — N'(M) is a bijec-

tion.

ProOOF. Let ¢ : V. — W be a normal map with the properties
mentioned above. This is an element of NO(W rel ) where we demand
that normal maps equals the disjoint union of f; : Ny — M and f5 :
Ny — M at the boundary. Write W as M x [{W' where W' is the

connected sum of a finite number of copies S? x S2. Since the map
NO(M x I rel 9) x NO(W') = NO(W rel 9)

is surjective by proposition 7.2 there exists a normal cobordism ¢ :

V' — M x I between f; and f5. -

Analogous to NO(M x I rel 9) we consider the following: We may

stabilize by taking the connected sum with the identity element of
NO(S% x S%). This gives a map

NO(W rel ) — NO(WHS? x S? rel )
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Define N'(M x I rel 9M x I) to be the direct limit of the sequence

NO(M x I rel d) = NO(M x I$5* x S* rel 9) —
NO(M x I15* x S*45% x S% vel 9) — -+ -

Using the definitions above we have:

PROPOSITION 7.13. There is an exact sequence

N (M x I rel OM x I) — Ly(Z[m M],w;)
— S'(M) = N'(M) — L3(Z|m1M], wy)

and a natural map from the exact sequence of surgery to the exact

sequence above.

Proor. We clearly have a natural map from the exact sequence of

surgery to the stabilized sequence. See the diagram below:

NO(M x I rel 9) — Li(Z[m1 M], w)

l -

N'(M x I rel ) —— Ly(Z[m M], wy)

—— SO(M) —— N (M) —— L3(Z|m M],w)

L -

— - S((M) ——= N'(M) — Ly(Z[mM], w))

We use this diagram to check exactness of the bottom sequence.

FExactness at N'(M): The composition 8'(M) — N'(M) — La(Z[m1M], wy)
is zero since the natural map S°(M) — S'(M) is surjective. And the
kernel of N'(M) — L3(Z[r1M],w,) is contained in the image of S'( M)
since the kernel consists of normal maps N — M with trivial surgery
obstruction and such maps are normally cobordant to simple homology
equivalences. Hence N — M lies in the image of S'(M).

Fractness at S'(M): We let 0 € Ly(Z[m1M],w;) act on a simple
homology equivalence N — M by constructing a normal map ¢ : V —
W with surgery obstruction 8, where W' is the connected sum of M x [
and a finite number of copies of S? x S? and the restriction of ¢ to the
boundary of V is the disjoint union of N — M and another simple
homology equivalence N — M. This can be done for any # and N —
M. We let N' — M be the image of N x M under §. This action is
clearly well defined.
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By construction of the action there exists a normal cobordism V' —
W with surgery obstruction 6 between N — M and N’ — M, where
W is the connected sum of M x [ and a finite number of copies of
S? x §2?. This shows that N — M and N’ — M represent the same
element in N'(M).

Conversely suppose that N — M and N' — M are simple homo-
logy equivalences which maps th the same element of AN/(M). Since
N(M) — N'(M) is a bijection there exists a normal cobordism V —
M x I between the two simple homology equivalences. By the exactness
of Ly(Z[miM],wy) — S°(M) — N(M) there exists an element 6 of
L4(Z[mM],wy) which sends N — M to N' — M.

Fractness at Ly(Z[m1M],wy): At this point it is important make the
correct interpretation of the map N'O(M x I rel 9) — Ly(Z[m M],w;).
See |[KT].

An element of N'(M x I rel 3) is represented by a normal map V' —
W restricting to two copies of the same simple homology equivalence
N — M at the boundary of V., where W is the connected sum of
M x I and a finite number of copies of S% x S?. Let 0 be the surgery
obstruction of V. — W. Then it is clear that # acts trivially on N —
M by the existence of V. — W. This shows that the composition
N/ (M x I rel 3) — Ly(Z[mM],wy) — S'(M) is zero.

Suppose that § € Ly(Z[m1M],w;) acts trivially on the simple ho-
mology equivalence N — M when considered as an element of S'(M).
Then there exists a normal map V' — W with surgery obstruction 6
restricting to two copies of N — M at the boundary, where W is the
connected sum of M x I and a finite number of copies of S? x S%. But

this is an element of N'(M x [ rel 9). O

LEMMA 7.14. The image of NO(M x I rel ) in Ly(Z[mM],w,) is
identical to the image of N'(M x I rel 9).

ProoOF. This is a corollary of proposition 7.8. O

THEOREM 7.15. The natural surjection S®(M) — S'(M) is a bi-

jection.

Proor. This follows from a diagram chase in the map between the
two exact sequences above, using the fact that the image of N'©(M x
I rel 3) in Ly(Z[m M],w;) is identical to the image of N'(M x I rel 9).

O
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7.4. Well definedness of the operation

THEOREM 7.16. Let H be a handle body contained in a closed 3-
manifold M and let ¢ : V' — M x I be a normal cobordism with trivial
surgery obstruction between f: N — M and f' : N — M. Assume
that the restriction of f and f' to f='(H) and f'~"(H) respectively are
diffeomorphism, then there exists a normal map g : V. — W with trivial
surgery obstruction such that the restriction of g to OV is the disjoint
union of f and ', W is the connected sum of M x I and finite number
of copies of S x S% and there exists an embedding of H x I in W which
intersects OW = M IO M in H Il H such that the restriction of g to
g ' (H x I) is a diffeomorphism.

Proor. We will modify the normal cobordism V' — M x [.

Let S be a wedge of copies of S!, one for each handle of H. There is
an embedding of S in H such that S is a deformation retraction of H.
We will call S the spine of H. And we think about H as a “tubular
neighborhood” of 5. S is a CW-complex with a single 0-cell and one
1-cell for each handle of H. Let ¢ denote the 0-cell.

g x I 1s a nice 1-dimensional submanifold of M x I. We may assume
that ¢’ is transversal to ¢ x I and the restriction of ¢’ maps ¢'~'(q x 1)
diffeomorphically onto ¢ x I. Here we allow ourselves to choose another
representative for ¢’ which lies in the same normal cobordism class rel 0.
To see this we first do surgery on ¢’ : V! — M x [ to make V' connected.
Then we may by lemma 6.7 deform ¢’ such that ¢’ is transversal to ¢ x I
and the restriction of ¢’ to ¢’ "' (q x I) is a diffeomorphism.

There exists some open tubular neighborhood U of ¢ x [ such that
the restriction of ¢’ to ¢’ "' (U) is a diffeomorphism. We remove ¢'~"(U)
and U from V' and M x [ respectively to get a normal map ¢} : V| —
(M x I~ U). We may assume that the intersection of S x [ and
M x I~ U, which we will denote by D, has one component for each
handle of H and that each of these components are 2-disks which meets
boundary of M x I~\U transversally. Let D? be the i’th component of
D. Make ¢} transversal to D. The restriction of ¢} to ¢, " (D) is the
disjoint union of normal maps f; : Ty — D?, where T; = ¢, " (D?). Our
main problem is that some of these normal maps may have nontrivial
surgery obstruction. If this is the case we modify the normal map
g1 V) = (M x I\U) as follows:

Remember that there exists a normal map h : T2 x §% — §2 x §2
with trivial surgery obstruction such that A is transversal to S? x 1

and the restriction of & to h™*(S5? x 1) is a normal map with nontrivial
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surgery obstruction in L3(Z,0). Remember that this group is cyclic of
order 2. By construction there exists a point ¢’ € S% x 1 which is a
regular value for i and the inverse image h™'(¢’) is a single point.

For each f; : T; — D? with nontrivial surgery obstruction we pick a
point ¢; in D? which is regular for f; and such that f7'(q) is a single
point. There exists such a point ¢; since f; is a diffeomorphism near
the boundary.

Let g : Vi — Wy be the normal map obtained from ¢; : V/ —
(M x I\U) by taking the connected sum with A : T? x §? — §? x S?
at the points ¢; and ¢ for each f; : T; — D? with nontrivial surgery
obstruction. The effect on the restriction to the D?’s are as follows: D?
is replaced by D?£5? which also is a 2-disk. We call this disk D’7. T
is replaced by the connected sum of T} and the torus T?. We write T/
for this space. And the surgery obstruction for the map f/: 1T/ — D'}
is trivial since it is the connected sum of two nontrivial normal maps.

Since the restriction of g to each component of gé_l(D) is a normal
map into a 2-disk with trivial surgery obstruction there exists a normal
cobordism from ¢, : Vg — Wy to a normal map g : Vo — Wy where
the restriction of gy to go™ (D) is a diffeomorphism. This uses propo-
sition 7.10. We may glue the tubular neighborhood U back in to get a
normal map ¢ : V.— W. Here V.=V, Ug " (U) and W = Wy U U.
Since ¢' and h both have trivial surgery obstruction so does g. We see
that there is an embedding of H x I in W such that the inverse image
g '(H x I) is mapped diffeomorphically onto H x I by g. O

As announced in chapter 3 we now prove the following:

THEOREM 7.17. Assume that fy : Ny — M, f{ : N - M and
f2 1 Ny = M are simple homology equivalences such that the restriction
of the maps to fi*(Hy), fi~'(Hy) and f7'(H,) are diffeomorphism
and that there exists a normal cobordism between f1 and f] with trivial
surgery obstruction, then there exists a normal cobordism between fi +

f2 and f{ + fo with trivial surgery obstruction.

Here M is a closed 3-manifold and the Heegaard splitting H; U Ho
of M is fixed.

PROOF. By theorem 7.15 it is enough to show that f;+ f; and f|+f2
are equivalent in §'(M). We use coefficients in Z[r; M| throughout this
proof.

By theorem 7.16 there exists a normal map ¢g : V' — W restricting
to the disjoint union of f; and f’; at the boundary where W is the
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connected sum of M x I and a finite number of copies of S? x 52
and there exists an embedding of H; x [ in W which agrees with the
inclusion Hy C M near OW such that the inverse image of Hy x [
under ¢ is mapped diffeomorphically to H; x I C W by ¢ and that ¢
has trivial surgery obstruction.

Let Vo and Wy be the closure of the complement of H; x [ in V and
W respectively. The restriction of ¢ is a normal map ¢o : Vo — Wp.
By doing surgery we may suppose that go induces an isomorphism
on fundamental groups. See lemma 2.7. We have a Mayer-Vietoris

sequence of K groups:

el S [(2(‘/0 N H1 X [) — [(2(‘/0) $ [(2(]—]1 X [) —
Ky(V) = Ky(Vo N Hy x ) — ---

But K.(Vo N Hy x I) and K.(H; x I) are trivial so the inclusion in-
duces an isomorphism K3(Vy) — K2(V). And since go : Vo — W,
induces an isomorphism of fundamental groups we have that every el-
ement of K5(Vp) may be represented by a map S* — V4. Hence the
surgery obstruction of go maps to 0 under the map L4(Z[m W], w;) —
L4(Z[mW],wq) induced by the inclusion.

The restriction of f; to f;'(H;) is a simple homology equivalence
f7'(Hy) — H,y which restricts to a diffeomorphism at the boundary. By
lemma 2.7 there exists a normal cobordism ¢, : Vo — H; x [ which has
trivial surgery obstruction and induces a isomorphism m V5, — 7 Hy x I.
The boundary of V; consists of two copies of f;'(H;) glued together
along a copy of df; ' (H,) x I and the restriction of g, to 9V is equal to
f2 on the copies of f;'(H;) and maps df; '(H,) x I diffeomorphically
onto 0H, x I.

Form the union V = Vo Uag, «1 V2 by gluing along 0H; x [. This
maps into W by amap §: V — W. We must construct bundle data for
the map ¢. Bundle data over go : Vo — Wy consist of a bundle v| over
Wy and a stable trivialization Fy, of 7y, ®ggv|. Over gz : Vo — Hy x I we
have vg, «1 over Hy x I and a stable trivialization Fy, of Ty, & g5vm, «1-
The tangent bundle of V can be obtained form v, and 1y, by gluing
along a clutching map o : 7y, |0H; x I — 7y, |0H, x . We seek a
clutching map 3 : v|0H; x I — vy, «1|0H; x I which we can use to
construct a bundle 7 over W from v| and vy, ;. We also want to find
a stable trivialization Iy of 7y @ ¢*7 which up to homotopy restricts
to Fy, and Iy, over V; and V) respectively.
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To construct this we restrict the stable trivializations to 0Hy x I,

then we get maps
v, |OHy x I @ giv|0Hy x I — "
and
T |0H, x I © givg, «7|0H; x T — "

This shows that gjrv|0H; x I and g5vp, «1|0Hy x I are stably isomor-
phic. Therefore it is possible to choose some clutching map 3’ : ggv|0H; x [ —
gsv|0Hy x I making the following diagram commute up to homotopy.

Fy, |
T |OH, % I & giv|oH; x [ —— &

la@ﬁ’ l:
Fy, |

TV2|8H1 X [@g;l/HlxﬂaHl X [ ——= 5k

But since go and g restricted to dH; x I are diffeomorphism onto
their image we have a clutching map 3 : v|0H; X I — vy, «7|0H; x 1
corresponding to (#'. This is the map we seek and we may construct &
and the stable trivialization Iy of 75 © g*r.

With these bundle data ¢ has trivial surgery obstruction. This
shows that (fi+ f2) : (Nt + N2) = M and (f'y+ f2) : (N1 +N2) = M
are equivalent in S'(M). O
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APPENDIX A

Stable uniqueness of Heegaard splittings

We are interested in classifying Heegaard splittings of a given closed,
connected and smooth 3-manifold M. The aim is to prove the following

theorem:

THEOREM A.l. Any two Heegaard splittings HiUHy and H{UH), of
M have stabilizations Ky U Ky and K{U K, which are ambient isotopic.

A Heegaard splitting Ky U K is a stabilization of Hy U Hy if it is
obtained from the latter by adding a finite number of trivial 1-handles.
And K, UK, and K{U K7, are ambient isotopic if there exists an isotopy
F: I xM — M such that Fy = id and F carries K| and K; to K]
and K respectively.

Here is an outline of the proof: First choose Morse functions fy
and f; of M that corresponds to the two different Heegaard splittings.
There are a homotopy f : [ x M — R between fy and f; since the
target is contractible. Using techniques from Hatcher and Wagoner’s
article [HW73] we deform this homotopy until the theorem can be
read from f’s graphic.

A Morse function f : M — R is called ordered if p > ¢ implies
f(p) > f(q) whenever p and ¢ are critical points.

LEMMA A.2. For every Heegaard splitting M = HyUHy there exists
an ordered Morse function f: M — R such that
all critical points have different values,
Hy = [~ (—=00,0] and Hy = {710, 00),
if p <1 then f(p) <0 and if p > 2 then f(p) > 0 for all eritical
poinis p.

We say that f : M — R corresponds to the Heegaard splitting
H, U H,.

PrOOF. The boundary dH; = dH,; = F has a tubular neighbor-
hood F' x (—1,1) C M mapping F' x (—1,0] into H; and F' x [0,1) into
H,.

Any handlebody H possesses a Morse function f : H — (—o00,0]

with critical points of index 0 and 1 only. We may assume that all
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critical points lie in the interior of H and that f maps the boundary
OH to 0. Since there are no critical points near dH there exists a
collar OH x (—&,0] C H such that f corresponds to the projection
onto (—¢,0] in the collar. Here 0 < ¢ < 1 Let f; , f2 be such Morse
functions for H; and H, respectively.

By uniqueness of collars there are isotopies taking the collars above
to the collars determined by the tubular neighborhood of F'. Therefore
we may suppose that f; and —f; coincides with the projection onto
(—e,0] and [0, ¢) respectively in the collars determined by the tubular
neighborhood of F.

Now define f: M — R to be

B fi(x) for x € H,
N )_{—fz(l’) for x € Hy

This gives the required Morse function. O

Now let fo and f; be Morse functions on M corresponding to two
different Heegaard splittings Hy; U Hy and H; U H), respectively. There
exists a homotopy f: M x I — R between fy and f;. We may assume
that f; = fo for t € [0,¢) and f; = f; for t € (1 —e,1] for some
small ¢ > 0. We will now start to deform the homotopy f. When
doing this we may always assume that the deformations are fixed in a
neighborhood of M x {0, 1}.

The homotopy f may be thought of as a one-parameter family of
functions M — R. It also gives rise to amap I': [ x M — I xR given
by F(t,x) = (, fi(x)). Define ¥ to be the set

Y =A{(t,p) € I x M| pis a critical point for f; : M — R

This will be called the set of singularities. The graphic of f is F(X) C
I x R. When drawing the graphic we will sometimes mark different
parts of F'(¥) with a number indicating the index of the critical point
it corresponds to.

Following Chapter 1.§2 of [HW 73| we may assume after deforming
the homotopy f that

— Y is a 1-dimensional submanifold of I x M

— Y is the disjoint union of two strata g and ¥,

— Yo is l-dimensional and consists of the non-degenerate critical
points of f;

~ Y 1s a finite set of points

— for every point (to,p) in ¥y there exists a one-parameter family

of embeddings ¢; : R?® — M defined for ¢ in a neighborhood of
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FIGURE A.1. An example of a graphic.

to with ¢4, (0) = p such that
for(ar,xa,23) = fio(p) = £ai £ a3 £ (t —to)as + a3

— all points of ¥; has different parameter values

— F restricted to each of the strata Yy and >, is an immersion

— if ¢ and Zf are opens subsets of X; and X; then F': 3¢ — I xR
and F': Zf — I x R are in general position

— F : ¥ — I x R has no triple points

From this list of properties we can say much about what the graphic
of f looks like locally. A simple example of such a graphic is shown in
figure A.1. Mostly it consists of lines corresponding to non-degenerate
critical points of a some index. There are also point (marked C') where
we have transverse intersections. These are called crossing points. At
last there are the points (marked B and D) coming from the stratum
Y1. They are called birth(B) and death(D) points.

Now choose 1y < ry < ry = 0 < r3. We may assume that if p is
a critical point of f; of index j then r;,_; < fi(p) < r; for ¢ = 0,1.
According to proposition 8.1 in chapter I of [HW73], or at least the
proof, we may deform f such that

— the properties above still holds
— if p is a non-degenerate critical point for f; of index j then r;_; <
filp) <r;
— if p is a birth or death point of index j/(j — 1) for f; then f;(p) =
r
Now each f; is an ordered function and if ¢ is not the parameter for
any birth or death points then f; is a Morse function and f;! (—oco,0]U
1710, 00) is a Heegaard splitting of M.
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We want to compare the Heegaard splittings corresponding to the
parameter values ¢y and ¢; whenever f; has no 2/1 birth or death points
for ¢t € [to,t1]. By the list of properties we now assume [ satisfies this
is the same as saying that 0 is a regular value for all f; when ¢ lies in

the interval.

LEMMA A3. If fi has no 2/1 birth or death points for t in the
interval [to,t1] then the Heegaard splittings fi' (—o0,0] U f-" [0, 00)

and f' (—00,0]U f;" [0,00) are ambient isolopic.

PROOF. Restrict f to [tg, 1] x M and look at f~'(0). Let p be the
restriction of the projection [to,¢1] x M — [to, ¢1] to f71(0). f~*(0) is a
submanifold and p has no critical points since 0 is a regular value for f;
when ¢ € [to,t;]. Theorem 3.4 in [Mil65] tells us that f~'(0) is diffeo-
morphic to [to, 1] x fi-'(0) and that the following diagram commutes:

[to, t1] % f(0) — f=1(0)

T b

[to, 1]

We thus have an isotopy taking f,-"(0) to f;,'(0). This can be extended
to an ambient isotopy. See theorem 8.1.3 in [Hir76]. O

If the parameter passes a birth or death point this corresponds to

stabilization of the Heegaard splitting.

LEMMA A.A4. Ifty is the parameter value for a 2/1 birth point then
Jor some & > 0 the Heegaard splitting [}, (—o0,0]U f-}.[0,00) is a
stabilization of fi-L. (—o0,0]U fi-L_[0,00).

PRrROOF. Let (to,p) € X1 be the 2/1 birth point. Outside a suit-
able small neighborhood of (o, p) the space f~1(0) is the trace of a
isotopy from f;-1,(0) to f-}.(0), but interesting changes occur inside

this neighborhood. We choose coordinates near (¢, p) such that
foi(@r, @a,13) = —2f + 25 — (t — lo)s + 23

We sketch the level surface fou (w1, 22, 23) = 0 for t < tgand ¢ > t; and
see that a handle is attached. See figures A.2 and A.3 O

To complete the proof of the theorem it only remains to show that
we may deform the homotopy f such that all 2/1-birth points have

lower parameter values than all 2/1-death points.
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FIGURE A.2. The level surface for t < t,.
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FiGURE A.3. The level surface for ¢ > ;.

LEMMA A.5. The homotopy f can be deformed such that if (14, ps)
is @ 2/1-birth point and (tq,pq) is a 2/1-death point then t, < t,.

PROOF. Assume that there exists a 2/1-birth point (¢, py) and a
2/1-death point (tg4, ps) with t; < t,. We may assume that there are
no other 2/1-birth or -death points between the two chosen. If there
are we just pick another pair. Now by Chapter V.§2 in [HWT3] it is
possible because M is connected to eliminate these two points without
introducing other birth or death points. See figure A.4. This process

may be repeated until f satisfies the conclusion. O
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FiGURE A.4. Elimination of a birth point and a death point.
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