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Preface

Gauge theory and related areas of geometry have been an important tool for
the study of 4-dimensional manifolds since the early 1980s, when Donaldson
introduced ideas from Yang–Mills theory to solve long-standing problems in
topology. In dimension 3, the same techniques formed the basis of Floer’s con-
struction of his “instanton homology” groups of 3-manifolds [32]. Today, Floer
homology is an active area, and there are several varieties of Floer homology
theory, all with closely related structures. While Floer’s construction used the
anti-self-dual Yang–Mills (or instanton) equations, the theory presented in this
book is based instead on the Seiberg–Witten equations (or monopole equations).

We have aimed to lay a secure foundation for the study of the Seiberg–Witten
equations on a general 3-manifold, and for the construction of the associated
Floer groups. Our goal has been to write a book that is complete in its coverage
of several aspects of the theory that are hard to find in the existing literature,
providing at the same time an introduction to the techniques from analysis and
geometry that are used. We have omitted some background topics that are now
well treated in several good sources: in particular, the Seiberg–Witten invariants
of closed 4-manifolds and related topics in gauge theory are given only a brief
exposition here. The main results of this book – the formal properties of the
Floer groups that we construct – can be summarized without delving too far into
the techniques which lie beneath; so we present such a summary in Chapter I.
The final chapter of the book touches on some further topics and describes how
the theory has been applied to questions in topology.

The definition of the Floer groups that we present here is new in some aspects.
We believe that our approach to the Morse homology of a manifold with circle
action has not appeared before. It is described in Section 2, along with a closely
related approach to Morse theory on a manifold with boundary. Our definition
of the groups that we call

̂

HM(Y ) and ĤM(Y ) has roots in lectures given by
Donaldson in Oxford in 1993. For the case that the first Betti number of Y is

xi



xii Preface

zero, a similar construction is described in [22] for the case of the instanton Floer
theory, and there is related material due to Frøyshov in [40]. Another approach
to the Seiberg–Witten version of Floer homology is presented by Marcolli and
Wang in [71].

During the course of this work, a completely different approach to Floer
homology was introduced by Ozsváth and Szabó in [93]. The construction
of their “Heegaard homology” of 3-manifolds is not based on gauge theory,
but appears to be entirely equivalent to the Seiberg–Witten version. Ozsváth
and Szabó’s theory has influenced the development of this book, most particu-
larly because of the way in which it has clarified the formal structure of Floer
homology. We have sometimes tailored our account to emphasize the similar-
ities between the two versions. Heegaard homology has spurred tremendous
activity in the topological applications of Floer theory. Chapter X provides a
small sample of results from this rapidly moving field.

Acknowledgements. Gauge theory is now a mature subject, and the analysis on
which it rests has deep roots. Much of the material that we present is therefore not
original. When a particular argument is taken directly from a unique source, we
have tried to cite the source at the relevant point in the text. More often, however,
pointers to the earlier literature are to be found in the remarks collected at the end
of each chapter. Among the many mathematicians who have contributed to this
field, we would like to acknowledge particularly our debt to Simon Donaldson,
Kim Frøyshov, Peter Ozsváth, Zoltán Szabó and Cliff Taubes.

This work was supported in part by the Institute for Advanced Study and the
National Science Foundation through grants DMS-9531964, DMS-9803166,
DMS-0100771, DMS-011129, DMS-0244663, DMS-0206485 and DMS-
0405271. The authors would also like to thank Ron Fintushel, Larry Guth,
Yi-Jen Lee, Yanki Lekili, Max Lipyanski, Tim Perutz, Yann Rollin, Jake
Rasmussen, Peter Ozsváth, Zoltán Szabó and Fangyun Yang for many com-
ments and corrections.



I

Outlines

The three parts of this chapter provide outline accounts of three different topics.
While all three are central to the subject of this book, the outlines serve three
different purposes. In Section 1, we give a brief account of the Seiberg–
Witten invariants, or monopole invariants, of smooth, closed 4-manifolds.
These invariants, discovered by Seiberg and Witten and originally described
in Witten’s paper [125], are now the subject of several expository papers, pub-
lished lecture notes and books. Our purpose here is to review the definition
and main properties of these invariants, while establishing our notation and
conventions.

Section 2 covers Morse theory, and specifically the manner in which one can
recover the ordinary homology of a manifold with boundary from a “Morse
complex”, constructed from the data provided by the critical points and gradient-
flow lines of a suitable Morse function. There are no proofs in this section. In the
main part of this book, the Floer homology of a 3-manifold will be constructed
by taking these constructions of Morse theory and repeating them in an infinite-
dimensional setting. Proofs of the main propositions are presented only in the
more difficult context of Floer homology; the finite-dimensional constructions
are presented here for motivation, to provide a framework that explains the
origin of many arguments. Although some notation is introduced, no essential
use is made of this material in the later chapters.

Finally in this chapter, Section 3 provides an outline of the main results of this
book. We describe the principal features and properties of the monopole Floer
homology groups of 3-manifolds; we explain how their construction is related
to the Morse theory of Section 2, and we explain the role of Floer homology in
computing the monopole invariants of closed 4-manifolds.

1



2 I Outlines

1 Monopole invariants of four-manifolds

1.1 Spinc structures

Spinc structures can be considered on manifolds of any dimension, but we will
focus here on dimensions 3 and 4, the two cases we will need. We begin with
3-manifolds.

Let Y be a closed, oriented, Riemannian 3-manifold. A spinc structure on Y
consists of a unitary rank-2 vector bundle S → Y with a Clifford multiplication

ρ : TY → Hom(S, S).

Clifford multiplication is a bundle map that identifies TY isometrically with
the subbundle su(S) of traceless, skew-adjoint endomorphisms equipped with
the inner product 1

2 tr(a∗b). It also respects orientation, which by convention
means that

ρ(e1)ρ(e2)ρ(e3) = 1

when the ei are an oriented frame. Given any oriented frame at a point y in Y ,
these conditions mean that we can choose a basis for the fiber Sy such that the
matrices of the linear transformations ρ(ei) are the three Pauli matrices σi:

σ1 =
[

i 0
0 −i

]
, σ2 =

[
0 −1
1 0

]
, σ3 =

[
0 i
i 0

]
. (1.1)

The action of ρ is extended to cotangent vectors using the metric, and then to
forms using the rule

ρ(α ∧ β) = 1

2

(
ρ(α)ρ(β)+ (−1)deg(α) deg(β)ρ(β)ρ(α)

)
.

We also extend ρ to complex forms, so that it gives, for example, an
isomorphism

ρ : T ∗Y ⊗ C → sl(S).

Our orientation convention means that ρ(∗α) = −ρ(α) for 1-forms α.
Because the tangent bundle of an oriented 3-manifold is always trivial, a spinc

structure always exists: we can simply take S to be the product bundle C2 × Y
and then define Clifford multiplication globally by the matrices (1.1), using
any trivialization of TY . To understand the classification of spinc structures in
general, the important observation is that if we are given one spinc structure,
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say (S0, ρ0) on Y , then we can construct a new spinc structure (S, ρ) as follows.
Choose any hermitian line bundle L → Y , and define

S = S0 ⊗ L

ρ(e) = ρ0(e)⊗ 1L.
(1.2)

The following proposition tells us that any (S, ρ) can be obtained from (S0, ρ0)

in this way, for a uniquely determined L, up to isomorphism.

Proposition 1.1.1. Given a single spinc structure (S0, ρ0), the construction
(1.2) establishes a one-to-one correspondence between:

(i) the isomorphism classes of spinc structures (S, ρ) on Y ; and
(ii) the isomorphism classes of complex line bundles L → Y .

Because line bundles L are classified by their first Chern class c1(L) ∈
H 2(Y ; Z), we can equivalently replace (ii) here by:

(iii) the elements of H 2(Y ; Z).

Proof. Let us show that any (S, ρ) can be obtained from (S0, ρ0) by tensoring
with a suitable line bundle.

Given spinc structures (S ′, ρ′) and (S, ρ) on Y , we can define a vector bundle
L on Y as the subbundle of Hom(S ′, S) consisting of homomorphisms that
intertwine ρ′ and ρ. This L has rank 1 (it is a line bundle): this is a manifestation
of Schur’s lemma and reflects the fact that only the scalar endomorphisms of
S commute with the image of ρ : TX → End(S). We call L the difference
line bundle. If the difference line bundle is trivial, then a global section of unit
length provides an isomorphism between the spinc structures.

To apply this construction, let (S, ρ) be a spinc structure and consider the
difference line bundle L between (S0, ρ0) and (S, ρ). Set S ′ = S0⊗L, and let ρ′
be the Clifford multiplication ρ ⊗ 1L. Then the difference line bundle between
S ′ and S is the trivial bundle L−1 ⊗ L. So (S ′, ρ′) and (S, ρ) are isomorphic
spinc structures. �

We will usually use s to denote a typical spinc structure (S, ρ). If s0 is a
chosen spinc structure and L has first Chern class l ∈ H 2(Y ; Z), then we write

s = s0 + l

for the spinc structure defined by (1.2). The way we have defined it, a spinc

structure depends on a prior choice of Riemannian metric. However, if g0 and
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g1 are two metrics on Y , and s0, s1 are corresponding spinc structures, we can
still compare the two: we can ask if there is a path gt in the (contractible) space
of metrics, joining g0 to g1, and a corresponding family (St , ρt), forming a
continuous family over [0, 1]. We can therefore think of the set of isomorphism
classes of spinc structures as being associated to a smooth oriented manifold Y .

On an oriented 4-dimensional Riemannian manifold X , a spinc structure
again provides a hermitian vector bundle SX → X , this time of rank 4, with a
Clifford multiplication

ρ : TX → Hom(SX , SX ),

such that at each x ∈ X we can find an oriented orthonormal frame e0, . . . , e3

with

ρ(e0) =
[

0 −I2

I2 0

]
, ρ(ei) =

[
0 −σ ∗i
σi 0

]
(i = 1, 2, 3) (1.3)

in some orthonormal basis of the fiber Sx. Here I2 is the 2-by-2 identity matrix
and σi is as above. If we extend Clifford multiplication to (complex) forms as
before, then in the same basis for Sx we have

ρ(volx) =
[−I2 0

0 I2

]
where vol = e0 ∧ e1 ∧ e2 ∧ e3 is the oriented volume form. So the eigenspaces
of ρ(vol) give a decomposition of SX into two orthogonal rank-2 bundles. We
define S+ to be the −1 eigenspace, and write

SX = S+ ⊕ S−.

Clifford multiplication by a tangent vector is an odd linear transformation:
it interchanges the two summands, and we can write

ρ(e) : S+ → S−.

If ν is a 2-form, then ρ(ν) preserves the two summands. In dimension 4, the
bundle of 2-forms �2X decomposes as a sum of the self-dual and anti-self-dual
forms,

�2X = �+ ⊕�−,
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the +1 and −1 eigenbundles of the Hodge ∗ operator. A short calculation with
the matrices above shows that, if ν ∈ �+, then ρ(ν) restricts to zero on S−,
and vice versa. We have maps

ρ : �+ → su(S+)

ρ : �− → su(S−)
(1.4)

which are bundle isometries. For e ∈ TxX a unit vector, the determinant of
ρ(e) : S+x → S−x is a map

det ρ(e) : �2S+x → �2S−x

that is independent of e. So the complex line bundles �2S+ and �2S− are
canonically identified.

Proposition 1.1.1 continues to hold in dimension 4, but the existence of at
least one spinc structure is a slightly more subtle question than in dimension
3. The isomorphisms (1.4) mean that w2(�

+) is equal to the mod 2 reduction
of c1(S+); so the existence of a spinc structure implies the existence of an
integral lift of w2(�

+), or equivalently of w2(X ) since these two are equal.
This condition is also sufficient: the existence of a spinc structure is equivalent
to the existence of an integral lift of w2(X ). On an orientable 4-manifold, w2(X )

always has an integral lift, see [52], so spinc structures always exist.
In any dimension, an automorphism of a spinc structure (S, ρ)means a unitary

bundle automorphism of S which commutes with Clifford multiplication. The
group of automorphisms can be identified with the group of G of S1-valued
functions u : X → S1, acting by scalar multiplication. We call G the gauge
group and we call its elements gauge transformations. The gauge group acts
on sections � of S by

� �→ u�.

1.2 Dirac operators

Let s = (SX , ρ) be a spinc structure on an oriented Riemannian 4-manifold
X . A unitary connection A on SX is a spinc connection if ρ is parallel. This
implies, in particular, that parallel transport preserves the decomposition of
SX as S+ ⊕ S−. Given such a connection A, one defines the Dirac operator
DA : �(SX )→ �(SX ) as the composite

�(SX )
∇A−→ �(T ∗X ⊗ SX ) −→ �(SX ),



6 I Outlines

in which the second map is constructed from the Clifford multiplication. The
difference between two spinc connections A and Ã, regarded as a 1-form with
values in the endomorphisms of SX , has the form

Ã− A = a ⊗ 1SX (1.5)

for some a ∈ 	1(X ; iR). Conversely, if A is a spinc connection and a ∈
	1(X ; iR), then Ã = A+a⊗1SX is a spinc connection. In this way, the spinc con-
nections on SX form an affine space, with underlying vector space 	1(X ; iR).
If Ã and A are related as above, then the corresponding Dirac operators are
related by

DÃ − DA = ρ(a).

Because Clifford multiplication by 1-forms interchanges S+ and S−, we can
write

DA = D+A + D−A ,

where

D+A : �(S+)→ �(S−)

D−A : �(S−)→ �(S+).

If we are given a spinc connection A, then the associated line bundles �2S+,
�2S− inherit connections too. The canonical isomorphism between these line
bundles respects the connections. We give this connection a name:

Notation 1.2.1. If A is a spinc connection on the spin bundle SX = S+⊕S− on
X , we write At for the associated connection in the line bundle �2S+ = �2S−.
So if Ã and A are related by (1.5), then

Ãt = At + 2a.

♦

In dimension 3, we define a spinc connection B for the spinc bundle S → Y
in the same way. The spinc connections are again an affine space, now over
	1(Y ; iR), for we can write

B̃ = B+ b⊗ 1S , (1.6)
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just as in (1.5). For each spinc connection B, we have a Dirac operator

DB : �(S)→ �(S).

We write Bt for the associated connection on the line bundle �2S. There is no
decomposition of this operator as there is in dimension 4.

In any dimension, the full Dirac operator is self-adjoint. In dimension 4, this
means that D−A is the adjoint of D+A . The Dirac operator is elliptic, so if the
underlying manifold is compact, then the operator is Fredholm: it has finite-
dimensional kernel and cokernel. In dimension 3, because it is self-adjoint, the
Dirac operator has index zero. On a compact 4-manifold, the complex index of
the operator D+A (the difference in the complex dimensions of the kernel and
cokernel) is given by the Atiyah–Singer index theorem,

index D+A =
1

8

(
c1(S

+)2[X ] − σ(X )
)
, (1.7)

where σ(X ) is the signature of X . (We write α[X ], typically, for the evaluation
of a cohomology class α on the fundamental class.)

The gauge groupG acts on the space of spinc connections A on S, by pull-back.
If u : X → S1 ⊂ C is a gauge transformation, we write the action as

A �→ u(A)

= A− u−1du. (1.8)

1.3 The Seiberg–Witten equations

On an oriented Riemannian 4-manifold X with spinc structure sX , the Seiberg–
Witten equations, or monopole equations, are equations for a pair (A,�)

consisting of a spinc connection A and a section � of the associated spin bundle
S+. The equations are the following:

1

2
ρ(F+At )− (��∗)0 = 0

D+A � = 0.
(1.9)

Here F+At is the self-dual part of the curvature 2-form FAt of the connection At ,

FAt = F+At + F−At

∈ 	+(X ; iR)⊕	−(X ; iR),
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and (��∗)0 denotes the trace-free part of the hermitian endomorphism ��∗
of the bundle S+,

(��∗)0 = ��∗ − 1

2
tr(��∗)1S+

= ��∗ − 1

2
|�|21S+ .

Note that FAt is an imaginary-valued 2-form, so ρ(FAt ) is hermitian: the map
ρ in (1.4) carries real self-dual forms to skew-adjoint endomorphisms of S+.

If ω is a smooth imaginary-valued 2-form and ω+ its self-dual part, we can
also consider the monopole equations perturbed by ω. These are the equations

1

2
ρ(F+At − 4ω+)− (��∗)0 = 0

D+A � = 0.
(1.10)

The left-hand sides of the two equations in (1.9) define a map

F : A× �(S+)→ �(i su(S+)⊕ S−), (1.11)

where A denotes the affine space of all spinc connections A, and i su(S+) is the
bundle of hermitian endomorphisms of S+. We can then write the monopole
equations as F(A,�) = 0. We write the perturbed equations similarly, as

Fω(A,�) = 0. (1.12)

The set of solutions (A,�) of the perturbed equations is invariant under
the action of the gauge group G. We will write [A,�] to denote the gauge-
equivalence class of a pair (A,�): the orbit of (A,�) under the action of G.

Definition 1.3.1. If X is an oriented Riemannian 4-manifold with spinc struc-
ture sX = (SX , ρ), and ω is an imaginary-valued 2-form, we write N (X , sX )

for the quotient space of the set of solutions of the equations (1.12) by the
action of G:

N (X , sX ) = { [A,�] | Fω(A,�) = 0 }.
This is the monopole moduli space for (X , sX ) with perturbing 2-form ω. It is
a subset of the configuration space

B(X , sX ) = (
A× �(S+)

) /
G.

♦
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The configuration space B(X , sX ) is Hausdorff, so the moduli space is
Hausdorff also. The following result reflects the very special nature of the
monopole equations. (It would not be true, for example, if the sign of the
second term in (1.9) were changed.)

Theorem 1.3.2. If the 4-manifold X is compact (without boundary), then the
moduli space N (X , sX ) ⊂ B(X , sX ) is compact. �

1.4 Regularity

From this point on, we will always assume that our 4-manifold X is connected.
Let (A,�) be a solution of the equations Fω(A,�) = 0 on X , as above. We can
take the derivative of the map

Fω : A× �(S+)→ i su(S+)⊕ �(S−),

at the point (A,�) in the affine space A× �(S+), to obtain a linear map

D(A,�)Fω : 	1(X ; iR)× �(S+)→ �(i su(S+)⊕ S−),

given by

(a,φ) �→
(

1

2
ρ(d+a)− (φ�∗ +�φ∗)0, D+A φ + ρ(a)�

)
. (1.13)

Definition 1.4.1. A solution (A,�) to the perturbed monopole equations Fω =
0 is regular if the linearization (1.13) is a surjective linear operator. We say that
the moduli space N (X , sX ) is regular if all solutions are regular. ♦

Proposition 1.4.2. Suppose that the oriented Riemannian 4-manifold X is com-
pact (without boundary), and let sX be a given spinc structure. Then there is an
open and dense subset of the space of imaginary-valued 2-forms ω for which
the corresponding moduli space N (X , sX ) is regular. �

The action of the gauge group G on A×�(S+) is free on the set of pairs (A,�)

with � non-zero. We call such a pair irreducible. For a reducible configuration
(A, 0), the equations (1.9) reduce to the equations

F+At = 4ω+.
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Suppose κ is a 2-form on X that is both closed and self-dual. Then if A satisfies
the equation above, we have∫

X
ω ∧ κ =

∫
X
ω+ ∧ κ

=
∫

X
FAt ∧ κ

= (2π/i)
(
c1(S

+)� [κ]) [X ]. (1.14)

If κ is non-zero, this is a non-trivial linear constraint on ω, which must be
satisfied if a reducible solution is to exist. The closed self-dual (real) 2-forms
κ form a subspace H+ of the space H2 of harmonic 2-forms, and determine a
metric-dependent subspace

H+ ⊂ H 2(X ; R).

This is a maximal positive-definite subspace for the quadratic form

Q : H 2(X ; R)→ R

Q(α) = α2[X ].

We write b+ for the dimension of H+. Defining b− similarly, we have b++b− =
b2 and b+ − b− = σ(X ). From the calculation (1.14), we deduce:

Lemma 1.4.3. If X is a compact manifold with b+ ≥ 1, then for all ω in
the complement of a proper linear subspace, the corresponding moduli space
N (X , sX ) contains no reducible solutions. �

When the moduli space is regular and contains no reducibles, it is a smooth
manifold whose dimension can be computed as the index of a certain operator
(essentially the sum of the two operators in (27.3); see Lemma 27.1.1):

Theorem 1.4.4. Let X be a closed, connected, oriented Riemannian manifold
with a spinc structure sX . Supposeω is chosen so that the moduli space N (X , sX )

is regular and contains no reducible solutions, as we can always do when
b+(X ) ≥ 1. Then the moduli space N (X , sX ) is a smooth, compact manifold,
whose dimension d is given by the formula

d = (
b1(X )− b+(X )− 1

)+ 2 index D+A

= 1

4

(
c1(S

+)2[X ] − 2χ(X )− 3σ(X )
)
. (1.15)

�
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Remark. In the formula for d , the quantity χ(X ) is the Euler number of X ,
which can be expressed as 2−2b1+b2. The equality between the two formulae
follows from the index theorem (1.7) for the Dirac operator. From the first line,
we see that the parity of d is independent of the choice of sX : the dimension d
is even if and only if b1 − b+ is odd, and vice versa.

1.5 Monopole invariants

Suppose ω satisfies the conditions of Theorem 1.4.4, so that N (X , sX ) is a
smooth manifold contained in the irreducible part of the configurations space

B∗(X , sX ) = { [A,�] | � = 0 }
⊂ B(X , sX ). (1.16)

The monopole invariants are defined using the fundamental class [N (X , sX )]
of the moduli space in the ambient space B∗(X , sX ). The moduli space is
always orientable, but does not have a preferred orientation. An orientation for
N (X , sX ) can be fixed if we are given some extra data: a homology orientation
for the 4-manifold X .

Definition 1.5.1. A homology orientation µX for a closed oriented 4-manifold
X is an orientation of the line

�maxH 1(X ; R)⊗�maxH+(X ),

where H+(X ) ⊂ H 2(X ; R) is any chosen maximal positive-definite subspace
for the quadratic form Q. (The set of all maximal positive-definite subspaces
H+ is a contractible subset of the Grassmannian, so orienting �maxH+ for any
one of these defines orientations for all others.) ♦

When X has been given a homology orientation, we therefore have a well-
defined class

[N (X , sX )] ∈ Hd (B∗(X , s)),

where d is given by the formula (1.15) for the dimension of the moduli space.
To obtain numerical quantities from this homology class, we pair it with fixed
cohomology classes.

By construction, B∗(X , sX ) is the quotient of A×(�(S+)\0) by a free action
of the group G. The quotient map

A× (
�(S+) \ 0

)→ B∗(X , sX )
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is a principal G-bundle. If we choose a basepoint x0 ∈ X , then we obtain a
homomorphism G → S1 by evaluation at x0, and there is an associated principal
S1 bundle

P → B∗(X , sX ),

whose isomorphism class is independent of the choice of x0 (because X is
connected). There is therefore a well-defined 2-dimensional cohomology class

u2 ∈ H 2(B∗(X , sX ); Z)

given by u2 = c1(P).

Theorem 1.5.2. Let X be a closed, connected, Riemannian manifold with a
spinc structure sX , and let ω be an imaginary-valued 2-form, chosen so that
the moduli space N = N (X , sX ) is regular and contains no reducibles. Choose
a homology orientation µX , such that the moduli space is a smooth, compact
oriented manifold, of dimension d, and suppose that d is even. Then, if b+(X ) ≥
2, the quantity 〈

ud/2
2 , [N ]〉 ∈ Z (1.17)

is independent of the choice of Riemannian metric and the choice of ω. �

A short digression will explain the condition b+(X ) ≥ 2 in this theorem.
When b+(X ) = 1, we can still choose a metric and ω so that the moduli spaces
are regular and contain no reducibles, but the pairing (1.17) is not independent
of the choices made. To understand this, fix a metric on X and let κ1 be a
generator for the 1-dimensional space H+. The moduli space N (X , sX ) with
perturbing 2-form ω contains reducible solutions when∫

X
ω ∧ κ1 = (2π/i)

(
c1(S

+)� [κ1]
) [X ], (1.18)

as in (1.14). This condition defines a codimension-1 affine subspace of the
space of imaginary-valued 2-forms ω, and divides 	2(X ; iR) into two con-
nected components. We can choose an ω in either one of these two connected
components, so that N (X , sX ) is regular; but the value of the pairing (1.17) will
depend on which component we choose. We will return to this case, which is
special to manifolds with b+ = 1, in Subsection 27.5.

Remarks. In the case that d = 0, each component of N (X , sX ) is a point.
The orientation of each component, determined by the choice of µX , may



1 Monopole invariants of four-manifolds 13

or may not agree with the canonical orientation of the 1-point space, and by
comparing orientations we may assign each component a sign. The pairing
〈1, [N ]〉 “counts” the points of N , with signs.

Because it is independent of the choice of metric and perturbation, the quan-
tity (1.17) is an invariant of the smooth manifold X , the choice of spinc structure
and the homology orientation. The last only affects the overall sign of the
invariant. We make a definition, first for the case d = 0.

Definition 1.5.3. Let X be a closed, connected, oriented 4-manifold with a
homology orientation µX and b+(X ) ≥ 2. Let sX be a spinc structure on
X , and choose a metric and perturbing 2-form ω so that the moduli space
N (X , sX ) is regular and contains no reducible solutions. We define an invariant
m(X , sX ) ∈ Z by the formula

m(X , sX ) = 〈
1, [N (X , sX ]

〉
if the dimension d of the moduli space N (X , sX ) is zero. We define m(X , sX )

to be zero otherwise. ♦

For the case of moduli spaces of higher dimension, we extend our notation:

Definition 1.5.4. Let X be a manifold with b+(X ) ≥ 2 as in the previous
definition, and let N (X , sX ) be as before. For each integer e ≥ 0, we define an
invariant m(ue

2 |X , sX ) ∈ Z by the formula

m(ue
2 |X , sX ) = 〈

ue
2, [N (X , sX )]〉.

We understand the pairing to be zero if the dimension of the moduli space is
not equal to 2e. ♦

We refer to the invariants m(X , sX ) and m(ue
2 |X , sX ) as the monopole invari-

ants of X . As functions on the set of spinc structures, these functions have
common support a finite set:

Proposition 1.5.5. Let ω be a perturbing 2-form, chosen so that all the moduli
spaces N (X , sX ) on the compact Riemannian manifold X are regular. (Such
a form exists, by the Baire category theorem, because the space of 2-forms
has the topology of a complete metric space.) Then the moduli space N (X , sX )

is empty for all but finitely many isomorphism classes of spinc structures sX .
Consequently, m(ue

2 |X , sX ) is non-zero for only finitely many pairs (sX , e). �
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On a manifold X with b+(X ) > 1, the term basic class is generally used to
refer to a class c ∈ H 2(X ; Z) arising as c1(sX ) for some spinc structure sX with
m(X , sX ) non-zero.

1.6 Simple type

Having introduced the monopole invariants m(ue
2 |X , sX ), we should point out

that there are no known examples in which these invariants are non-zero for
e > 0.Another way to say this is that b+(X ) ≥ 2 and when the the moduli space
N (X , sX ) is regular and has strictly positive dimension 2e, then the pairing of
the fundamental class [N (X , sX )] with the class ue

2 = c1(P)e is zero in all
known cases: it is only the zero-dimensional moduli spaces N (X , sX ) which
contribute. Accordingly, we make the following definition:

Definition 1.6.1. A closed oriented 4-manifold X with b+(X ) ≥ 2 is said to
have simple type if the monopole invariants m(ue

2 |X , sX ) are zero for all e > 0
and all spinc structures sX on X . ♦

As long as b+(X ) ≥ 2, the simple type condition is known to hold for
many classes of 4-manifolds, including all symplectic 4-manifolds and all 4-
manifolds containing a “tight” surface in the sense of [61] (an embedded surface
� of positive genus g representing a non-trivial homology class and satisfying
2g − 2 = � · �). It is very unclear to what extent the familiar examples of
4-manifolds are representative of the general case, so there is little reason to
extrapolate with any confidence. Nevertheless, we state what is usually called
the “simple type conjecture”:

Conjecture 1.6.2. All closed oriented 4-manifolds with b+ ≥ 2 have
simple type.

2 Morse theory

In this section, we first review how the ordinary homology of a compact mani-
fold B can be recovered as the homology of the “Morse complex”, associated
with a suitable smooth function f on B and a Riemannian metric. We then
present a non-standard variant of the Morse complex that can be used to com-
pute both the relative and absolute homologies of a manifold with boundary,
(B, ∂B). The latter construction can be adapted to study a manifold with circle
action, as we explain in Subsection 2.5.
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2.1 The Morse complex

Let B be a smooth, closed Riemannian manifold, and f : B → R a smooth
function. Let V = grad f be the gradient vector field, and φt : B → B be the
flow generated by −V , the downward gradient flow:

d

dt
φt(x) = −V (φt(x)) (t ∈ R).

We shall suppose that f is a Morse function. This means that at each critical
point a of f , the self-adjoint endomorphism ∇V of TaB has no kernel. We can
then decompose the tangent space TaB at each critical point as a direct sum,

TaB = K+a ⊕ K−a ,

of the eigenspaces belonging to positive and negative eigenvalues of ∇V at a.
The index of a is the dimension of K−a :

index (a) = dim K−a .

The stable and unstable manifolds of a critical point a are the smooth
submanifolds Sa and Ua defined by

Sa =
{

x
∣∣ lim

t→∞φt(x) = a
}

Ua =
{

x
∣∣ lim

t→−∞φt(x) = a

}
.

These submanifolds are tangent at a to the linear spaces K+a and K−a respectively.
If a and b are two critical points, we define M(a, b) to be the set of points

x ∈ B that flow to b under the downward gradient flow and to a under the
upward flow:

M(a, b) = Ua ∩ Sb.

We can alternatively regard M(a, b) as parametrizing a family of trajectories of
the flow, the trajectories

γ (t) = φt(x) (x ∈ M(a, b)).

We will sometimes switch between these two viewpoints on M(a, b) – regarding
it as a subset of B or as a family of trajectories. The latter viewpoint is often
more useful.
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The gradient flow of f satisfies the Morse–Smale condition if the intersection
Ua ∩ Sb is transverse for all critical points a and b. In this case, M(a, b) is a
smooth submanifold of B. If it is non-empty, the space M(a, b) has dimension
given by the difference of the indices:

dim M(a, b) = index(a)− index(b).

If a and b are distinct, the flow φt is a free R-action on M(a, b). The quotient is
Hausdorff: it is a manifold of 1 smaller dimension that we denote by M̆(a, b):

M̆(a, b) = M(a, b)/R.

We refer to elements of M̆(a, b) as unparametrized trajectories.
Let c be the critical set of f , and ck ⊂ c the set of critical points of index k.

Under our hypothesis that f is a Morse function, the set c is finite. Let R be an
abelian group. Until we deal with questions of orientation later in this section,
we suppose R has characteristic 2: that is, r + r = 0 for all r ∈ R. Define C∗
as the tensor product of R with a free abelian group on a set of generators ea,
indexed by the elements a of c:

C∗ =
(⊕

a∈c

Zea

)
⊗ R.

This is a graded abelian group: we can write C∗ =⊕
Ck , where

Ck =
(⊕

a∈ck

Zea

)
⊗ R.

If a and b are critical points of index k and k−1 respectively, the space M̆(a, b)
has dimension zero. The Morse–Smale hypothesis implies that it is compact,
and therefore a finite set. Define n(a, b) to be its cardinality:

n(a, b) = ∣∣M̆(a, b)
∣∣.

The integer n(a, b) is the number of unparametrized trajectories of the flow,
running from a to b. Define an operator ∂ : Ck → Ck−1 for all k, by

∂ea =
∑

b∈ck−1

n(a, b)eb. (2.1)
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(It is understood here, and in similar formulae below, that we are writing a
formula for an operator on a free abelian group with generators ea; and the
actual operator ∂ is obtained by taking the tensor product with 1R.)

The main result is now the following:

Theorem 2.1.1. The operator ∂ : C∗ → C∗ satisfies ∂∂ = 0, so (C∗, ∂) is a
complex. The homology of this complex is isomorphic to the ordinary homology
of the manifold B:

Hk(C∗, ∂) = Hk(B; R).

�

The complex (C∗, ∂) is the Morse complex of the function f on the
Riemannian manifold B.

We will not present a proof of this theorem. However, the proof of the first
part (the proof that ∂∂ = 0) will appear again in the context of Floer homology,
in Section 22. So we outline the argument here. The proof is based on two
points. The first is a simple reinterpretation of the matrix entries of the operator
∂∂ . For a a critical point of index k, let us write

∂∂ea =
∑

c∈ck−2

p(a, c)ec,

so that

p(a, c) =
∑

b∈ck−1

n(a, b)n(b, c).

This is the matrix entry of ∂∂ corresponding to the pair of basis elements ea, ec.
We can reinterpret p(a, c) as the number of unparametrized broken trajectories
running from a to c. Here, in general, a broken trajectory running from a critical
point a to a′ means a sequence of non-constant trajectories with matching limit
points: that is, it consists of an l-tuple

(x̆1, . . . , x̆l) ∈ M̆(a0, a1)× · · · × M̆(al−1, al),

where the ai are distinct critical points with a0 = a and al = a′, and x̆i ∈
M̆(ai−1, ai) is the orbit of xi ∈ M(ai−1, ai) under the flow. The closure of the
union of the l orbits in such a broken trajectory consists of the orbits themselves
together with the l + 1 limiting critical points:

X = ClB

(⋃
i

x̆i

)
. (2.2)
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This space X ⊂ B is topologically an embedded arc joining a to a′. In the case
that a and c differ in index by 2, any strictly broken trajectory between them
must have exactly two components, each with index drop 1.

To complete the proof that ∂∂ = 0 then, one must show that the number of
strictly broken trajectories from a to c is even, when the index difference is 2.
(Recall that we have assumed R to have characteristic 2.) This brings us to the
second point. Our hypotheses imply that the space M̆ (a, c) is 1-dimensional,
but it will not in general be compact. To form a compact space, one must take
also the broken trajectories. The topology on the space of broken trajectories
can be described, for now, as coming from a metric defined using the Hausdorff
distance between the corresponding arcs X ⊂ B. We write M̆+(a, c) for this
space of (unparametrized) trajectories. The main part of the proof is now to
show that M̆+(a, c) is compact and is a 1-manifold with boundary: its boundary
consists of the strictly broken trajectories, while its interior is M̆ (a, c). The fact
that ∂∂ = 0 then follows from the fact that a compact 1-manifold with boundary
has an even number of endpoints.

2.2 Orientations and integer coefficients

If we wish to use Z as the coefficients in the Morse complex, or any group
R not of characteristic 2, then we must deal with orientations of the trajectory
spaces M(a, b). Recall that if a is a critical point of the Morse function f ,
then the unstable manifold Ua is tangent at a to the linear space K−a ⊂ TaB.
The unstable manifold is contractible, so an orientation of the vector space K−a
provides an orientation of Ua. The same vector space K−a is the fiber of the
normal bundle to the stable manifold at a. So an orientation of K−a orients the
normal bundle of the (contractible) stable manifold Sa ⊂ B: thus the stable
manifold is cooriented.

Suppose now that we choose an orientation µa for K−a at every critical point
a of f . Then all unstable manifolds are oriented and all stable manifolds are
cooriented. If the flow is Morse–Smale, we can then orient the space M(a, b)
as the intersection of Ua and Sb. To spell out a recipe, observe that at each point
x ∈ M(a, b) we have a short exact sequence:

0 → TxM(a, b)
i→ TxUa

π→ NxSb → 0. (2.3)

We orient TxM(a, b) as the fiber of the second map, using the following “fiber-
first” convention. Let w1, . . . , wl in TxUa have the property that their images
under π are an oriented basis of NxSb and let v1, . . . , vd be any basis of
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TxM(a, b). Then we declare that the vj are an oriented basis if

i(v1), . . . , i(vd ), w1, . . . , wl

is an oriented basis of TxUa.
Having so oriented M(a, b), we can similarly orient the space of

unparametrized trajectories M̆(a, b) = M(a, b)/R using the sequence

0 → R → TxM(a, b)→ Tx̆M̆(a, b)→ 0,

as long as a = b. (The R action is the downward gradient flow φt .) In the
special case that M̆(a, b) is zero-dimensional, we can compare the orientation
of M̆(a, b) at an unparametrized trajectory x̆ with the canonical orientation of
the 1-point space, and in this way obtain a sign

ε(x̆) = ±1

for each x̆ in M̆(a, b). The sign is still dependent on the choice of µa and µb. We
can then modify the definition of the boundary map ∂ on the complex C∗: the
new formula for ∂ still takes the form (2.1), but instead of defining the integer
n(a, b) as the cardinality of M̆(a, b), we redefine

n(a, b) =
∑

x̆∈M̆(a,b)

ε(x̆).

With this signed version of ∂ , the proof that ∂∂ = 0 continues to work,
whether or not R has characteristic 2. What needs to be proved is that for all
a ∈ ck and c ∈ ck−2, the integer

p(a, c) =
∑

b∈ck−1

∑
x̆1∈M̆(a,b)

∑
x̆2∈M̆ (b,c)

ε(x̆1)ε(x̆2)

is zero, not just zero modulo 2. The proof is to interpret the above sum as
(minus) the signed count of the endpoints of the compact oriented 1-manifold
M̆+(a, c). The isomorphism

H∗(C∗, ∂) = H∗(B; R)

continues to hold, now with arbitrary coefficient group.
As we have described it, the complex C∗ now depends on the choice of

orientations of all the unstable manifolds, though it is easy to check that different
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choices lead to isomorphic chain complexes. If we prefer, we can slightly modify
the construction of (C∗, ∂) so that no explicit a priori choice of orientations of
the spaces K−a is required. For each critical point a, let �(a) = {µ,µ′} denote
the 2-element set consisting of the possible orientations of K−a . Define Z�(a)
to be the free abelian group of rank 1, given by a presentation with generators
µ, µ′ and a single relation µ = −µ′. We can then define

C∗ =
∑
a∈c

Z�(a)⊗ R

and we can reinterpret ε(x̆) above as an isomorphism ε(x̆) : Z�(a)→ Z�(b).
This choice of viewpoints concerning orientations is familiar also when setting
up the homology of simplicial complexes.

2.3 Linear flows on projective space

Let L be a hermitian matrix, regarded as defining a linear transformation of Cn,
and let � be the function on Cn \ {0} defined by

�(z) = 〈z, Lz〉 / ‖z‖2.

This function is invariant under the action of the scalars C∗, and so descends
to a function

�∗ : CPn−1 → R.

We equip CPn−1 with its standard metric as the quotient of the unit sphere S2n−1

by S1, and we examine the downward gradient flow of �∗ on the projective
space. To understand the flow lines, we may consider first another function on
Cn defined in terms of L, namely the function

f (z) = 1

2
〈z, Lz〉.

The downward gradient flow for the function f is easy to write down: it is
described by the linear equation

dz/dt = −Lz (2.4)

for a path z(t) in Cn.
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Lemma 2.3.1. The trajectories of the gradient flow of the function 1
2�

∗ on
CPn−1 are the images under the quotient map

π : Cn \ 0 → CPn−1

of the non-zero solutions z : R → Cn of the linear equation (2.4).

Proof. At a point w in the unit sphere S2n−1, we may decompose grad( f ) into
parts tangent and normal to the sphere. The part tangent to the sphere is

grad( f |S2n−1)(w) = Lw −�(w)w.

The right-hand side is homogeneous. The image in S2n−1 of a trajectory z(t) of
the linear equation (2.4) is therefore a solution w : R → S2n−1 of the equation

dw/dt = −Lw +�(w)w, (2.5)

which is the downward gradient-flow equation for the restriction of f to the
sphere. The function f is invariant under the action of S1 on S2n−1, and the
corresponding function on the quotient CPn−1 is 1

2�
∗. So the image of a solution

w(t) in CPn−1 is a flow line for 1
2�

∗. �

From the lemma it follows that the gradient trajectories of �∗ in CPn−1 are
the paths t �→ [z(2t)], where z(t) is a solution of the linear equation. (We write
[z] for the image of z in CPn−1.) The next lemma is a simple consequence:

Lemma 2.3.2. The critical points of the function �∗ on CPn−1 are the images
[z] of the eigenvectors z ∈ Cn of the hermitian operator L. �

The critical points are therefore isolated in CPn−1 if and only if the non-
trivial eigenspaces of L are 1-dimensional: that is, if and only if the spectrum
of L is simple. Let us suppose that this condition holds, and let us write the
eigenvalues of L as

λ1 < λ2 < · · · < λn.

Let w1,…,wn be corresponding unit eigenvectors.

Lemma 2.3.3. When the spectrum of L is simple, each critical point [wi] of �∗
is non-degenerate. The index of [wi] is 2(i − 1). The closures of the unstable
and stable manifolds of [wi] in CPn−1 are the projective subspaces spanned by

[w1], . . . , [wi]
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and

[wi], . . . , [wn]

respectively. The unstable and stable manifolds themselves are the affine
subspaces of these projective spaces where the component of wi is non-zero.

Proof. We can write down the Hessian of 1
2�

∗ at [wi] using the description
(2.5) of the flow. We can identify Twi CPn−1 with the complex subspace W of
Cn orthogonal to wi, and from (2.5) we obtain the formula

w �→ Lw − λiw

for the Hessian, as an operator on W . There is no zero eigenvalue, and the
eigenvectors of this operator belonging to negative and positive eigenvalues
are the vectors wj with j < i and j > i respectively. The statements about
non-degeneracy and the index both follow. The description of the unstable and
stable manifolds follows from Lemma 2.3.1. �

We can elaborate on the description of the unstable and stable manifolds.
Suppose we look at M(i, j), the space of trajectories from [wi] to [wj], viewed
as the intersection Ui∩Sj of the unstable and stable manifolds of the two critical
points in CPn−1. The lemma tells us that this is empty unless i > j, in which
case it is the image in CPn−1 of the subspace of Cn consisting of vectors of
the form

z = αjwj + αj+1wj+1 + · · · + αiwi,

where the coefficients α are complex numbers and the first and last are non-
zero. The corresponding solution of the linear equation dz/dt = −Lz is
given by

z(t) =
i∑

m=j

αme−λmtwm.

As t goes to −∞ and +∞, the dominant terms in this sum are the first and the
last respectively. This gives us the following result:

Proposition 2.3.4. Under the above hypothesis on the spectrum of L, the space
M(i, j) can be identified with the quotient by C∗ of the set of non-zero solutions
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z to the linear equation dz/dt = −Lz which have the asymptotics

z(t) ∼ c0e−λi twi, as t →−∞
z(t) ∼ c1e−λj twi, as t →+∞,

where c0, c1 are non-zero complex constants. This can be identified with the
subset of CPi−j on which both the first and the last homogeneous coordinate
are non-zero: the complement of two hyperplanes. �

Because the critical points are only in even index, there are no non-zero
differentials in the Morse complex. The Morse complex computes the ordinary
homology of CPn−1 as expected.

2.4 Manifolds with boundary

Now let (B, ∂B) be a Riemannian manifold with boundary. There is a stan-
dard variant of the Morse complex that computes the relative homology
Hk(B, ∂B; R). One takes a Morse function that is constant on ∂B and achieves
its minimum there. The Morse complex formed using the interior critical points
of f computes the relative homology. If instead f achieves its maximum on the
boundary, one obtains in this way the absolute homology group, Hk(B; R). We
wish to deal rather differently with (B, ∂B). Rather than take a function that is
constant on the boundary, we instead choose a smooth Morse function f whose
gradient vector field V is everywhere tangent to the boundary ∂B. To be more
precise, we envision the following situation.

We suppose that a smooth manifold B̃ without boundary is given, and is
equipped with an involution i : B̃ → B̃ whose fixed-point set is of codimension
1. The quotient B̃/i is then a manifold with boundary, and we suppose that this is
identified with B. (Thus B̃ is a double of B.) The fixed-point set of the involution
is ∂B. We suppose that the Riemannian metric on B arises as the restriction of
a metric on B̃ that is invariant under the involution. Similarly, we suppose that
f : B → R is the restriction to B of an i-invariant Morse function f̃ on B̃.

If f is a Morse function of this sort, we can divide its set of critical points first
into two sets: the critical points in the interior and those on the boundary. The
boundary critical points can be further divided into two types. If a is a critical
point on ∂B, then the normal vector ν to ∂B at a is an eigenvector of ∇V , and
belongs to either K+a or K−a .

Definition 2.4.1. Let a be a critical point of f on ∂B. We say a is boundary-
stable if the normal vector ν belongs to K+a . Otherwise, we say a is boundary-
unstable. ♦
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We write cs and cu for the sets of boundary-stable and boundary-unstable
critical points, and co for the interior critical points. So

c = co ∪ cs ∪ cu. (2.6)

If a is boundary-stable, then the stable manifold Sa ⊂ B meets the interior
of B: it is a manifold with (possibly empty) boundary, and the boundary ∂Sa

is the intersection Sa ∩ ∂B. If a is boundary-unstable on the other hand, the
stable manifold Sa is contained entirely in ∂B. For the unstable manifold Ua the
situation is reversed: it is a manifold with boundary if a is boundary-unstable,
and is contained in ∂B if a is boundary-stable.

In this situation, we should not ask that the Morse–Smale condition hold
without modification. The reason can be explained as follows. Suppose that
a and b are critical points on the boundary, and suppose a is boundary-stable
while b is boundary-unstable. Then the unstable manifold Ua and the stable
manifold Sb are both contained in ∂B. The intersection Ua ∩ Sb cannot be a
transverse intersection in B: the most we can expect is that the intersection is
transverse in ∂B. This leads us to the following definition.

Definition 2.4.2. We say that f is regular if the following conditions hold. We
require that the intersection

M(a, b) = Ua ∩ Sb

be transverse in B, except in the special case that a is boundary-stable and b
is boundary-unstable. In this special case, both Ua and Sb are contained in ∂B,
and we require that their intersection be transverse as an intersection in ∂B,
so that

TxUa + TxSb = Tx∂B

for all x in M(a, b). We refer to this special case as the boundary-obstructed
case: we may refer either to M(a, b), or to the corresponding trajectories γ (t)
of the flow, as being boundary-obstructed . ♦

These conditions imply that each space M(a, b) is either a manifold, or, in the
case that M(a, b) meets both ∂B and the interior, a manifold with boundary. The
latter can happen only if a and b are on the boundary, a is boundary-unstable
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and b is boundary-stable. The dimension of M(a, b) is given by

dim M(a, b) =
{

index (a)− index (b)+ 1, if boundary-obstructed

index (a)− index (b), otherwise.

If we orient the vector spaces K−a for all the critical points a, then the spaces
M(a, b) again become oriented; but we need an extra word about orienting
M(a, b) in the boundary-obstructed case, because of the lack of transversality.
In the sequence (2.3), the second map π is no longer surjective in the boundary-
obstructed case: instead we have an exact sequence

0 → TxM(a, b)
i→ TxUa

π→ NxSb
q→ R → 0,

where we identify the last R with the outward normal to ∂B at x. We choose an
oriented basis w̄1, . . . , w̄j+1 of NxSb, so that the first j vectors are the images
under π of vectors w1, . . . , wj and q(w̄j+1) = 1. Then, as before, we declare a
basis v1, . . . , vd of TxM(a, b) to be an oriented basis if

i(v1), . . . , i(vd ), w1, . . . , wj

is an oriented basis of TxUa.
Having described the raw ingredients, we now form the Morse complexes.

Because we have three types of critical points, we can form three graded groups,
Co∗ , Cs∗ and Cu∗ : we set

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Co
k =

(⊕
a∈co

Zea

)
⊗ R

Cs
k =

⎛⎝⊕
a∈cs

k

Zea

⎞⎠⊗ R

Cu
k =

⎛⎝⊕
a∈cu

k

Zea

⎞⎠⊗ R.

(2.7)
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If M(a, b) is non-empty and of dimension 1, so that M̆(a, b) is a finite set, we
again write

n(a, b) =
∑

x̆∈M̆(a,b)

ε(x̆),

using the just-described orientation convention for the boundary-obstructed
case. If M(a, b) is not 1-dimensional, we set n(a, b) = 0.

When a and b are both boundary critical points, there is a possible variant
of n(a, b). Let M ∂(a, b) be the intersection of M(a, b) with ∂M . This manifold
parametrizes trajectories along the boundary, joining a to b. We write M̆ ∂ (a, b)
for its quotient by R. Recall that M(a, b) can meet the interior of B only when
a is boundary-unstable and b is boundary-stable; so only in this one case is
M ∂(a, b) any different from M(a, b). The zero-dimensional spaces among the
M̆ ∂(a, b) are the ingredients of the boundary map for the usual Morse complex
of f |∂B. But to write down the Morse complex, we need orientations of the
unstable manifolds in the boundary. For a critical point a on the boundary, let
us write

K̄−a = K−a ∩ Ta(∂B).

If a is boundary-stable, then K̄−a = K−a and we orient the former using our
chosen orientation of the latter. If a is boundary-unstable, we orient K̄−a by
regarding it as the tangent space at a to ∂Ua, and using the outward-normal-
first convention for the orientation of the boundary. After orienting all K̄−a in
this way, we again obtain signs

ε̄(x̆) = ±1

for all trajectories belonging to zero-dimensional trajectory spaces M̆ ∂(a, b).
We write

n̄(a, b) =
∑

x̆∈M̆(a,b)

ε(x̆).

We consider now how the integers n(a, b) and n̄(a, b) can be used to define
operators on the groups (2.7). The first thing we can do is form the Morse com-
plex of the boundary manifold ∂B, using the Morse flow on the boundary and the
integers n̄(a, b). This is straightforward, but there is a slight twist concerning the
grading. Suppose a is a critical point on the boundary that is boundary-unstable,
and index (a) = k, so that Ua is k-dimensional. The dimension of Ua ∩ ∂M is
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then k − 1. For the flow on the boundary therefore, a has index k − 1. To form
the Morse complex C̄∗ of ∂B, we must set

C̄k = Cs
k ⊕ Cu

k+1.

The differential ∂̄ : C̄k → C̄k−1 is defined by

∂̄ea =
∑

b

n̄(a, b)eb.

As an instance of Theorem 2.1.1, we have ∂̄ ∂̄ = 0, and

Hk(C̄, ∂̄) = Hk(∂B; R).

We now describe Morse complexes that incorporate the interior critical points
also, and compute Hk(B; R) and Hk(B, ∂B; R). To motivate the definition, let
us look back at the proof outlined above, that ∂∂ = 0 in the case of a manifold
B without boundary. We can still define the space of unparametrized broken
trajectories, M̆+(a, a′), and it is still the case that this is compact. But two
things change.

The first change to notice when B has boundary is that not every strictly
broken trajectory will be a limit point of a sequence of unbroken trajectories.
Suppose for example that a is an interior critical point, b is a boundary-stable
critical point, and c is boundary-unstable. Suppose that (x̆1, x̆2) is a broken
trajectory with two components, joining a to c via b. This broken trajectory is
not the limit of unbroken trajectories, simply because there can be no trajectory
from a to c: the stable manifold of c is contained in ∂B, while a is in the interior.

The second change is that, in the case that a and c have index difference
2 (the case relevant to the earlier proof that ∂∂ is zero), there can be broken
trajectories from a to c with more than two components. Consider the case, for
example, that a and c are both in the interior:

Lemma 2.4.3. Suppose a and c are interior critical points with indices k and
k − 2. Then a strictly broken trajectory in M̆+(a, c) has either two or three
components, so takes one of the two forms

(x̆1, x̆2) ∈ M̆(a, b)× M̆(b, c)

or

(x̆1, x̆2, x̆3) ∈ M̆(a, b1)× M̆(b1, b2)× M̆(b2, c).
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�M

b1

b2

index(a) = 2

index(c) = 0

Fig. 1. A family of index-2 trajectories limiting to a 3-component broken trajectory.

In the first case, b must be an interior critical point of index k−1. In the second
case b1 and b2 must both be boundary critical points of index k − 1 and the
space of trajectories M̆ (b1, b2) is boundary-obstructed .

Proof. If there are two components, the intermediate critical point must be in
the interior, because no boundary critical point is both a forward and a backward
limit point of an interior trajectory. Its index must be k−1 if M(a, b) and M(b, c)
are both to be non-empty.

If there are more than two components, then some component is boundary-
obstructed: only in the boundary-obstructed case can there be a trajectory
joining critical points of equal index. There cannot be more than three compo-
nents, because two adjacent components of a broken trajectory cannot both be
boundary-obstructed. Figure 1 illustrates the picture in dimension 2. �

In the situation described in this lemma, the structure of M̆+(a, c) near the
second type of broken trajectory is a little more complicated to analyze than the
previous case. But it is still true that M̆+(a, c) behaves as if it were a 1-manifold
with boundary, to the extent that the number of strictly broken trajectories in
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M̆+(a, c) is even. Thus, for any such a and c, the sum∑
b∈ck−1

n(a, b)n(b, c)+
∑

b1∈cs
k−1

∑
b2∈cu

k−1

n(a, b1)n̄(b1, b2)n(b2, c)

is even. If we take more care with the orientations, and consider the oriented
boundary of M̆+(a, c), we establish

−
∑

b∈ck−1

n(a, b)n(b, c)+
∑

b1∈cs
k−1

∑
b2∈cu

k−1

n(a, b1)n̄(b1, b2)n(b2, c) = 0. (2.8)

Let us see how to interpret the left side of (2.8) as the matrix entry of an
operator on Co∗ . First, using the decomposition of C̄ as a sum of Cs and Cu, we
write ∂̄ as a 2-by-2 matrix,

∂̄ =
[
∂̄s

s ∂̄u
s

∂̄u
s ∂̄u

u

]
,

so that ∂̄u
s , for example, is a homomorphism ∂̄u

s : Cu → Cs. We use the integers
n(a, b), which count interior trajectories, to define similar operators

∂o
o :Co

k → Co
k−1

∂o
s :Co

k → Cs
k−1

∂u
o :Cu

k → Co
k−1

∂u
s :Cu

k → Cs
k−1

by

∂o
o ea =

∑
b∈co

n(a, b)eb (a ∈ co)

∂o
s ea =

∑
b∈cs

n(a, b)eb (a ∈ co)

∂u
o ea =

∑
b∈co

n(a, b)eb (a ∈ cu)

∂u
s ea =

∑
b∈cs

n(a, b)eb (a ∈ cu).

(Note that there are two different maps Cu → Cs, namely ∂̄u
s and ∂u

s : the first is
defined by counting isolated trajectories in ∂B, and the second counts isolated
trajectories in the interior of B.)
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Now the quantity on the left of (2.8) is the matrix entry between ea and ec

of the operator

−∂o
o∂

o
o + ∂u

o ∂̄
s
u∂

o
s : Co

k → Co
k−2.

Thus the identity (2.8) can be written:

−∂o
o∂

o
o + ∂u

o ∂̄
s
u∂

o
s = 0. (2.9)

There are similar identities corresponding to the other possibilities for the types
of the critical points a and c. (See Lemma 22.1.5 later in the book.) With this
as motivation, we come to the following definition of two chain complexes,(

Č∗, ∂̌
)

and
(

Ĉ∗, ∂̂
)

.

Definition 2.4.4. We define Čk = Co
k ⊕ Cs

k , and we define an operator

∂̌ : Čk → Čk−1

∂̌ =
[
∂o

o −∂u
o ∂̄

s
u

∂o
s ∂̄s

s − ∂u
s ∂̄

s
u

]
.

We similarly define Ĉk = Co
k ⊕ Cu

k , we define

∂̂ : Ĉ → Ĉ

∂̂ =
[

∂o
o ∂u

o
−∂̄s

u∂
o
s −∂̄u

u − ∂̄s
u∂

u
s

]
.

♦

We have the following result.

Theorem 2.4.5. The operators ∂̌ and ∂̂ both have square zero. The complexes
(Č∗, ∂̌) and (Ĉ∗, ∂̂) compute the absolute and relative homology groups: there
are isomorphisms

Hk(Č∗, ∂̌) = Hk(B; R)

Hk(Ĉ∗, ∂̂) = Hk(B, ∂B; R).

Proof. We do not present a complete proof here, because much of it would be
repeating material that appears later, in the context of Floer homology. There
are three steps. First one must show that the operators have square zero; then
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one shows that the resulting homology groups are independent of f ; and finally
one identifies the homology groups.

The proof that these two operators have square zero is a consequence of
the identity (2.9) and its relatives. (See the proof of Lemma 22.1.5 and Propo-
sition 22.1.4.) From the material of Section 22, the reader can also extract a
proof that the homology of the two complexes is independent of the choice
of a suitable f . To identify the homology groups as the absolute and relative
groups of the pair, one can choose f so that all the critical points on ∂B are
boundary-unstable, and some collar W of ∂B has the property that no trajectory
enters W from B \ W . The complex Č is now just the Morse complex of the
interior critical points, and the situation is essentially no different from the more
standard picture described at the start of this subsection, in which f achieves
its maximum on ∂B and the Morse complex computes the absolute homology.
One can treat the complex Ĉ similarly using Poincaré duality. �

2.5 Circle actions and blowing up

We now turn to a slightly different situation. Let P be a compact, Riemannian
manifold, without boundary, and suppose that S1 acts on P by isometries. Let
Q = PS1

be the set of fixed points, and suppose that S1 acts freely elsewhere.
The fixed-point set Q will be a smooth submanifold with even codimension.
The S1 action on the normal bundle N → Q equips the normal bundle with the
structure of a complex vector bundle. We write B for the quotient,

B = P/S1,

which is a smooth manifold away from the image of the fixed-point set.
The singularity in B along the image of Q can be resolved by blowing up.

To describe this, we begin by recalling how one constructs the real oriented
blow-up of a manifold such as P along a compact submanifold Q. Let S(N ) be
the unit sphere bundle in the normal bundle to Q, and let

p : S(N )× [0, ε)→ P (2.10)

be the map which assigns to (v, t) the point γv(t), where γv is the geodesic in
P with initial tangent vector v. The tubular neighborhood theorem tells us that
if we choose ε sufficiently small, then the image of p is an open neighborhood
W of Q, and that the restriction of p to the subset t = 0 is a diffeomorphism,

po : S(N )× (0, ε)→ W \ Q.
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The oriented blow-up of P along Q is defined to be the manifold with boundary
Pσ obtained as the union of P \Q and S(N )×[0, ε), patched together using po:

Pσ = ((
S(N )× [0, ε)

) ∪ (
P \ Q

))/
po.

There is a smooth map π : Pσ → P, the blow-down map, which is a
diffeomorphism over P \Q, and has fibers the spheres S(Nq) over points q in Q.

Although we used the Riemannian metric as a tool, the set of points that com-
prise Pσ can be described without the metric by regarding S(Nq) as a quotient
space of TqP \ TqQ; and the smooth structure on this set Pσ is then indepen-
dent of the choice of metric. Indeed, we can construct the tubular neighborhood
coordinates in any way we choose (not necessarily from geodesics), and the
result is the same. The proof of this assertion is easily reduced to the case that
a neighborhood of Q is a product, when the essential point is contained in the
following lemma (which is applied in the case that M and N have the same
dimension).

Lemma 2.5.1. Let M and N be Euclidean spaces, and let M σ , N σ be obtained
from these by blowing up the origin. Let h : M → N be a smooth map with
h(0) = 0, and suppose that dh is injective at 0. Then there is a smooth map
hσ : M σ → N σ such that the following diagram commutes:

M σ
hσ ��

π

��

N σ

π

��
M

h
�� N .

The map hσ is an embedding in a neighborhood of π−1(0) ⊂ M σ . If we have a
family of smooth maps ht depending smoothly on a parameter t ∈ T , then the
maps hσt depend smoothly on t also.

Proof. We prove the first part. On the boundary P(M ) of M , define hσ to be
the projectivization of the linear map dh|0 : M → N . This produces a map hσ

on M σ so that the diagram commutes. To see that hσ is smooth, let x1, . . . , xm

and y1, . . . , yn be coordinates on the two vector spaces, and write ξi = xi/xm

and ηi = yi/yn. Then

ξ1, . . . , ξm−1, xm

η1, . . . , ηn−1, yn
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are coordinates on open subsets U and V of the manifolds with boundary, M σ

and N σ : the coordinates map U and V to Rm−1×[0,∞) and Rn−1×[0,∞). The
boundaries of U and V are where xm and yn are zero. Because dh is injective at
0, we can suppose that h∗(dyn)|0 = dxm|0. With this assumption, the functions
h∗(ηi) and h∗(yn) are defined in a neighborhood of ∂U ; and h∗(yn) has the same
derivative as xm at ∂U . The functions

ξ1, . . . , ξm−1, h∗(yn)

therefore define a coordinate system on U near the boundary, and the boundary
is defined by h∗(yn) = 0. The main assertion of the lemma is that h∗(ηi) is
smooth. We can write

h∗(ηi) = h∗(yi)/h∗(yn).

The numerator is a smooth function that vanishes on ∂U , while the denomi-
nator vanishes with non-zero derivative at ∂U . The ratio is therefore a smooth
function. �

Let us return to the case that P has an isometric circle action with Q as
fixed-point set and no other non-trivial stabilizer. The circle action lifts to a
circle action on Pσ , because the circle acts naturally on S(N ) and the map po

is equivariant. We note that on Pσ the circle action is free, because the action
on S(N ) is. We define

Bσ = Pσ /S1.

This is again a smooth manifold with boundary, and we have a blow-down map

π : Bσ → B.

This is a diffeomorphism except over the set of fixed points. Restricted to the
boundary of Bσ , the map π is a fiber bundle, π : ∂Bσ → Q, with fibers the
complex projective spaces S(Nq)/S1, so we can write

∂Bσ = P(N ). (2.11)

Now we again introduce a smooth function f̃ : P → R and its gradient vector
field Ṽ on P. We suppose that f̃ is invariant under the circle action, so that it
descends to a function f : B → R which is smooth away from the singular



34 I Outlines

Fig. 2. A linear flow on R2 and the corresponding flow on the blow-up, S1 × R≥.

locus in the quotient space. Because the blow-down map π : Pσ → P is a
diffeomorphism except over Q, we can regard Ṽ as giving a vector field also
on the interior of Pσ .

Lemma 2.5.2. The vector field Ṽ on Pσ \ ∂Pσ extends to a smooth vector field
Ṽ σ on Pσ , everywhere tangent to the boundary. �

We will not prove the lemma here, but it can be deduced from Lemma 2.5.1:
one can consider the flow φt generated by the vector field on P, and use the
lemma to deduce the existence of a smooth flow φσ

t on the blow-up. Figure 2
shows the picture of a linear flow on R2 (without an S1 symmetry) and the
corresponding flow on the manifold with boundary obtained by blowing up at
the origin, namely the space S1×R≥: there is no circle symmetry in this picture.

Because the circle action is free on Pσ , the vector field Ṽ σ on Pσ passes to
the quotient space Bσ : we obtain a vector field V σ on Bσ . The vector field V σ

is also tangent to the boundary of Bσ .

Remark. The vector field V σ on Bσ is not a gradient vector field in any natural
way. Nevertheless, it shares with gradient vector fields the important property
that, at each zero a of V σ , the derivative∇V σ is an operator with real eigenval-
ues. We shall say that a zero of V σ is non-degenerate if 0 is not an eigenvalue of
∇V σ , in which case we can decompose TaBσ as K− ⊕K+ as usual. These are
the tangent spaces to the unstable and stable manifolds at a of the downward
flow. We still refer to the dimension of K− as the index of a.

The model case is when P is a complex vector space, say Cn with the standard
metric, the circle action is the standard one, Q is the origin, and f̃ is given in
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terms of a hermitian operator L by the formula

f̃ (p) = 1

2
〈p, Lp〉, p ∈ P.

As in (2.4), the downward gradient-flow equation on P is the linear equation

dp/dt = −Lp. (2.12)

In this case, we can identify the blow-up Pσ as

Pσ = S(P)× [0,∞)

∼= S2n−1 × [0,∞). (2.13)

The blow-down map is given by π(φ, s) = sφ for φ in S2n−1 and s ≥ 0.
To describe the vector field −Ṽ on the interior of Pσ , we write the downward
gradient-flow equations for the function f̃ on P in the “polar coordinates” (φ, s).
Writing the equation dp/dt = −Lp in polar coordinates is essentially the same
exercise as Lemma 2.3.1. Let us again write � for the function

�(p) = 〈p, Lp〉/‖p‖2 (2.14)

on P \ 0. In the coordinates (φ, s), this function is independent of s and so
defines a function on Pσ :

� : Pσ → R.

The gradient-flow equations (2.12) can now be written in polar coordinates as

φ̇ = −Lφ +�(φ)φ

ṡ = −�(φ)s.
(2.15)

The first of these two equations is the gradient-flow equation for the restriction
of 1

2� to the unit sphere S(P), just as in (2.5). In this form, it is clear that the
flow extends to a smooth flow on the blow-up Pσ , preserving the boundary
∂Pσ . This means that Ṽ extends to a smooth vector field on Pσ , tangent to the
boundary, as the lemma claimed.

Let us look at the quotient Bσ = Pσ /S1 and the zeros of the vector field V σ

in this example. We write

Bσ = CPn−1 × [0,∞), (2.16)

so that a point of Bσ is a pair ([φ], s).
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Proposition 2.5.3. In the model case (2.16), suppose that the spectrum of L
is simple and that 0 is not an eigenvalue. Let φ1, …, φn be orthogonal unit
eigenvectors of L in P, belonging to eigenvalues

λ1 < · · · < λn.

Then the zeros of the vector field V σ on Bσ are precisely the points ([φi], 0),
all of which belong to the boundary of Bσ . The index of ([φi], 0) is given by

index([φi], 0) =
{

2(i − 1) (λi > 0)

2(i − 1)+ 1 (λi < 0).

Proof. Because the first equation of (2.15) is the same equation that appeared
in (2.5), we see that ([φ], s) can be a stationary point of the flow only if φ is an
eigenvector of L, just as in Lemma 2.3.2. From the second equation in (2.15),
we see that it is also necessary that �(φ)s is zero. At an eigenvector φ, the value
of �(φ) is the corresponding eigenvalue. So if zero is not in the spectrum of L,
then s must be zero at the critical points.

At ([φi], 0), we can identify the tangent space to Bσ with W ⊕R, where W is
the orthogonal complement of φi, as in the proof of Lemma 2.3.3. The operator
∇V σ on W ⊕R is the sum of the operator w �→ Lw−λiw that appeared in the
proof of that lemma and the operator s �→ λis. The index of this operator is as
stated. �

We turn from the model, linear case back to the general case of a manifold P
with circle action. The normal bundle N → Q carries a bundle endomorphism
L: at each point q in the Q, we have an operator Lq on the normal space Nq,
given by the Hessian of f̃ in the normal directions (the restriction of ∇Ṽ to
Nq). Because it commutes with the circle action, this real symmetric operator
is a complex-linear, hermitian operator on Nq. We impose the following con-
dition, which reduces to the hypothesis of the proposition above if Q is just
a point:

Hypothesis 2.5.4. We suppose that the restriction of f̃ to Q is a Morse function
on Q. At each critical point q ∈ Q of the f̃ , we suppose that the spectrum of the
hermitian operator Lq is simple, and that zero is not an eigenvalue. We write
the eigenvalues of Lq as

λ1(q) < λ2(q) < · · · < λn(q),
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and choose corresponding eigenvectors

φ1(q) < φ2(q) < · · · < φn(q).

♦

The next lemma describes those zeros of V σ which lie on the boundary.

Lemma 2.5.5. Let a in ∂Bσ be written as a pair (q, [φ]), where q ∈ Q and [φ] is
in the projectivization of Nq. Then a is a stationary point for the vector field V σ

if and only if q is a critical point for the restriction f̃ |Q and φ is an eigenvector
of Lq. Under the above hypothesis, the zeros (q, [φi(q)]) are non-degenerate.
In this case, the index of the critical point is given by

index =
{

indexQ(q)+ 2(i − 1) (λi(q) > 0)

indexQ(q)+ 2(i − 1)+ 1 (λi(q) < 0),

where indexQ(q) is the index of q as a critical point of f̃ |Q.

Proof. Let (q, [φ]) be a point of ∂Bσ = P(N ). We can decompose the tangent
space of Bσ at this point as an orthogonal direct sum

TqQ ⊕W ⊕ R. (2.17)

Here, the first summand is the horizontal part of the tangent space to the fiber
bundle P(N ), the summand W denotes the complex-orthogonal complement
of φ, which we identify with the tangent space T[φ]P(Nq) (the vertical part of
the tangent space to the fiber bundle P(N )), and R is the normal direction to
the boundary. In terms of this decomposition, we can write the vector V σ

(q,[φ] as
(v1, v2, 0). The fact that the third component is zero is the statement that V σ is
tangent to the boundary. The vector v1 ∈ TqQ is equal to grad f̃ |Q; so (q, [φ])
cannot be a critical point of the flow unless q is a critical point of f̃ . When v1

is zero the vector v2 is

v2 = Lqφ −�q(φ)φ,

where

�q(φ) = 〈φ, Lqφ〉/‖φ‖2 (2.18)

as in the model case. This can be zero only when φ is one of the eigenvectors
φi(q) of Lq.
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This completes the identification of the critical points. To verify the remaining
statements, we must compute the derivative∇V σ at (q, [φi(q)]) as an endomor-
phism of the tangent space (2.17). Let us write this operator H in 3-by-3 block
form as

H =
⎡⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎦ .

Because V σ is tangent to the boundary, the subspace TqQ ⊕ W of (2.17) is
invariant under H , so h31 and h32 are zero.

The R summand of (2.17) is also invariant under H . This is most easily seen
as follows. The map (2.10) which we used to form the blow-up can be extended
to negative t, by the same formula, to give a map S(N )× (−ε, ε)→ P. We can
use this extension to form a natural double of the manifold with boundary, Pσ ,
by taking two copies (P \Q)± of P \Q and attaching them to S(N )× (0, ε) and
S(N )×(−ε, 0). The vector field Ṽ gives rise to a vector field on S(N )×(−ε, ε),
and in this way, the vector field V σ can be extended smoothly to a natural double
of the manifold with boundary, Bσ . Because the original vector field on P is
invariant under S1, the extension of V σ to the doubled manifold is invariant
under the involution corresponding to the map t �→ −t on (−ε, ε). It follows
that H commutes with the involution of the tangent space (2.17) that changes
the sign on the R summand. This means that h13 and h23 are zero.

The block h12 is zero because the horizontal part of V σ at ∂Bσ is equal
to grad f̃ |Q, which is independent of [φ]. The remaining blocks are easily
identified, and we are left with

H =
⎡⎣hq 0 0

x Lq − λi 0
0 0 λi

⎤⎦ (2.19)

where hq is the Hessian of f̃ |Q at q, and x is the operator

x(v) = (∂vLq)φi(q) (v ∈ TqQ).

We see that this zero of V σ is non-degenerate provided that hq is non-degenerate,
λi is a simple eigenvalue of Lq and λi is non-zero. We can also read off the index
and obtain the result of the proposition. �

In the case that all of the critical points of V σ on Bσ are non-degenerate, we
can summarize the situation as follows. The critical points will be of two sorts.
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First, there is the set of critical points in the interior, which we call co as in the
previous subsection. Then there are the critical points on the boundary, which
are the points (q, [φi(q)]), where q is a critical point of f̃ |Q. As in the previous
subsection, the critical points on the boundary can be further divided into the
boundary-stable and boundary-unstable critical points, cs and cu. The critical
point corresponding to (q, [φi(q)]) is boundary-stable if and only if λi(q) > 0.

We can now study the Morse theory of the flow generated by the vector
field −V σ on the manifold with boundary, Bσ . Although the vector field is not
a gradient vector field, it behaves sufficiently like a gradient vector field that we
can still construct the Morse complex. For example, f̃ is always non-increasing
along any flow line. It is possible to choose f̃ so that the flow of −V σ on Bσ

satisfies the regularity condition in Definition 2.4.2, and the same compactness
theorem holds for the spaces of broken trajectories.Thus we can form complexes
Č∗, Ĉ∗ and C̄∗, as before: see Definition 2.4.4 and Theorem 2.4.5 above. These
complexes still compute the corresponding ordinary homology groups:

Theorem 2.5.6. Suppose that the flow generated by the vector field V σ is
regular, in that the stable and unstable manifolds of the critical points satisfy the
condition in Definition 2.4.2. Then the operators ∂̌ , ∂̂ and ∂̄ on Č∗, Ĉ∗ and C̄∗
have square zero. The complexes compute the absolute and relative homology
for the pair (Bσ , ∂Bσ ), and the homology of ∂Bσ , respectively. �

Let us take a closer look at the complex C̄∗. According to the theorem just
stated, the complex C̄∗ computes the ordinary homology (say with coefficients
Z) of ∂Bσ , which is a bundle over Q with fiber CPn−1, the projectivization of the
normal bundle (2.11). According to the Leray–Hirsch theorem, the homology
is isomorphic to n copies of the homology H∗(Q). The normal bundle N carries
the self-adjoint bundle map L : N → N , and a connection ∇ arising from the
Levi-Cività connection on P. We write

eq,i ∈ C̄∗

for the generator of C̄∗ corresponding to the stationary point (q, [φi(q)]) in ∂Bσ .
In the complex C̄∗, this generator has grading index Q(q)+ 2(i − 1).

The boundary map in the complex C̄∗ is defined using the flow lines of the
vector field −V σ on P(N ). We can write the equations for a flow line in two
slightly different ways. These correspond to two different ways of viewing a
linear flow on CPn−1, as either the flow (2.5) on the unit sphere or the linear
flow (2.4) on Cn. In the present setting, the first way is to lift the vector field V σ

on P(N ) to a vector field Ṽ σ on the unit sphere bundle S(N ). If (q(t), [φ(t)]) is
a trajectory of −V σ , we can lift it to a trajectory (q(t),φ(t)) of −Ṽ σ on S(N ).
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Thus |φ(t)| = 1 for all t. The equations can then be written

d

dt
q+ (grad f̃ |Q)q(t) = 0 (2.20a)

q∗(∇)φ + (
(Lq(t) −�q(φ))φ

)
dt = 0. (2.20b)

The first term in the second equation denotes the derivative of φ “along the
path”, and the term �q(φ) is defined as before.

The second way to write the equations is to consider pairs (q(t),φ(t)), where
q : R → Q is a smooth path in Q and φ(t) ∈ Nq(t) is a nowhere-zero section
of N along the path. For such a pair, we write down the pair of equations

d

dt
q+ (grad f )q(t) = 0 (2.21a)

q∗(∇)φ + (Lq(t)φ)dt = 0. (2.21b)

Note that the second equation is linear in φ. This provides the following
counterpart to Lemma 2.3.1.

Lemma 2.5.7. The trajectories of −V σ on the boundary of Bσ are the images
under the quotient map

π : N \ 0 → P(N ) = ∂Bσ

of the solutions (q(t),φ(t)) to the equations (2.21) with φ non-zero. Each flow-
line of−V σ lifts to a solution (q(t),φ(t)) of the above equations which is unique
up to the action of the scalars C∗ on φ. �

In a similar spirit, we can characterize the solutions of the flow asymptotic
to particular stationary points, the counterpart of Proposition 2.3.4.

Proposition 2.5.8. Let a0 = (q0, [φi0(q0)]) and a1 = (q1, [φi1(q1)]) be two
zeros of V σ on ∂Bσ , and let λ0, λ1 be the corresponding eigenvalues. Then the
space of trajectories M ∂ (a0, a1) of the flow−V σ on ∂Bσ can be identified with
the quotient by C∗ of the set of solutions (q(t),φ(t)) to the equations (2.21) for
which φ has the asymptotics

φ(t) ∼ c0e−λ0tφi0(q0), as t →−∞
φ(t) ∼ c1e−λ1tφi1(q1), as t →+∞,

where c0, c1 are non-zero complex constants. �
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Having examined the trajectories on the boundary, let us now examine
trajectories x(t) contained in the interior of Bσ that are asymptotic to a boundary
critical point (say as t goes to+∞). The boundary critical point (q, [φi(q)])must
be boundary-stable. Because the vector field V σ is pulled back from B = P/S1

except at the boundary, the image of this trajectory under the blow-down map
π : Bσ → B is a trajectory y(t) for the gradient flow of the function f on
B \ Q, asymptotic to the critical point q of f̃ |Q. From the form (2.19) of the
linearization of V σ , we see that the distance to the boundary, d(x(t), ∂Bσ ), has
the form

d(x(t), ∂Bσ ) ∼ ce−λi t

as t →+∞. This means that, after blowing down, we have

d(y(t), ∂Q) ∼ ce−λi t .

Thus we can characterize these flow lines as follows:

Proposition 2.5.9. Trajectories x(t) of the vector field −V σ in the interior of
Bσ that approach the boundary critical point (q, [φi(q)]) as t → +∞ are in
one-to-one correspondence with trajectories y(t) to the gradient flow of f on
B \ Q which approach q and for which the distance from y(t) to Q has the
asymptotics ce−λi t . �

2.6 Comparison with the homotopy quotient

We continue to consider a manifold P with circle action, with fixed-point set Q
as above, and the associated manifold with boundary, Bσ . The theorem above
states that the resulting complex Č∗ computes the ordinary homology of Bσ ,
which is the same as the homology of (P \ Q)/S1:

H∗(Č∗) ∼= H∗((P \ Q)/S1).

If the (real) codimension of Q is 2n, then the pair (P, P\Q) is (2n−1)-connected,
and so too therefore is the pair obtained by forming the homotopy quotients by
S1. In the case of P \Q, the group S1 acts freely, and the homotopy quotient is
equivalent to the ordinary quotient. It follows that

Hj(Č∗) ∼= Hj(P//S1)

for j ≤ 2n− 2, where P//S1 denotes the homotopy quotient.
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There is a simple way to increase the codimension of the fixed-point set:
we can replace P by P × Ck , and make S1 act in the standard way on Ck .
The fixed-point set is now Q × {0}, which has codimension 2(n+ k). Let Bσ

(k)
be the associated manifold with boundary. Of course, we have now lost the
compactness of our manifold, but this does not matter if we choose our Morse
function carefully. Let f̃ be the original Morse function on P, and on P × Ck ,
take the Morse function

f̃(k) = f̃ +
k∑

r=1

µr|zr|2.

We suppose that the µr are positive and increasing, and that µ1 is greater than
λn(q) for all critical points q ∈ Q. Let V σ

(k) denote the vector field which we
obtain on Bσ

(k). Although the total space is non-compact, there is a compact
subset which contains all the critical points and within which every trajectory
between critical points is contained: this compact subset is the union of ∂Bσ

(k)
and the proper transform of B× {0}. This means that we can still construct the
complex Č∗ for the flow of the vector field −V σ

(k). Let us denote this complex

by Č(k)∗
The homology of the complex Č(k)∗ is isomorphic to the ordinary homology

of Bσ
(k), just as in the compact case. So, arguing as before and using the fact

that P × Ck has the same homotopy type as P, we conclude that there is an
isomorphism

Hj(Č
(k)∗ ) ∼= Hj(P//S1)

for j ≤ 2(n+ k − 1). We can compare the complex Č(k)∗ with the original Č∗.
The extra generators all arise from critical points on the boundary, one for each
pair (q,µr), where q is a critical point of f̃ |Q and µr is one of the k eigenvalues
of the Hessian of f̃(k) in the Ck directions. Because the µs are all bigger than
the λs, Lemma 2.5.5 tells us that the new generator corresponding to (q,µr) is
in degree

indexQ(q)+ 2(n+ r − 1).

As we increase k therefore, the complexes Č∗(V σ
(k)) stabilize, and there is a

well-defined limiting complex Č(∞)∗ , defined by

Č(∞)∗ = Č(k)
j , j < 2(n+ k − 1).
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The homology of the limiting complex is isomorphic to the homology of the
homotopy quotient in all dimensions:

Hi(Č
(∞)∗ ) ∼= Hi(P//S1), for all i.

We can also examine H∗(Ĉ(k)∗ ) in this situation. Unlike H∗(Č(k)∗ ), this group
is independent of k, essentially because the new critical points introduced by
increasing k are boundary-stable, not boundary-unstable, when the µi are pos-
itive. So for all k, this group is the relative homology of the pair (Bσ , ∂Bσ ), or
equivalently of the pair (P/S1, Q). We can also write

Hi(Ĉ
(∞)∗ ) ∼= (P//S1, Q//S1).

Finally, the group Hi(C̄
(∞)∗ ) in this context is the ordinary homology of Q//S1 ∼=

Q × CP∞.

2.7 Morse theory and local coefficients

Ordinary homology has a variant, homology with local coefficients, which we
can also obtain from a Morse complex. We consider a local system,�, of abelian
groups on a compact manifold B (a manifold without boundary, for simplicity).
This means that for each point a ∈ B, we have an abelian group �a, and for
each relative homotopy class of paths z from a to b we have an isomorphism

�(z) : �a → �b,

satisfying the obvious composition law for composite paths. We adopt the (per-
haps non-standard) convention that if z and w are homotopy classes of paths
from a to b and b to c respectively, then the homotopy class of the composite
paths (“first z then w”) is written

w � z. (2.22)

With this convention, the isomorphisms �(z) satisfy

�(w � z) = �(w) � �(z).

Suppose now that f is a Morse function on B and that the gradient flow of f ,
for a suitable choice of Riemannian metric on B, satisfies the Morse–Smale
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transversality condition. We define a graded abelian group C∗( f ,�), the Morse
complex of f with coefficients in �, as

C∗( f ,�) =
⊕
a∈c

�a.

(The sum is over the set of critical points of f , as it was earlier.) As usual,
we set

Ck( f ,�) =
⊕
a∈ck

�a.

Unless the groups �a have characteristic 2, we need also to choose orientations
for each K−a at this stage.

Let a and b be chosen so that M̆(a, b) is zero-dimensional. To each x̆ in
M̆(a, b), we have an associated sign ε(x̆) = ±1, as before. The closure of the
orbit x̆ of the flow also provides a path from a to b, and there is an associated
isomorphism �(x̆), which we combine with the sign ε to obtain an isomorphism

ε(x̆)�(x̆) : �a → �b.

We use these to define the boundary map

∂ : Ck( f ,�)→ Ck−1( f ,�)

by the formula

∂ =
∑
a∈ck

∑
b∈ck−1

∑
x̆∈M̆(a,b)

ε(x̆)�(x̆).

The proof that ∂∂ = 0 is not much altered. The homology of the resulting
complex is indeed H∗(B;�), the ordinary homology of B with coefficients in
the local system �.

We can also construct the cohomology with local coefficients. We define a
cochain complex C∗( f ,�) by

Ck( f ,�) =
∑
a∈ck

�a,

and define a coboundary map δ : Ck−1( f ,�)→ Ck( f ,�) by the formula

∂ =
∑
a∈ck

∑
b∈ck−1

∑
x̆∈M̆(a,b)

ε(x̆)�(x̆)−1.
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2.8 Functoriality in Morse theory

A continuous map h : B1 → B2 gives rise, of course, to a homomorphism
h∗ : H∗(B1; R) → H∗(B2; R). When B1, B2 are smooth, compact manifolds
(without boundary, at present), there is a generalization. Rather than a smooth
map h : B1 → B2, we can consider more generally a compact manifold Z and
a smooth map

r : Z → B1 × B2.

We could take r to be the inclusion of the graph of a smooth map h, to recover
the special case. Composing r with the projections, we obtain two maps

r1 : Z → B1

r2 : Z → B2.

We shall need the first of these two maps to be oriented. That is, we shall suppose
that there is an isomorphism of real line bundles

µ : �dim Z (Z)→ r∗1 (�dim B1(B1)). (2.23)

When µ is given, there is a well-defined map

(r1)
∗ : H∗(B1; R)→ H∗(M ; R)

defined by

(r1)
∗ = ω−1

Z (r1)∗ωB1 .

Here (r1)∗ is the usual induced map on homology, and the two ωs denote the
two Poincaré duality isomorphisms

ωB1 : H∗(B1; R)→ H∗(B1;�⊗ R)

ωZ : H∗(Z ; R)→ H∗(Z ;�⊗ R),

where� denotes the orientation bundle in both cases, regarded as a local system.
In this way, the pair (Z , r) gives rise to a map, by “pull-up and push-down”:

(r2)∗(r1)
∗ : H∗(B1; R)→ H∗(B2; R). (2.24)

In the special case that (Z , r) is the graph of h, we recover the usual map h∗ :
H∗(B1; R) → H∗(B2; R). This construction has an extension that we will not
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pursue here, but which we shall take up again in the context of Floer homology.
Given a cohomology class u on Z , one can construct a map H∗(B1; R) →
H∗(B2; R) by

x �→ (r2)∗(u � (r1)
∗(x)).

In the special case that u is Poincaré dual to an embedded submanifold Zu ⊂ Z ,
this map is the “pull-up and push-down” map for the pair (Zu, r|Zu).

We now describe how to obtain the map (2.24) from a chain map on
Morse complexes. Equip both manifolds with Riemannian metrics, and let f1,
f2 be Morse functions giving rise to flows φ1,t , φ2,t on B1 and B2, satisfying
the Morse–Smale transversality conditions. Choose orientations for the unsta-
ble manifolds of all critical points on both manifolds, so that we have Morse
complexes

C∗( f1), C∗( f2),

which compute the ordinary homology groups H∗(B1; R) and H∗(B2; R). Given
critical points

a ∈ B1, b ∈ B2

for the Morse functions f1, f2, we define a space

Z(a, b) ⊂ Z

by

Z(a, b) = {w ∈ Z | r(w) ∈ Ua × Sb }.

Here Ua and Sb are the unstable and stable manifolds, regarded as submanifolds
of B1 and B2. The spaces Z(a, b) need not be smooth, unless we impose an
additional transversality condition (which can be achieved by adjusting r):

Hypothesis 2.8.1. The map r : Z → B1 × B2 is transverse to Ua × Sb, for all
critical points a and b, of f1 and f2 respectively. ♦

When the transversality hypothesis holds, Z(a, b) is a smooth submanifold
of Z . For each w ∈ Z(a, b), we have an exact sequence

0 → TwZ(a, b)→ TwZ → Nr1(w)Ua ⊕ Nr2(w)Sb → 0,
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where NUa is the normal bundle of Ua ⊂ B1 and NSb is the normal bundle of
Sb ⊂ B2. From the sequence, we can read off

dim Z(a, b) = dim Z − dim Sa − dim Ub

= dim Z − dim B1 + index (a)− index (b).

We can also use the sequence and our isomorphism µ to orient Z(a, b), using
our fiber-first convention. In this way, to each point w belonging to a zero-
dimensional space Z(a, b), we can associate a sign

ε(w) = ±1.

We then define an integer

m(a, b) =
∑

w∈Z(a,b)

ε(w).

When dim Z(a, b) is non-zero, we set m(a, b) = 0. The integers m(a, b) are the
matrix entries of a homomorphism

m : C∗( f1)→ C∗( f2)

defined by the formula

m(ea) =
∑

b∈c( f2)

m(a, b)eb.

The following proposition states that we have achieved our objective, of
describing the “pull-up push-down” map in terms of the Morse complexes:

Proposition 2.8.2. The map m : C∗( f1)→ C∗( f2) is a chain map between the
Morse complexes. The resulting map m∗ : H∗(B1; R) → H∗(B2; R) coincides
with the map (r2)∗(r1)

∗ described at (2.24). �

The construction of the map associated to the pair (Z , r) can also be extended
to the case of local coefficients. Suppose �1 and �2 are local systems of abelian
groups on B1 and B2 respectively. Via r1 and r2, we can pull these back to Z ,
and we suppose that an isomorphism of local systems, �Z , is given between
these pull-backs:

�Z : r∗1�1 → r∗2�2.
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This means, in particular, that for each w in Z , we have an isomorphism of
groups,

�Z (w) : �1,r1(w) → �2,r2(w).

Let C∗( f1,�1) and C∗( f2,�2) be the Morse complexes with local coefficients.
Then we can define a map

m : C∗( f1,�1)→ C∗( f2,�2)

by the formula

m =
∑

a∈c( f1)

∑
b∈c( f2)

∑
w∈Z(a,b)

ε(w)�Z (w),

where the sum is over all zero-dimensional spaces Z(a, b) and the sign ε(w) is
as before.

One can also carry over the construction of the homomorphisms C∗( f1)→
C∗( f2) to the situation considered in Subsection 2.5. Let P1 and P2 be two
compact manifolds with circle action, and suppose again that the action is free
outside the respective fixed-point sets Q1, Q2. Let Z̃ be another manifold with
an action of S1, and

r̃ = (r̃1, r̃2) : Z̃ → P1 × P2

an S1-equivariant map. Let W ⊂ Z̃ be the fixed-point set, let Z̃σ be the blow-up
along W , and let Zσ be the quotient by S1. If we impose the condition

(r̃i)
−1(Qi) = W

for i = 1 and 2, and ask also that the derivative of r̃i gives an injective map on
the normal direction,

d r̃iNwW → Nr̃i(w)(Qi),

then we obtain well-defined maps on the blow-up, r̃σi : Z̃σ → Pσ
i (see

Lemma 2.5.1), and hence on the quotient spaces also:

rσ = (rσ1 , rσ2 ) : Zσ → Bσ
1 × Bσ

2 .

These maps have the property that (rσi )
−1(∂Bσ

i ) = ∂Zσ , for i = 1 and 2. Given
an orientation for the map rσ1 , one can then use this data to construct chain maps
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between the associated chain complexes Č∗, Ĉ∗, C̄∗. We do not describe the
details here, but they can be extracted from our treatment of the Floer homology
case, in Subsection 25.3.

3 Monopole Floer homology for three-manifolds

We present here a summary of most of the formal properties of monopole Floer
homology as developed in this book, stating the results usually as propositions
without proof. There are some further refinements that are best explained when
we have more machinery in place, and these will be added later.

3.1 Three flavors of monopole Floer homology

Throughout this section, we will be considering 3-manifolds Y that are non-
empty, closed, connected and oriented. We will use the notation −Y to denote
the same manifold with the opposite orientation. The monopole Floer homol-
ogy theory that we consider associates to each such oriented manifold Y three
abelian groups, ̂

HM•(Y ), ĤM•(Y ), HM•(Y ), (3.1)

pronounced “H-M-to”, “H-M-from” and “H-M-bar” respectively, which we will
define in Section 22.

In outline, the construction of these groups is as follows.After some auxiliary
choices, including a choice of Riemannian metric, we associate to Y a Hilbert
manifold Bo(Y )with a circle action, and its quotient B(Y ) = Bo(Y )/S1, which
is singular along the fixed-point set.As we did in Subsection 2.5 above, we blow
up along the singular set to obtain a Hilbert manifold with boundary, Bσ (Y ). On
Bo(Y ) there is a smooth function, the Chern–Simons–Dirac functional L, whose
downward gradient gives a (partially defined) flow on the blow-up Bσ (Y ), just
as we defined the vector field V σ above. After perturbing the functional to
achieve the necessary transversality, we mimic the construction of the Morse
complexes Č, Ĉ and C̄ from Subsection 2.4, now in this infinite-dimensional
setting. Neither the stable nor the unstable manifolds of the critical points of the
flow are finite-dimensional, so the critical points do not have an “index” in the
usual sense of Morse theory. In the light of Theorem 2.4.5, the Floer groups (3.1)
can be thought of as the “middle-dimensional” homology groups of Bσ (Y ), of
the pair (Bσ (Y ), ∂Bσ (Y )), and of ∂Bσ (Y ) respectively. It should be noted,
however, that one cannot expect to give meaning to the middle-dimensional
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homology groups of these Hilbert manifolds without reference to the functional
L or some related data.

The space we have referred to as Bσ (Y ) is a disjoint union of components,
one for each isomorphism class of spinc structure s on Y . We write the compo-
nents as Bσ (Y , s). Corresponding to this decomposition, there is a direct sum
decomposition of

̂

HM•(Y ) and its companions into summands

̂

HM•(Y , s),̂

HM•(Y ) =
⊕

s

̂

HM•(Y , s). (3.2)

This is a finite decomposition, a fact that we will prove in Section 23 and which
we record as a proposition:

Proposition 3.1.1. For a given Y , the groups

̂

HM•(Y , s), ĤM•(Y , s) and
HM •(Y , s) are non-zero for only finitely many spinc structures s on Y . �

Like the ordinary homology groups of a space, the Floer groups are graded
abelian groups, but there are two caveats. First, the “grading” is not by the
integers. Second, there is a completion involved. We explain these two points.
In general, let J be any set with an action of Z (not necessarily transitive), and
let the action of n ∈ Z on J be written as j �→ j + n. We can consider abelian
groups graded by J:

G∗ =
⊕
j∈J

Gj.

A group homomorphism h : G∗ → G′∗ has degree n if h maps Gj to G′j+n
for all j.

In this sense, the relevant grading set for the Floer groups is the set of homo-
topy classes of oriented 2-plane fields, a set which has a natural action of Z, as
we shall explain. The simplest case to understand is the case of S3. The clas-
sification, up to homotopy, of oriented 2-plane fields on S3 is the same as the
classification of oriented line fields; and because the tangent bundle is trivial,
these are classified by π3(S2) = Z. The classification by π3(S2) depends on
our choice of trivialization of the tangent bundle; so the more natural statement
is simply that the homotopy classes of 2-plane fields are a set with a free, tran-
sitive action of Z. If a 3-manifold has non-trivial homology, then a 2-plane field
also has a 2-dimensional characteristic class, the Euler class. There is a slight
refinement of this last statement: a 2-plane field determines a spinc structure on
Y . The general situation is explained in detail later in this book, in Section 28,
where we explain that the homotopy classes of 2-plane fields admit an action
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of Z whose orbits correspond to the different spinc structures. The orbit
corresponding to s is a free orbit of Z if and only if the corresponding Euler
class is torsion. For now, we make precise how the action of Z is constructed:

Definition 3.1.2. We write �(Y ) for the space of all oriented 2-plane fields ξ

on Y : oriented, rank-2 subbundles of the tangent bundle. We write π0(�(Y ))

for its set of connected components, the homotopy classes of 2-plane fields,
and we define an action of Z on this set as follows. We specify that [ξ ] + n
is the homotopy class

[
ξ̃
]

of a 2-plane field ξ̃ which is equal to ξ outside a
standard ball B3 ⊂ Y . Inside the ball, trivialize the tangent bundle, take a map
ρ : (B3, ∂B3)→ (SO(3), 1) of degree −2n, and define

ξ̃ ( y) = ρ( y)ξ( y).
♦

Remark. The degree of a map from (B3, ∂B3) to (SO(3), 1) is necessarily even.
Our convention on signs is fixed in the following way. Let SU (2)+ and SU (2)−
be the subgroups of SO(4) which act trivially on the bundles of anti-self-dual
and self-dual 2-forms respectively. Let ξ+ and ξ− be 2-plane fields on S3 (the
oriented boundary of B4) which are invariant under SU (2)− and SU (2)+ respec-
tively. Then [ξ+] = [ξ−] − 1. Note that if the orientation of Y is reversed, then
the action of Z changes sign also.

We now come to the second point mentioned above: there is a completion
involved in the construction of the Floer homology groups. Each j ∈ π0(�(Y ))

defines subgroups of the Floer groups,̂

HMj(Y ) ⊂

̂

HM•(Y )

ĤMj(Y ) ⊂ ĤM•(Y )

HM j(Y ) ⊂ HM •(Y );

but these do not provide direct sum decompositions. Instead, the direct sums⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

̂

HM∗(Y ) =
⊕

j

̂

HMj(Y )

ĤM∗(Y ) =
⊕

j

ĤMj(Y )

HM ∗(Y ) =
⊕

j

HM j(Y )

(3.3)
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are subgroups of

̂

HM•(Y ), ĤM•(Y ) and HM•(Y ); and the larger groups are
obtained from the ∗ versions by the following type of completion:

Definition 3.1.3. Let G∗ be a graded abelian group graded by a set J. Let Oα

(α ∈ A) be the free Z-orbits in J, and let an element jα ∈ Oα be given for each
α. Let G∗[n] ⊂ G∗ be the subgroup

G∗[n] =
⊕
α

⊕
m≥n

Gjα−m.

This is a decreasing filtration of G∗. We define the negative completion of G∗
to be the topological group G• ⊃ G∗ obtained by completing with respect to
this filtration. ♦

(The simplest example would be the case that G is a ring of finite Laurent series,
with the obvious grading, in which case the negative completion is the ring of
Laurent series that extend infinitely in the direction of the negative powers.)
Our groups

̂

HM•(Y ), ĤM•(Y ) and HM •(Y ) are obtained from the graded ∗
versions by negative completion.

Remark. As well as being graded by the set π0(�(Y )), the Floer groups also
have a canonical mod 2 grading: a decomposition into “odd” and “even” pieces.
This decomposition arises because we can define a natural map

π0(�(Y ))→ Z/2,

which respects the action of Z. (Thus we can talk about odd and even 2-
plane fields on an oriented 3-manifold.) This mod 2 grading is discussed in
Subsection 22.4.

For each grading j, the abelian group

̂

HMj(Y ) and its companions are finitely
generated. Indeed, they arise as the homology groups of complexes, graded by
the same set, that are also finitely generated in each grading. Formally, they
behave like the ordinary homology groups H∗(Z), H∗(Z , A) and H∗(A) for a
pair of spaces (Z , A), in that they are related by a long exact sequence,

· · · i∗−→

̂

HM•(Y )
j∗−→ ĤM•(Y )

p∗−→ HM •(Y )
i∗−→

̂

HM•(Y )
j∗−→ · · · ,

(3.4)

where the maps i∗ and j∗ have degree 0, and p∗ has degree −1. (The last state-
ment, for example, means that p∗ maps ĤMj to HM j−1; so in particular, these



3 Monopole Floer homology for three-manifolds 53

maps are defined also on the ∗ versions.) These maps are constructed in
Subsection 22.2. Because they are defined as the (completions of) homology
groups of complexes, the Floer homology groups come with companion
cohomology groups, related by a sequence

· · · i∗←−

̂

HM •(Y )
j∗←− ĤM •(Y )

p∗←− HM •(Y )
i∗←−

̂

HM •(Y )
j∗←− · · · .

These Floer cohomology groups are obtained from graded abelian groupŝ

HM ∗(Y ), ĤM ∗(Y ) and HM ∗(Y ) by positive completion. There is the expected
Z-valued pairing between

̂

HMj(Y ) and

̂

HM j(Y ), with similar pairings for the
other two flavors.

There is a duality relating the Floer homology and cohomology groups that
formally resembles Poincaré duality for an oriented manifold with boundary: we
can think of it as Poincaré duality for the Hilbert manifold Bσ (Y ). The duality
isomorphism depends on a choice of orientation, in this case an orientation for
the vector space H 1(Y ; R). We call such an orientation a homology orientation
of Y . (See Definition 22.5.2.) If we choose a homology orientation µ, we have
isomorphisms:

ω̌µ :
̂

HM•(−Y )→ ĤM •(Y )

ω̂µ : ĤM•(−Y )→

̂
HM •(Y )

ω̄µ : HM •(−Y )→ HM •(Y ).

These isomorphisms are straightforward consequences of the definitions, just
as in the finite-dimensional Morse-theory setting: for example, if f is changed
to −f in the constructions of Subsection 2.4, then the complex Č∗ becomes
the complex Ĉ∗, and so on. On a compact manifold, the Morse homology is
independent of the choice of Morse function, so one deduces an isomorphism
between H∗(B) and H∗(B, ∂B). In the Floer context, Bσ (Y ) and Bσ (−Y ) are
the same: only L changes sign. But one cannot replace the functional L by−L
without changing the homology of the Morse complex, so we cannot replace Y
by −Y in the above isomorphisms.

The grading sets π0(�(Y )) and π0(�(−Y )) are the same object, because
an oriented 2-plane field on Y is also an oriented 2-plane field on −Y . But
the actions of Z, as we mentioned, are opposite. So we give the canonical
identification of these two sets a name,

o : π0(�(−Y ))→ π0(�(Y )),
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and record the relation

o(j + n) = o(j)− n

for j ∈ π0(�(−Y )). With this understood, we can state how the duality
isomorphisms affect the grading:

ω̌µ :

̂

HMj(−Y )→ ĤM o(j)(Y )

ω̂µ : ĤMj(−Y )→

̂

HM o(j)(Y )

ω̄µ : HM j(−Y )→ HM o(j)−1(Y ).

We shall see that, just as for the duality maps on a manifold with boundary, we
have a diagram

· · · HM j(−Y )

ω̄µ

��

i∗ ��

̂

HMj(−Y )

ω̂µ

��

j∗
�� ĤMj(−Y )

ω̂µ

��

p∗
�� HM j−1(−Y ) · · ·

ω̄µ

��
· · · HM o(j)−1(Y )

p∗
�� ĤM o(j)(Y )

j∗
��

̂
HM o(j)(Y )

i∗ �� HM o(k)(Y ) · · ·
(3.5)

in which the first two squares commute and the third square commutes up to
sign. For details of the sign, see Corollary 22.5.10.

3.2 Module structure

The ordinary cohomology groups of a space are provided with a ring structure
by the cup product, and the homology groups are a module over the cohomology
ring, via the cap product. The Floer homology groups bear a resemblance to
middle-dimensional homology groups, or the groups within finite distance of
the middle dimension, in an infinite-dimensional setting. Based on this loose
analogy, one does not expect the Floer cohomology groups, for example, to be
rings, but one does expect them to be modules for the ordinary cohomology of
the ambient space Bσ (Y ). This is indeed the case: we can construct “cap” and
“cup” products,

� : H∗(Bσ (Y ))×

̂

HM•(Y )→

̂

HM•(Y )

� : H∗(Bσ (Y ))×

̂

HM •(Y )→

̂

HM •(Y ),
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with similar maps on ĤM• and HM •. As expected, if u is a class of degree
d in the ordinary cohomology ring, then the cap and cup products by u are
endomorphisms of the Floer homology and cohomology groups of degrees−d
and d respectively. These operations satisfy the “associativity” laws

(u � v)� x = u � (v � x)

(u � v)� ξ = v � (u � ξ).

Note the order of u and v in the second formula: these operations make the Floer
cohomology groups a module over the ordinary cohomology ring H∗(Bσ (Y ));
and – as is natural for the dual – they make the homology groups a module for
the opposite ring, H∗(Bσ (Y ))opp.

It is not hard to identify the ordinary cohomology ring of Bσ (Y ). First of
all, we recall that this space is a union of components Bσ (Y , s), one for each
isomorphism class of spinc structure s on Y . Each component Bσ (Y , s) has the
homotopy type

Bσ (Y , s) � T(Y )× CP∞, (3.6)

where T(Y ) is the torus H 1(Y ; R)/H 1(Y ; Z), and there is a canonical identifi-
cation of the cohomology rings of the two sides. There is an isomorphism

H1(Y ; Z)/torsion → H 1(T(Y ); Z)

arising from the pairing H 1(Y ) and H1(Y ), and the cohomology of the torus
T(Y ) is an exterior algebra on the image of this map:

H∗(T(Y ); Z) ∼= �
(
H1(Y ; Z)/torsion

)
. (3.7)

Using this map on each component Bσ (Y , s), we obtain a map

ν : H1(Y ; Z)/torsion → H 1(Bσ (Y )).

We denote by u2 the 2-dimensional generator of the cohomology of Bσ (Y )

arising from the standard generator of H 2(CP∞) on each component Bσ (Y , s).
(The sign of u2 is fixed by stating that it evaluates to 1 on a copy of CP1 with
its complex orientation.)

Combining the Floer cap product with ν and the class u2, the Floer
cohomology groups

̂

HM •(Y ) etc. become modules for the graded ring

A(Y ) = �(H1(Y )/torsion)⊗ Z[U ]
∼= H∗(T(Y ); Z)⊗ Z[U ]. (3.8)
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The elements γ ∈ H1(Y ) and the 2-dimensional generator U act by

γ x = ν(γ )� x

Ux = u2 � x

respectively. There are similar actions on the Floer homology using the Floer
cap product, which make it a module over the graded ring A†(Y ) – essentially
the same ring, but with the negative grading and opposite multiplication. To
keep A(Y ) and A†(Y ) separate, we will sometimes denote the generators of
A†(Y ) by γ† and U†. So U† has degree −2, and

γ†x = ν(γ )� x

U†x = u2 � x.

The maps i∗, j∗, in the long exact sequence of the pair (3.4) are all module
homomorphisms, while p∗ respects the module structure up to sign, as is detailed
in Corollary 25.5.2: we have, for example p∗(γ x) = −γ p∗(x), for γ in H1(Y ),
as one would expect for a map p∗ of odd degree. The duality isomorphisms ω̌µ,
ω̂µ and ω̄µ are isomorphisms of A(Y )-modules, up to sign. See Corollary 25.5.4.

Having well-defined degrees, the maps U and U† are endomorphisms of
the graded subgroups (3.3). After completion, the action of Z[U ] on the “•”
versions extends continuously to an action of the ring of formal power series
Z[[U ]].

3.3 The simplest example

Take Y to be S3. We have already mentioned the classes of 2-plane fields
[ξ−] and [ξ+], invariant under the actions of SU (2)+ and SU (2)− respectively.
(See the remark following Definition 3.1.2.) Either of these is a generator for
π0(�(S3)) as a Z-set, and we have [ξ−] = [ξ+] + 1 when S3 is oriented as the
boundary of B4. We now state without proof a description of the Floer homology
and cohomology groups of the sphere. See also Figure 3.

Proposition 3.3.1. Orient S3 as the boundary of B4, and let ξ± be the 2-plane
fields described above.

(i) The Floer homology groups

̂

HM (S3) are given bŷ

HM[ξ−]+n(S
3) =

{
Z, n even, n ≥ 0

0, otherwise.
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(ii) The groups ĤM∗(S3) are given by

ĤM[ξ−]+n(S
3) =

{
Z, n odd, n < 0

0, otherwise.

(iii) The groups HM ∗(S3) are given by

HM [ξ−]+n(S
3) =

{
Z, n even

0, otherwise.

By the universal coefficient theorem, the same result holds for the Floer
cohomology groups. �

The Floer homology groups are graded modules over A(S3)† = Z[U†]
respectively, with U† of degree −2. Referring to Figure 3, we can describe
the action of U† as a left shift in all three cases. In the case of

̂

HM•(S3), mul-
tiplication by U† has kernel equal to the copy of Z which sits at grading [ξ−].
In the other two cases, U† is injective. Similarly, the Floer cohomology groups
are modules over Z[U ], with U having degree 2 and acting by a right shift.

The map j∗ is zero for S3, and there is therefore a short exact sequence

0 −→ ĤM•(S3)
p∗−→ HM •(S3)

i∗−→

̂
HM•(S3) −→ 0, (3.9)

with p∗ having degree −1. As a sequence of graded topological Z[[U†]]-
modules, this sequence is isomorphic to the sequence

0 −→ Z[[U†]] p∗−→ Z[U−1
† , U†]] i∗−→ Z[U−1

† , U†]/Z[U†] −→ 0, (3.10)

where Z[U−1
† , U†]] denotes the formal Laurent series that are finite in the direc-

tion of negative powers of U†. (Although these series extend infinitely in the
direction of positive powers of U†, this is still – somewhat confusingly – a
negative completion, because U† itself has negative degree.)

n · · · −4 −3 −2 −1 0 +1 +2 +3 +4 · · ·̂

HM[ξ−]+n · · · 0 0 0 0 Z 0 Z 0 Z · · ·
ĤM[ξ−]+n · · · 0 Z 0 Z 0 0 0 0 0 · · ·
HM [ξ−]+n · · · Z 0 Z 0 Z 0 Z 0 Z · · ·

Fig. 3. The Floer groups of S3.
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Some features of this example are reflections of more general properties.
For a general Y , the image of j∗ need not be zero but is always finitely gen-
erated as an abelian group. In particular, it is non-zero in only finitely many
degrees.

Second, the calculation of HM •(S3) can be extended: essentially the same
result holds for any homology 3-sphere. More generally, we have the following
result.

Proposition 3.3.2. Suppose Y and Y ′ are two oriented 3-manifolds with isomor-
phic cohomology rings. Then there is an identification π0(�(Y ))→ π0(�(Y ′)
such that the groups HM ∗(Y ) and HM ∗(Y ′) are isomorphic as A(Y )† modules
graded by π0(�(Y )). In all cases, the endomorphism U† is invertible.

We shall describe HM •(Y ) in some detail in Chapter IX, where the above
proposition is also proved.

3.4 Cobordisms and functoriality

If Y0 and Y1 are compact, oriented 3-manifolds, a cobordism from Y0 to
Y1 is a compact, oriented 4-manifold W with boundary, together with a
diffeomorphism of oriented manifolds

α = (α0  α1) : ∂W → (−Y0  Y1).

We will generally use the letter W , rather than X , to denote a 4-manifold that
is being considered as a cobordism in this way. If (W ,α) and (W ′,α′) are two
cobordisms from Y0 to Y1, an isomorphism between them is an orientation-
preserving diffeomorphism intertwining α with α′. The trivial cobordism from
Y to itself is the oriented cylinder W = [0, 1] × Y , with α being the restriction
to the boundary of the projection to Y . If (W1,α1) and (W2,α2) are cobordisms
from Y0 to Y1 and from Y1 to Y2 respectively, there is a composite cobordism
(W ,α) from Y0 to Y2: the manifold W is formed from W1  W2 using β =
(α2)

−1α1 to identify the two copies of Y1 in the boundary. We will write the
composite cobordism as

W = W2 �W1

= (W1  W2)/β. (3.11)

Note that we order the factors as we would for composing maps. Usually,
we will omit the diffeomorphism α from our notation, and regard α as if it
were the identity. The reason for introducing α formally is that we now have a
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category in which the morphisms are the isomorphism classes of cobordisms:
the isomorphism class of the trivial cobordism from Y to Y is the identity
morphism from Y to Y in this category.

A key feature of the monopole Floer homology groups, and one which moti-
vates several aspects of their definition, is that a connected, oriented cobordism
W from Y0 to Y1 gives rise to maps ⎫⎪⎪⎪⎬⎪⎪⎪⎭

̂

HM•(Y0)→

̂

HM•(Y1)

ĤM•(Y0)→ ĤM•(Y1) (3.12)

HM •(Y0)→ HM •(Y1),

well-defined up to sign. The map associated to a composite cobordism is the
composite of the corresponding maps. In terms of the analogy with finite-
dimensional Morse theory, the existence of such maps can be understood as
an example of the construction described in Subsection 2.8 above. Associated
to the manifold W is a space Bσ (W ), the configuration space for the Seiberg–
Witten equations on the compact manifold with boundary, blown up along the
fixed-point set of the circle action. Inside Bσ (W ) is the locus of solutions to
the Seiberg–Witten equations, M(W ). (We will actually define M(W ) using
something like the proper transform of the equations, on the blow-up.) The
space M(W ) is still infinite-dimensional, unlike the moduli space associated to
a closed 4-manifold. Restriction to the boundary provides a map

r : M(W )→ Bσ (Y0)×Bσ (Y1). (3.13)

By the construction of Subsection 2.8, the space M(W ) and the map r give rise
to chain maps on the Morse complexes defining the Floer groups, and so give
rise to the maps (3.12).

We stated that the maps (3.12) are defined only up to overall sign. To fix the
ambiguity, an auxiliary choice must be made: a homology orientation for the
cobordism. This is analogous to the isomorphism µ in (2.23) that was needed
in the finite-dimensional case. Recall from Definition 1.5.1 that a homology
orientation of a closed oriented 4-manifold X is an orientation of the line
�maxH 1(X ; R) ⊗ �maxH+(X ), where H+(X ) ⊂ H 2(X ; R) was any cho-
sen maximal positive-definite subspace for the quadratic form Q. We shall
extend this definition first to 4-manifolds with boundary, and then to cobor-
disms, regarded as 4-manifolds whose boundary is partitioned into “incoming”
and “outgoing” components. On an oriented 4-manifold with boundary, there
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is a non-degenerate pairing

H 2(X , ∂X ; R)× H 2(X ; R)→ H 4(X , ∂X ; R)

→ R.

Using the restriction map j∗ : H 2(X , ∂X ; R)→ H 2(X ; R), we obtain a pairing
on the relative group having null space the kernel of j∗, and hence a non-
degenerate quadratic form Q on

I2(X ) = im
{
H 2(X , ∂X ; R)→ H 2(X ; R)

}
.

Definition 3.4.1. Let X be a compact, connected, oriented 4-manifold with
boundary. Let I+(X ) be a chosen maximal non-negative subspace for the
quadratic form Q on I2(X ). A homology orientation of X is an orientation
of the line

�maxH 1(X ; R)⊗�maxI+(X )⊗�maxH 1(Y ; R)

(with the understanding that Y may be disconnected). Let W : Y0 → Y1 be an
oriented cobordism between 3-manifolds. We define a homology orientation of
W to be an orientation of the line

�maxH 1(W ; R)⊗�maxI+(W )⊗�maxH 1(Y1; R).

♦

Note the asymmetric treatment of the two ends in the second definition. The
first definition is consistent with the second, if we choose to regard a manifold
X with boundary as a cobordism with the empty manifold as “incoming” end.

As motivation for this definition, we cite the fact that there is a natural com-
position law for homology orientations of cobordisms, as we have defined
them. That is, if W = W2 � W1, then a homology orientation for each of the
Wi determines a homology orientation for W . The explanation for this is best
understood by reinterpreting the definition as an orientation for the determi-
nant line of Fredholm operator. We will return to this, and fix our convention
for the composition law, in Subsection 25.2, but we note in passing that the
cylinder W = [0, 1] × Y has a canonical homology orientation when viewed
as a cobordism, because H 1(Y ) and H 1(W ) are the same, while I2(W ) is
trivial.
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Definition 3.4.2. We write cob for the category whose objects are compact,
connected, oriented 3-manifolds and whose morphisms are isomorphism classes
of connected cobordisms equipped with homology orientations. The identity
morphism from Y to Y is the cylindrical cobordism with its canonical homology
orientation. ♦

We are now in a position to state:

Theorem 3.4.3. The Floer homology groups define covariant functors from the
cobordism category cob to the category mod†, of topological modules for the
ring Z[[U†]]: ̂

HM• : cob → mod†

ĤM• : cob → mod†

HM• : cob → mod† .

Similarly, the Floer cohomology groups define contravariant functorŝ
HM • : cob → mod

ĤM • : cob → mod

HM • : cob → mod

to the category of topological modules over the ring Z[[U ]]. The maps i∗, j∗,
p∗, and i∗, j∗, p∗ are all natural transformations between these functors.

We usually use a notation such as

̂

HM•(W ) :

̂

HM•(Y0) →

̂

HM•(Y1) to
denote the homomorphism arising from a cobordism. In particular, we will
omit mention of the homology orientation.

We have not referred to the homomorphisms

̂

HM•(W ) as homomorphisms
of graded modules. Indeed, the modules

̂

HM•(Y0) and

̂

HM•(Y1) are graded
by two different sets, J0 = π0(�(Y0)) and J1 = π0(�(Y1)), and we cannot
talk of a homomorphism as having an integer degree in such a setting. There
is a weaker notion that is applicable in this situation however. A cobordism
W : Y0 → Y1 determines a relation ∼W between the grading sets J0 and J1,
compatible with the Z action. To define the relation, let jr be an element of Jr

(r = 0, 1), and let ξr be corresponding 2-plane fields. Then j0 ∼W j1 if there
is an almost complex structure J on W such that the 2-plane fields ξ0 and ξ1
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are invariant under J and have the complex orientation. With this notation, we
can state that the map

̂

HM•(W ) has a non-zero component from

̂

HMj0(Y0) tô

HMj1(Y1) only if j0 ∼W j1. The same applies to ĤM• and HM •.
A slightly more informative version of the theorem would state that a cobor-

dism W gives rise to chain map between the chain complexes that define these
groups; and

̂

HM•(W ) and

̂

HM •(W ), for example, are the maps induced on the
completions of their homology and cohomology. It follows that these two maps
have the expected adjoint relationship with respect to the pairing between Floer
homology and cohomology.

There is a different sort of duality that comes into play when one observes
that a cobordism W : Y0 → Y1 gives rise to a cobordism W † : −Y1 → −Y0.
The manifold W † has the same orientation as W : we have only changed our
mind about which is the “incoming” and which is the “outgoing” end. Note
that a homology orientation for W does not determine one for W †: we need
additional data, in the form of homology orientations µ0 and µ1 for Y0 and
Y1, to translate between the two. We can then state the naturality of the duality
isomorphisms in the form

ω̌µ0 �

̂
HM•(W †)(x̌) = ±ĤM •(W ) � ω̌µ1(x̌)

ω̂µ0 � ĤM•(W †)(x̂) = ±
̂

HM •(W ) � ω̂µ1(x̂)

ω̄µ0 � HM •(W †)(x̄) = ±HM •(W ) � ω̄µ1(x̄),

for x̌, x̂, x̄ in

̂

HMj(−Y1), ĤMj(−Y1) and HM j(−Y1) respectively. The signs here
depend on j and on the characteristic numbers of W . See Proposition 25.5.3.

Although Theorem 3.4.3 tells us that the maps arising from cobordisms
respect multiplication by the 2-dimensional class U or U†, it does not yet say
anything about the structure that

̂

HM•(Y ) carries as an A(Y )†-module. Now that
we have introduced cobordisms into the story, we can explain this module mul-
tiplication as arising from a special case of a more general algebraic structure.
Define A(W )† (like A(Y )†) as the algebra�∗(H1(W )/torsion)⊗Z[U ], with the
generators of H1(W ) lying in degree −1, and with the opposite multiplication.
Then we can augment the definition of the category cob by taking as morphisms
the pairs (a, W ), where W is a cobordism with homology orientation as before,
and a is an element of A(W )†.The composition of morphisms (a2, W2)�(a1, W1)

is defined to be the morphism (a, W ), where W is the composite cobordism
W and

a = (i1)∗(a1) � (i2)∗(a2),
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by which we mean the product in A(W )† of the images of a2 and a1 under the
maps H1(Wr)→ H1(W ) induced by the inclusions ir . We can then state:

Theorem 3.4.4. To each pair (a, W ), where W : Y0 → Y1 is a morphism in
cob and a ∈ A(W )† as above, there are associated homomorphismŝ

HM•(a |W ) :

̂

HM•(Y0)→

̂

HM•(Y1)

ĤM•(a |W ) : ĤM•(Y0)→ ĤM•(Y1)

HM •(a |W ) : HM •(Y0)→ HM •(Y1),

respecting the composition law just defined. In the special case that W is a
cylindrical cobordism W = [0, 1] × Y , the maps

̂

HM•(a |W ) etc. coincide
with the module multiplication by the element a in A(W )†

∼= A(Y )†. There is
a similar statement for the Floer cohomology groups.

To illustrate this result, one can consider the situation that there are 1-cycles
γ 0 and γ 1 in Y0 and Y1 whose images in H1(W ) coincide. Then the theorem
implies the relation

γ 1
†

( ̂
HM•(W )(x)

) = ̂
HM•(W )(γ 0

† x)

for x in

̂
HM•(Y0).

3.5 Cobordisms with b+ positive

Although the map j∗ defines a natural transformation

j∗ :

̂

HM• → ĤM•,

there is no non-trivial natural transformation in the opposite direction. However,
a map ĤM•(Y0) →

̂

HM•(Y1) does arise from a cobordism if the underlying
4-manifold W satisfies an additional topological constraint. We begin with a
definition.

Definition 3.5.1. For a compact, oriented 4-manifold X with boundary, we
define b+(X ) to be the dimension of a maximal positive-definite subspace for
the quadratic form Q on I2(X ). ♦

The relevance of b+(W ) for a cobordism W : Y0 → Y1 is seen first in the
following result.
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Proposition 3.5.2. If W is a morphism in cob with b+(W ) = 0, then the maps
HM •(W ) and HM •(W ) are zero, as are their generalizations HM •(a |W ) and
HM •(a |W ) for a ∈ A(W ).

Consider now the commutative diagram resulting from a cobordism W from
Y0 to Y1.

�� HM •(Y0)

HM •(W )

��

i∗ ��

̂

HM•(Y0) ̂

HM•(W )

��

j∗
�� ĤM•(Y0)

ĤM•(W )

��

p∗
�� HM •(Y0)

HM •(W )

��

��

�� HM •(Y1)
i∗ ��

̂

HM•(Y1)
j∗

�� ĤM•(Y1)
p∗

�� HM •(Y1)
�� ·

The fact that HM •(W ) is zero when b+(W ) = 0 means that for x ∈ ĤM•(Y0)

the element ĤM•(W )(x) is in the image of j∗. At the level of sets at least, the
map ĤM•(W ) therefore factors through a map

ĤM•(Y0)→

̂

HM•(Y1)

when b+(W ) = 0. This map is not canonical, but when b+(W ) ≥ 2, there is a
canonical choice. This is the content of the next theorem:

Theorem 3.5.3. For each morphism W : Y0 → Y1 in cob with b+(W ) ≥ 2
there is a map

−−→
HM•(W ) : ĤM•(Y0)→

̂

HM•(Y1)

such that the following diagram commutes:

�� HM •(Y0)

��

i∗ ��

̂

HM•(Y0)

��

j∗
�� ĤM•(Y0)

��

p∗
��

−−→
HM•(W )

���

�����

HM •(Y0)

��

��

�� HM •(Y1)
i∗

��

̂

HM•(Y1)
j∗

�� ĤM•(Y1) p∗
�� HM •(Y1)

�� ·

This map satisfies the following two composition laws for a composite
cobordism W = W2 �W1:

−−→
HM•(W ) =

̂

HM•(W2) � −−→HM•(W1), if b+(W1) ≥ 2

−−→
HM•(W ) = −−→HM•(W2) � ĤM•(W1), if b+(W2) ≥ 2.

(3.14)

For a ∈ A†(W ), there are also maps
−−→
HM•(a |W ) with parallel properties.
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Although b+(W ) is not in general additive for composite cobordisms, we
can get some understanding of this last theorem by considering a cobordism W
that is the composite W2 �W1 with b+(Wi) ≥ 1 for i = 1, 2. We have

b+(W ) ≥ b+(W1)+ b+(W2) ≥ 2,

so the theorem applies to W . On the other hand, we can look at the commutative
diagram

�� HM •(Y0)

HM •(W1)

��

i∗ ��

̂

HM•(Y0) ̂

HM•(W1)

��

j∗
�� ĤM•(Y0)

ĤM•(W1)

��

p∗
�� HM •(Y0)

HM •(W1)

��

��

�� HM •(Y1)

HM •(W2)

��

i∗ ��

̂

HM•(Y1) ̂

HM•(W2)

��

j∗
�� ĤM•(Y1)

ĤM•(W2)

��

p∗
�� HM •(Y1)

HM •(W2)

��

��

�� HM •(Y2)
i∗ ��

̂

HM•(Y2)
j∗

�� ĤM•(Y2)
p∗

�� HM •(Y2)
�� ·

The maps HM •(Wi) are both zero, by the proposition above. Given x ∈
ĤM•(Y0), we can therefore choose y in

̂
HM•(Y1) with

j∗(y) = ĤM•(W1)(x).

If y′ is another choice, then y− y′ = i∗(z) for some z ∈ HM •(Y1); and because
HM •(W2)(z) = 0, we see that̂

HM•(W2)(y
′) =

̂

HM•(W2)(y).

This diagram chase constructs a homomorphism, independent of the interme-
diate choices,

Z(W1, W2) : ĤM•(Y0)→

̂

HM•(Y2)

x �→ j∗(y).
(3.15)

The map Z(W1, W2) defined by this diagram chase coincides with the map−−→
HM•(W ), where W = W2 � W1. We cannot use Z(W1, W2) as a definition of−−→
HM•(W ), because we cannot show directly that the result of the diagram chase
does not depend on the choice of factorization of W as a composite cobordism.
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3.6 Closed four-manifolds

As a special case of a cobordism, we can consider the complement W of two
disjoint standard balls in a closed, oriented 4-manifold X , viewed as a cobordism

W : S3 → S3.

Note that I2(W ) = H 2(X ) and b+(W ) = b+(X ), and a homology orientation of
the cobordism W , according to Definition 3.4.1, is the same thing as a homology
orientation of the closed manifold X . We described the Floer homology of S3

in Subsection 3.3, where we exhibited isomorphismŝ

HM•(S3) = Z[U−1
† , U†]/Z[U†]

ĤM•(S3) = Z[[U†]].

Suppose that b+(X ) ≥ 2. As in the previous subsection, we then have a
homomorphism of Z[[U†]]-modules

−−→
HM•(W ) : Z[[U†]] → Z[U−1

† , U†]/Z[U†]. (3.16)

Because of the module structure, the map
−−→
HM•(W ) is entirely determined by

the image of the generator 1 in the domain: the map is given by multiplication
by a fixed Laurent series (finite in the direction of negative powers of U†),
followed by projection to the quotient. If we take the coefficient of U−1

† , we
obtain an integer,

n = coeff
(−−→
HM•(W )(1); U−1

†

) ∈ Z. (3.17)

Our construction tells us that this integer n depends only on the original closed
4-manifold X and its homology orientation; and the only additional property of
X that we required was that b+(X ) ≥ 2. If we write 1̌ ∈

̂

HM •(S3) ∼= Z[[U ]]
for the generator of cohomology, we can rewrite this as

n = 〈−−→
HM•(W )(1), 1̌

〉
, (3.18)

where the angle brackets denote the pairing between Floer homology and coho-
mology of S3. What we have recovered here is the sum of the Seiberg–Witten
monopole invariants of the 4-manifold:
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Proposition 3.6.1. The invariant n just defined is equal to the sum over all
spinc structures sX of the invariants m(X , sX ), defined in Definition 1.5.3:
that is, 〈−−→

HM•(W )(1), 1̌
〉 =∑

sX

m(X , sX )

when W is obtained from X by removing two balls.

We give this invariant a name:

Definition 3.6.2. If X is a closed, oriented 4-manifold with b+(X ) ≥ 2, we
write

m(X ) =
∑
sX

m(X , sX )

for the sum of the monopole invariants of X taken over all isomorphism classes
of spinc structures. ♦

Thus we can write the result of the proposition above as:

m(X ) = 〈−−→
HM•(W )(1), 1̌

〉
. (3.19)

This discussion of invariants of closed 4-manifolds can be extended by con-
sidering the situation in which a 4-manifold X is divided into two components
X1, X2 by a 3-manifold Y , with ∂X1 = Y and ∂X2 = −Y . If we remove a single
ball from each, we obtain cobordisms

W1 : S3 → Y

W2 : Y → S3.

The composite cobordism W = W2 �W1 is a cobordism from S3 to S3 obtained
by removing two balls from X . If we choose homology orientations for the two
cobordisms, then their composite determines a homology orientation for W and
hence for X . Then, if b+(X1) ≥ 2, we can write:

m(X ) = 〈−−→
HM•(W )(1), 1̌

〉
= 〈 ̂

HM•(W2) � −−→HM•(W1)(1), 1̌
〉

= 〈−−→
HM•(W1)(1),

̂

HM •(W2)(1̌)
〉
.
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Here the angle brackets denote pairings between a Floer homology class on the
left, and a Floer cohomology class on the right. In this way, the invariant of X
is expressed as a pairing between an element of

̂

HM•(Y ) depending only on
X1, and an element of

̂

HM •(Y ) depending only on X2. Note that if we choose a
homology orientation µ for Y , then we can regard the invariant of X2 as living
in a homology group, using the duality isomorphism

ω̂µ : ĤM•(−Y ) ∼=

̂

HM •(Y ).

This allows us to write the formula as

m(X ) = 〈−−→
HM•(W1)(1), ĤM•(W †

2 )(1)〉ωµ ,

where the pairing

〈−,−〉ωµ :

̂

HM•(Y )× ĤM•(−Y )→ Z (3.20)

is defined using ω̂µ. There is a similar pairing formula when b+(W2) ≥ 2: we
can write

m(X ) = 〈
ĤM•(W1)(1),

−−→
HM •(W2)(1̌)

〉
,

which is a pairing between an element of ĤM•(Y ) and an element of ĤM •(Y ).
In the case that b+(X1) and b+(X2) are both at least 1, there is a symmetrical

way of writing this formula. We introduce:

Definition 3.6.3. We define HM•(Y ) as the image of j∗ :

̂

HM•(Y )→ ĤM•(Y )

and we call this the reduced Floer homology group of Y . ♦

If b+(X1) ≥ 1, then we have seen that the element ĤM•(W1)(1) in ĤM•(Y ) is
in the image of j∗: this followed from Proposition 3.5.2 and a diagram chase.
So we have a well-defined invariant:

Definition 3.6.4. Let X be an oriented 4-manifold with connected boundary
Y , and suppose b+(X ) ≥ 1. Given a homology orientation of X , we define

ψX ∈ HM•(Y )

to be the element ĤM•(W )(1) in HM•(Y ) ⊂ ĤM•(Y ), where W is the
complement of a ball in X , regarded as a cobordism from S3 to Y . ♦
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In the situation that ∂X1 = Y and ∂X2 = −Y with b+ ≥ 1 on both sides, we
have elements

ψX1 ∈ HM•(Y ), ψX2 ∈ HM•(−Y ).

Because of the diagram (3.5), the pairing (3.20) gives rise to a pairing of the
reduced groups,

〈−,−〉ωµ : HM•(Y )× HM•(−Y )→ Z, (3.21)

and we have the pairing formula

m(X ) = 〈
ψX1 ,ψX2

〉
ωµ

. (3.22)

In this formula, the homology orientation of X is constructed using the given
homology orientations of the two pieces and the homology orientation µ of Y .

The invariant m(X ) has contributions only from the spinc structures sX for
which the corresponding moduli space on X is zero-dimensional. We can also
form the similar quantity

m(ue
2 |X ) =

∑
sX

m(ue
2 |X , sX )

involving the moduli spaces of dimension 2e: see Definition 1.5.4. There are
similar pairing formulae for this quantity. For example, in the situation of (3.22),
we can also write

m(ue
2 |X ) = 〈

U e
†ψX1 ,ψX2

〉
µ

. (3.23)

Remark. The reduced Floer group HM•(Y ) is always of finite rank, unlikê

HM•(Y ), for example. This is stated and proved as Proposition 22.2.3, in
Subsection 22.2.

3.7 Floer homology with local coefficients

When a closed 4-manifold X is decomposed along Y into two pieces X1 and
X2, the formula (3.22) expresses the invariant m(X ) (equal to the sum of the
invariants m(X , sX ), by Proposition 3.6.1) in terms of invariants ψX1 , ψX2 of
the two pieces, each taking values in the reduced Floer groups of their boundary
manifold. This formula has two shortcomings. First, it is a formula only for the
sum m(X ), and does not by itself allow us to recover the monopole invariant



70 I Outlines

m(X , sX ) for a particular spinc structure. Second, the formula can be applied
only when b+(X1) and b+(X2) are both positive. There are alternative versions
when just one b+(Xi) is at least 2 (see above), but these versions are still
insufficient to deal with all cases. The issue is that b+ is not additive. For the
invariant m(X ) to be defined, we need b+(X ) ≥ 2; but such an X may be
decomposed along Y into two pieces with b+(X1) = b+(X2) = 0. In such
a case, we have not yet provided a formula for m(X ) in terms of invariants
of the two pieces. A particularly simple illustration of the non-additivity is the
decomposition of the manifold X = #k(S2×S2) into pieces X1, X2 both of which
are boundary-connected sums �k(D2 × S2). The manifold X has b+(X ) = k,
but the two pieces each have I2(Xi) = 0.

These two shortcomings, though apparently of rather different origin, are both
remedied by a single device. Recall that the Floer groups

̂

HM•(Y ) and their
companions arise from the Morse complex of a partially defined flow on a space
Bσ (Y ). If we introduce a local system of groups on this space, say �, we can
introduce the Morse complex with coefficients in � (see Subsection 2.7 for the
finite-dimensional analog), and so define Floer homology groups

̂

HM•(Y ;�),
ĤM•(Y ;�) and HM •(Y ;�).

The components of the space Bσ (Y ) have the homotopy type described by
(3.6), and in particular their fundamental groups are isomorphic to H 1(Y ; Z).
Up to isomorphism, we can specify a local system of groups (on one or all
components) by specifying the fiber �0 at a point and describing a homomor-
phism from H 1(Y ; Z) to the group of automorphisms of �0, to specify the
monodromy of the local system around loops in Bσ (Y ). As a particular case,
we can take the fiber to be R, so that the monodromy data is a homomor-
phism χ : H 1(Y ; Z) → R×. In terms of de Rham representatives, the sort of
homomorphism ξ that we deal with can be expressed as

χ : [α] �→ exp
∫
η

α,

where η is a smooth singular 1-cycle in Y with real coefficients. (Our choice to
express this map in terms of a singular 1-cycle, rather than, say, a smooth closed
2-form dual to [η], is a matter of convenience.) In Subsection 22.6, we will carry
out this program, and show (amongst other things) how such a 1-cycle η gives
rise canonically to a local system �η on Bσ (Y ) (rather than just an isomorphism
class of local systems), and we shall construct Floer groups

̂

HM (Y ;�η) and so
on. At present, we are content to describe the formal properties of the resulting
groups, as we have done for the Floer groups with Z coefficients. This we do
in the present subsection. In the following two subsections, we will show how
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local coefficients can be used to overcome the weaknesses of the pairing formula
(3.22). We use 	i(Y ; R) for the space of C∞ singular i-chains on Y with real
coefficients, and Zi(Y ; R) for the subgroup of chains.We also write, for example,
Zi(X , Y ; R) for the relative cycles: the chains η in X with ∂η ∈ Zi−1(Y ; R).

To begin the summary, we can state that for each cycle η in Z1(Y ; R), there
is a long exact sequence of real vector spaces

· · · i∗−→

̂

HM•(Y ;�η)
j∗−→ ĤM•(Y ;�η)

p∗−→ HM •(Y ;�η)
i∗−→ · · · ,

with a similar sequence for cohomology. The grading set is π0(�(Y )) as before.
In the case that η is zero, these groups are the tensor products

̂

HM•(Y )⊗R etc. If
η and η′ are homologous, then the corresponding Floer groups are isomorphic.
But the isomorphism is not canonical. If we are given θ ∈ 	2(Y ; R) with ∂θ =
η − η′, then we can use θ to determine a canonical isomorphism. This is why
the notation for the group involves the cycle η and not just its homology class.
There is a pairing between Floer homology and cohomology which provides
isomorphisms of real vector spaceŝ

HM •(Y ;�−η) ∼=
̂

HM•(Y ;�η)
∗

ĤM •(Y ;�−η) ∼= ĤM•(Y ;�η)
∗

HM •(Y ;�−η) ∼= HM •(Y ;�η)
∗.

⎫⎪⎪⎬⎪⎪⎭ (3.24)

Most of the previous structure carries over with little change. For example,
a homology orientation for Y allows the definition of duality isomorphisms
forming a diagram like (3.5) (in which the third square anti-commutes); and
there are cup and cap products, so that the Floer cohomology groups with
coefficients �η, for example, are modules for the ring A(Y )⊗ R.

Consider next an oriented cobordism W from Y0 to Y1, equipped with a
homology orientation. Let η0 and η1 be C∞ singular 1-cycles in Y0 and Y1. In
order to obtain a homomorphism between the corresponding Floer groups, we
need to specify an additional piece of data. When the coefficients were simply Z,
we explained that the map

̂

HM•(W ) associated to a cobordism arises formally
from the restriction map r described in (3.13). In line with the discussion for the
finite-dimensional case from Subsection 2.8, we would expect that to extend
this construction to local coefficients, we would need to specify an isomorphism
on M(W ),

r∗(�η0)→ r∗(�η1),
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between the pull-backs of the two local systems. We shall see in Subsection 23.3
how we can write down such an isomorphism, given a C∞ singular 2-chain ν

on W which provides a homology between η0 and η1:

ν ∈ Z2(W , ∂W ; R),

∂ν = η1 − η0.

We shall write the resulting isomorphism between the pull-backs as

�ν : r∗(�η0)→ r∗(�η1).

The existence of such a ν constrains the homology classes [ηi]. When a ν

exists, it determines (as our discussion is meant to explain) homomorphisms of
R[[U†]]-modules ̂

HM•(W ;�ν) :

̂

HM•(Y0;�η0)→

̂

HM•(Y1;�η1)

ĤM•(W ;�ν) : ĤM•(Y0;�η0)→ ĤM•(Y1;�η1)

HM •(W ;�ν) : HM •(Y0;�η0)→ HM •(Y1;�η1)

commuting with i∗, j∗ and p∗, with dual maps on the cohomology groups. The
construction of

−−→
HM•(W ) carries over also, so if b+(W ) ≥ 2 we have maps

−−→
HM•(W ;�ν) : ĤM•(Y0;�η0)→

̂

HM•(Y1;�η1)

−−→
HM •(W ;�ν) :

̂

HM •(Y1;�η0)→ ĤM •(Y0;�η1).

We state a proposition with a few important properties.

Proposition 3.7.1.

(i) Let W : Y0 → Y1 be a cobordism and ν, ν′ be elements of Z2(W , ∂W ; R)

whose difference is a boundary:

∂ν = ∂ν′ = η1 − η0

ν′ = ν + ∂θ .

Then ̂

HM•(W ;�ν) =

̂

HM•(W ;�ν′)

as homomorphisms from

̂

HM•(Y0;�η0) to

̂

HM•(Y1;�η1). The same holds

for ĤM•, HM • and
−−→
HM• when defined.
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(ii) Suppose W is the composite of two cobordisms W1 : Y0 → Y1 and W2 :
Y1 → Y2, and let W be equipped with the composite homology orientation.
Let νi belong to Z2(Wi, ∂Wi; R), and suppose

∂ν1 = η1 − η0

∂ν2 = η2 − η1

ηi ∈ 	1(Yi; R), i = 0, 1, 2.

Let ν = ν1 + ν2 ∈ Z2(W , ∂W ; R). Then we havê

HM•(W ;�ν) =

̂

HM•(W2;�ν2) �

̂

HM•(W1;�ν1)

as homomorphisms

̂

HM•(Y0;�η0)→

̂

HM•(Y2;�η2). The same holds with

ĤM• or HM • in place of

̂

HM•; and the composition laws for
−−→
HM•(W , ν)

hold also, when they make sense.
(iii) Let W † : −Y1 → −Y0 be the cobordism obtained from W by switching

ends. Let W be given a homology orientation, and let µ0, µ1 be homology
orientations of the two ends, used to determine a homology orientation of
W †. Then ̂

HM•(W †;�ν) = ω̌−1
µ0

ĤM •(W ;�ν)ω̌µ1

ĤM•(W †;�ν) = ω̂−1
µ0

̂

HM •(W ;�ν)ω̂µ1

HM •(W †;�ν) = ω̄−1
µ0

HM •(W ;�ν)ω̄µ1 .

Local coefficients can also be combined with the generalized cap and
cup products described in Theorem 3.4.4. Thus for a in A†(W ) we have
homomorphisms

̂

HM•(a |W ;�ν) and so on. We formulate this eventually, as
Theorem 23.3.4, later in the book.

3.8 Local coefficients and invariants of closed four-manifolds

Let X be a closed, oriented 4-manifold with b+(X ) ≥ 2. We can combine the
invariants m(X , sX ) to form a function on H2(X ; R), by writing

m(X , h) =
∑
sX

m(X , sX ) exp〈c1(sX ), h〉, h ∈ H2(X ; R), (3.25)

where the angle brackets denote pairing between cohomology and homology.
When h is zero, this recovers the sum m(X ). If H2(X ; Z) is torsion-free, so
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that a spinc structure sX is entirely determined by the image of c1(sX ) in real
cohomology, then knowing m(X , h) as a function on H2(X ; R) determines the
individual monopole invariants m(X , sX ).

Now let W : S3 → S3 be the cobordism obtained by removing two balls
from X , and let ν be a cycle in Z2(W ; R). If b+(X ) ≥ 2, we have a map

−−→
HM•(W ;�ν) : ĤM•(S3)⊗ R →

̂

HM•(S3)⊗ R.

By Proposition 3.7.1, this map depends only on the homology class [ν] in
H2(W ; R) ∼= H 2(X ; R). Using the pairing between Floer homology and Floer
cohomology, we can use this map to form the quantity〈−−→

HM•(W ;�ν)(1), 1̌
〉 ∈ R (3.26)

as in (3.18). The analog of Proposition 3.6.1 is now the following proposition.

Proposition 3.8.1. We have〈−−→
HM•(W ;�ν)(1), 1̌

〉 = m(X , [ν]),

where the right-hand side is defined at (3.25).

Suppose now that X is decomposed as X1 ∪ X2 with ∂X1 = −∂X2 = Y ,
as before. Remove balls from X1 and X2 to obtain a composite cobordism
W = W2 � W1 from S3 to S3, and let ν ∈ Z2(W ; R) be a 2-cycle on W , and
suppose that ν = ν1 + ν2, with

νi ∈ Z1(Wi, Y ; R).

Let η = ∂ν1 = −∂ν2, regarded as a cycle in Z1(Y ; R). As in Subsection 3.6,
Proposition 3.8.1 and the composition laws of Proposition 3.7.1 lead to formulae

m(X , [ν]) = 〈−−→
HM•(W1;�ν1)(1),

̂

HM •(W2;�ν2)(1̌)
〉
, when b+(X1) ≥ 2,

and

m(X , [ν]) = 〈
ĤM•(W1;�ν1)(1),

−−→
HM •(W2;�ν2)(1̌)

〉
, when b+(X2) ≥ 2.

In the first case, the pairing refers to the map̂

HM•(Y ;�η)×

̂

HM •(Y ;�−η)→ R,
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and in the second case to the map

ĤM•(Y ;�η)× ĤM •(Y ;�−η)→ R.

Finally, there is the symmetrical form, the local coefficient version of (3.22).
Write

HM•(Y ;�η) = im
(
j∗ :

̂

HM•(Y ;�η)→

̂

HM•(Y ;�η)
)

as before, the reduced Floer homology groups with local coefficients. Given a
homology orientation of Y , we can use the duality isomorphisms ωµ to obtain
a pairing

〈−,−〉ωµ : HM•(Y ;�η)× HM•(−Y ;�−η)→ R.

If both b+(X1) and b+(X2) are positive, we can write

m(X , [ν]) = 〈
ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

. (3.27)

Here, for a general manifold X with connected boundary Y , satisfying b+(X ) ≥
1, we write

ψ(X ,ν) ∈ HM•
(
Y ;�η

)
(ν ∈ Z2(X , Y ; R)),

for the element ĤM•(W ;�ν)(1) in HM•(Y ;�∂ν) ⊂ ĤM•(Y ;�∂ν), just as we
did in Definition 3.6.4 when the coefficients were in Z. We can also introduce
the 2-dimensional class u2, and write

m(ue
2 |X , h) =

∑
sX

m(ue
2 |X , sX ) exp〈c1(sX ), h〉, h ∈ H2(X ; R). (3.28)

Then (3.27) has the generalization

m(ue
2 |X , [ν]) = 〈

U e
†ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

. (3.29)

3.9 Non-additivity of b+

We now turn to the resolution of the second of the two shortcomings of the
pairing formula (3.22): the fact that a closed manifold X with b+(X ) = 2
can be decomposed into two pieces Xi, each with b+ = 0, so that the invari-
ants ψXi are undefined. The key point is the following proposition, proved in
Subsection 35.2.



76 I Outlines

Proposition 3.9.1. If the homology class [η] ∈ H2(Y ; R) is non-zero, then
HM •(Y ;�η) = 0.

Thus when [η] is non-zero, the theory simplifies considerably. The groupŝ

HM•(Y ;�η), ĤM•(Y ;�η) and HM•(Y ;�η) are all isomorphic via j∗. We
can identify them all with HM•(Y ;�η), a vector space whose dual space is
HM •(Y ;�−η). The negative completion (Definition 3.1.3) has no effect, as
these vector spaces are all finite-dimensional. A homology orientation µ iden-
tifies HM •(Y ;�−η) with HM•(−Y ;�−η). In particular, if X is a manifold with
oriented boundary Y , and if ν is a relative 2-cycle on X with [η] = [∂ν] a
non-zero class in H1(Y ; R), then we can always construct an invariant

ψ(X ,ν) ∈ HM•(Y ;�η),

defining it as HM•(W ;�ν)(1), where W = X \ B4.
To see how this resolves the issue arising from non-additivity of b+, we need

the following lemma, whose proof we omit. (It is a straightforward application
of the Mayer–Vietoris sequence, and is equivalent to Novikov’s additivity for
the signature.) We state the lemma for a composite cobordism.

Lemma 3.9.2. Let W be an oriented 4-dimensional cobordism formed as the
composite of W1 : Y0 → Y1 and W2 : Y1 → Y2. Then

b+(W ) = b+(W1)+ b+(W2)+ i,

where i is the rank of the restriction map

H 2(W ; R)→ H 2(Y1; R),

or equivalently (via Poincaré duality) the map

∂1 : H2(W ; R)→ H1(Y1; R)

arising from the Mayer–Vietoris sequence of W1 ∪W2. �

The lemma tells us that if a closed manifold X is decomposed along Y into
pieces X1 and X2, then either b+ is additive or we can find a 2-dimensional class
[ν] on X such that ∂1[ν] is in a non-zero homology class in Y . In the latter case,
we can find a representative cycle ν = ν1 + ν2, where

νi ∈ Z2(Xi, Y ; R)

∂ν1 = −∂ν2 = η;
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and whatever the values of b+(Xi), we have invariants

ψ(X1,ν1) ∈ HM•(Y ;�η)

ψ(X2,ν2) ∈ HM•(−Y ;�−η)

because of the vanishing of HM •(Y ;�±η). We then have the following result:

Proposition 3.9.3. If b+(X ) ≥ 2 and the restriction ∂1[ν] is non-zero in
H1(Y ; R), then we have

m(X , [ν]) = 〈
ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

,

where ν = ν1+ ν2 as above, whether or not either of the Xi has b+ = 0. Under
the same hypotheses, we also have the generalization

m(ue
2 |X , [ν]) = 〈

U e
†ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

.

Whenever the rank i of the restriction map H 2(X ; R) → H 2(Y ; R) is non-
zero (that is, whenever b+ is non-additive), this proposition provides a pairing
formula for m(X , [ν]) for generic [ν] (all [ν] outside a proper linear subspace of
the space of H2(X ; R)); and this determines the function m(X , h) on H2(X ; R)

entirely. The above proposition is proved in Section 32.

Remarks. In the situation described in the proposition, the fact that the rank i
of the restriction map is non-zero implies that b+(X ) is at least 1, but does not
imply the hypothesis b+(X ) ≥ 2. There remains the case that b+(X ) = 1, the
rank i is 1 and b+(X1) = b+(X2) = 0. The right-hand side of the equality in the
proposition is then well-defined, and is an invariant of X , Y and ν. It is natural
to ask whether we can interpret it. There is an answer to this question, which can
be formulated by introducing the monopole invariants m for manifolds X with
b+ = 1: these invariants are dependent on the choice of metric and perturbing
2-form on X , as we briefly mentioned in our discussion after the statement of
Theorem 1.5.2. We will return to this matter in Subsection 27.5.

A second remark to make at this point is that, although the function
m(X ,−) on H 2(X ; R) determines the individual invariants m(X , sX ) when
H 2(X ; Z) is torsion-free, we cannot in general isolate the invariants belong-
ing to spinc structures whose difference element is torsion. (It is possible to
resolve this issue with a more elaborate version of Floer homology with local
coefficients.)
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3.10 The manifolds T 3 and S1 × S2

We now describe the Floer groups of the next two simplest manifolds after the
3-sphere. We begin with the 3-torus. On T 3, let ξ0 be an oriented 2-plane field
that is invariant under translation. The homotopy class of ξ0 in π0(�(T 3)) is
independent of the choice, and the orbit of this class under the action of Z on
π0(�(T 3)) is free.

Proposition 3.10.1. The group

̂

HM•(T 3) is isomorphic to Z3 in grading [ξ0]+j
for all j ≥ 0, and is zero otherwise. The group ĤM•(T 3) is isomorphic to Z3

in grading [ξ0] − j for all j ≥ 0, and is zero otherwise. The map j∗ is zero, so
HM•(T 3) = 0, and HM •(T 3) is isomorphic to Z3 in grading [ξ0] + j for all j.

The group of orientation-preserving diffeomorphisms of T 3 acts on the Floer
groups, and we have, for example

̂

HM[ξ0]+j(T
3) ∼=

{
H 1(T 3), j even, j ≥ 0

H 2(T 3), j odd, j ≥ 0

as representations of the diffeomorphism group. For ĤM•(T 3), the roles of j
even and odd are reversed.

We can also describe the module structure for these groups. In each case, the
map U† is simply a shift; so we can writê

HM•(T 3) ∼= (
Z[U−1

† , U†]/Z[U†]
)⊗ (

H 1(T 3)⊕ H 2(T 3)
)

ĤM•(T 3) ∼= Z[[U†]] ⊗
(
H 1(T 3)⊕ H 2(T 3)

)
HM •(T 3) ∼= Z[U−1

† , U†]] ⊗
(
H 1(T 3)⊕ H 2(T 3)

)
.

The action of A(T 3)† can be described by saying, for example, that for γ ∈
H1(T 3), the map

γ† :

̂

HM[ξ0]+1(T
3)→

̂

HM[ξ0](T 3)

coincides under the above isomorphisms with the map

H 2(T 3)→ H 1(T 3) = Hom(H1(T
3), Z)

given by identifying H 2(T 3) with skew bilinear forms on H1(T 3) and
contracting with γ .
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When we introduce local coefficients, the situation changes. Recall from
Proposition 3.9.1 that HM •(T 3;�η) vanishes if [η] is non-zero, so j∗ is an
isomorphism and we only have HM•(T 3;�η) to calculate.

Proposition 3.10.2. For any 1-cycle η with [η] = 0 in H1(T 3; R), the Floer
groups with local coefficients �η are

HM[ξ ](T 3;�η) ∼=
{

R, [ξ ] = [ξ0]
0, otherwise.

The diffeomorphisms of T 3 which preserve orientation and preserve η act
trivially on HM•(T 3;�η).

The next manifold to consider is S1× S2. Let ξ0 be an oriented 2-plane field
on this manifold that has Euler class zero and is invariant under translations
in the S1 coordinate. The homotopy class [ξ0] is uniquely determined by these
conditions, and the orbit of this class under the Z action is again free. With Z

coefficients, the description of the Floer groups of S1 × S2 is very similar to
the case of T 3.

Proposition 3.10.3. The group

̂
HM•(S1 × S2) is isomorphic to Z in grading

[ξ0] + j for all j ≥ 0, and is zero otherwise. The group ĤM•(S1 × S2) is
isomorphic to Z in grading [ξ0] − j for all j ≥ 0, and is zero otherwise. The
map j∗ is zero, so HM•(S1 × S2) = 0, and HM •(S1 × S2) is isomorphic to Z

in grading [ξ0] + j for all j.

Again, the action of U† is by a shift in each case. If γ is a generator of
H1(S1 × S2), then the map

γ† :

̂

HM[ξ0]+1(S
1 × S2)→

̂

HM[ξ0](S1 × S2)

is an isomorphism, as is

γ† : ĤM[ξ0](S1 × S2)→ ĤM[ξ0]−1(S
1 × S2).

When we twist the coefficients, all the Floer groups vanish:

Proposition 3.10.4. If [η] = 0, then HM•(S1 × S2;�η) = 0.
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3.11 Simple vanishing theorems

The most straightforward application of the pairing formulae is to prove the
vanishing of the monopole invariants of a closed manifold X when it is decom-
posed along a 3-manifold Y for which an appropriate Floer group is zero. We
give a proposition with three variations on this theme, all of which follow
immediately from our pairing formulae.

Proposition 3.11.1. Let X be a closed, oriented 4-manifold with b+(X ) ≥
2, and suppose that X = X1 ∪ X2 with ∂X1 = −∂X2 = Y , a connected
3-manifold.

(i) If HM•(Y ) is zero, and b+(X1) and b+(X2) are both positive, then
m(X ) = 0.

(ii) Suppose the Mayer–Vietoris map H2(X ; R) → H1(Y ; R) is trivial. If
HM•(Y ) is zero, and b+(X1) and b+(X2) are both positive, then the
function m(X , h) is identically zero on H 2(X ; R)

(iii) Suppose the Mayer–Vietoris map ∂1 : H2(X ; R) → H1(Y ; R) is non-
trivial, and suppose that HM•(Y ;�η) is zero for at least one non-zero [η]
in the image of ∂1. Then the function m(X , h) on H2(X ; R) is identically
zero, without any hypothesis on b+(Xi).

Proof. Only the third part needs further comment. Forη belonging to a non-zero
class, the vanishing of HM•(Y ;�η) is the same as the vanishing of

̂
HM•(Y ;�η),

which is equivalent to saying that the complex defining this group is exact. As
η varies, only the differentials vary, not the generators; so this vanishing is
an open condition. So HM•(Y ;�η) will vanish for all [η] in an open subset
U of H1(Y ; R). The analytic function m(X , h) will therefore vanish for all h
such that ∂1h ∈ U . Since this is an open set, the analytic function vanishes
identically. �

Remark. The vanishing of m(X , h) on H2(X ; R) is equivalent to the statement∑
l∈T

m(X , sX + l) = 0

for all spinc structures sX on X , where T ⊂ H 2(X ; Z) is the torsion subgroup.

The three 3-manifolds for which we have described the Floer group provide
illustrations of the three parts of this proposition. We state these illustrations as
three corollaries.

Corollary 3.11.2. If X is the union of X1 and X2 with common boundary T 3,
and b+(Xi) ≥ 1 for i = 1, 2, then m(X ) = 0. �
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Corollary 3.11.3. If X is a connected sum of manifolds X1 and X2 with
b+(Xi) ≥ 1 for i = 1, 2, then m(X , h) is identically zero. �

Corollary 3.11.4. If X is the union of X1 and X2 with common boundary S1×S2,
and the homology class of the S2 is non-zero in H2(X ; R), then m(X , h) is
identically zero. �

The last two of these three corollaries have long histories, going back to Don-
aldson’s vanishing theorem for the instanton invariants of a connected sum [20].
Corollary 3.11.2 is of a different nature from the other two: it reflects the cancel-
lation of terms in the sum defining m(X ). The invariants m(X , sX ) belonging
to individual spinc structures may well be non-zero under the hypotheses of the
corollary. Elliptic surfaces provide an example of this phenomenon: see [118]
and Section 38.

3.12 Other variants

One of the ways that the Morse theory of the Chern–Simons–Dirac function L
on the manifold Bσ (Y ) is different from the usual setup for Morse theory is that
L is not in general a single-valued real function on Bσ (Y ) if b1(Y ) is non-zero:
we must instead define it as a circle-valued function. The derivative of the func-
tional is formally a closed 1-form with non-trivial periods. Finite-dimensional
Morse theory for circle-valued functions was developed by Novikov in [87].
With appropriate adaptations, the Morse complex still produces topological
invariants, but it is clear that one should expect these invariants to depend on
the periods of the closed 1-form.

The simplest example already illustrates this phenomenon. One can take the
space S1, with the identity map as a circle-valued Morse function. There are
no critical points, and it is clear that the Morse complex will not compute the
homology groups of the circle in the same way that they are obtained from an
ordinary Morse function.

With monopole Floer homology, it is similarly possible to consider pertur-
bations of the functional L which change the periods. We call these non-exact
perturbations of the functional. In Section 29 we will investigate under what
circumstances we can still construct a Morse complex.

A particularly interesting case occurs when one perturbs L so as to make the
periods zero, to obtain a single-valued function on Bσ (Y ). We call such a pertur-
bation balanced. For a balanced perturbation, there is a Morse complex obtained
from Bσ (Y )with coefficients Z. We call the resulting Floer groups the balanced
Floer groups, and denote them by

̂

HM•(Y , cb), ĤM•(Y , cb) and HM •(Y , cb).
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(The notation cb stands for the period class of the balanced perturbation.) These
groups share some of the formal properties of the ordinary Floer groups, though
not the duality isomorphisms ωµ. On the basis of the simplest calculations, it
is natural to guess that these groups are the same as the Heegaard homology
groups introduced by Ozsváth and Szabó in [93]. More specifically, it appears
likely that there are isomorphismŝ

HM•(Y , cb) ∼= HF+(Y )

ĤM•(Y , cb) ∼= HF−(Y )

HM •(Y , cb) ∼= HF∞(Y ),

where the groups on the right are the Heegaard homology groups, in the notation
used by Ozsváth and Szabó. When b1(Y ) is zero, the balanced Floer groups
coincide with the ordinary Floer groups that we have been considering up
to now.

Notes and references for Chapter I

The Seiberg–Witten equations were introduced to mathematicians in Witten’s
paper [125], and since then there have been several good expositions of the
material outlined in Section 1: see [70, 76, 77, 86] and [117]. The fact that
w2(X ) always has an integer lift if X is of dimension 4 appears to be due to
Whitney, with an alternative argument having been given by Hirzebruch and
Hopf in [52].

The term “basic class” was introduced in [61], in connection with a structure
theorem for Donaldson’s polynomial invariants. The phrase has since been
adapted to the Seiberg–Witten invariants.

Floer’s adoption of Morse theory as the starting point for what is now called
Floer homology was motivated by Witten’s paper [124], which contains the
first written account of how the homology of a manifold can be recovered from
the “Morse complex”. This formulation appears to have been known earlier
to topologists familiar with the more traditional exposition of the relationship
between the gradient flow of a Morse function and the topology of a manifold,
namely the cell decomposition which arises from the unstable manifolds of
the critical points, as described in [75]. See [13] for an interesting survey. The
variant of Morse theory for manifolds with boundary that we discuss here seems
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not to have appeared in print before, but is also probably not new. For example,
Bott writes in [13]:

… Thom does his mathematics with his fingers and hands, and I still recall the
motions of his hands as he taught me that for manifolds with boundary, only half of
the critical points on the boundary really “counted”.

This suggests that the role of what we have called boundary-stable and
boundary-unstable critical points was understood, at least at the level of the
Morse inequalities.

The description of the formal structure of Seiberg–Witten Floer homology
in Section 3 has many antecedents. Floer introduced his “instanton” homol-
ogy groups I∗(Y ) in [32], and showed that cobordisms between 3-manifolds
gave rise to homomorphisms between their instanton homology groups. Floer
restricted his attention initially to 3-manifolds Y with H1(Y ) = 0; and this
allowed him to define a topological invariant I∗(Y ) using only the irreducible
critical points. It was soon realized that a complete theory would require a
construction which took account of the reducibles, but a complete theory is
still lacking in the instanton case, due to the difficulties which arise from the
phenomenon of bubbling in the instanton moduli spaces.

In the case of instanton homology, an understanding emerged that, when
incorporating the reducibles, one should naturally construct two, dual variants of
the Floer groups: such constructions appear in the work of Donaldson, Frøyshov
and Taubes [22, 40, 113]. This is the origin of our Seiberg–Witten Floer groupŝ

HM•(Y ) and ĤM•(Y ). For the case of rational homology spheres, a related
Seiberg–Witten Floer theory is developed in [71]. The interesting special case
of gluing along 3-tori was treated in detail in [118].

The importance of a third group (which appears as HM •(Y ) in our version)
became apparent with the work of Ozsváth and Szabó [93], when they developed
their Heegaard Floer homology groups and successfully exploited the long exact
sequence relating the three variants.



II

The Seiberg–Witten equations
and compactness

In this chapter we introduce the Chern–Simons–Dirac functional and discuss
some of its basic properties. In particular, we relate the gradient flow of
the Chern–Simons–Dirac functional to the 4-dimensional Seiberg–Witten
equations on a cylinder I × Y . For a pair (A,�) consisting of a spinc connec-
tion and a spinor on a 4-manifold with boundary, we introduce two notions of
energy, the analytic energy and the topological energy, related by an inequality

Ean(A,�) ≥ E top(A,�).

We will see that solutions to the Seiberg–Witten equations are characterized by
equality here. In the case that the 4-manifold is a cylinder, the topological energy
is simply the difference in the value of the Chern–Simons–Dirac functional
between the two ends. In Subection 5.1, we prove a compactness theorem
for solutions to the equations on a general 4-manifold with boundary, which
states that a sequence of solutions with bounded energy has a subsequence that
converges on interior domains after gauge transformation.

Motivated by the ideas from finite-dimensional Morse theory which we
described in Subsection 2.5, Section 6 introduces the blown-up configura-
tion space in both the 3- and 4-dimensional contexts. We will examine how
the formal gradient flow of the Chern–Simons–Dirac functional gives rise to
flow also on the blown-up configuration space. After a discussion of unique-
continuation results for our equations in Section 7, the final section of this
chapter proves a refinement of the compactness theorem in the blown-up
setting.

84
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4 Basic terms

4.1 The Chern–Simons–Dirac functional

Let Y be a closed, connected, oriented Riemannian 3-manifold. For each isomor-
phism class of spinc structure s on Y , we choose a reference spinc connection
B0 = B0(s) on a spin bundle S = S(s).

Definition 4.1.1. The Chern–Simons–Dirac functional is a function of a spinc

connection B and a section � of the corresponding spin bundle. It is defined by

L(B,�) = −1

8

∫
Y
(Bt − Bt

0) ∧ (FBt + FBt
0
)+ 1

2

∫
Y
〈DB�,�〉 dvol.

Here Bt is the connection in �2S, as in Notation 1.2.1, and FBt is the curvature
of Bt , as an imaginary-valued 2-form. We denote by C, or C(Y , s), the space on
which L is defined:

C(Y , s) = { (B,�) | B is a spinc connection and � ∈ C∞(Y ; S) }. (4.1)

Thus we have a map L : C(Y , s)→ R. ♦

Using (1.6), we can regard C(Y , s) as an affine space for which the underlying
vector space (or the tangent space at any point) is

T(B,�)C(Y , s) = C∞(Y ; iT ∗Y ⊕ S).

It is sometimes useful to have a notation for the space of spinc connections also:
we write

A(Y , s) = {B | B is a spinc connection }
= B0 + C∞(Y ; iT ∗Y )⊗ 1S . (4.2)

On the affine space C(Y , s) we can compute the formal gradient of L with
respect to the L2 inner product. Before doing so, we should note that, with
our convention that the inner product on gl(S) is given by 1

2 tr(a∗b) (see
Subsection 1.1), we have

‖B̃− B‖L2 = ‖b‖L2
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when B̃ = B + b ⊗ 1S . So the appropriate L2 norm on C∞(Y ; iT ∗Y ⊕ S) is
just ‖b‖2 + ‖ψ‖2, without any factor of 2. With this remark out of the way, let
(b ⊗ 1S ,ψ) be a small change in (B,�). Then the change in Bt is 2b, and to
first order the change in L is

− 1

8

∫
Y

(
2b ∧ (FBt + FBt

0
)+ (Bt − Bt

0) ∧ (2 db)
)

+ 1

2

∫
Y
〈ρ(b)�,�〉 dvol+

∫
Y

Re〈ψ , DB�〉 dvol,

which we can rewrite using Stokes’ theorem as

−1

2

∫
Y

b ∧ FBt +
∫

Y
〈b, ρ−1(��∗)0〉 dvol+

∫
Y

Re〈ψ , DB�〉 dvol.

Here (��∗)0 denotes the traceless part of the hermitian endomorphism ��∗
of S, and ρ−1(��∗)0 is an imaginary-valued 1-form. Finally we rewrite
this as

1

2

∫
Y
〈b, ∗FBt 〉 dvol+

∫
Y
〈b, ρ−1(��∗)0〉 dvol+

∫
Y

Re〈ψ , DB�〉 dvol.

So we have a formula for the gradient

grad L = (
( 1

2 ∗ FBt + ρ−1(��∗)0)⊗ 1S , DB�
)

(4.3)

as a section

grad L : C(Y , s)→ TC(Y , s).

(Note that the chosen base connection B0 does not appear in the formula for the
gradient, reflecting the fact that a change in our choice of B0 changes L only by
the addition of a constant.) Remembering that ρ(∗α) = −ρ(α), we can write
the equations for a stationary point (where the right-hand side of (4.3) is zero)
in the following form.

Definition 4.1.2. The equations

1
2ρ(FBt )− (��∗)0 = 0

DB� = 0
(4.4)

for a pair (B,�) ∈ C(Y , s) are the monopole equations, or the Seiberg–Witten
equations, on Y for the spinc structure s. ♦
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The space C(Y , s) of pairs (B,�) is acted on naturally by the automorphism
group of the spinc structure, the gauge group

G(Y ) = Map(Y , S1).

(See Subsection 1.1 and (1.8).) The action is given by

u : B �→ B− u−1du⊗ 1S , � �→ u�. (4.5)

The group G(Y ) is not necessarily connected: the group of components of
Map(Y , S1) is H 1(Y ; Z), and we write [u] ∈ H 1(Y ; Z) for the cohomology
class corresponding to u. In terms of de Rham cohomology, regarding S1 as the
circle in C, we can represent [u] by the real 1-form (1/2π i)u−1du. Note that,
as u runs through G(Y ), the forms u−1du which appear in the formula (4.5) run
through the set of all closed imaginary-valued 1-forms whose de Rham classes
lie in 2π iH 1(Y ; Z).

The functional L is not invariant under the action of G(Y ) in general:

Lemma 4.1.3. For (B,�) ∈ C(Y , s) and u : Y → S1 an element of G(Y ),
we have

L(u(B,�))− L(B,�) = 2π2([u] � c1(S)
)[Y ],

where [u] denotes the homotopy class of u : Y → S1 as an element of H 1(Y , Z).

Proof. We compute the change in L:

L(u(B,�))− L(B,�) = −1

8

∫
Y
(−2u−1du) ∧ (FBt + FBt

0
)

= 1

2

∫
Y

u−1du ∧ FBt
0

= 1

2

(
(2π i[u])� (−2π ic1(S))

)[Y ]
= 2π2([u] � c1(S)

)[Y ].
This is the assertion in the lemma. �

The formula shows that L is invariant under the action of the identity
component of the group G(Y ), and furthermore defines a map

L̄ : C(Y , s)→ R/(2π2Z)
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which is invariant under the full group. Note that in the case that b1(Y ) = 0,
the function L on C(Y , s) is invariant under all of G(Y ). More generally, this is
the case whenever s is a spinc structure for which c1(S) is torsion.

4.2 Reducible solutions

Following the notation that we introduced in the 4-dimensional case, we shall
say that a pair (B,�) in C(Y , s) is reducible if � is zero. If such a reducible
configuration is also a solution of the 3-dimensional Seiberg–Witten equations
(4.4), then the connection Bt in �2S is flat, which in turn means that c1(S)
is a torsion class in H 2(Y ; Z). Conversely, if s is a spinc structure with c1(S)
torsion, then there are reducible solutions:

Proposition 4.2.1. If s is a spinc structure on Y with c1(S) torsion, then there
exist reducible solutions (B, 0) to the Seiberg–Witten equations in C(Y , s). If
(B1, 0) is one such solution, then all others are of the form (B, 0) with B =
B1 + b⊗ 1S , with b a closed imaginary-valued 1-form.

Proof. We are simply seeking spinc connections B for which FBt is zero. If B0

is a base connection and we seek B in the form B0 + b⊗ 1S , then the equation
to be satisfied by b is 2db = −FBt

0
. The hypothesis that c1(S) is torsion means

that FBt
0

is exact, so the set of solutions is non-empty and consists of a single
coset of the space of closed forms. �

As pointed out in the previous subsection, a gauge transformation u in G(Y )

changes B by the addition of a closed form whose de Rham class lies in
2π iH 1(Y ; Z). Combining this observation with the proposition above, we can
state:

Corollary 4.2.2. If s is a spinc structure with c1(S) torsion, then the quotient
of the set of reducible solutions by the action of the gauge group G(Y ) can be
identified with the torus H 1(Y ; iR)/(2π iH 1(Y ; Z)). In particular, if b1(Y ) = 0,
then there is exactly one gauge orbit of reducible solutions to the Seiberg–Witten
equations in C(Y , s). �

4.3 The gradient flow and the four-dimensional equations

Having computed the gradient of L with respect to an L2 inner product at
(4.3) above, we now examine the formal, downward gradient flow, namely
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the equations

d

dt
B = −( 1

2 ∗ FBt + ρ−1(��∗)0)⊗ 1S

d

dt
� = −DB�.

(4.6)

The first of these two equations can be rewritten in terms of Bt rather than B;
their derivatives differ by a factor of 2:

d

dt
Bt = − ∗ FBt − 2ρ−1(��∗)0

d

dt
� = −DB�.

(4.7)

We can define a spinc structure on the cylinder

Z = R× Y

using the spinc structure defined by S and ρ on Y . For the spin bundle SZ =
S+⊕ S− on the cylinder, we take S⊕ S. (Of course, we omit from our notation
the pull-back or product that is really involved.) For the Clifford multiplication
ρZ : TZ → Hom(SZ , SZ ) we take

ρZ (∂/∂t) =
(

0 −1
1 0

)
ρZ (v) =

(
0 −ρ(v)∗

ρ(v) 0

)
for v ∈ TY .

(Compare this definition with the formulae (1.3).) As before, ρZ is extended to
forms, and gives for example an isomorphism

ρZ : �+ ⊗ C → sl(S+),

where �+ ⊂ �2 is the bundle of self-dual 2-forms on the 4-manifold.
A time-dependent spinc connection B on S gives a spinc connection A on SZ

whose t component is ordinary differentiation:

∇A = d

dt
+ ∇B. (4.8)

We say that a 4-dimensional spinc connection A on the cylinder Z is in temporal
gauge if it has this restricted form. With A as above, we have the Dirac operator
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D+A : �(S+) → �(S−), and its formal adjoint D−A . As S± are both identified
with (the pull-back of) S, we can write

D+A =
d

dt
+ DB.

We can also reinterpret the time-dependent spinor � on Y as giving rise to a
section � of S+ on the cylinder.

We can now reinterpret the gradient-flow equations in terms of these 4-
dimensional objects. If we write At for the 4-dimensional connection in �2S+,
then the curvature of this connection is

FAt = dt ∧
(

d

dt
Bt
)
+ FBt .

The 4-dimensional Hodge star of this 2-form, written out in terms of the star
operator ∗ on Y , is

∗4FAt = ∗
(

d

dt
Bt
)
+ dt ∧ ∗FBt ,

and so the self-dual part of FAt is

F+At = 1

2

(
∗
(

d

dt
Bt
)
+ FBt + dt ∧

(
d

dt
Bt + ∗FBt

))
.

The Clifford actions of these forms are related by

ρZ (F
+
At ) = −ρ

(
d

dt
Bt + ∗FBt

)
in sl(S+) ∼= sl(S). (The ρ on the right side is still the Clifford multiplication
on Y .) Thus we can write the gradient-flow equations (4.7) as the following
equations on the cylinder Z :

1

2
ρZ (F

+
At )− (��∗)0 = 0

D+A � = 0.
(4.9)

The equations (4.9) are precisely the (4-dimensional) Seiberg–Witten
equations (1.9) for the pair (A,�), that we introduced in Subsection 1.3.

In this way, a solution of the downward gradient-flow equation for the
functional L can be reinterpreted as a solution (A,�) to the 4-dimensional
Seiberg–Witten equations, with the additional property that the 4-dimensional
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connection A is in temporal gauge on the cylinder. If A is a general connection,
not in temporal gauge, we can write

A = B+ (c dt)⊗ 1S , (4.10)

where B is a time-dependent connection in S → Y and c is a time-dependent
element of C∞(Y ; iR), the dt component of the connection. If we write out the
4-dimensional Seiberg–Witten equations for a pair (A,�) in a form parallel to
(4.6), we obtain:

d

dt
B− dc = −

(
1
2 ∗ FBt + ρ−1(��∗)0

)
⊗ 1S

d

dt
� + c� = −DB�.

(4.11)

For a Riemannian 4-manifold X , not necessarily cylindrical, equipped with a
spinc structure sX , we write C(X , sX ) for the space on which the 4-dimensional
Seiberg–Witten equations are defined (cf. (4.1)):

C(X , sX ) = { (A,�) | A is a spinc connection and � ∈ C∞(X ; S+) }.

The equations are invariant under the action of the 4-dimensional gauge
group G(X ) = Map(X , S1). The left-hand sides of the equations (4.9) take
their values in

C∞(X ; i su(S+)⊕ S−).

As in Subsection 1.3, we write the equations as

F(A,�) = 0,

where

F(A,�) =
(

1

2
ρ
(
F+At

)− (��∗)0, D+A �

)
. (4.12)

4.4 Some notation

We have just noted the fact that, when a 4-manifold is a cylinder, say Z = I×Y ,
a time-dependent spinc connection B(t) (t ∈ I ) on a spin bundle S → Y gives
rise to a spinc connection A on Z in temporal gauge on the pull-back spin bundle
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(see (4.8)). Thus configurations (A,�) ∈ C(Z , sZ ), with A in temporal gauge,
correspond to smooth paths I → C(Y , s).

It is useful to have a notation for the opposite construction:

Definition 4.4.1. If (A,�) ∈ C(Z , sZ ), where Z = I × Y , we write (Ǎ, �̌) for
the corresponding path

(Ǎ, �̌) : I → C(Y , s).

That is, Ǎ(t) is the connection on Y obtained by restricting A to {t} × Y . Note
that the t component of A is lost, and cannot be recovered from Ǎ. ♦

With this definition we can write a general connection A on Z as

A = Ǎ+ c⊗ 1SX dt

where c ∈ C∞(Z ; iR). The distinction between � and �̌ is, of course, only a
change of viewpoint, and we will not always maintain a distinction.

We shall often write

γ = (A,�)

for a typical configuration on the cylinder, and we may then write γ̌ = (Ǎ, �̌)

for the corresponding path. If γ satisfies the 4-dimensional Seiberg–Witten
equations on the cylinder, F(γ ) = 0, we shall refer to γ as a trajectory (whether
or not γ is in temporal gauge).

4.5 Integration by parts

For the moment, we consider a compact, oriented Riemannian 4-manifold X
with boundary Y . If we start with a spinc structure sX = (SX , ρX ) on X , we can
use the outward normal !n to identify S+ and S− at the boundary:

ρX (!n) : S+|Y → S−|Y .

We therefore recover a spinc structure s = (S, ρ) on Y with S = S+|Y ∼= S−|Y
and Clifford multiplication ρ defined by

ρ(v) = ρX (!n)−1ρX (v). (4.13)
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Let A be a spinc connection on X , and let B be its restriction to the boundary Y .
We have the Lichnerowicz–Weitzenböck formula [66] for the Dirac operator
on S+, which tells us:

D−A D+A � = ∇∗A∇A�+ 1

2
ρX (F+At )�+ 1

4
s�, (4.14)

where s is the scalar curvature. In the absence of a boundary, we can take the
inner product with � and integrate by parts to obtain∫

X
|D+A �|2 =

∫
X
|∇A�|2 + 1

2

∫
X
〈�, ρX (F+At )�〉 + 1

4

∫
X

s|�|2.

When the boundary is non-empty, we pick up two boundary terms, coming from
the formulae∫

X
〈�,∇∗A∇A�〉 =

∫
X
|∇A�|2 −

∫
Y
〈�,∇A,!n�〉,∫

X
〈�, D−A D+A �〉 =

∫
X
|D+A �|2 −

∫
Y
〈ρX (!n)�, D+A �〉.

With our present conventions, the difference of the boundary terms can be
expressed using the boundary Dirac operator DB. In the case that the Riemannian
metric on X is cylindrical in a neighborhood of the boundary Y , the formula is

DB�|Y = ρX (!n)−1D+A �− ∇A,!n�,

as follows easily from the definition of the Dirac operator and (4.13). In the
general case, we have the following.

Lemma 4.5.1. Let X be a Riemannian 4-manifold with boundary Y , let A be a
spinc connection, D+A the 4-dimensional Dirac operator on sections of S+, and
let DB be the boundary Dirac operator, for the spinc connection B obtained on
the boundary. Then for any section � of S+, we have

DB(�|Y ) = ρX (!n)−1(D+A �)|Y − (∇A,!n�)|Y + (H/2)�|Y ,

where H is the mean curvature of the boundary. (The orientation convention
for mean curvature makes H negative in the case that X is the ball.)

Proof. Let e1, e2, e3 be an oriented orthonormal frame for TY whose covariant
derivative vanishes at some y ∈ Y . Then !n, e1, e2, e3 is an oriented frame for
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TX along Y . Let ν, e1, e2, e3 be the dual coframe. Along Y , the Levi-Cività
derivatives ∇X and ∇Y are related by

∇X ,ei V = ∇Y ,ei V +
∑

j

N (ei, ej)e
j(V )⊗ !n,

where V is a section of TY and N is the second fundamental form. The corre-
sponding spinc connections∇A and∇B, acting on sections of S+|Y , are therefore
similarly related by

∇A,ei� = ∇B,ei�+
1

2

∑
j

N (ei, ej)ρX (e j)ρX (ν)�,

because the element of so(4) given by

e j ⊗ !n− ν ⊗ ej

acts in the spin representation by (1/2)ρX (e j)ρX (ν). We now compute

D+A � = ρX (ν)∇A,!n�+
∑

i

ρX (ei)∇A,ei�

= ρX (ν)∇A,!n�+
∑

i

ρX (ei)∇B,ei�

+ 1

2

∑
i,j

ρX (ei)N (ei, ej)ρX (e j)ρX (ν)�

= ρX (ν)
(
∇A,!n�+ DB�− 1

2

∑
i

N (ei, ei)�
)

= ρX (ν)
(
∇A,!n�+ DB�− H

2
�
)

.

This is the formula claimed. �

So in the presence of boundary, the Lichnerowicz–Weitzenböck formula
(4.14) gives us∫

X
|D+A �|2 =

∫
X
|∇A�|2 + 1

2

∫
X
〈�, ρX (F+At )�〉 + 1

4

∫
X

s|�|2

+
∫

Y
〈�, DB�〉 −

∫
Y
(H/2)|�|2, (4.15)
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for all sections � of S+. The second term on the right-hand side appears again,
with the opposite sign, when we expand the L2 norm of the expression appearing
in the first of the two equations (4.9):∫

X

∣∣∣ 1
2ρX (F+At )− (��∗)0

∣∣∣2
= 1

4

∫
X
|ρX (F+At )|2 +

∫
X
|(��∗)0|2 − 1

2

∫
tr
(
ρX (F+At )(��∗)0)

= 1

2

∫
X
|F+At |2 + 1

4

∫
X
|�|4 − 1

2

∫
X
〈�, ρX (F+At )�〉

= 1

4

∫
X
|FAt |2 − 1

4

∫
X

FAt ∧ FAt + 1

4

∫
X
|�|4 − 1

2

∫
X
〈�, ρX (F+At )�〉.

(Again, our norm on sl(S+) is 1
2 tr(a∗b).) Combining this formula with the

previous one, and completing the square, we have the following version of the
formula.

Proposition 4.5.2. Let A be a spinc connection on a compact manifold X with
boundary Y , let B be the boundary spinc connection and DB the boundary Dirac
operator. Then for all sections � of S+ we have:∫

X

∣∣∣ 1
2ρX (F+At )− (��∗)0

∣∣∣2 + ∫
X
|D+A �|2

= 1

4

∫
X
|FAt |2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2 −

∫
X

s2

16

− 1

4

∫
X

FAt ∧ FAt +
∫

Y
〈�|Y , DB�|Y 〉 −

∫
Y
(H/2)|�|2.

�

(The quantity on the left in this formula is the L2 norm of F(A,�).)

Corollary 4.5.3. Solutions of the equations (4.9) on X are characterized by
the equality

0 = 1

4

∫
X
|FAt |2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2 −

∫
X

s2

16

− 1

4

∫
X

FAt ∧ FAt +
∫

Y
〈�|Y , DB�|Y 〉 −

∫
Y
(H/2)|�|2.

�
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We can gain some understanding of this formula by returning to the case that
the 4-manifold is a cylinder. Before doing so, we put the terms in the above
corollary in two groups, and make the following definition.

Definition 4.5.4. Let X be a compact Riemannian 4-manifold with oriented
boundary Y . For a configuration (A,�) ∈ C(X , sX ) we define the topological
energy and the analytic energy by the formulae:

E top(A,�) = 1

4

∫
X

FAt ∧ FAt −
∫

Y
〈�|Y , DB�|Y 〉 +

∫
Y
(H/2)|�|2

and

Ean(A,�) = 1

4

∫
X
|FAt |2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2 −

∫
X

s2

16
.

Here B is the boundary spinc connection as usual, and H is the mean curvature
of the boundary, which is zero in the cylindrical case. ♦

With these definitions, we can rephrase the above corollary as saying that
solutions are characterized by the equality Ean(A,�) = E top(A,�), while
Proposition 4.5.2 states that, in general,

Ean(A,�) = E top(A,�)+ ‖F(A,�)‖2. (4.16)

Now let us examine the meaning of the topological and analytic energy in
the cylindrical case, for the manifold Z = [t1, t2]×Y . The oriented boundary is
{t2}×Y ∪ {t1}× (−Y ), and the mean curvature H of the boundary is zero. The
term involving FAt ∧ FAt in E top(A,�) can be written as a boundary integral:

1

4

∫
Z

FAt ∧ FAt = 1

4

(∫
t2×Y

−
∫

t1×Y

)
(At − At

0) ∧ (FAt + FAt
0
). (4.17)

The topological energy is therefore twice the change in L:

E top(A,�) = 2(L(t1)− L(t2)), (4.18)

where L(ti) stands for L(Ǎ(ti), �̌(ti)). To understand the analytic energy in the
cylindrical case, we begin with the case that (A,�) is in temporal gauge and
so corresponds to a path γ̌ in C(Y ). Using (4.18), we can rewrite (4.16) in this
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case as

Ean(A,�) = 2(L(t1)− L(t2))+
∫ t2

t1
‖ d

dt γ̌ (t)+ grad L‖2 dt

= 2(L(t1)− L(t2))+
∫ t2

t1

(
‖ d

dt γ̌ (t)‖2 + ‖ grad L‖2
)

dt

+ 2
∫ t2

t1

〈 d
dt γ̌ (t), grad L

〉
dt

=
∫ t2

t1

(
‖ d

dt γ̌ (t)‖2 + ‖ grad L‖2
)

dt. (4.19)

What we have recovered here is the quite formal fact that solutions of the
downward gradient-flow equation are characterized by the equality

2(L(t1)− L(t2)) =
∫ t2

t1

(
‖ d

dt γ̌ (t)‖2 + ‖ grad L‖2
)

dt.

Although the right-hand side is equal to the analytic energy for solutions in
temporal gauge, it is not a gauge-invariant quantity. To derive a formula for
Ean for general configurations on the cylinder, we need to replace the integral
of ‖ d

dt γ̌ (t)‖2 by a gauge-invariant quantity. For general A, let Ǎ denote the
corresponding path of 3-dimensional connections, and let c : Z → iR be the
dt component of the connection as in (4.10):

∇A, d
dt
= d

dt
+ c⊗ 1S .

Then the quantity∫ t2

t1

∥∥∥∥ d

dt
Ǎ− dc⊗ 1S

∥∥∥∥2

dt +
∫ t2

t1

∥∥∥∥ d

dt
�̌+ c�̌

∥∥∥∥2

dt (4.20)

is (as the reader may verify) gauge-invariant; and it is evidently equal to the
integral of ‖ d

dt γ̌ (t)‖2 when c is zero. We have therefore verified:

Lemma 4.5.5. For configurations (A,�) on the cylinder Z = [t1, t2] × Y , the
analytic energy is given by the formula

Ean(A,�)

=
∫ t2

t1

∥∥∥∥ d

dt
Ǎ− dc⊗ 1S

∥∥∥∥2

dt +
∫ t2

t1

∥∥∥∥ d

dt
�̌+ c�̌

∥∥∥∥2

dt +
∫ t2

t1
‖ grad L‖2dt.

�
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The fact that the topological energy on the cylinder is equal to the change in
L means in particular that it only depends on the endpoints of the correspond-
ing path in C(Y , s). For a general 4-manifold with boundary, it is again true
that E top(A,�) depends only on the restriction of (A,�) to Y = ∂X . If (B,�)

denotes the restriction, then we have

E top(A,�) = −2L(B,�)+ C, (4.21)

where the constant C depends on the base connection B0 used to define L and
the topology of the spin bundle SX .

When we are considering solutions γ of the equations F(γ ) = 0, we may just
talk unambiguously of the energy of γ , written E(γ ), without distinguishing
between the topological and analytic energies.

4.6 Positive scalar curvature

In the case that the manifold X is closed, we can make further use of the formula
in Corollary 4.5.3. The two boundary terms in the formula are absent; and we
can combine the two expressions involving FAt using∫

X
|FAt |2 −

∫
X

FAt ∧ FAt = 2
∫

X
|F+At |2.

Thus solutions on a closed 4-manifold can be characterized by the identity

0 = 1

2

∫
X
|F+At |2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2 −

∫
X

s2

16
,

or

0 = 1

2

∫
X
|F+At |2 +

∫
X
|∇A�|2 + 1

4

∫
X
|�|4 + 1

4

∫
X

s|�|2.

From this, we deduce:

Proposition 4.6.1. On a closed 4-manifold X with non-negative scalar
curvature s, all solutions (A,�) to the equations (4.9) have � = 0. �

There is a variation of this argument, which uses the same basic
Lichnerowicz–Weitzenböck formula (4.14) in a different way, to reach the same
conclusion. For any configuration (A,�) on a 4-manifold X , we can calculate,
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using (4.14),

�|�|2 = 2〈�,∇∗A∇A�〉 − 2〈∇A�,∇A�〉
≤ 2〈�,∇∗A∇A�〉
= 2〈�, D−A D+A �〉 − 〈�, ρX (F+At )�〉 −

〈
�,

1

2
s�

〉
.

If (A,�) is a solution of the equations, then the first term on the last line is zero,
and we can substitute for ρX (F+At ) in the second term to obtain

�|�|2 ≤ −〈�, 2(��∗)0�〉 −
〈
�,

1

2
s�

〉
= −|�|4 −

〈
�,

1

2
s�

〉
.

Previously, we used an integrated version of essentially the same calculation.
We can, instead, use the maximum principle at this point. For example, if the
scalar curvature s is everywhere positive and s0 > 0 is its infimum, then we have

�|�|2 ≤ − s0

2
|�|2 (4.22)

from which it follows that � is identically zero (for otherwise, |�|2 achieves
a local maximum, where the left-hand side is non-negative and the right-hand
side is strictly negative). So we recover the result of Proposition 4.6.1 by this
route.

5 Compactness and properness

5.1 A compactness theorem

A basic compactness result for the Seiberg–Witten equations, F(A,�) = 0, on
a closed 4-manifold X , was stated without proof as Theorem 1.3.2: if (An,�n)

is any sequence of solutions, then there exist gauge transformations un ∈ G(X )

such that, after passing to a subsequence, the transformed solutions un(An,�n)

converge in the C∞ topology. Here we state and prove a version of this basic
result for solutions on a compact manifold with boundary, Theorem 5.1.1. When
the boundary is non-empty, an additional hypothesis is required: a bound on
the energy (see (5.1) below). The conclusion is also weaker: we have C∞
convergence only on interior domains.
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In the course of the proof of this theorem, and indeed for the sharpest
statement of the result itself, we need to introduce the Sobolev spaces Lp

k(X ),
defined for 1 ≤ p < ∞ and k ≥ 0 and any compact X as the completion of
C∞(X ) in the Lp

k norm

‖ f ‖p
Lp

k (X )
=
∫

X

(
| f |p + |∇f |p + · · · + |∇k f |p

)
dvol.

If f is a section of a bundle E with an inner product, and if a connection ∇A

on the bundle is given, then the Lp
k norm is defined similarly for sections f of

E; the space Lp
k(X ; E) is then defined as the completion of C∞(X ; E). We have

given the definition in the case that k is a non-negative integer: we shall also
have need of the Sobolev spaces L2

k for fractional (and in particular half-integer)
values of k. In the case of a closed manifold, these fractional Sobolev norms
can be defined using the pseudo-differential operator (1+�)k/2:

‖ f ‖L2
k
= ∥∥(1+�)k/2f

∥∥
L2 .

(In the case of integer k, this defines a norm equivalent to the previous formula.)
We can now state the compactness theorem.

Theorem 5.1.1. Let X be a compact Riemannian 4-manifold with boundary.
Then the following hold.

(i) For given C, there are only finitely many spinc structures sX on X for which
there exist solutions (A,�) satisfying the bound

E top(A,�) ≤ C. (5.1)

(ii) Suppose (An,�n) is a sequence of smooth solutions to the Seiberg–Witten
equations (4.9) on X satisfying the same upper bound E top(An,�n) ≤ C.
Then there is a sequence of (smooth) 4-dimensional gauge transformations
un : X → S1 with the following properties:
(a) after passing to a subsequence, the transformed solutions un(An,�n)

converge weakly in L2
1 to a (possibly only L2

1) configuration (A,�)

on X ;
(b) if

lim sup
n→∞

E top(An,�n) = E top(A,�)

then the weakly convergent subsequence in the previous statement is
convergent in the strong L2

1 topology on X ;



5 Compactness and properness 101

(c) the weakly convergent subsequence of (ii)(a) converges strongly in C∞
on every interior domain X ′ � X .

Remarks. (a) Note that, by Equation (4.21), in the case that H = 0 the hypoth-
esis of the theorem is a lower bound on L on the boundary. (b) In the case that
X is a closed 4-manifold, the formula for the topological energy becomes the
topological quantity

E top(A,�) = −π2c2
1(S

+)[X ],

so the first part of the theorem above tells us that, for any C, there are only
finitely many spinc structures sX with

c2
1(S

+)[X ] ≥ C

for which there exist solutions to the Seiberg–Witten equations. The topological
quantity on the left appears also in the formula (1.15) for the dimension d
of the moduli space, when transversality holds. From the formula for d , we
also see that there are only finitely many spinc structures sX for which the
moduli space is non-empty and d ≥ 0. This basic finiteness result lies behind
Proposition 1.5.5 which we stated in Subsection 1.5, concerning the finiteness
of the Seiberg–Witten invariants of a closed 4-manifold.

Proof of Theorem 5.1.1. Corollary 4.5.3 tells us that the topological energy of a
solution is equal to the analytic energy, so the hypothesis of the theorem provides
a uniform upper bound on Ean(An,�n), and hence uniform upper bounds∫

X
|FAt

n
|2 ≤ C1,

∫
X
|�n|4 ≤ C2,

∫
X
|∇An�n|2 ≤ C3.

The L2 bound on the curvature FAt gives an upper bound on the pairing of
c1(sX ) with any closed form on X , and therefore leaves only finitely many
possibilities for c1(sX ). There are therefore only finitely many possibilities for
sX , as stated in the rider to the theorem. We can therefore restrict our attention
to a fixed spinc structure sX .

Pick a smooth spinc connection A0 on X , and choose gauge transformations
u′n : X → S1 so that

d∗(At
n − At

0 − 2(u′n)−1du′n) = 0, in X

〈At
n − At

0 − 2(u′n)−1du′n, !n〉 = 0, at ∂X .
(5.2)
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Such a gauge transformation can be found in the form u′n = eξn by solving the
Neumann boundary-value problem for a function ξn : X → iR:

2�ξn = d∗(At
n − At

0), in X

2〈dξn, !n〉 = 〈At
n − At

0, !n〉, at ∂X .

If (At
n−At

0) is smooth the solution, ξn, will be smooth as well. In this context, the
condition d ∗ a = 0 on a 1-form a is referred to as a Coulomb condition: when
the two conditions (5.2) both hold, we say that the connection An − (u′n)−1du′n
is in Coulomb–Neumann gauge, with respect to the chosen base connection A0.
If only the first of the two conditions (5.2) holds, we say that the connection is
in Coulomb gauge with respect to A0.

Up to multiplication by a constant, u′n = eξn is the unique solution to the
constraints (5.2) in the trivial homotopy class. In each non-trivial homotopy
class, there is a map v : X → S1 satisfying the homogeneous equation

d∗(v−1dv) = 0, in X

〈v−1dv, !n〉 = 0, at ∂X ,

so a solution u′n can be found for the equations (5.2) in each homotopy class.
If we pick a basis {γ1, . . . , γb} for H1(X ; Z)/torsion and pick smooth 3-forms
{β1, . . . ,βb} representing their Poincaré duals, we can therefore find gauge
transformations un satisfying (5.2) and in addition the constraint:

i
∫

βr ∧ (At
n − At

0 − 2u−1
n dun) ∈ [0, 2π) (r = 1, . . . , b). (5.3)

The gauge transformation un is then unique up to the addition of a constant.

Lemma 5.1.2. For the class of 1-forms a on X satisfying the boundary condi-
tion 〈a, !n〉 = 0 and the constraints i

∫
βr ∧ a ∈ [0, 2π) (r = 1, . . . , b), there

are constants K1 and K2 such that∫
X
(|∇a|2 + |a|2)dvol ≤ K1

∫
X
(|d∗a|2 + |da|2)dvol+ K2.

Proof. For a general 1-form a satisfying the boundary conditions, the Weitzen-
böck formula for the Laplace–Beltrami operator gives∫

X
(|∇a|2 + Ricci(a, a))dvol+

∫
∂X

N (a, a)dvol =
∫

X
(|d∗a|2 + |da|2)dvol,
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because the boundary terms coming from the two integrations by parts cancel
except for a term involving N , the second fundamental form. In particular if
the boundary is totally geodesic this term vanishes. If not, the following lemma
allows us to proceed.

Lemma 5.1.3. For any ε > 0 there is a constant K3 > 0 such that for all
1-forms a we have the following estimate:∫

∂X
|a|2dvol ≤

∫
X
(ε|∇a|2 + K3|a|2)dvol.

Proof. The key point is that the restriction map C∞(X ) → C∞(∂X ) extends
to a bounded linear map

L2
1(X )→ L2(∂X ),

and that this last map is a compact linear operator: that is, if fi is a bounded
sequence in L2

1(X ), then the restrictions have a convergent subsequence in
L2(∂X ). This compactness property can be deduced by combining the Sobolev
restriction theorem (see Subsection 17.1), which tells us that the restriction
map extends to a continuous map from L2

1(X ) to the fractional Sobolev space
L2

1/2(∂X ), with the Rellich lemma, which tells us that the inclusion of L2
1/2(∂X )

in L2(∂X ) is compact.
With this as background, the result can now be proved by arguing by con-

tradiction. Fixing ε > 0, let us suppose that no such K3 exists. This means that
we can find ai contradicting the inequality for K3 = i: that is, we have∫

∂X
|ai|2dvol ≥

∫
X
(ε|∇ai|2 + i|ai|2)dvol.

Rescale and rename this sequence so that ‖ai‖L2
1(X ) = 1. It cannot be the case

that some subsequence has ‖ai‖L2(X ) bounded away from 0 for this would imply
that

∫
∂X |ai|2dvol → ∞ contradicting continuity of the restriction map. So it

must be the case that ‖ai‖L2 → 0 and ‖∇ai‖L2 → 1 as i → ∞. Thus we
must have that

∫
∂X |ai|2dvol ≥ ε. We can pass to a subsequence converging

weakly in L2
1 on X . The weak limit must be zero since it is converging strongly

in L2(X ) to 0. So by the compactness of the restriction map we can pass to a
subsequence where the sequence of restrictions converges strongly in L2(∂X )

to 0, contradicting the uniform bound
∫
∂X |ai|2dvol ≥ ε. �

Thus we only have to bound the L2 norm of a to complete the proof of
Lemma 5.1.2. If the lemma is false, there is a sequence {ai} satisfying the
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hypotheses of the lemma, with unbounded L2 norm, and with∫
X
(|d∗ai|2 + |da|2)

/∫
X
(|ai|2)→ 0.

Then a rescaled sequence a′i has L2 norm 1, bounded L2
1 norm and has∫

βr ∧ a′i → 0,∫
X
(|d∗ai|2 + |da|2)→ 0.

A subsequence would converge strongly in L2 and weakly in L2
1 to a 1-form

a∞ satisfying the homogeneous equations da = 0 and d∗a = 0, satisfying the
boundary conditions, and having zero periods on all the loopsγr . By considering
a primitive for a∞, which would be a harmonic function satisfying Neumann
boundary conditions, one sees that a∞ would be zero, in contradiction to it
being a strong limit of forms with L2 norm 1. �

We can now prove Assertion (ii)(a) of the theorem. We write

(Ãn, �̃n) = un(An,�n)

= (An − u−1
n dun, un�n),

where un are the unique gauge transformations satisfying the conditions (5.2)
and (5.3). Lemma 5.1.2 provides an L2

1 bound on Ãt
n − At

0, and hence by the
Sobolev embedding theorem we obtain an L4 bound on Ãt

n − At
0. We also have

an L4 bound on �̃n and an L2 bound on ∇Ãn
�̃n. These last two give us an L2

bound on ∇A0�̃n, because we have

∇A0�̃n = ∇Ãn
�̃n + (Ãn − A0)�̃n

and the L2 norm of the last term can be bounded using the inequality

‖ fg‖L2 ≤ ‖ f ‖L4‖g‖L4 .

So we have L2
1 bounds on both �̃n and Ãn − A0. It follows that we can pass to

a subsequence converging weakly in L2
1 to some L2

1 configuration (A,�).
Suppose the hypothesis of Part (ii)(b) of the theorem holds:

lim sup
n→∞

E top(An,�n) = E top(A,�).
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Since (Ãn, �̃n) are solutions we have that

E top(Ãn, �̃n) = Ean(Ãn, �̃n).

We can pass to a further subsequence where F+
Ãn

,∇Ãn
�̃n and (�̃n�̃

∗
n)0 converge

weakly in L2 while (Ãn, �̃n) converges strongly in L2. Since weak limits are
preserved under linear maps, the weak limit of F+

Ãn
is F+A . We shall show that

the weak limit of ∇Ãn
�̃n is ∇A� and that of (�̃n�̃

∗
n)0 is (��∗)0.

To show the first of these, write Ãn = A0 + an for some basepoint A0. Then
we know that ∇A0�̃n converges weakly to ∇A0� and that an�̃n converges
weakly to some limit. Since an and �̃n converge strongly in L2 it follows that
an�̃n converges strongly in L1 to a� giving the desired conclusion. Similar
reasoning gives the result for (�̃n�̃

∗
n)0. Notice that we can conclude that the

weak limit is a solution to the Seiberg–Witten equations at this point, since the
weak limit of 0 = DÃn

�̃n is DA� and the weak limit of 0 = ρ(F+
Ãn
)− (�̃n�̃

∗
n)0

is ρ(F+A )− (��∗)0.
If {xn} is a weakly convergent sequence in a Banach space, then the norm of

the limit x can only be smaller than or equal to the limit inferior of the norms
of the elements of the sequence:

lim sup
n→∞

‖xn‖ ≥ lim inf
n→∞ ‖xn‖ ≥ ‖x‖;

and furthermore, in the case of a Hilbert space or Lp space with 1 < p < ∞,
if all three of these are equal, then the convergence is strong. In our situation,
this means that in any event

lim sup
n→∞

Ean(Ãn, �̃n) ≥ Ean(A,�);

and our assumption in Part (ii)(b) implies equality here. So it must be that
F+

Ãn
,∇Ãn

�̃n and (�̃n�̃
∗
n)0 all converge strongly in L2. The first of these implies

that Ãn converges strongly in L2
1. The third implies that

lim
n→∞‖�̃n‖L4(X ) = ‖�‖L4(X )

and hence that �̃n converges strongly in L4 to�. Once we know these two facts,
the L2 convergence of ∇Ãn

�̃n to ∇A� implies the L2 convergence of ∇A0�̃n to

∇A0�, so that �̃n converges strongly in L2
1, A0

.
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It remains to prove Part (ii)(c). We will prove this statement in two steps: first
we prove that a strongly L2

1-convergent sequence in Coulomb gauge converges
in the C∞ topology on interior domains; then we will prove that on any interior
domain, the condition in Assertion (ii)(b) holds, so we can deduce L2

1 and hence
C∞ convergence on interior domains.

For the first of these two steps, we obtain bounds on higher Sobolev norms
by a process called bootstrapping. To keep the notation to a minimum we shall
write the monopole equations together with the Coulomb gauge condition as

Dγ + γ � γ = b. (5.4)

Here D is the differential operator

D : C∞(X ; iT ∗X ⊕ S+)→ C∞(X ; iR⊕ i su(S+)⊕ S−)

given by D(a,φ) = (d∗a, ρ(d+a), DA0φ) and � denotes a bilinear operator
involving only pointwise multiplication. The key point is that the operator is
elliptic, which allows us to appeal to the Gårding inequality (see [53]):

Theorem 5.1.4 (Gårding inequality). If D is a first-order elliptic operator with
smooth coefficients on a manifold X , possibly non-compact, and X (1) is an open
subset with compact closure, then there is a constant C > 0 such that for any
smooth γ we have

‖γ ‖Lp
k+1(X

(1)) ≤ C
(‖Dγ ‖Lp

k (X ) + ‖γ ‖Lp(X )

)
.

�

We apply the Gårding inequality repeatedly to prove the following lemma.

Lemma 5.1.5. Suppose that {γn} is a sequence of smooth solutions to the
equation (5.4) on X , a compact 4-manifold with boundary, and suppose that
γn converges strongly in L2

1 to γ . Then {γn} converges in the C∞ topology on
every open subset compactly contained in the interior of X . In particular, γ is
smooth in the interior of X .

Proof. Choose a cut-off function β, with β = 1 on an interior domain X ′, and
with the support of β compactly contained in the interior of X . Fix ε > 0 and
choose i0 so that for all i ≥ i0 we have ‖γi − γi0‖L2

1
≤ ε. Then the Gårding
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inequality (applied to the support of β) tells us that we have

‖β(γi − γj)‖L3
1(X )

≤ C
(‖D(β(γi − γj))‖L3(X ) + ‖β(γi − γj)‖L3(X )

)
≤ C

(‖β(γi − γj) � (γi + γj)‖L3(X ) + ‖σ(D, dβ)(γi − γj)‖L3(X )

+ ‖β(γi − γj)‖L3(X )

)
≤ CCmult‖β(γi − γj)‖L3

1
‖γi + γj − 2γi0‖L2

1(X )

+ C‖2γi0‖C0‖β(γi − γj)‖L3(X ) + C1‖γi − γj‖L3(X ).

In the above formulae, σ is the symbol of the operator D. We have used the
continuity of the multiplication L2

1 × L3
1 → L3 and Cmult is the norm of this

multiplication. We can now choose ε (and hence i0) so that for i, j ≥ i0 we have
CCmultε ≤ 1

4 . Then we can rearrange this inequality to read

‖β(γi − γj)‖L3
1(X ) ≤ 2

(
C1 + C‖2γi0‖C0

)‖γi − γj‖L3(X )

≤ C2‖γi − γj‖L2
1(X ).

Since β is arbitrary we conclude that {γi} converges to γ in L3
1,loc(intX ): that

is, γ converges in L3
1 on any compact subset of the interior. We can run through

this argument twice more: first to prove convergence in L2
2 norm, using the

continuity of the multiplication L2
2 × L3

1 → L2
1 in place of L2

1 × L3
1 → L3, and

a C1 bound on γi0 in place of a C0 bound; and second to prove convergence in
L2

3, using the continuity of the multiplication L2
3 × L2

2 → L2
2 and a C2 bound

on γi0 . In each of these two iterations, we pass to a smaller subdomain (with
appropriate change in β). Once we know that γi converges in L2

3(X
′) for each

X ′ � X we can exploit the fact that L2
k is an algebra for k ≥ 3: with β supported

in the interior of X ′ and with β = 1 on some X ′′ � X ′, we have

‖β(γi − γj)‖L2
k+1(X

′)

≤ C
(‖D(β(γi − γj))‖L2

k (X
′) + ‖β(γi − γj)‖L2(X )

)
≤ C

(‖β(γi − γj) � (γi + γj)‖L2
k (X

′) + ‖σ(D, dβ)(γi − γj)‖L2
k (X

′)

+ ‖β(γi − γj)‖L2(X ′)
)

≤ C
(
C1‖β(γi − γj)‖L2

k (X
′)‖γi + γj‖L2

k (X
′)

+ ‖σ(D, dβ)(γi − γj)‖L2
k (X

′) + ‖β(γi − γj)‖L2(X ′)
)
,



108 II The Seiberg–Witten equations and compactness

which shows that {γi} is Cauchy in L2
k+1(X

′′). Thus for all k and all X ′ � X ,
the sequence is Cauchy in L2

k(X
′). This proves the lemma. �

To finish the proof of Part (ii)(c), we need to show that for every X ′ �
X , where X ′ is the interior of a manifold with boundary, we can pass to a
subsequence where

lim
n→∞ Ean

X ′ (Ãn, �̃n) = Ean
X ′ (A,�). (5.5)

We will give the proof only in the case that the boundary of X is a metric
cylinder: that is, there is an open subset X ′′ of X and an isometry of X \ X ′′
with [−ε, 0]×Y , so the boundary of X is identified with {0}×Y . (The general
case is a slight modification.) Let Xs ⊂ X be the part of X corresponding to the
union of X ′′ and [−ε, s] × Y .

Since the configurations (An,�n) are smooth, the functions

fn(s) = Ean
Xs
(An,�n)

on [−ε, 0] are smooth. They are uniformly bounded above and below, and the
sequence of derivatives

f ′n(s)

are non-negative functions with uniformly bounded integrals. It follows that
for M large enough, the measure of the compact set f ′n ≤ M is bounded away
from zero, by a constant δ independent of n.

Lemma 5.1.6. Let {Sα}α∈A be a collection of measurable subsets of an interval
[a, b]with measureµ(Sα) ≥ δ for some δ > 0 and allα. Then there is an infinite
subset B of A such that the intersection⋂

α∈B

Sα

is non-empty.

Proof. This is a consequence of the monotone convergence theorem, applied
to the characteristic functions of the decreasing family of sets Tn =⋃

n≥k Sαk ,
where αk is any infinite sequence taken from A. If the conclusion of the lemma
does not hold, then these characteristic functions converge pointwise to zero,
while their integrals remain bounded below by δ. �
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Applying this lemma to the subsets f ′n ≤ M we can find s0 ∈ [−ε, 0] such
that for all n in a subsequence we have

f ′n(s0) ≤ M .

On the other hand, as we have seen,

f ′n(s0) = − d

ds
L(γn|{s}×Y )(s0)

= ‖ gradγn(s0)
L‖2.

To continue we need the following lemma.

Lemma 5.1.7. If (Bn,�n) is a sequence of configurations on Y with

‖ grad(B,�) L‖2
L2(Y )

≤ M ,

then there is a sequence of gauge transformations vn such that vn(Bn,�n)

converges in the L2
1/2 topology, to an L2

1 configuration.

Proof. Put (B,�) into Coulomb gauge on Y with respect to a basepoint B0

and require that the 3-dimensional version of the period condition (5.3) holds
as well. Then ‖ grad(B,�) L‖2

L2(Y )
controls the L2

1 norm, so we can pass to a

weakly convergent subsequence. The compactness of the inclusion L2
1 ⊂ L2

1/2
implies that we can pass to a further subsequence converging strongly in the
L2

1/2 topology. �

By this lemma we find gauge transformations vn on s0 × Y such that
vn(An,�n) is uniformly bounded in L2

1 norm on s0 × Y and such that a subse-
quence converges strongly in the L2

1/2 topology. If the first Chern class of the
spinc bundle on Y is torsion then L is fully gauge-invariant, and is continuous
in the L2

1/2 topology; so we can conclude that fn(s0) is convergent in this subse-
quence, and (5.5) holds, which completes the argument and proves the theorem.
In general, if the first Chern class is not torsion, then we argue as follows. Write
B0 for the restriction of A0 to ∂Xs0 and write B0 + bn ⊗ 1S for the restriction
of Ãn (our weakly L2

1-converging sequence of connections on X .) Writing the
Chern–Simons–Dirac functional on our sequence in these terms we have:

L(Bn, �̃n) = −1

8

∫
Y
(2bn) ∧ (2FBt

0
+ 2dbn)+ 1

2

∫
Y
〈DBn�̃n, �̃n〉 dvol.
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The strong L2
1/2 convergence up to gauge transformation implies the

convergence of

−1

8

∫
Y
(2bn ∧ 2dbn)+ 1

2

∫
Y
〈DBn�̃n, �̃n〉 dvol.

The only term above that is not fully gauge-invariant is

−1

8

∫
Y
(2bn) ∧ (2FBt

0
).

Since the sequence bn is weakly L2
1/2-convergent, we can pass to a further

subsequence where the bn converge strongly in L2, in which case this term
converges as well. This completes the proof of Theorem 5.1.1. �

We can apply this theorem to the case that the 4-manifold is a cylinder, to
deduce:

Corollary 5.1.8. Let γn ∈ C(Z , sZ ) be a sequence of solutions of the 4-
dimensional Seiberg–Witten equations, F(γ ) = 0, on a cylinder Z = [t1, t2] ×
Y . Suppose that the drop in the Chern–Simons–Dirac functional is uniformly
bounded:

L(γ̌n(t1))− L(γ̌n(t2)) ≤ C.

Then there is a sequence of gauge transformations, un ∈ G(Z), such that,
after passing to a subsequence, the transformed solutions un(γn) converge in
the C∞ topology on [t′1, t′2] × Y , for any interval [t′1, t′2] in the interior of
[t1, t2]. Solutions satisfying this bound can exist only for finitely many spinc

structures on Y . �

Remark. The corollary provides 4-dimensional gauge transformations un ∈
G(Z), such that the transformed 4-dimensional connections and spinors, γ̃n =
(Ãn, �̃n) converge. If γn = (An,�n) is in temporal gauge for each n (so that γ̌n

is a solution to the gradient-flow equations), then in fact we can take the gauge
transformations to be time-independent. Indeed, let vn be the time-independent
gauge transformation obtained from evaluating un at t̄ = (t1 + t2)/2 (or any
other intermediate point). To show that vn(Bn,�n) also converges, it is enough
to show that the quotient vnu−1

n converges in C∞ on interior domains. This
quotient is equal to 1 at time t̄ and transforms Ãt

n to a connection with no ∂/∂t
component. It is therefore eξn , where ξn is the unique solution on [t1, t2] × Y to
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the equation

2dξn = (Ãt
n − At

0)∂/∂t

ξn(t̄) = 0,

where A0 is any connection with no ∂/∂t component. The ξn converge in C∞
on interior intervals because the connections Ãt

n do.

5.2 Properness properties of the Seiberg–Witten map

The ideas that go into proving the compactness of the moduli space can be
extended to show that on a closed manifold the Seiberg–Witten map (together
with gauge fixing) is a proper map (for example when the domain and range
have the C∞ topology. In the case of a manifold with boundary if we include
the behavior of the Chern–Simons–Dirac functional then we can prove a subset
in the configuration space with compact image under the Seiberg–Witten map
in the C∞ topology and bounded Chern–Simons–Dirac functional has com-
pact image under the restrictions to interior domains X ′ � X . These results
are important for proving compactness of perturbations of the Seiberg–Witten
equations.

Theorem 5.2.1. Let X be a compact Riemannian 4-manifold with boundary.
Then the following hold.

(i) For given C, there are only finitely many spinc structures sX on X for which
there exist configurations (A,�) satisfying the bounds

E top(A,�) ≤ C

‖F(A,�)‖L2(X ) ≤ C.
(5.6)

(ii) Furthermore, if (An,�n) is a sequence of configurations satisfying the topo-
logical energy bound E top(An,�n) ≤ C, the gauge-fixing conditions (5.2)
and period conditions (5.3), then the following holds.
(a) If the sequence F(An,�n) converges in the L2 topology on X , then a

subsequence of the sequence (An,�n) converges weakly in the L2
1 topol-

ogy, to an L2
1 configuration (A,�) on X , still satisfying the topological

energy bound, the gauge-fixing condition and the period conditions
(but possibly with the periods in [0, 2π ]).

(b) If in addition

lim sup
n→∞

E top(An,�n) = E top(A,�),

then the subsequence converges strongly in L2
1.
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(c) Finally, if F(An,�n) converges in the C∞ topology then the
subsequence (An,�n) converges in the C∞ topology on every inte-
rior domain X ′ � X . Indeed, for any j ≥ 1, if F(An,�n) converges in
the L2

j−1 topology then (An,�n) converges in the L2
j topology on every

interior domain X ′ � X

Proof. The finiteness statement is again simply the fact the two estimates
control the analytic energy and hence the L2 norm of the curvature form.

To prove (ii)(a), we first pass to a subsequence in a fixed spinc structure.
The convergence of the values of the Seiberg–Witten map implies again a
uniform L2

1 bound on the configuration in the sequence, and we can pass to
a weakly convergent subsequence. Let (A,�) denote the weak limit. We can
assume, as above, strong L2 convergence of the sequence, as well as weak L2

convergence of FAn , (�n�
∗
n) and ∇An�n to the corresponding quantities FA,

(��∗) and ∇A� for the weak limit. The Coulomb–Neumann gauge condition
will be preserved under the weak limit; the period condition may not quite
be preserved, because of the half-open interval condition, but will satisfy the
closure interval conditions listed in the theorem.

If the hypotheses of both (ii)(a) and (ii)(b) hold then from (4.16) we have
that

lim inf
n�→∞ Ean(An,�n) = Ean(A,�).

We can now conclude as we did in the proof of Theorem 5.1.1 that after
passing to a subsequence the L2 norms of FAt

n
,∇An�n, and DAn�n do not drop

in the limit so these sequences converge strongly in L2. Together with the gauge-
fixing conditions, this implies the strong L2

1 convergence of (An,�n) also as in
the proof of Theorem 5.1.1. The proof of (ii)(c) similarly follows the same line
of argument as the corresponding statement in Theorem 5.1.1. �

6 The blown-up configuration space

6.1 Blowing up

In Subsection 2.5 we emphasized the role of the blow-up of a manifold as an
important tool in dealing with Morse theory on a manifold with a circle action.
In this section we will begin setting this up in the infinite-dimensional setting
of the Seiberg–Witten equations. Recall that a configuration (A,�) in C(Y , s)
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is reducible if � is zero: we write

C∗(Y , s) ⊂ C(Y , s) (6.1)

for the space of irreducible configurations (see (1.16) in Subsection 1.5). The
blown-up configuration space will be constructed by blowing up C(Y , s) along
the locus of reducibles, and we shall make a similar definition for the case of a
4-manifold.

For any topological vector space V equipped with a continuous norm (not
necessarily defining the same topology), we write S(V ) for the associated sphere

S(V ) = { v ∈ V |‖v‖ = 1 }.

The continuity of the norm ensures that this sphere is naturally identified with
the quotient space

V \ {0}/R+.

Thus we can define the (oriented real) blow-up of a normed topological vector
space as

V σ = R≥ × S(V )

as we did for a finite-dimensional vector space (2.13).
For a 4-manifold X , the blown-up Seiberg–Witten configuration space is

defined to be:

Cσ (X , sX ) = A(X , sX )× R≥ × S(C∞(X ; S+))

⊂ A(X , sX )× R≥ × C∞(X ; S+); (6.2)

or more explicitly, it is the space of triples

Cσ (X , sX ) = { (A, s,φ) | ‖φ‖L2 = 1, s ≥ 0 }.

The “blow-down” map π : Cσ (X , sX )→ C(X , sX ) is given by

π(A, s,φ) = (A, sφ)

and is a bijection over the open set C∗(X , sX ) ⊂ C(X , sX ) of configurations with
� non-zero. The fiber over (A, 0) is the sphere S(C∞(X ; S+)). The notation
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Cσ (X , sX ) is meant to suggest the term “σ -process”, as it is used in algebraic
geometry.

Recall that we have regarded the Seiberg–Witten equations on X as being
expressed by the vanishing of a map

F : C(X , sX )→ C∞(X ; i su(S+)⊕ S−).

With a slight change of viewpoint, we now define V(X , sX ) as a trivial bundle
over C(X , sX ) with fiber the right-hand side above, so that we may regard F as
a section of this bundle:

F : C(X , sX )→ V(X , sX ).

The bundle V(X , sX ) is a direct sum,

V(X , sX ) = V0 ⊕ V1,

with the fibers of the summands being C∞(X , i su(S+)) and C∞(X , S−)
respectively. Let

Vσ (X , sX )→ Cσ (X , sX ) (6.3)

be defined as the pull-back under π of V(X , sX ). Finally, we define a section

Fσ : Cσ (X , sX )→ Vσ (X , sX ) (6.4)

by the formula

Fσ (A, s,φ) =
(

1

2
ρX (F+At )− s2(φφ∗)0, D+A φ

)
. (6.5)

Notice that if s is not zero, the vanishing of Fσ (A, s,φ) is equivalent to the
vanishing of F(A, sφ), while if s is zero it is equivalent to the two conditions

F(A, 0) = 0

D+A φ = 0.

Notice also that Fσ is a continuous section. The gauge group G(X ) acts on
Cσ (X , sX ) and on the vector bundle Vσ (X , sX ). The section Fσ is equivariant.
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Remarks. (i) The construction of the section Fσ on the blow-up from the section
F on the space C(X , sX ) is a natural one that is somewhat disguised by our choice
of description of the blow-up, which made use of the L2 norm. Although our
chosen description is well-suited to the calculations we need to make, we could
alternatively adopt the viewpoint suggested above, that S(V ) is the quotient of
V \{0} by R+, and so regard the real blow-up of C∞(X , S+) as the tautological
space of pairs

{ (R+φ,�) ∈ S(C∞(X , S+))× C∞(X , S+) | � ∈ R≥φ }.

With this notation, Cσ (X , sX ) is a space of triples (A, R+φ,�). On the blow-up
there is a tautological complex line bundle O(−1), whose fiber at (A, R+φ,�)

is Cφ. The natural construction for the section Fσ then makes it a section of
the bundle

Vσ = O(−1)∗ ⊗ π∗(V) (6.6)

given by

Fσ : O(−1)→ π∗(V)

Fσ (A, R+φ,�)(ψ) =
(

1

2
ρ(F+At )− (��∗)0, D+A ψ

)
.

The use of the L2 norm effectively trivializes the bundle O(−1), and thus
disguises the relation between V and Vσ . Note, in particular, that Fσ is not the
pull-back section.

(ii) Later, we will replace C(X , sX ) etc. with a suitable Banach space com-
pletion. At that time, we will also introduce a version of Cσ (X , sX ) that is a
Banach manifold with boundary, and we will consider the differentiability of
(a perturbation of) Fσ as a section of a Banach vector bundle. At present, our
discussion is simply topological.

In a similar vein, we introduce the space

Cσ (Y , s) = A(Y , s)× R≥ × S(C∞(Y , S))

as the (oriented, real) blow-up of C(Y , s) along the locus � = 0.
If X ′ ⊂ X is an interior domain, there is a partially defined restriction map

r : Cσ (X , sX ) ��� Cσ (X ′, sX ).
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Its domain of definition is the set of configurations γ σ = (A, s,φ) where
φ|X ′ = 0, when we are using the unit sphere model for the blow-up the
restriction map is given by

r(A, s,φ) = (A, s‖φ‖L2(X ′),φ/‖φ‖L2(X ′)).

(We will sometimes use this notation, γ σ in place of γ , for a typical point of
the blown-up configuration space, when it is useful to make the distinction.
Typically we will drop the σ .) We will prove a unique continuation result,
Proposition 7.1.4, which implies that any solution of Fσ = 0 is in this domain:
the point is that, for a solution of the equations, φ cannot vanish on an open set
without vanishing identically. In a similar spirit, in the case that the 4-manifold
is a cylinder Z = I × Y , there is no restriction map to the slices {t} × Y in
general; but if γ σ ∈ Cσ (Z , sZ ) is a solution of Fσ (γ σ ) = 0, then by a unique
continuation result, the restriction to each slice is defined (see Proposition 7.1.2
below). We write γ̌ σ for the corresponding path in Cσ (Y , s).

6.2 The blown-up equations as a flow

Suppose γ σ = (A, s,φ) ∈ Cσ (Z , sZ ) is a solution of Fσ (γ σ ) = 0 on the
cylinder Z = I × Y , and let γ̌ σ (t) be the corresponding path in Cσ (Y , s). We
wish to write down an equation satisfied by this path. Using the L2 unit sphere
model for S we have

Cσ (Z , sZ ) = A(Z , sZ )× [0,∞)× S(C∞(Z ; S+))

= { (A, s,φ) | s ≥ 0, ‖φ‖L2 = 1 }.

Similarly

Cσ (Y , s) = A(Y , s)× [0,∞)× S(C∞(Y ; S))

= { (B, r,ψ) | r ≥ 0, ‖ψ‖L2 = 1 }.

In these coordinates, the path γ̌ σ is given by (B(t), r(t),ψ(t)), where

B(t) = Ǎ(t)

r(t) = s‖φ̌(t)‖L2(Y )

ψ(t) = φ̌(t)/‖φ̌(t)‖L2(Y ).
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Note that the function L is everywhere defined on Cσ (Y , s). Also of
importance in the discussion is the function

�(B, r,ψ) = 〈ψ , DBψ〉L2(Y ). (6.7)

This function generalizes the function �q(φ) of Equation (2.18).

Lemma 6.2.1. An element γ σ in Cσ (Z , sZ ), in temporal gauge, is a solution of
Fσ (γ σ ) = 0 on the cylinder Z = I × Y if and only if the corresponding path
γ̌ σ (t) = (B(t), r(t),ψ(t)) in Cσ (Y , s) satisfies the equations

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

1

2

d

dt
Bt = −1

2
∗ FBt − r2ρ−1(ψψ∗)0

d

dt
r = −�(B, r,ψ)r

d

dt
ψ = −DBψ +�(B, r,ψ)ψ .

(6.8)

Proof. This is a straightforward verification. �

Definition 6.2.2. The right-hand sides of the equations (6.8) define a vector
field on Cσ (Y , s). We denote this vector field by (grad L)σ . ♦

On the locus r = 0, the vector field (grad L)σ coincides with the vector
field grad L on C∗(Y , s); and it is tangent to the locus r = 0 (the boundary
of Cσ (Y , s)). The construction of this vector field on the blow-up is exactly
parallel to the finite-dimensional construction described in the introduction,
Subsection 2.5.

As in the finite-dimensional case, the critical points of (grad L)σ (i.e. the
stationary points of the flow) can be easily characterized in terms of the critical
points of grad L:

Proposition 6.2.3. Let (B, r,ψ) represent a point of Cσ (Y , s), so ψ is of unit
L2 norm and r ≥ 0 and let (B, rψ) be the corresponding point in C(Y , s). Then
(B, r,ψ) is a critical point of (grad L)σ if and only if either:

(i) r = 0 and (B, rψ) is a critical point of grad L; or
(ii) r = 0, the point (B, 0) is a critical point of grad L, and ψ is an eigenvector

of DB.

Proof. Only the second case needs comment. The stationary equation for r is
always satisfied at r = 0. The equation for B is the equation FBt = 0, which
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means that (B, 0) is a critical point of grad L. The equation for ψ is

DBψ −�(B, 0,ψ)ψ = 0,

which states that ψ is an eigenvector of the Dirac operator. (Compare the state-
ment and proof here with the first statement in Lemma 2.5.5, which deals with
the finite-dimensional model.) �

6.3 The τ model for the blow-up

In the case that Z is a cylinder I × Y , we saw that an element (A, s,φ) of
Cσ (Z , sZ ) gives rise to a path in Cσ (Y , s) provided that the non-zero spinor φ
is also non-zero on each slice {t}×Y . There is another version of the blown-up
configuration space on the cylinder that is useful and is more closely tied to the
set of paths in Cσ (Y , s).

Definition 6.3.1. For a cylinder Z = I × Y , we define

Cτ (Z , sZ ) ⊂ A(Z , sZ )× C∞(I ; R)× C∞(Z ; S+)

to be the space consisting of triples (A, s,φ), with

s(t) ≥ 0

‖φ(t)‖L2(Y ) = 1

for all t ∈ I . ♦

Thus the difference between the σ version of the blown-up configuration
space and the τ model is that, in the latter, s is a non-negative real function of
t, rather than a single constant, and φ is normalized to have unit L2 norm on
each slice, rather than satisfy a single normalization condition on the cylinder.
Note that the configuration space Cσ (X , s) makes sense for any 4-manifold X
(possibly with boundary); but Cτ can only be defined in the special case of a
cylindrical 4-manifold Z .

An element γ = (A, s,φ) in Cτ (Z , sZ ) determines a path γ̌ in Cσ (Y , s);
and there is a one-to-one correspondence between paths γ̌ and elements γ =
(A, s,φ) with A in temporal gauge.

We can regard the equations (6.8) as defining equations for an element γ ∈
Cτ (Z , sZ ) in temporal gauge. If γ = (A, s,φ), we write the equations in terms
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of the corresponding path γ̌ as: ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

1
2

d

dt
Ǎt = − 1

2 ∗ FǍt − s2ρ−1(φ̌φ̌∗)0

d

dt
s = −�(Ǎ, s, φ̌)s

d

dt
φ̌ = −DǍφ̌ +�(Ǎ, s, φ̌)φ̌.

(6.9)

For a general configuration that is not necessarily in temporal gauge, we write
again

∇A, d
dt
= d

dt
+ c⊗ 1S .

For such a configuration, we have the following gauge-invariant equations,
which reduce to (6.9) when c is zero: ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

1
2

d

dt
Ǎt = − 1

2 ∗ FǍt + dc − s2ρ−1(φ̌φ̌∗)0

d

dt
s = −�(Ǎ, s, φ̌)s

d

dt
φ̌ = −DǍφ̌ − cφ̌ +�(Ǎ, s, φ̌)φ̌.

(6.10)

Their 4-dimensional gauge invariance is seen when one writes the equations as⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

1

2
ρZ (F

+
At )− s2(φφ∗)0 = 0

d

dt
s+ Re〈D+A φ, ρZ (dt)−1φ〉L2(Y )s = 0

D+A φ − Re〈D+A φ, ρZ (dt)−1φ〉L2(Y )φ = 0.

(6.11)

(In these equations, the terms that are inner products on Y are to be interpreted
as functions on Z that are dependent on t only.)

To understand solutions (A, s,φ) to the equations (6.11) in Cτ (Z , sZ ), note
first that s is either identically zero or everywhere positive. In the latter case,
the equations express the fact that (A, sφ) is a solution of the Seiberg–Witten
equations, F(A, sφ) = 0. In the former case (s = 0), let s0 be a positive solution
of the equation

d

dt
s0 + Re〈D+A φ, ρZ (dt)−1φ〉L2(Y )s0 = 0. (6.12)
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Then s0φ satisfies the Dirac equation D+A (s0φ) = 0. In other words,

(A, 0, s0φ/‖s0φ‖L2(Z))

satisfies Fσ = 0, when we regard it as defining an element of Cσ (Z , sZ )

using the original coordinates (6.2). We summarize the above equations with
a definition.

Definition 6.3.2. We define Vτ → Cτ (Z , sZ ) to be the vector bundle whose
fiber over (A, s,φ) is the vector space

Vτ
(A,s,φ) = { (η, r,ψ) | Re〈φ̌(t), ψ̌(t)〉L2(Y ) = 0 for all t }

⊂ C∞(Z ; i su(S+))⊕ C∞(I ; R)⊕ C∞(Z ; S−).

We write Fτ for the section of Vτ defined by the left-hand sides of (6.11). ♦

Remarks. Our discussion shows that solutions of Fτ = 0 and solutions of
Fσ = 0 are in one-to-one correspondence. The choice between these two view-
points for the blown-up equations on the cylinder is a matter of convenience. The
τ model fits much better with the dynamical viewpoint on the equations, which
formally describe trajectories of the vector field −(grad L)σ on Cσ (Y , s). For
example, zeros of the vector field correspond to translation-invariant solutions
of the equations Fτ = 0 in temporal gauge on the cylinder. The disadvantages
of the τ model are first that the constraint on φ (that it has L2 norm 1 on each
slice {t}×Y ) runs somewhat counter to our desire to treat the equations directly
as an elliptic system; and second, that the τ model is not available to us when
we wish to look at non-cylindrical manifolds.

In this book, we will regularly switch between the two viewpoints, empha-
sizing the τ model most often when dealing with a cylinder.

7 Unique continuation

In this section we shall prove unique continuation results for the type of
equations that we have been dealing with: the (linear) Dirac equation, and
the non-linear Seiberg–Witten equations. Our treatment of these topics is based
on the approach of Agmon and Nirenberg [1].
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7.1 The linear case

Let us begin by recalling from Subsection 2.3 that if L is a hermitian matrix
acting on Cn and z is a non-zero solution of the linear equation

dz/dt = −Lz, (7.1)

then the function

�(z) = 〈z, Lz〉/‖z‖2

is a non-increasing function of t, because the corresponding path z∗(t) in CPn−1

is a trajectory of the downward gradient-flow equation for the corresponding
function �∗ : CPn−1 → R. Since −2� is the time derivative of log ‖z(t)‖2,
we can reinterpret this monotonicity as a differential inequality

d2

dt2
log ‖z‖2 ≥ 0.

For the formula (7.1), of course, we know the uniqueness of the solution to the
initial-value problem, because the equation can be solved in a straightforward
manner; but this uniqueness can also be deduced from the above differen-
tial inequality. The point is that the inequality does not allow log ‖z‖2 to go
to−∞ in finite time (either forward or backwards), so a non-zero solution z on
an open interval (t1, t2) cannot approach zero as t approaches either endpoint.

The first extension of this idea is to consider the same calculation in the case
that L is time-dependent (and hermitian for all t):

dz/dt = −L(t)z. (7.2)

Lemma 7.1.1. For a non-zero solution z(t) to the equation (7.2), the quantity
log ‖z‖2 satisfies the differential inequality

d2

dt2
log ‖z‖ ≥ −‖L̇‖Op,

where the right-hand side denotes the operator norm of the derivative of L.
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Proof. We calculate:

d2

dt2
log ‖z‖ = d

dt

(
−〈Lz, z〉/‖z‖2

)
= 1

‖z‖4

(
2‖Lz‖2‖z‖2 − 2|〈Lz, z〉|2 − 〈L̇z, z〉‖z‖2

)
= 2

‖z‖2

∥∥∥∥Lz − 〈Lz, z〉
‖z‖2

z

∥∥∥∥2

− 1

‖z‖2
〈L̇z, z〉

≥ −1‖L̇‖Op. (7.3)

�

For future reference, we note that the penultimate line in the above cal-
culation can be rewritten conveniently in terms of the normalized object
z1(t) = z(t)/‖z(t)‖. We have an identity:

d2

dt2
log ‖z‖ = 2‖ż1‖2 − 〈L̇z1, z1〉. (7.4)

We can apply the same argument to the Dirac operator on a cylinder.

Proposition 7.1.2. Suppose A is a smooth spinc connection on [t1, t2]×Y , and
let � be a solution of the 4-dimensional Dirac equation D+A � = 0 on the same
cylinder. If � is zero on the slice {t} × Y for some t in the interval [t1, t2], then
� is identically zero.

Proof. We suppose the contrary. Replacing the interval by a smaller one if
necessary, we can arrive at the case that � is non-zero on the slice {t} × Y for
all t in the open interval (t1, t2) but is zero at one of the endpoints. Since the
question is gauge-invariant, we may suppose that A is in temporal gauge, so
that we may write the Dirac equation as

d

dt
�̌(t) = −DǍ(t)�̌(t).

The proof of the preceding lemma makes equally good sense in this context:
the operator L̇ is Clifford multiplication by dǍ/dt, and we therefore have

d2

dt2
log

∥∥∥�̌(t)
∥∥∥

L2
≥ −

∥∥∥dǍ/dt
∥∥∥

C0(Y )
, (7.5)
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because the C0 norm of dǍ/dt is the operator norm of its action on L2. Since
the right-hand side is bounded on the closed interval, we can integrate twice to
see that log ‖�̌(t)‖ is bounded below on (t1, t2): for example, we can write

log
∥∥∥�̌(t)

∥∥∥ ≥ C0 + C1(t − t0)− C2

2
(t − t0)

2,

where t0 is any interior point of the interval, C0 and C1 are the values of
log

∥∥�̌(t)
∥∥ and its first derivative at t = t0, and C2 is the supremum of∥∥∥dǍ/dt

∥∥∥
C0(Y )

. In particular, ‖�̌(t)‖ cannot approach zero as t approaches either

endpoint. �

The same approach can be used to prove unique continuation for the Dirac
operator on an arbitrary 4-manifold. (Of course, at this point the choice of
dimension 4 is immaterial.) Suppose then that A is a smooth spinc connection
on a 4-manifold X , and � satisfies the equation D+A � = 0. Pick a basepoint x0,
and use geodesic coordinates to identify a punctured neighborhood of x0 with
(0, ε) × S3. In these coordinates, the metric has the form dt2 + gt , where t is
the radial coordinate and gt is a family of metrics on the 3-sphere.

Let g̃ be the standard round metric on S3, let S̃ be the standard spin bundle,
let ∇̃ be a spinc connection, and let ρ̃ be Clifford multiplication for the standard
metric. For the family of metrics gt , we can identify the spin bundles St isomet-
rically with S̃: only the Clifford multiplication ρt : T ∗S3 → C∞(S3; su(S̃))
changes with t. From this point of view,� gives rise to a time-dependent section
�̌(t) of the bundle S̃ → S3 satisfying an equation

d

dt
�̌(t) = −L(t)�̌(t),

where L(t) is given by

L(t)ψ = ρt � ∇̃ψ + R1ψ ,

and R1 is an operator of degree zero arising from the difference between the dif-
ference between the spinc connections. (See the definition of the Dirac operator
in Subsection 1.2.)

There are two qualitative differences between the family of operators L(t)
that arise here and the family of Dirac operators that we saw in the case of
a cylinder I × Y . The first difference is that, unlike the true Dirac operator,
the operator L(t) is not self-adjoint. Its skew-symmetric part, however, is an
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operator of degree zero. Indeed, writing the operator as

L(t)ψ =
∑

i

ρt(dyi)∇̃iψ + R1ψ ,

we compute the formal adjoint as

L(t)∗ψ =
∑

i

(∇̃i)
∗(ρt(dyi)∗ψ)+ R∗1ψ

= −
∑

i

(∇̃i)
∗(ρt(dyi)ψ)+ R∗1ψ

=
∑

i

∇̃i(ρt(dyi)ψ)+ R2ψ

=
∑

i

ρt(dyi)∇̃iψ + R3ψ

= L(t)ψ + R4ψ ,

where each Ri has order zero. The second difference is that the time derivative
of L(t) is not of order zero: it has a first-order term ρ̇t �∇̃. Nevertheless, because
L(t) is elliptic, we can control L̇(t) in terms of L(t) using the Gårding inequal-
ity: for any closed interval [t1, t2] in (0, ε), we can find constants C1 and C2

such that

‖L̇(t)ψ‖ ≤ C1‖L(t)ψ‖ + C2‖ψ‖,
where the norms are L2 norms for the standard metric on S3.

For the statement of the next lemma, we abstract the situation following
[1] as follows. Let us consider a Hilbert space H (the space L2(S3; S̃) in our
present situation), and a family of unbounded linear operators L(t)with common
domain D ⊂ H , parametrized by t ∈ [t1, t2]. Let f : [t1, t2] → H be a given
continuous path, and consider a solution z to an equation

d

dt
z + L(t)z = f (t)

on the interval, by which we understand that z : [t1, t2] → H is a C1 path
with values in D. We make two suppositions about L(t), encapsulating our two
observations about the Dirac-type operators above.

(i) We suppose that we can write

L(t) = L+(t)+ L−(t), (7.6a)

where L+(t) is symmetric, and L−(t) is bounded and skew-adjoint.
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(ii) We suppose that L(t) has a time-derivative, in the sense that the limit

lim
h→0

L(t + h)x − L(t)x

h
= L̇(t)x

exists for all x in D and all t in [t1, t2], and that the derivative satisfies a
bound

‖L̇(t)x‖ ≤ C1‖L(t)x‖ + C2‖x‖, (7.6b)

for constants Ci that are independent of t and x.

Lemma 7.1.3. Let z : [t1, t2] → H be a solution of the equation

dz

dt
+ L(t)z = f (t), (7.7)

where L(t) satisfies the hypotheses above. Suppose in addition that f (t) satisfies

‖ f (t)‖ ≤ δ‖z(t)‖, ∀t ∈ [t1, t2], (7.8)

for some constant δ. Then if z(t) is zero for any t in the interval, it follows that
z is identically zero.

Proof. Again, we may as well suppose z is non-zero everywhere on (t1, t2).
We may also suppose that L = L+ is symmetric; for if L− is non-zero we can
absorb the term L−(t)z(t) in Equation (7.7) into f (t) on the right-hand side: the
hypothesis (7.8) will not be affected, because L− is bounded.

We repeat the part of the calculation from Lemma 7.1.1, taking account of
the weakened hypotheses. (We take the Hilbert space to be real.) Pick t0 in the
open interval, and define

l(t) = log ‖z(t)‖ −
∫ t

t0

〈f (τ ), z(τ )〉
‖z(τ )‖2

dτ .

We have

l̇(t) = −〈Lz, z〉
‖z‖2

,
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and differentiating a second time we obtain

l̈(t) = d

dt

(
−〈Lz, z〉/‖z‖2

)
= 1

‖z‖4

(
2‖Lz‖2‖z‖2 − 2|〈Lz, z〉|2 − 2〈Lz, f 〉‖z‖2 + 2〈Lz, z〉〈 f , z〉

− 〈L̇z, z〉‖z‖2
)

≥ 2

‖z‖2

∥∥∥∥Lz − 〈Lz, z〉
‖z‖2

z

∥∥∥∥2

− C3
‖Lz‖
‖z‖ − C4.

The hypotheses on L̇ and ‖ f ‖ are both used in the last line. Writing θ for the
angle between z and Lz, we can continue:

l̈(t) ≥ 2
‖Lz‖2

‖z‖2
sin2θ − C3

‖Lz‖
‖z‖ − C4

= 2
‖Lz‖2

‖z‖2
sin2θ − C3

‖Lz‖
‖z‖ (sin2θ + cos2θ)− C4

≥ 2
‖Lz‖2

‖z‖2
sin2θ − C3

‖Lz‖
‖z‖ (sin2θ + | cos θ |)− C4

= sin2θ

(‖Lz‖2

‖z‖2
− C3

‖Lz‖
‖z‖

)
− C3

|〈Lz, z〉|
‖z‖2

− C4

≥ −C3
|〈Lz, z〉|
‖z‖2

− C5

= −C3
∣∣l̇(t)∣∣− C5.

Thus the quantity l satisfies the differential inequality

l̈ + C3
∣∣l̇∣∣+ C5 ≥ 0, (7.9)

which means that the quantity u(t) = eC3t l̇(t) satisfies

u̇ + C5eC3t ≥ 0

at all points where u < 0. This means that the function u− = min(0, u) satisfies

u−(t) ≥ u−(t0)− C5eC3(t−t0)

for all t ≥ t0 in the open interval (t1, t2). In particular, u(t) is bounded below
on (t0, t2); and l(t) is therefore bounded below on (t0, t2) also. Our hypothesis
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on f implies

log ‖z(t)‖ ≥ l(t)− δ|t − t0|

for t ∈ (t1, t2). So log ‖z‖ is bounded below also. It follows that ‖z(t)‖ can-
not approach zero as t → t2. Similarly, ‖z(t)‖ is bounded away from zero
as t → t1. �

From this lemma we deduce:

Proposition 7.1.4. Let A be a smooth spinc connection on a 4-manifold X , and
let � solve the Dirac equation D+A � = 0. If X is connected and � vanishes on
a non-empty open set, then � is identically zero.

Proof. Let Z ⊂ X be the zero locus of �. We observed above, that the Dirac
equation on a ball in X can be written in a form that fits the hypotheses of
Lemma 7.1.3. This means that if the solution � vanishes on a geodesic ball of
radius t1 about a point x0, then it vanishes on the larger ball of radius t2, for
all t2 less than the injectivity radius at x0. It follows that the interior of Z is a
closed set, which must therefore coincide with X . �

7.2 The non-linear case

Lemma 7.1.3 above can also be used to prove a unique continuation result for
non-linear equations, and in particular for the Seiberg–Witten equations. We
start with the case of a cylinder:

Proposition 7.2.1. Let γ1 and γ2 be two solutions of the Seiberg–Witten
equations F(γ ) = 0 on a cylinder Z = [t1, t2] × Y , and let γ̌i be the cor-
responding paths, γ̌i : [t1, t2] → C(Y , s). Suppose there exists some t0 in the
interval for which γ̌1(t0) and γ̌2(t0) are gauge-equivalent on Y . Then γ1 and
γ2 are gauge-equivalent on Z.

The same result holds for solutions to the equations Fτ (γ τ ) = 0 in the
blown-up picture.

Proof. After applying a gauge transformation, we may assume that γ1 and γ2

are both in temporal gauge on the cylinder, and that γ̌1(t0) and γ̌2(t0) are equal
as elements C(Y , s), not just gauge-equivalent. For γ in temporal gauge, we
can write the equations F(γ ) = 0 schematically as

d

dt
γ + Lγ = −γ � γ + c,
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where � is a bilinear bundle map (which we can take to be symmetric), L is an
operator on Y , and we are now regarding γ as a path in the space C∞(Y ; iT ∗Y⊕
S), relative to a chosen basepoint in C(Y , s). (Compare (5.4).) To be precise, L
is the self-adjoint operator

L : (b,ψ) �→ (∗db, DB0ψ),

as we see from the explicit form of the equations in (4.7). If we take z = γ2−γ1,
then z satisfies

d

dt
z + Lz = f (t),

where

f (t) = −(γ1 + γ2) � z.

The hypothesis of Lemma 7.1.3 is satisfied, with

δ = ‖γ1 + γ2‖C0(Z),

and it follows from the lemma that z is identically zero, because z(t0) is zero.
The argument for solutions to γ τ

i = (Ai, si,φi) to the equations Fτ = 0 is
similar. �

The proof of the proposition above can be adapted to prove a unique
continuation result on an arbitrary 4-manifold.

Proposition 7.2.2. Let γ1 = (A1,�1) and γ2 = (A2,�2) be two smooth solu-
tions to the Seiberg–Witten equations F(γ ) = 0 on a connected 4-manifold X .
If the restrictions of the γi are gauge equivalent on a non-empty open set, and
if �1 is not identically zero, then γ1 and γ2 are gauge-equivalent on all of X .

The same conclusion holds for solutions of the blown-up equations
Fσ (γ σ )= 0, although in this case the extra hypothesis on the non-vanishing of
the spinor can be dropped.

Proof. As in the proof of Proposition 7.1.4, we choose a point x0 in X and
identify a punctured neighborhood of x0 with (0, ε)× S3 using geodesic coor-
dinates. Let t1 < t2 both be smaller than ε, and suppose that γ1 and γ2 are
gauge-equivalent on the geodesic ball Bt1(x0) of radius t1. After applying a
gauge transformation, we can suppose that both solutions γi are in radial gauge
on Bε(x0), and that they are equal on the ball Bt1(x0). In this gauge, let z be the
difference of γ1 and γ2.
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We regard z as a time-dependent 1-form and spinor on S3, which we make
into a Hilbert space using the round metric. As in the proof of Proposition 7.2.1,
we can cast the equation for z in the form

d

dt
z + L(t)z = f (t),

where f (t) again absorbs the non-linear terms and satisfies the bound (7.8)
required for Lemma 7.1.3. We have to examine the operator L(t), as we did
when we dealt with the Dirac operator alone in the proof of Proposition 7.1.4.
The operator L now has the form

L : (b,ψ) �→ (∗tdb, DA(t)ψ),

where ∗t is the Hodge star operator for the metric gt at radius t. With this form
of the equation, we cannot apply Lemma 7.1.3 directly: the difficulty is that
the operator ∗td is not a symmetric operator with respect to the inner product
defined by the round metric, nor is its skew-symmetric part a bounded operator.
(Compare this with our earlier discussion of the Dirac operator). To remedy
this, we introduce the bundle map

�t : �1S3 → �1S3

which relates the L2 inner product defined by gt and the L2 inner product defined
by the round metric g◦, so that

〈v, w〉L2(S3,gt)
= 〈v,�tw〉L2(S3,g◦)

for all v, w in �1(S3). Then �
1/2
t (∗td)�

−1/2
t is a symmetric operator with

respect to the inner product of L2(S3, g◦). We may now replace b(t) by b̃(t) =
�

1/2
t b(t), and proceed as before.
This argument shows that, if γ1 and γ2 are gauge-equivalent in a small

geodesic ball about x0, then the gauge equivalence extends to a larger ball,
up to the injectivity radius around x0. When X is connected, it follows that for
every x ∈ X , we can find a neighborhood Ux of x and a gauge transformation
ux with ux(γ1) = γ2 on Ux. If the spinor �1 is not identically zero, then (by
unique continuation) it is non-zero on each open set Ux; and this implies that the
gauge transformation ux is unique. So in this case, the gauge transformations
ux patch together to give a single gauge transformation u on all of X .

For the blown-up equations Fσ (γ σ ) = 0, the argument is very similar. In
this case, the gauge group G(Ux) always acts freely on Cσ (Ux, sX ) for each
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open set Ux, so there is no question that the gauge transformations agree on
overlaps. �

8 Compactness in the blown-up configuration space

8.1 Statement of the compactness result

We shall now refine the basic compactness result, Theorem 5.1.1, to the context
of the blown-up configuration space. We deal first with the case of a cylinder,
and state a result modelled on Corollary 5.1.8. In addition to a hypothesis on the
drop in the Chern–Simons–Dirac functional, we need an additional hypothesis
to control the values of the function � introduced in (6.7).

Theorem 8.1.1. Let Z = [t1, t2]×Y be a cylinder, and let Zε = [t1+ ε, t2− ε]
be a smaller cylinder, so Zε � Z. Let γ τ

n ∈ Cτ (Z , s) be a sequence of solutions
of the equations Fτ (γ τ ) = 0 on Z, and let γ̌ τ be the corresponding paths
in Cσ (Y , s). Suppose that the drop in the Chern–Simons–Dirac functional is
uniformly bounded on the larger cylinder Z,

L(γ̌ τ
n (t1))− L(γ̌ τ

n (t2)) ≤ C1,

and suppose that there are one-sided bounds on the value of � at the endpoints
of the smaller cylinder Zε:

�(γ̌ τ
n (t1 + ε)) ≤ C2

�(γ̌ τ
n (t2 − ε)) ≥ −C2.

Then there is a sequence of gauge transformations, un ∈ G(Z), such that, after
passing to a subsequence, the transformed solutions un(γ

τ
n ) have the following

property: for every interior domain Z ′ � Zε , the transformed solutions converge
in the C∞ topology of Cτ (Z , s) to a solution γ τ ∈ Cτ (Z ′, s) of the equations
Fτ (γ τ ) = 0. �

Proof. Let γn ∈ C(Z , s) be the image of γ τ
n under the blow-down map, and

let (Ǎn, �̌n) be the corresponding path in C(Y , s). After passing to a subse-
quence, we can assume we are in one of the following two cases: either �̌n

is identically zero for all n, or it is always non-zero. We treat the latter case
first.

By Corollary 5.1.8, we may assume that γn is converging in the C∞ topology
on the smaller cylinder Zε . In particular, �̌n is converging. If the limit of the �̌n
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is non-zero on Zε , then the statement of the theorem reduces to the statement
of Corollary 5.1.8. So we suppose that �̌n converges to zero.

Recall now from the proof of Proposition 7.1.2 the inequality (7.5), which
we can recast as a statement about �. The following version has the additional
advantage of being formulated in a gauge-invariant manner.

Lemma 8.1.2. For a solution γ τ to the equations Fτ (γ τ ) = 0 on a cylinder
Z, we have the inequality

d

dt
�(γ̌ τ (t)) ≤ ‖ grad L(γ̌ τ (t))‖C0 .

Proof. We have

d

dt
� = − d2

dt2
log ‖�̌(t)‖;

and for a solution of the equations in temporal gauge, the norm of dǍ/dt, which
appears on the right in (7.5), is controlled by the norm of grad L. �

Because the solutions (Ǎn, �̌n) are converging on Zε , we have a uniform
bound on ‖ grad L(γ̌ τ (t))‖C0 ; so if we apply the lemma above to the sequence
(Ǎn, �̌n), we obtain a uniform upper bound on (d/dt)�(γ̌ τ

n ) on the interval
[t1+ ε, t2− ε]. Combining this with the one-sided bounds on the endpoints, we
obtain a two-sided uniform bound

|�(γ̌ τ
n (t))| ≤ M , ∀t ∈ [t1 + ε, t2 − ε],∀n.

Since−� is the derivative of log ‖�̌(t)‖, we deduce that there is a constant K ,
independent of n, such that

‖�̌n(a)‖L2(Y ) ≤ K‖�̌n(b)‖L2(Y )

for all a, b in [t1 + ε, t2 − ε], from which it follows that, for any t0 in the same
interval,

‖�̌n(t0)‖L2(Y ) ≥ K ′‖�n‖L2(Zε )
. (8.1)

Consider now the normalized spinors

�1
n = �n/‖�n‖L2(Zε )

. (8.2)
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Because their L2 norm is 1 and they satisfy the elliptic equations DAn�
1
n = 0,

a subsequence of these normalized spinors converges on any interior domain
Z ′ = [t′1, t′2] × Y . So we may assume that

�1
n

C∞(Z ′)−→ �1.

The inequality (8.1) assures us that �1 is non-zero on each slice {t} × Y ⊂ Z ′.
We now return to our original configurations γ τ

n , which we write as

γ τ
n = (An, sn,φn),

where‖φn‖L2(Y ) = 1 on each slice. On the cylinder Z ′, we have already arranged
that the An are converging in the C∞ topology, and we know that the real
functions sn are converging to zero, because sn(t) is the norm of �n on the slice
{t} × Y . Finally, we have

φ̌n(t) = �̌1
n(t)/‖�̌1

n(t)‖L2(Y );

and since the �1
n are converging C∞ to a limit �1 which is non-zero on each

slice, it follows that

φn
C∞(Z ′)−→ φ,

where

φ̌(t) = �̌1(t)/‖�̌1(t)‖L2(Y ).

This concludes the proof in the case that �n is non-zero for all n.
The remaining case is that the configurations γ τ

n all have sn identically zero.
In this case, a similar argument to the one above can be applied to the spinors
s0,nφn on the cylinder, where s0,n is defined as a solution of the equations (6.12),
so that s0,nφn is a solution of the Dirac equation DAn� = 0. �

Notes and references for Chapter II

Our exposition of the Chern–Simons–Dirac functional and its relation to the
4-dimensional Seiberg–Witten equations is modelled on the similar, well-
developed story of the Chern–Simons functional, as it relates to the anti-
self-dual Yang–Mills (or “instanton”) equation F+A = 0, e.g. for an SU (2)
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connection A. A general account of the latter is given in [22]. In the instanton
theory, the role of the topological energy is played by the Chern–Weil inte-
gral for the second Chern class, while the analytic energy corresponds to the
Yang–Mills functional.

The compactness theorems for solutions of the Seiberg–Witten equations
are what makes these equations so special. There are various versions of the
compactness argument, all exploiting the Lichnerowicz–Weitzenböck formula
in essentially the same way. The original model is in Witten’s paper [125].
The proof presented here gives a sharper result with weaker Sobolev norms.
For example, Theorem 5.2.1 gives weak L2

1 convergence of a subsequence of
(An,�n) after gauge transformation, assuming only an energy bound and the
L2 convergence of F(An,�n). The criterion for strong L2

1 convergence on a
manifold with boundary (rather than convergence on an interior domain) is
new also.

A unique continuation result for the anti-self-dual Yang–Mills equations was
proved in [23] using the same argument as is used in this chapter for the Seiberg–
Witten equations. A slightly stronger result than Proposition 7.2.2 is true (see
[112, 115] for the case of the anti-self-dual Yang–Mills equation): if γ1 and
γ2 are gauge-equivalent to infinite order at a point in X , then they are gauge-
equivalent in a neighborhood of that point. This result is proved using the same
techniques.



III

Hilbert manifolds and perturbations

In finite-dimensional Morse theory, the reconstruction of the ordinary homology
of a manifold from a suitable Morse function relies on the familiar notions of
transversality in differential topology. Finite-dimensional results such as Sard’s
theorem have their analogs for infinite-dimensional manifolds modelled on
Banach or Hilbert spaces. This chapter introduces suitable Hilbert manifolds,
to replace our configuration spaces of smooth pairs (A,�). We then examine
with care how to introduce perturbations of the Seiberg–Witten equations. In
the next chapter, this framework will allow us to carry over the transversality
results, from finite-dimensional Morse theory, to the Morse theory of the
Chern–Simons–Dirac functional and its perturbations.

9 Completions and Hilbert manifolds

9.1 Completions of the configuration spaces

Although Sobolev norms were introduced in the proof of the compactness theo-
rems, we have so far considered only smooth configurations. We now introduce
the Sobolev completions of C(X , sX ) and C(Y , s), and of the corresponding
gauge groups. In order to be able to deal with X and Y side by side, we will
temporarily introduce M to stand for either one. Thus M will be a compact
Riemannian manifold (whose dimension will be 3 or 4) with a spinc structure.
The boundary ∂M may be non-empty. We write s for a spinc structure on M ,
and we write W to stand for either S+ in the case of a 4-manifold, or S in the
case of a 3-manifold. Thus, for example, C(M , s) will be an affine space whose
underlying vector space is C∞(M ; iT ∗M ⊕W ).

134
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For any integer or half-integer k ≥ 0, we write

Ck(M , s) = (A0, 0)+ L2
k(M ; iT ∗M ⊕W ),

= Ak(M , s)× L2
k(M ; W ) (9.1)

where (A0, 0) ∈ C(M , s) is a smooth configuration, and we have set
Ak(M , s) = A0 + L2

k(M ; iT ∗M ) (compare (4.2)). The blown-up configura-
tion space Cσ

k (M , s) is defined similarly, again using the L2
k Sobolev spaces

(cf. (6.2)),

Cσ
k (M , s) = { (A, s,φ) | ‖φ‖L2(M ) = 1, s ≥ 0 }

= Ak(M , s)× R≥ × S(L2
k(M ; W )). (9.2)

(Note that the space S is still defined using the L2 norm.)
Recall that if 2(k + 1) > dim M (so that L2

k+1(M ) ⊂ C0(M )), then the
Sobolev space L2

k+1(M ) is a Banach algebra; indeed, the multiplication

L2
k+1(M )× L2

j (M )→ L2
j (M )

is continuous for j ≤ k + 1. For 2(k + 1) > dim M , we define the gauge
group Gk+1(M ) as a subset of L2

k(M ; C) consisting of functions whose norm
is 1 pointwise. The gauge group inherits the topology of the normed space
L2

k+1(M ; C).

Lemma 9.1.1. The space Cσ
k (M , s) is naturally a Hilbert manifold with boun-

dary. When 2(k + 1) > dim M , the space Gk+1(M ) is a Hilbert Lie group, and
acts smoothly and freely on Cσ

k (M , s).

Proof. First, the sphere S(L2
k(M ; W )) is a Hilbert manifold. Indeed, it is a

submanifold of L2
k(M ; W ) because the squared L2 norm is a smooth function

with 1 as a regular value. The other two factors in the definition (9.2) are the
half-line R≥ = [0,∞) and the affine Hilbert manifold Ak(M , s), so making Cσk

a manifold with boundary. The Sobolev multiplication theorems just discussed
show at once that Gk+1(M ) is a Hilbert Lie group acting smoothly on Cσ

k (M , s).
To see that the action is free, notice first that a connection A is invariant

under a gauge transformation u only if u is constant. Then observe that constant
gauge transformations (a copy of the circle group) act freely on the sphere
S(L2

k(M ; W )). �
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Remark. In the borderline case, 2(k+1) = dim M , we recover the same result
if we replace L2

k+1(M ) with L2
k+1(M ) ∩ L∞(M ) in our definition of the gauge

group. The space L2
k+1(M )∩L∞(M ) is a Banach algebra, and the multiplication

(L2
k+1(M ) ∩ L∞(M ))× L2

j (M )→ L2
j (M )

is continuous for j ≤ k. With this in mind, for 2(k+1) = dim M , we can define
the gauge group Gk+1(M ) as a subset of L2

k(M ; C) ∩ L∞(M ; C). The gauge
group inherits the topology of the normed space L2

k+1(M ; C) ∩ L∞(M ; C).
(Note that this is different from the topology it would inherit as a subset of
L2

k+1(M ; C) in the borderline case. With the latter topology, it would not be a
topological group.) The lemma above then holds without further modification.
We will not make further use of the borderline gauge group.

In addition to the tangent bundle TCσ
k (M , s) and TCk(M , s), we have the

vector bundles which are the fiberwise completions of these bundles in the
L2

j norms for j ≤ k. To define these, we first realize TCσ
k (M , s) explicitly, by

regarding Cσ
k (M , s) as a submanifold of the affine space

Ak × R× L2
k(M ; W ),

and so regard Tγ Cσ
k as a subspace of the corresponding vector space

L2
k(M ; iT ∗M )× R× L2

k(M ; W ).

If (A0, s0,φ0) belongs to Cσ
k (M , s) (so that ‖φ0‖L2 = 1), then a tangent vector

is a triple (a, s,φ) with Re〈φ0,φ〉L2 = 0. The bundle

T σ
j → Cσ

k (M , s) (9.3)

is then defined by declaring its fiber at (A0,φ0, s0) to be the space{
(a, s,φ) ∈ L2

j (M ; iT ∗M )× R× L2
j (M ; W )

∣∣ Re〈φ0,φ〉 = 0
}
.

So defined, the total space of the bundle is a smooth subbundle of the trivial
bundle

Cσ
k (M , s)× L2

k(M ; iT ∗M )× R× L2
k(M ; W ).

In the case of Ck(M , s), the bundle is a product bundle,

Tj → Ck(M , s)

Tj = L2
j (M ; iT ∗M ⊕W )× Ck(M , s). (9.4)
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Note that, when j = k, the bundles Tj and T σ
j are the ordinary tangent bundles

of Ck(M , s) and Cσ
k (M , s).

9.2 Completion for the τ model

In the special case of the cylinder, Z = I × Y , with I a compact interval, we
can also introduce a Sobolev completion of Cτ (Z , sZ ). We define

Cτ
k (Z , sZ ) ⊂ Ak(Z , sZ )× L2

k(I ; R)× L2
k(Z ; S+)

to be the subset consisting of triples (A, s,φ) with

s(t) ≥ 0

‖φ(t)‖L2(Y ) = 1

for all t ∈ I (compare Definition 6.3.1). This space is not a Hilbert manifold,
nor even a manifold with boundary, because of the condition s ≥ 0. However,
it is a closed subspace of a Hilbert manifold: we define

C̃τ
k (Z , sZ ) ⊂ Ak(Z , sZ )× L2

k(I ; R)× L2
k(Z ; S+) (9.5)

to be the subset consisting of triples (A, s,φ) with

‖φ(t)‖L2(Y ) = 1 (9.6)

for all t, but no condition on s. On C̃τ
k (Z , sZ ) there is an involution

i : C̃τ
k (Z , sZ )→ C̃τ

k (Z , sZ )

(A, s,φ) �→ (A,−s,φ).
(9.7)

Certainly Cτ
k (Z , sZ ) is closed in C̃τ

k (Z , sZ ), and we have:

Lemma 9.2.1. For k ≥ 1, the space C̃τ
k (Z , sZ ) is a Hilbert manifold. When

2(k + 1) > 4, it is acted on smoothly and freely by Gk+1(Z).

Proof. The set of L2
k spinors on Z satisfying the condition (9.6) is the inverse

image of the constant function 1 under the map

n : L2
k(Z ; S+)→ L2

k(I ; R)

n(φ) =
(

t �→ ‖φ(t)‖2
L2(Y )

)
.
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When k ≥ 1, this map is smooth, because multiplication in L2
k(I ; R) is con-

tinuous. If n(φ) = 1, then the derivative Dφn is surjective, because for any
f ∈ L2

k(I ; R), we have

Dφn( f φ) = 2f .

It follows that n−1(1) is a Hilbert submanifold of the space of spinors. The
space C̃τ

k (Z , sZ ) is therefore a Hilbert submanifold of the affine space (9.5).
The gauge group acts smoothly on the affine space when 2(k + 1) > 4, and
preserves the submanifold C̃τ

k (Z , sZ ). �

We write T τ
j for the L2

j completion of the tangent bundle of C̃τ
k (Z , sZ ). At

γ = (A0, s0,φ0), the fiber is

T τ
j,γ = { (a, s,φ) | Re〈φ0|t ,φ|t〉L2(Y ) = 0 for all t }. (9.8)

9.3 The quotient configuration spaces

We continue to use the conventions of Subsection 9.1. In particular, M will
denote either a closed 3-manifold Y , or a 4-manifold X , possibly with boundary.
For 2(k + 1) > dim M , we introduce the quotient spaces

Bk(M , s) = Ck(M , s)/Gk+1(M )

Bσ
k (M , s) = Cσ

k (M , s)/Gk+1(M ).

In the latter case, the action of Gk+1(M ) is free. In the case of a cylinder
Z = I × Y (with I again a compact interval), we also introduce the quotient
spaces

Bτ
k (Z , sZ ) = Cτ

k (Z , sZ )/Gk+1(Z)

B̃τ
k (Z , sZ ) = C̃τ

k (Z , sZ )/Gk+1(Z).

Proposition 9.3.1. Suppose 2(k + 1) > dim M . Then the quotient space
Bσ

k (M , s) is Hausdorff. In the case that M is a cylinder Z = I × Y , the same
applies to B̃τ

k (Z , sZ ).

Proof. Suppose we have two sequences in Cσ
k (M , s), say γn converging to γ ,

and γ ′n converging to γ ′. Suppose that un ∈ Gk+1(M ) is a sequence of gauge
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transformations with unγn = γ ′n. We wish to show that γ and γ ′ are gauge-
equivalent by some u ∈ Gk+1(M ). We shall write γn = (An, sn,φn), with similar
notation for γ , γ ′n and γ ′.

First, all the un eventually lie in the same connected component of Gk+1(M ),
because the component in which un lies is determined by knowing the integers

(1/2π i)
∫

M
β ∧ (u−1

n dun) = (1/2π i)
∫

M
β ∧ (An − A′n)

for finitely many closed forms β supported in the interior of M , dual to a basis
for H1(M ; Z). So we may assume that all the un are in the identity component,
and write u = eξn .

Write ξn = ξ0
n + ξ⊥n , where ξ0

n is constant on each component of M and the
integral of ξ⊥n over each component is zero. The relation γ ′n = unγn means that

dξ⊥n = (An − A′n),

and the fact that the right-hand side is Cauchy in L2
k means that ξ⊥n is Cauchy

in L2
k+1.

Replacing γn with eξ
⊥
n γn, we are now reduced to the case that un : M → S1

is a constant for each n. We can therefore pass to a subsequence in which the
gauge transformations un converge to some u; and in this situation the fact that
uγ = γ ′ follows from the continuity of the gauge group action.

This proof, for the case of Bσ
k , applies verbatim to B̃τ

k (Z , sZ ) in the cylindrical
case also. �

We wish to show that Bσ
k (M , s) is a Hilbert manifold with boundary, and we

can base the argument on a quite general principle:

Lemma 9.3.2. Suppose we have a Hilbert Lie group G acting smoothly and
freely on a Hilbert manifold C with Hausdorff quotient. Suppose that at each
c ∈ C, the map

d0 : TeG → TcC

(obtained from the derivative of the action) has closed range. Then the quotient
C/G is also a Hilbert manifold. �

For a proof of this lemma, see [98]. The Hilbert manifold structure on the
quotient can be characterized by the following property. If S ⊂ C is any locally
closed submanifold containing c, with the property that

TcC = im(d0)⊕ TcS,
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then the restriction of the quotient map, S → C/G, is a diffeomorphism from
a neighborhood of c in S to a neighborhood of Gc in C/G.

We will verify the necessary closed-range hypothesis to show that
Cσ

k (M , s)/Gk+1(M ) is a Hilbert manifold (with boundary), and in so doing
construct a particular slice. If the Hilbert manifold structure were our only
concern, any slice S would do. For studying solutions of the Seiberg–Witten
equations, we will need something more specific.

We begin with the irreducible part, the locus

C∗k (M , s) ⊂ Ck(M , s)

consisting of configurations (A,�) with � not zero. The map Cσ
k (M , s) →

Ck(M , s) is a diffeomorphism over C∗k (M , s), and is Gk+1(M )-equivariant, so
we may regard the quotient B∗(M , s) as a subspace of Bσ (M , s) also.

Write d for the map obtained by linearizing the gauge group action of
Gk+1(M ) on Ck(M , s), possibly extended to Sobolev spaces of lower regularity:
at γ = (A0,�0) ∈ Ck(M , s), the map is given by

dγ : L2
j+1(M ; iR)→ Tj,γ

dγ (ξ) = (−dξ , ξ�0).

Define

Jj,γ ⊂ Tj,γ

to be the image of dγ , and let

Kj,γ ⊂ Tj,γ

be the subspace of vectors orthogonal to Jj,γ with respect to the standard L2

inner product:

Kj,γ = { v ∈ Tj,γ | 〈v, w〉L2(M ) = 0,∀w ∈ Jj,γ }. (9.9)

Lemma 9.3.3. The space Kj,γ is

{ (a,φ) | −d∗a + i Re〈i�0,φ〉 = 0 and 〈a, !n〉 = 0 at ∂M },

where !n is the outward normal to the boundary of M , and γ = (A0,�0).
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Proof. We recall first that the correctly normalized inner product is

〈(a1,φ1), (a2,φ2)〉L2 =
∫

M

(〈a1, a2〉 + Re〈φ1,φ2〉
)
.

Taking the first tangent vector to be dγ (ξ), and integrating by parts (first with ξ

compactly supported in the interior and then with a general ξ ), gives the desired
result. �

In the statement of the lemma, the condition

−d∗a + i Re〈i�0,φ〉 = 0

can be written

d∗γ (a,φ) = 0,

where

d∗γ : Tj,γ → L2
j−1(M ; iR)

is the formal adjoint of dγ .

Proposition 9.3.4. As γ varies over C∗k (M , s), the subspaces Jj,γ and Kj,γ

define complementary closed subbundles of the restriction of Tj to C∗k (M , s),
and we have a smooth decomposition

Tj|C∗k (M ,s) = Jj ⊕Kj.

In particular,

TC∗k (M , s) = Jk ⊕Kk .

Proof. With γ = (A0,�0), we show that

Tj,γ = Jj,γ ⊕Kj,γ .

This means that, given any (a,φ), we can solve uniquely for ξ the equations

d∗γ ((a,φ)+ dγ (ξ)) = 0

〈a − dξ , !n〉 = 0 at ∂M .
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The first equation is

�ξ + |�0|2ξ = η

where η = d∗γ (a,φ). Under our hypothesis 2(k + 1) > dim M and j ≥ 0,
the map

ξ �→ �ξ + |�0|2ξ

is a bounded linear operator from L2
j+1 to L2

j−1. Since �0 is non-zero, the

boundary-value problem has a unique solution in L2
j+1, by standard theory.

The decomposition is smooth, because Jj is the image of a smooth, injective
bundle map and Kj is the kernel of a smooth, surjective bundle map. �

When we regard C∗k (M , s) as a subspace of Cσ
k (M , s) (the interior of the

Hilbert manifold with boundary), the subbundle Kj,γ has a smooth extension
to the boundary:

Proposition 9.3.5. There is a smooth bundle decomposition, over the whole of
Cσ

k (M , s), extending the decomposition in Proposition 9.3.4:

T σ
j = J σ

j ⊕Kσ
j .

In the above proposition, the construction of J σ
j is straightforward: adapting

the earlier definition of Jj, we can consider the derivative of the gauge group
action as defining a map

dσ
γ : TeGk+1(M )→ Tγ Cσ

k (M , s) (9.10)

for each γ in Cσ (M , s); we define J σ
k,γ to be the image of dσ

γ , and we define
J σ

j,γ for j ≤ k by extending the map to Sobolev spaces of lower regularity. If
we write γ as (A0, s0,φ0) and write a typical tangent vector as (a, s,φ), with
Re〈iφ0,φ〉L2(M ) = 0, then the map is given by

dσ
γ (ξ) = (−dξ , 0, ξφ0).

The definition of the subspace Kσ
j (M ) in the proposition is as follows.
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Definition 9.3.6. At γ = (A0, s0,φ0) in Cσ
j (M , s), we define a subspace Kσ

j,γ ⊂
T σ

j,γ as the set of all (a, s,φ) satisfying the conditions ⎫⎪⎪⎪⎬⎪⎪⎪⎭
〈a, !n〉 = 0 at ∂M

−d∗a + is2
0 Re〈iφ0,φ〉 = 0

Re〈iφ0,φ〉L2(M ) = 0.

(9.11)

♦

This is not the orthogonal complement of J σ
j,γ with respect to any particularly

natural inner product on the tangent space. We shall see that it is a complement
of J σ

j,γ as claimed, and that it coincides with the earlier Kj,γ at irreducible
configurations γ . It should be pointed out that we can define Jk,γ ⊂ TCk(M , s)
also whenγ = (A, 0) is reducible, and we can defineKk,γ to be its L2-orthogonal
complement, given by (9.9); but with these definitions, neither is a subbundle
of TCk(M , s) because dγ acquires a kernel at reducible configurations.

Proof of Proposition 9.3.5. Note first that, if s0 is not zero, then by integrating
the second condition over M we see that the first two conditions in the definition
of Kσ

j imply the third, because the integral of d∗a is zero when the boundary
condition is satisfied. It follows that, under the map π : Cσ

k (M , s)→ Ck(M , s)
given by (A0, s0,φ0) �→ (A0, s0φ0), the subspaces Kσ

j and Kj coincide where
s0 is not zero. We also see that the three conditions can be rewritten as two,

〈a, !n〉 = 0 at ∂M

−d∗a + is2
0 Re〈iφ0,φ〉 + i|φ0|2 ReµM (〈iφ0,φ〉) = 0,

(9.12)

where in the second equation we write µM ( f ) for the average value of f :

µM ( f ) =
(∫

M f∫
M 1

)
.

Written this way, Kσ
j is once again the kernel of a smooth family of surjective

operators, and is therefore a smooth Hilbert subbundle of T σ
j .

The proof that J σ
j,γ and Kσ

j,γ are complementary at a reducible configuration
γ = (A0,φ0, 0) is much the same as in the irreducible case. One arrives at the
equation

�ξ + |φ0|2µM (|φ0|2ξ) = η

〈dξ , !n〉 = 〈a, !n〉 at ∂M .
(9.13)
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The operator defined by the right-hand side of the equation is a compact pertur-
bation of the Laplacian and hence it is an index-zero Fredholm operator. Thus
it suffices to prove that it has trivial kernel. If ξ is in the kernel then multiplying
the homogeneous version of the above equation by ξ and integrating gives(∫

M
|dξ |2

)
+ Vol(M )

∣∣µM (|φ0|2ξ)
∣∣2 = 0

and we conclude ξ = 0. �

In line with the discussion that follows Lemma 9.3.2, we now describe, for
each γ ∈ Cσ

k (M , s), a closed Hilbert submanifold Sσ
k,γ ⊂ Cσ

k (M , s) which
contains γ and whose tangent space at γ is Kσ

k,γ ⊂ Tγ Cσ
k (M , s). We begin by

describing these in the irreducible part. For any γ in the affine space Ck(M , s)
(not the blow-up), we define Sk,γ to be the affine space with tangent space Kk,γ

at γ : if γ = (A0,�0), this can be described as

Sk,γ = { (A,�) | −d∗a + i Re〈i�0,�〉 = 0 and 〈a|∂M , !n〉 = 0 }, (9.14)

where A = A0 + a ⊗ 1 as usual. (We used the fact that Re〈i�0,�0〉 is zero
pointwise.) If γ is irreducible, then we can regard γ as a point (A0, s0,φ0) in
the blow-up, Cσ

k (M , s), with s0 = 0. In this case, we define a submanifold

Sσ
k,γ ⊂ Cσ

k (M , s)

by taking the closure of Sk,γ ∩ C∗k (M , s), identifying C∗k (M , s) with an open
subset of Cσ

k (M , s). In other language, Sσ
k,γ is the proper transform of the affine

space Sk,γ under the blow-up. In coordinates, this proper transform is

{ (A, s,φ) | − d∗a + iss0 Re〈iφ0,φ〉 = 0,

Re〈iφ0,φ〉L2(M ) = 0 and 〈a|∂M , !n〉 = 0 }.

As before, the vanishing of the L2 inner product in this definition is a con-
sequence of the other two conditions if s is non-zero. As γ approaches the
reducible locus s0 = 0, the equations above have a well-defined limit, which
we use as a definition of Sσ

k,γ at a reducible point γ = (A0, 0,φ0):

{ (A, s,φ) | −d∗a = 0, Re〈iφ0,φ〉L2(M ) = 0 and 〈a|∂M , !n〉 = 0 }.

With this definition, Sσ
k,γ is again a submanifold of Cσ

k,γ with tangent space
Kσ

k,γ . The following definition summarizes the situation.
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Definition 9.3.7. For γ ∈ Ck(M , s), we define Sk,γ ⊂ Ck(M , s) to be the affine
subspace with tangent space Kk,γ at γ . For γ a point (A0, s0,φ0) in the blow-up
Cσ

k (M , s), we define Sσ
k,γ to be the closed submanifold of Cσ

k (M , s) consisting
of the triples (A, s,φ) satisfying the conditions

−d∗a + iss0 Re〈iφ0,φ〉 = 0

〈a, !n〉 = 0 at ∂M

Re〈iφ0,φ〉L2(M ) = 0.

The last condition follows from the other two if ss0 is non-zero. ♦

We write ι for the inclusion of Sσ
k,γ in Cσ

k (M , s), and

ῑ : Sσ
k,γ → Bσ

k (M , s)

for the composite of the inclusion and the quotient map. In view of Lemma 9.3.2
we have:

Corollary 9.3.8. When 2(k + 1) > dim M , the quotient space Bσ
k (M , s) is

a Hilbert manifold with boundary. For each γ ∈ Cσ
k (M , s), there is an open

neighborhood of γ in the slice,

U ⊂ Sσ
k,γ

such that ῑ : U → Bσ
k (M , s) is a diffeomorphism onto its image, which is an

open neighborhood of [γ ] ∈ Bσ
k (M , s). �

Definition 9.3.9. In the context of this corollary, we refer to ῑ : U → Bσ
k (M , s)

as a Coulomb–Neumann chart at [γ ] ∈ Bσ
k (M , s). The submanifold Sσ

k,γ ⊂
Cσ

k (M , s) is the Coulomb–Neumann slice at γ ∈ Cσ
k (M , s). ♦

The terminology is applicable to both the 3- and 4-dimensional configuration
spaces, though in the 3-dimensional case, the boundary will be empty and the
second condition of Definition 9.3.7 is vacuous. In the absence of boundary, we
refer to the “Coulomb” slice. Note that ifγ = (A0, 0) is a reducible configuration
in Ck(M , s), then the condition that (A,�) be in the Coulomb–Neumann slice
Sk,γ is a condition on A−A0 alone, and coincides with the Coulomb–Neumann
gauge condition introduced earlier in Subsection 5.1.
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9.4 Slices in the τ model

We now turn to the quotient space Bτ
k (Z , sZ ) in the case that Z is a cylinder

I × Y . Recall that Bτ
k (Z , sZ ) is a closed subset of B̃τ

k (Z , sZ ). We will show
that B̃τ

k (Z , sZ ) is a Hilbert manifold by exhibiting preferred slices, as we did
for Bσ

k (Z , sZ ) above. Parallel to our previous discussion, for γ ∈ C̃τ
k (Z , sZ )

we write

dτ
γ : L2

j+1(Z ; iR)→ T τ
j,γ

for the map defined by the derivative of the gauge group action on Cτ
k (Z , sZ ).

If γ is (A0, s0,φ0) and we describe T τ
j,γ as in (9.8), the formula for dτ

γ is

dτ
γ (ξ) = (−dξ , 0, ξφ0).

We write J τ
j,γ for the image of this map. Our definition of a complement, Kτ

j,γ ,
to the subspace T τ

j,γ is somewhat more ad hoc than in the previous case, in that,
for example, it does not reduce to the standard Kj,γ at a configuration with s0

non-zero. Motivated by the characterization (9.12) of the Coulomb–Neumann
condition in Cσ

k , we define

Kτ
j,γ ⊂ T τ

j,γ (9.15)

to be the subspace consisting of elements (a, s,φ) (in the description (9.8))
satisfying the conditions

〈a, !n〉 = 0 at ∂Z

−d∗a + is2
0 Re〈iφ0,φ〉 + i|φ0|2 ReµY 〈iφ0,φ〉 = 0.

(9.16)

Here µY is the operator on functions on Z , defined by averaging over each
slice {t} × Y . That is, µY ( f ) is the function on Z which is constant on each
slice and has the same integrals on the slices as f . We then have, just as in
Proposition 9.3.4, the following result:

Proposition 9.4.1. The subspaces J τ
j,γ and Kτ

j,γ define complementary closed

subbundles of T τ
j → C̃τ

k (Z , sZ ), and we have a smooth bundle decomposition

T τ
j = J τ

j ⊕Kτ
j .

In particular,

T C̃τ
k (Z , sZ ) = J τ

k ⊕Kτ
k .
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Proof. Compare the proof of Proposition 9.3.5. In showing that

T τ
j,γ = J τ

j,γ ⊕Kτ
j,γ ,

we arrive at the following equations for a ξ ∈ L2
j+1(Z ; iR) –

�ξ + (Vol(Y ))−1|φ0|2µY (|φ0|2ξ)+ s2
0|φ0|2ξ = η

〈dξ , !n〉 = 〈a, !n〉 at ∂Z

– which once again admit a unique non-zero solution. �

For each γ in C̃τ
k,γ , we can define a slice Sτ

k,γ ⊂ C̃τ
k,γ (Z , sZ )which is a Hilbert

submanifold near γ with tangent space Kτ
k,γ , by imitating the definition of Sσ

k
in Definition 9.3.7:

Definition 9.4.2. For a configuration γ = (A0, s0,φ0) in Cτ
k (Z , sZ ), we define

Sτ
k,γ to be the set of triples (A, s,φ) ∈ C̃τ

k (Z , sZ ) satisfying

〈a, !n〉 = 0 at ∂Z

−d∗a + iss0 Re〈iφ0,φ〉 + i|φ0|2 ReµY (〈iφ0,φ〉) = 0,
(9.17)

where A = A0 + a ⊗ 1. ♦

The linearizations of the conditions defining Sτ
k,γ at γ coincide with the

conditions defining Kτ
k,γ , so Sτ

k,γ is a submanifold near γ , as claimed. Although
we are only really concerned with the behavior near γ , we take the trouble to
check:

Lemma 9.4.3. For each γ ∈ Cτ
k (Z , sZ ), the space Sτ

k,γ is a Hilbert submanifold

of C̃τ
k (Z , sZ ) at all points of the closed subset Cτ

k (Z , sZ ) ⊂ C̃τ
k (Z , sZ ).

Proof. In the same notation as in the definition, let γ1 = (A1, s1,φ1) belong to
Sτ

k,γ . At (A1, s1,φ1), we consider the linearization of the second equation in the
definition. This gives an operator

K :(a, s,φ) �→
− d∗a + is1s0 Re〈iφ0,φ〉 + iss0 Re〈iφ0,φ1〉 + i|φ0|2 ReµY 〈iφ0,φ〉,

acting on triples (a, s,φ), where a satisfies the boundary condition and φ is
orthogonal to φ1 on each {t}×Y . We wish to see that this operator is surjective,
mapping onto L2

k−1(Z ; iR). By considering variations (a, 0, 0), we see that the
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cokernel is at most 1-dimensional, represented by the constant function on Z . So
to establish surjectivity we need only find a variation (0, s,φ) with the integral
of K(0, s,φ) non-zero.

Because γ and γ1 are both in Cτ
k (Z , sZ ), the function s1s0 is non-negative;

so if we consider a variation (0, 0,φ) where φ has positive inner product with
iφ0 on each slice, then both of the two non-zero terms in the formula for K will
be positive multiples of i. �

Remark. The argument shows that the only non-manifold points which can
occur arise when s0s1 is the constant function −1/Vol(Y ).

We again write ι for the inclusion of Sτ
k,γ in C̃τ

k (Z , sZ ), and

ῑ : Sτ
k,γ → B̃τ

k (Z , sZ )

for the quotient map. As in the earlier models, we now have:

Corollary 9.4.4. The quotient space B̃τ
k (Z , sZ ) is a Hilbert manifold. For each

γ ∈ Cτ
k (Z , sZ ), there is an open neighborhood of γ ,

U ⊂ S̃τ
k,γ ,

such that ῑ : U → B̃τ
k (Z , sZ ) is a diffeomorphism onto its image, which is an

open neighborhood of [γ ] ∈ Bτ
k (Z , sZ ). �

Definition 9.4.5. In the context of this corollary, we refer to ῑ : U → B̃τ
k (Z , sZ )

as a τ -Coulomb–Neumann chart at [γ ] ∈ Bτ
k (Z , sZ ). The submanifold Sτ

k,γ ⊂
Cσ

k (M ) is the τ -Coulomb–Neumann slice at γ ∈ Cτ
k (Z , sZ ). ♦

9.5 The equations on the completion

We go back to the case of a compact 4-manifold X (perhaps with boundary).
On the Sobolev completion Cσ

k (X , sX ) of Cσ (X , sX ), there is a construction
parallel to (6.4). We define

Vj → Ck

to be the trivial vector bundle with fiber L2
j (X ; i su(S+) ⊕ S−); and on

Cσ
k (X , sX ), we write Vσ

j for the pull-back bundle. The section Fσ , defined by
(6.5), extends to these Sobolev completions as a section of Vσ

k−1 → Cσ
k (X , sX ),

as is clear from the formula, using the Sobolev multiplication theorems.As long
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as j ≤ k + 1, the gauge group Gk+1(X ) acts smoothly on the Hilbert bundles
Vj and Vσ

j . In the case j = k − 1, the sections F and Fσ of these bundles are
Gk+1(X )-equivariant.

There are similar comments to be made about the 3-dimensional config-
uration space Ck(Y , s) and its blow-up Cσ

k (Y , s). In these terms, grad L is a
section of

Tk−1 → Ck(Y , s)

and similarly (grad L)σ is a section of

T σ
k−1 → Cσ

k (Y , s).

Both of these sections are smooth.
Finally, there is the parallel construction for Cτ (Z , sZ ) on a compact cylinder

Z = I × Y . Recalling Definition 6.3.2, we define Vτ
j → Cτ (Z , sZ ) to be the

vector bundle whose fiber over γ = (A, s,φ) is the vector space

Vτ
j,γ = { (η, r,ψ) | Re〈φ̌(t), ψ̌(t)〉L2(Y ) = 0 for all t }
⊂ L2

j (Z ; i su(S+))⊕ L2
j (I ; R)⊕ L2

j (Z ; S−). (9.18)

Then the left-hand sides of (6.11) define a section Fτ of Vτ
k−1 → Cτ

k (Z , sZ ):

Fτ (A, s,φ) =
(1

2
ρZ (F

+
At )− s2(φφ∗)0,

d

dt
s+ Re

〈
D+A φ,φ

〉
L2(Y )

s,

D+A φ − Re
〈
D+A φ,φ

〉
L2(Y )

φ
)

. (9.19)

We have omitted the identification ρZ (dt) between S− and S+ for the sake of
compactness in this formula. Note that Vτ

j can be extended as a bundle over the

larger space C̃τ
k (Z , sZ ), as can the smooth section Fτ .

9.6 The global slice

At a reducible configuration γ0 = (A0, 0) in Ck(M , s) (where M is either a
4-manifold, possibly with boundary, or a 3-manifold), the Coulomb–Neumann
condition defining Kk,γ0 becomes simply

−d∗a = 0

〈a, !n〉 = 0 at ∂M .
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To find a gauge transformation of the form u = eξ to put a general element
(A,�) = (A0 + a ⊗ 1,�) into the slice ι(Kk,γ0), one solves the equations

�ξ = d∗a

〈dξ , !n〉 = 〈a, !n〉 at ∂M .

(These equations appeared in the proof of Theorem 5.1.1.) There is a unique
solution ξ ∈ L2

k+1(M ; iR) subject to the additional constraint
∫

M ξ = 0. We
introduce the subgroup

G⊥k+1 = { eξ | ∫M ξ = 0 }.

Then the action of the gauge group gives a diffeomorphism

G⊥k+1 ×Kk,γ0 → Ck(
eξ , (a,φ)

) �→ (A0 + (a − dξ)⊗ 1, eξφ).

In the case that the boundary is empty, the inverse map can be written

(A0 + a ⊗ 1,φ) �→ (
e−Gd∗a, (A0 + a − dGd∗a, eGd∗aφ)

)
,

where G : L2
k−1(M ) → L2

k+1(M ) is the Green’s operator of � = d∗d . The
quotient space Bk(M , s) is the quotient of the Coulomb slice ι(Kk) by the action
of the quotient group Gk+1/G⊥k+1. The quotient group has a concrete realization,
because Gk+1 can be written as a product,

Gk+1 = Gh × G⊥k+1,

where Gh consists of the harmonic maps u : M → S1 with (homogeneous)
Neumann boundary conditions. So we can identify Bk(M , s) with ι(Kk)/Gh, or
with Kk/Gh. The group Gh is isomorphic to S1×H 1(M ; Z), but not canonically.
What is canonical is the sequence

S1 → Gh → H 1(M ; Z), (9.20)

where the first map is the inclusion of the constant maps and the second map
assigns to each u its homotopy class as a map to the circle. We have also proved:

Lemma 9.6.1. The group of components of the gauge group Gk+1 is isomorphic
to H 1(M ; Z). �
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9.7 The homotopy type of configuration spaces

The global slice results of the previous subsection give a very simple description
of the homotopy type of the configuration spaces on 3- and 4-dimensional
manifolds, using the identification

Bk(M , s) = ι(Kk,γ0)/Gh.

The projection map Kk,γ0 → H 1(M ; iR) (taking the harmonic part of the
1-form) induces a homotopy equivalence between the quotient space and a
torus,

Bk(M , s) � H 1(M ; iR)/H 1(M ; iZ).

For the blown-up configuration spaces, we blow up

Kk,γ0 = { (a,�) | a is in Coulomb–Neumann gauge }

along the locus � = 0 and then take the quotient. Up to homotopy type, we
can simply consider the complement

K∗k,γ0
= { (a,�) | a is in Coulomb–Neumann gauge,� = 0 }

and we have a homotopy equivalence,

Bσ
k,γ0

� ι(K∗k,γ0
)/Gh.

This quotient is a fiber bundle

ι(K∗k,γ0
)/Gh → { a | a is in Coulomb–Neumann gauge }/H 1(M ; iR)

� H 1(M ; iR)/H 1(M ; iZ)

by projecting away the spinor, with fiber(
L2

k(M , S) \ {0})/S1.

Kuiper’s theorem on the contractibility of the group of unitary transformations
of a Hilbert space [64] gives this bundle a product structure; so the homotopy
type of the quotient space Bσ

k (M , s) is

CP∞ × H 1(M ; iR)/H 1(M ; iZ).
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Without appealing to Kuiper’s theorem, we can use the Leray–Hirsch theorem
to identify the cohomology:

Proposition 9.7.1. The cohomology ring of Bσ
k (M , s) is isomorphic to

�∗(H1(M ; Z)/torsion)⊗ Z[u].

The isomorphism is natural with respect to the action of the group of orientation-
preserving diffeomorphisms of M which preserve the spinc structure s. �

10 Abstract perturbations

We need to introduce perturbations in order to obtain various transversality
results, by the use of the Sard–Smale theorem. The perturbations must be mild
enough to allow us to repeat the proofs of the compactness results above, but
sufficiently flexible to achieve transversality. In order to apply the Sard–Smale
theorem, we will eventually want a Banach space structure on our space of
perturbations.

In this section, Y will continue to be a closed, connected, oriented Riemannian
3-manifold, but in addition a spinc structure s will be fixed, throughout. Thus we
will just write C(Y ), for example, instead of C(Y , s). On the cylinder Z = I×Y ,
the corresponding spinc structure sZ will also be understood. We will be working
with the Sobolev completions Ck(Z , s) introduced in the previous section, and
we will again fix an integer k ≥ 2, so that L2

k+1(Z) ⊂ C0(Z)

10.1 Abstract perturbations

We consider a function f : C(Y ) → R which is invariant under the gauge
group G (not just the identity component), and write−L for the perturbed Chern–
Simons–Dirac functional

−L = L+ f : C(Y )→ R.

We will be considering the gradient-flow equations for such a perturbed func-
tional, and we need to put some constraints on f to allow, for example, the
compactness theorems to be carried over from the unperturbed case. Because
of its appearance in the equations, it is really the gradient of f with respect to
the L2 inner product that is the primary object for us. This gradient is, roughly
speaking, a vector field on C(Y ). However, it will be necessary to consider, more
generally, a section of the completion of the tangent bundle in some Sobolev
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norm. The most general such section that we might need to consider would be
a continuous map

q : C(Y )→ L2(Y ; iT ∗Y ⊕ S),

or equivalently a section

q : C(Y )→ T0, (10.1)

where the notation Tj denotes the L2
j completion of the tangent bundle, as in

(9.4). We will say that such a q is the formal gradient of a continuous function
f : C(Y )→ R if for every smooth path γ : [0, 1] → C(Y ), we have

f ◦ γ (1)− f ◦ γ (0) =
∫ 1

0
〈γ̇ , q〉L2 dt.

When this relation holds, we may write q = grad f , and will write

grad−L = grad L+ q.

We will require that our perturbation q be grad f for some f that is invariant
under G(Y ). It follows from this hypothesis that q is a G(Y )-invariant section
of T0 over C(Y ).

In Section 4, we reinterpreted the gradient-flow equations as an equation for
a pair (A,�) ∈ C(Z), where Z was the cylinder [t1, t2] × Y . Any continuous
map q as in (10.1) determines also a map

q̂ : C(Z)→ V0(Z) (10.2)

as follows. (Recall that Vj = Vj(Z) is the trivial bundle with fiber
L2

j (Z ; i su(S+) ⊕ S−).) By restricting to the slices {t} × Y , we obtain from

the pair (A,�) a continuous path (Ǎ(t), �̌(t)) in C(Y ) (see Definition 4.4.1).
Thus we obtain a continuous path q(Ǎ(t), �̌(t)) in L2(Y ; iT ∗Y ⊕ S). A contin-
uous path in L2(Y ) determines an element of L2(Z), and the bundle iT ∗Y ⊕ S
on Z is identified with i su(S+)⊕ S−, using Clifford multiplication on the first
summand.

The first analytic requirement we make of our perturbation q is that the
associated 4-dimensional perturbation q̂ should extend to a section

q̂ : Ck(Z)→ Vk
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that is infinitely differentiable. The fact that q is invariant under G(Y ) implies
that the section q̂ is invariant under G(Z), and hence by continuity it is also
invariant under the Sobolev gauge group Gk+1(Z).

Using the inclusion Vk ⊂ Vk−1, we now regard F+ q̂ as a section of Vk−1(Z)
(also infinitely differentiable). The vanishing of this section defines an equation
in Ck(Z) that is invariant under Gk+1:

Definition 10.1.1. Let q : C(Y ) → T0 be a section that is the formal L2

gradient of a continuous, G(Y )-invariant function f , and having the property
that the corresponding 4-dimensional perturbation q̂ extends to a C∞ section

q̂ : Ck(Z)→ Vk

on the cylinder Z = [t1, t2] × Y . The equations

F(A,�)+ q̂(A,�) = 0

are then the perturbed Seiberg–Witten equations on Z for the perturbation q.
As an abbreviation, we write Fq for F + q̂. ♦

To write out the perturbed equations more fully, we introduce notation for
the two components of each of q and q̂. We write

q = (q0, q1)

q̂ = (q̂0, q̂1),

where

q0 ∈ L2(Y ; iT ∗Y )

q1 ∈ L2(Y ; S)

q̂0 ∈ L2(Z ; i su(S+))

q̂1 ∈ L2(Z ; S−).

The bundle Vk → Ck(Z) is a sum V0
k ⊕ V1

k , and in these terms,

q̂0 : Ck(Z)→ V0
k

q̂1 : Ck(Z)→ V1
k
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are smooth sections. The gradient-flow equation for a path (B(t),�(t)) is

d

dt
Bt = − ∗ FBt − 2ρ−1(��∗)0 − 2q0(B,�)

d

dt
� = −DB� − q1(B,�)

(10.3)

(cf. (4.7)). If (A,�) denotes the 4-dimensional configuration on Z = [t1, t2]×Y
obtained from the path (B,�) (so that A is a 4-dimensional spinc connection in
temporal gauge), these equations are equivalent to the perturbed Seiberg–Witten
equations for (A,�), which can be written

ρZ (F
+
At )− 2(��∗)0 = −2q̂0(A,�)

D+A � = −q̂1(A,�),
(10.4)

where ρZ is the 4-dimensional Clifford multiplication. Under our assumption,
these equations make sense for an arbitrary pair (A,�) ∈ Ck(Z), and are
invariant under Gk+1(Z). The invariance of q̂ under Gk+1(Z) means simply
that

q̂0(A′,�′) = q̂0(A,�),

q̂1(A′,�′) = uq̂1(A,�)

when (A′,�′) = u(A,�).

10.2 Abstract perturbations on the blow-up

The section q̂ gives rise to a section q̂σ of Vσ
k → Cσ

k (Z). To define this, we
use the decomposition q̂ = (q̂0, q̂1), and we observe that the G-equivariance (in
particular the invariance under S1) implies that q̂1(A,�) vanishes at � = 0.
The section q̂σ is defined as

q̂σ = (q̂0, q̂1,σ )

where q̂1,σ is the section of V1,σ
k given by

q̂1,σ (A, s,φ) =
∫ 1

0
(D(A,rsφ)q̂

1)(φ) dr.

This definition should be compared with the definition of Fσ in (6.5). The
vanishing of q̂1 at the reducibles means that, for � = sφ = 0, the integral in
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the above definition can be integrated, to give the following formula:

q̂1,σ (A, s,φ) = (1/s)q̂1(A, sφ). (10.5)

At � = 0 on the other hand, the formula is

q̂1,σ (A, 0,φ) = (D(A,0)q̂
1)(φ).

The definition makes clear the following lemma:

Lemma 10.2.1. If q̂ is a C section of Vk , then q̂σ is a C −1 section of Vσ
k .

Thus q̂σ will be C∞, under our assumption that q̂ is C∞. �

We write Fσ
q for the smooth section Fσ + q̂σ of Vσ

k−1 → Cσ
k . The equations

Fσ
q (A, s,φ) = 0 are the perturbed Seiberg–Witten equations in the blow-up

picture. When s is non-zero, the equations for (A, s,φ) can be written

ρZ (F
+
At )− 2s2(φφ∗)0 = −2q̂0(A, sφ)

D+A φ = −(1/s)q̂1(A, sφ),
(10.6)

while when s = 0 we must replace the last term on the right by the derivative
−(D(A,0)q̂

1)(φ).

10.3 The perturbed flow on the blow-up

The discussion of the blow-up also has its 3-dimensional counterpart. The vector
field q on Ck(Y ) gives rise to a vector field qσ on the blow-up Cσ

k (Y ). We then
have a perturbation (grad−L)σ of (grad L)σ :

(grad−L)σ = (grad L)σ + qσ .

This will be a smooth section of the vector bundle

T σ
k−1 → Cσ

k (Y ).

We can verify that qσ is smooth by writing it down in the coordinates. So we
consider a path (B(t), r(t),ψ(t)) in Cσ

k (Y ), with ψ(t) having L2 norm 1, and
r(t) ≥ 0. The corresponding path in Ck(Y ) is (B(t), r(t)ψ(t)). To write down
the equations we need the function that generalizes the function � which we
defined in the unperturbed case in (6.7). In the perturbed case, we define

�q(B, r,ψ) = Re
〈
ψ , DBψ + q̃1(B, r,ψ)

〉
L2 (10.7)
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where q̃1 is defined in the same way as q̂1,σ was above:

q̃1(B, r,ψ) =
∫ 1

0
D(B,srψ)q

1(0,ψ) ds. (10.8)

If r(t) is not zero, we can write the equations (10.3) of the path (B(t),
r(t)ψ(t)) as ⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

1

2

d

dt
Bt = −1

2
∗ FBt − r2ρ−1(ψψ∗)0 − q0(B, rψ),

d

dt
r = −�q(B, r,ψ)r

d

dt
ψ = −DBψ − q̃1(B, r,ψ)+�q(B, r,ψ)ψ .

(10.9)

(Compare Equations (6.8).) This means that we can write

(grad−L)σ = (
(grad−L)σ ,0, (grad−L)σ ,r , (grad−L)σ ,1)

in these coordinates as the vector field⎡⎣(1/2) ∗ FBt + r2ρ−1(ψψ∗)0 + q0(B, rψ)

�q(B, r,ψ)r
DBψ + q̃1(B, r,ψ)−�q(B, r,ψ)ψ

⎤⎦ . (10.10)

In these coordinates, therefore, we can write qσ as

qσ (B, r,ψ) = (
q0(B, rψ), 〈q̃1(B, r,ψ),ψ〉L2(Y )r, q̃1(B, r,ψ)⊥

)
, (10.11)

where the superscript ⊥ denotes the projection to the real-orthogonal comple-
ment of ψ (the tangent space to the unit sphere at ψ). For the critical points,
the following version of Proposition 6.2.3 holds.

Proposition 10.3.1. Let (B, r,ψ) represent a point of Cσ
k (Y ), so ψ is of unit

L2 norm and r ≥ 0. Let (B, rψ) be the corresponding point in Ck(Y ). Then
(B, r,ψ) is a critical point of (grad−L)σ if and only if either:

(i) r = 0 and (B, rψ) is a critical point of grad−L; or
(ii) r = 0, the point (B, 0) is a (reducible) critical point of grad−L, and ψ is an

eigenvector of φ �→ DBφ +D(B,0)q
1(0,φ).

�
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10.4 The perturbed equations in the τ model

We define a section q̂τ of Vτ
k → Cτ

k (Z) by defining q̂τ (γ ) slicewise in terms
of qσ . In more detail, for a smooth element γ = (A, s,φ) in Cτ (Z), we let
γ̌ = (Ǎ, š, φ̌) be the corresponding smooth path in Cσ (Y ), and we then have a
continuous path

qσ (γ̌ (t)) ∈ L2(Y ; iT ∗Y )⊕ R⊕ L2(Y ; S)

given by the formula (10.11). The component in S is orthogonal to φ̌(t), for all
t. We can regard this path, in turn, as defining an element

q̂τ (γ ) ∈ L2(Z ; i su(S+))⊕ L2(I ; R)⊕ L2(Z ; S−)

using Clifford multiplication to identify iT ∗Y with i su(S+) on the cylinder as
before. The orthogonality condition means that q̂τ (γ ) lies in the subspace Vτ

0,γ
(see Definition 6.3.2). Our hypothesis that q̂ extends to a smooth section of
Vk → Ck implies that q̂τ extends to a smooth section

q̂τ : Cτ
k (Z)→ Vτ

k ,

much as in the previous cases. In the τ model, the perturbed Seiberg–Witten
equations are the equations Fτ

q(γ ) = 0, where

Fτ
q = Fτ + q̂τ ,

regarded as a C∞ section of Vτ
k−1 → Cτ

k (Z).

10.5 Tame perturbations

We continue to write Z for the cylinder [t1, t2]×Y , and consider a perturbation
q. We wish to impose additional conditions on q to obtain compactness results
for the solutions to the perturbed equations. To define suitable constraints, we
need a norm on the fibers of Vk that is gauge-invariant: on the fiber of Vk at
γ = (A,�), we therefore take the Sobolev L2

k, A norm, defined using A as the
covariant derivative. (Although the bundle is still trivial, as a normed vector
bundle Vk is no longer trivial, because the norm is varying.) Similarly, on the
bundle TCk(Z), we have a gauge-invariant L2

k, A norm. Using the affine structure
of Ck(Z), we will regard the mth derivative of a smooth section q̂ of Vk at
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γ = (A,�) ∈ Ck(Z) as an element of the space of multi-linear maps

Dm
γ q̂ ∈ Multm

(×mL2
k, A(Z ; iT ∗Z ⊕ S+), L2

k, A(Z ; i su(S+)⊕ S−)
)

= Multm (×mTγ Ck(Z), Vk
)

.

The norms of such derivatives will always be measured using these gauge-
invariant norms. We also mention that, in the definition below, we use L2

Sobolev spaces with negative Sobolev exponent. The space L2
−k on a compact

manifold is the dual space of L2
k .

We are now ready to write down a suitable set of constraints on our per-
turbations: a catalog of estimates that we will need. Most of these conditions
on a perturbation q are phrased as conditions on the associated 4-dimensional
perturbation q̂ on the cylinder Z ; these 4-dimensional conditions always imply
a corresponding constraint for q on the 3-manifold Y , because we can consider
translation-invariant configurations as a special case.

Definition 10.5.1. Let k be an integer not less than 2. A perturbation q, given
as a section

q : C(Y )→ T0,

will be called k-tame if it is the formal gradient of a continuous, G(Y )-invariant
function on C(Y ) and satisfies in addition:

(i) the corresponding 4-dimensional perturbation q̂ defines an element

q̂ ∈ C∞
(
Ck(Z), Vk(Z)

)
;

(ii) for every integer j ∈ [1, k], the 4-dimensional perturbation q̂ also defines
an element

q̂ ∈ C0(Cj(Z), Vj(Z)
)
;

(iii) for every integer j ∈ [−k, k], the first derivative,

Dq̂ ∈ C∞
(
Ck(Z), Hom(TCk(Z), Vk(Z))

)
,
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extends to a map

Dq̂ ∈ C∞
(
Ck(Z), Hom(TCj(Z), Vj(Z))

)
;

(iv) there is a constant m2 such that

‖q(B,�)‖L2 ≤ m2
(‖�‖L2 + 1

)
holds for all configurations (B,�) in Ck(Y );

(v) for any choice of smooth connection A0, there is a real function µ1 such
that the inequality

‖q̂(A,�)‖L2
1, A
≤ µ1

(
‖(A− A0,�)‖L2

1, A0

)
holds, for all (A,�) ∈ Ck(Z);

(vi) the 3-dimensional perturbation q defines a C1 section

q : C1(Y )→ T0.

We simply say that q is tame if it is k-tame for all k ≥ 2. ♦

Remark. In these definitions, the notation C0 (for example) refers simply to the
space of continuous sections, not to the Banach space of bounded continuous
sections. The k-tame perturbations do not form a Banach space. Later, however,
we will introduce a smaller (Banach) space of perturbations, in order to be able
to apply the Sard-Smale theorem.

We briefly mention where the various hypotheses will be used. Condition (i),
as indicated above, is a natural condition allowing us to set up the perturbed
equations. Condition (iii) is relevant when we study the Fredholm properties of
the linearization of the equation Fq = 0 on the Coulomb slice. Condition (iv)
is used to obtain an inequality that plays the role of the identity leading to
Lemma 4.5.5. Conditions (ii), (iv) and (v) are used for a bootstrapping argument
in the proof of the compactness theorem for the perturbed equations.

With the exception of Condition (iii), all these matters will be dealt with in
the remainder of this section.

10.6 Perturbations and integration by parts

We consider first the issue of the identity in Lemma 4.5.5, and prove a version
for the perturbed gradient flow. Let q be a k-tame perturbation, the formal
gradient of a function f on C(Y ).
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For the perturbed equations on the cylinder Z = [t1, t2] × Y , we define
the (perturbed, analytic) energy using the same formula that appeared in
Lemma 4.5.5, but using the perturbed functional −L = L+ f in place of L:

Ean
q (A,�) =

∫ t2

t1

∥∥∥∥ d

dt
Ǎ− dc

∥∥∥∥2

dt +
∫ t2

t1

∥∥∥∥ d

dt
�̌+ c�̌

∥∥∥∥2

dt +
∫ t2

t1
‖ grad−L‖2dt.

(10.12)

For a solution of the perturbed Seiberg–Witten equations, this is twice the
drop in −L:

Ean
q (γ ) = 2

(−L(γ̌ (t1))−−L(γ̌ (t2))
)
. (10.13)

Recall that in the unperturbed case, a formula such as (10.12) was not taken
as the primary definition of the analytic energy Ean: the primary definition of
Ean is given in Definition 4.5.4, and a formula of the above sort was derived
in Lemma 4.5.5. The importance of the formula in Definition 4.5.4 is that it
shows that Ean controls the L2 norm of such quantities as FA and ∇A�. The
next lemma plays the same role for the perturbed energy Ean

q .

Lemma 10.6.1. Let q be a k-tame perturbation. Let Z be the cylinder [t1, t2]×Y .
Then for all (A,�) ∈ C(Z) we have

Ean
q (A,�) ≥ 1

2

∫
Z

( 1
4 |FAt |2 + |∇A�|2 + 1

4 (|�|2 − C)2)− C ′(t2 − t1)

(10.14)

for some constants C, C ′ which do not depend on A and �.

Proof. We have

‖ grad−L‖2 = ‖ grad L+ q‖2

≥ 1
2‖ grad L‖2 − ‖q‖2,

by an application of a Peter–Paul inequality to the cross-term. From this, using
the formula (10.12) for Ean

q , we obtain

Ean
q (A,�) ≥ 1

2
Ean(A,�)−

∫ t2

t1
‖q‖2 dt,
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where Ean on the right is the unperturbed analytic energy. Using the formula
for Ean from Definition 4.5.4, we rewrite this as

Ean
q (A,�) ≥
1

2

∫
Z

(
1

4
|FAt |2 + |∇A�|2 + 1

4

(|�|2 + (s/2)
)2 − s2/16

)
−
∫ t2

t1
‖q‖2 dt.

The last term can be bounded in terms of the squared L2 norm of � on the
cylinder, using Condition (iv) of Definition 10.5.1. This results in an extra
quadratic term in �, which can be absorbed by the quartic term in � on the
right, to give an inequality

∫ t2

t1

(‖γ̇ (t)‖2 + ‖ grad−L‖2) dt

≥ 1

2

∫
Z

( 1
4 |FAt |2 + |∇A�|2 + 1

4 (|�|2 − C1)
2)− C2(t2 − t1)

which can be rewritten to give the statement of the lemma. �

Corollary 10.6.2. With the same hypotheses as Lemma 10.6.1, if (A,�) ∈
Ck(Z) is a solution of the perturbed Seiberg–Witten equations (10.4), then

2(−L(t1)−−L(t2))

≥ 1

2

∫
Z

( 1
4 |FAt |2 + |∇A�|2 + 1

4 (|�|2 − C)2)− C ′(t2 − t1).

Proof. The inequality in the lemma holds for (A,�) ∈ Ck(Z) (not just for
smooth configurations) because the terms that appear are continuous in the L2

k
topology. �

10.7 Compactness for the perturbed Seiberg–Witten equations

The properness results of Theorem 5.2.1 lead in a straightforward way to a proof
of a compactness theorem for the perturbed Seiberg–Witten equations (10.4).

Theorem 10.7.1. Let q be a k-tame perturbation. Let γn ∈ Ck(Z) be a sequence
of solutions of the perturbed Seiberg–Witten equations, Fq(γ ) = 0, on the
cylinder Z = [t1, t2] × Y . Suppose that the drop in the perturbed Chern–
Simons–Dirac functional is uniformly bounded:

−L(γ̌n(t1))−−L(γ̌n(t2)) ≤ C.
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Then there is a sequence of gauge transformations, un ∈ Gk+1(Z), such that,
after passing to a subsequence, the transformed solution un(γn) is a convergent
sequence in Ck+1(Z ′), for any interior cylinder Z ′ = [t′1, t′2] × Y .

Proof. Write γn = (An,�n). The bound in the change of −L gives us bounds∫
Z

∣∣FAt
n

∣∣2 ≤ C1,
∫

Z
|�n|4 ≤ C2,

∫
Z
|∇An�n|2 ≤ C3 (10.15)

on the cylinder Z = [t1, t2] × Y , via Corollary 10.6.2. We can perform gauge
transformations un ∈ Gk+1 on Z so that with respect to some base connection A0

on Z the connections An are all in Coulomb–Neumann gauge (5.2) and satisfy
the period conditions (5.3). The transformed pairs

(Ãn, �̃n) = un(An,�n)

have �̃n and Ãn−A0 uniformly bounded in the norm L2
1(Z). Then by Condition

(v) of Definition 10.5.1, the perturbing terms q̂(Ãn, �̃n) are a uniformly bounded
sequence in L2

1, and so we can pass to a subsequence with q̂(Ãn, �̃n) converging
in L2. This means that F(Ãn, �̃n) is converging in L2 (where F is the unperturbed
Seiberg–Witten map). By Part (ii)(a) of Theorem 5.2.1, we can therefore pass
to a further subsequence where (Ãn, �̃n) converges on interior domains in the
L2

1 topology. (The hypothesis in Theorem 5.2.1, that the topological energy
is uniformly bounded, follows from the bounds (10.15).) By Condition (ii)
of Definition 10.5.1, the sequence q̂(Ãn, �̃n) converges in the L2

1 topology on
interior domains. Another application of Theorem 5.2.1 gives convergence of
(Ãn, �̃n) in the L2

2 topology on interior domains. We can continue in this manner
to prove convergence on interior domains in the L2

k+1 topology. �

We note in addition a regularity result that comes from the bootstrapping
argument at the end of the proof above.

Proposition 10.7.2. If γ ∈ Ck(Z) is a solution of Fq(γ ) = 0 for some k-tame
q, then there exists a gauge transformation u ∈ Gk+1 such that the restriction
of u(γ ) to any interior cylinder Z ′ is in the image of the inclusion Ck+1(Z ′)→
Ck(Z ′). �

Corollary 10.7.3. If γ ∈ Ck(Z) is a solution of Fq(γ ) = 0 for some k-tame
q, then there exists a gauge transformation u ∈ Gk+1 such that if we write
u(γ ) = (A,�) and write (Ǎ, �̌) for the corresponding path in the 3-dimensional
configuration space, then (Ǎ, �̌) is an L2

1,loc path, (t1, t2)→ Ck(Y ). �
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From Theorem 10.7.1, we can deduce a compactness result for solutions to
the perturbed 3-dimensional Seiberg–Witten equations,

(grad−L)(B,�) = 0, (10.16)

for (B,�) ∈ Ck(Y ).

Corollary 10.7.4. The image in Bk(Y , s) of the set of solutions (B,�) to the
perturbed 3-dimensional Seiberg–Witten equations (10.16) is compact.

Proof. A sequence of solutions to the 3-dimensional equations on Y gives
rise to a sequence of translation-invariant solutions γi of the 4-dimensional
Seiberg–Witten equations on R× Y . We can then apply Theorem 10.7.1 to the
4-dimensional solutions, restricted to any finite cylinder, say [−1, 1] × Y . The
drop in −L along the cylinder is zero, so we obtain, for example,∫

Y

∣∣∣FBt
i

∣∣∣2 ≤ C1, (10.17)

with similar estimates for the integrals of |�i|4 and |∇B�|2. After applying a
4-dimensional gauge-transformation and passing to a subsequence, the solu-
tions γi will converge in the L2

k+1 topology on any interior cylinder. They will
therefore converge in the L2

k topology on the slice {0} × Y . �

In the statement of Corollary 10.7.4, we emphasize that it is only for a fixed
spinc structure s that a compactness statement is being made. There is the
auxiliary question of whether there may be infinitely many spinc structures s on
Y for which the 3-dimensional equations admit solutions. For the unperturbed
equations, this cannot occur, as follows easily from Item (i) of Theorem 5.1.1.
For the perturbed equations, it is necessary to have chosen perturbations qs,
one for each isomorphism class of spinc structure, before we are even able to
formulate the question; and for a finiteness result to hold, we certainly need some
uniformity in these perturbations. The following lemma clarifies the situation.

Lemma 10.7.5. Suppose {qs} are tame perturbations, one for each spinc struc-
ture s on the Riemannian manifold Y . Suppose that these satisfy a uniform
version of the inequality in Item (iv) of Definition 10.5.1:

‖qs(B,�)‖L2 ≤ m2
(‖�‖L2 + 1

)
,

where m2 is independent of s. Then the perturbed 3-dimensional equations on
Y admit solutions for only finitely many s.
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Proof. The constant C1 in (10.17) depends only on the Riemannian metric and
the constant m2. So if m2 is uniform, we obtain a bound on the L2 norm of
the curvature. This means that the real first Chern class of the spinc structure
lies in a bounded subset of H 2(Y ; R), leaving only finitely many possibilities
for s. �

10.8 Unique continuation for the perturbed equations

Let q be a k-tame perturbation, and consider a solution (A,�) of the perturbed
Seiberg–Witten equations Fq(A,�) = 0 on a cylinder Z = [t1, t2] × Y . We
wish to extend the unique continuation results of Section 7 to the perturbed
setting, starting with a version of Proposition 7.1.2, which says that the spinor
� is identically zero if it vanishes on a slice.

Proposition 10.8.1. Suppose (A,�) ∈ Ck(Z , sZ ) is a solution of the perturbed
Seiberg–Witten equations Fq(A,�) = 0 on Z = [t1, t2] × Y , for some k-tame
perturbation q. If � is zero on the slice {t} × Y for some t in the open interval
(t1, t2), then � is identically zero.

Proof. Recall that our underlying assumption about k is that it is an integer not
less than 2, so that L2

k+1 is in the range of the Sobolev embedding theorem.
According to Proposition 10.7.2, we may assume that A and � are of class L2

k+1
in the interior. Replacing Z by a slightly smaller cylinder, we may then assume
that (A,�) belongs to Ck+1(Z , sZ ). They are therefore continuous. At this point
we may as well consider the case that t is an endpoint of the interval, say t2.

The equation for � can be written in terms of the corresponding path (Ǎ, �̌)

and the dt component c of the connection:

d

dt
�̌+ c�̌+ DǍ(t)�̌ = q1(Ǎ, �̌). (10.18)

The action of the gauge group includes the action of S1, acting on � by scalar
multiplication and trivially on A; so (A, eiθ�) is a solution of the equations, for
all θ ; and by differentiating (10.18) with respect to θ we obtain

i

(
d

dt
�̌+ c�̌

)
= −iDǍ�̌− (D

(Ǎ,�̌)
q1)(0, i�̌). (10.19)

Let H denote the Hilbert space of L2 spinors on Y . Corollary 10.7.3 tells
us that (Ǎ, �̌) defines a continuous path in Ck(Y ); and Condition (iii) in
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Definition 10.5.1 then tell us that the operator

ψ �→
(
D

(Ǎ(t),�̌(t))q
1
)
(0,ψ) (10.20)

is a bounded operator H → H depending continuously on t. Because c is
continuous, multiplication by c defines a bounded operator on H , also depending
continuously on t. Because � is in L2

k+1(Z ; S), it defines an L2
k+1 path

[t1, t2] → H ,

where H is the Hilbert space of L2 spinors on Y . In dimension 1, we have
L2

k+1 ↪→ Ck ; so the path is at least C2. The equation therefore fits into the
general framework of Lemma 7.1.3, for we can write it as

d

dt
�̌+ DǍ�̌ = f (t),

where ‖f (t)‖ is bounded by δ‖�̌(t)‖ by our observations about the operator
(10.20) and c. The remaining hypothesis that needs to be checked is the bound
(7.6b) on the derivative of the linear operator. Because A is C0, this bound can
be equivalently expressed as

‖ρ((d/dt)Ǎ)�̌‖L2(Y ) ≤ C‖D�̌‖L2(Y ) + C ′‖�̌‖L2(Y ),

or equivalently

‖ρ((d/dt)Ǎ)�̌‖L2(Y ) ≤ C ′′‖�̌‖L2
1(Y ).

The path Ǎ is C1 in the space of L2
1 connections on Y . So the required bound

follows from the continuity of multiplication L2
1 × L2

1 → L2 in dimension 3.
Lemma 7.1.3 therefore applies. �

We can also prove a unique continuation result for the full perturbed
equations, along the same lines as Proposition 7.2.1. For this version, we need
some extra regularity for the perturbation: and we assume that the perturbation
q is both k-tame and (k + 1)-tame.

Proposition 10.8.2. Suppose k ≥ 2, and let q be a perturbation that is k-tame
and (k + 1)-tame. Let γ1, γ2 ∈ Ck(Z , sZ ) be two solutions of the perturbed
Seiberg–Witten equations Fq(γ ) = 0 on a cylinder Z = [t1, t2] × Y . Suppose
there exists some t0 in the open interval (t1, t2) for which γ̌1(t0) and γ̌2(t0) are
gauge-equivalent on Y . Then γ1 and γ2 are gauge-equivalent on Z.
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The same result holds for solutions to the equations Fτ (γ τ ) = 0 in the
blown-up picture.

Proof. As in the proof of Proposition 10.8.1, we can appeal to Proposition 10.7.2
and replace the cylinder by a smaller one, so as to have γi in Ck+2(Z , sZ ). Next,
we can apply a gauge transformation so that γ1 and γ2 are both in tempo-
ral gauge and are equal on the slice {t0} × Y . The gauge transformation that
achieves this may only be of class L2

k+2, so after the gauge transformation,
the solutions γi will belong only to Ck+1(Z , sZ ); but this still means that the
spinors and connection forms are continuous on the cylinder, as in the previous
proposition.

We now have two continuous paths γ̌1(t), γ̌2(t) in Ck(Y ). We can join the
two paths by a straight-line homotopy γ̌ (s, t), and then use Condition (iii) of
Definition 10.5.1 to obtain an inequality∥∥q(γ̌1(t))− q(γ̌2(t))

∥∥
L2 ≤ δ‖γ̌1(t)− γ̌2(t)‖L2

for some constant δ independent of t. This allows us to apply Lemma 7.1.3,
and the remaining points in the proof can be modelled on the argument we
used in the unperturbed case, Proposition 7.2.1. The same remarks apply to the
blown-up equations. �

10.9 Convergence to reducible solutions

We now turn to the refined compactness result for the blown-up configuration
space. Our task is to extend the results of Section 8 to the perturbed situation.

We introduced earlier the gauge-invariant function �q (see (10.7)) on Cσ
k (Y ),

a version of the function� adapted to the perturbed equation. It is a C∞ function
on the blown-up configuration space. Note that if Z is the cylinder [t1, t2] × Y ,
and γ τ = (A, s,φ) belongs to Cτ

k (Z), then the function

t �→ �q(Ǎ(t), s(t), φ̌(t))

is a Ck−1 function (in particular a C1 function) of t on the open interval (t1, t2):
this follows from Proposition 10.7.2 and the definition of �q. The following is
a version of Lemma 8.1.2 in the perturbed situation.

Lemma 10.9.1. There is a continuous function positive ζ on Cσ
k (Y ), such that

for any solution γ τ to the equations Fτ
q(γ

τ ) = 0 on a cylinder Z = [t1, t2]×Y ,
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we have the inequality

d

dt
�q(γ̌

τ (t)) ≤ ζ(γ̌ (t))‖ grad−L(γ̌ (t))‖L2
k (Y ),

where γ on the right is the trajectory in Ck(Z) obtained from γ τ by blowing
down.

Remark. Although the left-hand side is a continuous function of t on the open
interval, the right-hand side need not be: the right-hand side is defined for almost
all t and defines a locally square-integrable function on the open interval.

Proof of Lemma 10.9.1. Suppose first that γ τ = (A, s,φ) is not reducible, so
s(t) is everywhere non-zero, and write γ = (A,�) for the image of γ τ under the
blow-down. As in the proof of Proposition 10.8.1, we use the fact that (A, eiθ�)

is a solution of the equations, for all θ , and we differentiate (10.18) with respect
to θ to obtain

i

(
d

dt
�̌+ c�̌

)
= −iDǍ�̌−

(
D

(Ǎ,�̌)
q1
)
(0, i�̌).

Condition (iii) of Definition 10.5.1 (with j = 0) implies that D
(Ǎ(t),�̌(t))q

1 is a

bounded operator on L2. As the derivative of a gradient, it is also self-adjoint.
(It is not complex-linear, however, for �̌ = 0.) We write the identity above as(

d

dt
�̌+ c�̌

)
= −Lφ̌

where L is a symmetric, time-dependent linear operator:

Lψ = DǍψ − i(D
(Ǎ,�̌)

q1)(0, iψ). (10.21)

We now follow the proof of Lemma 7.1.1, to arrive at the inequality

d

dt
�q(γ̌

τ (t)) ≤ 〈�̌(t), L′�̌(t)〉 / ‖�̌(t)‖2. (10.22)

Here L′ denotes the commutator L′ = [(d/dt)+ c, L]. We compute this gauge-
equivariant operator in a temporal gauge (c = 0):

L′ψ = ρ

(
d

dt
Ǎ

)
ψ − iD2

(Ǎ,�̌)
q1
((

d

dt
Ǎ,

d

dt
�̌

)
, (0, iψ)

)
= −ρ((grad−L)0)ψ − iD2

(Ǎ,�̌)
q1(grad−L, (0, iψ)).
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(We have written grad−L = ((grad−L)0, (grad−L)1).) The last line is a gauge-
invariant formula. Condition (iii) of Definition 10.5.1, with j = 0, tells us that
the second derivative of q1 is a bounded bilinear operator

D2
(Ǎ(t),�̌(t))

q1 : L2
k,Ǎ

(Y ; iT ∗Y ⊕ S)× L2(Y ; iT ∗Y ⊕ S)→ L2(Y ; S),

and that its norm depends continuously on γ̌ (t) = (Ǎ(t), �̌(t)) ∈ Ck(Y ). We
therefore have

‖L′ψ‖L2 ≤
(
‖(grad−L)0‖C0 + ζ1(γ̌ (t))‖ grad−L‖L2

k,Ǎ

)
‖ψ‖L2

for some continuous function ζ1. Because L2
k(Y ) ↪→ C0, the first term in the

parenthesis can be absorbed by the second, and this gives the result. �

We are now in a position to prove a version of Theorem 8.1.1 for the perturbed
equations.

Theorem 10.9.2. Let q be a k-tame perturbation. Let Z = [t1, t2] × Y be a
cylinder, and let Zε = [t1 + ε, t2 − ε] be a smaller cylinder, so Zε � Z. Let
γ τ

n ∈ Cτ
k (Z , s)be a sequence of solutions of the perturbed equationsFτ

q(γ
τ ) = 0

on Z, and let γ̌ τ be the corresponding paths in Cσ
k (Y , s). Suppose that the drop

in the perturbed Chern–Simons–Dirac functional is uniformly bounded on the
larger cylinder Z,

−L(γ̌ τ
n (t1))−−L(γ̌ τ

n (t2)) ≤ C1,

and suppose that there are one-sided bounds on the value of � at the endpoints
of the smaller cylinder Zε:

�q(γ̌
τ
n (t1 + ε)) ≤ C2

�q(γ̌
τ
n (t2 − ε)) ≥ −C2.

Then there is a sequence of gauge transformations, un ∈ Gk+1(Z), such that,
after passing to a subsequence, the transformed solutions un(γ

τ
n ) have the fol-

lowing property: for every interior domain Z ′ � Zε , the transformed solutions
belong to Cτ

k+1(Z
′, s) and converge in the topology of Cτ

k+1(Z
′, s) to a solution

γ τ ∈ Cτ
k+1(Z

′, s) of the equations Fτ
q(γ

τ ) = 0.

Proof. The proof follows the same course as the proof of Theorem 8.1.1 with
minor changes. To begin, we apply Theorem 10.7.1, which allows us to assume
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that the trajectories γn = πγ τ
n define a convergent sequence in Ck+1(Zε). Thus

t �→ grad−L(γ̌n(t))

is an L2 path in the Hilbert space L2
k(Y ; iT ∗Y ⊕ S), converging in the topology

of L2 paths as n →∞. The functions

t �→ ζ(γ̌n(t))‖ grad−L(γ̌n(t))‖L2
k (Y )

that appear in Lemma 10.9.1 are therefore an L2-convergent sequence of func-
tions on the interval [t1 + ε, t2 − ε], and their integrals are therefore uniformly
bounded. Combining Lemma 10.9.1 with the assumed bounds on �q at the
endpoints, we obtain a two-sided uniform bound

|�q(γ̌
τ
n (t))| ≤ M ,

as in the unperturbed case, leading to the same inequality (8.1).
As before, the interesting case is now when the �n are non-zero but are

converging to zero in L2(Zε). In this case, we once again consider the normalized
spinors �1

n as in (8.2). We must show that these converge in the L2
k+1 topology

on interior cylinders Z ′ � Zε . Although the equation satisfied by �1
n is a non-

linear one in the perturbed setting, we can again use the circle-action, as we did
in deriving the equation (10.19); in the 4-dimensional setting, this allows us to
regard �1

n as a solution of the equation

D+An
�1

n = i
(
D(An,�n)q̂

1)(0, i�1
n),

which we rewrite as

D+A0
�1

n = Wn�
1
n

where

Wn�
1
n = ρZ (A0 − An)�

1
n + i

(
D(An,�n)q̂

1)(0, i�1
n).

According to Condition (iii), the operator D(An,�n)q̂
1 maps L2

j → L2
j for j≤ k,

and in the corresponding operator norms, it converges to D(A,0)q̂
1 as An con-

verges to A. The same is true of the other term ρ(A0 − An) in Wn since we are
in the range L2

k+1 ⊂ C0. Thus by bootstrapping, using the Gårding inequality,
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and the uniform L2(Z) bound on �1
n, we find that �1

n is bounded in L2
k+1 on

interior domains. Hence after passing to a subsequence and bootstrapping once
more, we can assume that {�1

n} is Cauchy in L2
k+1, as desired.

The remainder of the proof is essentially unchanged. �

11 Constructing tame perturbations

We now take up the task of showing that the class of k-tame perturbations,
defined by the conditions of Definition 10.5.1, is sufficiently large to meet our
needs. Thus far, we have not given any examples of tame perturbations. (Recall
that a perturbation is tame if it is k-tame for all k ≥ 2.) As a particularly simple
example, it is not hard to check that the function

f (A,�) = ‖�‖2

is the primitive of a tame perturbation, as is h(‖�‖2) for any smooth function h
with bounded derivative. We will give an explicit construction of a large class of
tame perturbations, which we call cylinder functions. (The example just given
is not a cylinder function.)

11.1 Cylinder functions

Recall from Subsection 9.6 that the gauge group Gk+1(Y ) can be decomposed
as a product G⊥k+1(Y ) × Gh, and that if γ0 = (B0, 0) ∈ Ck(Y ) is a reducible
configuration, then there is a diffeomorphism

G⊥k+1(Y )×Kk,γ0 → Ck(Y )

(u, (b,�)) �→ u(B0 + b⊗ 1,�)

= (B0 + (b− u−1du)⊗ 1, u�),

where Kk,γ0 is defined by the Coulomb condition d∗b = 0. Constructing func-
tions f on Ck(Y ) invariant under the gauge group Gk+1(Y ) is equivalent to
constructing functions on Kk,γ0 which are invariant under the action of Gh.
This idea motivates the definitions below. In the case that b1(Y ) = 0 (so that
Gh = S1), the functions f that we will construct correspond to functions on Kk,γ0

which are obtained as the composite of a linear map p : Kk,γ0 → Rn×Cm with
a smooth, S1-invariant function g on Rn ×Cm. The map p is defined by taking
the L2 inner products with a collection of smooth elements of Kγ0 .
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Given a coclosed 1-form c ∈ 	1(Y ; iR) we define a function

rc : C(Y )→ R

by setting

rc(B0 + b⊗ 1,�) =
∫

Y
b ∧ ∗c̄

= 〈b, c〉Y .

Any gauge transformation in the identity component, Ge, of the gauge group
changes b by an exact 1-form, so the condition that c is coclosed ensures that
rc is invariant under Ge. For the general element u ∈ Gk+1, the 1-form−u−1du
represents an element h ∈ 2π iH 1(Y ; Z), and under the action of such a u, the
function rc transforms by

rc(u(B0 + b⊗ 1,�)) = rc(B0 + b⊗ 1,�)+ (h� [∗c̄])[Y ].

If c is coexact, then rc is invariant under all of G.
Let T denote the torus

T = H 1(Y ; iR)/(2π iH 1(Y ; Z))

which we identify with the space of imaginary-valued harmonic 1-forms on Y
modulo those with periods in 2π iZ. We can define a G-invariant map C(Y )→
T by

(B0 + b⊗ 1,�) �→ [bharm]
where bharm denotes the harmonic part of b and the square brackets denote
the equivalence class under the action of 2π iH 1(Y ; Z). If we choose forms
ω1, . . . ,ωt representing an integral basis for H 1(Y ; R), we can identify T with
Rt/(2πZt), and write the map as

(B,�) �→ (rω1(B,�), . . . , rωt (B,�)) (mod 2πZt).

It is convenient to choose a splitting

S1 → Gh
v
� H 1(Y ; Z), (11.1)

and define Gh,o to be the image of v. For example, we can choose v so that
Gh,o is the subgroup of Gh consisting of harmonic gauge transformations u with
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u(y0) = 1, where y0 is a chosen basepoint in Y . We then define

Go(Y ) = Gh,o × G⊥(Y ) ⊂ G(Y ).

Then we have G(Y ) = S1 × Go(Y ). Note that Go(Y ) is not the “based gauge
group” { u | u(y0) = 0 }, however v might be chosen. We can also form the
Sobolev version of this group, Go

k+1(Y ) ⊂ Gk+1(Y ). We have

G(Y ) = S1 × Gh,o × G⊥(Y ). (11.2)

The identity component, Ge(Y ) ⊂ G(Y ), is the product of the first and last
factors. The action of Go(Y ) on C(Y ) is free, and we write Bo

k (Y ) for the quotient
of the Sobolev completions:

Bo
k (Y ) = Ck(Y )/Go

k+1(Y ). (11.3)

We refer to Bo
k (Y ) as the based configuration space. It is a Hilbert manifold. The

space Bk(Y ) is the quotient of Bo
k (Y ) by the remaining circle action, (B,�) �→

(B, eiθ�).
Taking the quotient of H 1(Y ; iR)× S by the group Gh,o gives us a bundle S

over T × Y . If ϒ is a smooth section of S, let ϒ̃ denote its lift to a section of
H 1(Y ; iR)× S → H 1(Y ; iR)× Y . This ϒ̃ has the following quasi-periodicity.
For each class κ ∈ H 1(Y ; Z), there is a unique u = v(κ) ∈ Gh,o, where v is the
chosen splitting of the sequence (11.1), and we have

ϒ̃α+κ(y) = u(y)ϒ̃α(y).

(We write ϒb(y) instead of ϒ(b, y).) Note that −u−1du is a harmonic
representative for 2π iκ . Given a section ϒ of S, we can now define a
Go(Y )-equivariant map

ϒ† : C(Y )→ C∞(S)

by

ϒ†(B0 + b⊗ 1,�) = e−Gd∗bϒ̃bharm

and a Go(Y )-invariant map

qϒ : C(Y )→ C
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by setting

qϒ(B,�) =
∫

Y
〈�,ϒ†(B,�)〉

= 〈�, ϒ̃†〉Y .

Note that this map is in fact G-equivariant when we make G act on C via the
map to S1 in the decomposition (11.2).

Choose a finite collection of coclosed 1-forms c1, . . . , cn+t with the first n
being coexact and the remaining t being our basis ων for the harmonic forms.
Also choose a collection of smooth sections ϒ1, . . . ,ϒm of S. These give rise
to a map

p : C(Y )→ Rn × T× Cm

= Rn × (Rt/2πZt)× Cm (11.4)

by setting

p(B,�) =(
rc1(B,�), . . . , rcn+t (B,�), qϒ1(B,�), . . . , qϒm(B,�)

)
(mod 2πZt).

Such a p is invariant under the action of Go(Y ) and equivariant under the
remaining S1 action (with S1 acting by scalar multiplication on the Cm factor
in Rn × T× Cm). From an S1-invariant function

g : Rn × T× Cm → R,

we get an induced function f = g ◦ p : C(Y ) → R which is now invariant
under the full gauge group.

Definition 11.1.1. We call a function f on C(Y ) a cylinder function if it arises
as g ◦ p where:

• the map p : C(Y )→ Rn × T×Cm is defined as above, using any collection
of coexact forms c1, . . . , cn and any collection of sections ϒ1, . . . ϒm, for any
n, m ≥ 0;

• the function g is an S1-invariant smooth function on Rn × T × Cm, with
compact support.

♦
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In the above construction, the map p (and hence also f ) is smooth on the Hilbert
manifold Ck(Y ). We will take up later the task of estimating the gradient of f
and its higher derivatives.

Theorem 11.1.2. If f is a cylinder function, then its gradient

grad f : C(Y )→ T0

is a tame perturbation, in the sense of Definition 10.5.1.

11.2 Cylinder functions and embeddings

Before taking up the proof of Theorem 11.1.2, we shall show that the class of
cylinder functions on Ck(Y ) is a large one in a sense we now make precise.
For the statement of the following proposition, note that the map p constructed
above is invariant under the action of Go

k+1(Y ) on Ck(Y ) and therefore descends
to a map (also called p here) on the Hilbert manifold Bo

k (Y ).

Proposition 11.2.1. Given a compact subset K of a finite-dimensional C1 sub-
manifold M ⊂ Bo

k (Y ), both invariant under the action of S1, there exist a
collection of coclosed forms cν , sections ϒµ of S and a neighborhood U of K
in M , such that the corresponding map

p : Bo
k (Y )→ Rn × T× Cm

gives an embedding of U .

Proof. It is enough to prove two things: first, that given a pair of points x = y
in K , we can find collections ci and ϒµ such that p separates x and y; second,
that given any point x ∈ K and any v in TxM , we can find a p whose differential
at x does not annihilate v.

To begin with the first of these, we first note that if x = [Bx,�x] and y =
[By,�y], then if Bx−By has harmonic part which does not represent an element
of the lattice 2π iH 1(Y , Z), then the images of x and y in T are already distinct.
So we may assume that the harmonic part does lie in this lattice, and after
choosing a different gauge representative, the harmonic parts are equal. If Bx

and By do not now lie in the same orbit of G⊥k+1, then the coexact part of Bx−By

is non-zero, and there is therefore a coexact cν such that rc separates x and y.
We are left with the case that Bx and By are gauge-equivalent by an element of
G⊥k+1; we may assume then that Bx = By = B and that B = B0 + b⊗ 1, with
d∗b = 0. Now �x and �y must be distinct, and we can choose an ϒ such that
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ϒ(bharm) has non-zero inner product with their difference. Then qϒ separates
x and y.

The second matter is not essentially different. �

Corollary 11.2.2. Given any [B,�] in B∗k (Y ) and any non-zero tangent vec-
tor v to B∗k (Y ) at [B,�], there exists a cylinder function f whose differential
D[B,�]f (v) is non-zero. �

11.3 Gradients and Hessians of cylinder functions

Next we take up the task of computing the gradient of such a function. To
begin consider the 1-forms dxν on Rn+t and dzµ on Cm. Pulling these back
by p gives 1-forms p∗(dxν) and p∗(dzµ) on Ck(Y ). The formula for p∗(dxν) is
straightforward:

p∗(dxν)(δb, δ�) = 〈δb, cν〉Y .

The formula for p∗(dzµ) is a little more complicated. We first write ∂n+νϒµ for
∂ϒµ/∂xn+ν , as a section of S. Then

p∗(dzµ)(δb, δ�)

= 〈(Gd∗δb)�,ϒ†
µ〉Y +

t∑
ν=1

〈�, (∂n+νϒµ)
†〉Y 〈δb, cn+ν〉Y + 〈δ�,ϒ†

µ〉Y .

(11.5)

Here ϒ† stands as an abbreviation for ϒ†(B,�). Working formally we can
compute the vector fields X ν and Zµ on C which are L2-dual to p∗(dxν) and
p∗(dzµ). The Zµ formally belong to the complexified tangent bundle of C. We
have

X ν(B,�) = (cν , 0), (11.6a)

while

Zµ(B,�) =
(

dG〈�,ϒ†
µ〉 +

t∑
ν=1

〈�, (∂n+νϒµ)
†〉Y cn+ν ,ϒ†

µ

)
. (11.6b)

Just to be clear, in the above expression the first inner product 〈�,ϒ†
µ〉 is

a pointwise inner product while the second 〈�, (∂n+νϒµ)
†〉Y is an L2 inner



11 Constructing tame perturbations 177

product on Y . Although the X ν are constant vector fields and thus determine
smooth vector fields of every order on any Ck(Y ) the story for the Zµs is
somewhat more complicated. We estimate the size of Zµ and its derivatives in
the gauge-invariant Sobolev norms L2

k,B. We again write Tj for the L2
j completion

of the tangent bundle of C(Y ); and we regard Tj → Ck(Y ) as a Hilbert vector
bundle equipped with the gauge-invariant Hilbert norm L2

j,B on the fibers.

Proposition 11.3.1. For all k ≥ 1 we have:

(i) The Zµ determine C∞ vector fields on Ck(Y ). There is a constant C such
that the differentials

D Zµ : Ck(Y )→ Mult 
(× Tk , Tk

)⊗ C

have norm satisfying a bound

‖D 
(B,�)Z

µ‖ ≤ C
(
1+ ‖b‖L2

k−1

)k(1+ ‖�‖L2
k, B

)
.

In addition, for each j with −k ≤ j ≤ k, this  -th derivative extends to a
continuous map

D Zµ : Ck(Y )→ Mult 
(× −1Tk × Tj, Tj

)⊗ C

whose norm satisfies the same bound.
(ii) The p∗(dzµ) are C∞ 1-forms on Ck(Y ). There is a constant C such that the

differentials

D p∗(dzµ) : Ck(Y )→ Mult +1 (× +1Tk , C
)

have norm satisfying a bound

‖D 
(B,�)p

∗(dzµ)‖ ≤ C(1+ ‖�‖L2).

In addition, for all j with−k ≤ j ≤ k, this derivative extends to a continuous
map

D p∗(dzµ) : Ck(Y )→ Mult 
(× Tk × Tj, C

)
whose norm satisfies the same bound.
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Proof. The essential point is in the following lemma:

Lemma 11.3.2. For all k ≥ 1 and all 0 ≤ j ≤ k+1 the map ϒ† corresponding
to any smooth section ϒ of S is a smooth map

Ck(Y )→ L2
j (S).

Furthermore for each  ≥ 0 there is a constant C such that the differential

D 
(B,�)ϒ

† ∈ Mult 
(× Tk , L2

j,B(Y ; S)
)

satisfies the bound

‖D 
(B,�)ϒ

†‖ ≤ C
(
1+ ‖b‖L2

j−1

)j, ∀ (B,�) ∈ Ck(Y ).

In addition, for all j with −k − 1 ≤ j ≤ k + 1, this  -th derivative extends to
an element of

D 
(B,�)ϒ

† ∈ Mult 
(× −1Tk × Tj, L2

j,B(Y ; S)
)

which is a continuous function of (B,�) and whose norm in this space satisfies
the bound

‖D 
(B,�)ϒ

†‖ ≤ C
(
1+ ‖b‖L2

k−1

)k , ∀ (B,�) ∈ Ck(Y ).

Proof. Note that ϒ†(B,�) is a function of B alone, and in calculating its  -th
derivative with respect to the variable B,

D 
(B,�)ϒ

†(δb1, . . . , δb ),

we see terms such as the symmetrization of

(Gd∗δb1)(Gd∗δb2) . . . (Gd∗δbm)e
−Gd∗bD −mϒ̃bharm (δbm+1, . . . , δb );

(11.7)

and the L2
j,B norm of this term is bounded by

C
(∏

‖δbi‖L2
k

)
‖e−Gd∗b‖L2

j, b−bharm

× ‖D −mϒ̃bharm (δbm+1, . . . , δb )‖L2
k+1, B0+bharm

.
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Here we have interpreted e−Gd∗b as a section of the trivial line bundle with
connection form b− bharm. We also used the multiplication⊗

m+1

L2
k+1 ⊗ L2

j → L2
j

which is continuous if (k+1− 3
2 ) > 0 and−k−1 ≤ j ≤ k+1, for then L2

k+1 is

an algebra and L2
j is a module over L2

k+1. The section ϒ̃ corresponds to a smooth

section ϒ of S on the compact space T× Y , and the norm ‖ϒ̃bharm‖L2
k+1, B0+bharm

is invariant under the deck transformations. The same is true for all the partial
derivatives of ϒ̃ with respect to the coordinates xn+ν . So the last factor in this
expression is bounded in L2

k+1 norm (or indeed any Sobolev norm) by

‖D −mϒ̃bharm (δbm+1, . . . , δb )‖L2
k+1, B0+bharm

≤ C
(∏

‖(δbi)harm‖L2

)
.

Finally, the factor ‖e−Gd∗b‖L2
j,b−bharm

is also gauge-invariant, and so can be

calculated under the assumption that d∗b = 0, when it reduces to ‖1‖L2
j,b−bharm

.

We have

‖1‖L2
j, b−bharm

≤ C
(
1+ ‖b‖L2

j−1

)j

by a straightforward calculation.
For the additional clause, we estimate the L2

j,B norm of (11.7) by a constant
multiple of(

m−1∏
i=1

‖δbi‖L2
k

)
‖δbm‖L2

j

× ‖e−Gd∗b‖L2
k, b−bharm

‖D −mϒ̃bharm (δbm+1, . . . , δb )‖L2
k+1, B0+bharm

,

and proceed as above using the same multiplication theorem. �

Returning to the proof of the proposition, and beginning with Part (i), we
observe that the first term in (11.6b), namely

dG〈�,ϒ†
µ〉,

can be built up as the composite of

1× ϒ† : L2
k,B(Y ; S)× L2

k(Y ; iT ∗Y )→ L2
k,B(Y ; S)× L2

k,B(Y ; S),
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a bilinear multiplication

L2
k,B(Y ; S)× L2

k,B(Y ; S)→ L2
k−1(C),

and a bounded linear map dG : L2
k−1(C)→ L2

k(T
∗
C

Y ). Using Lemma 11.3.2, the
chain rule and the Leibniz rule, we see that the norm of this term is bounded as
claimed in the main clause. The remaining terms are easier, and satisfy stronger
bounds. The additional clause of Part (i) is similar.

For the 1-forms p∗(dzµ) in Part (ii), the argument is similar. It is only neces-
sary to estimate the norm of Zµ and its derivatives as a map to L2

−k , or a fortiori,
to L2. �

Now we can estimate the gradient of a general cylinder function f = g � p,
arising from a smooth map

g : Rn × T× Cm → R

with ∇sg uniformly bounded on Rn × T× Cm for all s. The derivative of f is
the 1-form

df =
n+t∑
ν=1

(∂xν g � p)p∗(dxν)+
m∑

µ=1

(∂zµg � p)p∗(dzµ)+ (∂z̄µg � p)p∗(d z̄µ),

and from this we see that its formal L2 gradient, q = grad f , is the vector field

q =
n+t∑
i=1

(∂xν g � p)X ν +
m∑

µ=1

(∂zµg � p)Zµ + (∂z̄µg � p)Z̄µ. (11.8)

Proposition 11.3.3. For k ≥ 1, the perturbation q determines a smooth vector
field on Ck(Y ), and for each  ≥ 0, there is a constant C with

‖D 
(B,�)q‖ ≤ C(1+ ‖�‖L2)

 
(
1+ ‖b‖L2

k−1

)k(1+ ‖�‖L2
k,B

)
.

Here the norm of D 
(B,�)q is as an element of

Mult 
(× Tk , Tk

)
.

In addition, for every −k − 1 ≤ j ≤ k + 1, the first derivative Dq extends to a
smooth map

Dq : Ck(Y )→ Hom(Tj, Tj)
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whose ( − 1)-th derivative, considered as an element of

Mult 
(× −1Tk × Tj, Tj

)
,

has norm satisfying the same bound.

Proof. In the derivative D q, the terms that appear are symmetrizations of

Dr(∂zµg � p)⊗D −rZµ (11.9)

for 0 ≤ r ≤  , and the similar terms involving X ν and Z̄µ. If we expand the
first factor of the tensor product, we obtain terms

∇s(∂zµg) �
(

s⊗
i=1

Dri p

)

with ri ≥ 1 and
∑

ri = r.As a corollary of the second part of Proposition 11.3.1,
we have, for ri ≥ 1,

‖Dri
(B,�)p‖ ≤ C(1+ ‖�‖L2),

and so we obtain

‖Dr(∂zµg � p)‖ ≤ C(1+ ‖�‖L2)
s

because we have assumed that the derivatives of g are bounded. Using the first
part of Proposition 11.3.1 to estimate D −rZµ, we obtain

‖D 
(B,�)q‖ ≤ C(1+ ‖�‖L2)

 
(
1+ ‖b‖L2

k−1

)k(1+ ‖�‖L2
k,B

)
.

The additional clause is similar. �

11.4 Estimates for perturbations on the cylinder

A cylinder function f , as above, gives rise to a smooth map

q = grad f : C(Y )→ C∞(Y ; iT ∗Y ⊕ S).

For perturbations of this sort, the corresponding 4-dimensional maps over the
cylinder Z = [t1, t2] × Y map smooth sections to smooth sections: that is, we
have

q̂ : C(Z)→ V ,
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where V = C∞(Z ; i su(S+)⊕ S−), as in Subsection 6.1. Recall that q̂(A,�) is
constructed from q by restricting (A,�) to the slices {t} × Y (restricting A as
a connection form, and so losing the dt component), and then identifying the
bundles as:

iT ∗Y ⊕ S = (
i su(S+)⊕ S−

)|{t}×Y .

We claim that the induced 4-dimensional map q̂ has the following smoothness
properties on Sobolev spaces. In these statements, Tj(Z) denotes the tangent
bundle of C(Z), equipped with the L2

j, A norm.

Proposition 11.4.1. Let

q̂ : C(Z)→ V

be a perturbation on Z arising from a cylinder function, and let k ≥ 2.

(i) The map q̂ on C(Z) extends to a C∞ map

Ck(Z)→ Vk . (11.10)

The  -th derivative of the map (11.10),

D 
(A,�)q̂ ∈ Mult 

(× Tk(Z), Vk
)

,

satisfies the estimate

‖D 
(A,�)q̂‖ ≤ C(1+ ‖a‖L2

k (Z)
)2k( +1)(1+ ‖�‖L2

k, A(Z)
) +1,

where A = A0 + a ⊗ 1 as usual.
(ii) For any j in the range −k ≤ j ≤ k, the first derivative Dq̂ extends to a

smooth map

Dq̂ : Ck(Z)→ Hom(Vj, Vj)

whose ( − 1)-th derivative, regarded as an element of

Mult 
(× −1Tk(Z)× Tj(Z), Vj

)
satisfies the same bound.

(iii) For i = 0, 1 the map q̂ : Ck(Z)→ Vk satisfies the estimate

‖q̂‖L2
i, A
≤ C(1+ ‖(a,�)‖L2

i, A(Z)
)(2i+1)
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where A = A0 + a ⊗ 1 as usual. Furthermore for i = 1 the map q̂ is
continuous as a map C1(Z)→ V1.

Proof. This will follow by arguments similar to the above 3-dimensional argu-
ments if we can prove the analog of Lemma 11.3.2. The main source of
complication is the appearance of the operators Gd∗ and dG in (11.5) and
(11.6b). In the 3-dimensional case these operators are smoothing of order 1. In
the 4-dimensional case these operators give rise to operators, defined slicewise,
which smooth in the Y direction while leaving the order of differentiability fixed
in the t direction. (We will continue to write G for this slicewise operator on the
cylinder, and dY for the 3-dimensional exterior derivative.) This has the effect
of losing a derivative in the results obtained. In order to deal with this we need
to introduce Sobolev spaces which control different orders of differentiability
in different directions, the anisotropic Sobolev spaces (see [53, Appendix B]).

Define the L2
k,l norm for functions on the cylinder Z to be

‖ f ‖2
L2

k,l
=

∑
i + j ≤ k,

j ≤ l

∫
Z

∣∣∣∣ ∂

∂tj
∇ i

Y f

∣∣∣∣2

and define L2
k,l to be the completion of smooth functions (or sections) with

respect to this norm. One can characterize L2
k,l as the functions f such that

f ∈ L2
j ([t1, t2], L2

i (Y )), (11.11)

for all non-negative integers i and j with i + j ≤ k and j ≤ l. In fact, if we use
fractional-derivative Sobolev spaces, we can drop the condition that i and j are
integers: for f in L2

k,l , the inclusion (11.11) holds for real i and j in the same
range.

Using this characterization, one sees:

Lemma 11.4.2. For all k and j, the slicewise operators d∗Y G and GdY define
continuous linear operators from L2

k, j(Z)→ L2
k+1, j(Z). �

We will also need the following facts regarding these spaces.

Lemma 11.4.3. The anisotropic Sobolev spaces enjoy the following properties
whenever 2k > dim(Z) and l ≥ 1:

(i) L2
k,l ⊂ C0;

(ii) L2
k,l is an algebra under pointwise multiplication;
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(iii) if | j| ≤ k and |m| ≤ l, then L2
j,m is a module under pointwise multiplication

by L2
k,l .

Proof. For the first item, we can use the fact that an element of L2
k,l lies

in L2
1−ε([t1, t2], L2

k−1+ε
(Y )). For ε smaller than 1/2, this is contained in

C0([t1, t2], C0(Y )) = C0(Z). (This argument uses the fact that k is an inte-
ger.) The other two items follow easily, as in the case of standard Sobolev
spaces. �

The map ϒ† associated to a section ϒ of S gives rise to a 4-dimensional map

ϒ‡ : C(Z)→ C∞(Z , S−)

and we now investigate its behavior on Sobolev completions.

Lemma 11.4.4. For all k ≥ 2 and all j in the range −l ≤ j ≤ k, the map ϒ‡

corresponding to any smooth section ϒ of S is a smooth map

Ck(Z)→ L2
j+1, j, A(Z ; S−)

with the following properties.

(i) For each  ≥ 0 there is a constant C such that the differential

D 
(A,�)ϒ

‡ ∈ Mult 
(× Tk(Z), L2

j+1, j, A(Z ; S−)
)

satisfies the bound

‖D 
(A,�)ϒ

‡‖ ≤ C
(
1+ ‖a‖L2

j

)j(1+ ‖a‖L2
k

)k , ∀ (A,�) ∈ Ck(Z).

(ii) This  -th derivative extends to an element of

D 
(A,�)ϒ

‡ ∈ Mult 
(× −1Tk(Z)× Tj(Z), L2

j+1, j, A

)
which is a continuous function of (A,�) and whose norm in this space
satisfies the bound

‖D 
(A,�)ϒ

‡‖ ≤ C
(
1+ ‖a‖L2

k

)2k .

(iii) For i = 0, 1 we have the bound

‖ϒ‡‖L2
A,i ≤ C

(
1+ ‖a‖L2

i

)i ∀ (A,�) ∈ Ck(Z),
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and furthermore ϒ‡ is continuous as map

C1(Z)→ L2
1, A(Z ; S−).

Proof. We begin with Item (i). As in the proof of Lemma 11.3.2 we need a
bound on the L2

j+1, j, A norm of

(Gd∗Y δa1)(Gd∗Y δa2) · · · (Gd∗Y δam)e
−Gd∗Y aD −mϒ̃aharm (δam+1, . . . , δa ).

(11.12)

Here aharm is the slicewise harmonic projection of a restricted to the slices as a
1-form. The L2

j, A norm of this term is bounded by the product of three factors:

C

(
m∏

i=1

‖Gd∗Y δai‖L2
k+1,k

)
(11.13a)

‖e−Gd∗Y a‖L2
j+1, j, a−aharm

(11.13b)

‖D −mϒ̃aharm (δam+1, . . . , δa )‖L2
k+1, k, A0+aharm

. (11.13c)

Here we have interpreted e−Gd∗Y a as a section of the trivial line bundle with
connection form a − aharm. We have also used the fact that the multiplication

⊗
m

L2
k+1,k ⊗ L2

j+1, j → L2
j

is continuous: this is the case if k > 1 and−k ≤ j ≤ k; for then L2
k+1,k consists

of continuous functions and is hence an algebra, and L2
j+1, j is a module over

this algebra.
The factor (11.13a) is bounded by

m∏
i=1

‖δai‖L2
k
.

To estimate the factor (11.13b), we can find a gauge transformation in L2
k+1,k

which transforms a to â ∈ L2
k,k−1 which is in slicewise Coulomb gauge,

i.e. d∗Y â = 0. (Note that â = a − dZ Gd∗Y a.) This term then reduces to
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‖1‖L2
j+1, j, â−aharm

. We then have

‖1‖L2
j+1, j,â−aharm

≤ C
(
1+ ‖â‖L2

j, j−1

) j

≤ C
(
1+ ‖a‖L2

j

) j

much as in the 3-dimensional case. To understand the factor (11.13c), note first
that an a in L2

k gives rise to an L2
k path aharm in Rt , the space of harmonic

1-forms on Y . We begin by estimating this term when  = m. The connection
A0+ aharm will be implicit in our notation below, when differentiating in the Y
directions. We also introduce ∇Y and ∇Rt for the components of the covariant
derivative acting on ϒ̃ . When expanding those parts of

∇k+1
Z ϒ̃aharm

which contribute to the L2
k+1,k norm, we obtain terms

∇k ′
Y

(
d

dt

)k ′′

ϒ̃aharm ⊗ (dt)k ′′

with k ′ + k ′′ = k + 1 and k ′′ ≤ k. This in turn expands to give terms

∇k ′
Y

(
∇n

Rt ϒ̃(∂
r1
t aharm, . . . , ∂rn

t aharm)
)

with
∑

ri = k ′′ and ri ≥ 1. The L2(Y ) norm of such a term is bounded by

C
n∏

i=1

‖∂rn
t aharm‖Rt ,

because the covariant derivatives of ϒ̃ are uniformly bounded on Rt × Y . The
norm of this term in L2(Z) is then bounded by

C
(
1+ ‖aharm‖L2

k′′
)n.

This is no larger than

C
(
1+ ‖aharm‖L2

k

)k .
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For the functional derivatives D −mϒ̃aharm , we have

D −mϒ̃aharm (δam+1, . . . , δa )

=
∑

∂n+i1 . . . ∂n+i −mϒ̃aharm

∏
〈δam+i, cn+i〉Y .

This is similarly bounded by

C
(
1+ ‖aharm‖L2

k

)k
 −m∏
i=1

‖δam+i‖L2
k
.

Putting the estimates for all three factors together gives the result of the main
clause of the lemma.

For Item (ii), we bound the L2
j+1, j, A norm of (11.12) by the product of the

factors:

C

(
m−1∏
i=1

‖Gd∗Y δai‖L2
k+1,k

)
(11.14a)

‖Gd∗Y δam‖L2
j+1, j

(11.14b)

‖e−Gd∗Y a‖L2
k+1,k,a−aharm

(11.14c)

‖D −mϒ̃aharm (δam+1, . . . , δa )‖L2
k+1,k, A0+aharm

. (11.14d)

The arguments then proceed as above.
To prove Item (iii) we need the following lemma.

Lemma 11.4.5. For all 1 ≤ p ≤ ∞ the map f �→ eif initially defined on
C∞(Z ; R) extends to a continuous map Lp → Lp. For all f ∈ L1 we have
‖eif ‖L∞ = 1

Proof. We have the trivial estimate that for all s, t ∈ R, |eis−eit | ≤ |s− t| from
which the continuity of the induced map on Lp follows. Given {fj} a sequence
of smooth functions converging in L1 norm it follows that in particular eifj

converges to eif except on a set of measure zero. Since ‖eifj‖L∞ = 1, it follows
that ‖eif ‖L∞ = 1. �

This lemma immediately implies the case i = 0 of Item (iii), for then

‖e−Gd∗Y a‖L∞ = 1,



188 III Hilbert manifolds and perturbations

and so ϒ̃ is certainly L2(Z)-bounded as required. The case i = 1 requires us to
investigate the covariant derivative ∇Aϒ

‡:

∇Aϒ
‡ = −(dX Gd∗Y a)ϒ‡ + e−Gd∗Y a∇Aϒ̃aharm

= −($Y (a)+ dt ∧ Gd∗Y ȧ)e−Gd∗Y aϒ̃aharm + e−Gd∗Y a∇Aϒ̃aharm . (11.15)

Here $Y denotes the L2 projection onto the coclosed 1-forms on Y . From
Lemma 11.4.5, we see immediately that both terms are L2-bounded, but now the
L2 bound involves the L2

1 norm of a. What remains is to establish the continuity
of the map ϒ‡ in the L2

1 topology. Lemma 11.4.5 immediately tells us that the
map is continuous as a map from L2 to L2. To check the continuity as a map to
L2

1 we need to see that Equation (11.15) defines a continuous map from L2
1 to

L2. We deal this term by term. To deal with the first two terms, note to begin
with that ϒ̃aharm is continuous as a map from L2

1(Z) to C0(Z). For the first term,
we now use the fact that the map a �→ e−Gd∗Y a is a continuous map from L2

1
to L2([t1, t2], L2

2(Y )), and therefore also to L2([t1, t2], C0(Y )); and that the map
a �→ $Y a is continuous as a map from L2

1 to L2
1([t1, t2], L2(Y )) and hence to

C0([t1, t2], L2(Y )). So the first term has the required continuity property. To deal
with the second term, we use the fact that the map a �→ e−Gd∗Y a is a continuous
map from L2

1 to L2
2/3([t1, t2], L2

4/3(Y )), and hence also to C0([t1, t2], L18(Y )), and

that the map a �→ Gd∗Y ȧ is continuous as a map from L2
1 to L2([t1, t2], L2

1(Y )),
and hence also as a map to L2([t1, t2], L6(Y )). These give the continuity of the
second term. The last term is continuous from Lemma 11.4.5. �

We now return to the proof of Proposition 11.4.1, following the outline in
the 3-dimensional case. We begin with the first item. The analogue of the term
Zµ in (11.6b) is Wµ:

Wµ(A,�) =
(

dY G〈�,ϒ‡
µ〉 +

t∑
i=1

〈�, (∂n+iϒµ)
‡〉Y cn+i,ϒ

‡
µ

)
. (11.16)

Our estimates in Lemma 11.4.4 imply that

D Wµ : Ck(Z)→ Mult 
(× Tk(Z), Vj

)⊗ C

has norm satisfying a bound

‖D 
(A,�)W

µ‖ ≤ C
(
1+ ‖a‖L2

j

) j(1+ ‖a‖L2
k

)k(1+ ‖�‖L2
j, A

)
.
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We have

q̂ =
n+t∑
i=1

(∂xν g � p)X ν +
m∑

µ=1

(∂zµg � p)Wµ + (∂z̄µg � p)W̄µ (11.17)

where now p is to be interpreted slicewise. Just as in the 3-dimensional case,
we can estimate the functional derivative D q̂ if we can estimate

‖Dri
(A,�)p‖

where p is now viewed as a map Ck(Z) → L2
k([t1, t2], Rn+t × Cm). Each Cm

component of p can be viewed as a composition

σ(dt)× ϒ
‡
µ : L2

k, A(Z ; S+)× L2
k(Z ; iT ∗Z)→ L2

k, A(Z ; S−)× L2
k+1,k, A(Z ; S−)

with the bilinear map

(�,ϒ‡) �→ 〈�,ϒ‡〉Y

regarded as a map

L2
k, A(Z ; S−)× L2

k+1,k, A(Z ; S−)→ L2
k([t1, t2], C).

This gives us that

‖Dri
(A,�)p‖ ≤ C

(
1+ ‖a‖L2

k

)2k(1+ ‖�‖L2
k, A

)
,

and hence (using Formula (11.9)) we have

‖Dr
(A,�)(∂zµg � p)‖ ≤ C

(
1+ ‖a‖L2

k

)2kr(1+ ‖�‖L2
k, A

)r .

Putting all this together gives us

‖D 
(A,�)q̂‖ ≤ C

(
1+ ‖a‖L2

k

)2k( +1)(1+ ‖�‖L2
k, A

) +1,

which is the assertion of Part (i) of Proposition 11.4.1.
The second and third parts follow similarly now, using the second and third

parts of Lemma 11.4.4 respectively. �
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11.5 Completing the proof of Theorem 11.1.2

The above results contain all we need to prove Theorem 11.1.2. Part (i) of Propo-
sition 11.4.1 tells us that the perturbation q arising from a cylinder function
satisfies Condition (i) of Definition 10.5.1. This same part of Proposition 11.4.1
(applied to smaller values of k) tells us that q satisfies Condition (ii) of Defini-
tion 10.5.1 for j ≥ 2; while for the case j = 1 we can apply the last clause of
Part (iii) of Proposition 11.4.1. Condition (iii) of Definition 10.5.1 is satisfied on
account of Part (ii) of the proposition. Condition (iv) of Definition 10.5.1 holds
for q, as one can see using the formula (11.8), which expresses q in terms of the
vector fields X ν and Zµ, and the formulae (11.6) for those vector fields. Con-
dition (v) of Definition 10.5.1 holds because of Part (iii) of Proposition 11.4.1,
with i = 1. Finally, Condition (vi) holds on account of the first statement in
Proposition 11.3.3. �

11.6 Banach spaces of tame perturbations

We shall now use cylinder functions to construct a Banach space of tame
perturbations, large enough to retain the embedding properties discussed in
Subsection 11.2.

Theorem 11.6.1. Let qi (i ∈ N) be any countable collection of tame pertur-
bations arising as gradients of cylinder functions on C(Y ). Then there exist a
separable Banach space P and a linear map

Q : P → C0(C(Y ), T0)

λ �→ qλ

with the following properties.

(i) For each λ ∈ P , the element qλ is a tame perturbation in the sense of
Definition 10.5.1.

(ii) The image of Q contains all the perturbations qi from the given countable
collection.

(iii) If Z = [t1, t2] × Y is a cylinder, then for all k ≥ 2, the map

P × Ck(Z)→ Vk(Z)

given by (λ, γ ) �→ q̂λ(γ ) is a smooth map of Banach manifolds.
(iv) The map

P × C1(Y )→ T1(Y )
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given by (λ,β) �→ qλ(β) is continuous and satisfies bounds

‖qλ(B,�)‖L2 ≤ ‖λ‖m2(‖�‖L2 + 1)

and

‖qλ(B,�)‖L2
1, A0

≤ ‖λ‖µ1
(‖(B− B0,�‖L2

1, A0

)
for some constant m2 and some continuous real function µ1 (cf. Properties
(iv) and (v) in Definition 10.5.1).

Proof. Let Ci be any sequence of positive real numbers, and let P be the Banach
space consisting of all real sequences λ = {λi} such that the norm

‖λ‖P =
∑

i

Ci|λi| (11.18)

is finite.

Lemma 11.6.2. The real numbers Ci > 0 can be chosen so that for all λ in P
and all k, the series ∑

i

λiq̂i

is convergent in C∞loc(Ck(Z), Vk).

Remark. Convergence in C∞loc(Ck(Z), Vk) means that for each l ≥ 0 and each x
in Ck(Z), there is a neighborhood U of x on which the partial sums of the series
are Cauchy in Cl(U , Vk).

Proof of Lemma 11.6.2. Fix a smooth base connection A0. Part (i) of Propo-
sition 11.4.1 tells us that for each k ≥ 2, each l ≥ 0 and each R > 0, the
perturbation q̂i has finite Cl norm on the ball BR,k of radius R about (A0, 0) in
Ck(Z). If we set C(i, k, l, R) to be the corresponding norm,

C(i, k, l, R) = ‖q̂i‖Cl(BR,k ,Vk )
,

then the series ∑
i

λiq̂i
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converges in Cl(BR,k , Vk) whenever the λi satisfy

∑
i

C(i, k, l, R)|λi| <∞.

We can then define Ci by diagonalization,

Ci = max
i′≤i

C(i, i′, i, i),

and we will ensure convergence in Cl(BR,k , Vk) for all k, l and R. �

Because of the lemma, we now have a linear map Q : P → C0(C, T0)

defined by

λ �→ qλ =
∑

i

λiqi.

Property (iii) follows from the lemma. Replacing the constants Ci with larger
ones if necessary, we can achieve the required properties (i) and (iv) by the
same type of diagonalization. �

In the remainder of the book, we will make use of a Banach space of per-
turbations such as the one provided by the above theorem. In order to obtain
transversality results, we will want in addition that the initial countable col-
lection of perturbations qi be sufficiently large. To this end, let us consider the
choices to be made when constructing a cylinder function f on C(Y ). We must
choose the following things, in order:

• a pair of positive integers n and m;
• coexact forms c1, …, cn and sections ϒ1, …, ϒm of the bundle S;
• a compact subset K of Rn × T× Cm;
• a smooth S1-invariant function g on Rn × T× Cm, supported in K .

We can specify a countable collection of cylinder functions as follows.
For every pair (n, m), we choose a countable collection of (n + m)-tuples
(c1, . . . cn,ϒ1, . . . ,ϒm) which are dense in the C∞ topology in the space of
all such (n+m)-tuples. We also choose a countable collection of compact sub-
sets K of Rn×T×Cm which are dense in the Hausdorff topology. Finally, for
each K , we choose a collection of functions gα = g(n, m, K)α (α ∈ N) with the
properties:
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• each gα is an S1-invariant function on Rn × T× Cm supported in K ;
• the functions gα are dense in the C∞ topology in the space of smooth, S1-

invariant functions with support in K ;
• the subset of the gα comprising those gα that vanish on the set

K0 = K ∩ (Rn × T× {0})

are dense in the C∞ topology in the space of smooth, S1-invariant functions
with support in K and vanishing on K0.

Combining all these choices, we arrive at a countable collection of cylinder
functions and corresponding perturbations qi.

Definition 11.6.3. By a large Banach space of tame perturbations, we will mean
a separable Banach space P and a linear map Q : P → C0(C(Y ), T0), satisfying
the conditions of Theorem 11.6.1 and containing a countable collection of tame
perturbations qi obtained by making choices as prescribed above. ♦

In what follows, we will presume that a large Banach space of tame per-
turbations has been chosen, once and for all. In our notation, we will usually
confuse P with its image under Q. So we will consider P as a linear space of
perturbations, q ∈ P . Of course, the Banach space topology is not the topology
of its image as a subspace of the set of tame perturbations, for any natural choice
of topology on the latter.

In the conclusions of Theorem 11.6.1, the last condition (unlike the first three)
needs some motivation. The reason for imposing it is that it allows us to prove
the following properness result:

Proposition 11.6.4. Let P be a large Banach space of tame perturbations, let qi

be a convergent sequence in P , and let βi ∈ Ck(Y ) be solutions of the equations

(grad L+ qi)(βi) = 0.

Then there is a sequence of gauge transformations ui such that the transformed
solutions ui(βi) have a convergent subsequence.

Proof. As with Corollary 10.7.4, this can be deduced from the compactness the-
orem on the cylinder, Theorem 10.7.1. The conditions imposed by the last part
of Theorem 11.6.1 provide the uniform bounds needed to start the bootstrapping
argument. �
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Notes and references for Chapter III

The material in Section 9 is now a very standard part of gauge theory, going
back a long way: see [6, 7, 23, 35, 123] for example, for treatment of such
Hilbert-manifold quotients and Coulomb slices. The material here has become
a little more elaborate because of our need to treat the blown-up configuration
space.

The need to introduce a large class of perturbations when constructing Floer
homology was a feature of Floer’s original exposition, [32]. In the context of
SU (2) gauge theory, Floer introduced perturbations based on the holonomy of
a connection around a family of loops: similar perturbations appear in [111]
and [19]. In the context of a U (1) gauge theory, one can replace the holonomy
idea by a simple integration of the connection 1-form against a closed 2-form,
and this provides the simplest model for our cylinder functions.

The rather strange space of perturbations P is necessitated by the need to
fulfill two competing requirements: our perturbations need to be smooth vector
fields on the configuration space (not just C vector fields), in order to apply the
Sard-Smale theorem later; and the space of perturbations needs to be a Banach
space, or a Banach manifold. Similar non-standard Banach spaces of smooth
functions were used by Floer in [32].



IV

Moduli spaces and transversality

Given a closed, oriented, Riemannian 3-manifold Y , with a spinc structure s,
we have introduced in the previous chapter a Hilbert manifold with boundary,
Cσ

k (Y ), obtained by blowing up the configuration space of all pairs (B,�)

along the locus � = 0. In Subsection 10.3, we saw that each choice of tame
perturbation q gave rise to a smooth section

(grad−L)σ = (grad L)σ + qσ

of the L2
k−1 completion of the tangent bundle of Cσ

k (Y ):

T σ
k−1 → Cσ

k (Y ).

We shall refer to a section of any of the completions T σ
j (j ≤ k) somewhat

loosely as a vector field on Cσ
k (Y ), even though only in the case j = k is this

a true vector field on the Hilbert manifold with boundary. This vector field is
invariant under the free action of the gauge group Gk+1(Y ), and so it descends
to a vector field (in the same, weak sense) on the quotient manifold Bσ

k (Y ).
We have already studied the formal gradient-flow equations for the Chern–
Simons–Dirac functional and its perturbation: these give rise to the perturbed
Seiberg–Witten equations on the 4-dimensional cylinder. But so far, we have
considered solutions to these equations mainly on a finite time interval, or a
cylinder [t1, t2] × Y .

Our next task is to study the gradient-flow equations more globally, and
to set up the analytic underpinnings which will be needed for us to take the
constructions of finite-dimensional Morse theory (discussed in Section 2) and
adapt them to this infinite-dimensional setting.

In Section 12 below, we discuss the non-degeneracy of critical points of the
flow. This discussion has two aspects: a Fredholm theory for the linearization

195
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of the flow, and then an examination of our class of perturbations, to see that
the class is indeed large enough to achieve non-degeneracy. Two features com-
plicate the discussion: first, the fact that we have blown up the configuration
space; and second, the fact that, while the Fredholm theory is best considered
in the context of Cσ

k (Y ), the non-degeneracy we are hoping to achieve is in the
quotient space Bσ

k (Y ).
When all critical points of the flow are non-degenerate, we then consider the

trajectory spaces: the spaces of solutions to the formal gradient-flow equations,
defined for all time on the cylinder R × Y . Setting up the Fredholm theory
for the appropriate operators on the cylinder takes some time, and the work is
begun in Section 13.

12 Transversality for the three-dimensional equations

12.1 Non-degeneracy of critical points

We now have a large class of tame perturbations, constructed via cylinder func-
tions (see Theorem 11.1.2). In this section we shall see that these perturbations
are sufficiently general that, for a generic choice of q, all the critical points
of the vector field (grad−L)σ are non-degenerate in the directions normal to
the gauge orbit. To state the non-degeneracy condition precisely, recall from
Proposition 9.3.5 that for j ≤ k we have a bundle decomposition

T σ
j = J σ

j ⊕Kσ
j ,

in which the first summand is a bundle of tangent spaces to the gauge orbits.

Definition 12.1.1. A critical point a ∈ Cσ
k (Y ) of the vector field (grad−L)σ is

non-degenerate if the smooth section (grad−L)σ of T σ
k−1 is transverse to the

subbundle J σ
k−1. ♦

If Sσ
k ⊂ Cσ

k (Y ) is the Coulomb slice at a (Definition 9.3.9), then the non-
degeneracy condition is equivalent to saying that the restriction of (grad−L)σ

to Sσ
k is transverse to Jk−1 at a. Although we shall be working primarily with

Cσ
k (Y ), the non-degeneracy condition has a straightforward interpretation in

terms of the quotient Hilbert manifold Bσ
k (Y ). The quotient space carries a

vector bundle

[T σ
j ] → Bσ

k (Y ),

[T σ
j ] = (T σ

j /J σ
j )/Gk+1,

(12.1)
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whose fiber at the gauge equivalence class [a] is the completion of the tangent
space T[a]Bσ

k (Y ) in the L2
j norm (j ≤ k). The section (grad−L)σ of Tk−1 is

invariant under the action of the gauge group Gk+1(Y ), and therefore descends
to a smooth section [grad−L]σ of [Tk−1]onBσ

k (Y ). Non-degeneracy of all critical
points simply means that the section [grad−L]σ is everywhere transverse to the
zero section of [T σ

k−1].
Remark. Acautionary remark is appropriate here. To say that [grad−L]σ is trans-
verse to the zero section means that, at each zero [a], the derivative defines a
surjective linear map T[a]Bσ

k (Y ) → T σ
k−1,[a]. Unlike the situation of a vector

field on a finite-dimensional manifold, surjectivity of this derivative for a gen-
eral section does not imply injectivity. In the course of this section, we will see
that the derivative of the particular section [grad−L]σ is a Fredholm operator of
index zero, so our transversality condition will imply that the derivative is an
isomorphism. It follows also that transverse zeros in Bσ

k (Y ) are isolated.

The rest of this section is devoted to proving:

Theorem 12.1.2. Let P be a large Banach space of tame perturbations, as in
Definition 11.6.3. Then there is a residual (and in particular non-empty) subset
of P such that for every q in this subset, all the zeros of the section (grad−L)σ of
T σ

k−1 → Cσ
k (Y )are non-degenerate in the above sense. For such a perturbation,

the image of the zeros in Ck(Y ) comprises a finite set of gauge orbits.

12.2 Non-degeneracy characterized

Recall Proposition 10.3.1, that gives a characterization of the critical points
of (grad−L)σ . In the same terms, we now characterize non-degeneracy of the
critical points.

As an analytic preliminary, we examine the sort of perturbation of the Hessian
of L that arises when we look at the linearization of (grad−L)σ . We introduce a
definition to handle the general situation.

Definition 12.2.1. An operator L is called k-almost self-adjoint first-order
elliptic (k-asafoe) if it can be written as

L = L0 + h

where

• L0 is a first-order, self-adjoint elliptic differential operator with smooth
coefficients, acting on sections of a vector bundle E → Y , and
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• h is an operator on sections of E which we suppose to be a map

h : C∞(Y ; E)→ L2(Y ; E)

which extends to a bounded map on L2
j (Y ; E) for all j in the range | j| ≤ k.

We simply say that L is asafoe if it is k-asafoe for all k ≥ 0. ♦

Note that we do not assume that h is symmetric. The conditions on h are
motivated by the properties of the derivative of qσ .

We have a simple regularity result:

Lemma 12.2.2. Suppose L is k-asafoe, and let u ∈ L2
−k be a weak solution of

Lu = v,

with v ∈ L2
j for some j in the range | j| ≤ k. Then u ∈ L2

j+1.

Proof. This is a straightforward bootstrapping argument. Write L = L0 + h
as above. We have hu ∈ L2

−k , by the hypothesis on h. As a weak solution of
the elliptic equation L0u = v − hu, the element u is then in L2

−k+1, as long as
−k ≤ j. �

Corollary 12.2.3. If L is k-asafoe, then for j in the range −k ≤ j ≤ k + 1, it
is invertible as an operator

L : L2
j (E)→ L2

j−1(E)

if and only if it is injective. Furthermore, if L is invertible for one j in this range,
then it is invertible for all j in the range.

Proof. The first statement holds because L is Fredholm of index zero. The
second clause follows from the regularity lemma. �

We can therefore talk unambiguously about the spectrum of L: the operator

(L− λ) : L2
j → L2

j−1

is invertible if and only if λ is not an eigenvalue, a condition that is independent
of j. As usual, by the generalized eigenspace belonging to an eigenvalue λ, we
mean the union ⋃

n≥0

(L− λ)−n{0}.
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Lemma 12.2.4. Let L = L0 + h be a k-asafoe operator. Then the following
hold.

(i) There are only finitely many eigenvalues of the complexification L ⊗
1C in any compact subset of the complex plane C, and the general-
ized eigenspaces of the complexification are finite-dimensional. All the
generalized eigenvectors belong to L2

k+1.
(ii) If h, like L0, is symmetric, then the eigenvalues are real, and there is a

complete orthonormal system of eigenvectors {en} in L2(E). The span of
the eigenvectors is dense in L2

k+1.
(iii) In the non-symmetric case, the imaginary parts of the eigenvalues λ of

L⊗ 1C are bounded by the L2-operator norm of (h− h∗)/2.

Proof. The first two parts follow from the standard theory of compact operators,
because, for any λ′ not in the spectrum, (L−λ′)−1 is a compact operator (on L2)
since it factors through the compact inclusion L2

1 ↪→ L2. The last part follows
from the equality

(λ− λ̄)‖v‖2 = 〈(h− h∗)v, v〉,

which holds for any v in the kernel of L⊗ 1C − λ. �

We should also remark at this point that, in the symmetric case, the eigen-
values of L are a doubly infinite sequence, unbounded both above and below.
This is a consequence of L0 being first-order. The essential point is that a first-
order differential operator with constant coefficients on Rn is conjugate to its
negative via the map x �→ −x on Rn. For example, if a 3-manifold admits
an orientation-reversing isometry, then the spectrum of the Dirac operator is
symmetric about zero.

To return to the question of non-degeneracy, we again use the coordinates
(6.2), so as to write an element in Cσ

k (Y ) as a triple (B, r,ψ), with r ≥ 0 and
ψ of unit L2 norm. In the following proposition, we have used some additional
notation. The affine space Ak is acted on by Gk+1, and we write

T red
j = J red

j ⊕Kred
j (12.2)

for the decomposition of its L2
j tangent bundle. (The superscript stands for

“reducible.”) That is, we write T red
j = Ak × L2

j (Y ; iT ∗Y ), and J red
j , Kred

j are

the trivial subbundles with fibers the exact and coclosed imaginary-valued L2
j

1-forms respectively. The first component of grad−L, restricted to Ak × {0} ⊂
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Ck(Y ), defines a section

(grad−L)red : Ak → T red
k−1.

For B ∈ Ak , we introduce the operator

Dq,B : L2
k(Y ; S)→ L2

k−1(Y ; S)

Dq,B : φ �→ DBφ +D(B,0)q
1(0,φ).

(12.3)

This perturbation of the Dirac operator is k-asafoe, in the sense defined above:
if we write B = B0 + b⊗ 1, we can write Dq,B as L0 + h, where L0 = DB0 and

hφ = ρ(b)φ +D(B,0)q
1(0,φ).

The required mapping properties of h follow from the Sobolev multiplication
theorems (for the first term) and Condition (iii) of Definition 10.5.1 (for the
second). In addition, the operator h is symmetric, as follows from the fact that
q is a formal gradient. Lemma 12.2.4 is therefore applicable. The S1 invariance
of the perturbation also ensures that Dq, B is complex-linear.

Proposition 12.2.5. Let a = (B, r,ψ) be a critical point of the vector field
(grad−L)σ . Then the non-degeneracy of a can be characterized by one of the
following conditions, according to whether r is zero or non-zero.

(i) If r = 0, then a is non-degenerate if and only if the corresponding point
(B, rψ) ∈ C∗k (Y ) is a non-degenerate zero of grad−L, in the sense that
grad−L is transverse to the subbundle Jk−1 of Tk−1.

(ii) If r = 0, then by Proposition 10.3.1, ψ is an eigenvector of Dq,B, with
eigenvalue λ, say, and in this case a is non-degenerate if and only if the
following three conditions hold:
(a) B ∈ Ak is a non-degenerate zero of (grad−L)red , in the sense that

(grad−L)red is transverse to the subbundle J red
k−1 of T red

k−1;
(b) λ is a simple eigenvalue of Dq,B, as a complex operator;
(c) λ is not zero.

Proof. The first item is immediate, because the map from Cσ
k (Y ) to Ck(Y ) is a

diffeomorphism over C∗k (Y ). For the case r = 0, we refer to the formula (10.10)
for (grad−L)σ in these coordinates. Differentiating the vector field at (B, 0,ψ),
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we obtain an operator of the form

D(B,0,ψ)(grad−L)σ :

⎡⎣b
t
φ

⎤⎦ �→
⎡⎣DB(grad−L)red 0 0

0 λ 0
x 0 Dq,B − λ

⎤⎦⎡⎣b
t
φ

⎤⎦
acting on triples (b, t,φ) with Re〈ψ ,φ〉 = 0. Those zero entries in the above
matrix that are not an immediate consequence of the shape of (10.10) follow
from the S1 invariance of the perturbation, which tells us, for example, that
q0(B, rψ) is an even function of r, while q1(B, rψ) is an odd function of r.

Writing dσ again for the derivative of the gauge group action on Cσ (Y ), the
non-degeneracy of a = (B, 0,φ) is equivalent to the surjectivity of

dσ
a ⊕D(B,0,ψ)(grad−L)σ ,

which is given by the matrix

⎡⎣−d DB(grad−L)red 0 0
0 0 λ 0
ψ · x 0 Dq,B − λ

⎤⎦ .

Condition (ii)(a) is equivalent to the surjectivity of the first diagonal block,

(−d , DB(grad−L)red).

Condition (ii)(c) is equivalent to the surjectivity of the middle diagonal block,
multiplication by λ. Condition (ii)(b) means that, acting on the real-orthogonal
complement of ψ , the last diagonal block Dq,B − λ has cokernel the real span
of iψ . However, the vector (0, 0, iψ) is the image of (i, 0, 0, 0). �

We note a simple corollary of our regularity results and the above character-
ization of non-degeneracy.

Corollary 12.2.6. If a is a critical point of −L in Cσ
k (Y ), then a is gauge-

equivalent to a smooth configuration; so the set of gauge-equivalence classes of
critical points is independent of k. Furthermore, the notion of non-degeneracy
is independent of k also. �
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12.3 Hessians

On the irreducible part C∗k (Y ) ⊂ Ck(Y ), we have a decomposition (Proposi-
tion 9.3.4),

Tj|C∗k = Jj ⊕Kj.

Because this decomposition is orthogonal with respect to the standard L2 inner
product (the same inner product with respect to which grad−L is a gradient), we
have that grad−L is a section of Kk−1 ⊂ Tk−1 on C∗k (Y ). We have the Coulomb
slice Sk,α = α + Kk,α as a transverse slice to the gauge orbit at α ∈ C∗(Y ).
(See (9.14).) We define an operator

Hessq,α : Kk,α → Kk−1,α (12.4)

as the restriction of the linear map

$Kk−1 �Dα grad−L : TαC∗k (Y ) = Tk,α → Kk−1,α

to Kk,α . (Here $Kk−1 is the L2 orthogonal projection, which has kernel Jk−1.)
As α varies, we have a smooth bundle map

Hessq : Kk → Kk−1

that isGk+1(Y )-equivariant. We can identifyKk with the pull-back of the tangent
bundle of B∗k (Y ), and Kk−1 with the pull-back of [Tk−1] (where [Tj] is defined
as in (12.1)). In these terms, the family of operators Hessq,α is the pull-back of
a family of operators [Tk ] → [Tk−1] that is formally the covariant Hessian of
the circle-valued function −̄L on B∗k (Y ):

Hessian(−̄L) : [Tk ] → [Tk−1].

(By covariant Hessian, we mean to refer to what is formally the Levi-Cività
derivative corresponding to the L2 inner product on the tangent bundle.) We will
refer to Hessq,α : Kk,α → Kk−1,α also as the Hessian, without much danger of
confusion.

Proposition 12.3.1. The operator Hessq,α : Kk,α → Kk−1,α is symmetric.
There is a complete orthonormal system {en} in K0,α , with the property that
each en is smooth, and

Hessq,αen = λnen
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for some λn ∈ R. The span of the eigenvectors is dense in Kk,α for all k. The
number of eigenvalues λn in any bounded interval is finite.

In particular, Hessq,α is Fredholm of index zero, and is therefore surjective
if and only if it is injective.

Proof. The symmetry is a formal consequence of Hessq,α being a Hessian
under the above identifications. To deduce the remaining properties from
Lemma 12.2.4, we introduce the extended Hessian. This is the operator

Ĥessq,α : Tk,α ⊕ L2
k(Y ; iR)→ Tk−1,α ⊕ L2

k−1(Y ; iR) (12.5)

given by

Ĥessq,α =
[
Dα grad−L dα

d∗α 0

]
. (12.6)

This is a symmetric operator, to which Lemma 12.2.4 applies directly. Indeed
if we write Tj,α as

Tj,α = L2
j (Y ; S)⊕ L2

j (Y ; iT ∗Y ),

then the extended Hessian has the shape

Ĥessq,α =
⎡⎣DA0 0 0

0 ∗d −d
0 d∗ 0

⎤⎦+ h

where the term h is the sum of a zeroth-order operator and terms arising from the
perturbation. The first term in this expression is a self-adjoint elliptic operator
on Y , acting on sections of S ⊕ iT ∗Y ⊕ iR, and the second term satisfies the
conditions laid out in the definition of k-asafoe (Definition 12.2.1).

There is another block decomposition of the extended Hessian. If we
decompose Tj as Jj ⊕ Kj and decompose the operator Ĥessq,α accordingly,
we have

Ĥessq,α =
⎡⎣ 0 x dα

x∗ Hessq,α 0
d∗α 0 0

⎤⎦ . (12.7)

Here x is the operator

x = $Jk−1 �Dα grad−L|Kk,α ,
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which can be written

x = d(d∗d)−1d∗Dα grad−L|Kk,α .

(We have temporarily dropped the subscript from dα .)

Lemma 12.3.2. The operator x : Kk → Jk−1, and its formal adjoint x∗ :
Jk → Kk−1, extend to bounded operators Kj → Jj and Jj → Kj for 0 ≤ j ≤
k. At a critical point, the operator x is zero.

Proof of Lemma. We shall examine only x. We write

x = $Jk−1 �
(
Dα grad L+Dαq

)
,

and the conclusion of the lemma certainly holds for the second term, because
of Condition (iii) in Definition 10.5.1. The first term can be written

x = d(d∗d)−1d∗Dα grad L|Kk,α .

The operator d∗Dα grad L|Kk,α is a differential operator of first order, as is easily
checked, and d(d∗d)−1 is smoothing of order 1. This verifies the first part.

The last assertion reflects the general fact that the derivative of a section
of a subbundle takes values in the subbundle at all points where the section
vanishes. �

From this lemma, it follows that the hypotheses of Lemma 12.2.4 are satisfied
by the operator obtained from the extended Hessian Ĥessq,α by dropping the x
and x∗ terms: ⎛⎝ 0 0 dα

0 Hessq,α 0
d∗α 0 0

⎞⎠ .

In particular, this operator has a complete orthonormal system of eigenvectors;
and the symmetry of the operator means that the eigenvalues are real. At this
point, the operator Hessq,α appears as a summand, and the conclusion of the
proposition follows. �

12.4 Hessians on the blown-up configuration space

Before moving on, we make some remarks about how to adapt the construction
of Hessq,α to the setting of the blown-up configuration space. The operator
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Hessq,α at a general α ∈ Ck(Y ) has a natural interpretation as the Hessian of the
perturbed Chern–Simons–Dirac functional, as we have explained. The vector
field grad−L gives rise to a vector field (grad−L)σ on the blow-up, Cσ

k (Y ); but
if we take a derivative of (grad−L)σ on the blow-up, we are not dealing any
more with the second derivative of a function, because this vector field on the
blow-up is not a gradient in any natural way. Furthermore, we need to specify
what covariant derivative we are going to use if we are to differentiate this
vector field.

If we recall that grad−L is a section of the subbundle Kk−1 of Tk−1 on Ck(Y ),
then we see from Proposition 9.3.5 that (grad−L)σ is a section of Kσ

k−1 on the
blow-up, by continuity. The standard coordinates (B, r,ψ) embed the blow-up,
as usual, in an affine space carrying an L2 inner product:

Cσ
k (Y ) ⊂ Ak × R× L2

k(Y ; S).

The vector field (grad−L)σ can therefore be differentiated as a vector field along
a submanifold in this affine space to obtain a section D(grad−L)σ . This deriva-
tive can then be projected back, first to the tangent space T σ

k−1 and then to
the summand Kσ

k−1 using projection with kernel J σ
k−1. This defines a smooth

bundle map

T σ
k → Kσ

k−1

x �→ $Kσ
k−1

D(grad−L)σ (x),

over Cσ
k (Y ). Finally, this operator can be restricted to the subbundle Kσ

k ⊂ T σ
k ,

and we have a bundle map

Hessσq : Kσ
k → Kσ

k−1 (12.8)

over Cσ
k (Y ).

Because Kσ
k is the pull-back of the tangent bundle of the quotient configura-

tion space Bσ
k (Y ), we can indeed regard Hessσq formally as a covariant derivative

of a vector field on Bσ
k (Y ). It is not a Levi-Cività derivative, however, because

the decomposition of the tangent bundle of Cσ
k (Y ) as J σ

k ⊕Kσ
k is not an orthog-

onal decomposition. For want of a better term, we may still refer to Hessσq as
the Hessian on the blown-up configuration space.

In terms of the decomposition

T σ
j,a = J σ

j,a ⊕Kσ
j,a,
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the definition of Hessσq,a means that the derivative of the vector field has block
form

Da(grad−L)σ =
[

0 x
y Hessσq,a

]
. (12.9)

Acritical point a is a point at which the vector field vanishes. When this happens,
the vector field vanishes along the whole gauge orbit, which means that y is
zero. The entry x is zero also at a critical point: as before, this is a formal
consequence of the fact that (grad−L)σ is a section of the summand Kσ

k−1. So
at a critical point we have

Da(grad−L)σ =
[

0 0
0 Hessσq,a

]
.

The Hessian Hessσq,a allows us to rephrase the non-degeneracy condition for a
critical point:

Lemma 12.4.1. A critical point a in the blown-up configuration space is non-
degenerate if and only if Hessσq,a is surjective.

Proof. The definition of non-degeneracy is that (grad−L)σ should be trans-
verse to the subbundle J σ

k−1 at a. This is the same as saying that the image
of Da(grad−L)σ is the whole of Kσ

k−1. Given the block form of the derivative
(above), this is the same as saying that Hessσq,a is onto. �

There is also a parallel version of the extended Hessian (12.5) in the blown-up
configuration space. For a in Cσ

k (Y ), this is an operator

Ĥess
σ

q,a : T σ
k,α ⊕ L2

k(Y ; iR)→ T σ
k−1,α ⊕ L2

k−1(Y ; iR)

defined by a formula similar to (12.6). Rather than the formal adjoint d∗ that
appears in (12.6) however, it is appropriate to put an operator whose kernel is
Kσ

a . Such an operator is the map

dσ ,†
a : T σ

k,α → L2
k−1(Y ; iR) (12.10)

given at a = (B0, s0,ψ0) by

(b, s,ψ) �→ −d∗b+ is2
0 Re〈iψ0,ψ〉 + i|ψ0|2 ReµY (〈iψ0,ψ〉).
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(See the definition of Kσ in the more general setting of a manifold M with
boundary at (9.12)). Thus we are led to define the extended Hessian in the
blown-up context by the matrix

Ĥess
σ

q,a =
[
Da(grad−L)σ dσ

a

dσ ,†
a 0

]
. (12.11)

This operator Ĥess
σ

q,a will reappear later in Subsection 14.4. We can use the
direct sum decomposition

T σ
j,a = J σ

j,a ⊕Kσ
j,a

to decompose Ĥess
σ

q,a as we did in (12.9) above. The summand J σ
j,a is the image

of dσ
a by definition, and dσ ,†

a has kernel Kσ
j,a. So as an operator on

J σ
j,a ⊕Kσ

j,a ⊕ L2
j (Y ; iR),

Ĥess
σ

q,a has the shape

Ĥess
σ

q,a =
⎡⎢⎣ 0 x dσ

a

y Hessσq,a 0

dσ ,†
a 0 0

⎤⎥⎦ (12.12)

where Hessσq,a is the Hessian on Kσ
j,a.

As above, the terms x and y are zero if a is a critical point. We record this
observation as a lemma:

Lemma 12.4.2. At a critical point a in the blown-up configuration space Cσ
k (Y ),

the extended Hessian Ĥess
σ

q,a has the block form

Ĥess
σ

q,a =
⎡⎢⎣ 0 0 dσ

a

0 Hessσq,a 0

dσ ,†
a 0 0

⎤⎥⎦
as an operator on J σ

j ⊕Kσ
j ⊕ L2

j (Y ; iR). �

The operator Ĥess
σ

q,a as it stands is not presented as a perturbation of an
elliptic operator on Y . The awkwardness arises from the fact that Hilbert space
T σ

j,a is not the space of L2
j sections of a fixed vector bundle on Y . If we write a
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as (B0, r0,ψ0) then T σ
j,a consists of triples (b,ψ , r) and we have the following

two points to consider:

• the spinor ψ is not an arbitrary section of S on Y , but is constrained by the
condition that it be real-orthogonal to the spinor ψ0(t);

• r is simply a real number, so cannot be regarded as an unconstrained section
of a vector bundle.

Of course, we could deal with these points by extending the framework devel-
oped above to include a mild generalization sufficient to incorporate our
situation. An alternative (though less elegant) approach is to avoid the issue
by combining ψ and r together into a single spinor,

ψ = ψ + rψ0, (12.13)

so that ψ is an unconstrained section of the spin bundle S.
With this modification, we can regard Ĥess

σ

q,a as acting on triples

(b, ψ, c) ∈ L2
j (Y ; iT ∗Y ⊕ S ⊕ iR).

In this way it becomes an operator on sections of a vector bundle. To explicitly
write this operator as a perturbation of an elliptic operator, we can begin by
writing Ĥess

σ

q,a in full at a = (B0, r0,ψ0). It is given by the following formula,

in which α is the image of a in Ck(Y ), the projection $⊥ is the orthogonal
projection onto the real-orthogonal complement of ψ0, and q̃1 is defined as
in (10.8):

(b, r,ψ , c) �→(
−dc + ∗db+ 4r0rρ−1(ψ0ψ

∗
0 )0 + 4r2

0ρ
−1(ψψ∗0 + ψ0ψ

∗)0

+ 2Dαq0(b, rψ0 + r0ψ),

�q(a)r +
〈
DB0ψ + ρ(b)ψ0 + cψ0 +Daq̃1(b, r,ψ),ψ0

〉
L2(Y )

r0

+ 〈
DB0ψ0 + q̃1(a),ψ

〉
L2(Y )

r0,

$⊥
[
DB0ψ + ρ(b)ψ0 + cψ0 +Daq̃1(b, r,ψ)−�q(a)ψ

]
,

− d∗b+ ir2
0 Re〈iψ0,ψ〉 + irr0 Re〈iψ0,ψ0〉 + i|ψ0|2 ReµY (〈iψ0,ψ〉)

)
.

(12.14)
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In terms of (b, ψ, c), the operator becomes

(b, ψ, c) �→(
∗db− dc + 2ρ−1((r0ψ − (r0 − 1)〈ψ,ψ0〉L2(Y )ψ0)ψ

∗
0

+ ψ0(r0ψ − (r0 − 1)〈ψ,ψ0〉L2(Y )ψ0)
∗)0

+ 2D(B0,r0ψ0)q
0(b, r0ψ − (r0 − 1)〈ψ,ψ0〉L2(Y )ψ0),

L(b, ψ)+ (
(r0 − 1)〈L(b, ψ),ψ0〉L2(Y ) + 〈n(B0, r0,ψ0),$

⊥ψ〉L2(Y )

)
ψ0

−�q(B0, r0,ψ0)(ψ − 2〈ψ,ψ0〉L2(Y )ψ0),

− d∗b+ ir2
0 Re〈iψ0,$⊥ψ〉 + i Re〈ψ,ψ0〉L2(Y )r0 Re〈iψ0,ψ0〉

+ i|ψ0|2 ReµY (〈iψ0,$⊥ψ〉)
)

,

where

L(b, ψ) = DB0ψ − 〈ψ,ψ0〉L2(Y )DB0ψ0 + ρ(b)ψ0 + cψ0

+D(B0,r0,ψ0)q̃
1(b, 〈ψ,ψ0〉,$⊥ψ) (12.15)

and

n(B0, r0,ψ0) = DB0ψ0 + q̃1(B0, r0,ψ0). (12.16)

Separating the above operator into its first- and zeroth-order parts we arrive
at an operator of the form

Ĥess
σ

q,a(b, ψ, c) = L0(b, ψ, c)+ ha(b, ψ, c) (12.17)

where L0 is (as before) the operator

⎡⎣ ∗d 0 −d
0 DB0 0
−d∗ 0 0

⎤⎦ .

This L0 is elliptic and self-adjoint, being the direct sum of DB0 and the signature
operator on Y . In writing the operator this way, the only term which needs
attention is the term (r0 − 1)〈L(b, ψ),ψ0〉L2(Y ): a priori, this term looks as if
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it involves the first derivatives of ψ through the Dirac operator; but it can be
rewritten as a zeroth-order term using the symmetry

〈DB0ψ,ψ0〉L2(Y ) = 〈ψ, DB0ψ0〉L2(Y ).

The association of the operator ha to the pair a may be seen to give rise to a
smooth map

Cσ
k (Y )→ Hom(L2

j (Y ; iT ∗Y ⊕ S ⊕ iR), L2
j (Y ; iT ∗Y ⊕ S ⊕ iR))

for j ≤ k. In particular, ha satisfies the regularity hypotheses in Defini-
tion 12.2.1, so that Ĥess

σ

q,a is k-asafoe. The conclusions of Lemma 12.2.4
therefore apply.

The extended Hessian Ĥess
σ

q,a, unlike its counterpart Ĥessq,α in the un-
blown-up setting, is not a symmetric operator. At a critical point a, however,
its spectrum is real. We prove this as part of the next lemma.

Lemma 12.4.3. If b is a non-degenerate critical point in the blown-up con-
figuration space, then the extended Hessian Ĥess

σ

q,b is invertible and has real
spectrum. In particular, it is hyperbolic.

Proof. We have already seen that, at a critical point, the operator has the block
form

Ĥess
σ

q,b =
⎡⎢⎣ 0 0 dσ

b
0 Hessσq,b 0

dσ ,†
b 0 0

⎤⎥⎦
(see Lemma 12.4.2). This is the direct sum of two operators: the Hessian Hessσq,a
acting on Kσ

j,a, and the operator

[
0 dσ

b

dσ ,†
b 0

]

acting on J σ
j,a ⊕ L2

j (Y ; iR). Despite the notation, the operator dσ ,†
b is not the

adjoint of dσ
b . Nevertheless, dσ ,†

b dσ
b , which is the operator

ξ �→ dd∗ξ + r2
0 |ψ0|2ξ + |ψ0|2µY (|ψ0|2ξ) (12.18)
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(cf. equation (9.13)), is self-adjoint and strictly positive. Hence this 2-by-2
block is invertible with real spectrum (and symmetric about zero.) Note also
that the analysis of this 2-by-2 block makes no reference to the assumption that
b is a critical point.

Because this 2-by-2 block is invertible, the invertibility of the operator
Ĥess

σ

q,b is equivalent to the invertibility of the summand Hessσq,b. This sum-
mand is a Fredholm operator of index zero, so it is invertible if and only if it
is surjective; and we have already observed (in Lemma 12.4.1 above) that the
non-degeneracy of the critical point is equivalent to this surjectivity.

What remains is to show that the spectrum of the Hessσq,b is real. Our discus-
sion of this operator brings in the material of Subsection 12.2. At an irreducible
critical point, the operator Hessσq,b on Kσ

j,a is conjugate to the operator Hessq,b

on Kj,a via the blow-down map. Because the latter operator is a covariant sec-
ond derivative, it is symmetric. The spectrum of Hessσq,b is therefore real in the
irreducible case.

To see that the spectrum is real in the reducible case, we examine the extended
Hessian in more detail. We use the expression (12.14): on substituting r0 = 0,
we obtain

(b, r,ψ , c) �→(
− dc + ∗db+ 2D(B0,0)q

0(b, 0), λr,

$⊥
[
(Dq,B0 − λ)ψ + ρ(b)ψ0 + cψ0 +D2q1

(B0,0)((b, 0), (0,ψ0))

+ (r/2)D2q1
(B0,0)((0,ψ0), (0,ψ0))

]
,

− d∗b+ i|ψ0|2 ReµY (〈iψ0,ψ〉)
)

.

Here Dq,B0 is the symmetric perturbation of the Dirac operator DB0 defined
previously, so that Dq,B0ψ0 = λψ0, where λ = �q(B0, 0,ψ0). We have used
the formula (10.8) for q̃1 in terms of the derivative of q1.

To further analyze this operator, we decompose both c and ψ by writing

c = iε1 + ĉ

ψ = iε2ψ0 + ψ̂

where εj are real constants, ĉ is orthogonal to the constants and ψ̂ is orthogonal to
iψ0 in the real L2 inner product. The S1 invariance of the equations implies that
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D2q1
(B0,0)((b, 0), (0,ψ0)) is orthogonal to iψ0, as is D2q1

(B0,0)((0,ψ0), (0,ψ0)),
and the operator can then be written⎡⎢⎢⎢⎢⎢⎢⎢⎣

r
ε1

ε2

ĉ
b
ψ̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
�→

⎡⎢⎢⎢⎢⎢⎢⎢⎣

λ 0 0 0 0 0
0 0 −1 0 0 0
0 −1 0 0 0 x6

0 0 x1 0 −d∗ 0
0 0 0 −d ∗dq 0
x2 0 x5 x3 x4 $⊥

C
(Dq,B0 − λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r
ε1

ε2

ĉ
b
ψ̂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12.19)

Here ∗dq is the operator b �→ ∗db+2D(B0,0)q
0(b, 0), the xi denote the non-zero

zeroth-order entries, and $⊥
C

is the projection to (Cψ0)
⊥. Note that ψ̂ belongs

to the intersection of the real-orthogonal complements of ψ0 and iψ0, so it is
complex-orthogonal to ψ0. The term x6 is the linear map

x6 : (Cψ0)
⊥ → R

ψ̂ �→ 〈ψ̂ , iDq,B0ψ0〉R.

This decomposition of the extended Hessian is applicable to any reducible
configuration, whether or not it is a critical point. At a critical point, however,
ψ0 is an eigenvector of Dq,B0 , and this Dirac operator therefore preserves the
real- and complex-orthogonal complements of ψ0. So in the case of a critical
point, the term x6 is zero and the entry $⊥(Dq,B0 −λ) can simply be written as
(Dq,B0−λ), acting on (Cψ0)

⊥. In this case, the matrix is block lower triangular,
and the diagonal blocks are

[
λ
]

,

[
0 −1
−1 0

]
,

[
0 −d∗
−d ∗dq

]
,

[
$⊥

C
(Dq,B0 − λ)

]
. (12.20)

The part of this matrix that corresponds to the summand Hessσq,b acting on Kσ
j,b

is the matrix ⎡⎣λ 0 0
0 ∗dq|K 0
x2 x4|K $⊥

C
(Dq,B0 − λ)

⎤⎦
where K is the kernel of d∗ in the space of imaginary-valued 1-forms. This is
an operator on

R⊕ K ⊕ (Cψ0)
⊥.
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The hypothesis that b is non-degenerate means, in particular, that λ is non-zero
and a simple eigenvalue of the complex-linear, hermitian operator Dq,B0 , by
Proposition 12.2.5. The operator Dq,B0 − λ, acting on the complex-orthogonal
complement of ψ0, is therefore invertible; it is a symmetric operator with real
eigenvalues. Finally, the operator ∗dq is the operator DB0(grad−Lred) from Sub-
section 12.2, restricted to K . It is symmetric because it arises from the covariant
second derivative of −L on the locus of reducible configurations. �

12.5 Proof of transversality: the irreducible case

To begin the proof of Theorem 12.1.2, we establish the non-degeneracy of the
irreducible critical points, for a residual subset of the space of perturbations P .
Such transversality arguments for Fredholm problems follow a standard model,
organized around the following lemma.

Lemma 12.5.1. Let E and F and P be separable Banach manifolds, and let
S ⊂ F be a closed submanifold. Let

F : E × P → F

be a smooth map, and write Fp = F(−, p). Suppose that F is transverse to S,
and that for all (e, p) in F−1

p (Z), the composite

TeE
DeFp−→ Tf F

π−→ Tf F/Tf S

is Fredholm. Then there is a residual set of p in P for which the map Fp : E → F
is transverse to S.

Proof. The Fredholm hypothesis implies that the kernel of (π � DaF) is a
complemented subspace for all a in F−1(S). The implicit function theorem
then tells us that Z = F−1(S) is a Banach submanifold. The projection map
Q : Z → P is Fredholm, so the Sard–Smale theorem [103] provides a residual
set of regular values of Q in P . If p ∈ P is a regular value of Q, then Fp is
transverse to S. �

We now set up the transversality argument so as to fit it into the framework
of the above lemma. Because of the first part of Proposition 12.2.5, we may as
well consider the vector field grad−L on C∗k (Y ).

We introduce the parametrized critical point set as the inverse image of the
zero section C∗k ⊂ Tk−1 under the map

g : C∗k × P → Kk−1
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defined by

g(α, q) = grad−L(α)

= grad L(α)+ q(α).

This map is a smooth map of Banach manifolds.

Lemma 12.5.2. The map g is transverse to the zero section of Kk−1.

Proof. Let (α, q) lie in the inverse image of the zero section, and let−L = L+ f ,
where grad f = q. What is asserted is the surjectivity of the map

Tk,α × TqP → Kk−1,α

given by

((b,ψ), δq) �→ Dα grad−L(b,ψ)+ δq(α),

or equivalently, the map

Kk,α × TqP → Kk−1,α

given by

((b,ψ), δq) �→ Hessq,α(b,ψ)+ δq(α).

(Note that Dα grad−L takes values in Kk−1 as a consequence of the last part of
Lemma 12.3.2.) The cokernel of Hessq,α is finite-dimensional and is represented
by the L2 orthogonal complement of the range, which is the kernel of Hessq,α .
So it suffices to prove that given any non-zero v in the kernel of Hessq,α there
exists a δq ∈ P such that the L2 inner product of δq(α) with v is non-zero. If
δq is grad(δf ), this is equivalent to saying the differential of δf in the direction
of v is non-zero; and the existence of such an element of P now follows from
Corollary 11.2.2 and the denseness conditions in Definition 11.6.3, because the
image of v in B∗k (Y ) is non-zero. �

Lemma 12.5.2 allows us to apply the general transversality argument,
Lemma 12.5.1. We learn that the parametrized critical set g−1(0) is a Banach
manifold, as is the quotient

Z = g−1(0)/Gk+1 ⊂ B∗k (Y )× P .
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The projection Z → P is a smooth Fredholm map of index zero, and by the
Sard–Smale theorem the regular values of the projection are a residual set. If
q is a regular value, then for this perturbation the irreducible critical points are
non-degenerate. This proves the first part of Theorem 12.1.2 as it relates to the
irreducible part of the critical set.

12.6 Proof of transversality: the reducible case

Let Kred
j be as in Equation (12.2) above. We introduce the notation gred for

the map

gred : Ak × P → Kred
k−1

given by

gred(B, q) = (grad−L)red(B)

= (grad L)red(B)+ q(B).

Lemma 12.6.1. The map gred is transverse to the zero section of Kred
k−1.

Proof. This is essentially the same as the proof of Lemma 12.5.2. �

This lemma will allow us to find a perturbation q which achieves Condi-
tion (ii)(a) of Proposition 12.2.5 at all reducible critical points. To achieve the
other two conditions in the reducible case, we must alter the Hessian of the
perturbation in the directions normal to the reducibles. We introduce

P⊥ ⊂ P

for the perturbations q which vanish at the reducible locus in C(Y ). The defini-
tion of “large” in Definition 11.6.3 is phrased so as to ensure that P⊥ contains
an ample supply of perturbations. (See the third condition on the collection of
functions gα .)

In the next lemma, we write Opsa for the space of self-adjoint Fredholm maps
from L2

k(Y ; S) to L2
k−1(Y ; S) having the form DB0 + h, where B0 is a smooth

spinc connection and h is a self-adjoint operator that extends to a bounded
operator h : L2

j → L2
j (j ≤ k). (Compare Lemma 12.2.4.) This Banach space

has a stratification according to the dimension of the kernel. If L ∈ Opsa has
kernel V , then the tangent space to the corresponding stratum is the kernel
of the map from Opsa to the space of self-adjoint operators on V , given by
compression.
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In the space Opsa, the set of operators whose spectrum is not simple is a
countable union of the images of Fredholm maps Fn of negative index. Indeed,
we can take the domain of Fn to be Opsa

n ×R, where Opsa
n ⊂ Opsa is the space

of operators having 0 as an eigenvalue of multiplicity exactly n, and the map
Fn is (L, λ) �→ L + λ. The map Fn is locally an embedding, and the normal
bundle to its image at (L+λ) is isomorphic to the space of traceless, self-adjoint
endomorphisms of Ker(L).

We write M : Ak × P⊥ → Opsa for the map given by

M : (B, q⊥) �→ Dq⊥,B.

Lemma 12.6.2. The map M is transverse to the stratification of self-adjoint
operators according to the dimension of the kernel, and transverse also to the
Fredholm maps Fn.

Proof. For the first assertion, let q⊥ = grad f ⊥ be any perturbation in P⊥,
and let V be the kernel of Dq,B, which we can regard as a subspace of the
normal bundle to Ak in Ck(Y ). By Proposition 11.2.1, we can choose a p whose
differential embeds this S1-invariant linear subspace in Cm ⊂ Tp(B,0)(R

n×T×
Cm). We can assume that p is defined by a collection of coclosed forms cν and
sectionsϒµ belonging to the C∞-dense collection of choices which we made in
constructing the large Banach space P . By choosing an S1-invariant function
δg on Rn × T × Cm which vanishes along Rn × T × {0}, we can therefore
find a δq⊥ = grad δf ∈ P⊥ such that the Hessian of δf |V is any chosen S1-
equivariant (i.e. complex-linear) self-adjoint endomorphism of V . We can take
it that δg belongs to the dense collection gα used in the construction of P .
This is equivalent to the desired transversality. The second assertion follows
similarly. �

We can now complete the proof of the transversality theorem for the critical
points.

Proof of Theorem 12.1.2. We have already seen that, for a residual set of per-
turbations, all the irreducible critical points in Cσ

k (Y ) are non-degenerate. From
Lemma 12.6.1 we have that (gred)−1(0) ⊂ Ak×P is a smooth Banach manifold,
as is the quotient

Z red = (gred)−1(0)/Gk+1 ⊂ (Ak/Gk+1)× P .

The projection from Z red to P is a Fredholm map of index 0. Thus P⊥ ×
Z red also has index-zero projection to P⊥ × P . From Lemma 12.6.2, we see
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that the set

W ⊂ P⊥ × (Ak/Gk+1)

of pairs (q⊥, [B]), where the spectrum of Dq⊥,B either is non-simple or contains
zero, is a countable union of Banach submanifolds Wn, each of which has finite,
positive codimension. The proof of the lemma actually gives a little more: at
each point x of each Wk , there is a complement to TxWk which is entirely
contained in the TP⊥ directions. Taking the product with P , we have a similar
decomposition of W × P as a union of Banach submanifolds,

Wk × P ⊂ P⊥ × (Ak/Gk+1)× P .

The additional property of the Wk , just mentioned, shows that the submani-
folds P⊥ × Z and Wk × P are transverse so the intersection

(P⊥ × Z red) ∩ (W × P)

is a locally finite union of Banach submanifolds Uk ⊂ P⊥ × Z red, of finite,
positive codimension in P⊥ × Z red. The projection of each Uk to P⊥ × P is
therefore Fredholm of negative index. Thus the Smale-Sard theorem guarantees
a residual set of pairs (q⊥, q) inP⊥×P which are regular values of the projection
P⊥ × Z red → P⊥ × P and not in the image of the projection

(P⊥ × Z red) ∩ (W × P red)→ P⊥ × P .

For such a pair (q⊥, q), the combined perturbation q⊥ + q satisfies the three
conditions (ii)(a)–(ii)(c) of Proposition 12.2.5 at all reducible critical points. The
subset of P arising as such sums q⊥+q is residual: indeed, a submersive linear
map between Banach spaces carries residual sets to residual sets in general.

This completes the verification of the first part of Theorem 12.1.2. For the
finiteness assertion which finishes the theorem, we recall the compactness result
for the critical set, Corollary 10.7.4. A non-degenerate critical point is isolated
in Bk(Y ), so the compactness result implies finiteness. �

13 Moduli spaces of trajectories

Until this point, we have usually studied the perturbed 4-dimensional Seiberg–
Witten equations on a compact cylinder I ×Y , for I a closed interval [t1, t2]. In



218 IV Moduli spaces and transversality

this section, we shift our focus and study the infinite cylinder

Z = R× Y .

In the case of the compact cylinder I ×Y , we introduced in Definition 6.3.1 the
configuration space Cτ (I × Y ) consisting of triples (A, s,φ), where s : I → R

is non-negative, and φ has L2 norm 1 on each slice {t} × Y . The quotient by
the 4-dimensional gauge group G(I × Y ) is a space Bτ (I × Y ) which we could
identify with a space of smooth paths in Bσ (Y ). We also introduced Sobolev
completions of these configuration spaces. In the case of the infinite cylinder
Z , we must give thought to the appropriate topology and completions. In this
section, we will introduce two Sobolev versions of these configuration spaces:
these are defined by taking a suitable reference configuration and considering
all configurations (A, s,φ) whose difference from the reference configuration
either is in L2

k,loc (so that it lies in L2
k on each compact subcylinder) or is globally

in L2
k on the infinite cylinder. Our first main task is then to show that these two

notions of configuration space lead eventually to the same trajectory spaces of
solutions. Thus, given critical points [a] and [b] in Bσ (Y ), for the perturbed
flow, we will be able to talk of a space of connecting trajectories M([a], [b]),
just as in our earlier finite-dimensional discussion.

13.1 Definitions

Let A0 be any smooth spinc connection on the cylinder Z = I × Y . For any
interval I ⊂ R (possibly R itself), we introduce the configuration space

C̃τ
k,loc(I × Y ) ⊂

(
A0 + L2

k,loc(I × Y ; iT ∗Z)
)
× L2

k,loc(I ; R)

× L2
k,loc(I × Y ; S+)

= Ak,loc(I × Y )× L2
k,loc(I ; R)× L2

k,loc(I × Y ; S+) (13.1)

consisting of L2
k,loc triples (A, s,φ), where φ̌(t) is of L2 norm 1 on {t} × Y for

all t in I . If I is compact, the “loc” is irrelevant, and the definition coincides
with the previous definition of C̃τ

k . We have a closed subspace

Cτ
k,loc(I × Y ) ⊂ C̃τ

k,loc(I × Y )

consisting of triples (A, s,φ) satisfying the additional condition s ≥ 0. This
space carries the topology of L2

k convergence on compact subsets. As usual, a
choice of spinc structure is understood.
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The appropriate gauge group is Gk+1,loc(I × Y ), the group of L2
k+1,loc maps

with values in the circle, S1 ⊂ C. The quotient spaces will be denoted

Bτ
k,loc(I × Y ) = Cτ

k,loc(I × Y )/Gk+1,loc(I × Y )

B̃τ
k,loc(I × Y ) = C̃τ

k,loc(I × Y )/Gk+1,loc(I × Y ).
(13.2)

Throughout this section, we suppose that q ∈ P is chosen so that all the crit-
ical points of the vector field (grad−L)σ are non-degenerate (Theorem 12.1.2).
We write a for a typical critical point in Cσ

k (Y ), and [a] for the corresponding
critical point in the quotient space Bσ

k (Y ). The choice of q leads to the perturbed
4-dimensional Seiberg–Witten equations in the blow-up, defined by a section

Fτ
q : C̃τ

k,loc(I × Y )→ Vτ
k−1,loc(I × Y ).

Here the fiber of Vτ
j,loc at γ = (A0, s0,φ0) is defined as the subspace

Vτ
j,loc,γ ⊂ L2

j,loc(I × Y ; i su(S+))⊕ L2
j,loc(I ; R)⊕ L2

j,loc(I × Y ; S−)

consisting of triples (a, s,φ) with Re〈φ̌0(t), φ̌(t)〉L2(Y ) = 0 for all t, as in Def-
inition 6.3.2. (We are careful not to use the language of vector bundles in this
instance, because Vτ

j,loc is not a locally trivial bundle in any straightforward
way.)

We suppose that a perturbation q has been chosen so that all the critical points
of the perturbed equations in Cσ

k (Y ) are non-degenerate. If b is a critical point,
there is a translation-invariant element γb in Cτ

k,loc(Z), which is a solution of
the equations, Fτ

q(γb) = 0. We write [γb] for its gauge-equivalence class. We

say that a configuration [γ ] ∈ B̃τ
k,loc(Z) is asymptotic to [b] as t →±∞ if

[τ ∗t γ ] → [γb] in B̃τ
k,loc(Z),

as t →±∞. Here τt : Z → Z is the map (s, y) �→ (s+ t, y). We write

lim→ [γ ] = [b] or lim← [γ ] = [b]

if [γ ] is asymptotic to [b] as t →+∞ or t →−∞ respectively.

Definition 13.1.1. We write M([a], [b]) for the space of all configurations [γ ]
in Bτ

k,loc(Z) which are asymptotic to [a] as t → −∞, asymptotic to [b] as
t →+∞ and which solve the perturbed Seiberg–Witten equations:

M([a], [b]) = { [γ ] ∈ Bτ
k,loc(Z) | Fτ

q(γ ) = 0, lim← [γ ] = [a], lim→ [γ ] = [b] }.
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We refer to M([a], [b]) as a moduli space of trajectories on the cylinder Z =
R×Y . We denote by M̃ ([a], [b]) the similarly defined subset of the larger space
B̃τ

k,loc(Z). ♦

Our notation for M([a], [b]) does not indicate the value of k used in its
definition, because this space is essentially independent of k:

Proposition 13.1.2. Let M([a], [b])k temporarily denote the moduli space
M([a], [b]) ⊂ Bτ

k,loc(Z).

(i) If [γ ] is an element of M([a], [b])k , then there is a gauge representative γ ∈
Cτ

k,loc(Z) that is C∞ on Z. So there are natural bijections M([a], [b])k1 →
M([a], [b])k2 for all k1, k2 ≥ 2.

(ii) The above bijections are homeomorphisms.

Proof. Let γ represent an element of M([a], [b])k . Because the perturbation is
tame (which means k-tame for all k, let us recall), Proposition 10.7.2 tells us
that, for any bounded subcylinder I×Y ⊂ Z , there is a gauge transformation uI

on I×Y such that uI (γ ) is smooth on the interior of I×Y . We can also arrange
that uI is in the identity component, because each component contains smooth
gauge transformations. Thus we can write uI = exp(ζI ). On the overlaps I ∩ I ′,
the difference ζI − ζI ′ is smooth, and we can now paste together the ζI using a
partition of unity to obtain a gauge transformation u = exp(ζ ) on the whole of
Z , so that u(γ ) is smooth.

For the second part, we note that the compactness result, Theorem 10.9.2,
tells us that if [γi] is a convergent sequence of solutions in M([a], [b])k , and
I is any bounded interval, then there are gauge transformations uI ,i such that
uI ,i(γi) converge in the C∞ topology on interior cylinders contained in I × Y .
We may assume these are in the identity component, and then patch together
the uI ,i into a gauge transformation ui as above. �

If [γ ] ∈ M([a], [b]), then there is a corresponding (smooth) path [γ̌ ] in Bσ
k (Y )

which approaches [a] and [b] at the two ends. We can therefore decompose
M([a], [b]) according to the relative homotopy class of the path, an element

z ∈ π1(Bσ
k (Y ), [a], [b]).

The set of homotopy classes is an affine space on H 1(Y ; Z), the component
group of the gauge group (see Lemma 9.6.1). We write

M([a], [b]) =
⋃

z

Mz([a], [b]).
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13.2 Sobolev spaces on the cylinder

Although our definition of Mz([a], [b]) is straightforward, we also need a dif-
ferent description that exhibits the moduli space as a quotient of a subset of a
Hilbert space by the action of a Hilbert Lie group. Before doing so, we need
to discuss Sobolev spaces and multiplication theorems on the infinite cylin-
der Z = R × Y . We deduce these from the corresponding results on compact
manifolds.

We begin with the embedding theorem for the usual Sobolev spaces of
functions, Lp

k(Z).

Theorem 13.2.1. There is a continuous inclusion

Lp
k(Z) ↪→ Lq

l (Z)

if k ≥ l, p ≤ q and (k − n/p) ≥ (l − n/q), except that if the last inequality is
an equality, then we require 1 < p ≤ q <∞. This inclusion is never compact.

Proof. We use the fact that the embedding holds for a finite cylinder of fixed
length, say [−1, 1] × Y (though in this situation the inequality p ≤ q is not
necessary). Let fn(t, y) be the restriction of the function f (t + n, y) to (t, y) ∈
[−1, 1] × Y . We have then

‖ f ‖Lq
l
= 2−1/q

( ∞∑
n=−∞

‖ fn‖q
Lq

l

)1/q

(where the right-hand side should be replaced by the supremum of ‖ fn‖Lq
l

when
q = ∞). Taking the case p and q finite, we then have, for example,

‖ f ‖Lq
l
≤ C1

( ∞∑
n=−∞

‖ fn‖q
Lq

l

)1/q

≤ C2

( ∞∑
n=−∞

‖ fn‖p
Lq

l

)1/p

≤ C3

( ∞∑
n=−∞

‖ fn‖p
Lp

k

)1/p

≤ C‖ f ‖Lp
k
.
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In the second inequality, we used p ≤ q. The constant C here depends on the
Sobolev embedding constant on [−1, 1] × Y and the bounds on the derivatives
of the partition of unity.

This embedding is never compact since given a function we can translate
this function until the norm on any compact set is as small as we desire, and so
produce a weakly convergent sequence which will only have weakly convergent
subsequences regardless of the norm used. �

Here is the multiplication theorem.

Theorem 13.2.2. Suppose k, l ≥ m and 1/p+1/q ≥ 1/r, with p, q, r ∈ (1,∞).
Then the multiplication

Lp
k(Z)× Lq

l (Z)→ Lr
m(Z)

is continuous in any of the following three cases:

(i) (a) (k − n/p)+ (l − n/q) ≥ m− n/r, and
(b) k − n/p < 0, and
(c) l − n/q < 0;
or

(ii) (a) min{(k − n/p), (l − n/q)} ≥ m− n/r, and
(b) either k − n/p > 0 or l − n/q > 0;
or

(iii) (a) min{(k − n/p), (l − n/q)} > r − n/m, and
(b) either k − n/p = 0 or l − n/q = 0.

When the map is continuous, it is a compact operator as a function of g for
fixed f , provided that in addition we have l > m and l − n/q > m− n/r.

Proof. In each of the three cases, the multiplication theorem holds on a finite
cylinder; so, using the same notation as in the proof of the previous theorem,
we have:

‖ fg‖Lr
m
≤ C1

( ∞∑
n=−∞

‖( fg)n‖r
Lr

m

)1/r

≤ C2

( ∞∑
n=−∞

‖ fn‖r
Lp

k
‖gn‖r

Lq
l

)1/r
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≤ C3

( ∞∑
n=−∞

‖ fn‖p
Lp

k

)1/p ( ∞∑
n=−∞

‖gn‖q
Lq

l

)1/q

≤ C4‖ f ‖Lp
k
‖g‖Lq

l
.

In the penultimate line we used the fact that the multiplication  p×  q →  r is
continuous on sequence spaces when 1/p+ 1/q ≥ 1/r.

To prove the compactness assertion consider a function f ∈ Lp
k(Z) and a

bounded sequence gi ∈ Lq
l (Z) with bound M and suppose that the hypotheses

of the assertion are satisfied. Then on any finite cylinder the multiplication
Lp

k([t1, t2] × Y )× Lq
l ([t1, t2] × Y )→ Lr

m([t1, t2] × Y ) is compact as a function
of either variable. Thus by a diagonal argument we can pass to a subsequence
so that on any [−n, n] × Y , fgi converges strongly in Lr

m. On the other hand

‖ fgi‖Lr
m(Z\[−n,n]×Y ) ≤ CM ‖ f ‖Lp

k (Z\[−n,n]×Y ).

The right-hand side goes to zero with n. Thus given ε > 0 we can find n so large
that CM ‖ f ‖Lp

k (Z\[−n,n]×Y ) < ε/2 and then find i0 such that for all i, j ≥ i0 we
have

‖ fgi − fgj‖Lr
m([−n,n]×Y ) < ε/2.

Thus
‖ fgi − fgj‖Lr

m(Z) < ε.

�

13.3 Statement of results

We return to the moduli spaces defined in Subsection 13.1. Let [a] and [b] be
critical points in Bσ

k (Y ), and let a and b be smooth lifts in Cσ
k (Y ). Choose a base

configuration γ0 ∈ Cτ
k,loc(Z) which agrees near ±∞ with the corresponding

translation-invariant configurations γa and γb. For convenience, we may choose
γ0 to be smooth also. By choosing a and b in appropriate components of the
gauge group orbit, we can arrange that [γ̌0] belongs to any given homotopy
class z. Because Cτ

k,loc(Z) is a subset of an affine space,

C̃τ
k,loc(Z) ⊂ Ak,loc(Z)× L2

k,loc(R; R)× L2
k,loc(Z ; S+),

we can interpret the difference of two elements as an element of a vector space:

γ − γ0 ∈ L2
k,loc(Z ; iT ∗Z)× L2

k,loc(R; R)× L2
k,loc(Z ; S+).
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Inside this vector space is the subspace of elements of finite L2
k norm, where on

the spinor component we construct the L2
k norm using the spinc connection A0

belonging to the configuration γ0 = (A0, s0,φ0):

L2
k(Z ; iT ∗Z)× L2

k(R; R)× L2
k, A0

(Z ; S+).

We introduce a configuration space

Cτ
k (a, b) =
{ γ ∈ Cτ

k,loc(Z) | γ − γ0 ∈ L2
k(Z ; iT ∗Z)× L2

k(R; R)× L2
k, A0

(Z ; S+) }.

Although γ0 appears in the definition, this space only depends on a and b.
The larger space C̃τ

k (a, b) is defined similarly as a subset of C̃τ
k,loc(Z). We

introduce a gauge group Gk+1(Z) which is the subgroup of Gk+1,loc consist-
ing of the gauge transformations which preserve Cτ

k (a, b). Using the Sobolev
multiplication theorems, we can see:

Lemma 13.3.1. The group Gk+1(Z) is independent of a and b, and can be
described as

Gk+1(Z) = { u : Z → S1 | 1− u ∈ L2
k+1(Z ; C) }.

Proof. It is clear that if 1− u is in L2
k+1, then u preserves Cτ

k (a, b). Conversely,
suppose u in L2

k+1,loc and that u(γ0) = γ , withγ ∈ Cτ
k (a, b).Writeγ = (A, s,φ).

Let un be the restriction of u to [n − 1, n] × Y . As in the proof of Proposi-
tion 9.3.1, it follows from the fact that A− A0 is in L2

k that un is in the identity
component. It follows that we can write u = eξ . Write ξn for the restriction of
ξ to [n− 1, n] × Y . Following the proof of Proposition 9.3.1 again, we decom-
pose ξn as ξ0

n + ξ⊥n , where ξ0
n is the average value, and we see that ξ⊥n defines

a Cauchy sequence in L2
k+1([0, 1] × Y ) whose limit is zero. Indeed, the same

argument shows that ∑
‖ξ⊥n ‖2

L2
k+1

<∞.

This gives us Sobolev bounds on the derivatives of ξ , and hence the deriva-
tives of u and 1− u. All that remains is to show that 1− u is square-integrable,
and this now reduces to showing that 1 − u0 is square-integrable, where u0 is
the discontinuous function defined by the sequence eξ

0
n on the cylinder. What

we know is that (1 − u0)φ0 is square-integrable. The square integrability of
(1− u0) follows easily, because φ0 is non-zero and translation-invariant on the
two ends of the cylinder. �
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As a corollary of the proof, we obtain:

Corollary 13.3.2. If u ∈ Gk+1(Z), then the path t �→ u(t, y0) is a continuous
path from R → S1 approaching 1 at both ends, and u is in the identity com-
ponent if and only if the winding number of the path is zero. The component
group of the gauge group is therefore Z. �

Definition 13.3.3. Let [a], [b] be gauge-equivalence classes of critical points
in Bσ

k (Y ), and let z ∈ π1(Bσ
k (Y ), [a], [b]) be a relative homotopy class of paths.

Pick lifts az and bz such that a path joining these lifts projects to a path in the
class z. We write Bτ

k,z([a], [b]) and B̃τ
k,z([a], [b]) for the quotient spaces

Bτ
k,z([a], [b]) = Cτ

k (az , bz)/Gτ
k+1(Z)

B̃τ
k,z([a], [b]) = C̃τ

k (az , bz)/Gτ
k+1(Z).

We define

Bτ
k ([a], [b]) =

⋃
z

Bτ
k,z([a], [b])

B̃τ
k ([a], [b]) =

⋃
z

B̃τ
k,z([a], [b]).

To within a canonical identification, Bτ
k,z([a], [b]) is independent of the choice

of representatives az , bz . ♦

Proposition 13.3.4. The quotient space Bτ
k ([a], [b]) is Hausdorff.

Proof. This result follows from combining the argument used in the case of a
finite cylinder (Proposition 9.3.1) with the argument of Lemma 13.3.1. �

The following theorem tells us that we can use Cτ
k (a, b) in place of Cτ

k,loc(Z)
in describing the moduli space Mz([a], [b]).
Theorem 13.3.5. Let γ ∈ Cτ

k,loc(Z) represent an element [γ ] ∈ Mz([a], [b]).
Let a = az, b = bz be suitable lifts, as above. Then there exists a gauge
transformation u in Gk+1,loc such that u(γ ) belongs to Cτ

k (a, b). If u and u′ are
two such gauge transformations, then u−1u′ belongs to Gk+1(Z). The resulting
bijection is a homeomorphism,

Mz([a], [b])→ { [γ ] ∈ Bτ
k,z([a], [b]) | Fτ

q(γ ) = 0}.

A similar statement is true for the larger moduli space M̃z([a], [b]).
The proof of the theorem is given at the end of this section.
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13.4 Near-constant solutions on finite cylinders

Let b be a critical point for the perturbed equations in Cτ
k (Y ), and let β be its

image in Ck(Y ) under the blow-down map. Let

γb ∈ Cτ
k (I × Y )

γβ ∈ Ck(I × Y )

be the corresponding translation-invariant solutions on a compact cylinder I×Y .
We can write

γb = (Ab, sb,φb)

γβ = (Ab,�b)

with �b = sbφb. We consider an element γ τ ∈ Cτ
k (I × Y ) covering a

configuration γ ∈ Ck(I × Y ). We write

γ τ = (A, s,φ),

so that

γ = (A, sφ) = (A,�),

and we write

A− Ab = b⊗ 1+ (c⊗ 1)dt.

We regard b and c as a time-dependent 1-form and 0-form on Y respectively.
Similarly we write φ = φb + ψ , and regard ψ as a time-dependent section
of S → Y , with the property that φb + ψ(t) is of unit L2 norm for all t.
The following is a basic estimate for a solution to the perturbed equations that
is close to a non-degenerate critical point. The statement of the proposition
refers to Sobolev norms of the difference of two configurations in the τ model,
such as

‖γ τ − γb‖L2
k, Ab

(I×Y ),

which are to be interpreted by regarding Cτ
k (I × Y ) as a subset of the affine

space

L2
k(I × Y ; iT ∗Z)× L2

k(I ; R)× L2
k, Ab

(I × Y ; S).
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Proposition 13.4.1. Suppose b ∈ Cσ
k (Y ) is a (non-degenerate) critical point

for the perturbed equations. Let I = [t1, t2] and I ′ = [t′1, t′2] be a pair of
compact intervals, with I ′ ⊂ int(I). Then there are constants C1, C2 and a
gauge-invariant neighborhood U of the constant solution γb in Cτ

k (I ×Y ) such
that for every γ τ which belongs to U and solves the perturbed Seiberg–Witten
equations Fτ

q(γ
τ ) = 0, there is a gauge transformation u ∈ Gk+1(I × Y )

such that:

(i) in the case that b is irreducible, the squared norm of u(γ τ ) − γb on the
smaller interval I ′ is bounded by the change in −L on the larger interval
I = [t1, t2],

‖u(γ τ )− γb‖2
L2

k+1, Ab
(I ′×Y )

≤ C1
(−L(t1)−−L(t2)

)
;

(ii) in the case that b is reducible, the squared norm of u(γ τ ) − γb on the
smaller interval I ′ is bounded by the change in −L on the larger interval
and the drop in �q:

‖u(γ τ )− γb‖2
L2

k+1, Ab
(I ′×Y )

≤ C2
(
�q(t1)−�q(t2)+ (−L(t1)−−L(t2))

1/2).
We will first establish the existence of a gauge transformation u with

‖u(γ )− γβ‖2
L2

k+1, Ab
(I ′×Y )

≤ C1
(−L(t1)−−L(t2)

)
.

In the irreducible case, the projection Cτ
k (I × Y )→ Ck(I × Y ) is a diffeomor-

phism in the neighborhood of γb, so this inequality is equivalent to the assertion
of the proposition.

We write the equations Fq(γ ) = 0 as

d

dt
γ̌ (t)+ dγ̌ (t)c(t) = −(grad−L)(γ̌ (t)) (13.3)

where d is the linearization of the gauge-group action on Ck(Y ) (cf. (4.11)).
For any γ in a neighborhood of γβ , we can choose a gauge transformation
u on I × Y so that u(γ ) is in the Coulomb–Neumann slice Sk,γβ through γβ

(Definition 9.3.7). Replacing u(γ ) by γ in our notation, the Coulomb–Neumann
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condition, γ − γβ ∈ Kk,γβ ,k , is:

d

dt
c(t)+ d∗β(γ̌ (t)− β) = 0

c(t1) = c(t2) = 0.
(13.4)

In the case that β is reducible, the first equation is dc/dt = d∗b(t); and by
integrating over Y and using the boundary conditions, it follows in this case that∫

Y
c(t) = 0 for all t ∈ I . (13.5)

The next lemma applies to any configuration γ , not necessarily a solution to
the equations.

Lemma 13.4.2. For any configuration γ on the cylinder Z = I × Y we have

∫
I

(∥∥∥∥ d

dt
γ̌ + dγ̌ c

∥∥∥∥2

+
∥∥∥∥ d

dt
c + d∗β(γ̌ − β)

∥∥∥∥2

+ ‖(grad−L)(γ̌ )‖2

)
dt

=
∫

I

(∥∥∥∥ d

dt
γ̌

∥∥∥∥2

+ ‖d∗β(γ̌ − β)‖2 +
∥∥∥∥ d

dt
c

∥∥∥∥2

+ ‖dγ̌ c‖2+ ‖(grad−L)(γ̌ )‖2

)
dt

+ 〈c(t1), d∗β(γ̌ (t1)− β)〉 − 〈c(t2), d∗β(γ̌ (t2)− β)〉

+
∫

I

〈
(γ̌ − β) � c,

d

dt
γ̌

〉
dt

where � is a bilinear operator involving only pointwise multiplication.

Proof. This follows from integration by parts and the identities

d

dt
〈c(t), d∗β(γ̌ (t)− β)〉

=
〈

d

dt
c(t), d∗β(γ̌ (t)− β)

〉
+
〈
dβc(t),

d

dt
γ̌ (t)

〉
and 〈

(dγ̌ (t) − dβ)c(t),
d

dt
γ̌ (t)

〉
=
〈
(γ̌ − β) � c,

d

dt
γ̌

〉
.

�

Next we exploit the non-degeneracy of the critical point b.
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Lemma 13.4.3. If b is an irreducible, non-degenerate critical point of
(grad−L)σ then there is a constant C > 0 and an L2

1 neighborhood U Y of
(β, 0) ∈ C1(Y )× L2

1(Y , iR) such that for all (β + v, c) in U Y we have

‖(v, c)‖2
L2

1(Y )
≤ C

(‖d∗βv‖2 + ‖dβ+vc‖2 + ‖(grad−L)(β + v)‖2).
In the case that b is reducible and non-degenerate, the same conclusion holds
for all (β + v, c) satisfying the additional condition

∫
Y c = 0.

Proof. Consider the map

C1(Y )× L2
1(Y ; iR)→ T0 × L2(Y ; iR)

= J0 ⊕K0 ⊕ L2(Y ; iR)

given by

(β + v, c) �→ (dβ+vc, (grad−L)(β + v), d∗βv).

The continuity of this map follows from Condition (vi) in the definition of a tame
perturbation, Definition 10.5.1. Using the decomposition T0,β = J0,β ⊕ K0,β ,
the linearization of this map at (β, 0) can be written

(vJ , vK , c) �→ (dβc, HessβvK , d∗βvJ ).

Here Hessβ = Hessq,β is the Hessian, defined at (12.4) (though we now omit
the perturbation q from our notation). Non-degeneracy means that Hessβ is
invertible as a map K1,β → K0,β . The map

dβ : L2
1(Y ; iR)→ J0,β

is invertible in the irreducible case. In the reducible case, it is invertible when
the domain is restricted to those c with

∫
Y c = 0. The result follows. �

As a corollary, we have:

Lemma 13.4.4. There is a gauge-invariant neighborhood U of γβ in Ck(I×Y )

and a constant C0, such that for any γ ∈ U which solves the equations and is
in the Coulomb–Neumann slice Sk,γβ , we have

‖γ − γβ‖2
L2

1(I×Y )
≤ C0

(−L(t1)−−L(t2)
)
.
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Proof. First note that the Coulomb–Neumann condition implies the vanishing
of the second term on the left-hand side in Lemma 13.4.2, as well as the two
boundary terms. The remaining two terms on the left are the perturbed analytic
energy Eq(γ ), which is twice the drop in −L. That lemma therefore gives

2
(−L(t1)−−L(t2)

)
=
∫

I

(∥∥∥∥ d

dt
γ̌ (t)

∥∥∥∥2

+
∥∥∥∥ d

dt
c(t)

∥∥∥∥2
)

dt

+
∫

I

(
‖d∗β(γ̌ (t)− β)‖2 + ‖dγ̌ (t)c(t)‖2 + ‖(grad−L)(γ̌ (t))‖2

)
dt

+
∫

I

〈
(γ̌ − β) � c,

d

dt
γ̌

〉
dt.

Using Lemma 13.4.3, we deduce

C ′
(−L(t1)−−L(t2)

)
≥
∫

I

(∥∥∥∥ d

dt
γ̌ (t)

∥∥∥∥2

+
∥∥∥∥ d

dt
c(t)

∥∥∥∥2
)

dt

+
∫

I
‖(γ̌ (t)− β, c(t))‖2

L2
1(Y )

dt

+
∫

I

〈
(γ̌ − β) � c,

d

dt
γ̌

〉
dt.

Thus we obtain

‖γ − γβ‖2
L2

1(I×Y )
≤ C ′

(−L(t1)−−L(t2)
)+ K‖γ − γβ‖3

L2
1(I×Y )

.

If the left-hand side is small enough, this inequality can be rearranged to obtain
the result. �

To proceed further we study d
dt�q(γ (t)) when γ solves the perturbed

equations.

Lemma 13.4.5. Suppose that γ τ = (A, s,φ) ∈ Cτ
k (I ×Y ) solves the perturbed

monopole equations on the cylinder I × Y . Then we have

d

dt
�q(γ

τ (t)) = −2‖φ′‖2 + 〈φ, L′φ〉,
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where L is the symmetric, time-dependent linear operator,

Lψ = DǍψ − i
(
D

(Ǎ,�̌)
q1)(0, iψ) (13.6)

of Equation (10.21),φ′ denotes the A-covariant derivative ofφ in the t direction,
and similarly L′ = [∇A

∂/∂t , L].

Proof. This is essentially the same as the derivation of the inequality (10.22)
from Lemma 7.1.1: the formula is the same as the identity (7.4), cast in gauge-
invariant form. Here, as before, the primed notation denotes the A-covariant
derivative in the t direction. �

Lemma 13.4.6. In the case that b is reducible, there is a gauge-invariant neigh-
borhood U of γb in Cτ

k (I × Y ) and a constant C0, such that if γ τ lies in U and
is in the Coulomb–Neumann slice Sτ

k,γb
⊂ Cτ

k (I × Y ), then

‖ψ‖2
L2

1,B(I×Y )
≤ C0

(
�q(t1)−�q(t2)+

(−L(t1)−−L(t2)
) 1

2
)
,

where as before γ τ = (A, s,φ) = (A, s,φb + ψ).

Proof. Let us write b = (Bb, 0,φb). Because b is a non-degenerate, reducible
critical point, the map

φb + v �→ (grad−L)σ ,1(Bb, 0,φb + v)

has linearization which is an isomorphism from L2
1,Bb

(Y ; S) ∩ 〈φb〉⊥ to

L2(Y ; S) ∩ 〈φb〉⊥. So there is a constant C such that for all ψ with small
enough L2

1,Bb
norm, we have

‖ψ‖2
L2

1,Bb

≤ C1‖(grad−L)σ ,1(Bb, 0,φb + ψ)‖2.

From the differentiability of (grad−L)σ ,1, we can then deduce that there is a
neighborhood of b in Cσ

1 (Y ) such that for all (B, r,φb+ψ) in this neighborhood,
we have

‖ψ‖2
L2

1,Bb

≤ C1‖(grad−L)σ ,1(B, r,φb + ψ)‖2 + K
(‖B− Bb‖2

L2
1(Y )

+ r2).
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Hence, writing (Ǎ(t), s(t),φb + ψ(t)) for the path in Cσ
k (Y ) corresponding

to γ τ , we have

‖ψ‖2
L2

1,B(I×Y )
=
∫

I

(
‖ψ ′‖2

L2(Y )
+ ‖ψ‖2

L2
1,B(Y )

)
≤
∫

I

(
‖ψ ′‖2

L2(Y )
+ C1‖(grad−L)σ ,1(Ǎ, s,φb + ψ)‖2

)
+ K

∫
I

(‖Ǎ− Bb‖2
L2

1(Y )
+ s2) (13.7)

by integrating the above inequality. In the last line, the second integral is
bounded by a multiple of ‖γ − γβ‖2

L2
1(I×Y )

, and hence by

C
(−L(t2)−−L(t1)

)
(13.8)

using Lemma 13.4.4. The remaining term in the last line of (13.7) becomes∫
I
‖ψ ′‖2

L2(Y )
+ C1

∫
I
‖φ′‖2

L2(Y )

= (2+ C1)

∫
I
‖φ′‖2

L2(Y )
+ 2

∫
I
‖cφb‖2

L2(Y )
.

Again, the second term can be estimated by a term of type (13.8); and by
integrating the result of Lemma 13.4.5, the first term can be bounded by a fixed
multiple of

�q(t1)−�q(t2)+
∫

I
〈φ, L′φ〉dt

≤ �q(t1)−�q(t2)+ C3

∫
I

(
‖γ ′‖L2(Y )‖φ‖2

L2
1(Y )

)
dt

≤ �q(t1)−�q(t2)+ C3‖γ − γβ‖L2
1(I×Y )

(
1+ ‖ψ‖2

L2
1(I×Y )

)
≤ �q(t1)−�q(t2)+ C4

(−L(t1)−−L(t2)
)1/2

(
1+ ‖ψ‖2

L2
1(I×Y )

)
where we have used Lemma 13.4.4 once more to control ‖γ − γβ‖L2

1(I×Y ). If
U is chosen small enough then we can arrange the resulting inequality to get
the desired result. �

Proof of Proposition 13.4.1. Lemmas 13.4.4 and 13.4.6 give both parts of the
proposition, but with L2

1 norms in place of L2
k+1, and without the need to pass
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to a subinterval. By a bootstrapping argument we can get control over stronger
norms using the equations. �

Note that, if we work in Ck(I × Y ) rather than Cτ
k (I × Y ), then a bound like

the one in Part (i) of Proposition 13.4.1 holds also in the reducible case:

Proposition 13.4.7. Under the same hypotheses as Proposition 13.4.1, let β ∈
Ck(Y ) be the image of b. Then there is a constant C1 and a gauge-invariant
neighborhood U of the constant solution γβ in Ck(I × Y ) such that for every
γ ∈ Ck(I × Y ) which belongs to U and solves the perturbed Seiberg–Witten
equations Fq(γ ) = 0, there is a gauge transformation u ∈ Gk+1(I × Y ) such
that the squared norm of u(γ )− γβ on the smaller interval I ′ is bounded by the
change in −L on the larger interval I = [t1, t2]:

‖u(γ )− γβ‖2
L2

k+1,B(I
′×Y )

≤ C1
(−L(t1)−−L(t2)

)
.

Proof. This follows from Lemma 13.4.4 and bootstrapping. �

Corollary 13.4.8. Let b ∈ Cτ
k (Y ) be a non-degenerate critical point, and let

β be its image in Ck(Y ). Then there is a constant C and a gauge-invariant
neighborhood U of the constant solution γβ in Ck([−1, 1] × Y ) such that for
every γ ∈ Ck([−1, 1] × Y ) which belongs to U and solves the perturbed
Seiberg–Witten equations Fq(γ ) = 0, we have

(d/dt)�q(t)|t=0 ≤ C(−L(−1)−−L(1))1/2.

Proof. We work in a temporal gauge. From Lemma 13.4.5, we have

(d/dt)�q(t)|t=0 ≤ 2
〈
φ, L′φ

〉
L2(0×Y )

= 〈
φ, ρ(ḃ)φ

〉+ 〈
φ, iD2

γ (0)q(γ̇ , (0, iφ))
〉

≤ C
(‖ḃ‖L2(0×Y ) + ‖γ̇ (0)‖L2(0×Y )

)‖φ‖2
L2

k (0×Y )

where γ = (Bb + b, sφ), and L′ is the derivative of L along the path γ̌ (t). The
above proposition bounds both of these terms by the change in −L. �

13.5 Exponential decay

To deduce Theorem 13.3.5 from Proposition 13.4.1, we will need the following
result, which says that the value of −L on a trajectory belonging to a moduli
space M([a], [b]) approaches its limiting value with exponential decay.
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Proposition 13.5.1. Let b ∈ Cσ
k (Y ) be a non-degenerate critical point. Then

there exists a δ > 0 such that for every solution γ τ ∈ Cτ
k,loc of the perturbed

Seiberg–Witten equations on [0,∞) × Y with lim→[γ τ ] = [b], there exists a
t0 such that for all t ≥ t0,

−L(γ τ (t))−−L(b) ≤ Ce−δt

where C = −L(γ τ (t0))−−L(b).

Proof. Let γ = (A,�) be the corresponding configuration in Ck,loc([0,∞)×Y ),
and let β = (B,�) be the image of b in Ck(Y ). Observe that because −L is C2

on C1(Y ) with vanishing derivative at β, we have

|−L(β + w)−−L(β)| ≤ C1‖w‖2
L2

1,B

for some C1 and all w ∈ TβC1(Y ) with [β+w] in some L2
1 neighborhood U1 of

[β] in B1(Y ). Second, note that the non-degeneracy of the Hessian tells us that

‖(grad−L)(β + w)‖2
L2 ≥ C2‖w‖2

L2
1

for all w in Kk,β with [β+w] in some L2
1 neighborhood U2 of [β]. The condition

that [γ τ ] is asymptotic to [b]means that we can assume that the path γ̌ (t) lies in
the Coulomb slice Sk,β ⊂ Ck(Y ), and that for some t0, the path lies in U1 ∩U2

for all t ≥ t0. For t ≥ t0 then, we have

d

dt
−L = −‖ grad−L(γ̌ (t))‖2

L2

≤ −C2‖γ̌ (t)− β‖2
L2

1

≤ −(C2/C1)
(−L(γ̌ (t))−−L(β)

)
.

The function f (t) = −L(γ̌ (t)) − −L(β) thus satisfies a differential inequality
ḟ ≤ −δf with δ = C2/C1, for all t ≥ t0, from which it follows that f (t) ≤
f (t0)e−δ(t−t0) for t ≥ t0. �

For future use, we note that the same differential inequalities can be used to
prove a related proposition.

Proposition 13.5.2. Let b be a non-degenerate critical point, as in the previous
proposition, and let β be its image in Ck(Y ). Then there exists a neighborhood
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U of [β] and a δ > 0 such that for any solution γ ∈ Ck([t1, t2] × Y ) for which
the corresponding path [γ̌ (t)] is in U for all t in the interval, we have

−C2eδ(t−t2) ≤ −L(γ̌ (t))−−L(β) ≤ C1e−δ(t−t1) (13.9)

where

C1 =
∣∣−L(γ̌ (t1))−−L(β)

∣∣
C2 =

∣∣−L(γ̌ (t2))−−L(β)
∣∣.

Proof. We take U to be as in the proof of the previous proposition. The
inequalities there show that

−L(γ̌ (t))−−L(β) ≤ C1e−δ(t−t1)

on the maximal interval [t1, t′]where the left-hand side is non-negative (possibly
the empty set); on the complement of this interval, the inequality is trivially
true because the left-hand side is decreasing and therefore everywhere negative.
The other inequality is similar. �

The preceding proposition has as a corollary the following uniform bound
which is important for the proof of compactness in the blown-up configuration
space.

Corollary 13.5.3. Given a constant η, there is a gauge-invariant neighborhood
U of the constant solution γβ in Ck([−1, 1] × Y ) with the following property.
Let J ⊂ R be any interval and J ′ = J + [−1, 1]. If we have a solution γ τ ∈
Cτ

k (J
′ × Y ) such that the translates τ ∗t γ τ all satisfy

π
(
τ ∗t γ τ

)|[−1,1]×Y ∈ U ,

then ∫
J

(d�q(γ̌ τ )

dt

)+
dt ≤ η,

where f + denotes the positive part of the function f .

Proof. We may take it that J = [−T , T ] for some T . Given any η0, we may
choose U so that |−L(γ (t)) − −L(β)| ≤ η0 for all γ in U and all t in [−1, 1].
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Applying the proposition above to the interval J ′ = [−T − 1, T + 1] we learn
that for any solution γ τ on J ′,

−L(γ τ (t − 1)
)−−L(γ τ (t + 1)

)≤ 2η0e−δT cosh(δt)

for all t in J . As long as we have chosen U so that Proposition 13.4.7 is
applicable, we deduce that for all t in J , there exists a gauge transformation
u with ∫ t+1/2

t−1/2
‖uγ (s)− β‖2

L2
k+1(Y )

ds ≤ Cη0e−δT cosh(δt),

where γ = πγ τ . Because grad−L is smooth and vanishes at β, we can pass to
a smaller U again to deduce

∫ t+1/2

t−1/2

∥∥grad−L(γ (s))
∥∥2

L2
k (Y )

ds ≤ C ′η0e−δT cosh(δt),

and hence∫ t+1/2

t−1/2

∥∥grad−L(γ (s))
∥∥

L2
k (Y )

ds ≤ (
C ′η0e−δT cosh(δt)

)1/2

by Cauchy–Schwarz. By integrating from −T to T and throwing away the
contribution from the two intervals of length 1/2 at either end, we obtain

∫ T

−T
‖ grad−L(γ (t))

∥∥
L2

k (Y )
dt ≤

∫ T

−T

(
C ′η0e−δT cosh(δt)

)1/2
dt ≤ C ′′η0/δ.

The result now follows from Lemma 10.9.1, which bounds d�q/dt from above
by a multiple of ‖ grad−L∥∥L2

k (Y )
. �

13.6 Asymptotics of solutions

Given the local results and exponential decay from the previous two subsections,
we can deduce a global decay result which yields the proof of Theorem 13.3.5.
We again write b for a critical point in Cσ

k (Y ), and write the corresponding
translation-invariant configuration in Cτ

k (R× Z) as

γb = (Ab, sb,φb).
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Proposition 13.6.1. Let γ τ be a solution in Cτ
k,loc of the perturbed Seiberg–

Witten equations on [0,∞) × Y and suppose that γ τ is asymptotic to
the non-degenerate critical point [b]. Then there is a 4-dimensional gauge
transformation u in Gk+1,loc on [0,∞)× Y such that

u(γ τ )− γb ∈ L2
k, Ab

([0,∞)× Y ).

Proof. We begin with a lemma.

Lemma 13.6.2. The function
∣∣(d/dt)�q(t)

∣∣ is integrable on [0,∞).

Proof. On the one hand, �q(t) approaches a limit �q(b) as t → ∞. On the
other hand (d/dt)�q(t) (without the absolute value signs) is bounded above
by an integrable function, by Corollary 13.4.8 and the exponential decay of
−L(t)−−L(b) (Proposition 13.5.1). �

To prove the proposition, consider the sequence of cylinders [i−1, i+1]×Y .
From Proposition 13.4.1 we see that there is an i0 such that for all i ≥ i0 we
can find a sequence of gauge transformations

ui ∈ Gk+1

([
i − 3

4
, i + 3

4

]
× Y

)
such that if we write

ui(γ
τ ) = γb + wi

we have

‖wi‖L2
k, Ab

([i− 3
4 ,i+ 3

4 ]×Y )
≤ Ni (13.10)

where

Ni = C
(
(�q(i − 1)−�q(i + 1))+ (−L(i − 1)−−L(i + 1))1/2).

The preceding lemma and the exponential decay together tell us that Ni → 0
as i →∞. Consider two adjacent intervals. The gauge transformation between
the representatives, vi = ui+1u−1

i (defined on [i + 1
4 , i + 3

4 ] × Y ), solves the
equation

dvi = vi(ai − ai+1),
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where ai is the 1-form component of wi = (ai, ri,ψi). Using the fact that
|vi| = 1 we deduce that for some constant C1 independent of ai, ai+1 we have

‖dvi‖2
L2

k ([i+ 1
4 ,i+ 3

4 ]×Y )
≤ C1‖ai − ai+1‖2

L2
k ([i+ 1

4 ,i+ 3
4 ]×Y )

≤ 2C1‖ai‖2
L2

k ([i+ 1
4 ,i+ 3

4 ]×Y )
+ 2C1‖ai+1‖2

L2
k ([i+ 1

4 ,i+ 3
4 ]×Y )

≤ C2
(−L(i + 1)−−L(i − 1)

)+ C2
(−L(i + 2)−−L(i)

)
= 2C2

(−L(i + 2)−−L(i − 1)
)

using Proposition 13.4.7 and (13.10). The terms−L(i+2)−−L(i−1) are approach-
ing zero, so for i sufficiently large, we can assume that vi is homotopic to the
identity; so we can write

vi = e
√−1fi

for some function fi with ‖dfi‖L2
k ([i+ 1

4 ,i+ 3
4 ]×Y )

small.

We also have

vi(φb + ψi) = φb + ψi+1.

Hence, using Proposition 13.4.1 in a similar way to the calculation above, we
obtain (in the worse of the two cases)

|vi(i + 1/2, y)− 1|2 ≤ C3
(
(�q(i + 2)−�q(i − 1)d)

+ (−L(i + 2)−−L(i − 1))1/2)
def= C3Ñi.

We now know that dvi (and hence dfi) is small in L2
k norm. Thus by adjusting

fi by a suitable multiple of 2π we can arrange that

‖fi‖2
L2

k+1
≤ C4Ñi.

Let µi(t) be a function which is 0 for t ≤ i + 3
8 and 1 for t ≥ i + 5

8 . Set

ũi = eiµi fi ui

on [i− 3
4 , i+ 3

4 ]×Y . Then ũi agrees with ũi+1 on the interval [i+ 5
8 , i+ 3

4 ]×Y ,
so we can patch together to give a global gauge transformation u. From the
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estimates on the fi and (13.10) it is easy to see that

‖u(γ τ )− γb‖2
L2

k,B([1,∞)×Y )
≤ C5

∞∑
j=1

Ñi,

which is finite as required, by Lemma 13.6.2 and Proposition 13.5.1. �

14 Local structure of moduli spaces

In the previous section, we introduced the moduli spaces of trajectories
Mz([a], [b]) for critical points [a], [b] of the flow. In Theorem 13.3.5, we saw
that Mz([a], [b]) could be regarded as a subspace either of the configuration
space Bτ

k,loc(Z) modelled on the L2
k,loc spaces, or of the configuration space

Bτ
k ([a], [b]) modelled on L2

k(Z). The present section is devoted to studying the
local structure of these moduli spaces. As is usual with such moduli problems,
we aim to describe Mz([a], [b]) locally as the zero set of a non-linear Fred-
holm map between Banach manifolds. Our first task therefore is to review the
Fredholm theory for elliptic operators on an infinite cylinder.

14.1 Translationally invariant operators on cylinders

We consider again the situation in Subsection 12.2, in which L0 is a first-order
self-adjoint elliptic differential operator acting on sections of a vector bundle
E → Y and h is an operator on sections of E,

h : C∞(Y ; E)→ L2(Y ; E)

(not necessarily symmetric), which extends to a bounded map on L2
j (Y ; E)

for all j in a range | j| ≤ k. We called such an operator L0 + h a k-asafoe
operator. We now pull back E to the cylinder Z = R × Y and consider there
the translation-invariant operator on Z ,

D = d

dt
+ L0 + h. (14.1)

This is a bounded operator L2
j+1(Z ; E)→ L2

j (Z ; E) for all j in the same range.
Henceforth, when talking of the spectrum of an operator on a real Hilbert

space, we shall always mean the spectrum of its complexification. With this in
mind we make the following definition.
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Definition 14.1.1. We say that a k-asafoe operator L0 + h, as above, is
hyperbolic if the spectrum of L0 + h is disjoint from the imaginary axis. ♦

In this setting, we have the following result (cf. [8, 68]):

Proposition 14.1.2. If L0 + h is hyperbolic, then for all j in the range | j| ≤ k,
the operator

D = d

dt
+ L0 + h : L2

j+1(Z ; E)→ L2
j (Z ; E)

is invertible, and in particular Fredholm.

Remark. Conversely, if the spectrum of L0 + h meets the imaginary axis, the
operator is not Fredholm, because its range fails to be closed, as the interested
reader can check.

Proof of Proposition 14.1.2 We will prove the proposition first in the case that
j ≥ 0 and E is a complex vector bundle. Consider the Fourier transform in the
t-variable:

û(ξ , y) =
∫ ∞

−∞
u(t, y)e−itξdt.

Define the norm:

‖û‖2
Fj
=

j∑
i=0

∫ ∞

−∞
|ξ |2(j−i)‖û‖2

L2
i (ξ×Y )

dξ .

Define Fj to be the completion C∞c (R × Y ; E) with respect to this norm. Par-
seval’s theorem implies the Fourier transform in the t variable induces an
isomorphism between L2

k(R × Y ) and Fk . The Fourier transform takes D to
the operator

D̂ = L0 + h+ iξ

and thus the proposition is equivalent to the statement that

D̂ : Fj → Fj−1

is invertible provided that L0 + h is hyperbolic.
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Lemma 14.1.3. If L0 + h is a k-asafoe operator, then there are positive con-
stants C > 0 and ξ0 > 0 such that for any ξ with |ξ | ≥ ξ0 and any j with
0 ≤ j ≤ k, the operator

L0 + h+ iξ : L2
j (Y ; E)→ L2

j−1(Y ; E)

is invertible and the inverse satisfies

∥∥(L0 + h+ iξ)−1
∥∥

Op(L2
j−1,L2

j )
≤ C

and

∥∥(L0 + h+ iξ)−1
∥∥

Op(L2
j−1,L2

j−1)
≤ C

|ξ | .

Proof. We start with the case that h = 0. Using the spectral theorem and the
ellipticity we can decompose a general smooth section as an L2-convergent sum
of eigenvectors of L0:

φ =
∑

λ∈Spec(L0)

φλ.

By adding a real multiple of the identity operator we can assume that L0 is
invertible. Then the L2

j norm of φ is equivalent to

(∑
λ

|λ|2j‖φλ‖2
L2

) 1
2

.

Thus if ξ = 0,

∥∥(L0 + iξ)−1φ)
∥∥

L2
j
=
∑
λ

|λ|2j
∥∥∥( 1

λ+ iξ

)
φλ

∥∥∥2

L2

≤ sup
λ

( λ2

λ2 + ξ2

)∑
λ

|λ|2j−2‖φλ‖2
L2

≤ sup
λ

( λ2

λ2 + ξ2

)
‖φ‖L2

j−1
.
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It follows that the operator norm of (L0 + iξ)−1, as an operator from L2
j−1 to

L2
j , is bounded above by

sup
λ∈Spec(L0)

|λ|√
λ2 + ξ2

= 1.

Similarly we have that the L2
j−1 to L2

j−1 operator norm of (L0+ iξ)−1 is bounded
above by

sup
λ∈Spec(L0)

1√
λ2 + ξ2

= 1√
λ2

0 + ξ2

where λ0 is the eigenvalue with absolute value closest to zero.
Thus in the case that h = 0 we can take ξ0 to be any positive constant, since

for ξ = 0 the operator L0 + iξ is certainly invertible and the inverse satisfies
the above estimate.

In the general case, choose ξ0 > 0 so that for any ξ with |ξ | ≥ ξ0 we have

‖(L0 + iξ)−1‖Op(L2
j ,L2

j )
‖h‖Op(L2

j ,L2
j )
≤ 1/2.

Then the operator

(L0 + iξ)−1(L0 + h+ iξ) = 1+ (L0 + iξ)−1h,

viewed as mapping L2
j → L2

j , is invertible and the norm of its inverse is at most
2, independent of ξ . Let Gξ be this inverse. Then

Hξ = Gξ � (L0 + iξ)−1

is the required inverse for (L0 + h + iξ), satisfying the same estimates as
(L0 + iξ)−1 for ξ ≥ |ξ0|, but with different constants. �

If L0 + h is hyperbolic, then Corollary 12.2.3 tells us that for all positive j
and all ξ ∈ R, the operator

L0 + h+ iξ : L2
j (Y ; E)→ L2

j−1(Y ; E)

is invertible. Then Lemma 14.1.3 implies that there is a constant C such that

‖(L0 + h+ iξ)−1‖Op(L2
j−1,L2

j )
≤ C,
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now for all ξ ∈ R, and (for example)

‖(L0 + h+ iξ)−1‖Op(L2,L2) ≤ C(1+ |ξ |2)−1/2.

With these estimates in place it follows that

‖D̂−1û‖Fj ≤
j∑

i=0

∫ ∞

−∞
|ξ |2(j−i)‖(L0 + h+ iξ)−1û‖2

L2
i

≤ C
j∑

i=1

∫ ∞

−∞
|ξ |2(j−i)‖û‖2

L2
i−1
+
∫ ∞

−∞
|ξ |2j‖(L0 + h+ iξ)−1û‖2

L2

≤ C
j−1∑
i=0

∫ ∞

−∞
|ξ |2(j−1−i)‖û‖2

L2
i
+ C ′

∫ ∞

−∞
|ξ |2j(1+ |ξ |2)−1‖û‖2

L2

≤ C ′′‖û‖Fj−1 .

So D̂−1 extends to define a bounded linear map from Fj−1 to Fj.
If E is a real vector bundle the Fourier transform maps real sections of E to

sections of E ⊗ C which satisfy the symmetry:

s(t, y) = s(−t, y).

We may now repeat the above proof with sections that satisfy this property.
Now suppose that j is negative. The operator

d

dt
+ L0 + h : L2

j+1(Z ; E)→ L2
j (Z ; E)

is invertible if and only if its adjoint is. Its adjoint is the operator:

− d

dt
+ L0 + h∗ : L2−j(Z ; E)→ L2−j−1(Z ; E)

where h∗ is the adjoint of h with respect to the L2 inner product. By assumption,
h and h∗ have the same mapping properties; and the spectrum of L0 + h is the
conjugate of that of L0+ h∗, so the condition of having spectrum disjoint from
the imaginary axis is also satisfied for the adjoint. Thus the proof of invertibility
also applies to the adjoint. �
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14.2 Spectral flow and Fredholm theory on cylinders

Using Proposition 14.1.2, we can next analyze the case that h is time-dependent.
We state the result for an operator from L2

1 to L2. (Our main interest in this
proposition is in the calculation of the index, which in practice will be insensitive
to our choice of Sobolev regularity.) For the index of the operators we encounter,
we need to recall the notion of spectral flow.

Suppose we are given a family of operators

L0 + ht , t ∈ [0, 1],

where L0 is a first-order, self-adjoint elliptic operator, and ht is a continuous
path in the space of bounded operators on L2. Suppose also that L0 + h0 and
L0+ h1 are hyperbolic. Then the spectral flow, denoted sf (L0+ ht), counts the
net number of eigenvalues whose real parts go from negative to positive. To
give a more precise definition, first deform the path ht so that it is smooth over
(0, 1), and consider the set

S = { (t, λ) | λ ∈ Spec(L0 + ht) }
⊂ (0, 1)× C.

According to Lemma 12.2.4, for each t, the spectrum is discrete and the gener-
alized eigenspaces are finite-dimensional. Let us say that (t, λ) is a simple point
of S if the generalized λ-eigenspace of L0 + ht is 1-dimensional. At simple
points, S is a smooth 1-manifold, on which t is a local coordinate; we use the
coordinate t to orient S at such points. In the space of bounded operators on L2,
the set of those h for which the spectrum of L0+h has a non-simple eigenvalue
lying on the imaginary axis is a locally finite union of submanifolds of codi-
mension at least 2, as follows from Lemma 12.2.4. (See the similar argument in
Subsection 12.6.) The path ht can therefore be moved so that the intersection of
S with (0, 1)× iR consists entirely of simple points; and any two such paths can
be joined by a homotopy of paths with the same property. If ht is so chosen, the
set S has a well-defined intersection number with (0, 1)× iR, near which it is
a smooth oriented manifold. This intersection number is the spectral flow. The
definition makes clear that, in the present context, the spectral flow depends
only on the endpoints of the path.

Proposition 14.2.1. Let L0 be a first-order, self-adjoint elliptic operator acting
on sections of a vector bundle E → Y , and let ht be a time-dependent bounded
operator on L2(Y ; E), varying continuously in the operator norm topology
and equal to a constant h± on the ends. Suppose L0+ h± are hyperbolic. Then
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the operator

Q = d

dt
+ L0 + ht : L2

1(Z ; E)→ L2(Z ; E)

is Fredholm and has index equal to the spectral flow of the path of operators
L0 + ht.

Proof. The time-dependent operators (d/dt) + L0 + h± are invertible on the
cylinder by Proposition 14.1.2, so let

G1 : L2(Z ; E)→ L2
1(Z ; E)

G2 : L2(Z ; E)→ L2
1(Z ; E)

(14.2)

be inverses for (d/dt) + L0 + h− and (d/dt) + L0 + h+. Let 1 = η1 + η2

be a partition of unity subordinate to a covering of Z by the two half-infinite
cylinders (−∞, 1) × Y and (−1,∞) × Y . Let γ1 be a function which is 1 on
the support of η1 and vanish where t ≥ 2, and let γ2 be 1 on the support of η2

and vanishes where t ≤ −2. Define

P : L2(Z ; E)→ L2
1(Z ; E) (14.3)

by

Pe =
∑
i=1,2

γiGiηie.

We compute

QPe = e +
∑
i=1,2

(
γ̇iGiηie + γi(ht − hi)Giηie

)
. (14.4)

The operator QP− I is therefore compact as an operator on L2, as follows from
the compactness of the map L2

1(Z) → L2([−2, 2] × Y ). Similarly, PQ − I is
compact as an operator on L2

1. It follows that Q is Fredholm.
To compute the index, we may assume the spectrum of L0+h± is simple, by

a perturbation of the path, and that the real parts of the eigenvalues are distinct.
Then we can find a finite-dimensional subspace C ⊂ L2

1(Y ; E) spanned by
generalized eigenvectors of L0+h−, and a real scalar g such that L0+h−+g$C

is hyperbolic and the spectral flow from L0 + h+ to L0 + h− + g$C is zero.
Here $C is the L2 orthogonal projection to C.



246 IV Moduli spaces and transversality

We claim there is a path L0+ks (s ∈ [0, 1]) joining L0+h+ to L0+h−+g$C

such that L0 + ks is hyperbolic for all s. To see that this is so, choose an
initial path L0 + k̃s with the property that the spectrum is simple for all s. The
eigenvalues λn(s) of L0 + k̃s are a family of paths in C, only finitely many
of which cross the imaginary axis. The generalized eigenvectors belonging
to this finite collection of eigenvalues span a continuously varying subspace
As ⊂ L2

1(Y ; E). Let Bs ⊂ L2
1(Y ; E) be the orthogonal complement with respect

to the L2 inner product. We now seek the path ks such that ks|Bs = k̃s|Bs and such
that L0+ks leaves As invariant. This reduces the problem to that of finding a path
of finite-dimensional hyperbolic operators joining two hyperbolic operators
having the same number of eigenvalues in the left half-plane.

Using the path L0+ks from L0+h+ to L0+h−+g$C , we can now construct
a homotopy of the original path L0+ ht to a new path L0+ h̄t whose endpoints
are L0+h− and L0+h−+g$C . During this homotopy, the endpoints of the path
remain hyperbolic, so we have a family of Fredholm operators on the cylinder,
whose index is therefore constant. At the end of the homotopy, we may then
take it that the entire path has the form L0+h−+gt$C for some path of scalars
gt . The operator

(d/dt)+ L0 + h− + gt$C : L2
1(Z ; E)→ L2(Z ; E)

now has a block triangular form, in which one block is a finite-dimensional
ordinary differential operator

(d/dt)+M + gt : L2
1(R; C)→ L2(R; C),

and the other diagonal block is invertible. Because of the simplifying condition
that M has simple spectrum, we are reduced to computing the index of a scalar
operator on R of the form

u �→ d

dt
u + ftu

where ft approaches a non-imaginary constant on each end. The solution of this
ODE is in L2 if and only if Re( ft) is negative at −∞ and positive at +∞. �

There is a special situation in which the index of the operator Q on the cylinder
Z = R×Y can be reinterpreted in a way that is useful for calculation. Suppose
that the operators L0+ h− and L0+ h+ are conjugate by some smooth, unitary
automorphism u : E → E of the bundle E → Y : that is, we suppose

L0 + h+ = u � (L0 + h−) � u−1



14 Local structure of moduli spaces 247

as operators on L2
k(Y ; E). Let I be a closed interval containing [0, 1] in its

interior, so that the path ht is constant near the two endpoints of I , and let
Eu → S1×Y be the bundle obtained from I×E by gluing the two ends together
using u. The operator Q on the cylinder then descends to a well-defined operator

Qu : L2
1(S

1 × Y ; Eu)→ L2(S1 × Y ; Eu).

This operator is a compact perturbation of an elliptic operator, and is therefore
Fredholm, because S1 × Y is compact. The point to be made here, however, is
that the index of Qu coincides with the index of the operator Q on the infinite
cylinder:

Proposition 14.2.2. When L0 + h− and L0 + h+ are conjugate by a gauge
transformation u as above, then the index of the operator Q on the cylinder is
equal to the index of the operator Qu on S1 × Y .

Proof. The proposition can be viewed as a special case of an excision theorem
for the index. The strategy which was used to prove Proposition 14.2.1 (reducing
the operator to a sum of 1-dimensional ODEs) is not applicable to this problem,
but a suitable technique will be introduced later, in Subsection 17.1, which
allows one to reinterpret the index of the operator Q on the infinite cylinder as the
index of a boundary-value problem on the finite cylinder [0, 1]×Y , with spectral
boundary conditions. Proposition 14.2.2 can then be proved by regarding the
S1 × Y as the union of two pieces: the finite cylinder [0, 1] × Y , and a piece
on which the operator is constant. The proposition reduces to showing that the
index of the operator on S1×Y is the sum of the indices of the spectral boundary-
value problems on the two pieces. A proof of this additivity can be based on
a simple homotopy argument, a version of which appears in Subsection 20.3:
see in particular the remark following Definition 20.3.2. �

The usefulness of this proposition is that, unlike the spectral flow, the index
of the operator Qu is usually easy to calculate in terms of characteristic classes,
by the index theorem.

14.3 Slices for the gauge-group action

We continue to write Z for the infinite cylinder R × Y , and take up the task
of showing that the quotient configuration space Bτ

k (a, b) is a closed subset
of a Hilbert manifold. We carry over the constructions of Subsection 9.4, in
which we treated the case of the finite cylinder I × Y . We write T τ

j for the L2
j
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completion of the tangent bundle of C̃τ
k (a, b). At γ = (A0, s0,φ0), the fiber is

T τ
j,γ = { (a, s,φ) | Re〈φ0|t ,φ|t〉L2(Y ) = 0 for all t }
⊂ L2

j (Z ; iT ∗Z)⊕ L2
j (R; R)⊕ L2

j, A0
(Z ; S+). (14.5)

We write

dτ : Lie(Gj+1(Z))× C̃τ
k (a, b)→ T τ

j

for the derivative of the action of the gauge-group, regarded now as a bundle
map over C̃τ

k (a, b):

dτ
γ ξ = (−dξ , 0, ξφ0).

To define slices for the gauge-group action, we adapt Definition 9.4.2. (There
is no longer a boundary condition.)

Definition 14.3.1. For a configuration γ = (A0, s0,φ0) in C̃τ
k (a, b), we define

Sτ
k,γ to be the set of triples (A, s,φ) ∈ C̃τ

k (a, b) satisfying

−d∗a + iss0 Re〈iφ0,φ〉 + i|φ0|2 ReµY (〈iφ0,φ〉) = 0, (14.6)

where A = A0 + a ⊗ 1. We write Coulτγ for the smooth map defined by the
left-hand side of this equation:

Coulτγ : C̃τ
k (a, b)→ L2

k−1(Z ; iR).

♦

At this stage, we do not know that this definition really provides a slice for
the gauge-group action at γ : this will be shown shortly.

The linearization of Coulτγ at γ extends to an operator

dτ ,†
γ : T τ

j → L2
j−1(Z ; iR)

for all j, given by

dτ ,†
γ (a, s,φ) = −d∗a + is2

0 Re〈iφ0,φ〉 + i|φ0|2 ReµY 〈iφ0,φ〉

(cf. (9.16)). For γ ∈ C̃τ
k (a, b), we define

Kτ
j,γ ⊂ T τ

j,γ (14.7)
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to be the kernel of dτ ,†
γ . We write

J τ
j,γ ⊂ T τ

j,γ

for the image of dτ
γ . The next proposition is a version of Proposition 9.4.1, now

in the context of the infinite cylinder Z .

Proposition 14.3.2. The operator dτ
γ is injective with closed range, and

dτ ,†
γ is surjective. The subspaces J τ

j,γ and Kτ
j,γ define complementary closed

subbundles of T τ
j → C̃τ

k (a, b), and we have a smooth bundle decomposition

T τ
j = J τ

j ⊕Kτ
j .

Furthermore,

J τ
j = J τ

0 ∩ T τ
j .

Remark. In particular, the case j = k in this theorem tells us that

T C̃τ
k (a, b) = J τ

k ⊕Kτ
k .

Proof of Proposition 14.3.2. The space Kτ
j,γ is closed because it is defined as

the kernel of the operator dτ ,†
γ . To see that J τ

j,γ is closed, we recall first that it
is defined as the image of

dτ
γ : L2

j+1(Z ; iR)→ T τ
j (Z)

ξ �→ (−dξ , 0, ξφ0).

We have

‖dτ
γ ξ‖2

L2
j
= ‖dξ‖2

L2
j
+ ‖ξφ0‖2

L2
j

≥ 1

2
‖dξ‖2

L2
j
+ 1

2

∫
R

(
‖dY ξ(t)‖2

L2
j (Y )

+ ‖ξ(t)φ0(t)‖2
L2

j (Y )

)
dt

≥ 1

2
‖dξ‖2

L2
j
+ C‖ξ‖2

L2

≥ C ′‖ξ‖2
L2

j+1
,

which shows that the image is closed.
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Consider now the operator

dτ ,†
γ dτ

γ : L2
j+1(Z ; iR)→ L2

j−1(Z ; iR).

As in the proof of Proposition 9.4.1, to show that we have a direct sum, we must
prove that this operator is an isomorphism. The operator is given by

ξ �→ �ξ + (vol(Y ))−1|φ0|2µY (|φ0|2ξ)+ s2
0|φ0|2ξ ,

and the injectivity of this operator can be deduced by a straightforward inte-
gration by parts. From this injectivity, it follows that J τ

j,γ ∩ Kτ
j,γ is zero. The

closedness of the image can be proved by an argument similar to the one we
have just used to prove that the image of dτ

γ is closed. Finally, the surjectivity
of this second-order operator follows from its injectivity, because the operator
is symmetric and has the regularity property,

dτ ,†
γ dτ

γ ξ ∈ L2−j+1 =⇒ ξ ∈ L2−j+3.

�

The above proposition tells us that Sτ
k,γ is a Hilbert submanifold of C̃τ

k (a, b)

in a neighborhood of γ . We write ι : Sτ
k,γ → C̃τ

k (a, b) for the inclusion, and

ῑ : Sτ
k,γ → B̃τ

k ([a], [b])

for the restriction of the quotient map. Then we have, as in previous cases:

Proposition 14.3.3. The quotient space B̃τ
k ([a], [b]) is a Hilbert manifold. For

each γ ∈ Cτ
k (a, b), there is an open neighborhood of γ in Sτ

k,γ ,

Uγ ⊂ S̃τ
k,γ ,

such that ῑ : Uγ → B̃τ
k ([a], [b]) is a diffeomorphism onto its image, which is

an open neighborhood of [γ ] ∈ Bτ
k ([a], [b]). �

14.4 The linearized equations

The local structure of the moduli spaces Mz([a], [b]) can be studied following
standard lines. In the previous subsection, we found suitable slices for the
action of the gauge-group Gk+1(Z) on C̃τ

k (a, b). Now we need to verify that,
restricted to the slice, the equations defining the moduli space have Fredholm



14 Local structure of moduli spaces 251

linearization. We will assume that the perturbation has been chosen so that the
critical points are non-degenerate.

As in (9.18), we define Vτ
j → C̃τ

k (a, b) to be the vector bundle whose fiber
over γ = (A0, s0,φ0) is the vector space

Vτ
j,γ = { (η, r,ψ) | Re〈φ̌0(t), ψ̌(t)〉L2(Y ) = 0 for all t }
⊂ L2

j (Z ; i su(S+))⊕ L2
j (R; R)⊕ L2

j, A0
(Z ; S−). (14.8)

In the case of a compact cylinder Z = I × Y , we wrote the perturbed 4-
dimensional Seiberg–Witten equations as

Fτ
q(γ ) = 0,

where Fτ
q was a smooth section of the vector bundle Vτ

k−1 → Cτ
k (Z). The same

applies to the infinite cylinder R× Y : we only have to check that the required
estimates hold in the global Sobolev spaces on the cylinder. The following
lemma illustrates this:

Lemma 14.4.1. The perturbed Seiberg–Witten equations define a smooth
section

Fτ
q = Fτ + q̂τ : C̃τ

k (a, b)→ Vτ
k−1.

Proof. The fact that the perturbations have these properties for the case of a
finite cylinder is part of the definition of “tame”. The lemma can be deduced
from the results for the finite cylinder rather as the Sobolev embedding and
multiplication theorems were proved in Subsection 13.2.

We illustrate the argument by showing that Fτ
q is a continuous section

of Vτ
k−1. Let γ belong to Cτ

k (a, b). Much as in the proofs of the results of
Subsection 13.2, let

γn ∈ Cτ
k ([−1, 1] × Y )

be the restriction of the translation τ ∗n (γ ). Let γa and γb temporarily denote the
configurations on [−1, 1] × Y corresponding to these two critical points. The
fact that γ belongs to Cτ

k (a, b) (rather than just the L2
k,loc version) is equivalent

to saying that the two quantities∑
n≥0

‖γn − γb‖2
L2

k ([−1,1]×Y )
,

∑
n≤0

‖γn − γa‖2
L2

k ([−1,1]×Y )
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are finite. For n positive, because γn converges to γb and Fτ
q is continuously

differentiable in the case of the finite cylinder, there is a constant C (depending
on γ ) such that

‖Fτ
q(γn)− Fτ

q(γb)‖2
L2

k−1([−1,1]×Y )
≤ C‖γn − γb‖2

L2
k ([−1,1]×Y )

for all n ≥ 0, with a similar result for n negative. So the sum∑
n≥0

‖Fτ
q(γn)‖2

L2
k−1([−1,1]×Y )

is finite. This, together with the corresponding result for negative n, shows that
Fτ

q(γ ) is in Vτ
k−1 for the infinite cylinder. The proof of continuity proceeds

similarly. �

Our moduli space Mz([a], [b]) is the quotient of the locus Fτ
q(γ ) = 0 in

Cτ
k (a, b) by the action of the gauge-group, and to understand its local structure,

we need to understand the derivative of Fτ
q . Because Vτ

k−1 is not a trivial vector
bundle, the definition of the derivative as a bundle map

DFτ
q : T τ

k → Vτ
k−1

involves a projection: referring to (14.8), we define a projection

$τ
γ : L2

j (Z ; i su(S+))⊕ L2
j (R; R)⊕ L2

j, A0
(Z ; S−)→ Vτ

j,γ

by applying the L2 projection on each slice {t} × Y , That is,

$τ
γ : (η, r,ψ) �→ (η, r,$⊥φ0(t)

ψ)

$⊥φ0(t)
ψ = ψ − Re〈φ̌0(t),ψ(t)〉L2(Y )φ0.

The derivativeDFτ
q is then defined as the derivative in the ambient Hilbert space,

followed by the projection $τ
γ . Because of Condition (iii) in the definition of a

tame perturbation (Definition 10.5.1), the derivative DFτ
q extends to the spaces

of lower regularity, defining smooth bundle maps

DFτ
q : T τ

j → Vτ
j−1 (14.9)

for j ∈ [−k, k].
We will examine the operator DFτ

q in some detail. Let γ0 belong to Cτ
k (a, b)

and consider the operator at γ0:

DFτ
q : T τ

j,γ0
→ Vτ

j−1,γ0
. (14.10)
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Let γ̌0(t) = (B0(t), r0(t),φ0(t)) be the path R → Cσ
k−1(Y ) defined by γ0. If

we temporarily ignore questions of regularity, we can regard elements of the
codomain here as sections along γ̌0 of the tangent bundle T σ → Cσ (Y ): this
is because we can use Clifford multiplication as usual to identify the endomor-
phism η of the spin bundle S with a 1-form on Y , so that elements (η, r,ψ) of
Vτ become triples (b, r,ψ), with ψ orthogonal to the spinor φ0(t) on each t
slice.

The domain of the operator (14.10) can be interpreted similarly. The domain
consists of triples (a, r,ψ), where a is a 4-dimensional connection on the
cylinder and r and ψ are as before. We can write a as

a = b+ c dt

where b is in temporal gauge and c is an imaginary-valued function on the
cylinder. In this way, a becomes a pair of (b, c), consisting of a path b in the
space of 1-forms on Y and a path c in the space of 0-forms on Y . The triple
(b, r,ψ) is the same data we saw in the codomain. So, continuing to ignore the
Sobolev regularity, we can regard the domain T τ

γ0
as sections along γ0 of the

bundle

T σ (Y )⊕ L2(Y , iR)

where (b, r,ψ) defines the path in the first summand and c defines the path in the
second. We will write such a section as (V , c), where V (t) = (b(t), r(t),ψ(t))
defines an element of T σ

γ0(t)
(Y ), and c(t) is in L2(Y , iR). Because T σ (Y ) is not a

trivial vector bundle along the path, we should not write dV /dt for the derivative
of V along the path. Instead, we again use the projection $⊥ to the orthogonal
complement of φ0(t) to define a covariant derivative: if V = (b, r,ψ), we set

D

dt
V =

(
db

dt
,

dr

dt
,$⊥φ0(t)

dψ

dt

)
. (14.11)

With this notation in place, we can write down the linear operator (14.9).
Recall that we have a vector field (grad−L)σ on Cσ

k (Y ), whose derivative defines
a bundle map

D(grad−L)σ : T σ
j (Y )→ T σ

j−1(Y ).

Let us write an element of the domain of (14.9) as (V , c), where V = (b, r,ψ)

is a section of T σ (Y ) along γ0. Let us also suppose that γ0 is in temporal gauge
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on the cylinder. Then the operator (14.9) is given by

(V , c) �→ D

dt
V +D(grad−L)σ (V )+ dσ

γ0(t)
c.

Here dσ is defined by the derivative of the gauge group action on Cσ (Y ), as
in (9.10). It is a bundle map on Cσ (Y ) from the trivial bundle L2

j (Y , iR) to
T σ

j−1(Y ).
If we restrict the operator to pairs (V , c) with c = 0, we see just the operator

V �→ D

dt
V +D(grad−L)σ (V ).

which is familiar as the linearization of the equation for a flow line of the
vector field −(grad−L)σ on Cσ (Y ). Imposing the condition c = 0 is a gauge-
fixing condition, but it is not the type of gauge-fixing condition which leads
to an elliptic system of equations. Instead, we need to impose a Coulomb-type
gauge-fixing condition, namely the linearization of the Coulomb slice condition
introduced in the previous subsection. That is, we impose the condition

dτ ,†
γ0

(V , c) = 0.

When we regard V and c as sections of Hilbert vector bundles along the path γ0

(and continuing to suppose that γ0 is in temporal gauge), the condition becomes

d

dt
c + dσ ,†

γ0(t)
(V ) = 0,

where dσ ,† is the linearized gauge-fixing operator on Y defined at (12.10). An
appropriate linear operator for the elliptic theory is thus the sum of the linearized
equations (14.9) with the gauge-fixing condition dτ ,†

γ0 = 0, as an operator acting
on Sobolev spaces on the infinite cylinder:

Qγ0 = Dγ0(F
τ
q)⊕ dτ ,†

γ0

Qγ0 : T τ
j,γ0
→ Vτ

j−1,γ0
⊕ L2

j−1(Z ; iR).
(14.12)

In the path notation, this combined operator has the form

(V , c) �→ D

dt
(V , c)+ Lγ0(t)(V , c)

where for each a in Ca
k (Y ) we write

La : T σ
j,a ⊕ L2

j (Y ; iR)→ T σ
j−1,a ⊕ L2

j−1(Y ; iR)
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for the linear operator given by

La =
[
Da(grad−L)a dσ

a

dσ ,†
a 0

]
.

This operator has appeared before. It is precisely the extended Hessian on the
blown-up configuration space: the operator Ĥess

σ

q,a defined at (12.11).
To summarize, the linearization of the perturbed Seiberg–Witten equations on

the infinite cylinder can be combined with a linearized gauge-fixing condition
to obtain an equation which can be cast in the form

D

dt
(V , c)+ Lγ (t)(V , c) = 0.

We are now ready to state and prove the basic Fredholm property of the
linearized equations on the infinite cylinder Z = R× Y .

Theorem 14.4.2. For each pair of (non-degenerate) critical points a, b and
each γ0 in Cτ

k (a, b), the linear operator

Qγ0 = Dγ0F
τ
q ⊕ dτ ,†

γ0
: T τ

j,γ0
→ Vτ

j−1,γ0
⊕ L2

j−1(Z ; iR)

is Fredholm for all j in the range 1 ≤ j ≤ k, and satisfies a Gårding inequality,

‖u‖L2
j
≤ C1‖Qγ0 u‖L2

j−1
+ C2‖u‖L2

j−1
.

The index of Qγ0 is independent of j.

Proof. Suppose first that γ0 is in temporal gauge and that γ0 is translation-
invariant on each of the two ends of the cylinder, so that γ0(t) = a for t large
and negative, and γ0(t) = b for t large and positive. Write the path γ0(t) as
(B0(t), r0(t),φ0(t)). We have seen above that the operator can be cast in the
form

(V , c) �→ D

dt
(V , c)+ Lγ0(t)(V , c). (14.13)

This is almost exactly the form which was considered in the general setting of
Proposition 14.2.1, but we have to deal with the fact that (V (t), c(t)) is a section
along the path γ0(t) of a Hilbert vector bundle, and is therefore not a section of
a fixed vector bundle over Y . The same point arose earlier, in Subsection 12.4,
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and we can use the same device here to avoid the problem: as in (12.13) we
recast V = (b, r,ψ) as a pair (b, ψ) by setting

ψ(t) = ψ(t)+ r(t)φ0(t).

The operator then takes the form

(b, ψ, c) �→ d

dt
(b, ψ, c)+ L0(b, ψ, c)+ h̄γ0(t)(b, ψ, c) (14.14)

where L0 is a self-adjoint elliptic differential operator acting on sections of
iT ∗Y ⊕S⊕ iR on Y , just as in (12.17). (The operator h̄ in this formula does not
quite coincide with the one that appears in (12.17), because the term (d/dt)ψ
picks up also a time derivative of φ0.)

We have already seen that Lγ0(t) is the extended Hessian, Ĥess
σ

q,γ0(t), so on

the two ends of the cylinder we see the operators Ĥess
σ

q,a and Ĥess
σ

q,b. Our

examination of this operator in Lemma 12.4.3 showed that Ĥess
σ

q,a and Ĥess
σ

q,b
are invertible with real eigenvalues when a and b are non-degenerate critical
points. In particular, they are hyperbolic.

Proposition 14.2.1 therefore tells us that (14.13) is Fredholm as a map

L2
1(Z ; iT ∗Y ⊕ S ⊕ iR)→ L2(Z ; iT ∗Y ⊕ S ⊕ iR).

In other words, the operator Qγ0 is Fredholm in the case j = 1. To deal with
the case j ≥ 1, we note that the operators Qγa and Qγb corresponding to the
constant trajectories are invertible in the topologies L2

j → L2
j−1, by Proposi-

tion14.1.2; so in the proof of Proposition 14.2.1, the Green’s operators Gi map
L2

j−1 to L2
j , as does the parametrix P. The Fredholm property of Qγ0 on L2

j
follows.

The Gårding inequality is a straightforward consequence of the mapping
properties of hγ and the elliptic estimate for (d/dt) + L0 on a finite cylinder.
From this follows the regularity statement, that if u ∈ L2

1 and Qγ u ∈ L2
j−1, then

u ∈ L2
j . This in turn implies that the index is independent of j. This completes the

proof of Theorem 14.4.2, under the additional assumption that γ0 is in temporal
gauge and constant on the ends.

If γ0 is altered on a compact subset I × Y , then Qγ0 changes by a compact
operator, when regarded as an operator acting on sections (b, ψ, c) of a fixed
vector bundle. The subset of Cτ

k (a, b) consisting of elements γ which are equal
to γ0 on the ends is dense; and since Qγ depends continuously on γ it follows
that the difference Qγ0 − Qγ is compact, for all γ in Cτ

k (a, b) (because the



14 Local structure of moduli spaces 257

compact operators are a closed set in the operator norm topology). The theorem
therefore holds without the additional conditions on γ0. �

Combining Theorem 14.4.2 with Proposition 14.3.2, we deduce:

Proposition 14.4.3. The restriction of the bundle map DFτ
q ,

DFτ
q : Kτ

j,γ → Vτ
j−1,γ ,

is Fredholm, and has the same index as Qγ .

Proof. The space Kτ
j,γ is, by definition, the kernel of dτ ,†

γ . So the kernel of DFτ
q

restricted to Kτ
j,γ is the same as the kernel of the sum dτ ,†

γ ⊕DFτ
q , which is the

operator Qγ . The operators have the same cokernel because of the surjectivity

of dτ ,†
γ , which was established in Proposition 14.3.2. �

The proof of Theorem 14.4.2 shows that the index of Qγ depends only on
the endpoints, a and b, of γ , and is equal to the spectral flow of the family of
extended Hessians Ĥess

σ

q,γ̌ (t).
We give this important quantity a name:

Definition 14.4.4. Given critical points a, b in Cσ
k (Y ), we write gr(a, b) for

the index of Qγ , where γ is any chosen element of Cτ
k (a, b). If [a], [b] are the

gauge orbits of a, b, and z is the relative homotopy class of the path π � γ̌ , we
may write grz([a], [b]) for gr(a, b). We call gr(a, b) the relative grading of a

and b. ♦

From Proposition 14.2.1 and the additivity of the spectral flow, the following
proposition is immediate.

Proposition 14.4.5. If a, b and c are three critical points, then

gr(a, c) = gr(a, b)+ gr(b, c).
�

It is natural to ask how the relative grading grz([a], [b]) depends on the
choice of relative homotopy class z for the path. Because of the additivity, this
question reduces to the question of computing grz([a], [a]) for a closed loop z
based at [a]. Expressing this in terms of Cσ

k (Y ) rather than the quotient space
Bσ

k (Y ), we can ask for a calculation of gr(a, a′) when a′ = u(a) for some gauge
transformation u : Y → S1; this is an equivalent question, because to each u
there corresponds a closed loop zu in the quotient space, obtained as the image
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of any path joining a to a′ in Cσ
k (Y ). The result of this calculation is given in

the next lemma:

Lemma 14.4.6. For the closed loop zu based at [a] in Bσ
k (Y ), we have

grzu
([a], [a]) = ([u] � c1(S))[Y ],

where [u] denotes the homotopy class of u : Y → S1, identified with an element
of H 1(Y ; Z).

Proof. We can use Proposition 14.2.2 to reinterpret the index grzu
([a], [a]) as

the index of an operator on S1 × Y . The relevant operator is the linearization
of the perturbed 4-dimensional Seiberg–Witten equations together with gauge
fixing, and the relevant spinc structure on S1×Y is the structure su obtained by
pulling back the spinc structure s from Y and using u to identify the two ends.
For this spinc structure su, we have

c1(su) = c1(s)+ 2η � [u],
where η is the oriented generator of H 1(S1; Z). The index of the 4-dimensional
Seiberg–Witten equations (with gauge fixing) on a closed 4-manifold is given
in Theorem 1.4.4. In the simple case of S1 × Y , the formula becomes

d = 1

4
c1(su)

2[S1 × Y ]
= ([u] � c1(s))[Y ]

as claimed. �

If we think of the finite-dimensional model discussed in Section 2, then we
should think of grz([a], [b]) as playing the role of the difference in Morse indices
for two hyperbolic critical points of a flow. The fact that this quantity depends
on the homotopy class of the path z joining [a] to [b] in Bσ (Y ) has no analogy
in the finite-dimensional case, essentially because the spectral flow for a loop
of finite-dimensional operators is always zero. There is another point to make,
to clarify the analogy with the finite-dimensional situation. For a flow on a
finite-dimensional manifold B, we can indeed interpret the difference of Morse
indices between two hyperbolic critical points a and b in terms of a spectral
flow, namely the spectral flow of the “Hessian” (any covariant derivative of the
vector field) along a path from a to b. The analog of that Hessian in our setting
is the operator

Hessσj : Kσ
j → Kσ

j−1
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acting on the subbundle Kσ
j transverse to the gauge orbit. The definition of

gr(a, b), however, relates it to the spectral flow of the extended Hessian (12.12).
Along the path, however, the terms x and y in (12.12) are compact operators
which vanish at the endpoints; so the family of extended Hessians has the same
spectral flow as the family of operators(

0 dσ
γ (t)

dσ ,†
γ (t) 0

)
⊕ Hessσq,γ (t).

The first block is invertible, as we saw in the proof of Lemma 12.4.3. So we
can regard gr(a, b) as the spectral flow of the family of operators Hessσq,γ (t), as
expected.

14.5 Regularity and boundary-obstructed trajectories

We now turn to the moduli spaces M̃z([a], [b]) ⊃ Mz([a], [b]), which we iden-
tify with subsets of B̃τ

k,z([a], [b]) using Theorem 13.3.5. Recall that the former
notation (with the tilde) denotes the space obtained by dropping the condition
s ≥ 0 in the construction of the blow-up. The slice result, Proposition 14.3.3,
together with the Fredholm property of the linearized equations on the slice
(Proposition 14.4.3), tells us that if [γ ] belongs to the moduli space M̃z([a], [b]),
then a neighborhood of [γ ] in M̃z([a], [b]) is identified with the zero set
of a map

Fτ
q |Uγ

: Uγ → Vτ
k−1,

whose linearization at γ ∈ Uγ is the Fredholm operator

DγFτ
q : Kτ

k,γ → Vτ
k−1,γ

which was described just above in Proposition 14.4.3. From this local descrip-
tion, it follows now by the implicit function theorem in Banach spaces, that if
DγFτ

q is surjective, then the moduli space M̃z([a], [b]) is a smooth manifold
near [γ ]. In this surjective case, the dimension of the moduli space will be the
dimension of the kernel of the linearization, which is the index of DγFτ

q . This
is also the index of Qγ , by Proposition 14.4.3 again, so we can state:

Corollary 14.5.1. If [γ ] belongs to M̃z([a], [b]) and the linear operator Qγ

is surjective, then M̃z([a], [b]) is a smooth manifold in a neighborhood of [γ ],
and its dimension is given by the index of Qγ : that is to say, the quantity
grz([a], [b]). �
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It is important to note, however, that it is not reasonable to expect that the
derivative DγFτ

q will always be surjective, for any residual set of perturbations.
To see why this is so, let us write γ = (A, s,φ) and separate two possibilities.
Either s : R → R is identically zero, or it is everywhere non-zero; that is, the
solution is either reducible or irreducible. In the latter case, if s is everywhere
positive, then [γ ] belongs to Mz([a], [b]) ⊂ M̃z([a], [b]). So we can identify
Mz([a], [b]) as the quotient of M̃z([a], [b]) by the involution

i : [A, s,φ] �→ [A,−s,φ]
(see (9.7)). As in the finite-dimensional case (see Definition 2.4.1), we can
distinguish two types of critical points in the reducible case:

Definition 14.5.2. If a ∈ Cσ
k (Y ) belongs to the reducible locus, we call a

boundary-stable if �q(a) > 0 and boundary-unstable if �q(a) < 0. ♦

Remark. For now, we are only interested in applying this definition to critical
points a of the perturbed functional. Later, it will sometimes be convenient to
have this concept also for general points on the reducible locus (in which case
it is possible that �q(a) = 0, so that a is neither boundary-stable nor-unstable).

Lemma 14.5.3. Let a, b be critical points, and suppose Mz([a], [b]) contains an
irreducible trajectory [γ ] = [A, s,φ]. Then a is either irreducible or boundary-
unstable, and b is either irreducible or boundary-stable.

Proof. The equation for s is

ds

dt
= −�q(γ̌ (t))s

where �q(γ̌ (t)) approaches �q(a) and �q(b) as t goes to −∞ and +∞. If a

is reducible, then s approaches 0 at −∞, so �q(a) must be positive. Similarly
�q(b) must be negative if b is reducible. �

If γ is a reducible trajectory (connecting, therefore, two reducible critical
points), then the operator Qγ of Theorem 14.4.2 decomposes as a sum of two
operators, the “boundary” and “normal” parts,

Qγ = Q∂
γ ⊕ Qν

γ , (14.15)

reflecting the decomposition of the domain and codomain into the parts where
the involution i is trivial and non-trivial. The first operator is

Q∂
γ = (DγFτ

q)
∂ ⊕ dτ ,†

γ ,
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where (DγFτ
q)

∂ : (T τ
k,γ )

∂ → (Vτ
k,γ )

∂ is the part invariant under the involution,
and Qν

γ is the operator

Qν
γ : L2

k(R; iR)→ L2
k−1(R; iR)

Qν
γ (s) = (ds/dt)+�q(γ̌ )s.

(14.16)

Lemma 14.5.4. The dimensions of the kernel and cokernel of Qν
γ are:

(i) 1 and 0 if a, b are boundary-unstable and -stable respectively;
(ii) 0 and 1 if a, b are boundary-stable and -unstable respectively;

(iii) 0 and 0 in the remaining cases, that a and b are either both boundary-
unstable or both boundary-stable.

Proof. This is straightforward. �

From this lemma, we see that the cokernels of Qγ and Q∂
γ are the same for

reducible trajectories γ , except in one case. We label this case:

Definition 14.5.5. We say that a moduli space M([a], [b]) is boundary-
obstructed if a, b are both reducible, a is boundary-stable, and b is
boundary-unstable. ♦

In the boundary-obstructed case, the cokernel of Qγ (or equivalently the
cokernel of the operator DγFτ

q) is at least 1-dimensional, so we cannot expect
the linearized equations to be surjective. We make the following definition:

Definition 14.5.6. Let [γ ] be a solution in Mz([a], [b]). If the moduli space is
not boundary-obstructed, we say that γ is regular if Qγ is surjective. In the
boundary-obstructed case, γ must be reducible (see below), and we say γ is
regular if Q∂

γ is surjective. We say that Mz([a], [b]) is regular if all its elements
are regular. ♦

Note that in the boundary-obstructed case, regularity means that the cok-
ernel of Qγ has dimension 1. The following proposition is an expansion of
Corollary 14.5.1, incorporating now all the various possibilities.

Proposition 14.5.7. Suppose the moduli space Mz([a], [b]) is regular, and let
d = grz([a], [b]). Then the moduli space is:

• a smooth d-manifold consisting entirely of irreducible solutions if either a

or b is irreducible;
• a smooth d-manifold with boundary if a, b are boundary-unstable and -stable

respectively;
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• a smooth d-manifold consisting entirely of reducibles if a, b are either both
boundary-stable or both boundary-unstable;

• a smooth (d +1)-manifold consisting entirely of reducibles in the boundary-
obstructed case.

In the second case, the boundary of the moduli space consists of the reducible
elements.

Proof. In all but the last case, regularity is equivalent to the surjectivity of Qγ ,
which is equivalent to the surjectivity of DγFτ

q . In these cases, the larger moduli

space M̃z([a], [b]) is a manifold of dimension d . The moduli space Mz([a], [b])
is the quotient of this by the involution i, and the three cases correspond to
the situation that the involution has no fixed points, a fixed submanifold of
codimension 1, or is trivial. The fixed-point set cannot be of codimension larger
than 1 because the vectors normal to the fixed manifold are the kernel of Qν

γ . In
the last case, the moduli space is contained in the reducibles and is cut out by
an equation whose linearization is Q∂

γ , which is surjective and has index d + 1,
because Qν

γ has index −1 in this case. �

14.6 The simplest moduli spaces

We continue to assume that the perturbation has been chosen so that the critical
points in the blown-up configuration space are all non-degenerate. Suppose
now that a1 and a2 are two reducible critical points in Cσ

k (Y ) whose images
under the blow-down map are the same:

π(a1) = π(a2) = α ∈ Ck(Y ).

If we write α as (B,�) on Y , then according to Proposition 12.2.5 and Propo-
sition 10.3.1, the critical points a1 and a2 correspond to eigenvalues of the
perturbed Dirac operator Dq,B, a complex-linear self-adjoint operator with sim-
ple spectrum. These eigenvalues can be recovered as the value of �q at the
critical points:

λ1 = �q(a1), λ2 = �q(a2).

Let z0 be the homotopy class of paths joining [a1] to [a2] in Bσ
k (Y ) arising

from paths joining a1 to a2 in Cσ
k (Y ). We can analyze the moduli spaces

Mz0([a1], [a2]) quite explicitly, guided by the finite-dimensional case of linear
flows on projective spaces discussed in Subsection 2.3.
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Let i be the “signed count” of the number of eigenvalues of Dq,B between λ1

and λ2, including one endpoint:

i =
{
|{µ ∈ Spec(Dq,B) | λ2 < µ ≤ λ1 }|, if λ1 ≥ λ2

−|{µ ∈ Spec(Dq,B) | λ2 > µ ≥ λ1 }|, if λ1 ≤ λ2.

Proposition 14.6.1. Let i be as above. If λ1 ≥ λ2, so that i ≥ 0, then
Mz0([a1], [a2]) is diffeomorphic to an open subset of a projective space CPi,
obtained as the complement of two hyperplanes. If λ1 < λ2 then the moduli
space is empty.

Proof. Let γ be in temporal gauge and represent a point in the moduli space
Mz0([a1], [a2]). We have −L(a1) = −L(a2), so the image of γ̌ under the blow-
down map must be a constant path. After gauge transformation, this may as
well be a constant path at α ∈ Ck(Y ). In particular, γ̌ (t) is reducible for all t,
and we can write the path in Cσ

k (Y ) as

γ̌ (t) = (B, 0,φ(t)),

where φ(t) is of unit L2 norm. The remaining gauge freedom is the action of
constant gauge transformations, the circle group S1. The equation that φ(t)
must satisfy appeared at (10.9), and can be written

d

dt
φ(t) = −Dq,Bφ(t)+ λ(t)φ(t),

whereλ(t) runs fromλ1 toλ2. The operator Dq,B is independent of t. The moduli
space is the quotient by S1 of the set of solutions having the correct limiting
behavior: φ(t) must approach the S1 orbit of φ1 and φ2 as t goes to the two ends.
As we did in Subsection 6.3, we write � = s0φ, where s0 is a positive solution
of the ODE (6.12); then � satisfies the 4-dimensional, translation-invariant
perturbed Dirac equation

d

dt
�(t) = −Dq,B�(t).

The asymptotics of |�(t)|L2(Y ) are the same as those of s0, and so we have

�(t) ∼ c1e−λ1tφ1, as t →−∞
�(t) ∼ c2e−λ2tφ2, as t →+∞.
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The moduli space is the quotient by R+ × S1 = C∗ of the set of solutions �

with these asymptotics. The asymptotic conditions mean that we can write

� =
∑
µ

cµe−µtφµ,

where µ runs through the eigenvalues in the interval [λ2, λ1], the spinors φµ are
corresponding unit eigenvectors for Dq,B on Y , and cµ are complex coefficients,
with cλ1 and cλ2 both non-zero. (If λ1 < λ2, there are no solutions.) Thus the
moduli space is identified with the complement of two hyperplanes in CPi,
where i + 1 is the number of eigenvalues in the closed interval [λ2, λ1]. �

The result of this proposition is consistent with the moduli spaces being
regular. We shall verify this regularity in the next section. Granted this regularity,
we can deduce:

Corollary 14.6.2. If λ1 and λ2 have the same sign, then

gr(a1, a2) = 2i.

If λ1 is positive and λ2 is negative, then

gr(a1, a2) = 2i − 1.

If λ1 is negative, and λ2 is positive, then

gr(a1, a2) = 2i + 1,

(which is a negative integer).

Proof. If λ1 ≥ λ2, then the moduli space is non-empty, and regular, as stated.
The case that λ1 is positive and λ2 is negative is the boundary-obstructed case.
The proposition above tells us the dimension of the moduli spaces in these
cases, and we can deduce the value of gr(a1, a2) from Proposition 14.5.7. In
the case that λ2 ≥ λ1, we can use the identity gr(a1, a2) = − gr(a2, a1) to
complete the proof. �

Remark. As an alternative proof of this corollary, one can directly compute
the spectral flow of the family of operators that appears in the proof of
Theorem 14.4.2.
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15 Transversality for moduli spaces of trajectories

15.1 Statement and proof

Let us recall that we have a fixed Banach space of perturbations, P , which
is “large” in the sense made precise by Definition 11.6.3. The main result of
this section is that there exist perturbations in P such that the moduli spaces
of trajectories are regular (see Definition 14.5.6 and Proposition 14.5.7). More
precisely:

Theorem 15.1.1. There is a q ∈ P such that:

(i) all the critical points a ∈ Cσ
k (Y ) are non-degenerate;

(ii) for each pair of critical points a, b, and each relative homotopy class z,
the moduli space Mz([a], [b]) is regular, in the sense of Definition 14.5.6.

Note that unless the first condition is satisfied, the second condition cannot
be interpreted. To indicate their dependence on q, we shall sometimes write−Lq

or Mz,q([a], [b]) below, instead of our usual notation, −L or Mz([a], [b]), for the
perturbed functional and moduli spaces.

Proof of Theorem 15.1.1. First, Theorem 12.1.2 provides us with a perturbation
q0 satisfying the first condition. In the based configuration space (see (11.3)),
Bo

k (Y ) = Ck(Y )/Go
k+1(Y ), the image of the critical set for this perturbation

is a finite collection of points (the reducible critical points) and circles (the
irreducibles). By Proposition 11.2.1, we can choose a map

p0 : Bo
k (Y )→ Rn × T× Cm

defined by coexact forms ci and sections ϒj as in (11.4), such that p0 separates
the orbits of the different critical points. For each critical point [α] ∈ Bk(Y ),
let O[α] ⊂ Bo

k (Y ) be an open, S1-invariant neighborhood of the corresponding
S1 orbit, and let these be chosen so that their images under p0 have disjoint
closures. Write

O =
⋃
[α]

O[α] ⊂ Bo(Y ).

The condition on disjoint closures means that any path joining p0([α]) to p0([β])
must leave p0(O) if [α] and [β] are distinct critical orbits. We will also require
the neighborhoods O to be small enough that no essential loop based at any
p0([α]) is contained in p0(O).
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Let PO ⊂ P be the set of perturbations

PO = { q ∈ P | q|O = q0|O }.

This is a closed linear subspace of P , and therefore a Banach space.

Lemma 15.1.2. There is an open neighborhood of q0 in PO such that for all q

in this neighborhood, the perturbed vector field grad−Lq has no critical points
outside O: the critical points of grad−Lq and grad−Lq0 are therefore the same,
as are the critical points of (grad−Lq)

σ and (grad−Lq0)
σ .

Proof. This follows from Proposition 11.6.4. �

For each perturbation q ∈ PO, and each pair of critical points a, b of
(grad−Lq)

σ in O, we have a moduli space Mz,q([a], [b]). Because of the lemma,
the main theorem follows from the next proposition. �

Proposition 15.1.3. The set of perturbations q ∈ PO satisfying Condition (ii)
of Theorem 15.1.1 for all a, b whose images belong to O ⊂ Bk(Y ) is a residual
subset of PO.

Proof. We introduce the parametrized moduli space

Mz([a], [b]) ⊂ Bτ
k,z([a], [b])× PO

which is the quotient by Gτ
k+1(Z) of the zero set of

W : Cτ
k (a, b)× PO → Vτ

k−1(Z)

W :
(
γ , q

) �→ Fτ
q(γ ).

The derivative of W at (γ , q) is a map

D(γ ,q)W : T τ
k,γ × TqPO → Vτ

k−1,γ (Z)

which, when γ is reducible, has a summand

(D(γ ,q)W)∂ : (T τ
k,γ )

∂ × TqPO → (Vτ
k−1,γ )

∂ (Z)

as in (14.15). Following a familiar strategy for these arguments, we shall show:

(i) the derivative DW is surjective at all irreducible points (γ , q) in W−1(0);
and

(ii) the summand (DW)∂ is surjective at all reducible critical points.
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As in Subsection 14.5, it then follows that Mz([a], [b]) is the quotient by Z/2
of a Banach manifold M̃z([a], [b]). The projection of M̃z([a], [b]) to PO is
Fredholm of index grz([a], [b]), or grz([a], [b])+1 in the case that a, b are both
reducible, and boundary-stable and -unstable respectively. So the Sard–Smale
theorem provides a residual subset of regular values in PO: this is the residual
subset of the proposition.

Consider then an element (γ , q) in W−1(0). For the moment, we will assume
either that the images [α] and [β] of [a] and [b] in Bk(Y ) are distinct, or (if
[α] = [β]) that the homotopy class z is non-trivial; the cases excluded by this
assumption are the moduli spaces which we described in Proposition 14.6.1
in the previous section, and we will establish their regularity at the end of the
present proof. Because of our assumption, the path

γ = π � γ̌ : R → Ck(Y )

corresponding to γ has non-constant image in Bk(Y ); and by our hypothesis
concerning the closures of the p0(Oα), there is an open interval J ⊂ R such
that

p0(γ (J )) ∩ p0(O) = ∅. (15.1)

By the unique continuation result, Proposition 10.8.2, the closure J̄ is embedded
in Bk(Y ) via γ .

The partial derivative of W in the Cτ
k (a, b) directions is DγFτ

q ; so if DγFτ
q

is surjective we are done. If DγFτ
q is not surjective, consider a non-zero ele-

ment V ∈ Vτ
0,γ (Z), orthogonal to the image of DγFτ

q with respect to the L2

inner product on Vτ
k−1,γ (Z). The pair (V , 0) ∈ Vτ

0,γ (Z) × L2(Z ; iR) is then

L2-orthogonal to the image of the Fredholm operator

Qγ : T τ
1,γ → Vτ

0,γ (Z)× L2(Z ; iR).

(See Theorem 14.4.2.) As before, we write Qγ = (d/t) + L0 + h, where h is
defined slicewise by a continuous path of operators R → Hom(L2, L2), and L0

is an elliptic operator on Y . Thus (V , 0) is a weak solution of

−D

dt
(V , 0)+ L∗0(V , 0)+ h∗(V , 0) = 0.

Because (d/dt) + L0 is elliptic, it follows that V is in L2
1, i.e. V ∈ Vτ

1,γ (Z).
Unique continuation holds for this linear equation, by an application of
Lemma 7.1.3, so the restriction of V to J is non-zero.
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The usual isomorphism

i su(S+)⊕ S− → T ∗(Y )⊕ S

on Z gives rise also to an isomorphism

Vτ
j (Z)⊕ L2

j (Z ; iR)→ T τ
j (Z).

Using the first of these, the section V gives rise to V̌ , an L2
1 section of T σ

0 (Y )

along the path γ̌ in Cσ
k (Y ). Using the second isomorphism, we can regard (0, V )

as an element of T τ
1,γ (Z).

Lemma 15.1.4. For all t ∈ R, the element V̌ (t) in T σ
0 (Y ) belongs to the

orthogonal complement of the tangent space to the Gk+1(Y ) orbit through γ̌ (t),
with respect to the L2 inner product on T0(Y ). In particular, the image of V̌ (t)
in [T σ

0 ] (the L2 completion of TBσ
k (Y )) is non-zero for all t.

Proof. We have an integration-by-parts formula, for any U ∈ T τ
j,γ (Z) and

W ∈ Vτ
1,γ (Z)⊕ L2

1(Z ; iR),

〈Qγ U , W 〉L2({t}×Y ) − 〈U , Q∗γ W 〉L2({t}×Y ) =
d

dt
〈U , W 〉L2({t}×Y ), (15.2)

using the standard isomorphisms above to interpret the term on the right. We
apply this to our element of the cokernel having the form W = (V , 0). If U is a
tangent vector to the gauge orbit then it is in the kernel of DγFτ

q at the solution
γ , so Qγ U has the form (0, x). The left-hand side thus vanishes, and we see
that 〈Ǔ (t), V̌ (t)〉t is independent of t. On the other hand, this is an integrable
function of t, because U and V belong to L2. So the inner product is zero for
all t. �

We now focus on the case that γ is irreducible. The blow-down map π :
Cσ

k (Y )→ Ck(Y ) is a diffeomorphism in a neighborhood of γ̌ (J ), and carries the
path γ̌ to γ . We seek to construct a cylinder function f so that the corresponding
perturbation δqσ = (grad f )σ has〈

δqσ (t), V̌ (t)
〉
T σ

0,γ̌ (t)
≥ 0 (15.3)

with strict inequality at t0. This will contradict the supposition that V is orthogo-
nal to the image ofDW, and so prove thatDW is surjective atγ . The blow-down
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map π is not an isometry for the L2 inner products on T and T σ ; but over the
irreducibles, there is an endomorphism κ of T such that〈

u, v〉T σ
0,γ̌ (t)

= 〈
π∗u, κπ∗v

〉
T0,γ̌ (t)

.

(At (B,�) ∈ Ck(Y ), the map κ is given by

(b,ψ0 + ψ⊥) �→ (b,ψ0 + (‖�‖)−2ψ⊥),

where ψ0 and ψ⊥ are parallel to and real-orthogonal to �.) Write V̄ (t) =
κπ∗V̌ (t), so that the desired inequality (15.3) becomes〈

δq(t), V̄ (t)
〉
T0,γ̌ (t)

≥ 0.

From the definition of δq as a gradient with respect to this inner product, this
becomes the metric-independent statement

(Df )(V̄ (t)) ≥ 0.

To achieve this, we now appeal to Proposition 11.2.1 to augment the collection
of forms ci and sections ϒj defining p0, so that the larger collection gives

p : Ck(Y )→ Rn × T× Cm

which now embeds γ (S) in Rn × T×Cm, where S ⊃ J is the compact subset
of R defined as

S = { t ∈ R | p(γ (t)) ∈ p(O)+ }

and p(O)+ is an open neighborhood of p(O) disjoint from p(γ (J̄ )). (Recall
γ = π � γ̌ ). Furthermore, because of Lemma 15.1.4 above, we can choose p

such that the image p∗(V̄ ) of the vector field along J̄ is non-zero. Pick a t0 ∈ J .
As in Corollary 11.2.2, we can find a cylinder function f = g � p, arising from
some

g : Rn × T× Cm → R,

such that (Df )(V̄ (t)) ≥ 0 for all t in J , with strict inequality at t0. By multi-
plying g by a suitable cut-off function on Rn × T× Cm, we then arrange that
Dγ (t)f (V̄ (t)) = 0 for t ∈ R \ J , because p(γ (J̄ )) is disjoint from p(γ (R \ J̄ )).
Replacing p and g by suitable approximations, we may safely assume that g



270 IV Moduli spaces and transversality

corresponds to a perturbation belonging to the Banach space P . This completes
the proof of surjectivity of DW at the irreducible solutions.

Next we consider a trajectory γ ∈ W−1(0) belonging to the reducibles.
We need to show that the summand (DγW)∂ is surjective. Supposing it is not
surjective, we take an element V in the cokernel, just as before, though we are
now supposing V ∈ (Vσ

1 )∂ (Z). Lemma 15.1.4 still applies. We can write

γ = (A, 0,φ)

γ̌ (t) = (Ǎ(t), 0,φ(t))

V̌ (t) = (ω(t), 0,ψ(t))

in the coordinates of Cσ
k (Y ), where φ(t) is of unit length and orthogonal to ψ(t),

and ω(t) is an imaginary-valued 1-form on Y .
We write an element of (T σ

k )∂ (Z) as a pair (δA, δφ). If we consider a tangent
vector

δ = (δA, δφ, δq) ∈ (T σ
k )∂ (Z)× TP

at (γ , q), then the inner product〈
(DW)∂ (δ), V

〉
L2(Z)

is the sum of terms:〈
ρ(d+(δA))+ (Dq̂0)(δA, 0)+ (δq̂0)(A, 0), ρ(ω)

〉
+ 〈

ρ(δA)φ + (D2q̂1)((δA, 0), (0,φ)),ψ
〉

+ 〈
D+A (δφ)+ (Dq̂1)(0, δφ),ψ

〉
+ 〈

(Dδq̂1)(0,φ),ψ
〉
. (15.4)

Our assumption is that this pairing is zero, for all δ. We will get a contradiction
by showing that V̌ = (ω, 0,ψ) is zero. Consider first vectors δ = (0, δφ, 0)
with δA = 0 and δq = 0. These variations show that ψ is in the cokernel of the
linear Fredholm operator

L : ψ �→ D+A ψ + (D(A,0)δq̂)(0,ψ),

so ψ is in the kernel of the adjoint L∗. Now, when γ is in temporal gauge,

L = ρ(∂/∂t) � (d/dt)+ DǍ,q
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so

− d

dt
ψ + DǍ,qψ = 0. (15.5)

(Recall that DǍ,q is symmetric.) Unique continuation now implies that the
restriction ofψ to {t}×Y is always non-zero, unlessψ is zero is everywhere. To
show thatψ is in fact zero, we next consider a perturbation δ = (0, 0, δq), where
δq arises from a cylinder function f that is identically zero on the reducibles (cf.
Section 12.6). For such perturbations, δq̂0 is zero at γ , and the only potentially
non-zero term in the sum is the last one. We will show that we can choose δq

to make it non-zero if ψ is non-zero.

Lemma 15.1.5. For each t ∈ R, the spinors ψ(t) and φ(t) are orthogonal
as elements of L2(Y ; S) with respect to the complex-valued hermitian inner
product, using the usual isomorphisms S±|{t}×Y = S.

Proof. The spinorsφ andψ on Z are solutions of two equations that are formally
adjoint:

d

dt
φ + DǍ,qφ = 0, − d

dt
ψ + DǍ,qψ = 0.

The argument is therefore the same as was used in the proof of Lemma 15.1.4.
�

As in the irreducible case , we can find an interval J such that the path
p �π � γ̌ in Ck(Y ) given by (Ǎ(t), 0) embeds J̄ , disjoint from p(O) and disjoint
from p � γ (R \ J̄ ). (To do this, we may need to augment p, as before.) We
can also arrange that p∗(ψ) and p∗(φ) are complex-linearly independent along
p � γ (J ). (They are vector fields in the direction of the Cm factor.) Now choose

a cylinder function f ∈ PO that arises from an S1-invariant function

g : Rn × T× Cm → R

that is zero on the fixed-point set Rn × T × {0} and whose second derivative
(∇2g)(p∗(φ), p∗(ψ)) is positive at γ (t0) and non-negative for all t. Such a g
can be constructed because the second derivative in the Cm directions at a point
on the fixed-point set can be the real part of any complex bilinear form. The
resulting variation δq makes the last term of (15.4) non-zero, as desired, so
showing that ψ must be zero.
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We now have V = (ω, 0, 0), and it remains to show that ω is zero. The
argument is similar to the other arguments. By considering a variation first with
only δA non-zero, we see that ω satisfies an equation adjoint to the equation

d+(δA)+ (Dq̂0)(δA, 0) = 0,

so ω has unique continuation and is therefore non-zero along J . The argument
is completed by considering a tangent vector δ = (0, 0, δq), where δq is the
gradient of a cylinder function f with derivative so chosen that

(Dγ (t)f )ω(t) ≥ 0,

with strict inequality at some t0 ∈ J .
Finally, there remains what we excluded at the beginning of this argument:

the case that π[a] = π[b] = [α] and z is the trivial homotopy class of paths.
In this case, recall from Proposition 14.6.1 that the moduli space consists of
reducibles. We shall show that this moduli space is regular, as long as the
perturbation has been chosen so that the critical points are non-degenerate. For
a [γ ] in this moduli space, we can follow the discussion of the reducible case
above: in particular, an element of the cokernel of Q∂

γ gives rise to

V̌ (t) = (ω(t), 0,ψ(t))

where ψ(t) satisfies an equation

− d

dt
ψ + Dq,Bψ = 0,

and B is the connection on Y corresponding to the critical point α (see (15.5)
and the proof of Proposition 14.6.1). The translation-invariant operator that
appears in this equation is invertible, as a map from L2

1(Z ; S) to L2(Z ; S), by
Proposition 14.1.2: the operator Dq,B is hyperbolic because 0 is not in its spec-
trum. This leaves us only to show that ω is zero. The equation satisfied by ω

is also translation-invariant; and the relevant operator on Y is also hyperbolic,
because of the non-degeneracy of the critical point α. So the same argument
applies. �

Notes and references for Chapter IV

The Fredholm theory of differential operators on cylindrical manifolds, of the
sort discussed in this chapter, is developed in [8] and [68]. The more general Lp
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theory, and higher-order operators, are treated in [68]. Gauge theory on cylin-
ders, and on manifolds with cylindrical ends, is developed in [32, 73, 78, 83, 99]
and [112]; the related theory for manifolds with periodic ends was developed
previously in [109]. We have discussed the equations on the cylinder only in the
case that the critical points of the perturbed functional are non-degenerate: this
has allowed us to base our constructions on the ordinary Sobolev spaces L2

k(Z),
rather than weighted Sobolev spaces used (for example) in [78, 112]. More sig-
nificantly, it has obviated the need for any discussion of center-manifold theory
in the Kuranishi description of the moduli spaces.

Smale’s infinite-dimensional version of Sard’s theorem is proved in [103].
Achieving transversality for the moduli spaces of trajectories by perturbing the
Chern–Simons (or in our case the Chern–Simons–Dirac) functional goes back
to Floer’s work in [32].



V

Compactness and gluing

In our discussion of finite-dimensional Morse theory in Chapter I, we touched
on the important fact that the space of flow lines between two critical points,
a and b, of a Morse function is in general not compact. There is an obvi-
ous source of non-compactness arising from the fact that a trajectory γ (t)
can be reparametrized as γ (t + t0); but there is an additional source of non-
compactness, wherein a sequence of trajectories can converge to a “broken
trajectory”: a concatenation of trajectories between intermediate critical points.
The space of trajectories (modulo reparametrization) can be compactified by
adding such broken trajectories. Section 16 establishes essentially the same
result in the context of the infinite-dimensional Morse theory of the Chern–
Simons–Dirac functional. These compactness theorems for global trajectories
leverage our earlier compactness results for solutions on finite cylinders, from
Chapters II and III.

The remaining sections of this chapter are concerned with gluing. The ques-
tion here is to understand the structure of the compactification of the trajectory
space near the broken trajectories. The term “gluing” arises because we are
investigating whether, for example, the existence of a pair of trajectories with
a common endpoint implies the existence of a continuous unbroken trajectory
nearby. Our treatment of this question is based on a careful examination of
the space of trajectories which are defined on a finite time interval and which
remain in the neighborhood of a critical point. The moduli spaces of solutions
on a finite cylinder are studied in Section 17, and the solutions near a critical
point are analyzed in Section 18. In Section 19, these results are applied to
global trajectories and the gluing problem.

274
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16 Compactness of trajectory spaces

The moduli spaces of trajectories, Mz([a], [b]), can be compactified by intro-
ducing broken trajectories. In this section, we define and topologize the space
of broken trajectories and establish its compactness.

Throughout this section, we continue to suppose a tame perturbation q has
been chosen so that all critical points [a] in Bσ

k (Y , s) are non-degenerate (in
the sense of Definition 12.1.1). We will not need to assume that the moduli
spaces of trajectories are regular, at least while discussing the compactification
of a single moduli space Mz([a], [b]). Regularity of the moduli spaces will be
needed later in this section, where we will show (for example) that only finitely
many of these moduli spaces can contain irreducible trajectories.

16.1 Broken trajectories and convergence

Let a and b be critical points, and z the corresponding homotopy class of paths
joining the [a] to [b] in Bτ

k (Y ). We say that a trajectory [γ ] belonging to a
moduli space Mz([a], [b]) is non-trivial if it is not invariant under the action of
R by translations on the cylinder Z = R× Y . This is equivalent to saying that
either [a] = [b], or [a] = [b] and z is non-trivial.

Definition 16.1.1. An unparametrized trajectory is an equivalence class of
non-trivial trajectories in Mz([a], [b]) under the action of translations. We
write

M̆z([a], [b])

for the space of unparametrized trajectories. ♦

Definition 16.1.2. An unparametrized broken trajectory joining [a] to [b]
consists of the following data:

• an integer n ≥ 0, the number of components;
• an (n+1)-tuple of critical points [a0], …, [an]with [a0] = [a] and [an] = [b],

the restpoints;
• for each i with 1 ≤ i ≤ n, an unparametrized trajectory [γ̆i] in

M̆zi ([ai−1], [ai]), the ith component of the broken trajectory.
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The homotopy class of the broken trajectory is the class of the path obtained by
concatenating representatives of the classes zi, or the constant path at [a] if n= 0.
We write M̆+

z ([a], [b]) for the space of unparametrized broken trajectories in
the homotopy class z, and denote a typical element by [γ̆] = ([γ̆1], . . . , [γ̆n]),
even though this notation does not accurately reflect the special case n = 0. ♦

The case n = 0 is included here for later bookkeeping purposes: note that
if z is the class of the constant path at [a], then M̆z([a], [a]) is empty, while
M̆+

z ([a], [a]) is a single point, a broken trajectory with no components.
We topologize the space of unparametrized broken trajectories as follows.

Let [γ̆] = ([γ̆1], . . . , [γ̆n]) belong to M̆+
z ([a], [b]), with [γ̆i] ∈ M̆zi ([ai−1], [ai])

being represented by a (parametrized) trajectory

[γi] ∈ Mzi ([ai−1], [ai]).

Let Ui ⊂ Bτ
k,loc(Z) be an open neighborhood of [γi], and let T ∈ R+. We

define 	 = 	(U1, . . . , Un, T ) to be the subset of M̆+
z (a, b) consisting of

unparametrized broken trajectories [δ̆] = ([δ̆1], . . . , [δ̆m]) satisfying the fol-
lowing condition: there exists a map (j , s) : {1, . . . , n} → {1, . . . , m} × R

such that

• [τs(i)δj (i)] ∈ Ui, and
• if 1 ≤ i1 < i2 ≤ n, then either j (i1) < j (i2), or j (i1) = j (i2) and

s(i1)+ T ≤ s(i2).

Here τsδ denotes the translate, τsδ(t) = δ(s + t). We take the sets of the form
	(U1, . . . , Un, T ) to be a neighborhood base for [γ̆] in M̆+

z ([a], [b]).
Our main result here is:

Theorem 16.1.3. The space of unparametrized broken trajectories M̆+
z ([a], [b])

is compact.

Theorem 16.1.3 follows from a slightly stronger proposition, whose proof
is our main goal in this section. For an element γ in Cτ

k,loc(R × Y ), we write
Eq(γ ) for the energy of π � γ in Ck,loc(R× Y ), as in (10.12). The energy may
be infinite. For a solution of the perturbed equations, the energy is twice the
drop in −L. We define the energy of a broken trajectory to be the sum of the
energies of its components. In particular for broken trajectories in M̆+

z ([a], [b])
the energy depends only on z and we write Eq(z) for this energy.

Proposition 16.1.4. For any C > 0 and any [a], [b], there are only finitely many
z with energy Eq(z) ≤ C for which M̆+

z ([a], [b]) is non-empty. Furthermore
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each M̆+
z ([a], [b]) is compact. In other words the space of broken trajectories

[γ̆] ∈ M̆+([a], [b]) with energy Eq(γ̆) ≤ C is compact.

The proof of this proposition will appear in Subsection 16.3 after we prove
a similar result for the images of these moduli spaces under the blow-down
map π.

A basic tool is the compactness result on finite cylinders, Theorem 10.9.2.
This gives us the following result concerning trajectories in Bτ

k,loc(Z), with Z
the infinite cylinder R× Y .

Proposition 16.1.5. If [γ n] is a sequence of trajectories in Bτ
k,loc(Z) (i.e. solu-

tions of the perturbed Seiberg–Witten equations), and if the energies Eq(γ
n)

are finite and uniformly bounded, and |�q(γ
n(t))| is uniformly bounded,

|�q(γ
n(t))| ≤ �0, for all n and all t,

then there exists a subsequence converging in the topology of Bτ
k,loc(Z) to a

trajectory [γ ]. �

Without the hypothesis on |�q(γ
n(t))|, Theorem 10.7.1 implies the following

weaker version:

Proposition 16.1.6. If [γ n] is a sequence of trajectories in Bτ
k,loc(Z) and if the

energies Eq(γ
n) are finite and uniformly bounded then the trajectories [π � γ n]

have a subsequence converging in the topology of Bk,loc(Z) to a trajectory
[γ̄ ] ∈ Bk,loc(Z). �

16.2 Proof of compactness downstairs

Before proving Proposition 16.1.4, we prove a version of the same proposition
for the moduli spaces of trajectories “downstairs” in Bk,loc(Z) (without the
blow-up), using the second of the two “local” compactness propositions above.
For critical points [α], [β] in Bk(Y ), we introduce the moduli spaces

Nz([α], [β]) ⊂ Bk,loc(Z)

N ([α], [β]) =
⋃

z

Nz([α], [β]) (16.1)

of solutions to the perturbed equations, asymptotic to [α] and [β] at the two
ends. If α = π(a) and β = π(b), we have the map

π : Mz([a], [b])→ Nz([α], [β]).
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We define a trajectory in Nz([α], [β]) to be non-trivial if it is not invariant under
the translations R. Note that π maps non-trivial trajectories in Mz0([a], [a′]) to
trivial trajectories in Nz0([α], [α]) when z0 is the trivial homotopy class. For
these moduli spaces, we can introduce also topological spaces N̆ ([α], [β]),
N̆+([α], [β]), and N̆+z ([α], [β]), in parallel with the definitions above. We
introduce N̆+ for the disjoint union

N̆+ =
⋃
[α],[β]

N̆+([α], [β]).

The following proposition concerning the compactness of N̆+ differs from the
version for M̆+ (Proposition 16.1.4), in that it asserts the compactness of the
union over all [α] and [β].
Proposition 16.2.1. For any C > 0, there are only finitely many [α], [β], and z
with Eq(z) ≤ C and such that the space N̆+z ([α], [β]) is non-empty. Furthermore
each N̆+z ([α], [β]) is compact. In other words the space of broken trajectories
[γ̆] ∈ N̆+ with energy Eq(γ̆) ≤ C is compact.

Proof. We begin with two lemmas. For each of the finitely many critical points
[α] in Bk(Y ), choose a representative α, and let γα be the corresponding
translation-invariant configuration in temporal gauge on the cylinder. We will
also regard γα as a configuration on a finite cylinder [t1, t2] × Y , by restric-
tion. Let I be any closed interval, and for each [α], let Uα ⊂ Ck(I × Y ) be a
gauge-invariant neighborhood of γα .

In the following lemma (and below) we introduce E [a,b]
q (γ ) as notation for

the perturbed energy of γ restricted to the interval [a, b]:

E [a,b]
q (γ ) = 2

(−L(γ̌ (a))−−L(γ̌ (b))
)
.

Lemma 16.2.2. Let Uα ⊂ Ck(I × Y ) be neighborhoods as above, let C be any
constant, and let I ′ be any other interval of non-zero length. Then there exists
ε > 0 such that if γ is a trajectory satisfying Eq(γ ) ≤ C and E I ′

q (γ ) ≤ ε, then
γ |I×Y ∈ Uα for some critical point [α].
Proof. If not then there exists a sequence γi with E I ′

q (γi)→ 0, none of which
belongs to any Uα . But we know that, after gauge transformation, a subsequence
converges in Ck,loc(Z) to a limit γ∞, which must have energy zero on I ′, and
which must therefore be a constant trajectory, gauge-equivalent to some γα

on the whole of Z by unique continuation. This means that a subsequence of
the γi|I×Y converges to γα in Ck(I × Y ) after gauge transformation. So, in this
subsequence, γi|I×Y is eventually an element of Uα . This is a contradiction. �
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Definition 16.2.3. Let U be a collection of gauge-invariant open neighborhoods
Uα ⊂ Ck(I×Y ) of the critical points. We say that U has the separating property
for I × Y if the following holds. There should exist neighborhoods V[α] ⊂
Bk−1(Y ) of the critical points [α] in Bk−1(Y ) such that:

• the sets V[α], V[β] are disjoint whenever [α] = [β];
• each V[α] is path-connected and simply connected;
• if γ belongs to Uα , then the gauge-equivalence class of γ̌ (t) is in V[α], for

all t in I .

For future use (see the following subsection), we note that the same definition
can be repeated verbatim in the blown-up context, with Cτ

k (I × Y ) in place of
Ck(I × Y ), and Bσ

k−1(Y ) in place of Bk−1(Y ). ♦

We will use this definition in the proof of the following basic lemma.

Lemma 16.2.4. Let [γ ] ∈ Bk,loc(Z) be a solution of the equations with finite
energy. Then [γ ] belongs to N ([α], [β]) for some critical points [α] and [β].
Proof. Fix an interval I , and let U be a collection of neighborhoods with the
separating property for I × Y . Consider the translates τtγ . The finite energy
condition implies E I

q(τ (t)γ ) → 0 as t → +∞. So from Lemma 16.2.2, we
deduce that there exists t0 such that for all t ≥ t0, the translate (τtγ )|I belongs
to Uβt ∈ U for some critical point [βt]. The gauge-equivalence class of the
critical point [βt] must be independent of t, because of the separating property
of these neighborhoods, for we have [γ̌ (t′)] ∈ V[βt ] for all t′ in t + I . We write
[β] for this critical point.

In this argument, the initial interval I can be chosen as large as we wish, and
the separating neighborhoods are arbitrary. We conclude that [τtγ ] converges
to [γβ ] in the topology of Bk,loc(Z), as t →+∞. Similarly, [τtγ ] converges to
some [γα] as t →−∞. �

Turning now to the situation addressed by the statement of the proposition,
we will prove that any sequence of broken trajectories, all with energy Eq ≤ C,
has a convergent subsequence. The energies of parametrized trajectories [γ ] ∈
N ([α], [β]) belonging to different homotopy classes have energies differing by
multiples of 2π2 (see Lemma 4.1.3). Since there are only finitely many critical
points in Bk(Y ), there is a constant E0 > 0, such that any non-trivial trajectory
[γ ] has energy at least E0. So the broken trajectories in our sequence all have at
most C/E0 components. We can therefore pass to a subsequence in which each
broken trajectory has the same number of components and the same restpoints.
By this means, we reduce to the case that our sequence of broken trajectories
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is actually a sequence of (unparametrized) trajectories [γ̆ n] ∈ N̆ ([α], [β]). We
take [γ n] to be parametrized representatives in N ([α], [β]). As usual, we write
[γ̌ n] for the corresponding parametrized paths in Bk(Y ).

Let I be the interval [−1, 1], and let U be a collection of neighborhoods with
the separating property for I×Y . Lemma 16.2.2 supplies us with an ε > 0, such
that for any trajectory with E I

q(γ ) ≤ ε, we have that γ |I belongs to Uα ∈ U for
some [α]. For each n, we have∑

p∈Z

E I (τpγ
n) ≤ 2C.

It follows that, for each n, there are at most 2C/ε integers p such that

τpγ
n /∈

⋃
[α]

Uα .

Replacing the γ n with a subsequence, we may suppose that, for every n, there
exist exactly l integers p with this property. Let these integers be

pn
1 < · · · < pn

l .

We may pass to a further subsequence with the property that, for each m in the
range 1 ≤ m ≤ l − 1, the difference pn

m+1 − pn
m either increases to infinity

with n or is constant (independent of n). We can then define an equivalence
relation ∼ on the set {1, . . . , l} by declaring

m ∼ m′ ⇐⇒ lim
n→∞ |p

n
m − pn

m′ | <∞.

The equivalence classes are strings of adjacent integers, and pn
m − pn

m′ is inde-
pendent of n if m ∼ m′. Pick representatives m1 < m2 < · · · < md , one from
each equivalence class.

We now appeal to the conditions that define the separating property for the
neighborhoods Uα . Let In

i denote the interval

In
i = [an

i , bn
i ]

an
i = min{ pn

m | m ∼ mi }
bn

i = max{ pn
m | m ∼ mi }.

The length of the interval In
i is independent of n; and the separations between

these intervals (the lengths an
i+1 − bn

i , for 1 ≤ i ≤ d − 1) increase without
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bound. We name these lengthening intervals J :

J n
i = [bn

i , an
i+1], 1 ≤ i ≤ d − 1.

We may assume these have length at least 2. We also write

J n
0 = (−∞, a1]

J n
d = [bd ,∞).

Thus, for each n, the line R is decomposed as the union of the fixed-length
intervals In

i and the lengthening or infinite intervals J n
i .

For each n and i, the image of the interval J n
i under [γ̌ n] lies entirely in one

of the neighborhoods V[α̃]. We may assume that [α̃] depends only on i, not on
n, by passing to a subsequence. So we can write:

[γ̌ n(J n
i )] ⊂ V[αi],

for 0 ≤ i ≤ d . We must have [α0] = [α] and [αd ] = [β]. The image of In
i under

[γ̌ n] gives a path in Bk−1(Y ), joining a point in V[αi−1] to a point in V[αi−1]. To
such a path, we can assign a well-defined homotopy class of paths zn

i , from
[αi−1] to [αi], because of the connectivity of these neighborhoods. For each n
the concatenation of the homotopy classes zn

i is the homotopy class zn to which
γn belongs.

Fix i with 1 ≤ i ≤ d , and consider the translates

τpn
mi
γ n.

(Any element of In
i would do in place of pn

mi
.) Passing to a subsequence again,

we may assume (because of Proposition 16.1.6) that for each i there exists a γi

which is a limit of this sequence:

[τpn
mi
γ n] → [γi]

in Bk,loc(Z). The limit γi is a non-trivial trajectory, because its restriction to I
does not belong to any Uα . Because of Lemma 16.2.4, we have

[γi] ∈ Nzi ([α′i], [β ′i ])
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for some critical points [α′i] and [β ′i ]. The convergence ensures that the endpoints
([α′i], [β ′i ]) of [γ̌i] are the same as the endpoints of the path γ̌ n|In

i
: that is,

[α′i] = [αi−1]
[β ′i ] = [αi].

For n sufficiently large, convergence also ensures that zn
i = zi. This means,

in particular, that the concatenation of the homotopy classes zi is zn, and zn is
therefore independent of n. This verifies that the sequence of unparametrized
trajectories [γ̆ n] is converging to the broken trajectory ([γ̆1], . . . , [γ̆d ]). �

16.3 Proof of compactness upstairs

We now turn to proving Proposition 16.1.4. The proof follows the same line of
argument as in the downstairs model but we need to have control over both �q

and the energy. We take up this issue now.
For a trajectory γ τ ∈ M([a], [b]) define K(γ τ ) to be the total variation

of �q,

K(γ τ ) =
∫

R

∣∣∣∣d�q(γ
τ )

dt

∣∣∣∣ dt,

and define

K+(γ τ ) =
∫

R

(d�q(γ
τ )

dt

)+
dt

where f + = max{0, f } denotes the positive part of a function f . A priori, both
of these may be infinite; but if one is finite then so is the other, and we have

�q(a)−�q(b) = K(γ τ )− 2K+(γ τ ).

For an interval I we define KI (γ τ ) and KI+(γ τ ) by replacing R by I as the
domain of integration in the above formulae. For a broken trajectory, we
define K and K+ to be the sums of the corresponding function of its com-
ponents. The following lemma depends crucially on the decay results proved
in Subsection 13.5, and on Corollary 13.5.3 in particular.

Lemma 16.3.1. For any broken trajectory γ , K(γ) is finite. Furthermore the
function K : M̆+([a], [b])→ R is bounded on any subset on which the energy
is bounded.
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Proof. We can deal with K+ instead of K . The function K+ is identically zero
on any component of a broken trajectory whose blow-down is a constant tra-
jectory, since �q is strictly decreasing on such components. Proposition 16.2.1
tells us that a bound on the energy gives a bound on the number of components
for which the blow-down is non-constant. Because of these two observations,
we can reduce the problem to showing that for a sequence of unbroken trajec-
tories [γ n] ∈ M([a], [b]) with bounded energy, K+(γ n) is uniformly bounded.
We argue by contradiction and suppose that K+(γ n) is increasing without
bound.

Choose a constant η, and for each downstairs critical point [α] choose a
gauge-invariant neighborhood Uα ⊂ Ck([−1, 1] × Y ) such that the conclusion
of Corollary 13.5.3 holds. From the proof of Proposition 16.2.1, after passing
to a subsequence, we can find for each n a decomposition of the real line into
intervals In

i for i = 1, . . . , d and J n
i with i = 0, 1, . . . , d such that

• In
i have length independent of n, and

• for each subinterval [t−1, t+1] ⊂ J n
i of length 2, the translate (τ ∗t γ n)|[−1,1]

lies in Uα for some α.

Let J̃ n
i ⊂ J n

i be the smaller interval obtained by bringing in the endpoint dis-
tance 1. Corollary 13.5.3 then implies that the contribution to K+ from the
J̃ n

i is bounded by (d + 1)η. Let Ĩ n
i ⊃ In

i be the larger intervals obtained
by moving the endpoints out distance 1 (so that, for each n, the real line
is now the union of the intervals Ĩ n

i and the intervals J̃ n
i ). Since these inter-

vals Ĩ n
i have uniformly bounded length, Proposition 16.1.6 and Lemma 10.9.1

imply that the contribution to K+ from the intervals Ĩ n
i is uniformly

bounded. �

With this in place the proof of Proposition 16.1.4 proceeds as follows. Fix
[a], [b] and C > 0 as in the statement of the proposition and suppose we have
a sequence [γ n] ∈ M([a], [b]) with E(γ n) ≤ C. Lemma 16.3.1 tells us that
K is bounded on this sequence, so the values �q(γ

n(t)) (t ∈ R, n ∈ N) are
bounded above and below. Let I be any closed interval, and for each critical
point [c] in Bσ

k (Y ), let Uc ⊂ Cσ
k (I × Y ) be a gauge-invariant neighborhood of

γc. The lemma below is a version of Lemma 16.2.2, adapted to the blown-up
situation.

Lemma 16.3.2. Let Uc ⊂ Cτ
k (I × Y ) be neighborhoods as above, let C be any

constant, and let I ′ be any other interval of non-zero length. Then there exist
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ε1, ε2 > 0 such that if γ ∈ M([a], [b]) is a trajectory satisfying

Eq(γ ) ≤ C

E I ′
q (γ ) ≤ ε1

KI ′(γ ) ≤ ε2,

then γ |I×Y ∈ Uc for some critical point [α].

Proof. If not then there exists a sequence γi with Eq(γi) ≤ C, E I ′
q (γi) → 0

and KI ′(γi) → 0, none of which belongs to any Uc. The first bound implies
that �q is uniformly bounded above and below on these trajectories, as we
pointed out just above; so after gauge transformation, a subsequence converges
in Ck,loc(Z) to a limit γ∞, by Proposition 16.1.5. The limit must have energy
zero on I ′ and zero change in �q on I ′. It must therefore be a constant trajectory,
gauge-equivalent to some γc on the whole of Z by unique continuation. This
means that a subsequence of the γi|I×Y converges to γc in Cσ

k (I×Y ) after gauge
transformation. So, in this subsequence, γi|I×Y is eventually an element of Uc.
This is a contradiction. �

Recall that in Definition 16.2.3 we have already extended the notion of
separating neighborhoods to the blown-up context. With this understood, the
following adaptation of Lemma 16.2.2 is proved in just the same way as the
original version:

Lemma 16.3.3. Let [γ ] ∈ Bτ
k,loc(Z) be a solution of the equations with finite

energy and finite K(γ ). Then [γ ] belongs to M([a], [b]) for some critical points
[a] and [b]. �

With these two lemmas in hand, the remainder of the proof of Proposi-
tion 16.1.4 is essentially identical to the downstairs case, except that wherever
we previously had a condition such as E I

q(γ ) < ε, we should now have both

E I
q(γ ) < ε1 and KI (γ ) < ε2.
To spell out the argument a little, consider a sequence [γ n] in M([a], [b])with

energy bounded by C. Set I = [−1, 1] and choose a separating collection of
neighborhoods U = {Uc} for the interval I in the blown-up configuration space.
Let Vc ⊂ Bσ

k−1(Y ) be the corresponding neighborhoods in the 3-dimensional
configuration space. An important preliminary observation is that, although
there may be infinitely many critical points in the blown-up picture (unlike the
situation downstairs), only finitely many of these critical points are in play: we
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have seen that there is a uniform bound∣∣�q(γ
n(t))

∣∣ ≤ �0 (t ∈ R, n ∈ N),

and because the values of �q at the critical points are a discrete set, there
will only be finitely many critical points c for which γ n(t) can ever meet the
neighborhood Vc.

Lemma 16.3.2 provides ε1 and ε2 such that for any trajectory with E I
q(γ ) ≤ ε1

and KI
q(γ ) ≤ ε2, we have that γ |I belongs to Uα ∈ U for some [α]. Let K0 be

a uniform upper bound for K(γ n). It follows that, for each n, there are at most
(2C/ε1)+ (2K0/ε2) integers p such that

τpγ
n /∈

⋃
[c]

Uc.

As in the previous proof, after passing to a subsequence, we arrive at the fol-
lowing picture. For each n, there is a decomposition of the line into intervals In

i
(1 ≤ i ≤ d ) and J n

i (0 ≤ i ≤ s), with

In
i = [an

i , bn
i ]

and

J n
0 = (−∞, a1]

J n
i = [bn

i , an
i+1], 1 ≤ i ≤ d − 1

J n
d = [bd ,∞).

The endpoints of these intervals are integers, and the length of In
i is independent

of n. Furthermore, there are critical points a = a0, . . . , ad = b, such that

p ∈ Z ∩ interior(J n
i ) =⇒ τpγ

n ∈ Uai ,

while

p ∈ Z ∩ In
i =⇒ τpγ

n /∈
⋃
[c]

Uc.

The proof is completed as before. �

16.4 Finiteness results

Our compactness result, Theorem 16.1.3, refers to a single moduli space, and
although we have a slightly stronger result in Proposition 16.1.4, the statement
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of that proposition required a bound on the energy. If the moduli spaces of
trajectories are not regular (in particular, if there are moduli spaces which are
non-empty despite grz([a], [b]) being negative), then the results we have stated
cannot be improved. However, if we assume the perturbation q is chosen so
that the moduli spaces are regular, then we have stronger finiteness results for
the set of non-empty moduli spaces. We state two such propositions, together
with a corollary of the first one, before turning to their proof.

Proposition 16.4.1. Suppose that all the moduli spaces Mz([a], [b])are regular.
Then for given [a] and [b], there are only finitely many homotopy classes z for
which the moduli space M̆+

z ([a], [b]) is non-empty.

Corollary 16.4.2. In a broken trajectory [γ̆] = ([γ̆1], . . . , [γ̆n]), the restpoints
[a0], . . . , [an] are distinct. �

Proposition 16.4.3. Suppose that all the moduli spaces Mz([a], [b]) are
regular.

(i) If c1(s) is torsion then for a given [a] and any d0, there are only finitely
many pairs ([b], z) for which the moduli space M̆+

z ([a], [b]) is non-empty
and of dimension at most d0.

(ii) If c1(s) is non-torsion, suppose also that the perturbation has been chosen
so that there are no reducible solutions. Then there are only finitely many
triples ([a], [b], z) for which the moduli space M̆+

z ([a], [b]) is non-empty
(without restriction on the dimension).

Remark. When c1(s) is non-torsion and there is no perturbation, there are no
reducible solutions. By choosing the perturbation to be small, we can therefore
fulfill the extra hypothesis in the second case of this proposition.

Proof of Proposition 16.4.1. This proposition follows from Proposition 16.1.4
if we can show that for given [a] and [b], there is a bound on the energy
of solutions in non-empty moduli spaces, independent of the homotopy
class z.

We recall that a reducible critical point a corresponds to a pair (α, λ), where
α = (B, 0) is the critical point π(a) in Ck(Y ), and λ is an element of Spec(Dq,B).
For such an a, we define

ι(a) =
{ ∣∣(Spec(Dq,B) ∩ [0, λ)

)∣∣ , λ > 0

1/2− ∣∣(Spec(Dq,B) ∩ [λ, 0])∣∣ , λ < 0.
(16.2)
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For an irreducible critical point a, we set ι(a) = 0. This definition is set up so
that, if [a] and [a′] are two critical points whose images under the projection π

are equal to the same critical point [α] in Bk(Y ), then

grz0
([a], [a′]) = 2(ι(a)− ι(a′)) (16.3)

for the trivial homotopy class z0. This equality is a restatement of Corol-
lary 14.6.2. The following lemma provides the z-independent energy bound
required to prove Proposition 16.4.1. �

Lemma 16.4.4. If all moduli spaces are regular, then there exists a C such that
for every [a], [b] and z, and every broken trajectory [γ̆] in M̆+

z ([a], [b]), we
have the energy bound

Eq(γ̆) ≤ C + 8π2(ι([a])− ι([b])).

Proof. Let [γ̆] = ([γ̆1], . . . , [γ̆l]) be a broken trajectory in M̆+
z ([a], [b]), with

[γ̆i] ∈ M̆zi ([ai−1], [ai]).

The space M̆zi ([ai−1], [ai]) is then non-empty, and it is a manifold (possibly
with boundary) of dimension 1 less than the dimension of Mzi ([ai−1], [ai]).
Thus dim M̆zi ([ai−1], [ai]) is either grzi

([ai−1], [ai]) − 1, or grzi
([ai−1], [ai]).

(See Proposition 14.5.7.) In either case,

grzi
([ai−1], [ai]) ≥ 0,

and by additivity of gr, we have

grz([a0], [al]) ≥ 0,

because z is the class of the composite of all the zi. The energy Eq(γ̆) is equal to
the quantity Eq(z), defined as twice the change in−L along any path ζ̃ in Cσ

k (Y )

whose image ζ in Bσ
k (Y ) belongs to the class z ∈ π1(Bσ

k (Y ), [a], [b]).
Consider now the quantity

Eq(w)+ 4π2 grw([a], [b]), (16.4)

for w ∈ π1(Bσ
k (Y ), [a], [b]). We claim this depends only on the endpoints [a]

and [b], not on the homotopy class w. If we compare two different homotopy
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classes, their difference is the class of a closed loop zu whose lift to Cσ
k (Y ) joins

a to ua, for some u ∈ Gk+1(Y ). The difference between the values of (16.4)
for the two classes is

Eq(zu)+ 4π2 grzu
([a], [a]) = −4π2([u] � c1(S))[Y ]

+ 4π2([u] � c1(S))[Y ]
= 0,

where the first equality follows from Lemma 4.1.3 and Lemma 14.4.6.
The quantity

Eq(w)+ 4π2(grw([a], [b])− 2ι(a)+ 2ι(b)
)

(16.5)

can now be seen to depend only on the critical points [α] = [π(a)] and [β] =
[π(b)] in Bk(Y ), using (16.3). Since there are only finitely many critical points
in Bk(Y ), there is a C such that this quantity is at most C, for all [a], [b] and
w. Returning to our broken trajectory [γ̆], we therefore have

E(γ̆) = E(z)

≤ C − 4π2(grz([a], [b])− 2ι([a])+ 2ι([b]))
≤ C + 8π2(ι([a])− ι([b])).

�

Proof of Proposition 16.4.3. In the case that c1(s) is torsion, −L descends to a
single-valued real function on Bσ

k (Y ). Furthermore, since the function −L on
Bσ

k (Y ) is pulled back from Bk(Y ), and since the image of the critical set in
Bk(Y ) is finite, the function −L takes only finitely many values on the critical
set in Bσ

k (Y ). The energy Eq of a trajectory is twice the change in−L, so there is
a uniform bound on the energy of all solutions.

The expression (16.5) depends only on π([a]) and π([b]) and therefore
takes only finitely many values. We have upper and lower bounds on Eq, and
assumed that the dimension is bounded and [a] is fixed, so we conclude that
ι([b]) is bounded above and below, leaving only finitely many possibilities
for [b]. This combined with the previous proposition implies the result for the
torsion case.

In the case that c1(s) is not torsion, if we choose our perturbation so that
there are no reducible critical points, the critical set is finite so the result follows
directly from the previous proposition. �
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16.5 The compactification as a stratified space

In Section 19, we will examine the structure of the compactification
M̆+

z ([a], [b]) in detail. At present, we make only some remarks, beginning with
a convenient definition. We will assume now that the perturbation is chosen so
that all moduli spaces are regular.

Definition 16.5.1. A space N d is a d-dimensional space stratified by manifolds
if there are closed subsets

N d ⊃ N d−1 ⊃ · · · ⊃ N 0 ⊃ N−1 = ∅

such that N d = N d−1 and each space N e\N e−1 (for 0 ≤ e ≤ d ) is either empty
or homeomorphic to a manifold of dimension e. The difference N e \ N e−1 is
called the e-dimensional stratum. We will also use the term stratum to refer to
any union of path components of N e \ N e−1. ♦

Proposition 16.5.2. Suppose that Mz([a], [b]) is non-empty and of dimension d.
Then the compactification M̆+

z ([a], [b]) is a (d−1)-dimensional space stratified
by manifolds.

If Mz([a], [b]) contains irreducible trajectories, then the (d−1)-dimensional
stratum of M̆+

z ([a], [b]) consists of the irreducible part of M̆z([a], [b]).

Proof. From its definition, M̆+
z ([a], [b]) is a disjoint union of subspaces of

the form

M̆z1([a0], [a1])× · · · × M̆zi ([ai−1], [ai])× · · · × M̆zl ([al−1], [al]). (16.6)

The space (16.6) is a product of spaces each of which is either a manifold or
a manifold with boundary, by Proposition 14.5.7. A manifold with boundary
is a simple example of a space stratified by manifolds, and the product (16.6)
obtains a product stratification. In this way, M̆+

z ([a], [b]) is eventually a union
of subspaces each of which is a manifold of some dimension. To show that
this compactification is actually a space stratified by manifolds, we need to
understand the closure relation between the strata and their dimensions. We must
verify that the closure in M̆+

z ([a], [b]) of one of the e-dimensional manifolds
M e arising from a product of the form (16.6) is contained in the union of M e

and other such manifolds M e′ of strictly smaller dimension. It is sufficient to
treat the case of the stratum M̆z([a], [b]).

The statement that Mz([a], [b]) has dimension d means that grz([a], [b]) is
d − ε, where ε = 1 if the moduli space is boundary-obstructed and 0 otherwise
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(see Proposition 14.5.7). Consider a space of the form (16.6), and for brevity
let us write

Mi = Mzi ([ai−1], [ai]).

Let the dimension of Mi be di and let grzi
([ai−1], [ai]) = di − εi with εi = 0 or

1 in the same way. The additivity of gr means that we have

d − ε =
l∑

i=1

di −
l∑

i=1

εi.

On the other hand, the dimension of (16.6) is(∑
i

di

)
− l = d − ε +

(∑
i

εi

)
− l. (16.7)

We need a simple lemma at this point:

Lemma 16.5.3. (i) In a broken trajectory [γ̆] = ([γ̆1], . . . , [γ̆l]) belonging
to M̆+

z ([a], [b]), two adjacent components [γ̆i], [γ̆i+1] cannot both be
boundary-obstructed .

(ii) If Mz([a], [b]) contains irreducible trajectories, then neither [γ̆1] nor [γ̆l]
can be boundary-obstructed .

(iii) If Mz([a], [b]) consists only of reducibles but is not boundary-obstructed,
then at most one of [γ̆1] and [γ̆l] is boundary-obstructed.

We note an elementary corollary:

Corollary 16.5.4. The number of components [γ̆i] of [γ̆] that are boundary-
obstructed is at most:

(i) (l + 1)/2 in general;
(ii) (l − 1)/2 if Mz([a], [b]) contains irreducible trajectories;

(iii) l/2 if Mz([a], [b]) consists only of reducibles but is not boundary-
obstructed .

�

Proof of Lemma 16.5.3. If [γ̆i] is boundary-obstructed, then (from the defini-
tion) the critical point [ai−1] is boundary-stable and [ai] is boundary-unstable.
The trajectory [γ̆i+1] cannot then be boundary-obstructed, because [ai] is
not boundary-stable. This proves the first statement. If Mz([a], [b]) contains
irreducible trajectories, then [a] cannot be reducible and boundary-stable, nor
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can [b] be reducible and boundary-unstable. So neither [γ̆1] nor [γ̆l] can be
boundary-obstructed, which is the second statement. The third statement is
similar. �

The corollary tells us that(∑
i

εi

)
≤ (l + 1)/2

with equality only if ε = 1. It follows in this case that the expression (16.7) is
at most d − 1/2, and therefore at most d − 1 (because it is an integer). Equality
occurs in two cases. The first case is the case l = 1, which is the case that
(16.6) is just M̆z([a], [b]). The second case of equality is when l = 2, exactly
one of [γ̆1], [γ̆2] is boundary-obstructed, and ε = 0. Let us suppose that it
is [γ̆1] that is boundary-obstructed (the other case is similar). By the lemma,
Mz([a], [b]) consists entirely of reducibles, and [a0], [a1], [a2] are boundary-
stable, boundary-unstable and boundary-stable respectively. Because it consists
of reducibles, the closure of M̆z([a], [b]) in M̆+

z ([a], [b]) cannot contain all of
M̆1×M̆2: it can only contain the reducible part of this product, which comprises
the (d − 2)-manifold M̆1× ∂M̆2. Thus in all cases the closure of M̆z([a], [b]) is
contained in the union of M̆z([a], [b]) and manifolds of lower dimension. �

Remark. Our definition of a space stratified by manifolds allows some pathol-
ogy, as the following (compact) example shows. Let Cn be the circle in R2 of
radius 1/n centered at (−1/n, 0). Let N 1 be the union of the circles Cn for all
n ≥ 1 and the line segment joining (0, 0) to (1, 0). Let N 0 ⊂ N 1 consist of the
two points (0, 0) and (1, 0). Then N 1 \ N 0 is a 1-manifold.

At no point will we prove any result that rules out the possibility that
M̆+

z ([a], [b]) might be homeomorphic to N 1, with M̆z([a], [b]) correspond-
ing to the subset N 1 \ N 0. The authors believe that a strengthening of the
results of Subsection 19.4 would rule out such pathology for a suitable choice
of perturbation q.

Let Mz([a], [b]) be a d -dimensional moduli space containing some irre-
ducible trajectories. We have grz([a], [b]) = d , because a moduli space con-
taining irreducibles is not boundary-obstructed. We saw in Proposition 16.5.2
that M̆+

z ([a], [b]) is a compact space stratified by manifolds, of dimension
d − 1. We now wish to describe all the contributions to the codimension-1
stratum. The proposition below describes all the strata in the compactifica-
tion that can have codimension 1. In the special case that the dimension d of
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Mz([a], [b]) is 2, the proposition should be compared with Lemma 2.4.3, which
is the corresponding statement for the finite-dimensional model.

Consider again the contribution

M̆z1([a0], [a1])× · · · × M̆zl ([al−1], [al]) (16.8)

to M̆+
z ([a], [b]). Let di and εi be as above, so that di − εi = grzi

([ai−1], [ai]).
We refer to

(d1 − ε1, . . . , dl − εl)

as the grading vector of (16.8) and refer to (ε1, . . . , εl) as the obstruction vector.

Proposition 16.5.5. Let Mz([a], [b]) be a d-dimensional moduli space contain-
ing irreducibles, so that M̆+

z ([a], [b]) is a compact (d − 1)-dimensional space
stratified by manifolds, with top stratum the irreducible part of M̆z([a], [b]).
Then the (d − 2)-dimensional stratum of M̆+

z ([a], [b]) is the union of pieces of
three types:

(i) the top stratum of a part (16.8) with grading vector (d1, d2)and obstruction
vector (0, 0);

(ii) the top stratum of a part (16.8) with grading vector (d1, d2 − 1, d3) and
obstruction vector (0, 1, 0);

(iii) the intersection of M̆z([a], [b]) with the reducibles, if Mz([a], [b]) contains
both reducibles and irreducibles.

The third case occurs only when [a] is boundary-unstable and [b] is boundary-
stable. In the first case, d1+ d2 = d. In the second case, d1+ d2+ d3 = d + 1.
In all cases, the di are positive.

Proof. Consider the space (16.8). By Corollary 16.5.4, we have
∑

εi≤(l−1)/2,
because the moduli space Mz([a], [b]) contains reducibles. The expression
(16.7) for the dimension of this stratum is therefore bounded by

d − ε − 1

2
− l

2
.

We are seeking broken trajectories (l ≥ 2) for which this dimension is d − 2.
There are two possibilities. The first is that l = 2, ε = 0 and

∑
εi = 0. This

is the first case in the proposition. The second possibility is that l = 3, ε = 0
and

∑
εi = 1. This means that, of the three components in the broken trajec-

tory, exactly one is boundary-obstructed. The boundary-obstructed component
must be the middle one of the three: [a] cannot be boundary-stable and [b]
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cannot be boundary-unstable, because the moduli space Mz([a], [b]) contains
irreducibles. �

16.6 Compactification of reducible trajectories

We will write M red
z ([a], [b]) for the subset of Mz([a], [b]) consisting of the

reducible trajectories. Recall that, under our transversality hypotheses, this is
either empty, or all of Mz([a], [b]), or the boundary of Mz([a], [b]) in the case
that [a] is boundary-unstable and [b] is boundary-stable. For reducible critical
points, we introduce a modified relative grading, setting

ḡrz([a], [b]) = dim M red
z ([a], [b])

= grz([a], [b])− o[a] + o[b], (16.9)

where

o[a] =
{

0, if [a] is boundary-stable

1, if [a] is boundary-unstable.
(16.10)

Along with M red, we can introduce M̆ red and M̆ red+, as the intersections of M̆ ,
M̆+ with the reducibles.

The situation for these reducible moduli spaces is somewhat simpler. The
dimension of M red

z ([a], [b]) is always equal to ḡrz([a], [b]), which is additive.
(The dimension of Mz([a], [b]) is not additive, because of the boundary-
obstructed case.) Also, M red

z ([a], [b]) is always a manifold, never a manifold
with boundary. We omit the proof of the following proposition, which summa-
rizes the adaptations of the results of the previous subsection to the case of the
reducible moduli spaces.

Proposition 16.6.1. Suppose M red
z ([a], [b]) is non-empty and of dimen-

sion d. Then the space of unparametrized, broken reducible trajectories,
M̆ red+

z ([a], [b]), is a compact (d − 1)-dimensional space stratified by mani-
folds. The top stratum consists of M̆ red

z ([a], [b]) alone. The (d− l)-dimensional
stratum consists of the spaces of unparametrized broken trajectories with
l factors:

M̆ red
z1

([a0], [a1])× · · · × M̆ red
zl

([al−1], [al]).

�
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17 The moduli space on a finite cylinder

In this section we will set up the theory required to handle moduli spaces on
manifolds with boundary. On a manifold with boundary, moduli spaces are no
longer finite dimensional but we shall see that they are Hilbert manifolds when
we specify the regularity of the configurations involved. The main tool is the
Fredholm theory for certain kinds of boundary-value problems. The model for
these results is the work of Atiyah, Patodi and Singer [8]. The appropriate
boundary conditions for our moduli problems are spectral boundary conditions
analogous to the situation for the ∂̄ operator on a disk: a holomorphic function on
the disk is determined by the non-negative Fourier coefficients of its restriction
to the unit circle.

17.1 Atiyah–Patodi–Singer boundary-value problems

We consider a situation in which X is a compact manifold with boundary, and
we suppose in addition that X has a Riemannian metric which is cylindrical in
the neighborhood of the boundary. So X contains an isometric copy of I × Y
for some interval I = (−C, 0], with ∂X identified with {0}×Y . (Later, we will
take X to be a finite cylinder, and Y will become Y ∪ Ȳ .) We suppose we have
vector bundles E, F on X , with inner product, and an operator

D : C∞(X ; E)→ L2(X ; F)

which has the form

D = D0 + K

where D0 is an elliptic first-order differential operator and K is an operator
which extends to a bounded operator

K : L2
j (X ; E)→ L2

j (X ; F)

for−k+1 ≤ j ≤ k−1. Near the boundary, we assume a particular form for D0

of the sort we considered in Subsection 14.1. We suppose that the restrictions
of E and F to I × Y are equipped with fixed isomorphisms with the pull-back
of a bundle E0 → Y , and that for any section u of E, we have (with respect to
those isomorphisms)

D0u|I×Y = du

dt
+ L0u,
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where

L0 : C∞(Y ; E0)→ C∞(Y ; E0)

is a first-order, self-adjoint elliptic differential operator.
With these assumptions the operator D extends as a bounded operator

D : L2
j+1(X ; E)→ L2

j (X ; F)

for j ≤ k − 1. As we shall see, D has closed range with finite-dimensional
cokernel; however, the kernel will be infinite-dimensional. We need boundary
conditions to get control of the kernel. To gain some intuition about what are
good boundary conditions we can consider the case of the half-infinite cylinder
Z = (−∞, 0] × Y and the translationally invariant situation:

du

dt
+ L0u = 0.

A typical solution (say smooth) can be written in terms of the eigenvectors of
L0 (see Lemma 12.2.4) as follows:

u =
∑

λ∈SpecL0

e−λtφλ.

We can control the behavior of solutions at −∞ by imposing a decay condi-
tion. For example the elements of the kernel which are in L2 clearly can have
no components with φλ = 0 for λ ≥ 0. If we hope to get a problem with
finite-dimensional kernel, appropriate boundary conditions need to control the
projection to the negative eigenspace of L0 of the boundary values.

We will need fractional-order Sobolev spaces to discuss the boundary-value
problems precisely. For any real number s the L2

s norm on sections of E0 → Y
can be defined in terms of L0 as

‖u‖2
L2

s ({t}×Y )
= ∥∥|L0|su

∥∥2
L2({t}×Y )

+ ‖u0‖2
L2

=
∑
λ=0

|λ|2s‖uλ‖2
L2 + ‖u0‖2

L2 , (17.1)

where uλ is the component of u in the λ eigenspace of L0. Note that when s is
integral there is no need for the absolute value of the eigenvalue in the definition.
The need for fractional-order Sobolev spaces stems from the Sobolev restriction
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theorem (see [53, Appendix B]):

Theorem 17.1.1. For all s > 1/2, the restriction map C∞(X ; E) →
C∞(Y ; E0) extends to a continuous map

r : L2
s (X ; E)→ L2

s−1/2(Y ; E0)

which is surjective and has a continuous left-inverse. �

We will only need the restriction theorem when s is a positive integer. We
will also need a closely related extension result.

Theorem 17.1.2. Let X ′ ⊂ X be a codimension-zero submanifold with
boundary, contained in the interior of the manifold X . The restriction map
L2

k(X )→ L2
k(X

′) is a surjective map with a continuous left inverse. �

These two theorems reflect the fact that we should consider half-integer
Sobolev spaces on the 3-manifold for our boundary-value problems.

Let H+
0 and H−

0 be the closures in L2
1/2(Y ; E0) of the spans of the eigen-

vectors belonging to positive and non-positive eigenvalues of L0 respectively.
The characterization (17.1) of the Sobolev norm means that these two pro-
vide an orthogonal direct sum decomposition of L2

1/2. We write $0 for the
projection

$0 : L2
1/2(Y ; E0)→ L2

1/2(Y ; E0)

with image H−
0 and kernel H+

0 . The projection $0 also maps L2
s (Y ; E0) to

L2
s (Y ; E0) for all s, giving rise to a similar decomposition

L2
s (Y ; E0) = (H+

0 ∩ L2
s )⊕ (H−

0 ∩ L2
s ).

With these definitions, we can state the main result of this section.

Theorem 17.1.3. Suppose that X is a compact manifold with boundary, and
let D and $0 be as above. Then:

(i) For 1 ≤ j ≤ k, the operator

D⊕ ($0 � r) : L2
j (X ; E)→ L2

j−1(X ; F)⊕ (H−
0 ∩ L2

j−1/2(Y ; E0))

is Fredholm. In particular, the restriction of $0 ◦ r to ker(D) is Fredholm.



17 The moduli space on a finite cylinder 297

(ii) If ui is a bounded sequence in L2
j (X ; E) and Dui is Cauchy in L2

j−1, then

(1−$0)r(ui) has a convergent subsequence in H+
0 ∩L2

j−1/2. In particular,
the restriction of (1−$0) ◦ r to ker(D) is compact.

(iii) If u is in L2
j (X ; E) for j ≤ k and the image of u under this operator is in

L2
k−1(X ; F)⊕(H−

0 ∩L2
k−1/2(Y ; E0)), then u lies in L2

k(X ; E). In particular,

the kernel consists of L2
k sections.

The main tool in proving this result is a similar result for the half-cylinder Z ,
which we prove first.

Theorem 17.1.4. Let Z be a half-cylinder (−∞, 0] × Y , and let D0 :
C∞(Z ; E)→ L2(Z ; E) be an operator having the form

D0 = d

dt
+ L0

where L0 : C∞(Y ; E0) → C∞(Y ; E0) is a self-adjoint elliptic operator on Y .
Assume that zero is not in the spectrum of L0. Then the operator

D0 ⊕ ($0 � r) : L2
j (Z ; E)→ L2

j−1(Z ; E)⊕ (H−
0 ∩ L2

j−1/2(Y ; E0))

is an isomorphism for all j ≥ 1. The subspace H−
0 ∩ L2

j−1/2(Y ; E0) is precisely
the image of ker(D0) under r.

Proof. First we consider the case j = 1. Since L0 is invertible, the L2
s norm

on Y can be defined in terms of L0 by the formula (17.1), with the u0

term zero,

‖u‖2
L2

s ({t}×Y )
=

∑
λ∈Spec(L0)

|λ|2s‖uλ‖2
L2 ,

and we take

‖u‖2
L2

1(Z)
=
∫ 0

−∞

(∥∥∥∥du

dt

∥∥∥∥2

L2(Y )

+ ‖L0u‖2
L2(Y )

)
dt
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as the definition of the L2
1 norm on the half-infinite cylinder Z . To see that the

operator in question is injective we consider

‖D0u‖2
L2(Z) =

∫ 0

−∞

∥∥∥∥du

dt
+ L0u

∥∥∥∥2

L2({t}×Y )

dt

=
∫ 0

−∞

∥∥∥∥du

dt

∥∥∥∥2

L2({t}×Y )

dt +
∫ 0

−∞
‖L0u‖2

L2({t}×Y )
dt

+ 2
∫ 0

−∞

〈
L0u,

du

dt

〉
L2({t}×Y )

dt

= ‖u‖2
L2

1(Z)
+ 〈L0r(u), r(u)〉

≥ ‖u‖2
L2

1(Z)
+ 〈L0$0 � r(u),$0 � r(u)〉

≥ ‖u‖2
L2

1(Z)
− ‖$0 � r(u)‖2

L2
1/2(Y )

. (17.2)

To derive the last inequality we have used again the invertibility of L0 to
conclude that

〈L0$0 � r(u),$0 � r(u)〉 = −‖$0 � r(u)‖2
L2

1/2(Y )

again for some positive constant C. Thus we have

‖D0u‖2
L2(Z) + ‖$0u(0)‖2

L2
1/2(Y )

≥ ‖u‖2
L2

1(Z)

so that D0 ⊕ ($0 � r) is injective with closed range. To prove surjectivity, it
suffices to prove that D0 ⊕ ($0 � r) has dense range. To solve the equation
(D0u,$0 � r(u)) = (v, w), decompose u, v and w as L2-orthogonal sums:

u(t) =
∑
λ

uλ(t)

v(t) =
∑
λ

vλ(t)

w =
∑
λ

wλ.

To prove density of the range it suffices to consider v and w that involve only
finitely many of the eigenspaces; and vλ can be assumed to be smooth and have
compact support in t. We shall show that such (v, w) are in the image of L2

1.



17 The moduli space on a finite cylinder 299

The equations we are trying to solve then are, for λ > 0, the equations

duλ
dt
+ λuλ = vλ for t ∈ (−∞, 0]

(with no boundary condition at t = 0) and, for λ < 0, the equations

duλ
dt
+ λuλ = vλ for t ∈ (−∞, 0]
uλ(0) = wλ.

The solution to the first equation is

uλ(t) =
∫ t

−∞
e−λ(t−s)vλ(s)ds,

while that to the second is

uλ(t) = e−λtwλ −
∫ 0

t
e−λ(t−s)vλ(s)ds.

Note that in the first case if vλ has compact support then so does uλ. In the
second case if vλ has compact support then uλ is exponentially decaying, and
therefore is in L2. Because the equation tells us that the t derivative of uλ is
in L2, it follows that uλ is in L2

1, so completing the proof. Of course one can
easily estimate the operator norm of these inverses on the eigenspaces and
prove invertibility in this manner, without first proving that the range is closed
(see [8]).

It remains to verify the last claim. The boundary values of the kernel of D0

acting on L2
1 clearly can have no component in H+ since such a component

would be exponentially increasing and hence would have infinite norm. Clearly
finite linear combinations of eigenvectors of L0 with negative eigenvalue extend
to elements of the kernel that are in L2

1. The calculation which verified (17.2)
above, applied to a u arising as such an extension, implies that

‖u‖L2
1(Z)

= ‖r(u)‖L2
1/2

.

Thus the L2
1/2 closure of H− is precisely the space of boundary values of the

kernel of D0 acting on L2
1.
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The proof for j > 1 is similar: what is needed is a version of (17.2). First of
all we can use

∑
n+m≤j

∫ 0

−∞

∥∥∥dnLm
0 u

dtn

∥∥∥2

L2(Y )

as the definition of (the square of) the L2
j norm. Then

‖D0u‖2
L2

j−1(Z)
=

∑
n+m≤ j−1

∫ 0

−∞

∥∥∥dnLm
0 D0u

dtn

∥∥∥2

L2(Y )

=
∑

n+m≤ j−1

∫ 0

−∞

(∥∥∥dn+1Lm
0 u

dtn+1

∥∥∥2

L2(Y )
+
∥∥∥dnLm+1

0 u

dtn

∥∥∥2

L2(Y )

)

+
∑

n+m≤ j−1

2
∫ 0

−∞

〈dn+1Lm
0 u

dtn+1
,

dnLm+1
0 u

dtn

〉
L2(Y )

.

The first integral in the final formula above is equal to

j∑
n=1

∫ 0

−∞

(∥∥∥dnu

dtn

∥∥∥2

L2(Y )
+ ‖Ln

0u‖2
L2(Y )

)
+ 2

∑
n+m≤j
n,m≥1

∫ 0

−∞

∥∥∥dnLm
0 u

dtn

∥∥∥2

L2(Y )
, (17.3)

while the second integral in the same formula (the cross-term) is bounded
below by

−
∑

n+m≤ j−1
n≥1

( 2n

2n+ 1

∥∥∥dn+1Lm
0 u

dtn+1

∥∥∥2

L2(Y )
+ 2n+ 1

2n

∥∥∥dnLm+1
0 u

dtn

∥∥∥2

L2(Y )

)

+
j−1∑
m=0

〈Lm
0 u(0), Lm+1

0 u(0)〉 (17.4)

because the terms with n = 0 can be integrated (and we have used Cauchy–
Schwarz on the remaining terms). Changing the summation index in (17.4), we
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can write it as

−
∫ ∞

0

⎛⎜⎜⎝ ∑
n+m≤j

n≥2

2n− 2

2n− 1

∥∥∥dnLm
0 u

dtn

∥∥∥2

L2(Y )
+

∑
n+m≤j
n,m≥1

2n+ 1

2n

∥∥∥dnLm
0 u

dtn

∥∥∥2

L2(Y )

⎞⎟⎟⎠
+

j−1∑
n=0

〈Ln
0u(0), Ln+1u(0)〉.

Reuniting this expression with the terms (17.3), we obtain

j∑
n=1

∫ 0

−∞

(
1

2n− 1

∥∥∥dnu

dtn

∥∥∥2

L2(Y )
+ ‖Ln

0u‖2
L2(Y )

)

+
∑

n+m≤j
n,m≥1

(
2− 2n− 2

2n− 1
− 2n+ 1

2n

)∫ 0

−∞

∥∥∥dnLm
0 u

dtn

∥∥∥2

L2(Y )

+
j−1∑
n=0

〈Ln
0u(0), Ln+1

0 u(0)〉

≥ C1‖u‖2
L2

j (Z)
+

j−1∑
n=0

〈Ln
0$0 � r(u), Ln+1

0 $0 � r(u)〉

≥ C2(‖u‖2
L2

j (Z)
− ‖$0 � r(u)‖2

L2
j−1/2(Y )

).

We have used the trivial inequality(
2− 2n− 2

2n− 1
− 2n+ 1

2n

)
= 1

2n− 1
− 1

2n

> 0

above. With this estimate for ‖D0u‖2
L2

j−1(Z)
in hand, the proof proceeds as in the

case j = 1. �

Proof of Theorem 17.1.3. The Fredholm property can be deduced from
Theorem 17.1.4 by the usual parametrix patching argument: the reader can
follow the proof of Proposition 14.2.1. The same argument establishes the
regularity assertion in the third statement of the theorem.

To prove the second part of the theorem, suppose that we have a bounded
sequence {ui} in L2

j (X ; E) with {Dui}Cauchy in L2
j−1. Choose a cut-off function
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β with β = 1 near ∂X and β = 0 outside a collar neighborhood of ∂X . Then we
can pass to a subsequence where {ui} converges strongly in the L2

j−1 topology
on the support of β. It follows that

D0(βui) = βD0(ui)+ dβ � ui

= βDui − Kui + dβ � ui

is Cauchy in the L2
j−1 norm. Viewing D0(βui) as being defined on the cylinder

Z = (−∞, 0] × Y , Theorem 17.1.4 tells us that there is a unique vi ∈ L2
j (Z ; E)

with D0vi = D0(βui) and $0 � r(vi) = 0. Clearly the vi then are Cauchy in L2
j ,

and so r(vi) are Cauchy in L2
j−1/2. Since D0(βui − vi) = 0, the last claim of

Theorem 17.1.4 implies that (1−$0) � r(ui − vi) = 0, proving the claim. �

Corollary 17.1.5. Let K∗ : L2(X ; F) → L2(X ; E) be the adjoint of K, let D∗0
be the formal adjoint of D0, and write D∗ = D∗0 +K∗. Suppose that D∗ has the
property that every non-zero solution of D∗v = 0 has non-zero restriction to
the boundary Y . Then the operator

D : L2
j (X ; E)→ L2

j−1(X ; F)

is surjective, for 1 ≤ j ≤ k.

Proof. We treat the case j= 1, because the other cases follow by regularity. It
follows from Theorem 17.1.3 that D has closed range. If D is not surjective,
there is a v ∈ L2(X ; F) orthogonal to the range. This v is a weak solution of
D∗0v + K∗v= 0; so, since D0 is elliptic, v is in L2

1 and a solution of D∗v= 0.
If uδ ∈ L2

1(X ; E) is obtained by pulling back a section u0 ∈ L2
1(Y ; E0) and

multiplying by a cut-off function supported in a collar of the boundary of
width δ, say

uδ = β(t/δ)π∗u0,

then from the orthogonality 〈Duδ , v〉 = 0 in L2(X ; F), we deduce that v is zero
on the boundary, by letting δ go to zero. This non-zero v therefore contradicts
the hypothesis. �

Before continuing, we note that Theorem 17.1.3 and its proof can be extended
to cover a slightly more general situation:

Proposition 17.1.6. Suppose instead that X is not compact but has both cylin-
drical ends and boundary. On the cylindrical ends, suppose that the operator
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D takes the form (d/dt) + L1, where L1 is a translation-invariant hyperbolic
operator in the sense considered in Proposition 14.1.2. Then the conclusions
of Theorem 17.1.3 continue to hold. �

Aparticular case of this is the half-cylinder Z = (−∞, 0]×Y and an operator

D = d

dt
+ L0 + h(t)

of the same form considered in Subsection 14.2. We suppose that

L0 + h(t) = L1

for all sufficiently negative t and that L0 and L1 are hyperbolic. We continue
to write $0 for the spectral projection defined by the (self-adjoint, elliptic)
operator L0. Then the above proposition tells us that the operator

(D,$0 ◦ r) : L2
j (Z ; E)→ L2

j−1(Z ; E)⊕ H−
0 ∩ L2

j−1/2(Y ; E0)

is Fredholm. Indeed, we can say a little more:

Proposition 17.1.7. The Fredholm operator

(D,$0 ◦ r) : L2
j (Z ; E)→ L2

j−1(Z ; E)⊕ H−
0 ∩ L2

j−1/2(Y ; E0)

in the above setting has index equal to the spectral flow from L1 to L0.

Proof. The same line of argument can be used as was applied in the proof of
the similar result, Proposition 14.2.1. �

17.2 Commensurate projections

We will need an extension of Theorem 17.1.3, in which the spectral projection
$0 is replaced by a projection $, not too different from $0, as in the following
definition.

Definition 17.2.1. Let $, $′ : L2
1/2(Y ; E0)→ L2

1/2(Y ; E0) be two projections

(not necessarily orthogonal) which also map L2
j−1/2(Y ; E0) to L2

j−1/2(Y ; E0) for
1 ≤ j ≤ k. We say that $ and $′ are k-commensurate if the difference

$−$′ : L2
j−1/2(Y ; E0)→ L2

j−1/2(Y ; E0)
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is compact, for all 1 ≤ j ≤ k. We will often write H− for im($) ⊂ L2
1/2(Y ; E0)

and H+ for im(1−$) ⊂ L2
1/2(Y ; E0). ♦

Examples of commensurate projections arise naturally, as we shall now see.
Recall the definition of k-asafoe from Subsection 12.2 above. We consider such
an operator L = L0 + h on Y , and we consider the corresponding translation-
invariant 4-dimensional operator (d/dt) + L on the negative half-cylinder Z .
We name this operator D−,

D− = d

dt
+ L,

because we also want to introduce a companion operator

D+ = d

dt
− L.

We can also write D± as D±0 +K±, where D±0 = (d/dt)∓L0 as in the previous
subsection.

Lemma 17.2.2. Let L and D± be as above, and suppose L is hyperbolic. Let
H− (respectively H+) be the subspace of L2

1/2(Y ; E0) obtained as the boundary

values of the kernel of D− : L2
1(Z ; E) → L2(Z ; E) (respectively D+). Then

L2
1/2(Y ; E0) is a direct sum (of closed subspaces), H+ ⊕H−. Furthermore, for

each integer j in the range 1 ≤ j ≤ k + 1, we have

L2
j−1/2(Y ; E0) =

(
H+ ∩ L2

j−1/2

)⊕ (
H− ∩ L2

j−1/2

)
. (17.5)

Proof. The proof is accomplished by the following trick. Consider the operator

T : L2
j (Z ; E)⊕ L2

j (Z ; E)

→ L2
j−1(Z ; E)⊕ L2

j−1(Z ; E)⊕ L2
j−1/2(Y ; E0), (17.6)

given by

(u, v) �→ (D−u, D+v,−r(u)+ r(v)).

We claim that T is a Fredholm operator of index 0.To verify this, we can compare
T with another operator between the same spaces, namely the operator

T ′ : (u, v) �→ (D−u, D+v,−$0r(u)+ (1−$0)r(v))
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which is the direct sum of (D−,−$0 � r) and (D+, (1−$0) � r). Here $0 is
the spectral projection for the self-adjoint elliptic operator L0 as before. Propo-
sition 17.1.6 tells us that the two summands are Fredholm, so T ′ is Fredholm.
Although the difference between T ′ and T is not a compact operator, its restric-
tion to ker D− ⊕ ker D+ is compact, by Proposition 17.1.6; from this, and the
fact that D± are surjective, the Fredholmness of T follows. The same reasoning
shows that T and T ′ are homotopic through Fredholm operators (using the linear
homotopy), so they have the same index. The index of T is therefore the sum
of the indices of (D−,−$0 � r) and (D+, (1−$0) � r). By Proposition 17.1.7,
the indices of these summands are equal to respectively the spectral flow from
L to L0 and from −L to −L0; so the sum is zero.

The kernel of the operator T is of course pairs the (u, v) with D−u = 0,
D+v = 0 and r(u) = r(v). If (u, v) belongs to the kernel, consider the section
ṽ of E on the positive half-cylinder R≥ × Y given by ṽ(t, y) = v(−t, y). By
concatenating u and ṽ, we obtain a section z on the doubly infinite cylinder
R× Y . This concatenated section z is in L2

1, because r(u) = r(v); but, a priori,
we do not know that the derivatives of u and ṽ in the R direction match up at
t = 0, so we do not know that z is in L2

j . But z is also an L2
1 solution of the

equation D−z = 0 on all of R× Y . We know that D− is an isomorphism from
L2

1 to L2, because L is hyperbolic. So z = 0. This proves that T is injective, and
hence an isomorphism, because its index is zero.

It follows that for any element w of L2
j−1/2(Y ; E0) there are unique u, v ∈

L2
j (Z ; E) with D−u = 0, D+v = 0 and −r(u)+ r(v) = w. Furthermore u and

v depend continuously on w. �

The subspaces H+ and H− defined by this lemma are invariant under
the action of the hyperbolic operator L, in that the restriction of L defines
isomorphisms

L+ : H+ ∩ L2
j+1/2 → H+ ∩ L2

j−1/2

L− : H− ∩ L2
j+1/2 → H− ∩ L2

j−1/2

for 1 ≤ j ≤ k. This follows from the fact that L acts on the kernel of D± on the
half-cylinder. We already know that the spectrum of L consists of eigenvalues,
and L± inherit this property. It is clear from the definition that an eigenfunction
of L belonging to an eigenvalue of positive (respectively negative) real part
must belong to L+ (respectively L−). So the spectra of L+ and L− are just
the intersection of the spectrum of L with the two half-planes separated by the
imaginary axis. If the generalized eigenspaces of L have dense span in L2

1/2,
then we could define H+ and H− as the closure of the span of the generalized
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eigenspaces belonging to the corresponding part of the spectrum; but it is not
clear that our conditions ensure this density. (For example, a non-symmetric
compact operator on a complex Hilbert space need have no eigenvectors.)

Definition 17.2.3. We call the subspaces H+ and H− defined by Lemma 17.2.2
the spectral subspaces of the hyperbolic operator L. ♦

Proposition 17.2.4. Let L be a k-asafoe operator and let H− and H+ be the
spectral subspaces, as just defined. Let $ be the projection on L2

1/2(Y ; E0) with

image H− and kernel H+. Then $ maps L2
j−1/2(Y ; E0) to L2

j−1/2(Y ; E0) for
1 ≤ j ≤ k, and $ is k-commensurate with the projection $0 determined by L0.

Proof. The fact that $ maps L2
j−1/2 to L2

j−1/2 comes straight from the lemma.
To prove commensurability, we must show $ −$0 is a compact operator on
L2

j−1/2. Given a bounded sequence in L2
j−1/2, we may write each term as two

parts, using the direct sum decomposition (17.5). Because of the symmetry
between D− and D+ in the argument, it is sufficient to consider a bounded
sequence {wi} in H− ∩ L2

j−1/2. We must show that the terms

($−$0)wi = (1−$0)wi

have a convergent subsequence. But this follows directly from the last part of
Theorem 17.1.3, because we can write wi = r(ui), where {ui} is a bounded
sequence in L2

j (Z ; E) and D−ui = 0. �

Having found a supply of commensurate projections, we now note that the
two main results of the previous subsection (Theorems 17.1.3 and 17.1.4) con-
tinue to hold if we substitute a commensurate projection for $0. This is the
content of the next two propositions. The first is an extension of Theorem 17.1.3:

Proposition 17.2.5. Let D and $0 be as in the statement of Theorem 17.1.3,
and let $ be a projection k-commensurate with $0, with image H−. Then
the conclusions of that theorem continue to hold with $0 replaced by $: for
1 ≤ j ≤ k, the operator

D⊕ ($ � r) : L2
j (X ; E)→ L2

j−1(X ; F)⊕ (H− ∩ L2
j−1/2(Y ; E0))

is Fredholm. In addition, if ui is a bounded sequence in L2
j (X ; E) and Dui is

Cauchy in L2
j−1, then (1−$)r(ui) has a convergent subsequence in L2

j−1/2. In
particular, the maps $ � r and (1 − $) � r, restricted to the kernel of D, are
respectively Fredholm and compact.
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Proof. First of all

$$0 : im($0) ∩ L2
j−1/2 → im($) ∩ L2

j−1/2

is Fredholm. To check this recall that an operator is Fredholm if and only if it is
invertible modulo compact operators. The required Fredholm inverse is $0$.
The composite $0$$$0 can be written as $0+$0($−$0)$0. This exhibits
the operator as a compact perturbation of the identity operator (acting on the
image of $0), and the argument is clearly symmetric in $0 and $. It follows
that the operator (D,$$0) is Fredholm, for it is equal to the composition
(Id,$$0) � (D,$0) and each of these operators is Fredholm. Finally (D,$) is
Fredholm for it is equal to the sum (D,$$0)+ (0,$($−$0)), the first being
Fredholm and the second compact.

Finally suppose that we have a bounded sequence {ui} in L2
j (X ; E) with

{Dui} Cauchy in L2
j−1. We already know that we can pass to a subsequence

where (1 − $0) � r(ui) converges in L2
j−1/2. Because r(ui) is bounded in

L2
j−1/2 and ($−$0) is compact, we can pass to a further subsequence where

($−$0) � r(ui) converges in L2
j−1/2. Then

(1−$) � r(ui) = (1−$0) � r(ui)− ($−$0) � r(ui)

converges. �

There is a larger class of projections, for which “half” of the above proposition
continues to hold.

Proposition 17.2.6. Let D be as in the statement of Proposition 17.2.5, and let
$ be again a projection k-commensurate with $0, with image H−. Let $1 be
any linear projection on L2

j−1/2(Y ; E0) whose kernel is a complement of H−:

ker($1)⊕ (H− ∩ L2
j−1/2(Y ; E0)) = L2

j−1/2(Y ; E0).

Let H−
1 be the image of $1. Then the operator

D⊕ ($1 � r) : L2
j (X ; E)→ L2

j−1(X ; F)⊕ H−
1

is Fredholm.

Proof. Write the domain of the operator D as C⊕K , where K is the kernel and C
is a complement. Then D|C is Fredholm, as is ($�r)|K , from Proposition 17.2.5.
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That is, we can write D⊕ ($ � r) as a block matrix whose diagonal blocks are
Fredholm: [

D|C 0
x ($ � r)|K

]
.

To deduce that the operator D ⊕ ($1 � r) is Fredholm, we can use the same
decomposition; and we see that all that is needed is to show that ($1 � r)|K is
Fredholm. To this end, we write

($1 � r) = (
$1 �$

) � r + (
$1 � (1−$)

) � r.

The second term in this sum is compact on K , because (1−$) � r is compact
on K by Proposition 17.2.5. The first term is Fredholm, because $ � r|K is
Fredholm and $1 is an isomorphism on the image of $. �

Next we have an extension of Theorem 17.1.4 to the commensurate setting,
where $ is a projection of the sort arising in Lemma 17.2.2 above.

Proposition 17.2.7. Let Z be a half-cylinder (−∞, 0] × Y , and let D :
C∞(Z ; E)→ L2(Z ; E) be an operator having the form

D = d

dt
+ L

where L is a k-asafoe operator on Y . Suppose that L is hyperbolic, let H+ and
H− be the spectral subspaces as in Definition 17.2.3, and let $ be the spectral
projection, with kernel H+ and image H−. Then the operator

D⊕ ($ � r) : L2
j (Z ; E)→ L2

j−1(Z ; E)⊕ (H− ∩ L2
j−1/2(Y ; E0)) (17.7)

is an isomorphism for 1 ≤ j ≤ k. The subspace H−∩L2
j−1/2(Y ; E0) is precisely

the image of ker(D) under r.

Proof. From Proposition 17.2.4 we know the projections $ and $0 are com-
mensurate; and so, by Proposition 17.2.7, the operator (17.7) is Fredholm. It is
injective, since by unique continuation elements of the kernel of D are deter-
mined by their boundary values, which lie in H− ∩ L2

j−1/2(Y ; E0) by definition

of H−. We already know that the operator D is surjective on the doubly infinite
cylinder. The result then follows, because v ∈ L2

j−1(Z ; E) is the restriction of

some ṽ ∈ L2
j−1(R× Y ; E) by Theorem 17.1.2. �
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In Lemma 17.2.4 above, we saw that L2
j−1/2(Y ; E0) was the direct sum of

the boundary values of the kernel of the operator D = D− on the two half-
infinite cylinders (positive and negative). If we replace the half-infinite cylinders
by finite cylinders, a similar result holds; but we do not have a direct sum.
The next proposition extends this result to the case that the operator is not
translation-invariant.

Let Z be a cylinder I × Y , where I is a compact interval containing 0 in its
interior. Let I1, I2 be the intersections of I with the negative and positive closed
half-lines, R≤ and R≥, and let Z = Z1∪Z2 be the corresponding decomposition
of Z . Suppose we have an operator D : C∞(Z ; E)→ L2(Z ; E) of the form

D = d

dt
+ L0 + h(t)

where L0 is, as usual, a self-adjoint elliptic operator on Y . We suppose that
the time-dependent operator h(t) : C∞(Y ; E0) → L2(Y ; E0) provides a
bounded map

h : L2
j (Z ; E)→ L2

j (Z ; E)

for j ≤ k − 1. Let DZ1 , DZ2 be the restrictions of these operators to the two
pieces. Let

Hj−1/2(Zi) ⊂ L2
j−1/2({0} × Y ; E0)

be the image of ker(DZi ) under the restriction map

ri : L2
j (Zi; E)→ L2

j−1/2({0} × Y ; E0).

Although the definition of Hj−1/2(Zi) for i = 1, 2 resembles that of H− and
H+ above, the two types of subspace are not comparable, because our interval
is now finite.

Proposition 17.2.8. Suppose D : L2
j (Z ; E)→ L2

j−1(Z ; E) is surjective (for one
and hence all j in the range 1 ≤ j ≤ k). Then

L2
j−1/2({0} × Y ; E0) = Hj−1/2(Z1)+ Hj−1/2(Z2). (17.8)

Conversely, suppose that (17.8) holds, and that DZ1 and DZ2 are surjective.
Then D is surjective.

Remark. The surjectivity hypothesis is a mild restriction, as Corollary 17.1.5
shows.
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Proof of Proposition 17.2.8. The converse direction presents fewer problems,
so we deal only with the forward direction of the theorem.

For h = 0, the result is straightforward, because the subspaces Hj−1/2(Z1)

and Hj−1/2(Z2) contain the negative and positive spectral subspaces of L0. For
non-zero h, consider first the case j = 1. Let a ∈ L2

1/2({0} × Y ; E0). Using the

result for h = 0, we find u1, u2 in L2
1(Z1) and L2

1(Z2) satisfying D0ui = 0 and

r1u1 − r2u2 = a.

Let u ∈ L2(Z ; E) be the element that is equal to ui on Zi for i = 1, 2. Because
D is surjective, we can find w ∈ L2

1(Z) with Dw = hu. Let wi be the restriction
of w to Zi, and let ũi = ui − wi. Then

r1ũ1 − r2ũ2 = a

because r1w1 = r2w2; and

(DZi )ũi = Dui − Dwi

= hui − Dwi

= 0.

So we have exhibited a as an element r1ũ1 − r2ũ2 of H1/2(Z1)+ H1/2(Z2).
Now suppose j > 1, and let a ∈ L2

j−1/2({0} × Y ; E0). Write

a = a1 + a2 (17.9)

with ai ∈ H1/2(Zi). We shall show that ai ∈ Hj−1/2(Zi).

Lemma 17.2.9. Let $0 be the spectral projection for D0, with image
the negative spectral subspace H− as usual. If b ∈ Hj−3/2(Z1) for some
2 ≤ j ≤ k, then

(1−$0)b ∈ L2
j−1/2.

Proof. Let v be the solution to D0v = 0 on Z1 with v|0×Y = $0b, so v ∈
L2

j−1(Z1; E). From the definition of Hj−3/2(Z1), there exists ṽ in L2
j−1(Z1; E)

with DZ1 ṽ = 0 and ṽ|0×Y = b. We have

D0(v − ṽ) = h(ṽ)

∈ L2
j−1(Z1; E0)
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and $0(v − ṽ)|{0}×Y = 0. These two conditions imply that (v − ṽ) is in L2
j on

a neighborhood of {0} × Y in Z1 (for we can multiply by a cut-off function and
then exploit the invertibility of (D0,$0) on the half-infinite cylinder, as given
in Theorem 17.1.4). Applying (1 − $0) to the boundary value of v − ṽ, we
conclude that (1−$0)b is in L2

j−1/2. �

Returning to (17.9), we can suppose as an induction hypothesis that ai is in
Hj−3/2(Zi) for i = 1, 2. We apply (1−$0) to (17.9):

(1−$0)a = (1−$0)a1 + (1−$0)a2.

We are supposing that a is in L2
j−1/2, and the lemma tells us that (1 − $0)a1

is in L2
j−1/2; so this equation tells us that (1−$0)a2 is in L2

j−1/2. We can also

apply the lemma with opposite signs, to see that $0a2 is in L2
j−1/2. So a2 is in

L2
j−1/2, which completes the proof. �

17.3 Atiyah–Patodi–Singer boundary-value problems and
gauge theory

Let Z be a finite cylinder I × Y . Recall that we have configuration spaces
Cτ

k (Z) ⊂ C̃τ
k (Z) and quotient spaces

Bτ
k (Z) ⊂ B̃τ

k (Z) = C̃τ
k (Z)/Gk+1(Z)

as in Corollary 9.4.4. The space B̃τ
k (Z) is a Hilbert manifold. Inside this space

is the set of gauge-equivalence classes of solutions to the perturbed Seiberg–
Witten equations,

M(Z) ⊂ M̃ (Z) = { [γ ] ∈ B̃τ
k (Z) | Fτ

q(γ ) = 0 }.

Unlike the moduli spaces of trajectories on the infinite cylinder that we consid-
ered in Definition 13.1.1, these moduli spaces on a compact cylinder (with no
boundary conditions) are infinite-dimensional. Another point to bear in mind
is that the moduli space M(Z), as defined, does depend on the choice of k,
although we omit k from the notation: a solution in M(Z) will have higher
regularity in the interior of the cylinder (after gauge transformation) but not up
to the boundary.

On a finite cylinder, the moduli spaces are always smooth manifolds, with no
special transversality condition required of the perturbation, as the next theorem
shows.
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Theorem 17.3.1. The subspace M̃ (Z) ⊂ B̃τ
k (Z) is a closed Hilbert subman-

ifold. The subset M(Z) is a Hilbert submanifold with boundary: it can be
identified as the quotient of M̃ (Z) by the involution i.

Proof. Certainly the subspaces M̃ (Z) and M(Z) are closed. To see that M̃ (Z) is
a submanifold, we may consider its inverse image in C̃τ

k (Z), the solution set of
the equations, and we need to show that the derivative of the equations, DγFτ

q ,
is surjective at every solution γ . This will follow from a stronger statement, the
surjectivity of the operator

Qγ = DγFτ
q ⊕ dτ ,†

γ : T τ
j,γ (Z)→ Vτ

j−1,γ (Z)⊕ L2
j−1(Z ; iR) (17.10)

defined as in Theorem 14.4.2, but now using the finite cylinder Z = I × Y ,
rather than R × Y which appeared there. As in the proof of Theorem 14.4.2,
this operator can be cast in the form

d

dt
+ L0 + h̄γ

(see (14.14)), where L0 is self-adjoint elliptic and h̄γ is defined slicewise and
maps L2

j to L2
j for 0 ≤ j ≤ k − 1. This operator has formal adjoint

− d

dt
+ L0 + h̄∗γ

which has the unique continuation property, that any solution which vanishes on
the boundary is zero. Corollary 17.1.5 therefore applies: this gives the required
surjectivity.

The fact that M(Z) is the quotient of M̃(Z) by the involution i is proved as in
the case of the infinite cylinder: see the discussion preceding Definition 14.5.2.

�

We can apply the Atiyah–Patodi–Singer theory to get some finer information
about the Hilbert manifold M(Z̃), beyond just the smoothness which we have
proved. Let us write the boundary of Z as

∂Z = Ȳ  Y ,

where Ȳ denotes Y with the opposite orientation. We have restriction maps

RY : M̃ (Z)→ Bσ
k−1/2(Y )

RȲ : M̃ (Z)→ Bσ
k−1/2(Ȳ ).
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Let [γ ] be any element of M̃ (Z), and let a and ā be the restrictions of γ to
the two boundary components. We can identify the tangent space to Bσ

k−1/2(Y )

at [a] with the linear space Kσ
k−1/2,a transverse to the gauge orbit through

a (Proposition 9.3.5), so we can regard the derivatives of RY and RȲ as
defining maps

DRY : T[γ ]M̃ (Z)→ Kσ
k−1/2,a(Y )

DRȲ : T[γ ]M̃ (Z)→ Kσ
k−1/2,ā(Ȳ ).

(17.11)

Recall that the Hilbert vector bundle Kσ
j → Cσ

k (Y ) carries a smooth family
of operators with real spectrum, namely the Hessians Hessσq defined at (12.8).
If we are not at a critical point, the operator Hessσq,a is not a direct summand
of the extended Hessian, but we see from (12.12) that by dropping the terms x
and y we can eventually exhibit Hessσq,a as a summand of an operator which is
a bounded perturbation of a self-adjoint elliptic operator: that is, a summand of
an asafoe operator. So we have the usual conclusion, that Hessσq,a has discrete
spectrum, and finite-dimensional generalized eigenspaces. If the operator is
hyperbolic (that is, if zero is not an eigenvalue), then we also have a spectral
decomposition

Kσ
k−1/2,a = K+a ⊕K−a . (17.12)

In the non-hyperbolic case, we pick an ε sufficiently small that there are no
eigenvalues in (0, ε), and we then define K±a using the spectral decomposition
arising from the operator Hessσq,a−ε. (The effect of this is to put the generalized
0-eigenspace into K−a .) In this way, we can define the decomposition (17.12)
everywhere, though it is not continuous at points a where the Hessian has kernel.

Where necessary, we will write K−a (Y ) rather than just K−a , to emphasize
which 3-manifold is involved. In particular, we note

K−a (Ȳ ) = K+a (Y ).

We will also use the notation

Kσ
k−1/2,(ā,a)(Ȳ  Y ) ∼= Kσ

k−1/2,ā(Y )⊕Kσ
k−1/2,a(Y )

K−
(ā,a)(Ȳ  Y ) ∼= K+ā (Y )⊕K−a (Y ).

With this understood, we return to the derivatives of the restriction maps RY

and RȲ above. Together these define a map

D(RȲ , RY ) : T[γ ]M̃ (Z)→ Kσ
k−1/2,(ā,a)(Ȳ  Y ).
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What we want to explain is that the tangent space to the moduli space M̃ (Z)
is everywhere comparable to the spectral summand K−

(ā,a)(Ȳ  Y ), in a sense
made precise by the next theorem.

Theorem 17.3.2. Let γ , a and ā be as above, and let π be the projection

π : Kσ
k−1/2,(ā,a)(Ȳ  Y )→ K−

(ā,a)(Ȳ  Y )

with kernel K+
(ā,a)(Ȳ  Y ). Then the two composite maps

π �D(RȲ , RY ) : T[γ ]M̃ (Z)→ K−
(ā,a)(Ȳ  Y )

(1− π) �D(RȲ , RY ) : T[γ ]M̃ (Z)→ K+
(ā,a)(Ȳ  Y )

are respectively Fredholm and compact.

Proof. We start with a slightly more general setting: rather than a solution γ

to the equations, let us consider a general γ in Bτ
k (Z), and continue to define

a and ā as above. Because of gauge invariance, we may suppose that γ is in
temporal gauge. Let Qγ be again the operator (17.10) obtained by combining
the linearization of the perturbed Seiberg–Witten equations with the Coulomb
condition. We know how to write Qγ as

Qγ = D

dt
+ Lγ (t),

where L(t) is equivalent to an asafoe operator on Y . As we observed above
(see (12.12), for example), the operator Lγ (t) differs by bounded terms from an
operator which has Hessσq,γ (t) as a summand:

L̃γ (t) =
[

0 dσ
γ (t)

dσ ,†
γ (t) 0

]
⊕ Hessσq,γ (t). (17.13)

In particular, the spectral decompositions arising from Lγ (t) and L̃γ (t) define
comparable projections. From our general theory, it follows that there is a
Fredholm operator obtained from Qγ using the spectral projections defined by
L̃γ (t) at the two boundary components:

Qγ ⊕ $̃ � r : T τ
j,γ (Z)→ Vτ

j−1,γ (Z)⊕ L2
j−1(Z ; iR)⊕ H̃− (17.14)
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where H̃− = H̃−
Ȳ
⊕ H̃−

Y is defined at each end using the spectral decomposition

of L̃γ , so that

H̃−
Y ⊂ T σ

j−1/2,a(Y )⊕ L2
j−1/2(Y ; iR)

H̃−
Ȳ
⊂ T σ

j−1/2,ā(Ȳ )⊕ L2
j−1/2(Ȳ ; iR).

We should remember here that the distinction between the signs in the spectrum
depends on the orientation of Y ; so in the case that a = ā, for example, and if
La is hyperbolic, then we will have H̃−

Ȳ
= H̃+

Y .

The projection $̃ = $̃Ȳ ⊕ $̃Y onto the spectral subspace is not the one that
is most closely related to the geometrical situation described by the theorem,
however. We need to consider, instead, a projection which is not obtained as a
spectral projection. In the decomposition

T σ
k−1/2,a(Y )⊕ L2

k−1/2(Y ; iR) = J σ
k−1/2,a ⊕Kσ

k−1/2,a ⊕ L2
k−1/2(Y ; iR),

let HY be the subspace

H−
Y = {0} ⊕K−a ⊕ L2

k−1/2(Y ; iR) (17.15)

and let

$−Y : T σ
k−1/2,a(Y )⊕ L2

k−1/2(Y ; iR)→ H−
Y

be the projection with kernel

ker($−Y ) = J σ
k−1/2,a ⊕K+a ⊕ {0}.

(Even in the case that a = ā is hyperbolic, the two projections $−
Ȳ

and $−Y
are no longer complementary.) Consider now the operator obtained using the
projection $ = $−

Ȳ
⊕$−Y at the boundary: set H = H−

Ȳ
⊕ H−

Y and write

Qγ ⊕$ � r : T τ
k,γ (Z)→ Vτ

k−1,γ (Z)⊕ L2
k−1(Z ; iR)⊕ H . (17.16)

Lemma 17.3.3. The above operator Qγ ⊕$ � r is Fredholm.

Proof. We apply Proposition 17.2.6, with $ playing the role of $1 in that
proposition, and $̃ playing the role of $. We need to show that ker $ and H̃−
are complementary subspaces. Although the boundary has two components, the
statement to be checked can be looked at on just the component Y ; and from



316 V Compactness and gluing

the definitions of the two projections, we see that it is equivalent to a statement
about the block [

0 dσ
a

dσ ,†
a 0

]

acting on J σ
j,a ⊕ L2

j (Y ; iR). We need to check that the projection

h− → {0} ⊕ L2
k−1/2(Y ; iR)

from the spectral subspace h− for this 2-by-2 block is an isomorphism. The
reason this is an isomorphism is that h− can be described as a graph of a map

L2
k−1/2(Y ; iR)→ J σ

k−1/2,a;

we can write

h− = { (−dσ
a (d

σ ,†
a dσ

a )
−1/2c, c) | c ∈ L2

k−1/2 },

because the operator dσ ,†
a dσ

a is positive and self-adjoint, as we saw in the proof
of Lemma 12.4.3. �

We return to the proof of the theorem. If γ is a solution of the equations, then
we can identify the tangent space to M̃ (Z) at [γ ] with the space of solutions
(a, s,φ) to the linearized equations satisfying the Coulomb–Neumann gauge-
fixing conditions

dτ ,†
γ (a, s,φ) = 0

〈a, !n〉 = 0 at ∂Z

(see (9.16)). In other words, T[γ ]M̃(Z) is the set of (a, s,φ) which are in the
kernel of Qγ and whose projection to the summands L2

k−1/2(Ȳ  Y ; iR) at

the boundary is zero. The projection to L2
k−1/2(Ȳ  Y ; iR) is one part of the

boundary condition $ that appears in the lemma; the other part is the projection
to K−

(ā,a)(Ȳ  Y ). So the first assertion of the theorem follows.
For the second assertion, we just have to observe that (1−π) factors through

the projection (1− $̃) to H̃+, and we already know that (1− $̃) � r is compact
on the kernel of Qγ . �
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18 Stable manifolds and gluing near critical points

18.1 The motivating example

Before taking up our main task in this section, we digress to illustrate the corre-
sponding results for a linear flow in finite dimensions. Consider an invertible,
self-adjoint linear transformation L on Rn, and the corresponding flow

γ̇ (t) = −Lγ (t).

We shall examine the solutions γ to this equation on a finite interval [−T , T ].
Let M(T ) denote the space of solutions, and let

r : M(T )→ Rn × Rn

be the map that evaluates a solution at the two endpoints:

r(γ ) = (
γ (−T ), γ (T )

)
.

The image of r is a copy of Rn (because a solution in M(T ) is determined by
its value at any point); but we wish to parametrize the image in such a manner
that the parametrizations converge as T increases to infinity. To this end, write
the codomain of r as

Rn × Rn = (H+ ⊕ H−)× (H+ ⊕ H−),

where H± are, as usual, the spectral subspaces of L for the positive and negative
eigenvalues. Then the image of r can be described as the locus{

(u+ + e2TLu−, e−2TLu+ + u−)
∣∣ (u+, u−) ∈ H+ × H− }.

For given u+ and u−, the terms e2TLu− and e−2TLu+ decay exponentially as T
increases, and the image of r approaches the subspace

H+ × H− ⊂ Rn × Rn.

We can interpret this limiting subspace as the set of boundary values of a
limiting object, which we can call M(∞): we define M(∞) as the set of solutions
to the equation on the disjoint union of two closed half-lines, R≥  R≤. The
oriented boundary of the two half-lines is the same as that of each compact
interval [−T , T ], and there is therefore a map

r : M(∞)→ Rn × Rn
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just as there is on each M(T ). The image of this limiting map is precisely
H+ × H−. We can summarize the situation as follows:

Proposition 18.1.1. For all T > 0, we can find linear parametrizations

u(T , · ) : Rn → M(T ),

and

u(∞, · ) : Rn → M(∞),

with the property that the linear maps

µT : Rn → Rn × Rn

given by µT (x) = r �u(T , x) converge as T →∞ to the limiting map µ∞(x) =
r � u(∞, x). �

It is instructive to examine the geometry of the union of the linear subspaces
µT (Rn) as T runs through (0,∞]. Let us call this union W :

W =
⋃

T∈(0,∞]
µT (R

n).

This space certainly has a singularity at 0, so let us consider

W o =
⋃

T∈(0,∞]
µT (R

n \ 0).

The images ofµT1 andµT2 are disjoint (away from 0) when T1 = T2, because of
the unique continuation property. So W o is the injective image of (0,∞]×(Rn\
0). As such, W o is a C0 manifold with boundary: the boundary is µ∞(Rn \ 0).
However, a simple calculation shows that W o is not a smooth submanifold-
with-boundary in Rn × Rn. To illustrate this, consider the case n = 2, and let
the eigenvalues of L be λ and −µ, with λ and µ both positive. The image of
µT is the linear subspace of R4 = R2 × R2 given by the equations

x3 = e−2Tλx1

x2 = e−2Tµx4.

The union of these, taken over all T in (0,∞], lies on the locus in R4 given by

|x1|µ/λx2 − |x3|µ/λx4 = 0.
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Within this locus, W o is cut out by the constraints that x3 and x2 be non-negative
multiples of x1 and x4 respectively, and not all four be zero. To understand the
geometry, consider the case µ = 2λ, and take the intersection of W o with the
slice x4 = 1. We arrive at the locus W o

1 ⊂ R3 described by:

x2
1x2 − x2

3 = 0

x2 ≥ 0

sign(x3) = sign(x1) or 0.

The locus defined by the first equation and the inequality x2 ≥ 0 is “Whitney’s
umbrella”, which is the image in R3 of a map f : R2 → R3 having a single
non-immersion point:

g(y1, y2) = (y1, y2
2, y1y2).

With the condition on the sign of x3, we see that W o
1 is the injective image of

the half-space y2 ≥ 0 under the map g. It is a C0 manifold with boundary, and
the boundary is the x1 axis in R3. The subspace W o

1 is a smooth manifold with
boundary except at the point g(0, 0): along the boundary of W o

1 , the outward-
pointing tangent vector to W o

1 is the vector (0, 0, 1) for x1 positive, and is
(0, 0,−1) for x1 negative; at x1 = 0 it is undefined. See Figure 4.

Let us now explain how this picture is relevant to understanding the structure
of the compactification of moduli spaces of trajectories. Let B be a smooth,
compact Riemannian manifold with a Morse function f . Let K1 and K2 be two
closed submanifolds of B. For simplicity, suppose that f = 1 on K1 and f = −1
on K2, and suppose in addition that there is a unique critical point a of f in the
set f −1[−1, 1]. We shall also suppose that the flow is linear in suitable local

x3 x2

x1

Fig. 4. Half of Whitney’s umbrella.
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coordinates around a. Let us consider trajectories γ (t) of the downward gradient
flow, on a finite interval, that start on K1 and end on K2: we can decompose
these according to the length of the interval, and so we introduce the notation

M(K1, K2) =
⋃
S>0

MS(K1, K2)

where

MS(K1, K2)

= { γ : [−S, S] → B | γ (−S) ∈ K1, γ (S) ∈ K2, γ̇ = − grad( f ) }.

The space M(K1, K2) has a compactification, obtained by attaching a stratum
M∞(K1, K2) consisting of broken trajectories: we write

M∞(K1, K2) = M(K1, a)×M(a, K2),

where

M(K1, a) = {
γ : R≥ → B

∣∣γ (0) ∈ K1, lim
t→∞ γ (t) = a

}
M(a, K2) =

{
γ : R≤ → B

∣∣γ (0) ∈ K2, lim
t→−∞ γ (t) = a

}
.

We suppose that the stable manifold of a meets K1 transversely, so that M(K1, a)
is a manifold; and similarly we suppose that the unstable manifold of a meets
K2 transversely. Under these circumstances, we can derive the following result:

Proposition 18.1.2. The compactification of M(K1, K2) obtained by adding
the broken trajectories M∞(K1, K2) has the structure of a C0 manifold with
boundary in a neighborhood of M∞(K1, K2).

Proof. Let 	 be a neighborhood of a on which the flow looks linear in suitable
coordinates; and let 	 be chosen with the additional property that every trajec-
tory intersects 	 in a connected set. Then an elementary argument shows that
there exists an S1 ≥ 0 such that for all S ≥ S1 and all γ in MS(K1, K2), we have

γ
([−S + S1, S − S1]

) ⊂ 	.
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Thus, for S > S1, any γ in MS(K1, K2), every trajectory γ in MS(K1, K2) can
be regarded as the concatenation of three trajectories,

γ1 : [−S,−S + S1] → B

δ : [−S + S1, S − S1] → 	

γ2 : [S − S1, S] → B.

where γ1 has initial endpoint on K1 and final endpoint in 	, and γ2 similarly
runs from 	 to K2. If we let φt : B → B denote the time-t flow, and write
T = S − S1, then we can summarize the situation by saying that MS(K1, K2) is
parametrized by the intersection(

φS1(K1)× φ−S1(K2)
) ∩WT ⊂ 	×	, (18.1)

where

WT =
{
(δ(−T ), δ(T ))

∣∣ δ : [−T , T ] → 	 with δ̇ = − grad( f )
}

⊂ 	×	. (18.2)

Because the flow is linear on 	 and trajectories meet 	 in connected sets, we
have a complete understanding of WT from our earlier analysis. We can use our
parametrization µT , and write

WT = µT (R
n) ∩ (	×	),

where µT : Rn → Rn×Rn is a linear map as before. We know that, as T →∞,
the linear spaces converge, so WT approaches

W∞ = µ∞(Rn) ∩ (	×	).

Our transversality hypotheses are equivalent to saying that the intersection
(18.1) is transverse when T = ∞. It follows that the intersection is transverse
also for finite T greater than some T1 (i.e. for S greater than S1 + T1).

Because of this transversality, the compact manifolds MS(K1, K2), for S >

S1 + T1, are all diffeomorphic, and we can identify the locus S > S1 + T1 in
the compactification of M(K1, K2) with a product

(0,∞] ×M∞(K1, K2).

�
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We make two remarks about this argument. First, the argument can be applied
to the case that K1 and K2 are the intersections of level sets of f with the unsta-
ble and stable manifolds of critical points a1 and a2 respectively. If f has
no critical values other than f (a) between f (a1) and f (a2), then the proposi-
tion above effectively describes the compactification of the moduli space of
unparametrized trajectories M̆ (a1, a2):

Proposition 18.1.3. Suppose that M̆ (a1, a2), M̆ (a1, a) and M̆ (a, a2) are all
regular. Then the compactification, M̆+(a1, a2), of M̆ (a1, a2) is a C0 manifold
with boundary. The boundary is M̆ (a1, a)× M̆ (a, a2). �

The second remark is that we should consider whether we can drop the
hypothesis that the flow is linear on 	. This we can certainly do, but we will
need then to extend our analysis. What is at issue is whether the submanifolds
WT of 	×	, suitably parametrized, converge in the C1 topology to the correct
limit W∞. This does indeed occur: we shall take up this issue in the context of
the Chern–Simons–Dirac flow later. For the present, we state such a result in
the finite-dimensional context, without proof.

Proposition 18.1.4. Let a ∈ B be a non-degenerate critical point of the flow.
Then there exist a neighborhood 	 of a, a positive number T1 and a family of
maps µT from a fixed ball,

µT : B1 → B× B, T ∈ (T1,∞],

which parametrize the loci WT ⊂ 	 × 	 defined by (18.2), in the sense that
WT = µT (B1) ∩	×	. Furthermore, for finite T , the map

(T , x) �→ µT (x)

is a smooth function of the two variables; and as T →∞, the mapsµT converge
to µ∞ in the C∞ topology. �

In this section, we will prove a version of this proposition in the gauge-
theory setting. The statement is formulated in Subsection 18.2 below; the proof
is given first for a more abstract version in Subsection 18.3, which is applied
to the gauge-theory version in Subsection 18.4. In Section 19, we will apply
this result to study the structure of the compactifications of the moduli space
M̆ ([a], [b]).
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18.2 Statement of the theorem

Let a ∈ C̃σ
k (Y ) be a critical point of (grad−L)σ , and let γa be the translation-

invariant solution to the equations on the cylinder, in temporal gauge. We
suppose our perturbation is generic, so that a is non-degenerate as usual. For
each T > 0, we can regard γa as defining an element [γa] ∈ M̃ (ZT ), where
ZT = [−T , T ] × Y and M̃ (ZT ) is defined as in the previous subsection.

We also introduce Z∞ as the disjoint union of two half-infinite cylinders:

Z∞ = (R≤ × Y ) (R≥ × Y ).

We introduce configuration spaces for Z∞, in parallel to our previous definitions
for R×Y in Section 13. In particular we have C̃τ

k,loc(Z
∞) and its quotient space

B̃τ
k,loc(Z

∞). Inside B̃τ
k,loc(Z

∞) is the moduli space M(Z∞, [a]) of solutions to
the equations that are asymptotic to [a] on both ends. As in the case of R× Y ,
we can also describe M̃ (Z∞, [a]) using configuration spaces based on L2

k rather
than L2

k,loc, and so describe the moduli spaces as subsets of the Hilbert manifold

B̃τ
k (Z

∞, [a]) = C̃τ
k (Z

∞, a)/Gk+1(Z
∞)

where

C̃τ
k (Z

∞, a)

= {γ ∈ C̃τ
k,loc(Z

∞) | γ − γa ∈ L2
k(Z ; iT ∗Z)⊕ L2

k(R; R)⊕ L2
k, A0

(Z ; S+)}

(see Subsection 13.3). As in the case of M̃ (ZT ), the moduli space M̃ (Z∞, [a])
is a Hilbert submanifold of B̃τ

k (Z
∞, [a]).

The manifold Z∞, like ZT , has boundary Y  Ȳ , so we have restriction maps

R : M̃ (Z∞, [a])→ B̃σ
k−1/2(Y  Ȳ ),

R : M̃ (ZT )→ B̃σ
k−1/2(Y  Ȳ ).

(See Theorem 17.1.1.) Let

K = Kσ
k−1/2,a(Y ) (18.3)

be the L2
k−1/2 completion of the complement Kσ

k,a to the gauge-group orbit,
as defined in Subsection 9.3. The aim of this section is to prove the following
result, which should be compared with the finite-dimensional version above,
Proposition 18.1.1.
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Theorem 18.2.1. There exists T0 such that for all T ≥ T0 we can find
smooth maps

u(T , – ) : B(K)→ M̃ (ZT )

u(∞, – ) : B(K)→ M̃(Z∞)

which are diffeomorphisms from a ball B(K) ⊂ K onto neighborhoods of the
constant solution [γa]. These can be chosen so that the map

µT : B(K)→ B̃σ
k−1/2(Y  Ȳ )

defined by composing u(T , –) with the restriction maps to the boundary,

µT (h) = R u(T , h),

is a smooth embedding of B(K) for T ∈ [T0,∞], with the following properties:
as a function on [T0,∞) × B(K), the map (T , h) �→ µT (h) is smooth for
finite T ; and µT converges to µ∞ in the C∞loc topology as T →∞,

µT

C∞loc �� µ∞.

Finally, there is an η > 0, independent of T , such that the images of
the maps u(T , –) can be taken to contain all solutions [γ ] ∈ M(ZT ) with
‖γ − γa‖L2

k (Z
T ) ≤ η.

In the case that a is reducible, the parametrizations u are equivariant for
the Z/2 actions arising from the standard Z/2 action i on C̃σ

k−1/2(Y ).

The space M̃ (Z∞), of course, is a product

M̃ (Z∞) = M̃ (R≥ × Y )× M̃ (R≤ × Y ).

The parametrization u(∞, –) provided by the theorem respects this product
structure: we shall see that, in the spectral decomposition of K = Kσ

k−1/2,a as

K+ ⊕K− (see (17.12)), the map u(∞, –) gives local diffeomorphisms

B(K+)→ M̃ (R≥ × Y )

B(K−)→ M̃ (R≤ × Y ).
(18.4)
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Taking the boundary values, we get maps

µ+∞ : B(K+)→ Bσ
k−1/2(Ȳ )

µ−∞ : B(K−)→ Bσ
k−1/2(Y ).

It is natural to adopt the terminology of finite-dimensional flows, and
refer to the spaces parametrized by µ±∞ as the (local) stable and unstable
manifolds of [a].

18.3 An abstract gluing result

In order to get away from the specifics of the equations that are involved, we
shall abstract the properties that are relevant to Theorem 18.2.1, and prove
a version of the theorem in a more general context. Later, we shall deduce
Theorem 18.2.1 from this abstract version.

On the cylinder R× Y , let E be the pull-back of a bundle E0 on Y . Let D be
an operator acting on sections of E, having the form

Du = du

dt
+ Lu,

where L is an operator on Y :

L : L2
k(Y ; E0)→ L2

k−1(Y ; E0).

So D is an operator L2
k(Z ; E)→ L2

k−1(Z ; E), where Z can be taken to be either
ZT or Z∞ (in the notation of the previous subsection).

In the case of Z∞, the operator D acts also on weighted Sobolev spaces.
Given a weight δ ∈ R, we consider e−δ|t| as a smooth function on Z∞, equal
to e−δt on the first component and equal to eδt on the second. We define the
weighted Sobolev space L2

k,δ(Z
∞; E) to be the space e−δ|t|L2

k(Z
∞; E), so

s ∈ L2
k,δ(Z

∞; E) ⇐⇒ eδ|t|s ∈ L2
k(Z

∞; E).

Then D defines an operator

D : L2
k,δ(Z

∞; E)→ L2
k−1,δ(Z

∞; E).

We also suppose we are given a linear map

$ : L2
k−1/2(Y  Ȳ ; E0)→ H
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for some Hilbert space H . Omitting the restriction map from our notation, we
regard $ also as defining a map

$ : L2
k(Z ; E)→ H

for Z = ZT and Z = Z∞.
Because there is never any risk of confusion, we omit the subscripts k etc. in

these norms. We also write

ET = L2
k(Z

T ; E)

FT = L2
k−1(Z

T ; E),

and we write E∞δ , F∞
δ for the weighted spaces. With this notation, we impose

the following hypotheses for the linear operators:

Hypothesis 18.3.1. We suppose that the linear operator

(D,$) : E∞ → F∞ ⊕ H

is invertible. ♦

Lemma 18.3.2. If (D,$) satisfies Hypothesis 18.3.1, then the same operator
acting on the weighted spaces,

(D,$) : E∞δ → F∞
δ ⊕ H ,

is also invertible, for all δ sufficiently close to zero.

Proof. Multiplication by eδ|t| on the two components of Z∞ gives an isometry
I from E∞δ to E∞ and from F∞

δ to F∞. The map I commutes with $, so it is
enough to consider the operator (IDI−1,$) on the unweighted spaces. We have

IDI−1 = D ± δ,

so this operator varies continuously with δ in operator norm. The result follows.
�

We will fix a δ > 0 satisfying the conclusion of the lemma, and we take C0

to be a constant at least as large as the operator norm of the inverse of (D,$)

in both the unweighted and weighted spaces: that is,

‖u‖ ≤ C0
(‖Du‖ + ‖$u‖)

‖u‖δ ≤ C0
(‖Du‖δ + ‖$u‖)
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for all u. The canonical example of such a situation is the Atiyah–Patodi–
Singer boundary-value problem, in which H is the L2

k−1/2 closure of the span
of eigenvectors of L belonging to negative eigenvalues on Y and the positive
eigenvalues on Ȳ . In our eventual application, H will be a little different.

We shall consider a non-linear operator D+α having D as its linearization at
u = 0. We shall suppose that the non-linear term arises as follows. We suppose
there is a continuous map

α0 : C∞(Y ; E0)→ L2(Y ; E0)

and that

α : C∞(R× Y ; E)→ L2
loc(R× Y ; E)

is defined by restriction to slices {t}×Y . We can also consider α over a compact
interval.

Hypothesis 18.3.3. We shall suppose that α defines a smooth map

α : L2
k([−1, 1] × Y ; E)→ L2

k−1([−1, 1] × Y ; E).

We suppose that α(0) = 0 and D0α = 0. ♦

As in the proof of Lemma 14.4.1, it follows that α defines a smooth map
in the topologies ET → FT on the finite cylinders, and a smooth map on the
infinite cylinders:

α : E∞ → F∞

α : E∞δ → F∞
δ .

Since α is C1 on both E∞ and E∞δ and has vanishing derivative at the origin,
it is uniformly Lipschitz with small Lipschitz constant on small balls about 0.
That is, for any ε > 0, we can find an η > 0, such that for all u, u′ in E∞,
we have

‖u‖, ‖u′‖ ≤ η =⇒ ‖α(u)− α(u′)‖ ≤ ε‖u − u′‖,

and similarly

‖u‖δ , ‖u′‖δ ≤ η =⇒ ‖α(u)− α(u′)‖δ ≤ ε‖u − u′‖δ
when u and u′ are in E∞δ .
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Hypothesis 18.3.4. We will suppose η1 > 0 is chosen so that the above
Lipschitz property holds with ε = 1/(2C0), where C0 is the constant on
page 326. ♦

With these hypotheses in place, we shall consider the space of zeros of
the maps

FT = D + α : ET → FT

F∞ = D + α : E∞ → F∞.

We write

M(T ) = (FT )−1(0) ⊂ ET

M(∞) = (F∞)−1(0) ⊂ E∞.

Our abstract version of the theorem is the following:

Theorem 18.3.5. For T ≥ T0, the solution sets M(T ) and M(∞) are Hilbert
submanifolds of ET and E∞ in a neighborhood of zero. There is an η > 0 and
smooth maps from the η ball in the Hilbert space H to the solution sets,

u(T , – ) : Bη(H )→ M(T )

u(∞, – ) : Bη(H )→ M(∞),

which are diffeomorphisms onto their image, and which satisfy $u(T , h) =
$u(∞, h) = h. Furthermore, for T ∈ [T0,∞], the map

µT : Bη(H )→ L2
k−1/2(Y  Ȳ ; E0) (18.5)

defined by composing u(T , –) with the restriction maps to the boundary,

µT (h) = r u(T , h),

is a smooth embedding of Bη(H ). As a function on [T0,∞)× Bη(H ), the map
(T , h) �→ µT (h) is smooth for finite T ; and µT converges to µ∞ in the C∞loc
topology as T →∞:

µT

C∞loc �� µ∞.

Finally, there is an η′ > 0 (independent of T ) such that the images of the maps
u(T , –) contain all solutions u ∈ M(T ) with ‖u‖ ≤ η′.
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The proof uses the inverse function theorem: we state here a suitable version,
without proof.

Proposition 18.3.6. Let H1 and H2 be Hilbert spaces, and let S : H1 → H2 be
a continuous map with S(0) = 0. Suppose S has the form Q + β, where Q is
linear and invertible, and β is uniformly Lipschitz on the η1 ball Bη1(H1) ⊂ H1

with Lipschitz constant ε:

‖x‖, ‖x′‖ ≤ η1 =⇒ ‖β(x)− β(x′)‖ ≤ ε‖x − x′‖.

Suppose ε < 1/‖Q−1‖. Then S is injective on Bη1(H1) and its image contains
the ball Bη2(H2), where

η2 = η1
(
1− ε‖Q−1‖)/‖Q−1‖.

In particular, for all y ∈ Bη2(H2) there exists a unique x = W (y) in Bη1(H1)

solving the equation

S(x) = y.

Furthermore, if β is smooth, then so is the map W : Bη2(H2)→ Bη1(H1), and
the norm of DyW is bounded by ‖Q−1‖/(1− ε‖Q−1‖); and for all m > 1 and
y ∈ Bη2(H2), the norm of Dm

y W is bounded by a universal continuous function
of the quantities

(1− ε‖Q−1‖)/‖Q−1‖, ‖DW (y)β‖, . . . , ‖Dm
W (y)β‖.

�

As a first step, we show the existence of the solution u(∞, h) for small h:

Proposition 18.3.7. Let C0 be the constant in Hypothesis 18.3.1, and let η1 be
as in Hypothesis 18.3.4. Then for every h ∈ H with ‖h‖ ≤ η1/2C0, there exists
a unique u = u(∞, h) in Bη1(E∞), satisfying

F∞(u) = 0

$u = h.

The map u(∞, –) is a smooth map from Bη2(H ) to Bη1(E∞), where η2 =
η1/2C0, and satisfies

‖u(∞, h)‖ ≤ 2C0‖h‖. (18.6)
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With the same constants η1 and η2, the map u(∞, –) is also a smooth map
from Bη2(H ) to Bη1(E∞δ ) and satisfies

‖u(∞, h)‖δ ≤ 2C0‖h‖.

Proof. We apply the inverse function theorem, Proposition 18.3.6, to the map

(F∞,$) : E∞ → F∞ ⊕ H .

(We have chosen η1 so thatα is uniformly Lipschitz on Bη1(E∞), with Lipschitz
constant ε, where (1−εC0) = 1/2, so in the statement of the proposition above,
η2 is η1/2C0.) The inequality (18.6) follows from the bound on the derivative
of u which is provided by Proposition 18.3.6, together with our choice of ε in
Hypothesis 18.3.4.

The same inverse function theorem can be applied to the map on the weighted
Sobolev spaces. The uniqueness result means that the solutions are the same.

�

We now examine the linear operator (D,$) acting as

(D,$) : ET → FT ⊕ H .

Lemma 18.3.8. There exists a T0 such that for T ≥ T0, the operator

PT = (D,$) : ET → FT ⊕ H

is invertible. Furthermore, as T →∞, the operator norm ‖(PT )−1‖ is bounded
by a constant independent of T .

Proof. Let the inverse of P∞ be N∞. On ZT , let β1, β2 be a partition of
unity subordinate to the cover of [−T , T ] by the two open sets [−T , T/2) and
(−T/2, T ]. We can choose these so that the pointwise norms of their first k
derivatives go to zero uniformly as T →∞. Let φ1, φ2 be functions with the
property that φi = 1 on the support of βi, with φ1 = 0 on (3T/4, T ] and φ2 = 0
on [−T ,−3T/4). These can also be chosen so that their first k derivatives go
to zero as T goes to infinity.

Given v in FT , we define γ (v) in F∞ by

ρ(v) =
{
τ ∗−Tβ1v on [0,∞)× Y

τ ∗Tβ2v on (−∞, 0] × Y .
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Similarly, given u in E∞, define π(u) ∈ ET by

π(u) = φ1τ
∗
T u1 + φ2τ

∗−T u2,

where u1 and u2 are the parts of u on the two components [0,∞) × Y and
(−∞, 0] × Y of Z∞. Now define Ñ T : FT ⊕ H → ET by

Ñ T (v, h) = π � N∞(ρ(v), h).

We find that the composites PT � Ñ T and Ñ T � PT have the form 1 + K and
1+ J , where the operator norms of K and J are bounded by fixed multiples of
the operator norms of the multiplication operators

v �→ (dφi/dt)v

u �→ (dβi/dt)u

respectively, acting on FT and ET (cf. (14.4)). Our hypotheses on the derivatives
of βi and φi ensure that these operator norms go to zero. It follows that PT is
invertible for T ≥ T0, and that the inverse N T has ‖N T − Ñ T‖ going to zero
as T →∞. The formula for Ñ T and the fact that the derivatives of the cut-off
functions go to zero imply that the operator norm of Ñ T remains bounded as T
increases. �

On account of the lemma, we can suppose that the operator norm of the
inverse of PT is bounded by the same constant C0 as appears on page 326, for
all T ≥ T0. We therefore deduce, just as in Proposition 18.3.7, the existence of
solutions on the finite cylinder:

Corollary 18.3.9. Let the constants C0, η1 and η2 be as in Proposition 18.3.7,
and let T0 be as above. Then for every h ∈ H with ‖h‖ ≤ η2, there exists a
unique u = u(T , h) in Bη1(ET ), satisfying

FT (u) = 0

$u = h.

The map u(T , –) is a smooth map from Bη2(H ) to Bη1(ET ), and satisfies

‖u(T , h)‖ ≤ 2C0‖h‖.

�
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Our next task is to compare the solution u(T , h) on the finite cylinder ZT with
the solutions u(∞, h). As above, we write the two components of the latter as
u1(h) and u2(h), on the two components of Z∞. Set

U (T , h) = τ ∗T u1(h)+ τ ∗−T u2(h)

regarded as an element of ET . (Here τT is again the map (t, y) �→ (t + T , y) on
the cylinder.) We shall see that U (T , h) is close to u(T , h):

Proposition 18.3.10. For any η < η2, the function

ξ(T , –) : Bη(H )→ ET

ξ(T , h) = u(T , h)− U (T , h)

converges to zero in the C∞loc topology as T → ∞. Indeed, for each m ≥ 0,
we have ∥∥Dm

h

(
ξ(T , –)

)∥∥ ≤ Km(h)e
−2δT , (18.7)

where Km is a continuous function on the ball Bη(H ).

Proof. The function uT = u(T , –) is the solution to

FT uT (h) = 0

$uT (h) = h.

Let us define ζ(h) and g(h) by

FT UT (h) = ζ(h)

$UT (h) = h+ g(h).

Lemma 18.3.11. The functions ζ(h) and g(h) are smooth functions of h ∈
Bη2(H ). These two functions and their derivatives satisfy bounds of the same
form as (18.7) (though for different continuous functions Km).

Proof. We begin by examining g(h). Let $1 : L2
k−1/2(Ȳ ) → H and $2 :

L2
k−1/2(Y )→ H be the two parts of the map $. Then we have

$UT (h) = h+$1
(
u2|{−2T }×Y

)+$2
(
u1|{2T }×Y

)
.
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By the rider to the implicit function theorem, u(∞, h) is a smooth function of
h, as a map to the weighted space,

Bη2(H )→ E∞δ ;

and the norm of the derivative Dm
h u(∞, –) is bounded by a continuous function

K ′m(h) on the ball. The last two terms in the above formula define a function
g(h) which is exhibited as the composite of the smooth function u(∞, –) and a
linear map

E∞δ → H .

The linear map has norm bounded by a multiple of e−2δT . The result for g
follows.

To examine ζ , we see first that it involves only the non-linearity α in the map
F : we have

ζ(h) = α(UT (h))− α(τ ∗T u1(h))− α(τ ∗−T u2(h)).

Lemma 18.3.12. Let A : X1 × X2 → Z be a smooth map of normed vector
spaces with A(x, 0) = 0 for all x and A(0, y) = 0 for all y. Let Bη(H ) ⊂ H be
a ball in a normed space H, and let ξi : Bη(H ) → Bη1(Xi) (i = 1, 2) be two
smooth maps. Define continuous functions Ji,m on Bη(H ) by

Ji,m(h) =
m∑

n=0

‖Dn
hξi‖.

Then the composite map

A � (ξ1, ξ2) : Bη(H )→ Z

satisfies

‖A � (ξ1, ξ2)(h)‖ ≤ K0(h)‖ξ1(h)‖‖ξ2(h)‖,

while for m ≥ 1, we have

‖Dm
h A � (ξ1, ξ2)‖ ≤ Km(h)

m∑
i=1

m∑
j=1

J1,m(h)
iJ2,m(h)

j,

for some continuous functions Km on the ball.
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Proof. Let A(p,q) be the (p, q)-th partial derivative of A with respect to the X1

and X2 coordinates. On differentiating the composite l times, we obtain terms
of the form

A(p,q)
(ξ1,ξ2)

(Dr1ξ1, . . . , Drpξ1, Ds1ξ2, . . . , Dsqξ2),

with
∑

ri +∑
sj = l. If p and q are positive, we can bound this term directly

by a multiple of

J1,l(h)
pJ2,l(h)

q

and the size of ‖Dm
(ξ1(h),ξ2(h))

A‖. Suppose next that one of p and q, say p, is zero
and the other, q, is positive. Then we can write

A(0,q)
(ξ1,ξ2)

(Ds1ξ2, . . . , Dsqξ2)

=
∫ 1

0
A(1,q)
(sξ1,ξ2)

(ξ1, Ds1ξ2, . . . , Dsqξ2) ds

using the fact that A(0,q)
(0,y) = 0. The integrand is bounded as the previous terms

were. Finally, if p and q are both zero, we use the identity

A(ξ1, ξ2) =
∫ 1

0

∫ 1

0
D2

(s1ξ1,s2ξ2)
A(ξ1, ξ2) ds1ds2

and the boundedness of the second derivative. �

We apply the observation of this lemma to the function

A(v1, v2) = α(v1 + v2)− α(v1)− α(v2),

regarded as a map

L2
k([−1, 1] × Y )× L2

k([−1, 1] × Y )→ L2
k−1([−1, 1] × Y ).

Let ζs be the map obtained from ζ by translation and restriction,

ζs : Bη2(H )→ L2
k−1([−1, 1] × Y )

h �→ (
τ ∗s ζ(h)

)|[−1,1]×Y

for s ∈ [−T +1, T −1]. The formula for ζ above shows that ζs is the composite
of A with the two maps v1, v2 : Bη2(H )→ L2

k([−1, 1]×Y ) given by translates
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of u1 and u2:

v1 : h �→ u1(h)|[T+s−1,T+s+1]×Y

v2 : h �→ u2(h)|[−T+s−1,−T+s+1]×Y .

On Bη2(H ), the norms of the derivatives Dm
h vi are bounded continuous functions

K ′m(h)e−δ(T+s) and K ′m(h)e−δ(T−s), because (u1, u2) is a smooth map to the
weighted space E∞δ . From the lemma, we therefore obtain

‖Dm
h ζs‖ ≤ K ′′m(h)e−2δT ,

for some continuous function K ′′m, independent of s. By covering ZT with T +1
intervals of length 2, applying the above estimate to each of these, and using
Cauchy–Schwarz, we bound the mth derivative of ζ by a function of the shape
Km(h)e−2δT . This concludes the proof of Lemma 18.3.11. �

We now return to the proof of Proposition 18.3.10. Since η < η2, it follows
that for T ≥ T1 we have ‖ζ(h)‖ + ‖h + g(h)‖ ≤ η2. It follows that we can
write

uT (h) = W (0, h)

UT (h) = W (ζ(h), h+ g(h))

where W is the inverse on Bη2(FT ⊕ H ) of the map S = (FT ,$). The final
rider to the inverse function theorem provides bounds on all the derivatives
of W , by continuous functions on the ball; so the proposition follows from
Lemma 18.3.11 and the chain rule. �

Corollary 18.3.13. For any η < η2, the map µT converges to µ∞ in the
topology of C∞loc(Bη(H ), L2

k−1/2(Y  Ȳ ; E0)) as T goes to infinity.

Proof. By Proposition 18.3.10 above, we can replace

µT (h) = ru(T , h)

by

µ̃T (h) = rU (T , h)
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for T < ∞ without affecting the estimate to be proved. The component of
µ̃T (h) in L2

k−1/2(Ȳ ; E0) is the sum

µ̃T (h) = u1(h)|{0}×Y + u2(h)|{−2T }×Y

= µ∞(h)+ u2(h)|{−2T }×Y .

The second term converges to zero in the C∞loc topology on the ball, because
u2 factors through the inclusion E∞δ → E∞. The same argument applies to the
other component of µ. �

With this corollary, we have completed most of the proof of Theorem 18.3.5.
What remains is to prove that, for finite T , the map (T , h) �→ µT (h) is a
smooth function of the two variables. To this end, fix any T1 > T0. We have
isomorphisms

IT : ET1 → ET

IT : FT1 → FT ,

defined by pulling back sections of E via the map between the cylinders,
(t, y) �→ ((T/T1)t, y). Let ST be the map

ST = (FT ,$) : ET → FT ⊕ H ,

and consider

S̃T = (I−1
T ⊕ 1) � ST � IT

S̃T : ET1 → FT1 ⊕ H .

As maps between the fixed Hilbert spaces ET1 and FT1 ⊕H , the map S̃T varies
smoothly with T , in the sense that (T , x) �→ S̃T (x) is a smooth function of two
variables: indeed, the relevant part of this map is the term

I−1
T (D + α)IT = D̃T + α,

where

D̃T = (T/T1)
d

dt
+ L.

The same smoothness therefore applies to the inverse of S̃T , and hence to the
map ũ defined by

ũ(T , h) = I−1
T u(T , h),
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which solves the equation

S̃T (ũ(T , h)) = (0, h)

for small h. We have

µT (h) = r � u(T , h)

= r � ũ(T , h)

so the result follows. �

18.4 Deducing the gauge-theory version

Consider now a critical point a for the perturbed flow on Cσ
k (Y ). Let γa denote

the corresponding translation-invariant solution on the finite cylinder ZT or Z∞.
Write γa as (A0, s0,φ0) (in temporal gauge), and let (Ǎ0, š0, φ̌0) be notation for a

on the 3-manifold. The first step in deducing Theorem 18.2.1 from the abstract
version is to replace neighborhoods of [γa] in M̃ (ZT ) and M̃ (Z∞, [a]) with
neighborhoods of γa in the set of solutions to the equations in the slice to the
gauge-group action, a subset of C̃τ

k (Z
T ) or C̃τ

k (Z
∞, a). In the case of ZT , the

slice

Sτ
k,a(Z

T ) ⊂ C̃τ
k (Z

T )

was defined in Definition 9.4.2.As in Subsection 14.3, we rewrite this definition
as the set of triples (A, s,φ) ∈ C̃τ

k (Z) satisfying

〈a, !n〉 = 0 at ∂Z

Coulτγa
(A, s,φ) = 0.

(18.8a)

Here we have written A = A0 + a⊗ 1. The same conditions define the slice in
the case T = ∞:

Sτ
k,a(Z

∞) ⊂ C̃τ
k (Z

∞, a).

We will study a neighborhood of [γa] in M̃(ZT ) by studying solutions of
the gauge-fixing equation (18.8a) together with the perturbed Seiberg–Witten
equation

Fτ
q(A, s,φ) = 0. (18.8b)
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In our model problem, we considered a non-linear equation for an element
u in a linear space ET . In our present application, (A, s,φ) belongs to C̃τ

k (Z
T ),

which is not a linear space, because of the constraint that φ(t) = φ|{t}×Y should
lie on the unit sphere in L2(Y ; S) for all t. We therefore choose a linear chart
near γa, identifying a neighborhood of γa in C̃τ

k (Z
T ) with the tangent space at

T τ
k,γa

(ZT ) at γa, by the map

i : T τ
k,γa

(ZT )→ C̃τ
k (Z

T )

i : (a, r,ψ) �→ (A0 + a ⊗ 1, s0 + r,φ)

where

φ(t) = φ̌0 + ψ(t)√
1+ ‖ψ(t)‖2

. (18.9)

(Because (a, r,ψ) is a tangent vector, ψ(t) is L2-orthogonal to the unit
vector φ̌0.)

The choice of chart i enters in a more significant way when we come to
setting up suitable boundary conditions for the equations. The boundary of ZT

is Ȳ  Y , and we have the restriction map

r : C̃τ
k (Z

T )→ C̃σ
k−1/2(Ȳ  Y )× L2

k−1/2(Ȳ  Y ; iR),

where the second component records the normal component of the connection A
at the boundary. In addition to the Neumann-type boundary condition 〈a, !n〉= 0
at the boundary, we wish to impose a spectral boundary condition. To do so
however, we need to use the chart, so as to identify the boundary data C̃σ

k−1/2(Ȳ 
Y ) near (a, a) with a linear space. To do this, we use the same formula (18.9)
to define a similar chart

i : T σ
k−1/2,a × L2

k−1/2(Y ; iR)→ C̃σ
k−1/2(Y )× L2

k−1/2(Y ; iR).

We will use the decomposition:

T σ
k−1/2,a ⊕ L2

k−1/2(Y ; iR) = J σ
k−1/2,a(Y )⊕Kσ

k−1/2,a(Y )⊕ L2
k−1/2(Y ; iR).

(18.10)

We have seen that the extended Hessian is asafoe, and it is hyperbolic because
of the non-degeneracy of a (Lemma 12.4.3). The restriction of this operator to
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Kσ
k−1/2,a gives the direct sum decomposition of Kσ

k−1/2,a as K+ ⊕K−, just as

in (17.12). Let H−
Y and H−

Ȳ
be defined by

H−
Y = {0} ⊕K− ⊕ L2

k−1/2(Y ; iR)

H−
Ȳ
= {0} ⊕K+ ⊕ L2

k−1/2(Y ; iR)

as in (17.15); let H = H−
Ȳ
⊕ H−

Y and $ = $−
Ȳ
⊕$−Y be as in Lemma 17.3.3.

We regard $ as an operator

$ : T σ
k−1/2,a(Ȳ  Y )⊕ L2

k−1/2(Ȳ  Y ; iR)→ H .

We will apply Theorem 18.3.5 to the following equations, for γ = (A0 +
a, s,φ) in a neighborhood of γa = (A0, s0,φ0) ∈ C̃τ

k (Z) on Z = Z∞ or ZT :

Fτ
qγ = 0

Coulτaγ = 0

($ � i−1 � r)γ = h

where

h = (κ1, c1, κ2, c2)

∈ K+ ⊕ L2
k−1/2(Ȳ ; iR)⊕K− ⊕ L2

k−1/2(Y ; iR)

= H−
Ȳ
⊕ H−

Y .

If we write γ̃ = i−1γ , so that γ̃ belongs to

T τ
k,γa

,

then we can write the equations as

(Qγa + α)γ̃ = 0

($ � r)γ̃ = h,

where Qγa is as in (14.12) and α is the remainder of the terms. The equation is
not quite in the form required by Theorem 18.3.5: neither the domain nor the
range is the space of sections of a finite-dimensional vector bundle. The domain
can be converted to this form by the device of (12.13). The range is the vector
bundle Vτ

k−1 → Cτ
k (Z , sZ ) (see (9.18)) and a similar device converts it to a space
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of sections of a finite-dimensional vector bundle. Once we have verified the
necessary hypotheses for its application, Theorem 18.3.5 will provide a solution
γ = u(T , h) or u(∞, h) to these equations when ‖h‖ ≤ η. The boundary
condition ($ � R � i−1)γ = h includes the conditions

〈a, !n〉 = c1 on Ȳ

〈a, !n〉 = c2 on Y .

When c1 and c2 are zero, the trajectory γ is therefore in Neumann gauge, so it
belongs to the slice Sτ

k,γa
. Thus, by restricting the domain of u(T , –), to those h

with c1 = c2 = 0, we will obtain a parametrization of the solutions γ belonging
to the slice, by a ball Bη in K− ⊕K+ = K.

We now turn to verifying the required hypotheses. The fact that the non-linear
terms α satisfy Hypothesis 18.3.3 follows from Condition (i) of Defini-
tion 10.5.1, because i is a diffeomorphism. The more interesting task is to verify
the invertibility of the linearized equations in the case T = ∞, as required by
Hypothesis 18.3.1. The operator whose invertibility we must check is the sum
of two operators, corresponding to the two components of Z∞; so let us look
at only one, the operator

(Qγa ,$−Y � r) : T τ
k,γa

→ Vτ
k−1,γa

⊕ H−
Y . (18.11a)

The proof that this is an isomorphism is much the same as the proof that the
similar operator in Lemma 17.3.3 is Fredholm: indeed the projection $−Y is the
same one that appears there. The argument uses the same device as the proof
of Proposition 17.2.6. To carry out the proof, we write Qγa = (d/dt)+ L, and
let H±

L be the spectral subspaces in L2
1/2(Y ; E0). Theorem 17.2.7 tells us that

the linear map

(Qγa ,$−L � r) : T τ
k,γa

→ Vτ
k−1,γa

⊕ (H−
L ∩ L2

k−1/2) (18.11b)

is an isomorphism, where $−L is the spectral projection with kernel H+
L . As in

the proof of Proposition 17.2.6, we decompose the domain as C ⊕K , where K
is the kernel of Qγa , so as to write the operator (18.11b) as[

Qγa |C 0
x ($−L � r)|K

]
,

where both diagonal blocks are isomorphisms. The image of the r|K is precisely
H−

L ; and as in the proof of Lemma 17.3.3, the projection $−Y is an isomorphism
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on H−
L . So the matrix [

Qγa |C 0
x ($−Y � r)|K

]
also defines an invertible operator. This is the operator (18.11a).

We have now verified the necessary hypotheses for Theorem 18.3.5. What
we learn is that there is an η1 > 0 and maps from the η1 ball,

u(T , –) : Bη1(K)→ Sτ
k,γa

(ZT )

u(∞, –) : Bη1(K)→ Sτ
k,γa

(Z∞),

parametrizing open subsets of the set of solutions to Fτ
q = 0 in the Coulomb–

Neumann slices Sτ
k,γa

(ZT ). The fact that these maps are (Z/2)-equivariant, as
asserted in the last part of Theorem 18.2.1, is a simple consequence of the
uniqueness of the solution. We also learn that there is an η2 > 0 independent
of T , such that the image of u(T , –) contains all solutions γ in Sτ

k,γa
(ZT ) with

‖γ −γa‖L2
k
≤ η2. The statement of Theorem 18.2.1, however, refers to uniform

neighborhoods in the moduli spaces M̃ (ZT ) defined by the inequality ‖γ −
γa‖L2

k
≤ η where γ is an arbitrary gauge representative of the solution, not

necessarily a representative in the slice. The following proposition addresses
this point, and so completes the proof of Theorem 18.2.1.

Proposition 18.4.1. There exists η0 such that for all η < η0, there exists η′,
independent of T , such that:

(i) the map

ῑ : {γ ∈ Sτ
k,γa

(ZT ) | ‖γ − γa‖L2
k (Z)

≤ η } → B̃τ
k (Z

T )

is a diffeomorphism onto its image;
(ii) the image of the above map contains all gauge-equivalence classes [γ ] ∈

B̃τ
k (Z

T ) represented by elements γ with

‖γ − γa‖L2
k (Z

T ) ≤ η′.

Proof. We must show that, for some η′ independent of T and every γ with
‖γ − γa‖L2

k
≤ η′, there is a gauge transformation eξ in Gk+1(ZT ) with

eξ · γ ∈ Sτ
k,γa

(ZT )
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and ‖eξ · γ − γa‖L2
k
≤ η. The non-linear equation, to be solved for ξ , is of

the form

Coulτγa
(eξ · γ ) = 0

〈dξ , !n〉 = c on ∂ZT

which we can write as

dτ ,†
γa

dτ
γa
ξ + β(ξ) = µ

〈dξ , !n〉 = c on ∂ZT ,

where ‖µ‖L2
k−1

and ‖c‖L2
k−1/2

are bounded by Cη′. The non-linear part β(ξ)

represents a map

β : L2
k+1(Z

T )→ L2
k−1(Z

T )

which is infinitely differentiable and has β(0) = 0 and D0β = 0. Furthermore,
it follows from the multiplication theorems that it satisfies a Lipschitz condition:
for ξ1, ξ2 in the η ball in L2

k+1, we have

‖β(ξ1)− β(ξ2)‖ ≤ ε(η)‖ξ1 − ξ2‖,

where ε(η)→ 0 as η→ 0, and ε(η) is independent of T . Given these properties
of the non-linear terms, the existence of a solution (when η′ is sufficiently small)
will follow from the invertibility of the linear terms; and to prove the lemma,
we need to establish that the solution ξ to the linear equation

dτ ,†
γa

dτ
γa
ξ = µ

〈dξ , !n〉 = c on ∂ZT
(18.12)

satisfies a bound

‖ξ‖L2
k+1
≤ K

(‖µ‖L2
k−1
+ ‖c‖L2

k−1/2

)
for some K that is independent of T . We can view (18.12) as equations for
w = dτ

γa
ξ . This w is along the gauge orbit at the solution γa, so it satisfies the

linearized Seiberg–Witten equations and the projection of its boundary values
to Kσ

a (Y ) is zero. We can therefore apply Lemma 18.3.8 to w to obtain

‖w‖L2
k
≤ K1

(‖µ‖L2
k−1
+ ‖c‖L2

k−1/2

)
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for some K1 independent of T . Finally,

‖ξ‖L2
k+1
≤ K2‖w‖L2

k

for some K2 independent of T , by the argument of Lemma 13.3.1. �

19 Gluing trajectories

Proposition 18.1.3 described a simple model gluing theorem for finite-
dimensional Morse theory. In this section we take up the task of proving such a
theorem for the Chern–Simons–Dirac functional. There were two main ingre-
dients in the finite-dimensional case and we already have the corresponding
versions. First, there is the compactness theorem for the spaces of broken tra-
jectories, Theorem 16.1.3. Second, there is Theorem 18.2.1 which is used in
place of Proposition 18.1.4. Before getting into the proof there is one point
which was trivial in the finite dimensional situation and needs to be addressed.
We need to show that a concatenation of trajectories on adjacent finite intervals
is a trajectory on the union. This is done in the first subsection.

19.1 Moduli spaces as fiber products

Consider the moduli space M̃ (I×Y ) ⊂ B̃τ
k (I×Y ) of solutions to the perturbed

Seiberg–Witten equations, Fτ
qγ = 0 on I × Y . We suppose that I is a compact

interval, written as a union of two subintervals I1, I2, meeting at a single point,
say 0. Restriction to the two subcylinders I1 × Y and I2 × Y defines a map

ρ : M̃ (I × Y )→ M̃ (I1 × Y )× M̃ (I2 × Y ).

We also have two restriction maps from the product

Ri : M̃ (I1 × Y )× M̃ (I2 × Y )→ Bσ
k−1/2({0} × Y ), i = 1, 2.

The image of ρ is contained in the fiber product

Fib(R1, R2) = {m | R1(m) = R2(m) }
⊂ M̃ (I1 × Y )× M̃ (I2 × Y ).

Recall that the moduli spaces M̃ (I × Y ) etc. are Hilbert submanifolds of the
corresponding configuration spaces B̃τ

k (Theorem 17.3.1). The map ρ, as the
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restriction of a smooth map on the configuration space, is a smooth map of
Hilbert manifolds.

Lemma 19.1.1. The image of ρ is Fib(R1, R2), and ρ : M̃ (I × Y ) →
Fib(R1, R2) is a homeomorphism.

Proof. To show surjectivity, let γ1 ∈ Cτ
k (I1 × Y ) and γ2 ∈ Cτ

k (I2 × Y ) be
solutions to the perturbed Seiberg–Witten equations Fτ

q(γi) = 0, and suppose
that the restrictions Rγ1 and Rγ2 in Cσ

k−1/2({0} × Y ) are gauge-equivalent on
{0} × Y . We must show there is a solution γ ∈ Cτ

k (I × Y ) whose restrictions to
I1 × Y and I2 × Y are gauge-equivalent to γ1 and γ2 respectively.

Let v0 ∈ Gk+1/2(Y ) be a gauge transformation that takes the restriction of
γ2 to the restriction of γ1. We can extend v0 to an element v of Gk+1(I2 × Y ).
(See Theorem 17.1.1.) By replacing γ2 with vγ2 we arrive at a situation in
which the restrictions agree in Cτ

k−1/2({0} × Y ). Next, we take v1, v2 to be L2
k

gauge transformations, equal to the identity on {0} × Y , such that γ̃1 = v1γ1

and γ̃2 = v2γ2 are in temporal gauge on I ′1 × Y and I ′2 × Y , where I ′i is, say,
(1/2)Ii. We can take γ̃i to be the identity also in a neighborhood of the other
boundary component of each Ii × Y . The solutions γ̃i will belong to Cτ

k−1 on
their respective domains, and will be of class L2

k outside a neighborhood of
{0} × Y .

We claim that γ̃1 and γ̃2 are (without further gauge transformation) the restric-
tions of an element γ̃ ∈ Cτ

2 (I × Y ) to the two halves of the cylinder I × Y . As
in (10.9), we can regard γ̃i as sections of a vector bundle V pulled back from
Y to the cylinder, where they satisfy an equation of the form

(d/dt)γ̃i = T γ̃i + β(γ̃i),

where T is a first-order differential operator on Y and β maps L2
j to L2

j on the

cylinder, and arises from a map on Y mapping L2
j to L2

j also. Our hypotheses so
far mean that the restrictions of γ̃i to {0}×Y agree as elements of (in particular)
L2

3/2(Y ; V0). From the equation above, it follows that (d/dt)γ̃i are elements of

L2
1 on the two parts of the cylinder with equal boundary values in L2

1/2(Y ; V0).
These two facts together mean that γ̃i can be regarded as the restriction of a γ̃

of class L2
2, as claimed.

Now we can find an L2
3 gauge transformation v1 such that γ1 = v1γ̃ is

in Coulomb–Neumann gauge with respect to a smooth, translation-invariant
trajectory γ0. A solution to the equations, of class L2

2 and in Coulomb gauge, is
of class L2

k on any subcylinder. If we use the fact that γ̃ was already of class
L2

k near ∂I × Y , we can apply a cut-off function to v1 to obtain a new gauge
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transformation v2 (equal to 1 near ∂I × Y ), so that γ = v2γ̃ is of class L2
k on

all of I × Y . This establishes the surjectivity of ρ.
The injectivity of ρ means the uniqueness of the γ just constructed, up

to gauge transformation. This is seen using an argument similar to the one
above. Suppose γ and γ ′ are two elements of Cτ

k (I × Y ) with the property
that their restrictions to both I1× Y and I2× Y are gauge-equivalent, by gauge
transformations v1 and v2. Then the restrictions of vi to {0}×Y agree as elements
of L2

k+1/2, and a fortiori as elements of L2
1/2. Because their L2

1/2 boundary values

agree, vi are the two restrictions of an L2
1 gauge transformation v. From the

equation

v−1dv = a′ − a

(where a′ and a are the 1-form components of γ , γ ′), it follows by bootstrapping
that v is in L2

k+1.
The continuity of the inverse map to ρ follows from the continuity of the

maps used to select the gauge transformations in the proof of surjectivity. �

Lemma 19.1.2. The map

(R1, R2) :

M̃ (I1 × Y )× M̃ (I2 × Y )→ B̃σ
k−1/2({0} × Y )× B̃σ

k−1/2({0} × Y )

is transverse to the diagonal in the product. So Fib(R1, R2) is a smooth Hilbert
submanifold of the product.

Proof. Let ([γ1], [γ2]) belong to the fiber product. By the previous lemma, we
can suppose these are the restrictions of a solution γ on I × Y . The proof of
Proposition 17.3.1 showed not just that M̃ (I×Y ) is a Hilbert submanifold of B̃τ

k
at [γ ], but that the operator Qγ is surjective. It follows from Proposition 17.2.8
that the kernels of Qγ1 and Qγ2 restrict to transverse linear subspaces H1, H2 of
Tγ0 C̃σ

k−1/2(Y )⊕ L2
k−1/2(Y ; iR):

H1 + H2 = Tγ0 C̃σ
k−1/2(Y )⊕ L2

k−1/2(Y ; iR).

Here γ0 is the restriction of γ as an element of C̃σ
k−1/2(Y ). The statement that

the derivative of (R1, R2) is transverse at the pair [γ1], [γ2] is a consequence, for
it is equivalent to the statement that the images of H1 and H2 in T[γ0]B̃σ

k−1/2(Y )

are transverse. �
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Because of this lemma, it makes sense to ask for a strengthening of
Lemma 19.1.1:

Proposition 19.1.3. The map ρ is a diffeomorphism from the Hilbert manifold
M̃ (I × Y ) to its image, the fiber product Fib(R1, R2).

Proof. We already know that ρ is a homeomorphism, and it is a smooth map.
We must see that the derivative is an isomorphism at each [γ ] in the domain.
This is proved in the same way as Lemma 19.1.1, but replacing the perturbed
Seiberg–Witten equations by their linearization. �

Rather than a compact interval I , we can consider instead the whole line R and
the cylinder Z = R×Y , decomposed as the union of manifolds with boundary,
R≤ × Y and R≥ × Y . On Z we consider the (finite-dimensional) moduli space
M̃ ([a], [b]) for a pair of critical points [a], [b]. On the two half-cylinders, there
are moduli spaces M̃ (R≤ × Y , [a]) and M̃ (R≥ × Y , [b]), which are Hilbert
manifolds, with smooth maps R1, R2 to B̃σ

k−1/2({0} × Y ). The proofs above

adapt readily, to show first that the moduli space M̃ ([a], [b]) is homeomorphic
to the fiber product Fib(R1, R2); and second, that if the moduli space M̃ ([a], [b])
is regular, and if we are not in the boundary-obstructed case, then (R1, R2) is
transverse to the diagonal at ρ(γ ), and the map ρ to the fiber product is a
diffeomorphism. (Recall that the term “regular” means that Qγ is surjective,
except in the boundary-obstructed case: see Definition 14.5.6.) We will return
to the boundary-obstructed case shortly.

Note that M̃ ([a], [b]) is the union of the various M̃z([a], [b]) for different
relative homotopy classes z; and these components may have differing dimen-
sions. There is also a fiber product description of each M̃z([a], [b]), which we
can obtain using the restriction maps R̃i to the quotient of C̃σ

k−1/2(Y ) by the
identity component Ge

k+1/2(Y ) of the gauge-group.
There is also a version of this construction for more than two intervals.

Consider a decomposition of R as a union of intervals I0, . . . , In, where Ii−1 ∩
Ii = {ti}, and t1 ≤ t2 ≤ · · · ≤ tn. (The intervals I0 and In are non-compact.) Let
[a], [b] be critical points, and let

M̃ (i) =

⎧⎪⎪⎨⎪⎪⎩
M̃ (I0 × Y , [a]), i = 0

M̃ (In × Y , [b]), i = n

M̃ (Ii × Y ), otherwise.
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Set

B̃ =
n∏

i=1

B̃σ
k−1/2({ti} × Y ).

There are two maps

R+, R− :
n∏

i=0

M̃ (i)→ B̃,

given by the restriction maps to the right-hand and left-hand endpoints of the
intervals Ii respectively. (Thus R+, for example, ignores the component in
M̃ (n).) Define

Fib(R+, R−) =
{

m ∈
n∏

i=0

M̃(i)

∣∣∣∣R+m = R−m

}
.

By a slight abuse of terminology we shall still refer to this as a fiber product.
There is an obvious restriction map ρ from M̃ ([a], [b]) to Fib(R+, R−), and we
have:

Theorem 19.1.4. The map ρ is a homeomorphism from the moduli space
M̃ ([a], [b]) to Fib(R+, R−). If we suppose, in addition, that the moduli space
is regular and not boundary-obstructed, then the maps R± have the property
that (R+, R−) :

∏n
i=0 M̃ (i) → B̃ × B̃ is transverse to the diagonal, so that

Fib(R+, R−) is a smooth submanifold of
∏n

i=0 M̃ (i). In this case, the map ρ is
a diffeomorphism.

Conversely, if the moduli space is not boundary-obstructed, and [γ ] is a point
in the moduli space with the property that (R+, R−) is transverse to the diagonal
at ρ([γ ]) ∈ Fib(R+, R−), then M̃ ([a], [b]) is regular in a neighborhood of [γ ].
Proof. Only the converse direction is essentially new here. Its proof is based
on the converse direction in Proposition 17.2.8. �

Finally, we provide a version of this theorem in the boundary-obstructed case,
where the critical points are reducible, a is boundary-stable and b is boundary-
unstable. Let ∂Bσ

k−1/2(Y ) ⊂ B̃σ
k−1/2(Y ) be the codimension-1 submanifold

given by s = 0, and let

π∂ : B̃σ
k−1/2(Y )→ ∂Bσ

k−1/2(Y ) (19.1)



348 V Compactness and gluing

be the projection [B, s,ψ] �→ [B, 0,ψ]. Let the intervals Ii (i = 0, . . . , n) be as
before and let i0 be some chosen index, 1 ≤ i0 ≤ n, and suppose that ti0 = 0. Set

B̃′ = ∂Bσ
k−1/2({0} × Y )×

∏
i =i0

B̃σ
k−1/2({ti} × Y ),

and let

R′+, R′− :
n∏

i=0

M̃ (i)→ B̃′

be the maps obtained by composing R± with the projection π∂ on the i0 factor.
Then we have:

Theorem 19.1.5. Suppose the moduli space M([a], [b]) is boundary-
obstructed. Then the map ρ is a homeomorphism from M([a], [b]) to
Fib(R′+, R′−). If we suppose, in addition, that the moduli space is regular, then
the maps R′± have the property that (R′+, R′−) :

∏n
i=0 M̃ (i) → B̃′ × B̃′ is

transverse to the diagonal, so that Fib(R′+, R′−) is a smooth submanifold of∏n
i=0 M̃ (i). In this case, the map ρ is a diffeomorphism.
Conversely, if [γ ] is a point in the moduli space with the property that

(R′+, R′−) is transverse to the diagonal at ρ([γ ]), then M([a], [b]) is regular in
a neighborhood of [γ ].

Proof. A priori, the space Fib(R′+, R′−) might be strictly larger than
Fib(R+, R−); but in the boundary-obstructed case, the two spaces are equal
because the argument which shows that the moduli space M([a], [b]) contains
only reducibles also shows that Fib(R′+, R′−) contains only reducibles. So ρ is
indeed a homeomorphism to Fib(R′+, R′−). The smoothness of Fib(R′+, R′−) and
the fact that ρ is a diffeomorphism proceed as before. �

In the boundary-unobstructed case, the space Fib(R′+, R′−) is strictly larger
than the image Fib(R+, R−) of the moduli space M̃ ([a], [b]) (unless both are
empty). Let us take the case n = 2 and t1 = 0, so that the two intervals I0, I1

are the negative and positive half-lines, and

B̃′ = ∂Bσ
k−1/2({0} × Y ).



19 Gluing trajectories 349

We give the fiber product in this case a name:

Definition 19.1.6. For any pair of critical points [a], [b]we define the extended
moduli space EM̃([a], [b]) as the fiber product Fib(R′+, R′−) resulting from the
decomposition of R into the positive and negative half-lines, as above. Note
that EM̃([a], [b]) does not have an action of R by translations. ♦

To spell out the meaning of this definition, let us recall that a typical element
of Bσ

k−1/2(Y ) can be written as [A, s,φ], with s ≥ 0 as in Subsection 6.1; we have

Bσ
k−1/2(Y ) = B′ × R≥

where R≥ is the s coordinate. Similarly,

B̃σ
k−1/2(Y ) = B′ × R.

An element of the extended moduli space EM̃([a], [b]) consists of a pair of
gauge-equivalence classes of solutions to the perturbed equations, ([γ−], [γ+]),
defined on the negative and positive closed half-lines respectively. The restric-
tions of [γ−] and [γ+] to {0}×Y are not required to be equal: only the projections
of the restrictions to B′ are required to match. Thus we can think of an element
of EM̃([a], [b]) as a trajectory [γ ] defined on the whole line but having a dis-
continuity in the s coordinate across {0} × Y . We therefore see that M̃ ([a], [b])
arises as the fiber of a map δ,

M̃ ([a], [b]) ↪→ EM̃([a], [b]) δ
↪→ R,

where δ measures the size of the discontinuity in the s coordinate:

δ = s([γ+]|{0}×Y )− s([γ−]|{0}×Y ). (19.2)

Because it determines a path in ∂Bσ
k−1(Y ), an element of EM̃([a], [b])

determines a relative homotopy class, and so we can write

EM̃([a], [b]) =
⋃

z

EM̃z([a], [b]).

We have already observed that EM̃([a], [b]) coincides with M̃ ([a], [b]) in
the boundary-obstructed case (in other words, δ is identically zero). In the
boundary-unobstructed case, if M̃ ([a], [b]) is regular, then EM̃([a], [b]) is
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regular in a neighborhood of M̃ ([a], [b]), and contains M̃ ([a], [b]) as a
smooth codimension-1 submanifold, because π∂ is a submersion. We say that
EM̃([a], [b]) is regular at m if the map (R′+, R′−) is transverse to the diagonal at
m. We therefore have:

Proposition 19.1.7. If EM̃([a], [b]) is regular at m, then a neighborhood of m
in EM̃z([a], [b]) is a smooth (d + 1)-manifold, where d = grz([a], [b]). This
holds in both the boundary-obstructed and -unobstructed cases. �

Finally, we can consider the extended moduli space with a fiber product
description with more than two intervals:

Theorem 19.1.8. Theorem 19.1.5 continues to hold without the hypothesis
that the moduli space is boundary-obstructed, if we replace M([a], [b]) by
EM̃([a], [b]) in the statement. �

19.2 Localized trajectories and centered trajectories

For an element γ ∈ Cσ
k−1/2(Y ), we write:

e(γ ) = ‖(grad−L)σ‖2
L2(Y )

.

This is a smooth, gauge-invariant function on the blown-up configuration space,
vanishing precisely at the critical points of the flow.

Lemma 19.2.1. Given any pair of critical points a, b, there exists a con-
stant ε > 0 such that for any component [γi] of any broken trajectory
[γ̆] ∈ M̆+

z ([a], [b]), there exists a t with

e(γi(t)) > ε.

Proof. This follows from the compactness theorem for M̆+
z ([a], [b]) and the

fact that there are no non-constant trajectories (broken or unbroken) for which
e(γ (t)) is identically zero. �

Let a and b be given, and let ε > 0 be as in the lemma. Let β be a smooth
cut-off function with β(t) = 0 for t ≤ ε and β(t) > 0 for t > ε. If [γ ] ∈
Mz([a], [b]), the function

β � e(γ (t))
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is non-negative, not everywhere zero, and supported in a compact interval.
We can therefore consider the center of mass of this distribution on the real
line. For each unparametrized trajectory [γ̆ ] in M̆z([a], [b]), there is a unique
parametrized representative [γ ] in Mz([a], [b]) for which this center of mass is
zero. The idea of using β �e(γ (t)) to locate a center for a trajectory is applicable
also to a solution defined on a finite interval, as in the next definition.

Definition 19.2.2. Let ε and β be given, and let I = [t1, t2] be any interval of
length greater than 2. A solution [γ ] ∈ M(I × Y ) is called centered if

(i) e(γ (t)) < ε/2 for t ∈ [t1, t1 + 1] and t ∈ [t2 − 1, t2];
(ii) e(γ (t)) > ε for some t in [t1, t2]; and

(iii) the center of mass of the distribution β � e(γ (t)), namely the quantity

c(γ ) =
∫

I
tβ � e(γ (t))dt

/ ∫
I
β � e(γ (t))dt

is at the center of the interval 1
2 (t1 + t2).

We write M cen(I×Y ) for the subset of M(I×Y ) consisting of centered solutions.
♦

The point of introducing the cut-off function into the above definition is that
it makes the center-of-mass function c behave quite simply: if γ satisfies the
first two conditions in the definition, then so does the translate τ ∗δ γ for small δ;
and the center of mass of this translate is then c(γ )− δ.

We now apply this concept to the restrictions of a trajectory [γ ] ∈ Mz([a], [b])
to intervals I ⊂ R.

Definition 19.2.3. Let a, b, ε and β be as above. An interval I = [t1, t2] is a
local centering interval for [γ ] ∈ Mz([a], [b]) if the restriction of [γ ] to I is
centered, in the sense of Definition 19.2.2.

Let I1, . . . , In be a finite collection of disjoint intervals, whose centers
c1, . . . , cn are increasing. These form a complete collection of local center-
ing intervals of length L for [γ ] if each Im is a local centering interval, the
length of each Im is L, and β � e(γ (t)) is supported in

⋃
m Im. ♦

We extend this language a little further. If [γ̆ ] is an unparametrized trajectory
in M̆z([a], [b]), we can talk about a local centering interval for [γ̆ ] as being a
local centering interval for a parametrized representative (which by transla-
tion gives a local centering interval for any other representative). We can also
allow broken trajectories: [γ̆] can be an unparametrized broken trajectory, with
components [γ̆i], i = 1, . . . , l.
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Definition 19.2.4. A complete collection of local centering intervals of length
L for a broken trajectory

[γ̆] = ([γ̆1], . . . , [γ̆l]
)

means a collection of intervals {Ii,m}, with 1 ≤ m ≤ ni, such that (Ii,1, . . . , Ii,ni )

is a complete collection of local centering intervals of length L for the ith
component, [γ̆i]. ♦

Lemma 19.2.5. The subset of M(I × Y ) defined by the first two conditions in
Definition 19.2.2 is open, and the centered solutions M cen(I ×Y ) are a closed,
smooth submanifold of this open set.

Proof. The first statement is clear. The centered solutions M cen(I × Y ) are cut
out as the level set of a smooth function

c : M ′(I × Y )→ R,

defined on the open subset M ′(I×Y ) ⊂ M(I×Y ) defined by the first conditions.
We claim that the derivative of c is nowhere zero on M ′(I × Y ). Because c is
gauge-invariant, we can consider instead the derivative of the function c on U ,
the inverse image of M ′(I × Y ) in Cτ

k (I × Y ). For γ ∈ U , the differential of c
is a linear function on

Tγ U = ker
(
DγFq : T τ

k,γ → Vτ
k−1,γ

)
which is a bounded linear functional in the L2 norm on Tγ Ũ . So dc extends to
the L2 completion.

The infinitesimal action of translations generates a “vector field”, or more
specifically a section of T τ

k−1, which we write as γ̇ . Because the equations are
translation-invariant, we have

γ̇ ∈ ker
(
DγFq : T τ

k−1,γ → Vτ
k−2,γ

)
.

The pairing dc(γ̇ ) is −1, so dc is non-zero on T τ
k−1. The lemma follows if we

show that Tγ U is dense in the above kernel. As in the proof of Theorem 17.3.1,
we can replace DγFq by the operator Qγ : we write kerj for the kernel of Qγ

acting on T τ
j , and we claim that kerk is dense in ker1. To verify the claim, it is

enough to exhibit a right inverse P for the operator

Qγ : T τ
1,γ (I × Y )→ Vτ

0,γ (I × Y )⊕ L2(I × Y ; iR)
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having the property that P maps L2
j−1 to L2

j for 1 ≤ j ≤ k. We recall that Qγ

has the form D0 + h, where D0 is an elliptic operator of the standard form
(d/dt) + L0, and we observe that a suitable P is obtained by considering the
unique solution u to the equation Qγ u = v satisfying a boundary condition
$u = 0, where $ is a finite-rank modification of the spectral projections $0

defined by L0 at the two ends of the cylinder. The required properties follow
from Theorem 17.1.3. �

The above definition of a complete collection of local centering intervals is
constructed so as to give a description of neighborhoods of strata in the space
of unparametrized broken trajectories. Let a0, a1, . . . , an be critical points, with
[a] = [a0] and [b] = [an]. Let Km ⊂ M([am−1], [am]) be a compact subset of
the space of parametrized trajectories (m = 1, . . . , n), let K̆m be its image in
M̆([am−1], [am]), and let K̆ ⊂ M̆+([a0], [an]) be the corresponding subset of
the space of unparametrized broken trajectories:

K̆ =
n∏

m=1

K̆m

⊂
n∏

m=1

M̆ ([am−1], [am]). (19.3)

Let ε be chosen as in Lemma 19.2.1, and let β be a suitable cut-off function. Use
these to define the centered moduli spaces M cen(I × Y ). We seek to describe
a neighborhood W̆ of K̆ in M̆+([a0], [an]), by presenting each nearby broken
trajectory [γ̆] in a standard form.

Lemma 19.2.6. Given ε and β as above we can find L0, depending on K̆ , with
the following property. For all L ≥ L0, there exists a neighborhood W̆ of K̆ in
M̆+

z ([a0], [an]) such that each broken trajectory

γ̆ = ([γ̆1], . . . , [γ̆l]) ∈ W̆

admits a unique complete collection of local centering intervals {Ii,m} of length
2L. This collection has n members.

Proof. For a given neighborhood W̆ , let W̆ o denote the intersection of W̆ with
the unbroken trajectories. It will suffice to show we can choose W̆ so that every
[γ̆ ] in W̆ o has a unique collection of local intervals Ii of length 2L, and that the
collection has n members. It will also suffice to consider the case that K is a
singleton, consisting of a single broken trajectory [γ̆∗] of n components.
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Choose a collection of neighborhoods Uc ⊂ Bτ
k ([−1, 1] × Y ) with the sepa-

rating property, as in Definition 16.2.3. Let these be sufficiently small that the
function e is everywhere less than ε/2 on the corresponding neighborhoods
Vc ⊂ Cσ

k−1(Y ). Any path joining Vai−1 to Vai must pass through points where
e > ε.

Following the proof of the compactness theorem for the space of broken
trajectories (see Subsection 16.3 in particular), we can find a neighborhood
W̆ of [γ̆∗] and a length L1 such that for any representative γ of an unbroken
element [γ̆ ] ∈ W̆ , we have a decomposition of R into intervals Ii (1 ≤ i ≤ n)
of length 2L1 and intervals Ji (0 ≤ m ≤ n), such that

t ∈ Ji =⇒ τ ∗t γ |[−1,1] ∈ Uai . (19.4)

Furthermore, given any T , we can choose W̆ so that the Ji all have length at
least T . (Recall that the first and last of the J0 and Jm have infinite length,
being half-lines.) The condition (19.4) ensures that β � e is supported in

⋃
i Ii.

Furthermore, e is less than ε/2 at points distance 1 or less from the endpoints
of each Ii; and e must be somewhere greater than ε on each Ii.

At this point, the intervals Ii look like a complete collection of local centering
intervals, except that we do not know that the center of mass of β � e on each Ii

is at the center of the interval. As long as T > 2L1 however, we can translate the
intervals so as to locate their centers at the appropriate centers of mass, without
disturbing the other conditions.

We have now established the existence of a neighborhood W̆ which is small
enough to ensure the existence of a complete collection of local centering
intervals {Ii} of length 2L1 with n members. By making W̆ smaller again, we
can arrange that the lengths of the complementary intervals Ji are all at least
T > 2L1, and it is then clear this collection is unique. �

The lemma provides a picture of any (possibly broken) trajectory in the
neighborhood W̆ as having exactly n intervals of length 2L containing the
support of β � e. Within each interval, the solution is centered. We define n− 1
positive real numbers S1, . . . , Sn−1 as the distances between the centers of these
intervals, taking Sm to be infinity if the intervals belong to different components.
That is, let

µ : {1, . . . , n} → { (i, m) | 1 ≤ i ≤ l, 1 ≤ m ≤ ni }
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be the map respecting lexicographic order, and define the mth separation Sm of
the local centering intervals {Ii,m} to be:

Sm =
{

cµ(m+1) − cµ(m), if µ(m+ 1), µ(m) have the same first component
∞, otherwise,

where ci,m is the center of Ii,m. Because the lemma provides a neighborhood W̆ of
K̆ on which the centering intervals exist and are unique, we have a well-defined
map

S : W̆ → (0,∞]n−1, (19.5)

with components Sm. If we start with a larger compact subset K̆ of the stra-
tum (19.3), then we will end up with a different neighborhood W̆ ; but on the
intersection of the neighborhoods the two collections of centering intervals will
coincide, and the two functions S will agree. There is therefore a neighborhood
W̆ of the entire stratum on which we can define S. The map S will provide the
framework for our description of the neighborhood of the stratum.

Definition 19.2.7. Let (Q, q0) be a topological space, let π : S → Q be a
continuous map, and let S0 ⊂ π−1(q0). We say that π is a topological sub-
mersion along S0 if for all s0 ∈ S0 we can find a neighborhood U of s0 in S, a
neighborhood Q′ of q0 in Q and a homeomorphism (U ∩ S0)× Q′ → U such
that the diagram

(U ∩ S0)× Q′ ��

��

U

π

��
Q′ Q′

commutes. ♦

We are now able to state the main result about the neighborhood of the
stratum

n∏
i=1

M̆ ([ai−1], [ai]) ⊂ M̆+([a0], [an]) (19.6)



356 V Compactness and gluing

in the case that none of the moduli spaces involved are boundary-obstructed.
The theorem tells us that M̆+([a0], [an]) is locally homeomorphic to a product
of the stratum (19.6) and the corner of an (n− 1)-cube.

Theorem 19.2.8. Suppose the moduli spaces M([ai−1], [ai]) are boundary-
unobstructed, for i = 1, . . . , n. Then there is a neighborhood W̆ of the subset
(19.6) in M̆+([a0], [an]) and a map

S : W̆ → (0,∞]n−1

such that S−1(∞, . . . ,∞) is the subset (19.6) and such that S is a topological
submersion along (19.6).

19.3 Proof of the gluing theorem: the unobstructed case

Fix L > 0 and let Tj ∈ (1,∞], for j = 1, . . . , n− 1. Write

T = (T1, . . . , Tn−1) ∈ (1,∞]n−1.

As in Section 18, let ZT denote the finite cylinder [−T , T ] × Y if T <∞, and
let Z∞ denote the disjoint union of two half-cylinders

Z∞ = Z−  Z+.

Set

ZT = Z−  ZL  ZT1  ZL  · · ·  ZTn−1  ZL  Z+.

This disjoint union has 4n boundary components, 2n of which have the positive
orientation. If we identify each positively oriented boundary component with
the negatively oriented boundary component of the next part of ZT (in the order
in which they are written), we obtain l copies of the infinite cylinder R × Y ,
where l − 1 is the number of Tj that are infinite. See Figure 5, which illustrates
the case that n = 2 and T1 = ∞. Note that we omit L from the notation for ZT .

For any cylinder I ×Y , let dk denote the metric on Bτ
k (I ×Y ) obtained from

the L2
k distance on Cτ

k (I × Y ):

dk([γ ], [γ ′]) = inf

{
‖uγ − γ ′‖L2

k,a

∣∣∣∣u ∈ Gk+1(I × Y )

}
.
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Fig. 5. Obtaining two doubly infinite cylinders by gluing the components of ZT .

Let Mη(Z±; [a]) denote the moduli space of trajectories [γ ] on the half-cylinder
Z±, asymptotic to [a] and having

dk([γ ], [γa]) ≤ η.

For 0 < T < ∞, let Mη(ZT ; [a]) similarly denote the moduli space of all
solutions [γ ] with dk([γ ], [γa]) < η. For T = ∞, we let

Mη(Z
∞; [a]) ⊂ Mη(Z

−; [a])×Mη(Z
+; [a])

be the subset of pairs ([γ−], [γ+]) with

dk([γ−], [γa])2 + dk([γ+], [γa])2 < η2.

Set

M T = M(Z−; [a0])×M(ZL)×M(ZT1)×M(ZL)

× · · · ×M(ZTn−1)×M(ZL)×M(Z+; [an]). (19.7)

Inside M T is a subset

M T ⊃ M cen
T ,η,

defined by

M cen
T ,η = Mη(Z

−; [a0])×M cen(ZL)×Mη(Z
T1 ; [a1])×M cen(ZL)

× · · · ×Mη(Z
Tn−1 ; [an−1])×M cen(ZL)×Mη(Z

+; [an]). (19.8)

Let Fib(R−T , R+T ) ⊂ M T be the subset

Fib(R−T , R+T ) = {m ∈ M T | R−T (m) = R+T (m) ∈ (Bσ
k−1/2(Y ))2n }
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where

R−T , R+T : M T → (Bσ
k−1/2(Y ))2n−2

are obtained from the two different restriction maps, to the negative and positive
boundary components respectively. We write

M =
⋃
T

M T

and

M cen
η =

⋃
T

M cen
T ,η.

We also write Fib(R−, R+) ⊂ M for the union of the fiber products. (We only
need to consider M , M cen

η and Fib(R−, R+) as sets, not as topological spaces.)
Let us explain what these definitions are about. If m ∈ Fib(R−T , R+T ) ⊂ M T ,

then we can concatenate the component trajectories of m, using Lemma 19.1.1.
Thus we have a map

c : Fib(R−T , R+T )→ M̆+([a0], [an])

obtained by concatenation. The number of components in the broken trajectory
c(m) is l, where again l − 1 is the number of j with Tj = ∞. If η is sufficiently
small and

m ∈ Fib(R−T , R+T ) ∩M cen
T ,η,

then the broken trajectory c(m) has a complete collection of n local centering
intervals of length 2L: these centering intervals are the images of the n cylinders
ZL ⊂ ZT . We need to chooseη small enough that γ is in Mη(ZT ); then e(γ (t)) ≤
ε for all t ∈ [−T , T ]. The separations Si between the centers of the local
centering intervals are the lengths

Si(m) =
{

2Ti + 2L, if Ti <∞
∞, if Ti = ∞.

(19.9)

Taking the union over all T , we obtain a map

c : Fib(R−, R+)→ M̆+([a0], [an]).
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Lemma 19.2.6 provides a preferred right inverse to c on a subset W̆ ⊂
M̆+([a0], [an]). The main content of the following proposition is that after
making L sufficiently large and passing to a smaller W̆ the image of this right
inverse is contained in M cen

η .

Proposition 19.3.1. Let K̆ ⊂ ∏
M̆([ai−1], [ai]) be a compact subset. There

exists η0 > 0 such that for all η < η0 and all L > L1(η), the image of the map

c : Fib(R−, R+) ∩M cen
η → M̆+([a0], [an]), (19.10)

obtained by concatenating trajectories, contains an open neighborhood W̆ =
W̆ (η, L) of K̆ ⊂∏

M̆([ai−1], [ai]). Furthermore, c is injective on

c−1(W̆ ) ∩M cen
η .

Proof. The injectivity asserted in the last part of the proposition follows from
the uniqueness of the collection of local centering intervals. The main assertion
is the first part of the proposition.

For each critical point [c] in Bσ
k (Y ), let Uc be a gauge-invariant neighborhood

of the constant trajectory γc in Cτ
k ([−1, 1] × Y ). Let these be sufficiently small

that e(γ (t)) < ε for all γ ∈ Uc and all t ∈ [−1, 1]. For all finite T ≥ 1, let

Uc(T ) ⊂ Cτ
k (Z

T )

be defined as the set of trajectories γ on [−T , T ] × Y , such that the translate
τ ∗s γ belongs to Uc for all s in [−T + 1, T − 1]. Extend this definition to the
case T = ∞ in the obvious way. Let

M cen
U ⊂ M

be defined just as M cen
η is, but replacing the factors Mη(ZTi ; [ai]) in the def-

inition (19.8) by the neighborhoods M(ZT ) ∩ (Uai (T )/Gk+1). The proof of
Lemma 19.2.6 shows that the image of the map

c : Fib(R−, R+) ∩M cen
U → M̆+([a0], [an]) (19.11)

contains a neighborhood W̆ of the product stratum. The key point is to be able to
pass from a neighborhood such as Uai (T ), defined by a local condition along the
trajectory, to a neighborhood such as Mη(ZT ; [ai]) defined by the L2

k distance
dk on the entire cylinder [−T , T ] × Y , uniformly in T .
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We exploit our freedom to increase the length L. Suppose [γ̆] is an element
of W̆ and has preimage m ∈ M cen

U ,L under the map cL (where we have now made
the dependence on L explicit). If the coordinates Ti for m all exceed T0+C, then
[γ̆] has an easily described preimage m′ under the map cL′ for L′ = L+C. The
T coordinates of m′ are given by T ′i = Ti−C, and the component γ ′ of m′ in the
space M(ZT ′i ; [ai]) is the restriction to [−Ti + C, Ti − C] of the corresponding
component γ of m. The proof of the proposition is therefore concluded by the
following lemma. �

Lemma 19.3.2. Let a be a critical point, and let η > 0 be given. Then there
exists a gauge-invariant neighborhood Ua of γa in Cτ

k ([−1, 1] × Y ), with the
following property. For all T > 2 and all trajectories γ in M([−T , T ] × Y ) ∩
(Ua(T )/Gk+1), there is a gauge transformation u such that

‖u(γ )− γa‖L2
k ([−T+2,T−2]×Y ) ≤ η. (19.12)

(Here Ua(T ) is the neighborhood defined as in the proof of the proposition
above.)

Proof. The argument is similar to the proof of Proposition 13.6.1. The patching
construction in the proof of that proposition shows that, as long as Ua is chosen
so as to be able to apply Proposition 13.4.1, we can find a gauge transformation
u such that the square of the left-hand side of (19.12) is bounded by the two
quantities ∑

i∈[−T+2,T−2]

(−L(i + 2)−−L(i − 1)
)1/2

and ∫ T

−T

∣∣(d/dt)�q

∣∣ dt.

The first of these two can be made small by choosing Ua small and using the
exponential bounds provided by Proposition 13.5.2. The second can be made
small similarly, using Corollary 13.5.3. �

The proposition above describes an open subset W̆ of the moduli space
M̆+([a0], [an]) as a sort of fiber product. We have a well-defined map S on
W̆ given by the separations of the local centers, as in (19.5). The next lemma
is a general result that will eventually tell us that S is a topological submersion
along the fiber over infinity.
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Lemma 19.3.3. Let M and N be Hilbert manifolds. Suppose that N is a closed
submanifold of a Hilbert space, so that we may unambiguously talk about the
C1

loc topology on the space of continuously differentiable maps from M to N .
Let (Q, q0) be a pointed topological space and

R : M× Q → N

a continuous map whose restriction Rq to each M × {q} is smooth. Suppose
that Rq0 is transverse to a smooth, closed submanifold � ⊂ N , and that Rq

converges to Rq0 in the C1
loc topology as q → q0. Then the projection

R−1(�)→ Q

is a topological submersion along R−1
q0

(�).

Proof. The question is local, and therefore reduces to the case that N is a
Hilbert space and � is the origin. The lemma is just a version of the implicit
function theorem, with continuous dependence on a parameter q. �

We can now complete the proof of the gluing theorem for trajectories that
are not boundary-obstructed .

Proof of Theorem 19.2.8. First of all, since the submersion property is local,
it is enough to consider a compact subset K of the product stratum of the
form (19.3): we will show S is a topological submersion along K . Let η ≤ η0

and L ≥ L1(η) be as in Proposition 19.3.1, and let W = W (η, L) be the
corresponding neighborhood of K , as given by that proposition.

Proposition 19.3.1 identifies W̆ with a subset of M cen
η . The latter is the union

over all T of the spaces M cen
T ,η. As T varies, the factors Mη(ZTi ; [ai]) in the

definition (19.8) of M cen
T ,η vary, while the remaining factors do not.

The spaces Mη(ZTi ; [ai]) are described by Theorem 18.2.1. Recall that
Mη(ZTi ; [ai]) is a Hilbert manifold with boundary (the boundary is non-empty
only if [ai] is reducible), and is contained in its “double”, the Hilbert mani-
fold M̃η(ZTi ; [ai]). For T ≥ T0 (including the case T = ∞), Theorem 18.2.1
tells us that there is a neighborhood Ũ T

i in M̃η(ZT ; [ai]) parametrized by a
diffeomorphism

ui(–, T ) : Bη1(Ki)→ Ũ T
i ,

where Bη1(Ki) is a ball in a Hilbert space. In the case that ai is reducible,
Ũ T

i meets Mη(ZT ; [ai]) ⊂ M̃η(ZT ; [ai]) in a neighborhood U T
i which we can
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identify with the quotient of Ũ T
i by the involution i : s �→ −s; the quotient is

a Hilbert manifold with boundary. The parametrization is equivariant for the
action of i, and we have a parametrization

ui(–, T ) : bη1(Ki)→ U T
i ,

where bη1(Ki) is the half-ball

bη1(Ki) = Bη1(Ki) ∩ {s ≥ 0}.

In the irreducible case, we set U T
i = Ũ T

i and bη1(Ki) = Bη1(Ki), so as to
keep the notation uniform. According to Theorem 18.2.1, the neighborhood
U T

i contains some M̃η′(ZT ; [ai]), where η′ ≤ η is independent of T . We may
assume L ≥ L1(η

′) (where L1(η
′) is again as in Proposition 19.3.1).

For consistency, we also choose to parametrize a neighborhood in
M(Z−; [a0]) and M(Z+; [an]). The map (see (18.4))

u0(–,∞) : bη1(K0)→ Mη(Z
∞; [a0])

constructed by Theorem 18.2.1 restricts to a map

u0(–,∞) : bη1(K−0 )→ Mη(Z
−; [a0])

where K0 = K+0 ⊕K−0 is the spectral decomposition. Note that the involution
i is non-trivial on exactly one of the summands of the decomposition: on K−0
if a0 is boundary-unstable, and on K+0 if a0 is boundary-stable. We have a
similar parametrization of a neighborhood in Mη(Z+; [an]), by a ball or half-
ball, bη1(K+n ).

Combining all the ui, we obtain, for each

T = (T1, . . . , Tn−1),

a map

uT : Mcen
η1
→ M cen

T ,η

where

Mcen
η1
=
(∏

bη1(Ki)
)
× bη1(K−0 )× bη1(K+n )×

(
M cen(ZL)

)n
.

The map uT is a diffeomorphism onto an open set U T , and

M cen
T ,η′ ⊂ U T ⊂ M cen

T ,η. (19.13)
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Inside Mcen
η1

, we have the subset

Fib(RT ) = Fib(R−T � uT , R+T � uT ),

which is the inverse image of the diagonal � under the smooth map

RT : Mcen
η1
→ B ×B

RT = (R−T � uT , R+T � uT ),
(19.14)

where

B =
(
(Bσ

k−1/2(Y ))2n
)

.

We combine the maps RT for T ∈ (T0,∞]n−1 into a single map

R : Mcen
η1
× (T0,∞]n−1 → B ×B, (19.15)

and we have the parametrized fiber product

Fib(R) = R−1(�).

The maps uT combine to form a map

u : Fib(R)→ Fib(R−, R+) ∩M cen
η ⊂ M .

Lemma 19.3.4. The image of the composite map

c � u : Fib(R)→ M̆+([a0], [an])

contains the open neighborhood W̆ = W̆ (η′, L) of the compact set K̆ , given by
Proposition 19.3.1. The composite map gives a homeomorphism

(c � u) : Fib(R) ∩ (c � u)−1(W̆ )→ W̆ .

Proof. The image of Fib(R) under the map u contains Fib(R−, R+) ∩ M cen
η′

because of the statement (19.13), and it therefore follows from Proposi-
tion 19.3.1 that the image of the composite contains W̆ (η′, L) as claimed. The
map in the last part of the lemma is injective because of the corresponding
statement in Proposition 19.3.1, and all that remains is to check the continuity
of the map and its inverse.
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The separations Si of the centering intervals define continuous functions on
W̆ , so the restriction of an element [γ̆] ∈ W̆ to the ith centering interval defines
a continuous map from W̆ to M cen(ZL). Together, the separations and these
restrictions define a continuous map

p : W̆ → (0,∞]n−1 ×
(

M cen(ZL)
)n

.

The map p is a topological embedding, because of the unique continuation
theorem for trajectories. The composite map p�c�u is rather trivially continuous,
because it is the identity on each M cen(ZL) factor and is the map Ti �→ 2(Ti+L)
on the (0,∞] factors. So the map c � u is continuous also.

For the continuity of the inverse, the remaining point is to see that, for an
element (

(h1, . . . hn−1, h−0 , h+n ), (w1, . . . , wn), (T1, . . . , Tn−1)
)

of

Fib(R) ⊂ Mcen
η1
× (T0,∞]n−1

=
(∏

bη1(Ki)
)
× bη1(K−0 )× bη1(K+n )×

(
M cen(ZL)

)n

× (T0,∞]n−1,

the h coordinates are continuous functions of the wj and the Ti. Because of the
definition of the fiber product, this reduces to showing that hi can be recovered as
a continuous function of Ti and the boundary values of uTi

i (hi). This becomes a
statement about the mapµT in Theorem 18.2.1: we must see that if Tn converges
to T ∈ (T0,∞] and µTn(hn) converges to µT (h), then hn converges to h. This
follows from the fact that µT depends continuously on T and for each fixed T
is an embedding. �

We now return to the proof of the theorem. Under the map c�u of the lemma,
the two maps

S : W̆ → [0,∞]n−1

T : Fib(R)→ (T 0,∞]n−1

are related by Si � c � u = 2(Ti + L). The map Ti �→ 2(Ti + L) gives a
local homeomorphism of (0,∞]n−1 near ∞, so the proof of Theorem 19.2.8 is
reduced to the following proposition. �
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Proposition 19.3.5. The map

T : Fib(R)→ (T 0,∞]n−1

is a topological submersion along the fiber over ∞ = (∞, . . . ,∞).

Proof. Some of the factors that comprise the space Mcen
η1

are half-balls. It is
convenient to work with Hilbert manifolds rather than manifolds with boundary,
so we introduce also the space M̃cen

η1
, obtained by replacing each bη1 with a ball

Bη1 , and replacing each M cen(ZL) by M̃ cen(ZL). Adding a tilde to everything,
we have a map

R̃T : M̃cen
η1
→ B̃ × B̃

where

B̃ =
(
(B̃σ

k−1/2(Y ))2n
)

,

and we have fiber products

Fib(R̃) =
⋃
T

Fib(R̃T ). (19.16)

Theorem 18.2.1 tells us that R̃T converges to R̃∞ in the C∞loc topology as
T → ∞ = (∞, . . . ,∞).

Lemma 19.3.6. The map R̃∞ is transverse to the diagonal � ⊂ B̃ × B̃.

Proof. Here we use the regularity of the moduli spaces M([ai−1], [ai]). The
map R̃∞ is a Cartesian product of n maps, each of which is the composite with
u∞ of one of the maps

(R−, R+) : M̃η(Z
−; [ai−1])× M̃ cen(ZL)× M̃η(Z

+; [ai])
→ (

B̃σ
k−1/2(Y )× B̃σ

k−1/2(Y )
)2. (19.17)

In place of M̃ cen(ZL), consider again the larger space M̃ ′(ZL) ⊂ M̃ (ZL) defined
by the first two conditions in Definition 19.2.2 (see the proof of Lemma 19.2.5
earlier in this section); and consider the extension of (R−, R+) to this larger
domain:

(R′−, R′+) : M̃η(Z
−; [ai−1])× M̃ ′(ZL)× M̃η(Z

+; [ai])
→ (

B̃σ
k−1/2(Y )× B̃σ

k−1/2(Y )
)2. (19.18)
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The fact that this map is transverse to the diagonal is an instance of
Theorem 19.1.4. The lemma follows if we can show that the smooth map

c : Fib(R′−, R′+)→ R

given by taking the center of mass of the middle factor is transverse to 0.
This transversality is similar to the transversality asserted in Lemma 19.2.5
(but technically easier): the action of translations defines a tangent vector to
M̃ ([ai−1], [ai]) along which the derivative of c is −1. �

It follows from this lemma and Lemma 19.3.3 that the map

T : Fib(R̃)→ (T0,∞]n−1

is a topological submersion along the fiber over ∞. Let i be defined on Fib(R̃) ⊂
M̃cen

η1
by simultaneously applying the involution s �→ −s on each component.

In the fiber product, we can never have an element with s positive on one
component and negative on another. It follows that we can identify Fib(R)

with the quotient of Fib(R̃) by the involution i. Since T is invariant under the
involution, the map

T : Fib(R)→ (T0,∞]n−1

is also a topological submersion. This completes the proof of Proposition 19.3.5,
and hence Theorem 19.2.8. �

19.4 Gluing in the boundary-obstructed case

We now consider the modification that is necessary to the statement of The-
orem 19.2.8 in the case that some of the moduli spaces M([ai−1], [ai]) are
boundary-obstructed. We shall suppose that this moduli space is boundary-
obstructed for

i ∈ O ⊂ {1, . . . , n}

and unobstructed for i in O′, the complement of O. (The unobstructed case
includes the case that one or both of ai−1, ai is irreducible.) From the previous
subsection, we have the neighborhood

W̆ ⊃
n∏

i=1

M̆ ([ai−1], [ai])
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in M̆+([a0], [a1]), on which is defined a map

S : W̆ → (0,∞]n−1

which describes the separation of the local centering intervals.
The following theorem gives the general structure of a suitable neighborhood

W̆ in the boundary-obstructed case. The statement of the theorem is rather
elaborate: readers might first read the next subsection where some important
special cases are worked out in more detail.

Theorem 19.4.1. Suppose the moduli spaces M([ai−1], [ai]) are boundary-
obstructed for i ∈ O and boundary-unobstructed for i ∈ O′ = {1, . . . , n} \ O.
Then there is an open set W̆ ⊂ M̆+([a0], [an]) as above, with the following
properties.

(i) There is a topological embedding of W̆ in a space EW̆ with a map S to
(0,∞]n−1 such that the diagram commutes:

W̆

S
��

j
�� EW̆

S
��

(0,∞]n−1 (0,∞]n−1.

(ii) The map S : EW̆ → (0,∞]n−1 is a topological submersion along the
fiber over ∞.

(iii) The image j(W̆ ) ⊂ EW̆ is the zero set of a continuous map

δ : EW̆ → RO

which vanishes on the fiber over ∞. In particular therefore, the fiber over
∞ in both W̆ and EW̆ is identified with the stratum

∏
M̆ ([ai−1], [ai]).

(iv) If W̆ o ⊂ W and EW̆ o ⊂ EW̆ are the subsets where none of the Si is infinite,
then the restriction of j to W̆ o is an embedding of smooth manifolds, and
δ|EW̆ o is transverse to zero.

(v) Let i0 ∈ O, and let δi0 be the corresponding component of δ. Then for all
z ∈ EW̆ , we have:
• if i0 ≥ 2 and Si0−1(z) = ∞ then δi0(z) ≥ 0;
• if i0 ≤ n− 1 and Si0(z) = ∞ then δi0(z) ≤ 0.



368 V Compactness and gluing

Proof. Let

RT : Mcen
η1
→ B ×B

R̃T : M̃cen
η1
→ B̃ × B̃

be as in the proof of the unobstructed case, Theorem 19.2.8. Let Fib(RT ) be
the inverse images of the diagonals as before, and let Fib(R) etc. be obtained
again by taking the union over T . The map R∞ is no longer transverse to the
diagonal (compare Lemma 19.3.6).

As in Definition 19.1.6, we define a moduli space

EM̃ (ZL) ⊂ M̃ ([−L, 0] × Y )× M̃ ([0, L] × Y )

as the fiber product of the two maps

R′+ : M̃ ([−L, 0] × Y )→ ∂Bσ
k−1/2(Y )

R′− : M̃ ([0, L] × Y )→ ∂Bσ
k−1/2(Y ).

For [γ ] = ([γ−], [γ+]) in EM̃(ZL), we can regard e(γ , t) as defining a piecewise
continuous function of t on [−L, L], with a discontinuity at t = 0. With this
understood, we define a subset

EM̃ cen(ZL) ⊂ EM̃(ZL)

by repeating Definition 19.2.2. For [γ ] ∈ EM̃(ZL), we define δ([γ ]) to be the
discontinuity in the normal coordinate s on B̃σ

k−1/2(Y ) at t = 0, as in (19.2):

δ([γ ]) = s([γ+|{0}×Y ])− s([γ−|{0}×Y ]).

The moduli space M̃ cen(ZL) is contained in the extended moduli space as the
locus δ = 0:

M̃ cen(ZL) = EM̃ cen(ZL) ∩ {δ = 0}.

Just as M̃ cen(ZL) is a Hilbert manifold, so (a fortiori) EM̃ cen(ZL) is smooth also
in a neighborhood of M̃ cen(ZL): the function δ is transverse to zero.
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Define EM̃cen
η1

by taking the definition of M̃cen
η1

and replacing the ith copy of

M̃ cen(ZL) by EM̃ cen(ZL) when i ∈ O:

EM̃cen
η1
=
(∏

Bη1(Ki)
)
× Bη1(K−0 )× Bη1(K+n )

×
(

M̃ cen(ZL)
)O′ ×

(
EM̃ cen(ZL)

)O
.

The original M̃cen
η1

is contained in the larger space, as the zero set of the map

δ : EM̃cen
η1
→ RO.

The map R̃T extends to the larger space,

ER̃T : EM̃cen
η1
→ B̃ × B̃,

and we have the inverse image of the diagonal,

Fib(ER̃T ) ⊂ EM̃cen
η1

.

As in (19.15), we form a total map ER̃, and we have the fiber product

Fib(ER̃) =
⋃
T

Fib(ER̃T ) ⊂ EM̃cen
η1
× (T0,∞]n−1.

Lemma 19.4.2. The map ER̃∞ is transverse to the diagonal � ⊂ B̃ × B̃.

Proof. As in the proof of Lemma 19.3.6, the map ER̃∞ is a Cartesian product of
n maps. Each of these n maps either is of the form (19.17), or is the composition
of u∞ with a map of the form

(R−, R+) : M̃η(Z
−; [ai−1])× EM̃ cen(ZL)× M̃η(Z

+; [ai])
→ (

B̃σ
k−1/2(Y )× B̃σ

k−1/2(Y )
)2,

where i ∈ O. Elements in the inverse image of the diagonal can be con-
catenated to give elements of EM̃([ai−1], ai]). Because this moduli space
is boundary-obstructed, we have EM̃([ai−1], ai]) = M̃([ai−1], [ai]). So δ

vanishes on elements in the fiber product. The proof now proceeds as in
the proof of Lemma 19.3.6, but appealing to Theorem 19.1.5 in place of
Theorem 19.1.4. �
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As in the proof of Theorem 19.2.8, we now conclude that the map

T : Fib(ER̃)→ (0,∞]n−1

is a topological submersion along the fiber over ∞, as is the map

T : Fib(ER)→ (0,∞]n−1

obtained by restricting to the set where s ≥ 0 on each factor. The space Fib(ER)

contains Fib(R) as the zero locus of δ : Fib(ER) → RO. Our definition of
Fib(ER) involves a choice of L, but there is an inclusion of Fib(ERT+1(L)) in
Fib(ERT (L+ 1)). So we can form a union

EW̆ =
⋃

L≥L0

⋃
Ti≥T0+L

Fib(ERT (L)).

We denote by W̆ the subset of EW̆ defined by δ = 0. This gives the following
picture, in which the map EW̆ → (0,∞]n−1 is a topological submersion along
the fiber over ∞:

W̆

S
��

⊂
�� EW̆

S
��

(0,∞]n−1 (0,∞]n−1.

Lemma 19.3.4 identifies a neighborhood W̆ of the stratum (19.6) with a neigh-
borhood of the fiber over ∞ in W̆ , and this establishes the first three parts of
the theorem.

It remains to prove the last two parts. In Part (iv), the subset W̆ o is an
open subset of the moduli space M̆ ([a0], [an]), which is a smooth manifold
by our regularity assumptions. Let W̆o ⊂ W̆ be the corresponding subset of
W̆ . Theorem 19.1.4 tells us that, at a point of W̆o ∩Mcen

η1
, the map

ER× δ : EMcen
η1
→ B ×B × RO

is transverse to � × {0}. This tells us that a neighborhood of W̆ o in EW̆ o is a
smooth manifold, cut out transversely by δ.

Finally, for the last part of the theorem, if i0 ≥ 2 and Si0−1(z) = ∞, then in
the i0th factor EM (ZL) we have an element ([γ−], [γ+]) whose first component
is reducible, because the restriction of [γ−] to −L× Y agrees with an element
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of the unstable manifold of [ai−1], and [ai−1] is boundary-stable. It follows that
the discontinuity in the s coordinate between [γ−] and [γ+] is non-negative.
So δi0 is non-negative. The other case is similar. This completes the proof of
Theorem 19.4.1. �

19.5 The codimension-one strata

We spell out some particular corollaries of the gluing theorems from the previous
subsection. We first examine the case where no boundary-obstructed trajectories
are involved, so that Theorem 19.2.8 is applicable. The simplest case occurs
when n = 2, so that we are considering a subset

M̆z1([a0], [a1])× M̆z2([a1], [a2]) ⊂ M̆+
z ([a0], [a2]).

For each of the three critical points [ai], we must consider whether the crit-
ical point is reducible or irreducible; and in the reducible case, whether it is
boundary-stable or boundary-unstable. The boundary-unobstructed condition
precludes having an adjacent pair of reducibles [ai−1], [ai] when the first is
boundary-stable and the second is boundary-unstable. Recall also that a moduli
space M([ai−1], [ai]) (and therefore also M̆ ([ai−1], [ai])) may be a manifold
with boundary, arising as the quotient of M̃ ([ai−1], [ai]) by the involution i.
This occurs only if [ai−1] is boundary-unstable and [ai] is boundary-stable.
Excluding such cases, we have:

Corollary 19.5.1. Suppose the moduli spaces M̆z1([a0], [a1])and M̆z2([a1], [a2])
are both boundary-unobstructed and are manifolds (rather than manifolds with
boundary, as they would be if they contained both reducible and irreducible
trajectories). Then there is an open subset W̆ of M̆+

z ([a0], [a2]) which is a
topological manifold with boundary, and the boundary of W̆ consists of the
broken trajectories M̆z1([a0], [a1])× M̆z2([a1], [a2]). �

There are only two boundary-unobstructed cases with n = 2 that are not cov-
ered by this corollary. In each of these cases, the critical points are all reducible,
and either the first is boundary-unstable and the other two are boundary-
stable, or the first two are boundary-unstable and the last is boundary-stable.
In these cases there is a neighborhood W̆ of M̆z1([a0], [a1]) × M̆z2([a1], [a2])
in M̆+

z ([a0], [a2]) which is still locally homeomorphic to a neighborhood of
T = ∞ in

M̆z1([a0], [a1])× M̆z2([a1], [a2])× (T0,∞].
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However in this case exactly one of the two moduli spaces is a manifold with
boundary so M̆+

z1
([a0], [a2]) is locally homeomorphic to Rd−2 × R≥0 × R≥0

in such a way that (x, 0, t) parametrizes the reducible trajectories and (x, s, 0)
parametrizes the broken trajectories.

In the case n > 2, the analysis of the boundary-unobstructed case is similar.
Either all the factors M̆ ([ai−1], [ai]) are manifolds, or exactly one of the factors
is a manifold with boundary. In the latter case, all the critical points must be
reducible and, for some m with 1 ≤ m ≤ n, the critical points [a0], …, [am−1] are
boundary-unstable, while the critical points [am], …, [an] are boundary-stable.

We now turn to the boundary-obstructed cases. The simplest interesting case
of Theorem 19.4.1 occurs when n = 3. Suppose we have four critical points
[a0], . . . , [a3]. Set

M̆i = M̆ ([ai−1], [ai]), i = 1, 2, 3.

Suppose that [a1] and [a2] are reducible and that M̆2 is boundary-obstructed.
Let M̆ irr

1 ⊂ M̆1 and M̆ irr
3 ⊂ M̆3 be the subsets of irreducible trajectories, and

suppose M̆ irr
1 , M̆2 and M̆ irr

3 are non-empty. In this case, the theorem has the
following corollary.

Corollary 19.5.2. Suppose M̆2 is boundary-obstructed, as above. Then there
is a space EW̆ , a topological submersion

S = (S1, S2) : EW̆ → (0,∞] × (0,∞]

and a map

δ : EW̆ → R

which vanishes identically on the fiber over (∞,∞) and whose zero set is
identified with a neighborhood W̆ of the subset

M̆ irr
1 × M̆2 × M̆ irr

3 ⊂ M̆+([a0], [a3]).

Furthermore, δ(z) is strictly positive if S1(z) = ∞ and S2(z) is finite; and δ(z)
is strictly negative if S2(z) = ∞ and S1(z) is finite. Finally, the set EW̆ o where
S1 and S2 are both finite is a smooth manifold, containing W̆ o as the transverse
zero set of the smooth function δ.

Proof. This is a restatement of the theorem, with the extra point that δ(z) is
strictly positive when S1(z) is infinite and S2(z) is finite (and vice versa): the
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theorem only had δ ≥ 0. The strict inequality follows from the argument used
in the proof of the theorem, with the following additional observation. If δ(z)
were zero then z would represent an element ([γ̆1], [γ̆ ′]) in the subset M̆1 ×
M̆ ([a1, a3]). Because [a1] is boundary-stable, [γ̆ ′] would be reducible. We
choose our open set W̆ so that it contains no such pair ([γ̆1], [γ̆ ′]) with [γ̆ ′]
reducible. �

This corollary prompts the following definition, which captures the structure
described.

Definition 19.5.3. Let N be a d -dimensional space stratified by manifolds and
M d−1 ⊂ N a union of components of the (d − 1)-dimensional stratum. We
say that N has a codimension-1 δ-structure along M d−1 if M d−1 is smooth and
we have the following additional data. There is an open set W ⊂ N containing
M d−1, an embedding j : W → EW and a map

S = (S1, S2) : EW → (0,∞]2

with the following properties:

(i) the map S is a topological submersion along the fiber over (∞,∞);
(ii) the fiber of S over (∞,∞) is j(M d−1);

(iii) the subset j(W ) ⊂ EW is the zero set of a map δ : EW → R;
(iv) the function δ is strictly positive where S1 = ∞ and S2 is finite, and strictly

negative where S2 = ∞ and S1 is finite;
(v) on the subset of EW where S1 and S2 are both finite, δ is smooth and

transverse to zero.

♦

Thus we can restate the above corollary as saying that M̆([a0], [a3]) has a
codimension-1 δ-structure along the stratum M̆ irr

1 × M̆2 × M̆ irr
3 . If we recall

Proposition 16.5.5, which classifies the codimension-1 strata, we see that the
examples so far discussed cover all non-trivial cases in that proposition (i.e. all
cases in which the trajectory is broken with more than one component). We
therefore have:

Theorem 19.5.4. Suppose that the moduli space Mz([a], [b]) is d-dimensional
and contains irreducible trajectories, so that the moduli space M̆+([a], [b]) is
a (d − 1)-dimensional space stratified by manifolds. Let M ′ ⊂ M̆+([a], [b])
be any component of the codimension-1 stratum. Then, along M ′, the moduli
space M̆+([a], [b]) either is a C0 manifold with boundary, or (more generally)
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has a codimension-1 δ-structure in the sense of Definition 19.5.3. The latter
occurs only when M ′ consists of 3-component broken trajectories, with the
middle component boundary-obstructed . �

19.6 Gluing reducibles

Everything we have done in this section can be redone in the more restricted
context of the moduli spaces M red

z ([a], [b]) of reducible trajectories. When [a] is
a reducible critical point, the rider to Theorem 18.2.1 says that the parametriza-
tion of M̃ (ZT ) is equivariant for the involution i. The fixed-point set in M̃ (ZT )

is M red(ZT ), and by passing to the fixed-point set throughout one obtains a
version of Theorem 18.2.1 for the reducibles. With this tool, everything else is
essentially unchanged, with the added simplification that there is no counter-
part to the boundary-obstructed situation. Thus, for example, we arrive at the
reducible version of Theorem 19.5.4 above.

Theorem 19.6.1. Suppose that the moduli space M red
z ([a], [b]) is d-

dimensional and non-empty, so that the compactified moduli space of broken
reducible trajectories, M̆ red+([a], [b]), is a (d−1)-dimensional space stratified
by manifolds. Let M ′ ⊂ M̆ red+([a], [b]) be any component of the codimension-
1 stratum. Then, along M ′, the moduli space M̆ red+([a], [b]) is a C0 manifold
with boundary. �

Notes and references for Chapter V

Global compactness theorems in gauge theory were pioneered by Uhlenbeck
[123, 122] and refined by Sedlacek [102], Donaldson [17] and Taubes [110].
These arguments were applied to the cylindrical case by Floer in [32].

The arguments of Sections 18 and 19 are gluing techniques of the sort first
developed by Taubes [55, 108]. The approach we have followed is inspired by
[112]. In particular, the treatment of moduli spaces on manifolds with boundary,
and the basic concatenation results, all appear there (in the context of the anti-
self-dual Yang–Mills equations), as does the emphasis on the Atiyah–Patodi–
Singer spectral boundary-value problems.
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Floer homology

This chapter presents the construction of the Floer homology and cohomology
groups of a 3-manifold, and takes the first steps in verifying the formal properties
that were described in the introductory Section 3. One thing we will not do in this
chapter is prove that the Floer groups are topological invariants: their definition
depends on an a priori choice of Riemannian metric and a choice of perturbation
for the Chern–Simons–Dirac functional. The topological invariance is an issue
that is closely related to the functoriality discussed in Subsection 3.4. It will be
taken up in the next chapter.

Another matter that will be postponed for later is the fact that the Floer groups
of Y are naturally graded abelian groups, graded by the set of homotopy classes
of oriented 2-plane fields on Y . (See Definition 3.1.2.)

20 Orienting moduli spaces

20.1 Discussion

To define Floer homology groups with coefficients that are not of characteristic
2, we will need to orient the moduli spaces of trajectories, M([a], [b]), for
arbitrary critical points [a] and [b] in our configuration space Bσ

k (Y , s). We will
prove in this section that these moduli spaces are indeed orientable, as long as
our perturbation is chosen so that the moduli spaces are regular.

Orientability alone is not enough, however. In the case of finite-dimensional
Morse theory, discussed in Subsection 2.2, it was important not only that the
trajectory spaces were orientable, but that the fiber of the orientation bundle of
a trajectory space M(a, b) could be identified with the product of the orientation
bundles for the two unstable manifolds, Ua and Ub. This “factorization” of the

375
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orientation bundle for M(a, b) played an important role in the construction of
the Morse complex.

In the Floer homology setting, it is not immediately clear what should play
the role of the orientation bundle for the unstable manifolds: unlike the moduli
spaces of trajectories, the unstable manifolds are infinite-dimensional. This is
one of the matters we must take up as we examine the orientability of M([a], [b]).

We can express the desired factorization property rather abstractly as follows.
The set of orientations for a real vector space V is a 2-element set. Given two
2-element sets, say �1 and �2, we can form a product

� = �1�2
def= �1 ×Z/2 �2, (20.1)

where Z/2 acts as the non-trivial involution on both factors. If � is the set
of orientations for V and V = V1 ⊕ V2 then the product above corresponds
to the way orientations of the summands induce an orientation for V by the
“first-summand-first” convention.

As before we fix a spinc structure s and we write Bk(Y ) etc. for the con-
figuration spaces corresponding to this spinc structure. Given a configuration
[a] ∈ Bσ

k (Y ) and a tame perturbation q we will define a 2-element set

�([a], q).

We do not assume that q satisfies any transversality conditions nor do we assume
that [a] is a critical point. We write

�([a1], q1, [a2], q2) = �([a1], q1)�([a2], q2)

using the notation from (20.1) above; and when the perturbations are understood
from the context we will abbreviate the notations to

�([a]) and �([a1], [a2]).

The 2-element sets �([a], q) will play the role of “orientation of the unstable
manifold” (though the definition applies even when [a] is not a critical point).
They will be defined in such a way that if [a1], [a2] are non-degenerate critical
points of (grad Lq)

σ and the moduli space M([a1], [a2]) is regular, then the ori-
entation double cover of the moduli space M([a1], [a2]) is canonically identified
with the product �([a1], [a2])×M([a1], [a2]). In other words M([a1], [a2]) is
orientable and a choice of element from�([a1], [a2]) orients M([a1], [a2]). This
is the counterpart to the way in which trajectory spaces in finite-dimensional
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Morse theory are oriented by choosing orientations of the two unstable man-
ifolds. These constructions will be carried out in Subsections 20.3 and 20.4
below.

There is another type of product rule for orientations of trajectory spaces that
is relevant in the construction of the usual Morse complex. This involves the
relationship between the orientations of M(a, b), M(b, c) and M(a, c) for three
critical points a, b and c. This relationship, which is used in the proof that the
square of the differential on the Morse complex is zero, will be discussed in the
context of our trajectory spaces in Subsection 20.5.

The whole discussion is rather more complicated than the simplest finite-
dimensional model, not just because we are dealing with an infinite-dimensional
situation, but because our configuration space Bσ

k (Y , s) is a manifold with
boundary. (Compare Subsection 2.4.) Our “regular” moduli spaces include
those that are boundary-obstructed in the sense of Definition 2.4.2, and we
will therefore need to consider various different versions of the relevant
product laws.

20.2 Determinant lines and direct sums

We begin by recalling Quillen’s construction of the determinant line bundle of
a family of Fredholm operators, following Bismut and Freed [12]. Let

Ps : A → B, s ∈ S,

be a family of Fredholm operators between two real Hilbert spaces,
parametrized by a space S, and suppose that one can choose a finite-dimensional
subspace J ⊂ B such that Ps(A) + J = B for all s. (This can always be done
if S is compact, and in general we can achieve this if we restrict to a suffi-
ciently small neighborhood of a given point in S.) Then the spaces P−1

s (J )
have constant dimension and form a vector bundle over S. The lines(

�maxP−1
s (J )

)⊗ (
�maxJ )∗

form a real line bundle over S. On the other hand, we can identify this line with

det Ps
def= (

�max ker(Ps)
)⊗ (

�max coker(Ps)
)∗

using the exact sequence

0 → ker Ps → P−1
s J → J → coker Ps → 0,
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because whenever we have an exact sequence of finite-dimensional vector
spaces

0 → V0
a1→ V1

a2→ · · · a2k+1→ V2k+1 → 0

there is a canonical element

η(a) ∈ �max(V0)⊗�max(V1)
∗ ⊗ · · · ⊗�max(V2k+1)

∗.

To define η(a), decompose Vi as Wi ⊕ ai(Wi−1) so that, where Wi is a chosen
complement of the kernel of ai+1. Choose si ∈ �maxWi, and define

η(a) = (s0)⊗ (a1s0 ∧ s1)
∗ ⊗ (s2 ∧ a2s1)⊗ · · · ⊗ (a2k+1s2k ∧ s2k+1)

∗.

(In this formula, (a1s0 ∧ s1)
∗ denotes the basis element for the dual space of

�max(V1) which evaluates to 1 on a1s0∧ s1.) This element η(a) is independent
of the choice of the si and the Wi. Via this canonical identification, the family
of lines det(Ps) becomes a line bundle. The topology on the line bundle is
independent of the choice of J . In the non-compact case, the family of lines
det(Ps) acquires the structure of a line bundle over neighborhoods of every
point in S, and these topologies agree on the overlaps; so the union is once
again a line bundle.

It is important to note that the topology that we have defined on the family of
lines det(Ps) depends on the operators Ps themselves, not just on the family of
kernels and cokernels as subspaces of A and B. This issue arises if we compare
the determinant line bundles of the family of operators−Ps with that of Ps. For
each fixed s, we have a canonical identification

is :
(
�max ker(Ps)

)⊗ (
�max coker(Ps)

)∗
= (

�max ker(−Ps)
)⊗ (

�max coker(−Ps)
)∗

simply because the kernels and cokernels are the same. However, the family
of maps is is not continuous as a map of determinant line bundles. To obtain a
continuous map, we can replace is by

js = (−1)dim coker(Ps)is. (20.2)

The reader can verify from the above constructions that js, so defined, is indeed
continuous. Of course, −js is another continuous map.

There is a product rule for determinant lines of Fredholm operators, which
expresses the determinant line of a direct sum as the tensor product of the
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determinants. To explain the construction, we consider a family of Fredholm
operators expressed as a direct sum

Ps = P′s ⊕ P′′s
Ps : A′ ⊕ A′′ → B′ ⊕ B′′.

After choosing J ′ and J ′′, we have identifications

det P′s =
(
�max(P′s)−1(J ′)

)⊗ (
�maxJ ′)∗

det P′′s =
(
�max(P′′s )−1(J ′′)

)⊗ (
�maxJ ′′)∗.

Setting J = J ′ ⊕ J ′′ and using the isomorphisms

�max(P′s)−1(J ′)⊗�max(P′′s )−1(J ′′)→ �maxP−1
s (J )

�maxJ ′ ⊗�maxJ ′′ → �maxJ

given by x′ ⊗ x′′ �→ x′ ∧ x′′, we obtain an isomorphism

q̄(J ′, J ′′) : det P′s ⊗ det P′′s → det Ps,

which is a continuous isomorphism of line bundles over S. This isomorphism,
however, depends on J ′, and not just up to homotopy: its sign depends on the
dimension of J ′ if the index of P′′s is odd. To obtain an isomorphism that is
independent of choices (up to homotopy), we set

q = (−1)r q̄(J ′, J ′′)

r = (dim J ′ + indexP′s)indexP′′s .

If α′, β ′ are elements of �max ker P′s and �max coker P′s, and if α′′, β ′′ are
similarly elements of �max ker P′′s and �max coker P′′s , then (up to a positive
scalar multiple) this q is the map

q : det P′s ⊗ det P′′s → det Ps(
α′ ⊗ (β ′)∗

)⊗ (
α′′ ⊗ (β ′′)∗

) �→ (−1)p((α′ ∧ α′′)⊗ (β ′ ∧ β ′′)∗
) (20.3)

where

p = dim coker P′s × indexP′′s .
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Note that in the special case that P′s and P′′s are surjective and have positive
index, this becomes the standard convention: chosen bases for ker P′s and ker P′′s
determine orientations for det P′s and det P′′s , and the corresponding orientation
of det(P′s⊕P′′s ) is obtained from the basis for ker(P′s⊕P′′s ) obtained by taking
first the basis vectors for the first summand, then the basis vectors for the second.
The reader can verify the following:

Lemma 20.2.1. The map q in (20.3) satisfies the natural associativity law for
an operator expressed as an ordered direct sum of three terms,

P = P′ ⊕ P′′ ⊕ P′′′.
�

20.3 Construction of orientation sets

We now use the formalities of determinant line bundles to carry out the first
half of construction promised in Subsection 20.1. Namely, to each pair ([a], q),
we will associate a 2-element set �([a], q). In Subsection 20.4 below, we will
show that these have the property that, when q1 = q2 and [a1] and [a2] are
critical points, the 2-element product set

�([a1], q1, [a2], q2) = �([a1], q1)�([a2], q2)

orients the corresponding moduli space of trajectories M([a1], [a2]), as long
as this space is regular. The natural way to proceed is actually to define
�([a1], q1, [a2], q2) first, as the set of orientations of a suitable determinant line.
The 2-element set �([a], q) can then be defined in terms of �([a], q, [a0], q0)

for suitable reference configurations ([a0], q0).
To proceed, let a1, a2 in Cσ

k (Y ) be given, and let q1, q2 be perturbations. Let
I = [t1, t2] be an interval, and consider the space C of all pairs (γ , p), where

• γ is a configuration in Cτ
k (I × Y ) whose restriction to the end {ti} × Y is

gauge-equivalent to ai, for i = 1, 2; and
• p is a continuous path in the Banach space P of tame perturbations, with

p(ti) = pi, for i = 1, 2.

Associated to any (γ , p) is the operator Qγ ,p, the linearized Seiberg–Witten
equations and gauge-fixing equation (17.10), considered here on a finite cylinder
I × Y and acting on Sobolev spaces L2

1. We write the operator as

Qγ ,p : E → F
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where

E = T τ
1,γ (I × Y )

F = Vτ
0,γ (I × Y )⊕ L2(I × Y ; iR).

(20.4)

We have made the perturbation time-dependent, but this is a minor change.
To obtain a Fredholm operator, we combine Qγ ,p with a suitable boundary

condition, as in Lemma 17.3.3. At the boundary components {ti}×Y , we again
decompose

T σ
1/2,ai

(Y )⊕ L2
1/2(Y ; iR) = J σ

1/2,ai
⊕Kσ

1/2,ai
⊕ L2

1/2(Y ; iR)

and we write

H−
i = {0} ⊕K−1/2,ai

⊕ L2
1/2(Y ; iR)

H+
i = {0} ⊕K+1/2,ai

⊕ L2
1/2(Y ; iR)

(20.5)

where, as before, we have decomposed Kσ
1/2,ai

as

Kσ
1/2,ai

= K−1/2,ai
⊕K+1/2,ai

using the spectral subspaces of the Hessian Hessσqi ,ai
, as at (17.12). As before,

because we do not know that the operator is hyperbolic, it is actually the spectral
subspaces of Hessσqi ,ai

− ε (for small positive ε) that we use to define this

decomposition. We write $−Y ,ai
and $+Y ,ai

for the projections to H−
i and H+

i
with kernels

ker($−Y ,ai
) = J σ

1/2,ai
⊕K+1/2,ai

⊕ {0}
ker($+Y ,ai

) = J σ
1/2,ai

⊕K−1/2,ai
⊕ {0}.

These are not complementary projections. Note that changing the orientation
of Y interchanges the $−Y ,ai

and $+Y ,ai
if the operator Hessσqi ,ai

is hyperbolic: if
this operator has zero eigenvalues, then the symmetry is broken by our choice
of sign for ε above. For convenience, we use the shorter notation $±i for the
composites of these projections with the restriction maps ri to {ti} × Y :

$−i = $−Y ,ai
� ri : E → H−

i

$+i = $+Y ,ai
� ri : E → H+

i .
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Lemma 17.3.3 tells us that the operator

Pγ ,p = (Qγ ,p,−$+1 ,$−2 )

E → F ⊕ H+
1 ⊕ H−

2

(20.6)

is Fredholm.
We define �(γ , p) to be the set of orientations of the 1-dimensional real

vector space det(Pγ ,p). As γ and p vary, these 2-element sets define a double
cover of C: this is the orientation bundle of the determinant line bundle of this
family of Fredholm operators. The gauge-group Gk+1(I × Y ) acts naturally on
the determinant line bundle, and acts freely on the base C; so the double cover
descends to a double cover of the quotient C/Gk+1. There is fibration

C/Gk+1 → Bτ
k (I × Y ; [a1], [a2])

with base

Bτ
k (I × Y ; [a1], [a2]) def= { [γ ] ∈ Bτ

k (I × Y ) | Ri[γ ] = [ai], i = 1, 2 }.
The fibers of this fibration are affine spaces, so the double cover of C/Gk+1

which we have constructed gives rise to a double cover

�→ Bτ
k (I × Y ; [a1], [a2]). (20.7)

Definition 20.3.1. For [γ ] in Bτ
k (I × Y ; [a1], [a2]), we write

�[γ ]([a1], q1, [a2], q2)

for the 2-element set given by the fiber of the above double cover. Thus an
element of the fiber �[γ ]([a1], q1, [a2], q2) is the same thing as a continuous,
gauge-invariant choice of orientations for the determinant lines det(Pγ ,p), as
γ runs through all representatives of the gauge-equivalence class and p runs
through all perturbations with the given boundary conditions. ♦

The product law for the determinant line of a direct sum gives rise to a com-
position law for the double covers �. We consider an interval I expressed as
the union of I1=[t1, t2] and I2=[t2, t3], and a configuration γ in Cτ

k (I ×Y )

whose restrictions define two configurations γ1 and γ2. We take also a
time-dependent perturbation p on I , and write pi for its restriction to Ii. Write

Ei = E(Ii × Y )

Fi = F(Ii × Y )
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for i = 1, 2 as in (20.4), and let H±
i be the spectral subspaces at {ti} × Y for

i = 1, 2, 3. Then we have operators

Pγi ,pi : Ei → Fi ⊕ H+
i ⊕ H−

i+1

for i = 1, 2, and

Pγ ,p : E → F ⊕ H+
1 ⊕ H−

3 .

To avoid clutter, we omit the perturbations p etc. from our notation of the
operators Pγ and Qγ in what follows. A solution to Qγ u = 0 gives rise, by
restriction, to solutions ui to Qγi ui = 0 for i = 1, 2; and u1, u2 have the same
boundary value in

H2 = T τ
1/2,a2

({t2} × Y )⊕ L2
1/2(Y ; iR).

Thus an element u of the kernel of Pγ gives an element (u1, u2) in the kernel of

P̃ : E1 ⊕ E2 → F1 ⊕ F2 ⊕ H+
1 ⊕ H−

3 ⊕H2

(u1, u2) �→ (Qγ1 u1, Qγ2 u2,−$+1 u1,$−3 u2, r2u1 − r2u2),

where r2 is the restriction to {t2} × Y . By the arguments of the proof of Propo-
sition 17.2.8 in fact, the kernel and cokernel of P̃ are the same as those of Pγ ,
so providing an identification

det Pγ = det P̃.

On the other hand, the operator Pγ1⊕Pγ2 has the same domain and codomain
as P̃, and is given by

Pγ1 ⊕ Pγ2 : E1 ⊕ E2 → F1 ⊕ F2 ⊕ H+
1 ⊕ H−

3 ⊕ H−
2 ⊕ H+

2

(u1, u2) �→ (Qγ1 u1, Qγ2 u2,−$+1 u1,$−3 u2,$−2 u1,−$+2 u2).

Thus the operators Pγ1 ⊕ Pγ2 and P̃ differ only in the last components, where
we see, respectively, the operators obtained by composing the restriction map
(r2, r2) to H2 ⊕H2 with two different projections:

A0 : (v1, v2) �→ ($−Y ,a2
v1,−$+Y ,a2

v2)

A1 : (v1, v2) �→ r2v1 − r2v2.
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The kernels of these are

ker(A0) =
(
J σ

1/2,a2
⊕K+1/2,a2

⊕ {0})⊕ (
J σ

1/2,a2
⊕K−1/2,a2

⊕ {0})
⊂ H2 ⊕H2

ker(A1) = { (v1, v2) | v1 = v2 }
⊂ H2 ⊕H2.

On the other hand, we can use the operator

L̃a2 =
⎡⎢⎣ 0 0 dσ

a2

0 Hessσq,a2
0

dσ ,†
a2 0 0

⎤⎥⎦
as at (17.13) to give a spectral decomposition: an internal direct sum

H2 = H− +H+.

The kernels of both A0 and A1 can be described as graphs of linear maps

H+ ⊕H− → H− ⊕H+.

In the case of A0, the linear map is constructed as in the proof of Lemma 17.3.3,
while for A1 the map is (x, y) �→ (y, x). Using this description, we can identify
the codomain of both A0 and A1 with H− ⊕H+, and they are then homotopic
through a path of projections As all of whose kernels are transverse to H−⊕H+.

We now have a family of operators

Ps = (Qγ1 ⊕ Qγ2 ,−$+1 ,$−3 , As � (r2, r2))

between Pγ1 ⊕Pγ2 and P̃. All of these operators are Fredholm, by the argument
of the proof of Proposition 17.2.6, because the kernels of As are transverse to the
spectral subspace H−⊕H+. This homotopy Ps gives a canonical identification

det P̃ = det(Pγ1 ⊕ Pγ2),

up to a positive real scalar factor. We combine these last two canonical iden-
tifications with our earlier discussion concerning the determinant of a sum of
operators, and we obtain an isomorphism, well-defined up to homotopy,

q : det Pγ1 ⊗ det Pγ2 → det Pγ . (20.8)
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This q is gauge-invariant, and depends continuously on p, so it descends to a
map on the spaces �[γ1]([a1], q1, [a2], q2) etc., a fact which we summarize with
a definition:

Definition 20.3.2. The map

q : �[γ1]([a1], q1, [a2], q2)�[γ2]([a2], q2, [a3], q3)

→ �[γ ]([a1], q1, [a3], q3) (20.9)

is defined by choosing a gauge representative for [γ ] and suitable paths of
perturbations, and then applying the composition map (20.8). ♦

Remark. The above construction establishes not only the multiplicative law
(20.8) for the determinants, but also an additive law for the indices of these
operators, by an argument which eventually makes no reference to spectral
flow. The same sort of homotopy can be used to prove additivity in the case
that S1 × Y is decomposed into two copies of I × Y . In this case, the index
of an operator P on the closed manifold can be expressed as the sum of the
indices of the two spectral boundary-value problems. This is an argument that
was referred to earlier, in the proof of Proposition 14.2.2.

We wish next to define �([a], q) in terms of �[γ ]([a], q, [a0], q0, ) for suit-
able reference configurations ([a0], q0). The obvious choice for the reference
configurations is those with a0 reducible and q0 = 0. For this to work, we
need to consider two related issues: the independence of the construction on
the choice of [a0] and the choice of [γ ]. This leads us to examine the situation
of reducible trajectories in some detail.

So we return to the case of a single interval I , and consider now the special
case that [γ ] ∈ Bτ

k (I × Y ; [a1], [a2]) is reducible and q1 = q2 = 0. In this
reducible case, we can define a canonical trivialization of �[γ ]: a map

τ : �[γ ]([a1], 0, [a2], 0)→ Z/2. (20.10)

To define τ , we take the time-dependent perturbation p to be zero. The operator
Qγ belonging to a corresponding 4-dimensional configuration on [t1, t2] × Y
has the form

Qγ = D

dt
+ L(t),

where L(t) is a time-dependent operator on

T σ
1,γ (t) ⊕ L2

1(Y ; iR),
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and D/dt is as in (14.11). For the case of a reducible, the shape of the operator
L(t) is described quite explicitly by the matrix (12.19); by scaling the off-
diagonal terms xi in the matrix (12.19) to zero, we can deform L(t) to an
operator which is the direct sum of the diagonal blocks (12.20). In this way, the
Fredholm operator

P = (Qγ ,−$+1 ,$−2 )

can be deformed through Fredholm operators to an operator

P′ = (Q′γ ,−$+1 ,$−2 ),

where Q′γ is the direct sum of the following pieces:

(i) the operator

d

dt
+ λ(t)

acting on L2
1(I ; R);

(ii) the operator

d

dt
+
[

0 −1
−1 0

]
acting on L2

1(I ; R⊕ R);
(iii) the operator

d

dt
+
[

0 −d∗
−d 0

]
where for fixed t the matrix is interpreted as an operator on pairs (ĉ, b),
where c is an imaginary-valued function orthogonal to the constants and
b is an exact 1-form;

(iv) the operator

d

dt
+ ∗d

where ∗d is acting on the coclosed 1-forms on Y ;
(v) the operator

D

dt
+$⊥CDB(t)
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acting on sections along γ of the bundle of spinors L2-orthogonal to φ(t).
Here D/dt is the covariant derivative in this bundle along γ defined by L2

projection.

Furthermore, the boundary operators $+1 and $−2 become direct sums also; so
that P′ is a direct sum of five corresponding operators, P′1, . . . , P′5.

In the case of P′2 and P′3, the boundary projections are the projections to
the first component at both ends (up to sign), and these operators are therefore
invertible, as is easily verified. In the case of P′4, the projections are complemen-
tary spectral projections at the two ends; and because the corresponding part of
Q′γ is translation-invariant, the operator P′4 is again invertible. The operator P′5
is a complex-linear operator. We specify the canonical complex orientation for
its determinant.

Thus we see that an orientation for det(P) is canonically determined by
specifying an orientation for the operator P′1, which is the operator d/dt+ λ(t)
augmented with certain boundary conditions.

We examine this 1-dimensional block in more detail. The corresponding
summand of Q′γ is the part which appears as the part “normal” to the boundary
of the blown-up configuration space: it was considered in the context of the
infinite cylinder in Lemma 14.5.4, where the differential operator was called
Qν

γ . Accordingly we write

Pν
γ = P′1

for this part of the operator P′. There are four cases, according to the sign of the
real-valued function λ(t) at t = t1 and t = t2. In each of the four cases, we will
specify a preferred orientation of the determinant line. For i = 1, 2, the spectral
subspace H+

i is either R or 0, according as λ(ti) > 0 or λ(ti) ≤ 0 respectively,
with the complementary rule for H−

i . The four cases are as follows.

(i) If λ(t1) and λ(t2) are both positive, the operator is invertible, and we take
the canonical orientation for the determinant.

(ii) If λ(t1) and λ(t2) are both non-positive, the operator is again invertible,
and we take the canonical orientation.

(iii) In the case that λ(t1) ≤ 0 and λ(t2) > 0, the operator is

Pν = (d/dt + λ) : L2
1 → L2 (20.11)

on [t1, t2]. This operator has 1-dimensional kernel and no cokernel. We
orient the determinant by picking a basis vector for the kernel represented
by a negative function u(t) on [t1, t2].
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(iv) When λ(t1) > 0 and λ(t2) ≤ 0, the operator is

Pν : L2
1 → L2 ⊕ R⊕ R,

u �→ (du/dt + λ(t)u,−u(t1), u(t2)).

The kernel is zero, and the cokernel is 1-dimensional. The element

(0, 0,−1) ∈ L2 ⊕ R⊕ R (20.12)

is not in the image of Pν , so represents a basis vector for the cokernel. We
use this basis element to orient the cokernel, and hence the determinant of
the operator.

Having chosen preferred orientations in each case, we define the trivialization
τ as in (20.10) so that it sends the preferred orientation to 0 ∈ Z/2. The
reason for selecting these particular rules for defining τ is that we wish these
trivializations of the determinant lines to be compatible with composition law
q. The reader can verify that the rule for orienting the cokernel in the last of
the four cases is thus forced on us by our rule for orienting the kernel in the
previous case. Thus:

Lemma 20.3.3. The chosen trivializations

τ : �[γ ]([a1], 0, [a2], 0)→ Z/2

for reducible trajectories, obtained from the above choices, are consistent with
the product rule for composite trajectories provided by the map q in (20.9). �

Next we prove the triviality of the double covers we have constructed:

Proposition 20.3.4. For any choice of a1, a2 and perturbations q1, q2, the
double cover

�→ Bτ
k (I × Y ; [a1], [a2])

whose fibers are the sets �[γ ]([a1], q1, [a2], q2) is a trivial double cover.

Proof. Any [γ ] in Bτ
k (I ×Y ; [a1], [a2]) determines a continuous path ζ joining

[a1] to [a2] in Bσ
j (Y ), for j ≤ k − 1, and this assignment is a weak homotopy

equivalence. Thus � is equivalent to a double cover

�→ 	
(
Bσ (Y ); [a1], [a2]

)
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of the space of continuous paths with fixed endpoints. To show that this double
cover is trivial, it is enough to consider the case that a1 and a2 are both equal to
a single reducible configuration a0 and the perturbations are 0: for the general
case, we can join [a1] and [a2] to [a0] by fixed paths, and then use the compo-
sition law q from (20.9). The inclusion of the reducibles ∂Bσ (Y ) in Bσ (Y ) is a
homotopy equivalence, and so therefore is the inclusion

	
(
∂Bσ (Y ); [a0], [a0]

)
↪→ 	

(
Bσ (Y ); [a0], [a0]

)
.

It is therefore enough to consider the restriction of the double cover,

�′ → 	
(
∂Bσ (Y ); [a0], [a0]

)
.

The trivialization τ shows that �′ is trivial. �

Remark. The fundamental group of the space 	(Bσ (Y ); [a0], [a0]) is
π2(Bσ (Y )), which is Z. This space therefore has one non-trivial double cover.

Now that we know that the double cover is trivial, we can drop [γ ] from the
notation, and simply write

�([a1], q1, [a2], q2)

instead of �[γ ]([a1], q1, [a2], q2). We can think of an element of the former as a
section of the trivial double cover� from the proposition. We have composition
maps

q : �([a1], q1, [a2], q2)�([a2], q2, [a3], q3)→ �([a1], q1, [a3], q3), (20.13)

arising from (20.9). If we take ([a3], q3) = ([a1], q1), we obtain from q a map

ρ : �([a2], q2, [a1], q1)→ �([a1], q1, [a2], q2) (20.14)

characterized by

q(λ, ρ(λ)) = 1

where 1 is the canonical orientation in �([a2], q2, [a2], q2). We also have
trivializations

τ : �([a0], 0, [a′0], 0)→ Z/2
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in the case that a0 and a′0 are reducible. Combining q and τ , we obtain
isomorphisms

σ : �([a], q, [a0], 0)→ �([a], q, [a′0], 0)

σ (λ) = q(λ, τ−1(0)),
(20.15)

for any a, whenever a0 and a′0 are reducible. If we let a0 and a′0 run through all
the reducibles, the diagram of isomorphisms σ that we obtain is a commutative
diagram, by Lemma 20.2.1. In other words, for each a, we have an equivalence
relation on ∐

[a0] reducible

�([a], q, [a0], 0). (20.16)

Definition 20.3.5. For [a] in Bσ
k (Y ) and any tame perturbation q, we define

�([a], q) to be the 2-element set obtained as the quotient of the above disjoint
union by the equivalence relation defined by the isomorphisms σ . ♦

We have now defined both �([a], q) and �([a1], q1, [a2], q2) as promised in
our introductory remarks to this section, and the composition law provides the
required isomorphism

�([a1], q1)�([a2], q2)→ �([a1], q1, [a2], q2) (20.17)

defined at the level of the representatives in (20.16) by

λ1 × λ2 �→ q(λ1, ρ(λ2)).

(This construction is compatible with the equivalence relation arising from σ ,
as it needs to be, to define a map (20.17).)

Remark. Our definition of �([a], q) has been motivated in part by our wish to
mimic as closely as we can the situation in finite-dimensional Morse theory,
where one can define �(a) (for a critical point a of a finite-dimensional Morse
function f ) to be the set of orientations of the unstable manifold Ua. One
could set up finite-dimensional Morse theory differently, taking orientations
of the stable manifolds Sa as the primary object; but the unstable manifolds
are more appropriate when thinking of homology (rather than cohomology).
Instead of using �([a], q, [a0], 0) as the basis of our definition, we might have
used�([a0], 0, [a], q), which would have more closely resembled an orientation
of the stable manifold in the finite-dimensional case.
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20.4 Orienting the moduli spaces

Fix a perturbation q now, and write �([a]) in place of �([a], q). Our next task
is to explain how an element of �([a1], [a2]) determines an orientation of the
moduli space M([a1], [a2]) when the ai are non-degenerate critical points and
the moduli space is regular.

Let [γ ] be an element of the moduli space M([a1], [a2]), and let ζ be the
path in Bσ

k (Y ) corresponding to γ . Write Qγ = (d/dt)+ L, as before. We are
assuming that the critical points are non-degenerate, so there exists T1 ) 0
such that L(t) is hyperbolic for all t ≤ T1, and there is T2 * 0 such that L(t) is
hyperbolic for all t ≥ T2. Thus H−(L(t)) varies continuously with t for t ≤ T1

and t ≥ T2. Because of this, we can identify

�([a1], [a2]) = �(ζ(t1), ζ(t2)),

as long as the interval [t1, t2] contains [T1, T2], for we have a continuous family
of Fredholm operators. Choose [t1, t2] satisfying this condition.

The boundary-unobstructed case. Suppose first that the moduli space is not
boundary-obstructed. Then the determinant line of T[γ ]M([a1], [a2]) is equal to
det Pγ , where Pγ = Qγ is the operator on the infinite cylinder:

Pγ : L2
1(R× Y ; iT ∗Y ⊕ S ⊕ iR)→ L2(R× Y ; iT ∗Y ⊕ S ⊕ iR).

We regard γ as the concatenation of three pieces, γ−, γ0 and γ+, where γ0 is
the restriction of γ to [t1, t2], and the other two are the restrictions to (−∞, t1]
and [t2,∞). On the finite interval [t1, t2], we have the operator Pγ0 from (20.6)
whose determinant is �(ζ(t1), ζ(t2)). We also have Fredholm operators

Pγ− : L2
1

(
Z−; iT ∗Y ⊕ S ⊕ iR

)→ L2(Z−; iT ∗Y ⊕ S ⊕ iR
)⊕ H−

1

Pγ+ : L2
1

(
Z+; iT ∗Y ⊕ S ⊕ iR

)→ L2(Z+; iT ∗Y ⊕ S ⊕ iR
)⊕ H+

2 ,

where we have written R×Y as the union Z− ∪Z0 ∪Z+, with Z− = (−∞, t1]
etc. These last two are invertible operators if t1 is sufficiently negative and
t2 sufficiently positive, because they approach constant-coefficient operators
in operator norm as |ti| goes to infinity. The determinants of Pγ− and Pγ+ are
therefore canonically trivial.As in the construction of the map q in (20.8) above,
there is a canonical isomorphism

det(Pγ ) = det(Pγ−)⊗ det(Pγ0)⊗ det(Pγ+).
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This identifies det T[γ ]M([a1], [a2]) with det(Pγ0), and hence with
�([a1], [a2]).
The boundary-obstructed case. In the boundary-obstructed case, the operator
Pγ has kernel equal to the tangent space of the moduli space, but also has 1-
dimensional cokernel arising from the normal part, Qν

γ (see (14.16)), which is
the 1-dimensional block (d/dt)+ λ considered above. Our argument therefore
provides an identification

�([a1], [a2]) = det(Pγ )

= det Tγ M ⊗ coker(Pγ0)
∗.

If we wish to identify �([a1], [a2]) with a set of preferred orientations for
the moduli spaces, we must therefore fix an orientation for the 1-dimensional
cokernel. As before we choose the element (20.12) as a basis for the cokernel,
so identifying the fiber of the orientation bundle of the moduli space with
�([a1], [a2]).

These particular choices of orientation conventions will be important later,
but irrespective of the choices made, we have established, in all cases:

Corollary 20.4.1. The moduli spaces M([a], [b]) are orientable manifolds,
whenever they are regular. �

The unparametrized moduli spaces. The unparametrized moduli space
M̆ ([a], [b]) is of course orientable also, being the quotient of M([a], [b]) by
a free action of R. To fix a specific orientation, we consider R acting on
M([a], [b]) by

[γ ] �→ [τ ∗t γ ],

where τt as usual is the map (s, y) �→ (s+ t, y) on the cylinder. This convention
about the action means that the map from the moduli space to Bσ

k (Y ) given by
[γ ] �→ [γ̌ (0)] is equivariant for the (partially defined) action of R on Bσ

k (Y )

given by the downward gradient flow on Bk(Y ). For a general fiber bundle

F ↪→ E
p−→ B

of smooth manifolds, we adopt the “fiber-first” convention for orientations: that
is, at any x ∈ E, we choose a splitting TxE = TxF ⊕ TxB and we declare that
orientations on these three vector spaces are compatible if they agree with the
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“first-summand-first” convention. In this way, taking the standard orientation
for R, we obtain an orientation on M̆ ([a], [b]) from an orientation on M([a], [b]).
This is the convention we adopt whereby a choice of element from �([a], [b])
orients M̆ ([a], [b]).

20.5 Orientations and gluing

We now turn to the question of how our chosen orientations behave under
gluing. To consider the simplest case first, suppose that Mz1([a0], [a1]) and
Mz2([a1], [a2]) are two moduli spaces neither of which is boundary-obstructed.
We have an inclusion

M̆+
z ([a0], [a2]) ⊃ M̆z1([a0], [a1])× M̆z2([a1], [a2]),

and according to Corollary 19.5.1, the moduli space M̆+
z ([a0], [a2]) has the

structure of a C0 manifold with boundary along this stratum. Write �ij for
�([ai], [aj]) and Mij similarly. Pick elements λ01 ∈ �01 and λ12 ∈ �12. Set

λ02 = q(λ01, λ12),

where q is the composition map (20.13). Using λ01, λ12 and the product λ02,
we orient the moduli spaces M̆ij.

Having oriented the moduli spaces in this way, we can ask whether the product
orientation of M̆01× M̆12 agrees with the orientation it obtains as the boundary
of M̆+

02 (using the standard outward-normal-first convention). We shall see that
these orientations differ by the sign (−1)d01 , where d01 is the dimension of M01.
This is one of the cases contained in Proposition 20.5.2 below.

The other case in Proposition 20.5.2 concerns a stratum in M̆+
03 =

M̆+
z ([a0], [a3]) of the form

M̆01 × M̆12 × M̆23

under the hypothesis that M̆12 (and only M̆12) is boundary-obstructed and that
M̆03 contains irreducibles. According to Corollary 19.5.2 and Definition 19.5.3,
M̆+

03 has a codimension-1 δ-structure along this stratum:

M̆+
03 ⊃ M̆01 × M̆12 × M̆23.

We choose orientations λ01, λ12 and λ23; and we then set

λ03 = q(λ01λ12λ23)
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(extending the associative binary operation q to three factors). The notion
of a codimension-1 δ-structure is more general than that of a manifold with
boundary, but orientations can be compared in a similar way. Recall from Def-
inition 19.5.3 that if N has a codimension-1 δ-structure along M d−1, then we
have an open W ⊂ N and

N ⊃ W
j

↪→ EW ,

where EW is locally homeomorphic to M d−1 × (0,∞]2. The image of j is the
zero set of a map δ : EW → R. If M d−1 is oriented, we can orient EW by
the local homeomorphism with M d−1 × (0,∞]2, and then W can be oriented
as the fiber of δ (with the “fiber-coordinates-first” convention). We summarize
this with a definition:

Definition 20.5.1. Let N be a d -dimensional space stratified by manifolds
and M d−1 ⊂ N a union of components of the (d − 1)-dimensional stratum.
Suppose that N has codimension-1 δ-structure along M d−1 in the sense of
Definition 19.5.3. Suppose in addition that M d−1 and the top stratum of N are
oriented. We say that M d−1 has the boundary orientation if the orientation of
the top stratum of N differs from the orientation that W ⊂ N obtains as the
fiber of δ by the sign (−1)d . ♦

This definition is set up so that if δ is simply

δ = 1/S2 − 1/S1

(so that W ⊂ EW is the set S1 = S2 and N has the structure of a manifold
with boundary along M d−1), then the boundary orientation in the above sense
agrees with the standard outward-normal-first convention.

With this definition understood, we can ask whether the product orientation
on the stratum

M̆01 × M̆12 × M̆23

is the same as the boundary orientation in the stratified space M̆+
03, oriented

by λ03. The answer is that the product orientation differs from the boundary
orientation by the sign (−1)d01+1, where d01 is again the dimension of M01. We
state this result and the previous one as a proposition.

Proposition 20.5.2. Suppose that Mz([a], [b]) contains irreducibles, so that
M̆+

z ([a], [b]) is a space stratified by manifolds with top stratum M̆z([a], [b]).
Let M ′ be a codimension-1 stratum of one of the two forms
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(i) M̆01 × M̆12,
(ii) M̆01 × M̆12 × M̆23,

where M̆12 is boundary-obstructed in the second case. Let an element λ be
chosen in �([a], [b]), so that the top stratum of M̆+

z ([a], [b]) is oriented. Orient
M ′ with the product orientation, having chosen orientations for the individual
factors so that their q product is λ. Then the product orientation of M ′ differs
from the boundary orientation by the sign

(i) (−1)d01 ,
(ii) (−1)d01+1

accordingly, where d01 is the dimension of M01.

Proof. We begin with the unobstructed gluing that arises as Case (i). Let the
critical points be

a = a0, a1, a2 = b

as before. Let elements λ01 and λ12 be chosen in �([a0, a1]), �([a1], [a2]), and
let λ02 be their q product. As in the statement of the proposition, use these λij

to orient Mij and hence M̆ij.
The proof of the gluing theorem provides a preferred isotopy class of dif-

feomorphisms between an open subset of M02 and a subset of the product
M01 ×M12. More specifically, let

c : Mij → R

be the map that locates the center of mass of the real function ‖ grad−L‖2 on the
line. (Our convention about how R acts on Mij by translations means that −c,
not c, is equivariant.) If K01 and K12 are precompact subsets of M01 and M12

respectively, and if c is large and negative on K01 and positive on K12, then
the gluing theorem embeds K01 × K12 in M02. Furthermore, this embedding is
compatible, up to homotopy, with the product rule for determinant lines that is
used in the definition of q. In other words, the identification of K01×K12 with a
subset of M02 respects our chosen orientations. Let us express this relationship
by writing:

M02 ≡ M01 ×M12.

The notation means that the gluing theorem provides a preferred isotopy class
of diffeomorphisms between certain open sets, and that these are orientation-
preserving.



396 VI Floer homology

As oriented manifolds, we can write

Mij = R× M̆ij,

in such a way that our preferred R action is the standard translation on the first
factor. We can also identify M̆ij with subset of Mij satisfying c = cij, where
cij ∈ R is any chosen constant. We therefore obtain

R× M̆02 ≡ (R× M̆01)× (R× M̆12).

This identification is equivariant for the R action which is the standard one on
each R factor. Since M̆01 has dimension d01 − 1, we obtain

R× M̆02 ≡ (−1)d01−1(R× R)× M̆01 × M̆12.

Now we divide by the R action on both sides, using the fiber-first convention.
On the left-hand side, we obtain M̆02 as an oriented manifold. On the right, we
must divide R × R with its standard orientation by the diagonal action of R.
We can identify the quotient (R × R)/R with the line L ⊂ R × R spanned
by the vector l = (−1, 1); and the quotient orientation of L is the one which l
determines. As oriented manifolds, we therefore have

M̆02 ≡ (−1)d01−1Rl × M̆01 × M̆12.

If we fix precompact sets K̆01 and K̆12, then the trajectories in M̆02 corresponding
to the points

tl × K̆01 × K̆12

are trajectories with two local centers of mass whose separation increases as
t →−∞. For the compactification by broken trajectories, we therefore have

M̆+
02 ≡ (−1)d01−1[−∞,∞)× l × M̆01 × M̆12.

As oriented manifolds, we therefore have

∂M̆+
02 ≡ (−1)d01−1(∂[−∞,∞)

)×M̆01 × M̆12

≡ (−1)d01 M̆01 × M̆12.

This completes the proof for Case (i).
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In Case (ii), we have critical points

a = a0, a1, a2, a3 = b

and we choose orientation elements λij for i < j, compatible with the compo-
sition law q as before. The moduli space M([a1], [a2]) is boundary-obstructed,
and we recall that in this case our orientation convention ran as follows. We
have identifications

det Pγ |[t1,t2]
∼= �maxT[γ ]M([a1], [a2])⊗ C∗,

where C is a 1-dimensional cokernel; we orient C using a preferred basis ele-
ment, and use the fact that �([a1], [a2]) orients det Pγ |[t1,t2] when t1 ) 0 and
t2 * 0, as in Subsection 20.4.

There is an alternative way to use �([a1], [a2]) to orient M([a1], [a2]) in the
boundary-obstructed case. In the end, it gives the same result; but the alternative
route fits better with the gluing arguments. This proceeds as follows. Let [a1] and
[a2]be reducible configurations (not necessarily critical points) and suppose that
these are boundary-stable and boundary-unstable respectively. For I a compact
interval and [γ ] ∈ Bτ

k (I × Y ; [a1], [a2]), we defined an operator

Pγ : E → F ⊕ H+
1 ⊕ H−

2

at (20.6). In the present case, if γ is reducible, this operator has block Pν which
contributes a 1-dimensional piece C to the cokernel of Pγ . Let c ∈ C be our
distinguished generator of the cokernel, and consider the operator EPγ :

EPγ : E ⊕ R → F ⊕ H+
1 ⊕ H−

2

EPγ (u, x) = Pγ (u)− xc.

Thus the domain of EPγ is enlarged by a copy of R so as to kill the cokernel
element c. We can use EPγ to define a 2-element set E�([a1], [a2]), just as
�([a1], [a2]) is defined using the orientations of det Pγ . In the case that [a1]
and [a2] are critical points, the kernel of EP becomes the tangent space to the
boundary-obstructed moduli space, while the cokernel becomes zero; so there is
a natural way in which E�([a1], [a2]) orients M([a1], [a2]). There is an obvious
homotopy of operators,

Pγ ⊕ 0 � EPγ (20.18)
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where 0 is the zero operator, R → {0}. Using this homotopy and our convention
on direct sums, we obtain a preferred isomorphism

e : �([a1], [a2])→ E�([a1, a2]).

In this way, an element λ12 ∈ �([a1], [a2]) determines an element eλ12 ∈
E�([a1], [a2]), and hence an orientation of the boundary-obstructed moduli
space M([a1], [a2]).

To summarize, an element λ12 in �([a1], [a2]) can be used in two differ-
ent ways to orient the boundary-obstructed moduli space: either by the route
described in Subsection 20.4, or via the map e to E�([a1], [a2]). The following
lemma is an exercise in the definitions:

Lemma 20.5.3. The two routes whereby an element λ12 in �([a1], [a2]) can
be used to orient the boundary-obstructed moduli space M([a1], [a2]) lead to
the same orientation. �

The operator EPγ is relevant also in the boundary-unobstructed case, in
connection with the extended moduli space. Consider in particular the moduli
space M([a], [b]). Let [γ∼] belong to this moduli space, let I = [t1, t2] be an
interval with t1 ) 0 and t2 * 0, and let γ = γ∼|I . We have, up to homotopy,
a preferred identification

ker Pγ
∼= T[γ∼]M([a], [b])

and coker Pγ = 0. The construction of the EPγ makes sense even though the
moduli space is not boundary-obstructed: there is no cokernel C now, but the
specific generator c which we defined still leads to an element of the codomain
of Pγ , and the formula for EPγ still makes sense. With this understood, we
have a similar identification

ker EPγ
∼= T[γ∼]EM([a], [b])

where EM([a], [b]) is the extended moduli space. To understand this more
clearly, it is convenient to look again at our preferred generator c. In (20.12), it
is defined as the element

c = (0, 0,−1) ∈ L2 ⊕ R⊕ R.

It is convenient to consider instead the element

c∗ = (β, 0, 0) ∈ L2 ⊕ R⊕ R,
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where β is a positive bump-function supported near 0. Positive multiples of the
elements c and c∗ differ by an element of the image of Pγ , so they lead to the
same orientations. If we consider EPγ as

EPγ (u, x) = Pγ u − xc∗,

then the interpretation of the kernel of EPγ is that u should solve the linearized
equations Pγ u = 0 except near 0; and that the behavior of the s coordinate of
u near 0 is that of a (smoothed out) step discontinuity of size x. In this way,
the kernel of EPγ approximates the tangent space to the extended moduli space
EM([a], [b]).

Now let λ03 ∈ �([a], [b]) be given. Let eλ03 be the corresponding element of
E�([a], [b]), and use these to orient M([a], [b]) and EM([a], [b]) respectively.
The definition of the extended moduli space means that M([a], [b]) is the fiber
δ−1(0) of a map δ,

M([a], [b]) ↪→ EM([a], [b]) δ−→ R,

which measures the size of the discontinuity (see (19.2)). The sign of δ is
positive when the value of the s coordinate increases across the discontinuity.
The next lemma is another application of the definitions.

Lemma 20.5.4. If M([a], [b]) and EM([a], [b]) are oriented using λ03 and
eλ03, then M([a], [b]) is the oriented fiber of the map δ, with our usual fiber-first
orientation convention. �

Before continuing with the rest of the calculation, there is one more point to
consider with E�. As with the ordinary orientation sets �([ai], [aj]), there is a
natural map corresponding to composition of paths:

�01 × E�12 ×�23 → E�03.

We can therefore ask whether the following diagram commutes:

�01 ×�12 ×�23 ��

1×e×1
��

�03

e
��

�01 × E�12 ×�23 �� E�03.

Lemma 20.5.5. The above diagram commutes or not according to the sign
(−1)dim M23 .
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Proof. Use the homotopy from EPγ to a sum of operators, as in (20.18). After
the homotopy, we are comparing the composition rules for sums

Pγ1 ⊕ (Pγ2 ⊕ 0)⊕ Pγ3

and

(Pγ1 ⊕ Pγ2 ⊕ Pγ3)⊕ 0.

The sign results from the interchange of the operator 0 (which has index 1) with
the operator Pγ3 . �

In the boundary-obstructed case, the moduli spaces M([a1], [a2]) and
EM([a1], [a2]) coincide; Lemma 20.5.3 says that they coincide as oriented
manifolds, when oriented using λ12 and eλ12 respectively. The gluing con-
struction gives a local diffeomorphism of open sets between EM03 and the
product M01 × EM12 × M23, and Lemmas 20.5.3 and 20.5.5 together tell us
that, with orientations, we have

EM03 ≡ (−1)d23 M01 ×M12 ×M23,

where dij is the dimension of Mij. Passing to the unparametrized moduli spaces,
we have

R× ˘EM03 ≡ (−1)d23(R× M̆01)× (R× M̆12)× (R× M̆23)

≡ (−1)d23+dim M̆12(R× R× R)× M̆01 × M̆12 × M̆23.

Using translations to center the middle factor, we can write

˘EM03 ≡ (−1)d23(R× M̆01)× (R× M̆12)× (R× M̆23)

≡ (−1)d23+dim M̆12+1(R× 0× R)× M̆01 × M̆12 × M̆23

≡ (−1)d23(R× M̆01)× (R× M̆12)× (R× M̆23)

≡ (−1)d23+d12 M̆01 × M̆12 × M̆23 × (R× 0× R).

The two factors of R that appear at the end are not the separation coordinates
that are used in Definition 20.5.1: to obtain the correct sign for the separations,
we need to change the sign of the first R factor. So, in terms of the separation
coordinates, we have

˘EM03 ≡ (−1)d23+d12+1M̆01 × M̆12 × M̆23 × (0,∞]2.
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Using Lemma 20.5.4, we see that M̆03 is locally the oriented fiber of δ, regarded
as a map

(−1)d23+d12+1M̆01 × M̆12 × M̆23 × (0,∞]2 δ−→ R.

In Definition 20.5.1, the relevant quantity d is d01+ d12+ d23− 2. In the sense
of that definition therefore, the orientation of M̆01 × M̆12 × M̆23 differs from
the boundary orientation by

(−1)d23+d12+1(−1)d01+d12+d23−2,

which is (−1)d01+1 as the proposition asserts. �

20.6 Orienting moduli spaces of reducible trajectories

Let [a] and [b] be reducible critical points, and as in Subsection 16.6, let

M red([a], [b]) ⊂ M([a], [b])

denote the moduli space of reducible trajectories. Recall that the two spaces in
this inclusion are actually equal in all but one case: the special situation is when
[a] is boundary-unstable and [b] is boundary-stable, and in this case M([a], [b])
is a smooth manifold with boundary and

M red([a], [b]) = ∂M([a], [b]).

An element of �([a], [b]) orients M([a], [b]), by the rule specified in Sub-
section 20.4 above. We therefore have a rule for orienting M red([a], [b])
also:

Definition 20.6.1. In the case that [a] is boundary-unstable and [b] is boundary-
stable, the orientation of M red([a], [b]) determined by an element λ of
�([a], [b]) is the orientation it obtains as the boundary of M([a], [a]), with
the outward-normal-first convention. In the three other cases, the orientation of
M red([a], [b]) corresponding to λ is defined by identifying M red([a], [b]) with
M([a], [b]).

We orient M̆ red([a], [b]) as the quotient of M red([a], [b]) by R, using the
fiber-first convention. ♦

With this convention, once an element of �([a], [b]) is chosen, the moduli
space M red([a], [b]) is oriented. There is a different approach, however, to ori-
enting M red([a], [b]). Recall that �([a], [b]) is defined as the set of orientations
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of the determinant of an operator Pγ . When γ is a reducible configuration on
I × Y , we have a decomposition Qγ = Qν

γ ⊕Q∂
γ and a corresponding decom-

position of the spectral subspaces; we can write the operator Pγ that appears in
(20.6) as a sum

Pγ = Pν
γ ⊕ P̄γ

where P̄γ is the “reducible” part, and Pν
γ is the summand corresponding to the 1-

by-1 block, as it appeared in the definition of the trivializations τ in (20.10). The
operator P̄γ stands in the same relation to the moduli spaces M red([a], [b]) as
Pγ does to the moduli spaces M([a], [b]). We define a 2-element set �̄([a], [b])
by repeating the definition of �([a], [b]) but using P̄γ in place of Pγ : that is,
�̄([a], [b]) is the set of orientations of det(P̄γ ), we have composition maps

q̄ : �̄([a1], [a2])× �̄([a2], [a3])→ �̄([a1], [a3]).

As in the irreducible case, the perturbations should be mentioned when the
context requires: we write �̄([a], q1, [b], q2).

When the perturbation is zero, the orientation sets �̄([a0], 0, [a′0], 0) are
canonically trivial, so we can imitate our earlier definitions and define

�̄([a]) =
(∐

a0

�̄([a], [a0])
) /∼,

where it is understood that the zero perturbation is taken at [a0]. We then
have maps

�̄([a])× �̄([b])→ �̄([a], [b])

as in the irreducible case. When it comes to gluing, these “bar” orientations
for reducible moduli spaces behave just as the previous orientations did for
irreducible moduli spaces:

Proposition 20.6.2. Let [a] and [b] be reducible critical points, so
that M̆ red+

z ([a], [b]) is a space stratified by manifolds with top stratum
M̆ red

z ([a], [b]). Let M ′ be a codimension-1 stratum of the form

M̆ red
01 × M̆ red

12 .

Let an element λ̄ be chosen in �̄([a], [b]), so that the top stratum of
M̆ red+

z ([a], [b]) is oriented. Orient M ′ with the product orientation, having
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chosen orientations for the individual factors so that their q̄ product is λ̄. Then
the product orientation of M ′ differs from the boundary orientation by the sign
(−1)d̄01 , where d̄01 is the dimension of M red

01 .

In order to have a meaningful comparison between the “bar” orientations
and the previous orientations, we need to fix an isomorphism between �̄([a])
and �([a]). This we now do:

Definition 20.6.3. Let [a] be a reducible configuration, and q a perturbation.
Define a map

r : �([a])→ �̄([a])

from �([a]) = �([a], q) to �̄([a]) = �̄([a], q) as follows. Let [a0] be
a boundary-stable configuration with the zero perturbation. If [a] is also
boundary-stable, so that Pν

γ is invertible, orient det(Pν
γ ) with the trivial canon-

ical orientation; and if [a] is boundary-unstable, so that Pν
γ has 1-dimensional

kernel, orient det(Pν
γ ) by taking a negative function as in (20.11). Then use the

(ordered) direct sum decomposition Pγ = Pν
γ ⊕ P̄γ to identify det(Pγ ) with

det(P̄γ ). ♦

We can now compare orientations of M red([a], [b]) and M([a], [b]). Fix
elements λa and λb in �([a]) and �([b]), and set

λ̄a = r(λa)

λ̄b = r(λb).

Let λab be the corresponding element of �([a], [b]):

λab = q(λa, ρ(λb)).

Similarly set

λ̄ab = q̄(λ̄a, ρ̄(λ̄b)).

As an element of �([a], [b]), the latter orients M red([a], [b]), while the former
orients M([a], [b]).
Lemma 20.6.4. The oriented manifolds M = (M([a], [b]), λab) and M̄ =
(M red([a], [b]), λ̄ab) are related as follows:

(i) if [a] is boundary-stable, then M = M̄ as oriented manifolds;
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(ii) if [a] is boundary-unstable and [b] is boundary-stable, then M̄ is the
oriented boundary of M ;

(iii) if [a]and [b]are both boundary-unstable, then although M and M̄ coincide
as manifolds, their orientations differ by the sign (−1)d , where d is the
dimension of M .

Proof. We illustrate the argument in the most interesting case, (iii). So let a

and b be boundary-unstable. We have an orientation λ̄b for the determinant of
an operator P̄ = P̄(b, a0), and we can write

λb = τ ∧ λ̄b

where the ∧ denotes the product law for orientations of the sum Pν ⊕ P̄. We
wish to compare ρ(λb) with ρ̄(λ̄b). Let τ ∗ be our preferred orientation of the
determinant of Pν(a0, b): that is, τ ∗ is obtained by orienting the 1-dimensional
cokernel using the preferred element c from (20.12). Using the ordered direct
sum decomposition

P(a0, b) = Pν(a0, b)⊕ P̄(a0, b)

we can write down an element

τ ∗ ∧ ρ̄(λ̄b) ∈ �(a0, b).

This element λ̃ = τ ∗ ∧ ρ̄(λ̄b) can be compared with ρ(λb), and the sign can be
determined by checking the relation which defines ρ: we have q(λb, ρ(λb) = 1
by definition, whereas

q(λb, λ̃) = q(τ ∧ λ̄b, τ ∗ ∧ ρ̄(λ̄b)

= (−1)index P̄(b,a0)qν(τ , τ ∗) ∧ q̄(λ̄b, ρ̄(λ̄b))

= (−1)index P̄(b,a0).

So

ρ(λb) = (−1)index P̄(b,a0)τ ∗ ∧ ρ̄(λ̄b).
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We are now ready to compare λab = q(λa, ρ(λb)) with 1∧ λ̄ab, where 1 is the
canonical orientation of the invertible operator Pν(a, b): we have

λab = q(λa, ρ(λb))

= (−1)index P̄(b,a0)q(τ ∧ λ̄a, τ ∗ ∧ ρ̄(λ̄b))

= (−1)index P̄(b,a0)+index P̄(a,a0)qν(τ , τ ∗) ∧ q̄(λ̄a, ρ̄(λ̄b)

= (−1)index P̄(a,b)1 ∧ λ̄ab

= (−1)d 1 ∧ λ̄ab

as claimed. �

21 A version of Stokes’ theorem

The structure of the compactification of the trajectory spaces M̆ ([a], [b]) is
potentially more complicated than a manifold with corners: even near the
codimension-1 strata, our analysis does not rule out the sort of pathology illus-
trated in the example at the end of Subsection 16.5, in which the top-dimensional
stratum has infinitely many path components. The purpose of this short section
is to review the cohomology theory of spaces stratified by manifolds, and to
prove in particular a version of Stokes’ theorem in this context. In the con-
struction of the chain complexes which define our Floer homology groups in
the next section, we will need only the simplest case of 1-dimensional spaces
stratified by manifolds; but later we will use the general result in develop-
ing further properties of the Floer groups, such as the module structure in
Section 25.

21.1 Boundary multiplicities in stratified spaces

We start with some remarks about Čech cohomology. Recall that an open cover
U of a space B has covering order ≤ d + 1 if every (d + 2)-fold intersection

U0 ∩ U1 ∩ · · · ∩ Ud+1, Ui ∈ U , Ui distinct,

is empty. A metric space has covering dimension ≤ d if every open cover has
a refinement with covering order ≤ d + 1. To an open covering U , one can
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associate a simplicial complex K(U), its nerve. The Čech cohomology of B
(with for example coefficients Z) is the limit

Ȟ n(B; Z) = lim→ H n
Simp(K(U); Z)

as U runs through the open coverings of B. (Here H n
Simp denotes simplicial

homology.) If U ′ ⊂ U , and the open sets U ∩ B′ (U ∈ U ′) cover B′, then
K(U ′|B′) is a subcomplex of K(U): the notation means the nerve of this open
cover of B′. The Čech cohomology of the pair (B, B′) is the limit

Ȟ n(B, B′; Z) = lim→ H n
Simp(K(U), K(U ′|B′); Z).

Let |K(U)| denote, as usual, the topological realization of the abstract simplicial
complex. Via the standard coordinates on the simplices, a partition of unity {φU }
subordinate to the open covering gives rise to a map

φ : B → |K(U)|

whose homotopy class depends only on the cover.
Now consider a compact d -dimensional space N d stratified by manifolds, in

the sense of Definition 16.5.1. So we have

N d ⊃ N d−1 ⊃ · · · ⊃ N 0,

and each stratum M e = N e \ N e−1 is either empty or homeomorphic to a
manifold of dimension e, with top stratum M d non-empty. Such a stratified
space has covering dimension at most d [84]. Suppose in addition that each
M e is oriented: we say N d has a stratification by oriented manifolds. In Čech
cohomology, we have

Ȟ d (N d , N d−1; Z) = H d
c (M

d ; Z)

and (because of the orientations) this is a free abelian group with generators µd
α

corresponding to the components M d
α of M d . Let

Iα : Ȟ d (N d , N d−1; Z)→ Z

be the map which is 1 on the generator µd
α and zero on the others. From the

long exact sequence of the triple (N d , N d−1, N d−2), there is a coboundary map

δ∗ : H d−1
c (M d−1; Z)→ H d

c (M
d ; Z), (21.1)
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which is a map of free abelian groups,

δ∗ :
⊕
β

H d−1
c (M d−1

β ; Z)→
⊕
α

H d
c (M

d
α ; Z).

In this sense, for each pair of components M d
α , M d−1

β , there is a well-defined

multiplicity δαβ with which M d−1
β appears in the boundary of M d

α :

Definition 21.1.1. Let N d be the space stratified by oriented manifolds as
above. The multiplicity of the component M d−1

β in the boundary of the

component M d
α is the integer

δαβ = Iαδ∗µd−1
β .

The boundary multiplicity of the component M d−1
β in the stratified space N d

is the (finite) sum

δβ =
∑
α

δαβ .

♦

Remark. The component M d−1
β may appear in the closure of infinitely many

d -dimensional components M d
α , even though only finitely many of the δαβ will

be non-zero. See the example later in this section.

As a consequence of the definition, we can write

Iα(δ∗x) =
∑
β

δαβ Iβx

for x ∈ Ȟ d−1(N d−1, N d−2; Z) = H d−1
c (M d−1; Z).

21.2 Transverse open covers and Stokes’ theorem

Let N d be a compact d -dimensional space stratified by manifolds. If N d is
embedded in a metric space B, we will say that an open cover U of B is transverse
to the strata if U |N e has covering order ≤ e + 1 for all e ≤ d .

Lemma 21.2.1. Let N dk
k be a countable, locally finite collection of spaces strat-

ified by manifolds. Then every open cover U of B has a refinement U ′ that is
transverse to the strata in every N dk

k .
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Proof. Let U = {Uα | α ∈ S }. According to [84, Theorem 12-9], there is a
locally finite closed cover G = {Gβ | β ∈ T } which is a refinement of U , in
that there is a map f : T → S with Gβ ⊂ Uf (β) for all β, and which has the

property that for every k and every closed stratum N ⊂ N dk
k , the intersection

Gβ0 ∩ · · · ∩ Gβe+1 ∩ N (21.2)

is empty whenever the βi are distinct and e ≥ dim N . Now apply [84, Propo-
sition 9-3] to the collection of closed sets F obtained by adding to G all the
closed strata of the spaces N dk

k : this tells us that there are open sets Hβ ⊃ Gβ

such that

Hβ0 ∩ · · · ∩ Hβe+1 ∩ N = ∅

whenever (21.2) is empty. If we set U ′
β = Hβ ∩ Uf (β), then we have an open

cover of B which is a refinement of U with the required transversality to all the
strata N . �

It follows from the lemma that we can compute the Čech cohomology of B
as the limit

Ȟ n(B; Z) = lim→ H n(K(U); Z)

as U runs through the open coverings of B that are transverse to the stratification
of a stratified space N d . We consider a fixed open cover U satisfying this
transversality condition. Every Čech cochain

u ∈ Čd (U |N d ; Z) = Cd
Simp(K(U |N d ); Z)

is automatically coclosed, and vanishes on K(U |N d−1); Z) (because there are no
d -simplices in the latter). So u has a well-defined class [u] in Ȟ d (N d , N d−1; Z).
Čech cochains u ∈ Čd (U |N d ; Z) can therefore be integrated over M d , or over
any component M d

α : we have maps〈−, [Mα]
〉

: Čd (U ; Z)→ Z〈
u, [Mα]

〉 = Iα[u|N d ].
(21.3)

Finally, we have Stokes’ theorem, with multiplicities: for v ∈ Čd−1(U ; Z),
we have ∑

β

δαβ
〈
v, [M d−1

β ]〉 = 〈
δv, [M d

α ]
〉
, (21.4)
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where δ : Čd−1(U ; Z)→ Čd (U ; Z) is the Čech coboundary map. In this form,
Stokes’ theorem is an immediate consequence of the definitions. In the simplest
case, N d is a manifold with boundary, and M d−1 = N d−1 is the boundary.
In this case, if the orientations are standard, the boundary multiplicities are
0 or 1 (and all 1 if N d is connected), and the above formula becomes more
recognizable: 〈

δv, [N d ]〉 = 〈
v, [∂N d ]〉.

21.3 Computing boundary multiplicities

The next lemma allows us to compute the multiplicities of boundaries in the
type of situation that occurs with the boundary-obstructed moduli spaces. (See
Theorem 19.5.4 for example.)

Lemma 21.3.1. Let N d be a compact d-dimensional space stratified by ori-
ented manifolds. Let M d−1

β be an oriented component of M d−1. Suppose that N d

has a codimension-1 δ-structure along M d−1
β in the sense of Definition 19.5.3,

and that M d−1
β has the boundary orientation as defined in Definition 20.5.1.

Then the boundary multiplicity, δβ , of the stratum M d−1
β in N d is 1.

Proof. Let W ⊃ M d−1
β and j : W → EW be as in Definition 19.5.3. We will

identify W with j(W ), so W is the zero set of δ : EW → R. The d -manifold
W \ M d−1

β is properly embedded in EW \ M d−1
β . Take a cochain md−1

β with

compact support in M d−1
β representing the generator µd−1

β of H d−1
c (M d−1

β ).
Application of the coboundary map at the cochain level gives a compactly
supported cochain δmd−1

β on EW \ M d−1 whose restriction to the manifold

W \ M d−1
β we wish to integrate: the integral is the boundary multiplicity δβ ,

because 〈
(δmd−1

β ), [W \M d−1
β ]〉 =∑

α

〈
(δmd−1

β ), [M d
α ]
〉

=
∑
α

δαβ
〈
md−1

β , [M d−1
β ]〉

=
∑
α

δαβ

= δβ .

By a homotopy of δ, we can construct a (non-compact) cobordism, properly
embedded in [0, 1] × EW , between W and W0, where the latter is the locus
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S1 = S2. The evaluation of the compactly supported cochain δmd−1
β on W0 \

M d−1
β is the same as on W \M d−1

β , and in this way we reduce to the case that W

is a manifold with boundary M d−1
β . Our orientation conventions mean that the

oriented boundary of W0 is M d−1
β , and the result is now straightforward. �

Corollary 21.3.2. Let N 1 be a compact 1-dimensional space stratified by ori-
ented manifolds, so that N 1\N 0 is an oriented 1-manifold and N 0 is an oriented
0-manifold: a finite set of signed points. Suppose that N 1 has a codimension-1
δ-structure along N 0 and N 0 has the boundary orientation. Then the number
of points in N 0, counted with sign, is zero.

Proof. The number of points in N 0, counted with sign, is the integral

〈
1, [N 0]〉.

The corollary follows from the lemma above and our version of Stokes’
theorem (21.4). �

Example. We revisit the example which follows Proposition 16.5.2 on
page 289. Let N 1 ⊂ R2 be the union of the line segment I joining (0, 0) to
(1, 0) and all the circles Cn centered at (−1/n, 0) and passing through (0, 0),
for n > 0. Let N 0 be the 2-point set containing (0, 0) and (1, 0). Orient I \N 0 by
the vector ∂/∂x, and orient the arcs Cn\(0, 0) arbitrarily. Orient N 0 as the bound-
ary of I . Then N 1 is a compact 1-dimensional space stratified by manifolds, and
satisfies the hypotheses of the corollary above. Note that M 1 = N 1 \ N 0 has
infinitely many components, though δαβ is zero for all but finitely many α, as
it must be. The number of points in N 0, counted with sign, is zero, as asserted.

22 Floer homology

22.1 The basic construction

Let Y once more be a compact, connected, oriented, Riemannian 3-manifold,
with a spinc structure s. We may write g for the Riemannian metric. Let P be a
large Banach space of tame perturbations, in the sense of Definition 11.6.3, and
let q ∈ P be chosen so that all the critical points of (grad−L)σ in Bσ

k (Y , s)
are non-degenerate, and all moduli spaces M([a], [b]) are regular (Defini-
tions 12.1.1 and 14.5.6). In addition, we suppose that, if c1(S) is not a torsion
class, then the perturbation is chosen so that there are no reducible critical points
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(see the remark following Proposition 16.4.3). We introduce a name for such a
perturbation:

Definition 22.1.1. A tame perturbation q is an admissible perturbation for
(Y , g, s) if the above three conditions hold: the critical points are non-
degenerate, the moduli spaces are regular, and there are no reducibles unless
c1(S) is torsion. ♦

All our constructions in this section depend on g, s and q, though the metric
and perturbation will not often be mentioned. Given these choices, we will
define three flavors of Floer homology group,̂

HM∗(Y , s), ĤM∗(Y , s) HM∗(Y , s).

As we mentioned in the introductory remarks to this chapter, the proof that
these groups do not depend on the choice of metric g and perturbation q will
be postponed until Chapter VII. Our construction of these three groups follows
closely the Morse-theory constructions in Subsection 2.4.

Let

C ⊂ Bσ
k (Y , s)

be the set of critical points. We can write C as a disjoint union

C = Co ∪ Cs ∪ Cu,

where Co is the set of irreducible critical points, and Cs, Cu are respec-
tively the boundary-stable and boundary-unstable reducible critical points
(Definition 14.5.2).

Given a 2-element set � = {x, y}, we write Z� for the infinite cyclic group

Z� = 〈 x, y | x = −y 〉. (22.1)

(See the discussion at the end of Subsection 2.2.) A choice of preferred element
from � allows one to identify Z� with Z. Set

Co =
⊕
[a]∈Co

Z�[a]

Cs =
⊕
[a]∈Cs

Z�[a]

Cu =
⊕
[a]∈Cu

Z�[a].

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(22.2)
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Here �([a]) is the 2-element set defined in Subsection 20.3. We define⎫⎪⎪⎪⎬⎪⎪⎪⎭
Č = Co ⊕ Cs

Ĉ = Co ⊕ Cu

C̄ = Cs ⊕ Cu.

(22.3)

When necessary, we will write, for example, Č(Y , s, q) to indicate the choices
made.

On the free abelian groups Č, Ĉ and C̄, we are going to define differentials ∂̌ ,
∂̂ and ∂̄ . In general, suppose that [a] and [b] are two critical points, and consider
the moduli space M̆z([a], [b]). Our regularity assumption means that this moduli
space, if non-empty, is a manifold of dimension d − 1 or (in the boundary-
obstructed case) dimension d , where d = grz([a], [b]) (see Proposition 14.5.7).
Suppose that this dimension is 0, and let [γ ] ∈ M̆z([a], [b]). As a 0-manifold,
M̆z([a], [b]) is canonically oriented: we call the preferred orientation of a
0-manifold the positive orientation. On the other hand, according to our results
on the orientation of moduli spaces in Subsection 20.4, the choice of an ele-
ment from �([a], [b]) determines an orientation of M̆z([a], [b]). Alternatively,
we can say that the product

�([a], [b])× M̆z([a], [b])

is canonically oriented. Comparison of this canonical orientation with the pos-
itive orientation at [γ ] gives a preferred element of �([a], [b]), or equivalently
an isomorphism

ε[γ ] : Z�[a] → Z�[b]. (22.4)

The definition of ε[γ ] is formulated so as to be valid whether or not [a], [b]
are reducible, boundary-stable etc. However, in the case that [a] and [b] are
both reducible, there is a variant of this construction. Let

M̆ red
z ([a], [b]) ⊂ M̆z([a], [b])

be the moduli space of reducible trajectories, as before. Using the convention
in Definition 20.6.1, we have a canonical orientation for

�([a], [b])× M̆ red
z ([a], [b]).

In the case that [a] ∈Cu and [b] ∈Cs, the canonical orientation is minus the
boundary orientation of �([a], [b])× M̆z([a], [b]), because left multiplication
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by R does not commute with “taking the boundary” for oriented manifolds.
Suppose that M̆z([a], [b]) has dimension 1, so that the boundary is zero-
dimensional, and let [γ ] ∈ M̆ red

z ([a], [b]). Comparison of the positive ori-
entation of the zero-dimensional boundary at [γ ]with the canonical orientation
determines an isomorphism,

ε̄[γ ] : Z�[a] → Z�[b]. (22.5)

If both critical points are reducible but either [a] is boundary-stable or [b] is
boundary-unstable, then M red and M coincide, as do the canonical orientations
of �×M red and �×M , according to Definition 20.6.1. In these cases, we set:

ε̄[γ ] =

⎧⎪⎪⎨⎪⎪⎩
ε[γ ], if [a] ∈ Cs and [b] ∈ Cs

−ε[γ ], if [a] ∈ Cu and [b] ∈ Cu

ε[γ ], if [a] ∈ Cs and [b] ∈ Cu.

(22.6)

The explanation for the apparently anomalous minus sign in the “uu” case can
be found in Case (iii) of Lemma 20.6.4, and will be relevant in Lemma 22.1.6
later in this section.

The simplest of the differentials to define is ∂̄ on C̄. We define

∂̄ : C̄ → C̄

by

∂̄ =
∑
[a],[b],z

∑
[γ ]∈M̆ red

z ([a],[b])
ε̄[γ ].

Here the sum is taken over all ([a], [b]) in (Cs ∪ Cu)2 and all moduli spaces
M̆ red

z ([a], [b]) of dimension zero. Because this sum is potentially infinite, we
must take care to see that it is well-defined. Fix [a], and consider the sum
defining the map ⎛⎝∑

[b],z

∑
[γ ]∈M̆ red

z ([a],[b])
ε̄[γ ]

⎞⎠ : Z�[a] → C̄.

Only finitely many pairs ([b], z) enter this sum, according to Proposition 16.4.3.
(This is the reason for requiring that an “admissible” perturbation should not
introduce any reducible critical points in the case of non-torsion spinc struc-
tures.) For a given pair ([b], z), the number of terms in the above sum is finite, by
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the following simple consequence of the compactness results. The differential
∂̄ is therefore well-defined as a linear operator on C̄.

Lemma 22.1.2. If M̆z([a], [b]) has dimension zero, then it is a finite set.
Similarly, if M̆ red

z ([a], [b]) has dimension zero, then it is finite.

Proof. Proposition 16.5.2 tells us that the compactification M̆+
z ([a], [b]) is a

compact space stratified by manifolds, of dimension zero. The stratification
is trivial when the dimension is zero, so M̆z([a], [b]) is already a compact
0-manifold. The case of the reducible moduli space follows similarly from
Proposition 16.6.1. �

We can decompose ∂̄ with respect to the direct sum decomposition C̄ =
Cs ⊕ Cu, as

∂̄ =
[
∂̄s

s ∂̄u
s

∂̄s
u ∂̄u

u

]
, (22.7)

so for example ∂̄s
u : Cs → Cu. (The superscript indicates the domain of the

operator: the mnemonic is that we are considering the downward gradient flow
of −L.)

In the same way, we define operators

∂o
o : Co → Co

∂o
s : Co → Cs

∂u
s : Cu → Cs

∂u
o : Cu → Co

by ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

∂o
o =

∑
[a]∈Co

∑
[b]∈Co

∑
[γ ]∈M̆z([a],[b])

ε[γ ]

∂o
s =

∑
[a]∈Co

∑
[b]∈Cs

∑
[γ ]∈M̆z([a],[b])

ε[γ ]

∂u
o =

∑
[a]∈Cu

∑
[b]∈Co

∑
[γ ]∈M̆z([a],[b])

ε[γ ]

∂u
s =

∑
[a]∈Cu

∑
[b]∈Cs

∑
[γ ]∈M̆z([a],[b])

ε[γ ].

(22.8)
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The operators ∂̄∗∗ whose names have a bar are defined by counting reducible
trajectories in zero-dimensional moduli space M̆ red

z ([a], [b]), while the oper-
ators ∂∗∗ without bars count irreducible trajectories in 0-dimensional moduli
spaces M̆z([a], [b]). Note that there are two maps Cu → Cs, namely ∂̄u

s and
∂u

s , but the moduli spaces which contribute to these two maps are different: if
M̆ red

z ([a], [b]) is 0-dimensional, then M̆z([a], [b])will be 1-dimensional, having
M̆ red

z ([a], [b]) as its boundary.
There is no operator of this sort from Co to Cu or from Cs → Co, because

the corresponding moduli spaces are empty. We do however have composite
operators

∂̄s
u∂

o
s : Co → Cu

∂u
o ∂̄

s
u : Cs → Co.

Note that the operator ∂̄s
u which is common to both of these composites counts

trajectories belonging to boundary-obstructed moduli spaces.

Definition 22.1.3. On Č = Co ⊕ Cs, we define an operator

∂̌ : Č → Č

∂̌ =
[
∂o

o −∂u
o ∂̄

s
u

∂o
s ∂̄s

s − ∂u
s ∂̄

s
u

]
.

On Ĉ = Co ⊕ Cu, we define

∂̂ : Ĉ → Ĉ

∂̂ =
[

∂o
o ∂u

o
−∂̄s

u∂
o
s −∂̄u

u − ∂̄s
u∂

u
s

]
.

♦

Proposition 22.1.4. The squares (∂̄)2, (∂̌)2 and (∂̂)2 are zero as operators on
C̄, Č and Ĉ.

The fact that ∂̌ and ∂̂ have square zero will follow from ∂̄2 = 0 and the
identities in the following lemma.

Lemma 22.1.5. We have the following identities.

(i) −∂o
o∂

o
o + ∂u

o ∂̄
s
u∂

o
s = 0.

(ii) −∂o
s ∂

o
o − ∂̄s

s∂
o
s + ∂u

s ∂̄
s
u∂

o
s = 0.
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(iii) −∂o
o∂

u
o + ∂u

o ∂̄
u
u + ∂u

o ∂̄
s
u∂

u
s = 0.

(iv) −∂̄u
s − ∂o

s ∂
u
o − ∂̄s

s∂
u
s + ∂u

s ∂̄
u
u + ∂u

s ∂̄
s
u∂

u
s = 0.

Proof. Each of the four parts is proved by considering a moduli space
M̆z([a], [b]) of dimension 1 containing irreducible trajectories. The four
operators on the left-hand sides of the identities are operators

A1 : Co → Co

A2 : Co → Cs

A3 : Cu → Co

A4 : Cu → Cs.

Each is a sum

Ai =
∑

Ai
[a][b],

where

Ai
[a][b] : Z�[a] → Z�[b]

and the sum is taken over all [a] and [b] of the appropriate type: both irreducible
for A1 and so on.

Let M̆z([a], [b]) be such a moduli space, so grz([a], [b]) is 2. According
to Theorem 19.5.4, the space M̆z([a], [b]) is the top stratum in a com-
pact 1-dimensional space M̆+([a], [b]) stratified by manifolds, and has a
codimension-1 δ-structure along the zero-dimensional stratum N 0. Choose triv-
ializations of �[a] and �[b]. Then both M̆z([a], [b]) and the zero-dimensional
stratum N 0 obtain canonical orientations; Proposition 20.5.2 tells us how the
canonical orientation of N 0 differs from the boundary orientation on each com-
ponent.According to Corollary 21.3.2, the number of points in N 0, counted with
the boundary-orientation signs, is zero. The proof of the proposition comes from
equating the number of points in N 0, with these signs, to the component Ai

[a][b],
regarded now as an integer using the trivializations.

In each case, M̆+([a], [b]) is obtained from M̆ ([a], [b]) by adjoining broken
trajectories ([γ̆1], . . . , [γ̆l]) with l = 2 or 3 and grading vector

(grz1
([a0], [a1]), . . . , grzl

([al−1], [al])) (22.9)

equal to either

(1, 1) or (1, 0, 1), (22.10)
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because these are the only two possibilities allowed by Proposition 16.5.5. In
any event, each [γi] belongs to a 1-dimensional moduli space Mzi ([ai−1], [ai]).

We now consider each of the four parts of the lemma in turn. To begin with
the first part, let [a] and [b] be irreducible critical points and suppose that
grz([a], [b]) = 2, so that M̆z([a], [b]) is 1-dimensional. There are two types
of broken trajectory in the compactification, corresponding to the two types
(22.10). Consider the first type, (1, 1), and a broken trajectory belonging to a
product

M̆z1([a], [a1])× M̆z2([a1], [b])

of (compact) 0-dimensional moduli spaces. Note that [a1] must be irreducible,
because if it were reducible and boundary-stable, then the second moduli
space would be empty, while if it were boundary-unstable then the first would
be empty. According to Corollary 19.5.1, a neighborhood of this product in
the compactification is a topological 1-manifold with boundary. Furthermore,
Proposition 20.5.2 of Subsection 20.5 tells us that the boundary orientation
of this 0-dimensional stratum is the opposite of the boundary orientation. The
number of points in all the strata of this form, taken over all irreducible critical
points [a1] and counted with the canonical orientations, is the component of
∂o

o∂
o
o between Z�[a] and Z�[b]. With the boundary orientations, the number

of points is the component of −∂o
o∂

o
o and accounts for the first term in the first

identity.
The second possibility allowed for in (22.10) is that the compactification

contains broken trajectories with three components, belonging to a stratum

M̆z1([a], [a1])× M̆z2([a1], [a2])× M̆z3([a2], [b]). (22.11)

The middle piece should be boundary-obstructed, so [a1] is boundary stable
and [a2] is boundary-unstable. This stratum is again a finite set. The space
M̆+

z ([a], [b]) has a codimension-1 δ-structure along this 0-dimensional stratum,
and the canonical orientation agrees with the boundary orientation according
to Proposition 20.5.2. The number of points in strata of this sort, counted with
sign, is the matrix entry of ∂u

o ∂̄
s
u∂

o
s from Z�[a] to Z�[b], and accounts for the

second term in the first identity.
The second and third identities are entirely similar. Take the second, for exam-

ple. It is proved by considering a moduli space M̆z([a], [b]) of dimension 1 as
above, but now with [a] irreducible and [b] reducible and boundary-stable.
There are now two types of possible factorization of type (1, 1), because
the intermediate critical point [a1] can be either irreducible, or reducible and
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boundary-stable. These two possibilities account for the first two terms of the
identity. The last term corresponds to the factorization of type (1, 0, 1). The third
identity has the same form: the second term has positive sign in this identity
rather than the expected minus sign because the definition of ∂̄u

u used the maps
ε̄[γ ], which in this case are the negative of the standard map ε[γ ].

The fourth identity is proved similarly, using a moduli space M̆ ([a], [b])
of dimension 1, with [a] boundary-unstable and [b] boundary-stable. Even
before compactifying, this moduli space is a manifold with boundary, and the
boundary consists of the reducibles, which are counted by ∂̄u

s . This gives the
first term. The minus sign is there because, as we remarked earlier, the canonical
orientation of the moduli spaces � × M̆ red that appear in the definition of ∂̄u

s
is minus the boundary orientation of � × M̆ . The next three terms are the
possible factorizations of type (1, 1), where the intermediate critical point can
be irreducible, reducible and boundary-stable, or boundary-unstable. The last
term is the factorization of type (1, 0, 1). The fourth term in this last identity
has a plus sign for the same reason that a plus sign appeared in the second term
of the third identity. �

The next lemma disposes of the case of the operator ∂̄ in Proposition 22.1.4.

Lemma 22.1.6. The operator ∂̄ has square zero on C̄. In terms of the four
components of ∂̄ , we have

∂̄s
s ∂̄

s
s + ∂̄u

s ∂̄
s
u = 0

∂̄s
s ∂̄

u
s + ∂̄u

s ∂̄
u
u = 0

∂̄s
u∂̄

s
s + ∂̄u

u ∂̄
s
u = 0

∂̄s
u∂̄

u
s + ∂̄u

u ∂̄
u
u = 0.

Proof. This is proved in just the same way as Lemma 22.1.5 above, but now
using moduli spaces of reducible trajectories, M̆ red

z ([a], [b]), of dimension 1.
The compactification M̆ red+

z ([a], [b]) is a C0 1-manifold with boundary, and
the boundary arises from broken trajectories, forming 0-dimensional strata

M̆ red
z1

([a], [a1])× M̆ red
z2

([a1], [b]).

Such factorizations account for all the terms in the four identities, and the only
remaining thing to verify is the signs with which they enter. If a trivialization
is chosen for �([a], [b]), so that M red

z ([a], [b]) and the product stratum above
are both canonically oriented, then the canonical orientation differs from the
boundary orientation by a sign that can be computed from Proposition 20.6.2
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and Lemma 20.6.4. Proposition 20.6.2 tells us that there is a sign−1 if we were
to orient the moduli spaces M̆ red differently, using the �̄ orientations in place
of the � orientations. Meanwhile, Lemma 20.6.4 compares the �̄ orientations
with the � orientations, and reveals an extra sign (−1)d = −1 in the case
that both critical points are boundary-unstable. This extra sign in the case of
boundary-unstable critical points is the reason we introduced the compensating
minus sign in the definition of ε̄[γ ] in (22.6). �

Proof of Proposition 22.1.4. We have already dealt with ∂̄2 in the lemma above.
We compute the square of ∂̌ , as a 2-by-2 matrix (Definition 22.1.3). The top left
entry is

∂o
o∂

o
o − ∂u

o ∂̄
s
u∂

o
s ,

which is zero by the first identity in Lemma 22.1.5. The top right entry is

−∂o
o∂

u
o ∂̄

s
u − ∂u

o ∂̄
s
u∂̄

s
s + ∂u

o ∂̄
s
u∂

u
s ∂̄

s
u

= −∂o
o∂

u
o ∂̄

s
u + ∂u

o ∂̄
u
u ∂̄

s
u + ∂u

o ∂̄
s
u∂

u
s ∂̄

s
u

= (−∂o
o∂

u
o + ∂u

o ∂̄
u
u − ∂u

o ∂̄
s
u∂

u
s )∂̄

s
u

= 0.

We used ∂̄s
u∂̄

s
s + ∂̄u

u ∂̄
s
u = 0 in the first line (part of the statement that ∂̄2 = 0),

and we used the third identity of Lemma 22.1.5 in the last line. The bottom left
entry is

∂o
s ∂

o
o + ∂̄s

s∂
o
s − ∂u

s ∂̄
s
u∂

o
s

which vanishes because of the second identity of the lemma. The bottom right
entry is

−∂o
s ∂

u
o ∂̄

s
u + ∂̄s

s ∂̄
s
s − ∂u

s ∂̄
s
u∂̄

s
s − ∂̄s

s∂
u
s ∂̄

s
u + ∂u

s ∂̄
s
u∂

u
s ∂̄

s
u

= −∂o
s ∂

u
o ∂̄

s
u − ∂̄u

s ∂̄
s
u + ∂u

s ∂̄
u
u ∂̄

s
u − ∂̄s

s∂
u
s ∂̄

s
u + ∂u

s ∂̄
s
u∂

u
s ∂̄

s
u

= (−∂o
s ∂

u
o − ∂̄u

s + ∂u
s ∂̄

u
u − ∂̄s

s∂
u
s + ∂u

s ∂̄
s
u∂

u
s )∂̄

s
u

= 0

using the identities ∂̄s
s ∂̄

s
s = −∂̄u

s ∂̄
s
s , ∂̄s

u∂̄
s
s = −∂̄u

u ∂̄
s
u and the last identity of

Lemma 22.1.5. Thus all four entries of ∂̌2 are zero.
The proof that ∂̂2 is zero is entirely similar. The top left entry of the square of

this operator is the same as the corresponding entry of ∂̌2, and is zero as above.
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The top right entry is

∂o
o∂

u
o − ∂u

o ∂̄
u
u − ∂u

o ∂̄
s
u∂

u
s ,

which vanishes by the third part of Lemma 22.1.5. The bottom left entry is

−∂̄s
u∂

o
s ∂

o
o + ∂̄u

u ∂̄
s
u∂

o
s + ∂̄s

u∂
u
s ∂̄

s
u∂

o
s

= −∂̄s
u∂

o
s ∂

o
o − ∂̄s

u∂̄
s
s∂

o
s + ∂̄s

u∂
u
s ∂̄

s
u∂

o
s

= ∂̄s
u(−∂o

s ∂
o
o − ∂̄s

s∂
o
s + ∂u

s ∂̄
s
u∂

o
s ),

which is zero by the second identity of the lemma. Finally, the bottom right
entry is

−∂̄s
u∂

o
s ∂

u
o + ∂̄u

u ∂̄
u
u + ∂̄u

u ∂̄
s
u∂

u
s + ∂̄s

u∂
u
s ∂̄

u
u + ∂̄s

u∂
u
s ∂̄

s
u∂

u
s

= −∂̄s
u∂

o
s ∂

u
o − ∂̄s

u∂̄
u
s − ∂̄s

u∂̄
s
s∂

u
s + ∂̄s

u∂
u
s ∂̄

u
u + ∂̄s

u∂
u
s ∂̄

s
u∂

u
s

= ∂̄s
u(−∂o

s ∂
u
o − ∂̄u

s − ∂̄s
s∂

u
s + ∂u

s ∂̄
u
u + ∂u

s ∂̄
s
u∂

u
s ),

which is zero, on account of the last identity of the lemma once again. �

We can now define the monopole Floer homology groups of Y , in three
flavors, as the homology of our three differential groups, (Č, ∂̌), (Ĉ, ∂̂) and
(C̄, ∂̄).

Definition 22.1.7. We definê

HM∗(Y , s) = H (Č, ∂̌) = ker(∂̌)/im(∂̌)

ĤM∗(Y , s) = H (Ĉ, ∂̂) = ker(∂̂)/im(∂̂)

HM∗(Y , s) = H (C̄, ∂̄) = ker(∂̄)/im(∂̄).

When necessary, we will write

̂

HM∗(Y , s, q) to indicate the a priori dependence
on a choice of perturbation. At present, the subscript ∗ is just for decoration, as
we have not defined a grading on these groups. ♦

22.2 The exact sequence of the pair

As explained in Section 3 and Subsection 2.4, we are to think of

̂

HM∗(Y , s),
ĤM∗(Y , s) and HM∗(Y , s) as half-infinite-dimensional homology groups of
Bσ

k (Y , s), of the pair (Bσ
k (Y , s), ∂Bσ

k (Y , s)) and of the boundary ∂Bσ
k (Y , s)
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respectively. In this analogy, the following exact sequence is the long exact
sequence of the pair.

Proposition 22.2.1. For any (Y , s), there is an exact sequence

· · · i∗−→

̂

HM∗(Y , s)
j∗−→ ĤM∗(Y , s)

p∗−→ HM∗(Y , s)
i∗−→

̂

HM∗(Y , s)
j∗−→ · · ·

in which the maps i∗, j∗ and p∗ arise from the (anti-) chain maps

i : C̄ → Č, j : Č → Ĉ, p : Ĉ → C̄,

given by

i =
[

0 −∂u
o

1 −∂u
s

]
, j =

[
1 0
0 −∂̄s

u

]
, p =

[
∂o

s ∂u
s

0 1

]
.

Here i and j are genuine chain maps, while p satisfies p∂̂ = −∂̄p (an anti-chain
map).

Proof. First, it is straightforward to verify that i, j and p are (anti-) chain maps,
using the identities of Lemma 22.1.5 and Lemma 22.1.6. To verify exactness,
we introduce the differential group (Ě, ě) that is the mapping cone of −p:

Ě = Ĉ ⊕ C̄ = (Co ⊕ Cu)⊕ (Cs ⊕ Cu)

ě =
[
∂̂ 0
p ∂̄

]
.

The fact that ě2 = 0 follows from p∂̂ = −∂̄p. We have a long exact sequence
of the mapping cone,

· · · ı̄∗−→ H (Ě)
j̄∗−→ ĤM

−p∗−→ HM
ı̄∗−→ H (Ě)

j̄∗−→ · · · ,

which results from the short exact sequence of differential groups

C̄
ı̄−→ Ě

j̄−→ Ĉ.

The boundary map in the long exact sequence is p∗, where p is as before. It
remains, then, to identify H (Ě) with

̂

HM in such a way that the sequence above
becomes the sequence in the proposition.
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Define maps

k : Č → Ě, l : Ě → Č

by

k

[
x
y

]
=

⎡⎢⎢⎣
x

−∂̄s
uy

y
0

⎤⎥⎥⎦ , l

⎡⎢⎢⎣
e
f
g
h

⎤⎥⎥⎦ = [
e − ∂u

o h
g − ∂u

s h

]
.

The maps k and l are chain maps, as follows again from the identities in the two
lemmas above. The composite lk : Č → Č is the identity, and the composite
kl : Ě → Ě is chain-homotopic to the identity, for we have

kl = 1+ ěK + Kě

where

K

⎡⎢⎢⎣
e
f
g
h

⎤⎥⎥⎦ =
⎡⎢⎢⎣

0
−h
0
0

⎤⎥⎥⎦ .

It follows that k∗ and l∗ are mutually inverse isomorphisms between

̂

HM
and H (Ě).

Finally, we should see that the isomorphism k∗ carries the sequence of
the proposition to the mapping-cone sequence. That is, we must verify that
j∗ = j̄∗k∗ and ı̄∗ = k∗i∗. The first of these identities is true because it is true
at the chain level: we have j = j̄k. The second identity is true because the
corresponding chain maps ı̄ and ki are chain-homotopic: we have

ki − ı̄ = ěK̄ + K̄ ∂̄ ,

where K̄ = K ı̄. �

We return to a definition introduced in Subsection 3.6 (see Definition 3.6.3).

Definition 22.2.2. We define HM∗(Y , s) as the image of the map

j∗ :

̂

HM∗(Y , s)→ ĤM∗(Y , s).

This is the reduced Floer homology of (Y , s). ♦
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Proposition 22.2.3. The reduced Floer homology HM∗(Y , s) is of finite rank.

Proof. If c1(s) is not torsion, then the set of critical points is only Co, which is
finite. In this case,

̂

HM∗, ĤM∗ and HM∗ all coincide and are of finite rank. In
the case that c1(s) is torsion, we need:

Lemma 22.2.4. The maps ∂̄s
u, ∂̄u

s and ∂u
s have only finitely many non-zero matrix

entries in the natural bases of Cs and Cu. In particular, they have finite rank.

Proof. These maps only arise in the case that c1(s) is torsion, and in this case
grz([a], [b]) is independent of z. There are only finitely many critical points of
grad−L in Bk(Y , s) before blowing up; let [α] and [β] be two of these critical
points, and let [ai], [bj] be critical points in the blow-up, lying over [α] and
[β] and having ι[ai] = i and ι[bj] = j. (The definition of ι is at (16.2), and the
quantities i and j are each either a non-negative integer or a negative element
of Z+ 1/2.)

A matrix entry of ∂̄s
u may arise from Mz([ai], [bj]) only when i is positive,

j is negative and grz([ai], [bj]) is zero. But for some d depending only on [α]
and [β] we have

grz([ai], [bj]) = d + 2i − 2j.

So there are only finitely many non-zero matrix entries. The situation with ∂̄u
s

and ∂u
s is similar. �

Returning to the proof of the proposition, let us suppose that the rank of
HM∗(Y , s) exceeds the number of points in Co(s) by r. Then there is a subgroup
H of

̂

HM∗(Y , s) of rank r generated by elements having representatives in

0⊕ Cs ⊂ Co ⊕ Cs = Č,

such that the restriction of j∗ to H is injective. But if (0, y) is such a representative
of an element of H , then

j(0, y) = (0, ∂̄s
uy).

So the rank of H is no larger than the rank of ∂̄s
u. This shows that

rank HM∗ ≤ rank Co + rank ∂̄s
u,

which is finite on account of the lemma. �
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22.3 Gradings and cohomology

In Section 3, we explained what it meant for a group G to be graded by a set J

with an action of Z, and we stated that the Floer groups of Y would be graded,
in this sense, by the set of homotopy classes of oriented 2-plane fields on Y .
This will be taken up in Section 28, but we take a first step in this direction
here. For each Y , with choice of metric and spinc structure, we define a set
J(s) = J(Y , s), in such a way that the group

̂

HM∗(Y , s) and its relatives are
graded (rather tautologically) by J(s).

We define J(Y , s) as the quotient of Bσ
k (Y , s) × P × Z by an equiva-

lence relation whose definition is as follows. Let ([a], q1, m), ([b], q2, n) be
in Bσ

k (Y , s) × P × Z, let ζ be a path joining [a] and [b], and let p be a 1-
parameter family of perturbations joining q1 to q2. Associated to ζ and p, we
have a Fredholm operator Pγ ,p as in (20.6). Its index may depend on the choice
of the homotopy class of the path ζ . We say that ([a], q1, m) ∼ ([b], q2, n) if
there exists a path ζ such that

index (Pγ ,p) = n− m.

Note that if [a] and [b] are critical points for a fixed perturbation, then index (Pγ )

is equal to grz([a], [b]). We define, then,

J(s) = (
Bσ

k (Y , s)× P × Z
)/ ∼ . (22.12)

The map ([a], q, m) �→ ([a], q, m+1) descends to J(s), and generates an action
of Z. As usual, we write this action additively: for j ∈ J(s) and n ∈ Z, we write
j + n for the resulting element of J(s).

Let q now be a fixed admissible perturbation. For a critical point [a], either
irreducible or reducible, we now define

gr[a] = ([a], q, 0)/ ∼
∈ J(s). (22.13)

For any path z joining [a] and [b], we have

gr[a] = gr[b] + grz([a], [b]) ∈ J(s). (22.14)

For reducible critical points, we introduce a modified grading, defining

ḡr[a] =
{

gr[a], [a] ∈ Cs

gr[a] − 1, [a] ∈ Cu.
(22.15)
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For each j ∈ J(s), we set ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Čj =

⊕{
Z�[a] ∣∣ [a] ∈ Co ∪ Cs, gr[a] = j

}
Ĉj =

⊕{
Z�[a] ∣∣ [a] ∈ Co ∪ Cu, gr[a] = j

}
C̄j =

⊕{
Z�[a] ∣∣ [a] ∈ Cs ∪ Cu, ḡr[a] = j

}
.

(22.16)

In this way, each of Č, Ĉ and C̄ becomes a direct sum of groups indexed by
J(s). If we index each of the constituent pieces Co, Cs and Cu using the grading
gr (rather than ḡr in the case of the latter two), then we can write⎫⎪⎪⎪⎬⎪⎪⎪⎭

Čj = Co
j ⊕ Cs

j

Ĉj = Co
j ⊕ Cu

j

C̄j = Cs
j ⊕ Cu

j+1.

(22.17)

The next lemma follows easily from the definitions:

Lemma 22.3.1. The boundary operators ∂̌ : Č → Č, ∂̂ : Ĉ → Ĉ and ∂̄ :
C̄ → C̄ all have degree −1: that is, we have

∂̌(Čj) ⊂ Čj−1

∂̂(Ĉj) ⊂ Ĉj−1

∂̄(C̄j) ⊂ C̄j−1.

In the same sense, the chain maps i, j and p of Proposition 22.2.1 have degree
0, 0 and −1 respectively. �

In particular, we have a long exact sequence

i∗−→

̂

HMk(Y , s)
j∗−→ ĤMk(Y , s)

p∗−→ HMk−1(Y , s)
i∗−→

̂

HMk−1(Y , s)
j∗−→,

and we can define the reduced Floer homology group HMk(Y , s) as the image
of j∗ :

̂

HMk(Y , s)→ ĤMk(Y , s).
We now identify J(s) up to isomorphism, as a set with Z action.

Lemma 22.3.2. The action of Z on J(s) is transitive. The stabilizer is the image
of the map

H2(Y ; Z)→ Z

[σ ] �→ 〈
c1(s), [σ ]

〉
.

(22.18)
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In particular, the action is free if and only if c1(s) is torsion, and the stabilizer
is always contained in 2Z.

Proof. The transitivity of the action follows from the definitions and from the
fact that Bσ

k (Y , s) is connected. In the same way, it follows that the stabilizer
is precisely the subgroup of Z consisting of the quantities index (Pγ ) as γ

runs through all closed loops in Bσ
k (Y , s). As is shown by Lemma 14.4.6, this

subgroup is the image of the map (22.18). �

Lemma 22.3.3. For each j in J(s), the free abelian groups Čj, Ĉj and C̄j are
all finitely generated.

Proof. If c1(s) is not torsion, the critical-point set is finite, and there is nothing
to do. In the torsion case, the action of Z on J(s) is free. If [ai] and [aj] are
reducible critical points whose image in Bk(Y , s) is the same critical point [α],
then as stated in (16.3) we have

gr[ai] − gr[aj] = 2ι([ai])− 2ι([aj]).

So the critical points lying above [α] all have different gradings, and they appear
in every other grading. Since there are only finitely many [α] to consider, the
lemma follows. �

At this point we can also introduce the cochain complexes graded by J(s),

Čj = Hom(Čj, Z)

Ĉj = Hom(Ĉj, Z)

C̄j = Hom(C̄j, Z),

and the corresponding Floer cohomology groups,̂

HM j(Y , s), ĤM j(Y , s), HM j(Y , s).

There is a long exact sequence

i∗←−

̂

HM k(Y , s)
j∗←− ĤM k(Y , s)

p∗←− HM k−1(Y , s)
i∗←−

̂

HM k−1(Y , s)
j∗←−,

and we define the reduced Floer cohomology HMk(Y , s) as the image of j∗.

Definition 22.3.4. We write

̂

HM ∗(Y , s), ĤM ∗(Y , s), HM ∗(Y , s) and
HM∗(Y , s) for the total Floer cohomologies, defined as direct sums, so that,
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for example, ̂

HM ∗(Y , s) =
⊕

j∈J(s)

̂

HM j(Y , s).

We may also write ̂

HM∗(Y , s) =
⊕

j∈J(s)

̂

HMj(Y , s).

♦

Remark. Note that we do not define

̂

HM ∗(Y , s) as a direct product over j in
J(s), as is sometimes done with cohomology.

22.4 The canonical mod two grading

The grading set J(Y , s) for the groups

̂

HM ∗(Y , s) etc. is completely described
by Lemma 22.3.2, which tells us that, as a set with Z-action, it is isomorphic to
Z/d for some even integer d . In general, there is no distinguished element in
J(Y , s). There is however a distinguished decomposition of J(Y , s) into “even”
and “odd” elements: that is, there is a preferred map of Z sets,

J(Y , s)→ Z/2.

To define this, pick again a reducible point a0 in Cσ
k (Y , s). We choose a0

to be boundary-stable for the zero perturbation. (We do not mean to require
here that a0 is a critical point: see Definition 14.5.2 and the remark following
it.) Recalling the definition of J(Y , s) above as equivalence classes of triples
([a], q, n), we define

gr(2)([a], q, n) = index (Pγ ,p)(mod2),

where γ arises from any path joining a to a0 and p is a 1-parameter family of
perturbations joining q to 0. This is independent of the choice of γ for the same
reason that d above is even, and it descends through the equivalence relation
to define a map on J(Y , s). It is also independent of the choice of a0: this is
because if a0 and a′0 are two boundary-stable reducibles, then index (Pγ ,0) is
even for any path joining them, for the usual reason that we can take the path to
lie in the reducibles, and the kernel and cokernel then arise from the complex
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Dirac operator. (This is the reason for asking that a0 and a′0 are boundary-stable:
if one of the two is boundary-unstable, then the index picks up a 1-dimensional
contribution from the normal part of the operator, Pν . See the discussion
preceding Lemma 20.3.3.)

When an admissible perturbation q is given, we use the abbreviation

gr(2)[a] = gr(2)([a], q, 0) ∈ Z/2

for critical points [a]. Using this mod 2 grading, we can write

̂

HM∗(Y , s) and
ĤM∗(Y , s) as sums of even and odd parts. For HM∗(Y , s), we imitate (22.15)
and define

ḡr(2)[a] =
{

gr(2)[a], [a] ∈ Cs

gr(2)[a] − 1, [a] ∈ Cu.
(22.19)

This grading decomposes HM∗(Y , s) into even and odd also. In the i, j, p long
exact sequence, i and j are even and p is odd. There is no additional check-
ing needed to verify these assertions: they are consequences of the behavior
of the grading by J(Y , s) that we have already discussed, combined with the
observation that gr(2) respects the action of Z, as a map from J(Y , s) to Z/2.

22.5 Duality

We now consider the effect of changing the orientation of Y . We will write−Y
for the oppositely oriented manifold in the present context. (We avoid the nota-
tion Ȳ here, because we are using a similar notation to indicate the reducibles,
for example in the notation C̄.) A spinc structure on Y gives a spinc structure
on−Y : we can take the same spin bundle S, and replace Clifford multiplicationρ
by −ρ to satisfy the orientation condition. The Dirac operator D(−Y ) is
therefore −D(Y ). We can identify Ck(Y , s) with Ck(−Y , s), and the Chern–
Simons–Dirac functionals are related by

L(Y ) = −L(−Y ).

If we choose a perturbation q on Y , we can take−q on−Y , so that the perturbed
Chern–Simons–Dirac functionals satisfy the same relation. On Bσ

k (−Y , s), the
vector field (grad−L(−Y ))σ is the negative of (grad−L(Y ))σ . The critical-point
sets C(Y , s) and C(−Y , s) are the same, but for the reducible critical points, the
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notions of boundary-stable and boundary-unstable are switched:

Cs(−Y , s) = Cu(Y , s)

Cu(−Y , s) = Cs(Y , s).

The perturbed equation on the cylinder arises formally from the equation
dγ /dt = −(grad−L)σ (γ ), so if γ (t) is a trajectory for Y then γ (−t) is a
trajectory for −Y . This gives a canonical identification

Mz(Y ; [a], [b]) = M−z(−Y ; [b], [a]). (22.20)

It is not quite true that there is a canonical identification of, for example,
the free abelian groups Co(−Y ) and Co(Y ). The reason lies in an asymme-
try in the definition of �([a1], q1, [a2], q2) in Subsection 20.3. Recall that the
definition of the orientation set is in terms of the determinant of an operator
P = (Q,−$−1 ,$+2 ) whose definition in turn uses the decomposition of Kσ

ai

into the two spectral subspaces

Kσ
ai
= K−ai

⊕K+ai
.

The operator defining the spectral decomposition is Hessσai
−ε, for small ε, so as

to put the generalized zero-eigenspace of the Hessian Hessσa (if there is one) into
K−ai

. There is an alternative choice, which is to put this generalized eigenspace
with the positive part, giving rise to a different decomposition Kσ = K+′⊕K−′.
Using the primed version, we define

H−′
i = {0} ⊕K−′1/2,ai

⊕ L2
1/2(Y ; iR)

H+′
i = {0} ⊕K+′1/2,ai

⊕ L2
1/2(Y ; iR)

as in (20.5), and we have a corresponding Fredholm boundary-value problem
P′γ on I × Y . (For a non-degenerate critical point, there is no zero-eigenspace
for the Hessian; but our constructions exploit these operators also when the
boundary values ai are not critical points.)

When we change the orientation of Y , two things happen: first, the roles of
the primed and unprimed decompositions are reversed; and second, the operator
changes sign (as can be seen by examining the formula (20.6)). What this means
is that, if we denote by γ̃ the configuration γ (−t) on −Y , then the operators
Pγ (Y ) and−P′

γ̃
(−Y ) are identified. We can define �′([a], [b]) in just the same

manner that �([a], [b]) is defined, as the orientations of the determinant of P′γ ,
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and we then have a canonical identification

c : �(Y ; [a], [b])→ �′(−Y ; [b], [a]), (22.21)

using the convention (20.2) to deal with the change of sign of the operator. In
the case that a and b are non-degenerate critical points, �′(−Y ; [b], [a]) and
�(−Y ; [b], [a]) are the same.

Lemma 22.5.1. Suppose that [a] and [b] are non-degenerate critical points.
Pick λ in �(Y ; [a], [b]) so as to orient the moduli space Mz([a], [b]), and then
orient M−z([b], [a]) using the element

λ̃ = c(λ) ∈ �′(−Y ; [b], [a])
= �(−Y ; [b], [a]).

Then the canonical identification of the moduli spaces in (22.20) is orientation-
preserving in the boundary-unobstructed cases, and orientation-reversing in
the boundary-obstructed case.

Proof. This follows from the formula for js in (20.2). The identification of the
moduli spaces corresponds to the identification of the kernels of the operators;
the extra minus sign in the boundary-obstructed case arises from the fact that
the cokernel has dimension 1. �

The difference between P and P′ is important in the definition of �([a]),
where [a] is a non-degenerate critical point for some perturbation q. There is no
difference between the primed and unprimed decomposition at [a], but �([a])
is defined using the 2-element set

�(Y ; [a], q, [a0], 0),

where a0 is reducible and either boundary-stable or boundary-unstable (and not
necessarily a critical point). Given an element λ in �(Y ; [a], q, [a0], 0), we have

ρ(λ) ∈ �(Y ; [a0], 0, [a], q)

where ρ is as in (20.14). Applying c, we obtain

c(ρ(λ)) ∈ �′(−Y ; [a],−q, [a0], 0).

To compare the �′ that appears on the right here with the unprimed version,
we introduce the boundary-value problem P�

a0 on I × Y defined using the
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primed space H+′ on the left-hand end and the unprimed space H− on the
right-hand end:

P�
a0 : E → F ⊕ H+′ ⊕ H−.

There is a similar operator P&
a0 with the roles of the primed and unprimed

subspaces reversed:

P&
a0 : E → F ⊕ H+ ⊕ H−′.

We wish to understand how to orient the determinants of the Fredholm operators
P�

a0 and P&
a0 , and to do this we perturb each operator to a direct sum of five

blocks, as we did on pages 386f. In the present case, the function λ in the first
block is constant and non-zero, so the first block is invertible. The second and
third blocks are also invertible, as in our previous discussion, and the fifth block
is again a complex operator. The conclusion is that orienting the determinants
of P&

a0 and P�
a0 is equivalent to orienting the determinant of the fourth block,

namely the operator

d

dt
+ ∗d

acting on coclosed, imaginary-valued 1-forms on Y with certain spectral bound-
ary conditions. Note that the kernel of ∗d coincides with the harmonic 1-forms,
or H 1(Y ; iR). In the case of P&

a0 , neither H+ nor H−′ contains the harmonic
forms, so the kernel of the corresponding block is H 1(Y ; iR). In the case of
P�

a0 , the same block contributes to the cokernel.
At this point we recall a definition that was introduced in Subsection 3.1.

Definition 22.5.2. We define the 2-element set�(Y ) to be the set of orientations
of the vector space H 1(Y ; R). A choice of an element from �(Y ) is a homology
orientation of Y . ♦

We fix an orientation convention about how to identify R with iR (say mul-
tiplication by i), so that �(Y ) becomes also the orientations of H 1(Y ; iR). The
above discussion shows that a homology orientation µ ∈ �(Y ) canonically
determines orientation µ& for the determinant of the operator P&

a0 , by orienting
the kernel of the block diagonal operator to which it is homotopic. In turn, this
determines an orientation µ� for det P�

a0 by the rule

q(µ&,µ�) = 1 ∈ �(a0, a0)

= {1,−1},
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where q is the natural composition. This rule is equivalent to the alternative rule

q(µ�,µ&) = 1 ∈ �′(a0, a0)

= {1,−1}.

We may write µ
�
Y and µ

&
Y to emphasize the role of Y . In particular, the

first cohomology groups of Y and −Y are the same, so we can also regard a
cohomology orientation µ as giving rise to orientation µ

�
−Y and µ

&
−Y for the

corresponding objects on −Y . We have

q(µ&
−Y ,µ�

−Y ) = 1

and

c(µ&
Y ) = µ

&
−Y

from which follows

c(µ�
Y ) = (−1)b1(Y )µ

�
−Y . (22.22)

(See (22.24) below.)
Via this identification, the definition of the composition law q gives us also

a map which removes the prime:

(x,µ) �→ q(x,µ�
−Y )

�′(−Y ; [a],−q, [a0], 0)×�(−Y )→ �(−Y ; [a],−q, [a0], 0).

Thus, given a homology orientation µ ∈ �(Y ), we get a map

�(Y ; [a], q, [a0], 0)→ �(−Y ; [a],−q, [a0], 0)

λ �→ q
(

c(ρ(λ)),µ�
−Y

)
.

(22.23)

As it stands, the map (22.23) does not define a map from �(Y ; [a]) to
�(−Y ; [a]), because �(Y ; [a]) is the quotient of the union∐

[a0]
�(Y ; [a], q, [a0], 0)

by an equivalence relation; and the map (22.23) does not preserve this relation.
The equivalence relation is respected, however, if we confine ourselves to the
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cases that a0 is boundary-stable on Y . This leads to the following definition, in
which an additional sign has been introduced in order to more closely match
the signs that arise in finite-dimensional Morse theory.

Definition 22.5.3. For a critical point [a] and a homology orientation µ for Y ,
we define

ωµ : �(Y ; [a])→ �(−Y ; [a])

by taking a representative λ ∈ �(Y ; [a], [a0]) for a boundary-stable [a0], and
setting

ωµ(λ) = (−1)gr(2)(a)q
(

c(ρ(λ)),µ�
−Y

)
where q is the composition operation for −Y and gr(2) is the canonical mod 2
grading. ♦

Now let λa and λb be orientations in �(Y ; [a]) and �(Y ; [b]), and write

λ̃a = ωµ(λa)

λ̃b = ωµ(λb).

From λa and λb we obtain as before an element

λab = q(λa, ρ(λb))

∈ �(Y ; [a], [b]).

Similarly, with q̃ and ρ̃ denoting the corresponding operators for −Y , we have
an element

λ̃ab = q̃(λ̃b, ρ̃(λ̃a))

∈ �(−Y ; [b], [a]).

Recalling the map c from Lemma 22.5.1, we can compare λ̃ab with c(λab):

Lemma 22.5.4. We have λ̃ab = (−1)rc(λab), where

r = gr(2)(b)(1+ gr(2)(a)).
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Proof. Let us write x • y for q(x, y), and let us abbreviate gr2(a) and gr2(b)

as a and b respectively. Because of the interchange of orders that is involved
when passing from trajectories on Y to trajectories on −Y , we have a general
relation

c(x • y) = (−1)gr(x) gr(y)c(y) • c(x), (22.24)

where gr(x) and gr(y) denote the indices of the operators for which x and y
define orientations. So we compute as follows, writing µ& and µ� for µ&

−Y and

µ
�
−Y :

c(λab) = c(λa • ρ(λb))

= (−1)abc(ρ(λb)) • c(λa)

= (−1)abc(ρ(λb)) • (µ� • µ&) • c(λa)

= (−1)ab+bλ̃b • µ& • c(λa).

We now claim that

µ& • c(λa) = ρ(λ̃a), (22.25)

so that the above gives

c(λab) = (−1)ab+bλ̃b • ρ(λ̃a)

= (−1)ab+bλ̃ab

as the lemma asserts. To check (22.25), we turn to the defining property of ρ –
namely the condition ρ(λ̃a) • λ̃a = 1 – to see whether it is satisfied. To do this,
we compute

µ& • c(λa) • λ̃a = (−1)aµ& • c(λa) • c(ρ(λa)) • µ�

= µ& • c
(
ρ(λa) • λa

) • µ�

= µ& • c(1) • µ�

= µ& • µ�

= 1.

This verifies the claim and the lemma. �
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Remark. The relation (22.24) and the defining property of ρ also tell us that
ρ(c(λa)) and c(ρ(λa)) differ by the sign (−1)gr(2)(a):

ρ(c(λa)) = (−1)gr(2)(a) c(ρ(λa)); (22.26)

so the definition of ωµ in Definition 22.5.3 can also be written

ωµ(λ) = q
(
ρ(c(λ)),µ�

−Y

)
. (22.27)

Combining the last lemma with Lemma 22.5.1, we deduce:

Corollary 22.5.5. When the moduli spaces are equipped with the orientations
λab and λ̃ab respectively, the natural identification of moduli spaces

M̆z(Y ; [a], [b])→ M̆−z(−Y ; [b], [a])

is orientation-preserving or orientation-reversing according to the sign of

(−1)gr(2)(b)(1+gr(2)(a))+1

in the boundary-unobstructed cases, or of

(−1)gr(2)(b)(1+gr(2)(a))

in the boundary-obstructed case.

Proof. The sign gr(2)(b)(1+gr(2)(a)) comes from the preceding lemma. When
passing from M to M̆ , we must divide by the action of R; and the change of
orientation of Y means an accompanying change in the direction of the R action
on the moduli space.This results in another overall sign change. In the boundary-
obstructed case, an additional minus sign comes from Lemma 22.5.1. �

We can specialize to the case of 1-dimensional moduli spaces:

Corollary 22.5.6. In the situation of the previous corollary, suppose that
Mz([a], [b]) has dimension 1. Then the map

M̆z(Y ; [a], [b])→ M̆−z(−Y ; [b], [a])

is orientation-preserving or orientation-reversing according to the sign of
(−1)gr(2)(a) in the boundary-unobstructed cases. In the boundary-obstructed
case, the map is orientation-preserving. �
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If we treat µ as a variable, then the maps ωµ can be thought of as a map

ωY : Z�(Y ; [a])→ Z�(−Y ; [a])⊗ Z�(Y ).

This gives preferred isomorphisms between, for example, Cs(Y ) and Cu(−Y )⊗
Z�(Y ). However, it is more natural to make identifications here between dual
spaces: for a free abelian group C with a canonical basis, we write C† for the
subspace of Hom(C, Z) consisting of homomorphisms which are zero on all but
finitely many basis vectors (the finitely supported dual). There is a canonical
isomorphism between C and C†. A homomorphism e : C1 → C2 with only
finitely many matrix entries in each row and column gives a homomorphism
e† : C†

2 → C†
1 . With this convention, we have identifications

ωo : Co(−Y , s)→ Co(Y , s)† ⊗ Z�(Y )

ωs : Cs(−Y , s)→ Cu(Y , s)† ⊗ Z�(Y )

ωu : Cu(−Y , s)→ Cs(Y , s)† ⊗ Z�(Y ).

(We emphasize that ωY , not ω−Y , is being used here, though we have reversed
the direction of the maps.) With these isomorphisms, Corollary 22.5.6 tells us:⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

ωo∂o
o (−Y ) = η∂o

o (Y )†ωo

ωs∂o
s (−Y ) = η∂u

o (Y )†ωo

ωo∂u
o (−Y ) = η∂o

s (Y )†ωu

ωs∂u
s (−Y ) = η∂u

s (Y )†ωu,

(22.28)

where

η : C(Y , s)→ C(Y , s)

is the map that is equal to (−1)gr(2)(a) on the summand Z�([a]). For the compo-
nents ∂̄s

s etc. of ∂̄ , there is a slight twist on account of the signs in the definition
of ε̄ when both critical points are boundary-unstable. We obtain:⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

ωs∂̄s
s (−Y ) = −η∂̄u

u (Y )†ωs

ωu∂̄s
u(−Y ) = ∂̄s

u(Y )†ωs

ωs∂̄u
s (−Y ) = −∂̄u

s (Y )†ωu

ωu∂̄u
u (−Y ) = −η∂̄s

s (Y )†ωu.

(22.29)
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The sign in the ∂̄s
u case comes from Corollary 22.5.6. For the ∂̄u

s case, we use
the fact that the reducible moduli space M̆ red([a], [b]) is minus the oriented
boundary of a moduli space M̆ ([a], [b]), with gr(2)([b]) = gr(2)([a]).

We now define

ω̌ : Č(−Y , s)→ Ĉ(Y , s)† ⊗ Z�(Y )

ω̂ : Ĉ(−Y , s)→ Č(Y , s)† ⊗ Z�(Y )

by the formulae

ω̌ =
[
ωo 0
0 ωs

]
, ω̂ =

[
ωo 0
0 ωu

]
.

The above relations then give us:

ω̌∂̌(−Y ) = η∂̂(Y )†ω̌

ω̂∂̂(−Y ) = η∂̌(Y )†ω̂.
(22.30)

To make the signs work for C̄, we introduce η̄ as the ḡr(2) version of η,

η̄ = (−1)ḡr(2) : C̄(Y )→ C̄(Y ),

so that the relations (22.29) can be rewritten

ωs∂̄s
s (−Y ) = η̄∂̄u

u (Y )†ωs

ωu∂̄s
u(−Y ) = ∂̄s

u(Y )†ωs

ωs∂̄u
s (−Y ) = −∂̄u

s (Y )†ωu

ωu∂̄u
u (−Y ) = −η̄∂̄s

s (Y )†ωu.

We then define

ω̄ : C̄(−Y , s)→ C̄(Y , s)† ⊗ Z�(Y )

by

ω̄ =
[

0 η̄ωu

ωs 0

]
: Cs(−Y )⊕ Cu(−Y )→ (

Cs(Y )† ⊕ Cu(Y )†)⊗ Z�(Y ).

We then have

ω̄∂̄(−Y ) = η̄∂̄(Y )†ω̄. (22.31)
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At this point, we see from (22.30) and (22.31) that ω̌, ω̂ and ω̌ respect
the differentials up to sign. They therefore give well-defined maps on the
(co)homology groups, and so we have constructed isomorphisms between for
example

̂

HM∗(−Y , s) and ĤM ∗(Y , s)⊗ Z�(Y ). Before proceeding, we wish
to consider how the grading behaves under these duality isomorphisms. Recall
the definition (22.12) of J. Define a map

o : Bσ
k (−Y , s)× Z → Bσ

k (Y , s)× Z,

by

o([a], n) = ([a],−n− N (Hessσq,a)
)
.

Here Hessσq,a is again the Hessian at a acting on Kσ
a , and N (Hessσq,a) is the

dimension of its generalized zero-eigenspace. This is the codimension of H−′

in H−. Let ∼ be the equivalence relation on Bσ
k (Y , s) × Z defined prior to

(22.12), and let∼′ be the equivalence relation on Bσ
k (−Y , s)×Z defined in the

same way, with −Y in place of Y .

Lemma 22.5.7. The map o satisfies

([a], m) ∼′ ([b], n) ⇐⇒ o([a], m) ∼ o([b], n).

As a consequence, o gives rise to a map

o : J(−Y , s)→ J(Y , s) (22.32)

on the equivalence classes.

Proof. Let γ (t) be a path in Bσ
k (−Y , s) joining [a] to [b], and let Pγ (−Y ) be

the corresponding operator defined using the orientation of −Y . Let γ ′ be the
opposite path, γ ′(t) = γ (−t). If the Hessians Hessσa and Hessσb are hyperbolic
(that is, if they have no kernel), then Pγ (−Y ) is isomorphic to −Pγ ′(Y ), and
in this case we have

index(Pγ (−Y )) = −index(Pγ (Y )).

In the general case, we have

indexPγ (−Y ) = −indexPγ (Y )+ N (Hessσq,a)− N (Hessσq,b).
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From the definition, ([a], m) ∼′ ([b], n) if and only if there is a path γ with

indexPγ (−Y ) = n− m

or equivalently

indexPγ (Y ) = −n+ m+ N (Hessσq,a)− N (Hessσq,b).

This means that([a],−m− N (Hessσq,a)
) ∼ ([b],−n− N (Hessσq,b)

)
.

�

Note that o changes the sign in the action of Z:

o(j + n) = o(j)− n

for j in J(−Y , s) and n ∈ Z. If [a] is a critical point in C(Y ) = C(−Y ), it has a
grading (22.13),

grY [a] ∈ J(Y , s),

and we see that

o gr−Y [a] = grY [a]. (22.33)

We also record how the canonical mod 2 grading is affected by o:

Lemma 22.5.8. The map o : J(−Y , s) → J(Y , s) preserves or reverses the
canonical mod 2 grading according as 1+ b1(Y ) is even or odd respectively:
that is,

gr(2)−Y (j) = (−1)1+b1(Y ) gr(2)Y (o(j)).

Proof. We consider the case of a point a where the Hessian is hyperbolic. The
definition of gr(2)Y (a) is that it is the index mod 2 of Pγ (Y ), where γ runs from
(a, q) to (a0, 0), for some boundary-stable reducible configuration a0. This is
equal to the index of P′−γ (−Y ), where −γ is the opposite path. This is equal
mod 2 to the index of P′δ(−Y ), where δ is a path from (a,−q) to (a0, 0). We
need to replace P′ by P here, and this changes the index by b1(Y ) mod 2; and
we need to trade a0, which is boundary-unstable on −Y , for some b0 which is
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boundary-stable which will change the parity of the index again. The overall
change in parity is 1+ b1(Y ). �

It follows now from (22.33) and the definitions that ω̌ and ω̂ restrict to maps

ω̌ : Čj(−Y , s)→ Ĉo(j)(Y , s)⊗ Z�(Y )

ω̂ : Ĉj(−Y , s)→ Čo(j)(Y , s)⊗ Z�(Y ).

The map ω̄ on C̄ behaves a little differently: from the definition (22.15), we see
that the restriction of ω̄ is a map

ω̄ : C̄j(−Y , s)→ C̄o(j)−1(Y , s)⊗ Z�(Y ).

Let us choose a homology orientation µ ∈ �(Y ). This identifies Z�(Y ) with
Z, and the maps ω̌ etc. become isomorphisms

ω̌µ : Čj(−Y , s)→ Ĉo(j)(Y , s).

We now have a diagram of maps, in which the vertical maps are isomorphisms,
and in which all maps are chain maps up to sign:

· · · C̄k (−Y , s)

ω̄µ

��

i �� Čk (−Y , s)

ω̂µ

��

j
�� Ĉk (−Y , s)

ω̂µ

��

p
��

(−1)r

C̄k−1(−Y , s) · · ·

ω̄µ

��

· · · C̄o(k)−1(Y , s)
p†

�� Ĉo(k)(Y , s)
j†

�� Čo(k)(Y , s)
i† �� C̄o(k)(Y , s) · · ·

Lemma 22.5.9. In the above diagram, the left-hand and middle squares com-
mute. The right-hand square commutes or anti-commutes according to the
parity of

r = 1+ b1(Y )+ gr(2)−Y (k)

= gr(2)Y (o(k)). (22.34)

Proof. This follows in a straightforward fashion from the formulae for i, j and
p (Proposition 22.2.1) and the relations (22.28) and (22.29). �

Corollary 22.5.10. We have the following diagram in which the first row is the
long exact Floer homology sequence for (−Y , s), the second row is the coho-
mology sequence for (Y , s) and the vertical maps are the duality isomorphisms
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determined by a choice of homology orientation µ for Y . The first two squares
commute, while the third square commutes or anti-commutes according to the
parity of r = 1+ b1(Y )+ gr(2)Y (k).

· · · HMk (−Y )

ω̄µ

��

i∗ ��

̂

HMk (−Y )

ω̂µ

��

j∗
�� ĤMk (−Y )

ω̂µ

��

p∗
��

(−1)r

HMk−1(−Y ) · · ·

ω̄µ

��
· · · HM o(k)−1(Y )

p∗
�� ĤM o(k)(Y )

j∗
��

̂

HM o(k)(Y )
i∗ �� HM o(k)(Y ) · · ·

(We have omitted mention of s in the diagram.) �

Corollary 22.5.11. The map ω̂µ corresponding to the homology orientation µ

gives rise to an isomorphism from the reduced Floer homology of −Y to the
reduced Floer cohomology of Y :

ωµ : HMk(−Y , s)→ HM o(k)(Y , s).

�

We can also consider the sign that arises when we square the duality map.
Returning for a moment to �(Y ; a), and fixing a homology orientation µ for
Y , we consider the two maps

ωY ,µ : �(Y ; a)→ �(−Y ; a)

ω−Y ,µ : �(−Y ; a)→ �(Y ; a).

Lemma 22.5.12. The composite map

ω−Y ,µωY ,µ : �(Y ; [a])→ �(Y ; [a])

is the identity if and only if

(gr(2)Y ([a])+ 1)b1(Y )

is even.

Proof. Let us represent an element of �(Y ; [a]) by

λ ∈ �(Y ; [a], [a0]),
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for some boundary-stable reducible element a0. Using again the bullet notation
for q, and the formula (22.27) for ωµ, we have ωY ,µ(λ) represented by the
element

ωY ,µ(λ) = ρ(c(λ)) • µ�
a0

∈ �(−Y ; [a], [a0]).
The definition ofω requires us to use a representative in�(Y ; [a], [a0])with [a0]
boundary-stable; but for−Y , the point [a0] is boundary-unstable. So let us take
another reducible point b0 that is boundary-stable for −Y (and so boundary-
unstable for Y ), and let τ be the canonical orientation in �(−Y ; [a0], [b0]), as
in (20.12). We can represent ωY ,µ(λ) also by

ρ(c(λ)) • µ�
a0 • τ ∈ �(−Y ; [a], [b0]).

We are now in a position to apply ω again. In the following calculation, we
stick to the convention that µ� denotes µ

�
−Y ; we can represent µ

�
Y then as

(−1)b1(Y )c(µ�) using (22.22). We compute

ω−Y ,µωY ,µ(λ) = (−1)b1(Y )ρ
(

c(ρ(c(λ)) • µ�
a0 • τ)

)
• c(µ�

b0
)

= (−1)b1(Y )+gr(2)Y (a)(b1(Y )+1)ρ
(

c(µ�
a0 • τ) • c(ρ(c(λ)))

)
• c(µ�

b0
)

= (−1)b1(Y )+gr(2)Y (a)(b1(Y )+1)ρ (c(ρ(c(λ)))) • ρ(c(µ�
a0 • τ)) • c(µ�

b0
)

= (−1)(gr(2)Y (a)+1)b1(Y )ρ (c(c(ρ(λ)))) • ρ(c(µ�
a0 • τ)) • c(µ�

b0
)

= (−1)(gr(2)Y (a)+1)b1(Y ) λ • ρ(c(µ�
a0 • τ)) • c(µ�

b0
)

= (−1)(gr(2)Y (a)+1)b1(Y ) λ • ρ(ρ(c(µ�

b0
)) • c(µ�

a0 • τ))
= (−1)gr(2)Y (a)b1(Y ) λ • ρ(c(ρ(µ�

b0
)) • c(µ�

a0 • τ))
= (−1)gr(2)Y (a)b1(Y ) λ • ρ(c(µ�

a0 • τ • ρ(µ�

b0
)))

= (−1)(gr(2)Y (a)+1)b1(Y ) λ • ρ(c(τ • µ�

b0
• ρ(µ�

b0
)))

= (−1)(gr(2)Y (a)+1)b1(Y ) λ • ρ(c(τ ))
≡ (−1)(gr(2)Y (a)+1)b1(Y ) λ

where we used the relation (22.24) for c(x • y) in the second line, the rela-
tion ρ(x • y) = ρ(y) • ρ(x) in the third, the relation (22.26) in the fourth,



22 Floer homology 443

and the relation

µ
�
a0 • τ = (−1)b1(Y )τ • µ�

b0

in the ninth. �

We can reinterpret this lemma, for example, in relation to the maps ω̌µ and ω̂µ:

Corollary 22.5.13. The maps

ω̌Y ,µ :

̂

HMk(−Y , s)→ ĤM o(k)(Y , s)

ω̂−Y ,µ : ĤMo(k)(Y , s)→

̂

HM k(−Y , s)

satisfy

(ω̂−Y ,µ)
† = (−1)(gr(2)Y (o(k))+1)b1(Y )ω̌Y ,µ,

where (ω̂−Y ,µ)
† denotes the map on cohomology induced from the adjoint chain

map. Similarly,

(ω̌−Y ,µ)
† = (−1)(gr(2)Y (o(k))+1)b1(Y )ω̂Y ,µ.

�

22.6 Local coefficients

Rather than use coefficients Z, we can construct Floer homology groups with an
arbitrary abelian group � as coefficient group. More generally, we can take � to
be any local system of abelian groups on Bσ

k (Y , s), in line with our discussion
of finite-dimensional Morse theory in Subsection 2.7. Thus to each point [a]
in Bσ

k (Y , s) there is associated a group �[a] and to each homotopy class z of
paths from [a] to [b] there is associated an isomorphism �(z) : �[a] → �[b].
We define

Co(�) =
⊕
[a]∈Co

Z�[a] ⊗ �[a]

Cs(�) =
⊕
[a]∈Cs

Z�[a] ⊗ �[a]

Cu(�) =
⊕
[a]∈Cu

Z�[a] ⊗ �[a]
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(compare (22.2)). We have the eight operators

∂o
o : Co(�)→ Co(�)

∂o
s : Co(�)→ Cs(�)

∂u
o : Cu(�)→ Co(�)

∂̄s
s : Cs(�)→ Cs(�)

∂̄s
u : Cs(�)→ Cu(�)

∂̄u
s : Cu(�)→ Cs(�)

∂̄u
u : Cu(�)→ Cu(�)

∂u
s : Cu(�)→ Cs(�)

defined by (for example)

∂o
o =

∑
[a]∈Co

∑
[b]∈Co

∑
z

∑
[γ ]∈M̆z([a],[b])

ε[γ ] ⊗ �(z),

just as in (22.8). These operators are combined to form the differentials

∂̌ : Č(�)→ Č(�)

∂̂ : Ĉ(�)→ Ĉ(�)

∂̄ : C̄(�)→ C̄(�),

where Č(�) = Co(�) ⊕ Cs(�), and so on, just as in Definition 22.1.3.
These operators have square zero (the proof of Proposition 22.1.4 is essentially
unchanged), and we therefore have homology groupŝ

HM (Y , s;�), ĤM (Y , s;�), HM (Y , s;�). (22.35)

All our earlier constructions can be repeated in this context. The groupŝ

HM∗(Y , s;�) are graded by the set J(s). We can form the Floer cohomology
groups in the usual way: we have groups

(Co)∗(�) =
⊕
[a]∈Co

Hom(Z�[a], Z)⊗ �[a]

(Cs)∗(�) =
⊕
[a]∈Cs

Hom(Z�[a], Z)⊗ �[a]

(Cu)∗(�) =
⊕
[a]∈Cu

Hom(Z�[a], Z)⊗ �[a],
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with operators

(∂o
o )
∗ =

∑
[a]∈Co

∑
[b]∈Co

∑
z

∑
[γ ]∈M̆z([a],[b])

ε[γ ]∗ ⊗ �(z−1),

from which we form the cochain complexes

(Č∗(�), ∂̌∗), (Ĉ∗(�), ∂̂∗), (C̄∗(�), ∂̄∗),

graded by J(s). The Floer cohomologieŝ

HM ∗(Y , s;�), ĤM ∗(Y , s;�), HM ∗(Y , s;�)

are the cohomology groups of these cochain complexes. There is a long exact
sequence, as in Proposition 22.2.1; and if µ is a homology orientation of Y ,
there are duality isomorphisms ω̌µ, ω̂µ and ω̄µ, and a diagram

i∗ ��

̂

HMk (−Y ;�)

ω̂µ

��

j∗
�� ĤMk (−Y ;�)

ω̂µ

��

p∗
��

(−1)r

HMk−1(−Y ;�)

ω̄µ

��

i∗ ��

p∗
�� ĤM o(k)(Y ;�)

j∗
��

̂
HM o(k)(Y ;�)

i∗ �� HM o(k)(Y ;�)
p∗

��

(22.36)

in which the first two squares commute and the third square commutes or
anti-commutes, just as in Corollary 22.5.10.

Examples. In the introductory Subsection 3.7, we promised that to each C∞
singular 1-cycle η on Y with real coefficients, we would assign a local system
on Bσ (Y , s), called �η. Some of its formal properties were listed there. To
construct �η, we first set

�η[a] = R

for each [a] ∈ Bσ (Y , s). If ζ : I → Bσ (Y , s) is a path from [a] to [b] repre-
senting a homotopy class of paths z, then ζ gives rise to a gauge-equivalence
class of 4-dimensional connections [Aζ ], in temporal gauge, on the cylinder
I ×Y . Let FAt

ζ
be the curvature of the connection in the associated line bundle,

and let

f (z) = i

2π

∫
I×η

FAt
ζ
.
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This real number depends only on the endpoints and the homotopy class z. To
complete the definition of the local system, we define

�η(z) : R → R

to be multiplication by the real number

�η(z) = ef (z).

This example can be modified by replacing R by another field K and the expo-
nential map by any group homomorphism exp : R → K×. That is, we set
�η[a] = K for all [a], and define �η(z) = exp( f (z)). For example, one can
take K to be the field of fractions belonging to the ring k[R] – the group ring
of R with coefficients in a field k.

22.7 The Floer homology of the three-sphere

We now examine the simplest example, the 3-sphere S3 equipped with the round
metric. We have already described the Floer groups for S3, without proof, in the
introduction, Subsection 3.3. We are now in a position to verify that description
from our definitions, though we have not yet dealt with the module structure or
the grading by 2-plane fields: we will identify the Floer groups of S3 only as
groups at present.

The unperturbed Chern–Simons–Dirac functional L for the unique spinc

structure s on S3 has only one critical point, namely the unique reducible solu-
tion [B, 0], where B is a spinc connection with FBt = 0. This follows from a
slightly more general observation.

Proposition 22.7.1. Let Y be a Riemannian 3-manifold with non-negative
scalar curvature s. Then the only critical points [B,�] of the unperturbed
functional L are the reducible solutions with � = 0.

Proof. This is essentially the same as Proposition 4.6.1, which dealt with solu-
tions to the 4-dimensional equations. The present 3-dimensional version can be
deduced by noting that a solution to the 3-dimensional equations on Y gives
a solution to the 4-dimensional equations on S1 × Y . An alternative argument
is to repeat some of the calculations leading up to Corollary 4.5.3 in a purely
3-dimensional setting. �

In the blown-up configuration space Bσ
k (S

3, s), the critical points of the vector
field (grad L)σ are degenerate, because the spectrum of the Dirac operator DB
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is not simple: the eigenspaces are non-trivial representations of the symmetry
group Spin(4). We choose a small perturbation q ∈ P to make the critical
points non-degenerate, without changing the essential features, namely that
there is only one critical point of the functional downstairs in B(Y , s) and that
this critical point [B, 0] is reducible. Non-degeneracy means that the spectrum
of Dq,B is simple and does not contain zero (see Proposition 12.2.5). Label the
eigenvalues in increasing order as λi, with λ0 being the first positive eigenvalue.

The eigenvalues are in one-to-one correspondence with the gauge-
equivalence classes of critical points of (grad−L)σ , which we label accordingly
as [ai] (i ∈ Z). The critical points [ai] with i ≥ 0 belong to Cs, and the others
belong to Cu. The set J(S3, s) has a free, transitive Z action, and we specify an
isomorphism

J(S3, s)→ Z

by sending gr[a0] to 0. Ifλi andλi−1 have the same sign, then grz([ai], [ai−1]) =
2, independent of the path z, by Corollary 14.6.2; and we have grz([a0], [a−1]) =
1. Thus, under the above isomorphism, we have

gr[ai] =
{

2i (i ≥ 0)

−2i + 1 (i < 0).

The reducible grading ḡr (defined at (22.15)) satisfies ḡr[ai] = 2i for all i.
The orientation sets �([ai]) all have a preferred element, because the defi-

nition of �([ai]) means that it is identified with �([ai], [a′]), for any choice of
reducible configuration [a′], and in particular for [a′] = [ai]. So each Z�[ai]
has a preferred isomorphism with Z. Putting it all together, we see that

• Čj = Z for even, non-negative j and is zero otherwise,
• Ĉj = Z for odd, negative j and is zero otherwise, and
• C̄j = Z for all even j.

In all three cases, the chain groups are never non-zero in two adjacent gradings,
so the differentials are all zero; and the Floer groups

̂

HM∗(S3, s), ĤM∗(S3, s)
and HM∗(S3, s) are therefore isomorphic to the chain groups. This is the result
promised in Proposition 3.3.1. The canonical mod 2 grading defined in Sub-
section 22.4 is the one that fits with our chosen labelling: gr(2)[ai] is even
for i ≥ 0.

The long exact sequence relating these three is the obvious one, with j∗ = 0,
as follows easily from the definitions, because there are no irreducible solutions
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and the boundary maps are zero. The reduced Floer homology HM∗(S3, s) is
zero, because it is defined as the image of j∗.

We should note that the above description of the Floer groups of S3 can be
applied to a 3-manifold with b1 = 0 and positive scalar curvature. If Y is any
such 3-manifold and s is any spinc structure, then by Corollary 4.2.2 and the
above proposition, there is a unique critical point [α] in Bσ (Y , s), which is
reducible. The corresponding Dirac operator DB has no kernel, again because
of the scalar curvature condition. After a small perturbation, we can take it that
the spectrum of the perturbed Dirac operator is simple, and we can label the
critical point in the blown-up configuration space as [ai] as before. Just as for
S3, we see that

̂

HMj(Y , s), for example, is Z in the all gradings j = j0 + 2i,
where i ≥ 0 and j0 is the grading corresponding to a0.

Notes and references for Chapter VI

The orientability of a moduli space arising in gauge theory was exploited by
Donaldson in his first proof [17] that a simply connected smooth 4-manifold
cannot have non-standard, definite intersection form. The key feature of Don-
aldson’s proof is recognizing the role of the determinant line bundle, which
exists not just over the moduli space, but over the whole configuration space,
whose topology is known. Essentially the same orientability argument was
used by Floer in [32]. Our argument showing that the Seiberg–Witten moduli
spaces are orientable follows the same pattern, and is by now quite standard.
We have taken care to specify our conventions carefully enough to be able to
deal correctly with the boundary-obstructed phenomenon and with duality.

The material on Stokes’ theorem is used only briefly in the case of 1-
dimensional moduli spaces in this chapter. In the following chapter, we will
evaluate more general cohomology classes on moduli spaces and make use
of the full result. Traditionally, evaluations of cohomology classes on moduli
spaces have often been defined as intersection numbers; see [20], for example.
This technique requires the construction (often ad hoc) of finite-codimension
submanifolds (or subvarieties) dual to the classes being evaluated. An alter-
native approach, based on Čech or Alexander–Spanier cohomology, is more
flexible and works well with quite general spaces stratified by manifolds. This
approach was used by Frøyshov in [40].
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Cobordisms and invariance

Our next aim is to establish that the monopole Floer homology groups are topo-
logical invariants of a 3-manifold Y . The construction of the groups

̂

HM∗(Y , s)
etc. in the previous sections depended on a choice of Riemannian metric g and
an admissible perturbation q (see Definition 22.1.1). To emphasize the role that
they play, we will write ̂

HM∗(Y , g, q, s)

to indicate the dependence. The task of establishing that different choices of
g and q lead to canonically isomorphic groups is closely tied with another
feature of the Floer groups, first discussed in Section 3, namely the fact
that a cobordism between 3-manifolds gives rise to homomorphisms between
their monopole Floer homologies. We take up both of these matters now,
stating the main results before turning to the machinery needed for the
proofs. By the end of this chapter, we will have verified the formal prop-
erties of the Floer groups that were discussed in Section 3, with just a few
exceptions.

The main exception is the material of Subsection 3.9, concerning what hap-
pens when two manifolds with b+ = 0 are joined to form a closed manifold
with b+ ≥ 2. This and the related matter of non-exact perturbations will be
discussed in the next chapter.

23 Summary of results

23.1 Metrics, perturbations and cobordisms

It will be convenient to combine all the spinc structures on a given 3-manifold Y
and form a sum of the Floer homologies. For this purpose we need a collection

449



450 VII Cobordisms and invariance

of perturbations, one for each spinc structure. Let us write P(Y , s) for a large
Banach space of tame perturbations belonging to the spinc structure s on Y , and
let us introduce

P(Y ) =
∏

s

P(Y , s),

where the product is taken over all isomorphism classes of spinc struc-
tures. Recall that, to be tame, the perturbation must satisfy the estimates and
smoothness conditions in Definition 10.5.1. When dealing with a collection of
perturbations {qs}, we will require some uniformity in the estimates:

Definition 23.1.1. We say that an element q = {qs} in P(Y ) is admissible if
all its components qs are admissible, and if in addition the bound in Item (iv)
of Definition 10.5.1 holds with a uniform constant m2, independent of s. ♦

The uniformity of the constant m2 appeared in an earlier context, in
Lemma 10.7.5. That lemma tells us that, for such a choice of perturbations,
there can only be finitely many spinc structures s for which the correspond-
ing perturbed functional has critical points. It follows that

̂
HM∗(Y , g, qs, s)

is zero, for all but finitely many s, as are ĤM∗ and HM∗, as claimed in
Proposition 3.1.1.

Definition 23.1.2. Given an admissible perturbation q = {qs}s in P(Y ), writê

HM∗(Y , g, q) for the direct sum of the Floer homologies

̂

HM∗(Y , g, qs, s) taken
over all isomorphism classes of spinc structures s on Y :̂

HM∗(Y , g, q) =
⊕

s

̂

HM∗(Y , g, qs, s).

We make a similar definition for ĤM∗, HM∗, and the Floer cohomology groupŝ

HM ∗, ĤM ∗ and HM ∗. By the above remarks, these direct sums involve only
finitely many non-zero terms. ♦

We regard

̂

HM∗(Y , g, q) and its companions as graded abelian groups, graded
by the set with Z action

J(Y , g, q) =
∐

s

J(Y , s, g, q).

We have again changed our notation to emphasize the role of the metric and
perturbation in the definition of this set. (See Subsection 22.3.) Given an element
j ∈ J(Y , g, q), we can write

̂

HMj(Y , g, q)without mention of the spinc structure:
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s is determined by j. Following Definition 3.1.3, we form Floer groups

̂

HM•
etc. by completion:

Definition 23.1.3. The Floer homology groups

̂

HM•(Y , g, q), ĤM•(Y , g, q)
and HM•(Y , g, q) are constructed from the ∗ versions by negative completion
in the sense of Definition 3.1.3. The Floer cohomology groups

̂

HM •(Y , g, q),
ĤM •(Y , g, q) and HM •(Y , g, q) are constructed by positive completion. ♦

Recall now the category cob whose objects are compact, connected, ori-
ented 3-manifolds and whose morphisms are isomorphism classes of connected
cobordisms equipped with homology orientations, Definition 3.4.2. As a formal
device, we introduce a category whose objects are 3-manifolds decorated with
metrics and perturbations:

Definition 23.1.4. We write c̃ob for the category in which an object is a triple
(Y , g, q), where g is a Riemannian metric and q ∈ P(Y ) an admissible per-
turbation. A morphism in c̃ob is defined to be a cob-morphism between the
underlying oriented 3-manifolds. Thus there is a forgetful functor from c̃ob
to cob; and two objects (Y0, g0, q0), (Y1, g1, q1) in c̃ob are isomorphic if the
underlying 3-manifolds are diffeomorphic. ♦

We are now in a position to state:

Theorem 23.1.5. The construction of the Floer groups

̂

HM•(Y , g, q) etc. can
be extended to define covariant functorŝ

HM• : c̃ob → group

ĤM• : c̃ob → group

HM• : c̃ob → group

to the category of abelian groups. The Floer cohomology groups similarly
extend to contravariant functorŝ

HM • : c̃ob → group

ĤM • : c̃ob → group

HM • : c̃ob → group .

Remark. This theorem would not be true as stated if we were to replace ĤM•,
for example, by the incomplete version ĤM∗. The reason lies in the fact that,
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if W is a cobordism from Y0 to Y1, the corresponding map

ĤM•(W ) : ĤM•(Y0, g0, q0)→ ĤM•(Y1, g1, q1)

is a sum over all spinc structures on W , and infinitely many of these may
contribute. This is illustrated already in the case that Y0 and Y1 are both S3

with the round metric and a small perturbation, as in Subsection 22.7. We saw
there that

ĤM∗(S3) =
∑
j odd
j<0

Zej,

where ej stands for the generator given by the unique critical point in grading j.
Thus

ĤM•(S3) =
∏

j odd
j<0

Zej.

Let W be the cobordism from S3 to S3 obtained from C̄P
2

(that is, CP2 with
the opposite orientation) by removing two balls, and for each odd integer m let

sm be the spinc structure on C̄P
2

whose first Chern class is m times a chosen
generator. Then we can write

ĤM•(W ) =
∑

m odd

ĤM•(W , sm), (23.1)

and we have (for a suitable choice of homology orientation on W )

ĤM•(W , sm)(ej) = ej−(m2−1)/4.

The sum (23.1) is infinite, and makes sense as an endomorphism of ĤM•(S3),
but it is not defined on ĤM∗(S3). See Subsection 39.3.

Theorem 23.1.5 implies the topological invariance of the Floer groups. If
(g, q) and (g′, q′) are two choices of metric and perturbation for Y , then the
objects (Y , g, q) and (Y , g′, q′) are canonically isomorphic in our category c̃ob:
the trivial cobordism [0, 1] × Y provides the isomorphism.

Corollary 23.1.6. If (Y , g, q) and (Y , g′, q′) are two objects of c̃ob with the
same underlying oriented 3-manifold Y , then

̂

HM•(Y , g, q) and

̂

HM•(Y , g′, q′)
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are canonically isomorphic (as are the other flavors of Floer homology and
cohomology). �

Technically, although they are canonically isomorphic,

̂

HM•(Y , g, q) and̂

HM•(Y , g′, q′) are two different groups. If cat is any category, we can form
a new category cat / can, “cat up to canonical isomorphism”. An object x
of cat / can consists of a set A, a family {xa} of objects of cat indexed
by A, and isomorphisms φa1a2 : xa1 → xa2 for all a1 and a2, satisfying
φa2a3φa1a2 = φa1a3 . A morphism m from x = (A, {xa},φ) to y = (B, {yb},ψ) is
a collection of morphisms mab : xa → yb with ψbb′mabφa′a = ma′b′ . Using this
terminology, we could describe the Floer groups as functors from cob to the
category group / can of groups up to canonical isomorphism. We can avoid
this issue, however, because there is a functor from group / can to group:
to an object G = (A, {Ga},φ) in group / can, this functor assigns the group
of “cross-sections”, the subgroup of

∏
Ga consisting of collections {ga} with

gb = φabga for all a, b. This subgroup is isomorphic to each of the groups Ga.
With this understood, we can state the next corollary:

Corollary 23.1.7. The Floer groups define covariant functors from the cobor-
dism category cob to the category of groups,̂

HM• : cob → group

ĤM• : cob → group

HM• : cob → group,

and contravariant functors ̂

HM • : cob → group

ĤM • : cob → group

HM • : cob → group .

�

Having now recorded the topological invariance of the Floer groups, we
can also point out that the groups

̂

HM•(Y , s) and its companions can be
non-zero only for finitely many spinc structures s on Y , as stated earlier in
Proposition 3.1.1: see Definition 23.1.2 and the remarks which precede it.

We have now recovered the most important elements of the basic structure
promised in Section 3, namely groups

̂

HM•(Y ) etc. which are topolog-
ical invariants of Y and maps

̂

HM•(W ) etc. arising from 4-dimensional
cobordisms W .
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At this point we can also discuss the dependence of the grading set J(Y , g, q)
on the choice of the metric and perturbation. The group homomorphisms aris-
ing from a morphism W from (Y0, g0, q0) to (Y1, g1, q1) in the category c̃ob
respect a relation between the two grading sets (see the general discussion in
Subsection 3.4). When W is an isomorphism, this relation is an isomorphism
between J(Y0, g0, q0) and J(Y1, g1, q1), respecting the Z action. Just as with
the Floer groups themselves, we can therefore regard J(Y ) as a topological
invariant of Y : it is a functor from the category of 3-manifolds and diffeomor-
phisms to the category of sets with Z action. The following proposition ties this
grading set J(Y ) to the 2-plane fields that were described as the grading set in
Subsection 3.1.

Proposition 23.1.8. There is a natural isomorphism of sets with Z action,
between the grading set J(Y )and the set of homotopy classes of oriented 2-plane
fields on Y , with the Z action described in Definition 3.1.2.

This proposition will be proved in Subsection 28.2.

23.2 Module structure

In the introductory Subsection 3.2, it was stated that the monopole Floer homol-
ogy and cohomology groups are modules for the ordinary cohomology of the
configuration space, via cap and cup product operations. When we combine all
the spinc structures to form the groups

̂

HM•(Y ), the appropriate configuration
space is the union of Bσ (Y , s) over all isomorphism classes of spinc structures;
so we introduce

Bσ (Y ) =
∐

s

Bσ (Y , s). (23.2)

It was also explained in Subsection 3.4 how this module structure could be
extended in a way that meshed with the maps obtained from cobordisms. We
now take up these matters in more detail.

We shall construct operations

� : H d (Bσ (Y , s))⊗

̂

HMk(Y , s)→

̂

HMk−d (Y , s)

� : H d (Bσ (Y , s))⊗

̂

HM k(Y , s)→

̂

HM k+d (Y , s),
(23.3)

with similar operations in which

̂

HM is replaced by ĤM or HM . Strictly speak-
ing, a choice of Riemannian metric is involved in the definition of the space
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Bσ (Y , s); but the cohomology ring of the space is independent of the metric,
up to canonical isomorphism, so there is no real harm in our notation.

The first main properties of these “cup” and “cap” operations are the
following associative laws.

Proposition 23.2.1. The cup and cap products satisfy the associative laws

(u � v)� x = u � (v � x)

(u � v)� ξ = v � (u � ξ),
(23.4)

for ξ in any of

̂

HM∗, ĤM∗ and HM∗ and x in any of

̂

HM ∗, ĤM ∗ and HM ∗.

In particular, the groups

̂

HM ∗, ĤM ∗ and HM ∗ become modules over the
ring

H∗(Bσ (Y , s)) = ⊕d H d (Bσ (Y , s)),

while

̂

HM∗, ĤM∗ and HM∗ become modules for the opposite ring. (We must
not take the direct product here.)

The ring H∗(Bσ (Y , s)) was described in Proposition 9.7.1. As we explained
in the introductory Section 3, we can use the description provided by
Proposition 9.7.1 to rephrase the maps (23.3) as maps

� : A†(Y )⊗
̂

HM∗(Y , s)→
̂

HM∗(Y , s)

� : A(Y )⊗

̂

HM ∗(Y , s)→

̂

HM ∗(Y , s).

We will not use that description in this chapter; we will think of the module
structure primarily in terms of the maps (23.3). Taking the sum over all spinc

structures, the groups

̂

HM(Y ) and their companions become modules over the
cohomology ring of Bσ (Y ), as do their completions

̂

HM•(Y ) and so on.
For the generalization of the module structure, let W be a cobordism from Y0

to Y1, equipped with a Riemannian metric gW , and let sW be a spinc structure
on W . We assume that the metric gW is cylindrical in collar neighborhoods of
the boundary components, and we write g0, g1 for the metrics on Y0 and Y1.
The spinc structure sW gives rise to spinc structures s0, s1 on the boundary.

We have already introduced in Subsection 9.3 the configuration space
Bσ (W , sW ). Let [γ ] = [A, s,φ] be an element of this configuration space,
so φ is a spinor of L2(W )-norm 1 and s ≥ 0 is a constant. If the restriction of
φ to the boundary component Yi is not identically zero, then [γ ] has a well-
defined restriction to Yi as an element of Bσ (Yi, si). So there are partially defined
restriction maps

r = (r0, r1) : Bσ (W , sW ) ��� Bσ (Y0, s0)× Bσ (Y1, s1)
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whose common domain of definition is the open subset

U = { [A, s,φ] ∈ Bσ (W , sW ) | φ|Yi not identically zero, i = 0, 1 }
⊂ Bσ (W , sW ).

We again use the notation Bσ (W ) to denote the disjoint union

Bσ (W ) =
∐
sW

Bσ (W , sW )

over all isomorphism classes of spinc structures on W , so that we have a
restriction map

r = (r0, r1) : Bσ (W ) ��� Bσ (Y0)×Bσ (Y1). (23.5)

If W = W2 �W1, then there is a similar restriction map

Ri : Bσ (W ) ��� Bσ (Wi),

for i = 1, 2. Because the inclusions of subsets such as U in Bσ (W ) are weak
homotopy equivalences, there are pull-back maps

R∗i : H∗(Bσ (Wi))→ H∗(Bσ (W )).

So given cohomology classes ui on Bσ (Wi) for i = 1 and 2, we can form a
product

u = u2u1

= R∗1(u1)� R∗2(u2). (23.6)

(The reason for the reversed order in the last line is the same reason that led
us to define A† as the opposite ring to A when discussing the module structure
previously.)

Given a connected cobordism W from Y0 to Y1, with a homology orientation
and a class u ∈ H∗(Bσ (W )), we will define mapŝ

HM•(u |W ) :

̂

HM•(Y0)→

̂

HM•(Y1)

ĤM•(u |W ) : ĤM•(Y0)→ ĤM•(Y1)

HM•(u |W ) : HM•(Y0)→ HM•(Y1).
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On Floer cohomology, we will define mapŝ

HM •(u |W ) :

̂

HM •(Y1)→

̂

HM •(Y0)

etc. In the special case that W is a trivial cobordism [0, 1] × Y , the spaces
Bσ (W ) and Bσ (Y ) have the same weak homotopy type, and we can therefore
equate their cohomology rings. In this special case, the maps

̂

HM•(u |W ) and̂

HM •(u |W ) will coincide with the cap and cup products by the class u. The
following proposition, proved in Section 26 below, generalizes the associative
law for the cap and cup products.

Proposition 23.2.2. Let W1, W2 be cobordisms with homology orientations,
and let W = W2 �W1 be the composite. Let u = u2u1 be a product, as in (23.6).
Then we have ̂

HM•(u |W ) =

̂

HM•(u2 |W2) �

̂

HM•(u1 |W1),

along with five similar identities for ĤM•, HM•,

̂

HM •, ĤM • and HM •.

This proposition could also be formulated by introducing an appropriate
category in which the morphisms were pairs (u |W ). As with Bσ (Y ), there is a
homomorphism

A(W )→ H∗(Bσ (W )),

and the cohomology ring of each component is generated by A(W ) and the
2-dimensional class u2. Based on this, one recovers the generalized module
structure as we first described it in Subsection 3.4, where we used the notation̂

HM•(a |W ), for example, for the operator corresponding to an element a in
A†(W ).

The construction of the homomorphisms

̂

HM•(u |W ) etc. defined by a cobor-
dism W will be carried out in Section 25, and the proof of the composition law
is contained in Section 26.

23.3 Local coefficients

Next we wish to extend these statements to cover Floer homology with local
coefficients. Let (Y0, g0) and (Y1, g1) be compact, connected, oriented 3-
manifolds with Riemannian metrics, and let �0, �1 be local systems on Bσ (Y0)

and Bσ (Y1). Let W be a cobordism from Y0 to Y1, and let r = (r0, r1) be the
restriction map (23.5). The following definition is motivated by the discussion
of Subsection 2.7.
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Definition 23.3.1. A W -morphism, �W , from the local system �0 to �1 is an
isomorphism �W between the pull-backs of the local systems on Bσ (W ):

�W : r∗0 (�0)→ r∗1 (�1).

♦

Here it is to be understood again that the restriction maps are defined only on
a subset U whose inclusion in Bσ (W ) is a weak homotopy equivalence. Also,
although a metric is again involved in the definition of Bσ (W ), the notion of a
W -morphism is essentially metric-independent.

We can rephrase the definition to clarify what is involved. Fix a Riemannian
metric gW on W which is isometric to a cylinder in collar neighborhoods of the
two boundary components, and let

[a0] ∈ Bσ (Y0), [a1] ∈ Bσ (Y1)

be configurations on the two boundary components.

Definition 23.3.2. A W -path ξ from [a0] to [a1] is an element [γ ] in Bσ (W )

whose restriction to the boundary components is the given pair: r([γ ]) =
([a0], [a1]). Two W -paths are homotopic if they belong to the same path
component of the fiber r−1([a0], [a1]). We write

π([a0], W , [a1])

for the set of homotopy classes of W -paths. Again, the notion of a W -path is
really independent of the choice of metric. ♦

If we have two cobordisms W1 : Y0 → Y1 and W2 : Y1 → Y2 and if we
have classes z1 in π([a0], W1, [a1]) and z2 in π([a1], W2, [a2]), then there is a
well-defined homotopy class of composite W -paths z2 � z1 in π([a0], W , [a2]).
To define the composite, we can represent z1 by a configuration γ1 that is in
temporal gauge and translation-invariant in a collar neighborhood of Y1. We
do the same with z2, and there is then a unique way to glue the two configura-
tions together: the gauge-group acts freely on Cσ

k (Y1, s1), so there is a uniquely
determined identification of the spin bundles.

A special case of a homotopy class of W -paths, for W a cylinder [0, 1] × Y ,
arises from a homotopy class of paths z from [a0] to [a1] in Bσ

k (Y ). Indeed,
homotopy classes of ([0, 1] × Y )-paths are the same as homotopy classes
of paths. For a general cobordism W : Y0 → Y1, we can identify the
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composite cobordism

([0, 1] × Y1) �W � ([0, 1] × Y0)

with W by a standard diffeomorphism. So the above composition law allows
us to form composites

z1 � z � z0,

for z in π([a0], W , [a1]) and zi a relative homotopy class of paths in Bσ (Yi).
When writing the composition of W -paths, we order the components (as above)
in the same way that we chose for our notation for composite cobordisms and
composite paths (see (2.22) for example).

We can now formulate an equivalent description of what a W -morphism
is. Let �0 and �1 again be local systems on Bσ (Y0) and Bσ (Y1). Then a W -
morphism assigns to each z in π([a0], W , [a1]) an isomorphism

�W (z) : �0[a0] → �1[a1].

These are required to satisfy the composition rule

�W (z1 � z � z0) = �1(z1) � �W (z) � �0(z0) (23.7)

for every pair of paths z0 in Bσ (Y0) and z1 in Bσ (Y1).
We can incorporate both local coefficients and the generalized cap and cup

products in an enlarged version of the category cob.

Definition 23.3.3. Given a commutative ring R, we define a category cob-lc
(the lc stands for local coefficients) as follows. An object (Y ,�) in cob-lc is
a compact, connected, oriented 3-manifold Y together with a local system of
R-modules � on Bσ (Y ). A morphism

(u |W ,�W ) : (Y0,�0)→ (Y1,�1)

is a connected cobordism W with a homology orientation, together with a
W -morphism �W from �0 to �1, and a cohomology class

u ∈ H∗(Bσ (W ); R).

Morphisms are composed using the rule (23.6) to combine the cohomology
classes. ♦
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Once again, an inessential choice of Riemannian metrics is implicit in the
definition. To avoid this, we could perhaps replace Bσ (Y ) with a larger space
Bσ (Y ), the union of Bσ (Y ) over all choices of metrics, and do the same for
W ; but the slight sloppiness in the above definition will not be a handicap. The
category cob-lc is where the Floer functors are ultimately defined:

Theorem 23.3.4. For each choice of R, the Floer homology groups with local
coefficients,

̂

HM•(Y ;�), provide covariant functorŝ

HM• : cob-lc → mod

ĤM• : cob-lc → mod

HM• : cob-lc → mod

from the category cob-lc to the category of R-modules. The Floer cohomology
groups are contravariant functorŝ

HM • : cob-lc → mod

ĤM • : cob-lc → mod

HM • : cob-lc → mod .

We illustrate W -morphisms with an example. Recall that to each real, C∞
singular 1-cycle η on a 3-manifold Y , we associated a local system�η on Bσ (Y )

with fiber R. (See Subsection 22.6.) Suppose now that we are given a relative
2-cycle ν on a cobordism W : Y0 → Y1, and write

∂ν = η1 − η0

with ηi ∈ Z1(Yi; R). We can use ν to define a W -morphism

�ν : �η0 → �η1 (23.8)

by the following recipe. Let [γ ] ∈ Bσ (W ) be a representative of z ∈
π([a0], W , [a1]), and write γ = (A, s,φ). Then define

�ν(z) : �η0 [a0] → �η1 [a1]

to be the map R → R given by multiplication by

exp
( i

2π

∫
ν

FAt

)
.
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The composition law (23.7) which characterizes W -morphisms is easily veri-
fied. If we replace ν by ν+∂θ where θ is a 3-chain, then Stokes’ theorem tell us
that �ν is unchanged. These properties were summarized in the introduction,
Subsection 3.7.

As a particular application, suppose that W is a cylinder [0, 1] × Y and
that η, η′ are homologous real 1-cycles in Y . Let ν be a relative 2-cycle in
[0, 1] × Y with ∂ν = {0} × η− {1} × η′. Then �ν determines an isomorphism
�η → �η′ . To within a boundary, ν is determined by its image in Y , which is
a homology θ between η and η′. This explains the comment in Subsection 3.7,
that a choice of homology ν is involved in identifying local coefficient systems
on Y corresponding to homologous 1-cycles.

24 The moduli space on a manifold with boundary

Although we studied the perturbed equations on both finite and infinite cylinders
in earlier chapters, we have not, until now, needed to study the more general situ-
ation that arises when the cylinders are replaced by more general manifolds with
boundary. In Chapter II, we studied compactness properties of the unperturbed
equations on a compact manifold with boundary, and we now need to carry
over the rest of the machinery. One issue that arises is that, on a non-cylindrical
space, the τ model of the blow-up is not available to us: we have to use the σ

model instead. It would have been possible to use the σ model throughout, but
this would have necessitated the introduction of weighted Sobolev spaces when
setting up the Fredholm theory, and would have muddied the analogy with the
finite-dimensional Morse-theory picture.

We start to pick up the pieces here, combining ingredients from the previous
chapters to put together the results we need.

24.1 Defining the moduli space

Let X be a compact, connected, oriented Riemannian 4-manifold with non-
empty boundary. As in Subsection 17.1, we suppose the Riemannian metric is
cylindrical in the neighborhood of the boundary, so that X contains an isometric
copy of I × Y for some interval I = (−C, 0], with ∂X identified with {0} × Y .
Let sX be a spinc structure on X , and s the resulting spinc structure on Y . We
may allow Y to be disconnected, with components labelled Y α , and we will
write the configuration space as

Bσ
k (Y , s) =

∏
Bσ

k (Y
α , sα)
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and similarly we write

P(Y , s) =
∏

P(Y α , sα)

for the Banach space of tame perturbations. Later we will be most interested in
the case that X has boundary−Y0∪Y1 (a cobordism), but at present we suppose
that all components Y α have the boundary orientation.

We recall from Section 9 the configuration space

Cσ (X , sX ) = {
(A, s,φ) ∈ A× R× �(X ; S+)

∣∣ s ≥ 0, ‖φ‖L2(X ) = 1
}

and its Hilbert completion Cσ
k (X , sX ), with quotient Bσ

k (X , sX ), a Hilbert
manifold with boundary. We have the smooth section

Fσ : Cσ
k (X , sX )→ Vσ

k−1

defined by the formula from (6.5),

Fσ (A, s,φ) =
(

1

2
ρX (F+At )− s2(φφ∗)0, D+A φ

)
. (24.1)

The equations Fσ = 0 are the unperturbed Seiberg–Witten equations on X , in
the σ blow-up model.

In the special case that X was a cylinder, we introduced a class of perturba-
tions of these equations in Subsection 10.2. We now introduce a perturbation
for the equations on a general X , supported in the cylindrical region I × Y . Let
β be a cut-off function, equal to 1 near t = 0 and equal to 0 near t = −C. Let
β0 be a bump-function with compact support in (−C, 0). Let q and p0 be two
elements of P(Y , s). We use these to define a section

p̂ : Ck(X , sX )→ Vk

by the formula

p̂ = βq̂+ β0p̂0. (24.2)

Here we regard β and β0 as functions on the collar I ×Y ⊂ X . It is understood
that p̂(A,�) depends only on the restriction of A and � to the collar, and that
p̂(A,�) is supported in the collar. Writing Vk = L2

k(X ; i su(S+)⊕S−), we have
the decomposition

p̂ = (p̂0, p̂1),
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and we define p̂σ on the blow-up to be the section

p̂σ : Cσ
k (X , sX )→ Vσ

k

given by

p̂0,σ (A, s,φ) = p̂0(A, sφ)

p̂1,σ (A, s,φ) = (1/s)p̂1(A, sφ),
(24.3)

when s = 0. We extend over s = 0 as in Subsection 10.2.
On X , we now have the perturbed Seiberg–Witten equation Fσ

p = 0, where

Fσ
p = Fσ + p̂σ : Cσ

k (X , sX )→ Vσ
k−1.

The equation is invariant under Gk+1(X ), and we have a moduli space of
solutions,

M(X , sX ) ⊂ Bσ
k (X , sX )

M(X , sX ) = {
(A, s,φ)

∣∣ Fσ
p = 0

} /
Gk+1(X ).

(We omit the perturbation from our notation for the moduli space at present.)
We also have the larger moduli space

M̃ (X , sX ) ⊂ B̃σ
k (X , sX ),

obtained by dropping the condition s ≥ 0.As before, M(X , sX ) can be identified
with the quotient M̃ (X , sX )/i, where i(A, s,φ) = (A,−s,φ).

Recall that if X ′ ⊂ X is an interior domain, we have a partially defined
restriction map

Bσ
k (X , sX ) ��� Bσ

k (X
′, sX ).

In particular, there is the restriction map

Bσ
k (X ) ��� Bσ

k (I × Y , sX ),

whose domain of definition is the triples (A, s,φ) such that the restriction of φ
is not identically zero on the collar. Using the equivalence between the σ and
τ models for the blow-up on the cylinder, there is therefore a restriction map

Bσ
k (X , sX ) ��� Bτ

k (I × Y , sX ),
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whose domain is now those triples such that φ is not zero on t × Y for any
t ∈ I . Because of unique continuation, this restriction map is defined on all of
M(X , sX ): we have

M(X , sX )→ M(I × Y , sX ) ⊂ Bτ
k (I × Y , sX ). (24.4)

(On I × Y , the τ model for the equations is implied.) There is also then a
restriction map

R : M(X , sX )→ Bσ
k−1/2(Y , s).

24.2 Attaching cylindrical ends

Let X ∗ be the non-compact Riemannian manifold obtained by attaching a copy
of the cylinder Z = [0,∞)× Y , identifying the two copies of {0} × Y :

X ∗ = X ∪Y Z

Z = [0,∞)× Y .

On X ∗, we have the L2
k,loc configuration space

Ck,loc(X
∗, sX ) = Ak,loc × L2

k,loc(X
∗; S+).

We are not now dealing with Banach spaces, but we can still construct a
blown-up configuration space Cσ

k,loc(X
∗, sX ) in the manner discussed briefly

in Subsection 6.1. (See the remarks on page 115.) That is, we define the sphere
S to be the topological quotient of L2

k,loc(X
∗; S+) \ 0 by the action of R+, so

that the real blow-up of L2
k,loc(X

∗; S+) at 0 can be defined as the set of pairs{
(R+φ,�)

∣∣ � ∈ R≥φ
}
.

Thus we can define the blown-up configuration space as

Cσ
k,loc(X

∗, sX ) = {
(A, R+φ,�)

∣∣ � ∈ R≥φ
}

⊂ Ak,loc × S× L2
k,loc(X

∗; S+).

The sphere S is a topological manifold: the charts are provided by the restriction
of the quotient map to the affine subspaces

{φ | ξ(φ) = 1 }
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where ξ is a continuous linear functional on L2
k,loc(X

∗; S+). Because we are no
longer using the unit-sphere model for S, the bundle

Vσ
j → Cσ

k,loc(X
∗, sX )

needs to be defined in the style of (6.6). This bundle has a continuous section

Fσ
p = Fσ + p̂σ .

The perturbing term p̂σ is defined as before on the collar (−C, 0] × Y and is
extended so as to be q̂σ on the cylindrical-end Z . This section is invariant under
the action of the gauge-group.

As in (24.4), there is a restriction map{ [γ ] ∈ Bσ
k,loc(X

∗, sX )
∣∣ Fσ

p (γ ) = 0
}→ Bτ

k,loc(Z ; s).

The restriction of [γ ] satisfies the equation Fτ
q(γ ) = 0 on the cylinder. We will

suppose that the perturbation q on the cylinder is regular. We can now define
moduli spaces on the cylindrical-end manifold.

Definition 24.2.1. For a critical point [b] in Bσ
k (Y , s), we define the moduli

space

M(X ∗, sX ; [b]) ⊂ Bσ
k,loc(X

∗, sX )

to be the set of all [γ ] such that Fσ
p (γ ) = 0 and such that the restriction of [γ ]

is asymptotic to [b] on the cylindrical end Z . ♦

It is also useful to form the union over all choices of spinc structures sX , to
obtain the spaces Bσ

k (X
∗) and Bσ

k,loc(X
∗). We then define

M(X ∗; [b]) =
∐
sX

M(X ∗, sX ; [b])

⊂ Bσ
k,loc(X

∗), (24.5)

with the understanding that the only spinc structures sX that make a non-empty
contribution to this union are those whose restriction to Y is isomorphic to the
spinc structure s to which [b] belongs.

There is a fiber product description of the moduli space M(X ∗, sX ; [b]). We
have the restriction maps from M(X ∗, sX ; [b]) to M(X , sX ) and to M(Z ; [b]).
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Note that our definition of M(X , sX ) uses the σ model, while our definition of
M(Z ; [b]) uses the τ model. The image of the product map

ρ : M(X ∗, sX ; [b])→ M(X , sX )×M(Z ; [b])

is contained in the fiber product

Fib(R+, R−) ⊂ M(X , sX )×M(Z ; [b]),

where R+ and R− are the two restriction maps to Bσ
k−1/2(Y , s). We have:

Lemma 24.2.2. The map ρ is a homeomorphism from the moduli space
M(X ∗, sX ; [b]) onto its image, the fiber product Fib(R+, R−).

Proof. Use the equivalence between the τ and σ models on the cylinder I ×Y ,
and then follow the argument in the proof of the similar result, Lemma 19.1.1.

�

We let M red(X ∗, sX ; [b]) ⊂ M(X ∗, sX ; [b]) denote the set of reducible ele-
ments: those elements having representatives (A, s,φ)with s = 0. If [γ ] belongs
to M(X ∗, sX ; [b]), and ρ[γ ] is the pair

([γX ], [γZ ]) ∈ M(X , sX )×M(Z ; [b]),

then [γ ] is reducible if and only if either [γX ] or [γZ ] is reducible. If Y has
several components, the [γ ] is reducible if and only if the restriction of [γZ ] to
any one component is reducible.

24.3 Moduli spaces as Hilbert manifolds

Before continuing to study the moduli space on the cylindrical-end manifold
X ∗, we now look in more detail at the (infinite-dimensional) moduli space
M(X , sX ) associated with the compact manifold with boundary, X . In the case
of a compact cylinder Z = I × Y , we proved in Subsection 17.3 that a moduli
space of this sort was a smooth Hilbert manifold: this held regardless of the
choice of perturbation. We now prove the same statement for a general X .

Proposition 24.3.1. On the manifold with boundary, X , the section Fσ
p of Vσ

k−1

is transverse to zero, and the subset M̃ (X , sX ) ⊂ B̃σ
k (X , sX ) is a smooth Hilbert

submanifold. The moduli space M(X , sX ) is therefore a Hilbert manifold with
boundary, and can be identified with the quotient of M̃ (X , sX )) by the involution
s �→ −s.
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Proof. Let γ = (A, s,φ) be a solution of Fσ
p = 0. We examine the linearization

of the section Fσ
p at γ . A tangent vector to Cσ

k (X , sX ) can be written as

(a, t,ψ) ∈ L2
k(X ; iT ∗X )⊕ R⊕ L2

k(X ; S+),

with the constraint

Re〈ψ ,φ〉X = 0.

We write 〈φ〉⊥ for the real-orthogonal complement of φ. The linearization of
the term Fσ is the operator

DγFσ : L2
k(X ; iT ∗X )× R× 〈φ〉⊥ → L2

k−1(X ; i su(S+)⊕ S−)

given by

DγFσ : (a, t,ψ) �→(
1

2
ρX (d+a)− 2ts(φφ∗)0 − s2(φψ∗ + ψφ∗)0, D+A ψ + ρX (a)φ

)
.

(24.6)

The right-hand side of the formulae (24.3) is well-defined without the constraint
that φ has L2 norm 1. So the derivative of the perturbation extends from 〈φ〉⊥
to all of L2

k(X ; S+), where it becomes an operator

Dγ p̂σ : L2
k(X ; iT ∗X )× R× L2

k(X ; S+)→ L2
k−1(X ; i su(S+)⊕ S−).

With this larger domain, we write the formal adjoint of Dγ p̂σ as

(r1, r2, r3) : L2
j (X ; i su(S+)⊕ S−)→ L2

j−1(X ; iT ∗X )× R× L2
j−1(X ; S+).

As in the proof of Theorem 17.3.1, the surjectivity of DγFσ
p will follow from

the surjectivity of the larger operator

Qσ
γ = DγFσ

p ⊕ dσ ,†
γ , (24.7)

where

dσ ,†
γ : T σ

k,γ → L2
k−1(X ; iR)
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is the operator defined by the left side of the second equation (9.12):

dσ ,†
γ (a, t,ψ) = −d∗a + is2 Re〈iφ,ψ〉 + i|φ|2 ReµX (〈iφ,ψ〉) (24.8)

We wish to recast the operator Qσ
γ in such a way as to be able to apply

Corollary 17.1.5. Since Corollary 17.1.5 involves an operator whose domain is
the space of sections of a bundle on X , we are led to introduce

ψ̃ = ψ + tφ

and so identify the domain of Qσ
γ with L2

k(X ; iT ∗X ⊕ S+). In the coordinates

(a, ψ̃), the operator Qσ
γ has the form

Qσ
γ = D0 + K ,

where K is compact and D0 is the elliptic operator

(a, ψ̃) �→
(

1

2
ρX (d+a), D+A0

ψ̃ ,−d∗a
)

,

for some base connection A0 that we can take to be translation-invariant in the
collar. Since D0 can now be written in the form (d/dt) + L0 in the collar, we
are in the general setting of Corollary 17.1.5.

What remains is to show that any solution of the formal adjoint equation

(Qσ
γ )
∗v = 0 (24.9)

which is zero on Y must be zero on all of X . We must therefore write this
equation in such a way as to make clear that our unique continuation results
can be applied. Write

v = (η,π , ξ) ∈ L2
j (X ; i su(S+)⊕ S− ⊕ iR).

In the original coordinates (a, t,ψ) for the domain of Qσ
γ , the equation (24.9)

becomes the following three equations for v: ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1

2
(d+)∗ρ∗X η + ρ∗X (πφ∗)− dξ + r1(η,π) = 0

−2s〈η, (φφ∗)0〉X + r2(η,π) = 0 (24.10)

$
(
D−A π − 2s2η(φ)+ s2ξφ + (

µX 〈i|φ|2, ξ〉)iφ + r3(η,π)
) = 0.
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Here $ : L2(X ; S+) → L2(X ; S+) is the projection on the real-orthogonal
complement of φ.

We rewrite the last equation as

D−A π − 2s2η(φ)+ s2ξφ + (
µX 〈i|φ|2, ξ〉)iφ + r3(η,π) = αφ,

where α is real. Suppose v satisfies these equations and vanishes on the bound-
ary. If we take the inner product of the last equation with φ, we obtain, after
integrating by parts,

〈π , D+A φ〉X − 2s2〈η, (φφ∗)0〉X
+ 〈η, Dγ p̂0,σ (0, 0,φ)〉X + 〈π , Dγ p̂1,σ (0, 0,φ)〉X = α, (24.11)

where we have again extended the domain of Dγ p̂σ from 〈φ〉⊥ to all of
L2

k(X ; S+). Suppose first that s is non-zero. Then we can use the formula (24.3)
to rewrite the above equation as

〈π , D+A φ〉X − 2s2〈η, (φφ∗)0〉X
+ s〈η, Dγ p̂0(0,φ)〉X + 〈π , Dγ p̂1(0,φ)〉X = α. (24.12)

On the other hand, the second of the three equations (24.10) is

−2s〈η, (φφ∗)0〉X + 〈η, Dγ p̂0,σ (0, 1, 0)〉 + 〈π , Dγ p̂1,σ (0, 1, 0)〉 = 0,

which gives

− 2s〈η, (φφ∗)0〉X + 〈η, Dγ p̂0(0,φ)〉
− (1/s2)〈π , p̂1(A, sφ)〉 + (1/s)〈π , Dγ p̂1(0,φ)〉 = 0. (24.13)

If we multiply this by s and subtract from the previous equation for α, we obtain

〈π , D+A φ + (1/s)p̂1(A, sφ)〉X = α.

But the equation Fσ
p (A, s,φ) = 0 means that

D+A φ + (1/s)p̂1(A, sφ) = D+A φ + p̂1,σ (A, s,φ)

= 0,
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so α = 0. If we take the inner product of the third equation of (24.10) with iφ,
and integrate by parts again, we obtain

〈π , iD+A φ〉X +
(
s2 + 1/vol(X )

)〈i|φ|2, ξ〉X
+ 〈η, Dγ p̂0,σ (0, 0, iφ)〉X + 〈π , Dγ p̂1,σ (0, 0, iφ)〉X = 0. (24.14)

The term involving η is zero because of the S1 invariance of the term q̂0, and
the last term on the right can be rewritten using the S1 equivariance of p̂1. This
gives

〈π , iD+A φ〉X +
(
s2 + 1/vol(X )

)〈i|φ|2, ξ〉X + 〈π , ip̂1,σ (A, s,φ)〉X = 0.

Again, the equation Fσ
p = 0 tells us that the sum of the first and last terms is

zero, so the term 〈i|φ|2, ξ〉X is zero also.
Having established that α and 〈i|φ|2, ξ〉X both vanish, we can recast the

equations (24.10) without those terms: we have ⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
1

2
(d+)∗ρ∗X η + ρ∗X (πφ∗)− dξ + r1(η,π) = 0

−2s〈η, (φφ∗)0〉X + r2(η,π) = 0 (24.15)

D−A π − 2s2η(φ)+ s2ξφ + r3(η,π) = 0.

In the collar region, the equations in this last form have the shape

d

dt
v + (L0 + h(t))v = 0,

where L0 is a self-adjoint elliptic operator on Y and h is a time-dependent
operator on Y satisfying the conditions of the unique continuation lemma,
Lemma 7.1.3. So, since v vanishes on the boundary, it vanishes on the col-
lar too. It therefore vanishes on all of X by the argument of Proposition 7.1.4.
The argument when s = 0 is similar. �

Having now seen that the moduli space M̃ (X , sX ) ⊂ B̃σ
k (X , sX ) is a smooth

Hilbert manifold, we consider again the restriction map to the boundary,

R : M̃ (X , sX )→ B̃σ
k−1/2(Y , s).

In the special case of the cylinder, we earlier proved a result concerning the
derivative of R, Theorem 17.3.2, which we can now extend to the case of a
general 4-manifold with boundary, X . As at Theorem 17.3.2, the derivative
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defines a map

D[γ ]R : T[γ ]M̃ (X , sX )→ Kσ
k−1/2,a,

and we have a decomposition

Kσ
k−1/2,a = K+a ⊕K−a

using the spectral subspaces of the Hessian Hessσa , or Hessσa − ε in the non-
hyperbolic case. (See (17.12).) Then we have:

Proposition 24.3.2. Let X be a compact 4-manifold with boundary Y , let [γ ]
belong to M̃ (X , sX ) and let [a] ∈ Bσ

k−1/2(Y , s) be obtained as the restriction
of [γ ] to the boundary, as above. Let π denote the projections of Kσ

k−1/2,a to

K−a , with kernel K+a . Then the linear operators

π �DR : T[γ ]M̃ (X , sX )→ K−a
(1− π) �DR : T[γ ]M̃ (X , sX )→ K+a

are respectively Fredholm and compact.

Proof. The proof is essentially the same argument as in the case of a cylinder,
Theorem 17.3.2. �

24.4 Transversality and cylindrical ends

We now extend our transversality results for moduli spaces of trajectories
to our more general moduli spaces. We continue to suppose X is a com-
pact manifold with (non-empty) boundary, as above. Using Lemma 24.2.2 and
Proposition 24.3.1, we have a description of M(X ∗, sX ; [b]) as the fiber product
of two smooth maps on Hilbert manifolds with boundary:

R+ : M(X , sX )→ Bσ
k−1/2(Y , s)

R− : M(Z ; [b])→ Bσ
k−1/2(Y , s).

(24.16)

Let ([γ1], [γ2]) belong to the fiber product, so

[γ1] ∈ M(X , sX )

[γ2] ∈ M(Z ; [b]).

Let [b] be their common image in Bσ
k−1/2(Y , s).
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Lemma 24.4.1. The sum of the derivatives

D[γ1]R+ +D[γ2]R− : T[γ1]M(X , sX )⊕ T[γ2]M(Z ; [b])→ T[b]Bσ
k−1/2(Y , s)

is Fredholm.

Proof. According to Proposition 24.3.2, the composite maps (1−π)�D[γ1]R+
and π � D[γ1]R+ are compact and Fredholm respectively. The same applies to
D[γ2]R−, though with the roles of the two projections reversed, because the
analysis that led to Proposition 24.3.2 can be extended also to the case of the
half-infinite cylinder Z . The sum of the two derivatives in the lemma therefore
differs by a compact operator from a direct sum of two Fredholm operators,
namely the operators π �D[γ1]R+ and (1− π) �D[γ2]R−. �

We now define regularity for our moduli spaces, in terms of the fiber product
description.

Definition 24.4.2. Let [γ ] ∈ M(X ∗, sX ; [b]). If [γ ] is irreducible, we say the
moduli space M(X ∗, sX ; [b]) is regular at [γ ] if the maps of Hilbert manifolds

R+ : M(X , sX )→ Bσ
k−1/2(Y , s)

R− : M(Z ; [b])→ Bσ
k−1/2(Y , s)

(24.17)

are transverse at ρ[γ ]. If [γ ] is reducible we say the moduli space is regular at
[γ ] if the restrictions

R+ : M red(X , sX )→
∏
α

∂Bσ
k−1/2(Y

α , sα)

R− : M red(Z ; [b])→
∏
α

∂Bσ
k−1/2(Y

α , sα)

are transverse at ρ[γ ]. We say the moduli space is regular if it is regular at all
points. ♦

Proposition 24.4.3. Let [b] be a critical point, and let [bα] be the restriction
of [b] to the αth component of Y . Suppose the moduli space M(X ∗, sX ; [b]) is
non-empty and regular. Then the moduli space is:

(i) a smooth manifold consisting only of irreducibles, if any [bα] is irreducible;
(ii) a smooth manifold consisting only of reducibles, if any [bα] is reducible

and boundary-unstable;
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(iii) a smooth manifold with (possibly empty) boundary if all the [bα] are
reducible and boundary-stable.

In the last case, the boundary consists of the reducible elements of the moduli
space.

Proof. Transversality means that M̃ (X ∗, sX ; [b]) is a manifold. The moduli
space M(X ∗, sX ; [b]) is the quotient of this manifold by i, and is therefore
either a manifold or a manifold with boundary. The latter occurs if and only if
it contains both reducibles and irreducibles.

If [bα] is irreducible, then so are all configurations in M(Zα; [bα]) (where
Zα is the corresponding cylindrical component), and it follows from the fiber
product description that M(X ∗, sX ; [b]) consists only of irreducibles. Simi-
larly, if [bα] is boundary-unstable, then the moduli space consists only of
reducibles. �

The following definition generalizes Definition 14.5.5. (Note that in the case
of the cylinder, one boundary component has the negative orientation, which
changes the roles of boundary-stable and boundary-unstable.)

Definition 24.4.4. If the second case of the above proposition occurs, and more
than one of the [bα] is boundary-unstable, then we say that the solution [γ ] is
boundary-obstructed. If c+ 1 of the [bα] are boundary-unstable, we say [γ ] is
boundary-obstructed with corank c. ♦

Except in the boundary-obstructed case, if [γ ] is regular and reducible,
then the maps (24.17) are transverse on the full moduli spaces. In the boundary-
obstructed case, the maps are not transverse. Equivalently, the Fredholm
operator of Lemma 24.4.1 is not surjective: the dimension of its cokernel
is c if [γ ] is “boundary-obstructed with corank c” in the sense of the above
definition.

Although it is a manifold, or a manifold with boundary, the moduli space
M(X ∗, sX ; [b]) is not equidimensional. The situation is analogous to that of
M([a], [b]) on the cylinder, which has a decomposition into equidimensional
pieces Mz([a], [b]), parametrized by z ∈ π1(Bσ (Y , s); [a], [b]). Let us again
take the union over all spinc structures sX , and let Bσ (X ; [b]) be the fiber over
[b] of the restriction map

Bσ (X ) ��� Bσ (Y , s).
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The analog of the homotopy class in π1(Bσ (Y ); [a], [b]) in the manifold with
cylindrical end setting is an element of

z ∈ π0(Bσ (X ; [b])).

Any element [γ ] ∈ M(X ∗; [b]) is homotopic to a configuration which is equal
to the pull-back of [b] on the cylindrical end; and in this way, [γ ] determines an
element of π0(Bσ (X ; [b])). Thus the moduli space M(X ∗; [b]) can be written
as a union

M(X ∗; [b]) =
⋃

z

Mz(X
∗; [b]), (24.18)

and there is a similar decomposition of the configuration space:

Bσ
k,loc(X

∗; [b]) =
⋃

z

Bσ
k,loc,z(X

∗; [b]).

This set π0(Bσ (X ; [b])) is a principal homogeneous space for H 2(X , Y ; Z).
Each element determines, in particular, a spinc structure sX on X , and the
elements z in π0(Bσ (X ; [b])) belonging to a particular sX are a principal
homogeneous space for H 1(Y ; Z)/i∗Y (H 1(X ; Z). Notice that given

z ∈ π0(Bσ (X ; [b0]))

and an element

z1 ∈ π1(Bσ (Y ); [b0], [b])

we can form the concatenation, which we write as

z1 ◦ z ∈ π0(Bσ (X ; [b])).

Given z in π0(Bσ
k (X ; [b])), let [γ ] be any element of Bσ

k,z(X ; [b]) and γ a
gauge representative. Let [γb] be the constant trajectory in Bτ

k (Z , s) correspond-
ing to b. We have the operator Qσ

γ on X , as defined in (24.7); and on Z , we have
the translation-invariant operator Qγb . There are restriction maps

r+ : ker(Qσ
γ )→ L2

k−1/2(Y ; iT ∗Y ⊕ S ⊕ iR)

r− : ker(Qγb)→ L2
k−1/2(Y ; iT ∗Y ⊕ S ⊕ iR).
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Definition 24.4.5. We define grz(X ; [b]) to be the index of

r+ − r− : ker(Qσ
γ )⊕ ker(Qγb)→ L2

k−1/2(Y ; iT ∗Y ⊕ S ⊕ iR).

♦

If the moduli space Mz(X ∗; [b]) is non-empty, then we can equally well regard
grz(X ; [b]) as being the index of the Fredholm operator of Lemma 24.4.1. The
point of the definition above is that it is valid whether or not the moduli space
is empty, and makes clear that grz(X ; [b]) depends only on [b] and z. We have
the simple additivity property

grz1◦z(X ; [b]) = grz(X ; [a])+ grz1
([a], [b]).

(In the case that Y has more than one component, the term grz1
([a], [b]) is to

be defined as a sum over the components.) We also have:

Proposition 24.4.6. If the moduli space Mz(X ; [b]) is non-empty and regular, its
dimension is grz(X ; [b]), except in the boundary-obstructed case. If the moduli
space is boundary-obstructed of corank c, then its dimension is grz(X ; [b])+ c.

�

We now show that regularity can be achieved by a suitable choice of
perturbation.

Proposition 24.4.7. Let q be a fixed admissible perturbation for Y , let

p̂ = β(t)q̂+ β0(t)p̂0,

on the collar I × Y ⊂ X , as before, and let [b] be a critical point on Y . Then
there is a residual subset of P(Y , s) such that for all p0 in this subset, the moduli
space M(X ∗; [b]) is regular.

Proof. To prove this proposition we deal mainly with the moduli space on
the manifold with boundary X , and work with a particular spinc structure sX .
We begin by introducing the appropriate parametrized moduli space for this
manifold:

M(X , sX ) ⊂ Bσ
k (X , sX )× P(Y , s)

M(X , sX ) = {
(A, s,φ, p0)

∣∣ Fσ
p̂
= 0

} /
Gk+1(X ),
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which is the quotient of the zero set of

Wσ : Cσ
k (X , sX )× P(Y , s)→ Vσ

k−1

Wσ :
(
γ , p

) �→ Fσ
p̂
(γ )

by the gauge group. From Proposition 24.3.1 we see that the parametrized
moduli space is a smooth Banach manifold. The reducible locus inside the
parametrized moduli space is the set

Mred(X , sX ) = {
([A, 0,φ], p0)

∣∣ ([A, 0,φ], p0) ∈ Mred(X , sX )
}
.

The differential of Wσ at a (γ , p0) is a sum of the operators

DγFp̂

and

m : Tp0P(Y , s)→ Vσ
k−1

m(p) = β0p̂(γ ).

There is a restriction map

R+ : M(X , sX )→ Bσ
k−1/2(Y , s).

Lemma 24.4.8. Let ([γ ], p0) ∈ M(X , sX ), and let [c] = R+([γ ]). If [γ ] is
irreducible, then the differential of the restriction map

D([γ ],p0)R+ : T([γ ],p0)M(X , sX )→ T[c]Bσ
k−1/2(Y , s)

has range that is dense in the L2
1/2 topology. If [γ ] is reducible, then the

differential of the restriction map

D([γ ],p0)R+ : T([γ ],p0)M
red(X , sX )→

∏
α

T[cα]∂Bσ
k−1/2(Y

α , sα)

has range that is dense in the L2
1/2 topology.

Proof. Suppose that γ is irreducible. Then the blow-down map π :
Bσ

k (X , sX )→ Bk(X , sX ) is a diffeomorphism at γ , as is the corresponding map
on Y . So in the statement of the proposition, we can replace M by its image
under the blow-down map, and we can replace Bσ

k−1/2(Y , s) by Bk−1/2(Y , s).
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The statement in the first part of the proposition is implied by the statement that
the differential at (π(γ ), p0) of the map(

W, R̃+
)

: Ck(X , sX )× P(Y )→ Vk−1 × Ck−1/2(Y , s)

has range that is dense in the L2×L2
1/2 topology. Here R̃+ is the restriction map

on Ck(X , sX ). The derivative is an operator

L2
k(X ; iT ∗X ⊕ S+)× P(Y )

→ L2
k−1(X ; i su(S+)⊕ S−)⊕ L2

k−1/2(Y ; iT ∗Y ⊕ S).

Suppose the image of this operator is not dense in L2 × L2
1/2. Then there is a

(V , v) which at first we know to be in

L2(X ; i su(S+)⊕ S−)⊕ L2−1/2(Y ; iT ∗Y ⊕ S)

and which is L2-orthogonal to the image. By considering a gauge-orbit direction
in C(X ), we see that v is orthogonal to the gauge orbit through π(γ )|Y in
Ck−1/2(Y , s). We can add the gauge-fixing condition to the equations as in the
proof of Proposition 24.3.1, and also take the restriction of the dt component
of the connection form, to get an operator

Q⊕ r : L2
1(X ; iT ∗X ⊕ S+)× P(Y )→

L2(X ; i su(S+)⊕ S−)⊕ L2(X ; iR)⊕ L2
1/2(Y ; iT ∗Y ⊕ S ⊕ iR).

Let W = (V , 0), and w = (v, 0), so that (W , w) is orthogonal to the image of
this operator. The operator Q = Q(−, 0) is an operator of the form D0 + K
where D0 is elliptic and K is compact. By considering variations supported
away from the boundary and that leave the perturbation component untouched
we can conclude that W is weak solution of the equation

Q∗W = 0

and hence by our regularity results V is in L2
1. Integration by parts and the

orthogonality property give

〈r(U ), r(W )〉L2(Y ) = 〈QU , W 〉L2(X ) − 〈U , Q∗W 〉L2(X )

= −〈r(U ), w〉L2(Y ) (24.19)
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from which we deduce that W |∂X = −w. Arguing as in Lemma 15.1.4, and
using the fact that v is orthogonal to the gauge orbit on Y , we find that the
restriction of V to each {t}×Y ⊂ I ×Y in the collar is orthogonal to the gauge
orbit. If V is non-zero, then, as in the proof of Proposition 15.1.3, we can find
an element p of P(Y , s) such that

〈m(p)(γ ), V 〉L2(X ) > 0.

On the other hand, the fact that (W , w) is orthogonal to the image of (0, p) under
(Q, r) means that

〈m(p)(γ ), V 〉L2(X ) = 0.

So it must be the case that V = 0.
The proof in the reducible case is similar, and follows the model in

Proposition 15.1.3. �

We return to the proof of Proposition 24.4.7. Let

R+ : M(X , sX )→ Bσ
k−1/2(Y , s)

be the restriction map on the parametrized moduli space. Consider the map

R+ × R− : M(X , sX )×M(Z ; [b])→ Bσ
k−1/2(Y , s)× Bσ

k−1/2(Y , s), (24.20)

and let (a, b) be an element of the fiber product (the inverse image of the
diagonal). From Lemma 24.4.1, the map

DaR+ −DbR− : TaML2
1
⊕ TbML2

1
→ [T σ

1/2][c]

has image which is of finite codimension. In the irreducible case, the lemma
above tells us that the image is dense in the L2

1/2 topology, and it follows that this
operator is surjective. Using the regularity result, Lemma 17.2.9, we deduce
that

DaR+ −DbR− : TaML2
k
⊕ TbML2

k
→ [T σ

k−1/2][c]
= T[c]Bσ

k−1/2(Y , s)

is surjective also, using the argument in the proof of Proposition 17.2.8. In other
words, the map (24.20) is transverse to the diagonal at (a, b). In the reducible
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case, we similarly deduce that

DaR+ −DbR− : TaM
red
L2

k
⊕ TbM red

L2
k
→

∏
α

T[cα]∂Bσ
k−1/2(Y

α , sα)

is surjective, so the restriction of (24.20) to the reducible loci is transverse to
the diagonal.

The proposition now follows from the general transversality argument of
Lemma 12.5.1. �

We can extend the transversality results to the case of a family of perturbations
and metrics on X , parametrized by a manifold. Let P be a smooth (finite-
dimensional) manifold, and let gp be a smooth family of Riemannian metrics
on X parametrized by p ∈ P. We want to keep the data on the cylindrical-
end independent of p, so we suppose that all the metrics contain isometric
copies of the collar I × Y . Similarly, let p

p
0 ∈ P(Y , sX ) be a smooth family of

perturbations. Write

pp = β(t)q+ β0(t)p
p
0

as usual, and let M(X ∗, sX ; [b])p be the corresponding moduli space on the
cylindrical-end manifold, using the metric gp and perturbation pp. We have a
total space

M(X ∗, sX ; [b])P =
⋃

p

{p} ×M(X ∗, sX ; [b])p

⊂ P × Bσ
k,loc(X

∗, sX ).

Remark. There is a slight abuse of notation involved in regarding Bσ
k,loc(X

∗, sX )

as being independent of p ∈ P. The point is that a spinc structure sX is dependent
on a prior choice of metric. We really mean to take a family of spinc structures sp

and identify all the corresponding spin bundles S±p with a fixed S±p0
. The metric

on the spin bundle, as well as the Clifford multiplication, will vary with p.

There is a fiber product description of this moduli space, just as for the case
that P is a point: it is the fiber product of the maps

R+ : M(X , sX )P → Bσ
k−1/2(Y , s)

R− : M(X ; [b])→ Bσ
k−1/2(Y , s),

(24.21)

in which M(X , sX )P is defined as a union, parallel to the definition of
M(X ∗, sX ; [b])P .
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Definition 24.4.9. Let (p, [γ ]) ∈ M(X ∗, sX ; [b])P , and let ρ[γ ] = ([γ0], [γ1]).
If [γ ] is irreducible, we say the moduli space M(X ∗, sX ; [b])P is regular at
(p, [γ ]) if the maps of Hilbert manifolds

R+ : M(X , sX )P → Bσ
k−1/2(Y , s)

R− : M(Z ; [b])→ Bσ
k−1/2(Y , s)

(24.22)

are transverse at
(
(p, [γ0]), [γ1]

)
. If [γ ] is reducible we say the moduli space is

regular at [γ ] if the restrictions

R+ : M red(X , sX )P →
∏
α

∂Bσ
k−1/2(Y

α , sα)

R− : M red(Z ; [b])→
∏
α

∂Bσ
k−1/2(Y

α , sα)

are transverse at
(
(p, [γ0]), [γ1]

)
. We say the moduli space is regular if it is

regular at all points (p, [γ ]). ♦

Proposition 24.4.10. Let q be a fixed admissible perturbation for Y , let gp be
a smooth family of Riemannian metrics parametrized by p ∈ P, all containing
an isometric copy of the collar I × Y , and let p̂p be a family of perturbations
having the form

pp = β(t)q+ β0(t)p
p
0,

as before. Let P0 ⊂ P be a closed subset and suppose that the parametrized
moduli space M(X ∗; [b])P is regular at all points (p0, [γ ]) with p0 ∈ P0. Then
there is a new family of perturbations p̃p, with

p̃p = pp for all p ∈ P0,

such that the corresponding parametrized moduli space M(X ∗; [b])P is
everywhere regular.

Proof. In the case that P is a single point (and P0 is empty), this statement
becomes our earlier Proposition 24.4.7, for which the organizing principle was
the general transversality result, Lemma 12.5.1. Referring to the proof of that
lemma, we see that the key point is the fact that a smooth Fredholm map
Q : Z → P between separable Banach manifolds admits a regular value. For
the case of general P, we just apply the extension of this result: namely, if
Q : Z → P is Fredholm and a map γ : P → P is given, then we can find
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γ̃ : P → P that is transverse to Q, and we can arrange furthermore that γ̃ = γ

on P0 if γ |P0 is already transverse to Q. �

24.5 Compactness: local results

In Section 4, we formulated a basic compactness result for convergence on
interior domains, Theorem 5.1.1, for solutions to the (unperturbed) Seiberg–
Witten equations on a 4-manifold with boundary. In the special case of the
cylinder X = I × Y , we extended the result to the perturbed equations (Theo-
rem 10.7.1) and then to the blown-up equations (Theorem 10.9.2). The proofs
of the two extensions can be adapted to our present situation: the case of a
general 4-manifold with boundary, with a perturbation p̂ supported in a collar
of the boundary. We state the appropriate version here.

We begin with a lemma concerning solutions to the equations on the collar
[−C, 0] × Y , where the perturbation q̂ is time-dependent.

Lemma 24.5.1. Consider the perturbed Seiberg–Witten equations Fσ
p = 0,

where the perturbation p̂(t) has the form (24.2) as before, so that p(t) = q at
t = 0 and p(t) = 0 at t = −C. Then there are constants C1 and C2 (depending
on C as well as on the perturbation) such that for all solutions γ = (A,�), we
have

2
(
L(γ (−C))− Lq(γ (0))

)
≥ 1

2

∫
[−C,0]×Y

( 1
8 |FAt |2 + |∇A�|2 + 1

4 (|�|2 − C1)
2)− C2.

Remark. The left-hand side, of course, depends an a particular choice of per-
turbing function f with formal gradient q; and so the constant C2 will depend
on this choice. We will see in the course of the proof that if f is normalized by
the condition f (A0, 0) = 0 for some connection A0 with harmonic curvature,
then the constants C1 and C2 here depend only on the constant m2 in Condition
(iv) from Definition 10.5.1.

Proof of Lemma 24.5.1. This is a modification of Corollary 10.6.2 for the case
of a time-dependent perturbation. Corollary 10.6.2 was based on two points:
first, the calculation leading to Lemma 10.6.1, valid for any configuration γ ;
and second, the fact that twice the change in −L is equal to the analytic energy,
for solutions of the equations.

The first point needs no modification in the case of a time-dependent per-
turbation. For the second point, there is a change. We have a time-dependent
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perturbation p(t) for the vector field on C(Y , s). Let us write ft for a gauge-
invariant function on C(Y , s) whose formal gradient is p̂, so the perturbed
Chern–Simons–Dirac functional −Lt on the slice {t} × Y is L + ft . Then we
have, for solutions of the perturbed equations,

2
(
L(γ (−C))− Lq(γ (0))

) = ∫ 0

−C

(
‖γ̇ (t)‖2 + ‖(grad L)+ p(t)‖2

)
− 2

∫ 0

−C

( d

dt
ft
)
(γ (t)) dt. (24.23)

The term p(t) in the above formula is absorbed, just as in the proof of
Lemma 10.6.1, so that we have

2
(
L(γ (−C))− Lq(γ (0))

)
≥ 1

2

∫
[−C,0]×Y

( 1
4 |FAt |2 + |∇A�|2 + 1

4 (|�|2 − C̃1)
2)− C̃2

− 2
∫ 0

−C

( d

dt
ft
)
(γ (t)) dt. (24.24)

Because the perturbation p has the special form dictated by (24.2), we can
take the primitive ft for p(t) to have a similar form:

ft(t) = β(t)f + β0(t)g0,

where f and g0 for q and p0. So the second integral in (24.23) above can be
bounded by

K
∫ 0

−C

(∣∣ f (γt)
∣∣+ ∣∣g0(γt)

∣∣) dt

where K depends on the derivatives of the cut-off functions β and β0. We can
bound a term like | f (γ )|, because we have a bound on the formal L2 gradient
q, of the form given in Condition (iv) of Definition 10.5.1. We thus have, for
γ = (B,�) in C(Y , s),

| f (γ )| ≤ | f (γ0)| + m2(1+ ‖�‖L2)‖v(γ )− γ0‖L2

for any reference configuration γ0 and any gauge transformation v (because f
is gauge-invariant). Let us take γ0 to be the configuration (B0, 0), where B0 is a
connection chosen so that Bt

0 has harmonic curvature. We can choose v so that
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B is in Coulomb gauge with respect to B0 and so that the periods of the 1-form
(B−B0)

t on a fixed set of generators for H1(Y ) are all less than 2π in magnitude.
With this v, we can then bound ‖v(γ )−γ0‖ by c1‖FBt‖+‖�‖+c2 for constants
c1 and c2 depending only on Y . (See Lemma 5.1.2 for a similar point. The
constant c2 can be omitted if b1(Y ) = 0.) Using a Peter–Paul inequality, we
have a bound of the form

| f (γ )| ≤ | f (γ0)| + m2

(
(εc3)‖FBt‖2 + (c4/ε)‖�‖2

)
,

for any ε > 0, with constants c3 and c4 depending on the geometry of Y . There
is a similar bound for |g0(γ )|. For small ε, we can absorb the curvature term
here using the positive curvature term in (24.24); and the quadratic term in ‖�‖
can be absorbed by the quartic term, leading to an inequality of the sort claimed
in the lemma. �

In the theorem below, X is, as usual, a compact, Riemannian 4-manifold with
boundary Y , containing a collar (−C, 0] × Y . We write Xε ⊂ X for a slightly
smaller manifold of the form

Xε = X \ ((−ε, 0] × Y
)
.

We take X ′ to be a slightly smaller manifold still:

X ′ � Xε .

We shall suppose that the cut-off function β used in the construction of p has
β̇ supported in Xε , so that the perturbation is constant in the ε neighborhood
of ∂X .

We introduce a perturbed version of the topological energy for a configuration
on a manifold X with boundary Y : if Lq = L + f at ∂X , then we define the
perturbed topological energy as

E top
q (γ ) = E top(γ )− 2f (γ ). (24.25)

Theorem 24.5.2. Let γn ∈ Cσ
k (X , sX ) be a sequence of solutions of the per-

turbed equations, Fσ
p (γ ) = 0, where p is a perturbation supported in the collar,

as before. Suppose that there is a uniform bound on the perturbed topological
energy,

E top
q (γn) ≤ C1,



484 VII Cobordisms and invariance

and that for each component Y α of Y there is a uniform upper bound on −�q

on the boundary component {−ε} × Y α of Xε:

−�q(γn|{−ε}×Y α ) ≤ C2. (24.26)

Then there is a sequence of gauge transformations, un ∈ Gk+1(X ), such that,
after passing to a subsequence, the restrictions, un(γn)|X ′ , of the transformed
solutions converge in the topology of Cσ

k (X
′) to a solution γ ∈ Cσ

k (X
′) of the

equations Fσ
p (γ ) = 0. Without the hypothesis (24.26), we obtain a weaker

conclusion: convergence of un(πγn)|X ′ in Ck(X ′). �

Proof. Write γn = (An, sn,φn), so that π(γn) = (An,�n) with �n = snφn

on X .
We first prove the statement about convergence of un(An,�n) in Ck(X ′),

without the hypothesis (24.26). This is the counterpart of the Theorem 5.1.1,
which dealt with the unperturbed case. The bound on the perturbed topolog-
ical energy on X implies a bound on the unperturbed topological energy on
the complement of the collar, by the lemma. So we can assume that we have
convergence on the complement of the collar, by the unperturbed compactness
result, Theorem 5.1.1. The lemma then also gives us a bound on the energy
terms (the terms on the right in the lemma) in the collar region. These terms
(the L2 norms of FAt and ∇A�, and the L4 norm of �) are therefore bounded
on X , and the compactness argument can proceed as before.

We next have to prove that, with the bound (24.26), we can obtain con-
vergence in the blown-up configuration space Cσ (X , sX ). The argument is
essentially the same as the cylindrical case, Theorem 10.9.2. (Once one knows
that (An,�n) is converging, the definition of tame ensures that a bound of −�

is equivalent to a bound on −�q.) �

There is also a finiteness result connected with the compactness theorem
above. This proposition, like the similar Lemma 10.7.5, requires an additional
hypothesis on the components qs of the perturbation q belonging to different
spinc structure s:

Proposition 24.5.3. In the situation of Theorem 24.5.2, suppose that the per-
turbation q has the additional property that there is a constant m2, independent
of the choice of spinc structure s on Y , such that

‖qs(B,�)‖L2 ≤ m2
(‖�‖L2 + 1

)
.

(Compare Property (iv) in Definition 10.5.1.) Let the perturbation f be normal-
ized on C(Y , s), for each s, so that f vanishes at a chosen configuration (B0, 0),
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where B0 is a reference connection for which Bt
0 has harmonic curvature. Then

for a given C1, there are only finitely many spinc structures sX on X for which
there exist solutions γ satisfying the bound

E top
q (γ ) ≤ C1.

Proof. This finiteness result on the spinc structures sX follows just as in The-
orem 5.1.1 and Lemma 10.7.5. The only additional observation needed is that
the values of the constants C1 and C2 in Lemma 24.5.1 depend only on m2, as
long as f is chosen to vanish at (B0, 0), as the proof of that lemma shows. �

24.6 Compactness: broken trajectories

Our next task is to introduce a compactification of the moduli space
M(X ∗, sX ; [b]) on the cylindrical-end manifold.

Definition 24.6.1. Let [b] be a critical point, and [bα] its restriction to the
component Y α ⊂ Y . A broken X -trajectory asymptotic to [b] consists of the
following data:

• an element [γ0] in a moduli space Mz0(X
∗, [b0]);

• for each component Y α of Y , an unparametrized broken trajectory [γ̆α] in a
moduli space M̆+

zα ([bα0 ], [bα]), where [bα0 ] is the restriction of [b0] to Y α .

If z1 is the homotopy class of paths from [b0] to [b] whose αth component is
zα , then the homotopy class of the broken X -trajectory is the element

z = z1 � z0 ∈ π0(Bσ (X , [b])).

We write M+
z (X ∗, [b]) for the space of broken X -trajectories in the homo-

topy class z. This contains Mz(X ∗, [b]) as the special case when each of the
broken trajectories [γ̆α] has zero components. We write a typical element of
M+

z (X ∗, [b]) as ([γ0], [γ̆]), where [γ̆] stands for a (possibly empty) collec-
tion [γ̆ α

i ] of unparametrized trajectories on the components Y α , 1 ≤ i ≤ nα .
Sometimes we will simply write [γ]. ♦

We give M+
z (X ∗, [b]) a topology as follows. (See the similar definition of

the topology on M̆+
z ([a], [b]) in Subsection 16.1.) Let ([γ0], [γ̆]) belong to

M+
z (X ∗, [b]), and let the components of [γ̆] be represented by (parametrized)

trajectories

γ α
i ∈ Mzαi

([bαi−1], [bαi ]),
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for 0 ≤ i ≤ nα . Let U0 ⊂ Bσ
k,loc(X

∗) be an open neighborhood of [γ0].
Let Iαi ⊂ R be a compact interval, and let Uα

i ⊂ Bτ
k (I

α
i × Y α) be an open

neighborhood of [γ α
i |Iαi ×Y α ]. Let T ∈ R+ be such that the translate Iαi + T is

contained in the positive half-line. We define 	 = 	(U0, {Uα
n }, T ) to be the

subset of M+
z (X ∗, [b]) consisting of broken X -trajectories [δ] = ([δ0], [δ̆αj ]),

1 ≤ j ≤ mα , satisfying the following conditions.

(i) We have [δ0] in U0.
(ii) For each α with nα = 0, there exists a map (jα , sα) : {1, . . . , nα} →

{0, . . . , mα} × R such that, for all i ∈ {1, . . . , nα}, we have:
(a) if jα(i) = 0, then [τsα(i)δ

α
0 ]Iαi ×Y α ∈ Uα

i , where δα0 denotes the restric-
tion of δ0 to the cylindrical end R≥×Y α , regarded there as an element
of Bτ

k,loc(R
≥ × Y α , sα);

(b) if jα(i) = 0, then [τsα(i)δ
α
j (i)]αIαi ×Y ∈ Uα

i ;

(c) if jα(1) = 0, then sα(1) > T ;
(d) if 1 ≤ i1 < i2 ≤ nα , then either jα(i1) < jα(i2), or jα(i1) = jα(i2)

and sα(i1)+ T ≤ sα(i2).

Here again τsδ denotes the translate, τsδ(t) = δ(s+ t). We take the sets of the
form 	(U0, {Uα

n }, T ) to be a neighborhood base for ([γ0], [γ̆]) in M+
z (X ∗, [b]).

The proof of the next theorem runs closely parallel to the proof of
Theorem 16.1.3.

Theorem 24.6.2. Let p0 be chosen so that the moduli spaces of X -trajectories,
M(X ∗, [b]), are regular for all critical points [b] on Y . Then each moduli space
of broken X -trajectories M+

z (X ∗, [b]) is compact.

This theorem follows from a slightly stronger version: the analog of Proposi-
tion 16.1.4. To formulate this proposition (stated as Proposition 24.6.4 below)
we need to define E top

q (γ), the topological energy of a broken X -trajectory,
in a manner appropriate for the perturbed equations: we extend the definition
(24.25) which we made in the case of the compact manifold.

Definition 24.6.3. For a configuration γ ∈ Bσ
k,loc(X

∗, [b]), and−L = L+ f , we
define the perturbed topological energy to be the quantity

E top
q (γ ) = E top(γ )− 2f (b).

For a broken X -trajectory, the energy is the sum of the energies of the
components. ♦

Note that the perturbed topological energy is gauge-invariant, and depends
only on [b], the homotopy class z and the perturbation. The definition coincides
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with our previous one in the case that X is a finite cylinder: the topological
energy is then just twice the drop in −L. We can now state the strengthened
version of the above theorem:

Proposition 24.6.4. For any C > 0 and any [b], the space of broken X -
trajectories [γ̆] ∈⋃

z M+
z (X ∗, [b]) with energy E top

q (γ̆) ≤ C is compact.

Remark. Since E top
q (γ̆) and E top(γ̆) differ by a constant depending only on [b],

the proposition could be stated in terms of the unperturbed energy. It is stated this
way to match the version we stated for the cylindrical case, Proposition 16.1.4.

Proof of Proposition 24.6.4. We deal first with a fixed sX . As in the proof of
Proposition 16.1.4, we can reduce to the case of showing that a sequence [γn]
of unbroken solutions,

[γn] ∈
⋃

z

Mz(X
∗, [b]),

has a convergent subsequence in the space of broken trajectories, as long as the
energies are bounded.

The next observation is that the perturbed topological energy on the compact
piece X is no larger than the topological energy on X ∗:

E top
q (γn|X ) ≤ E top

q (γn)

because the contribution from the cylindrical end is the total drop in Lq along
the cylindrical pieces. We can therefore use Theorem 24.5.2, which allow us
to assume that the configurations π(γn|X ) are converging in Ck(X ). (We can
replace X by a slightly larger piece in applying this theorem, so as not to have
to pass to X ′ � X .) On the cylindrical end part, X ∗ \ X , we now have a
sequence of solutions to the familiar, translation-invariant perturbed equations,
with a bound in the change of Lq. We can apply our earlier broken-trajectory
compactness argument to the images of these under the blow-down map π to
obtain convergence on X ∗ \ X , or a slightly larger cylinder X ∗ \ Xε . Putting
the two pieces together, we see that, after gauge transformation and passing to
a subsequence, the blown-down configurations π(γn) converge in the sense of
X -trajectories.

To obtain convergence in the blown-up configuration space, we also need to
control the quantities

�α
q(n, t) = �q(γn|t×Y α ).
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Because this function is fully gauge-invariant, and because each [γn] is
asymptotic to [b], we have

lim
t→∞�α

q(n, t) ≥ −Lα

for all n. The boundedness of the quantity K in Lemma 16.3.1 implies as before
a lower bound on �α

q near t = 0: say

�α
q(n, t) ≥ −Lα

1

for t ∈ [−ε, ε]. We can then apply Theorem 24.5.2 to find gauge transformations
un on X such that, after passing to a subsequence, the configurations un(γn)

converge in the blown-up configuration space Cσ
k (X

′). From this convergence,
it now follows that we have an upper bound,

�α
q(n, t) ≤ Lα

2 ,

for t = −ε. Another application of Lemma 16.3.1 now provides a bound on
�α

q(n, t) on the entire cylindrical end [−ε,∞)×Y α , and the proof can proceed
as before. �

We also have the analogs of the two finiteness results, Proposition 16.4.1 and
Proposition 16.4.3:

Proposition 24.6.5. Suppose that the perturbation q is admissible in the sense
of Definition 22.1.1 and the perturbation p is chosen so that all the moduli
spaces Mz(X ∗, [b]) are regular. Then for given [b], there are only finitely many
homotopy classes z for which the moduli space M+

z (X ∗, [b]) is non-empty.

Proposition 24.6.6. Suppose that the perturbation q is admissible in the sense
of Definition 22.1.1 and the perturbation p is chosen so that all the moduli
spaces Mz(X ∗, [b]) are regular. Let Y α1 , . . . , Y αn be the components of Y and
write [b] = ([bα1 ], . . . , [bαn ]). Let ([bα2 ], . . . , [bαn ]) be given. Then for any d0

and i0, there are only finitely many pairs ([bα1 ], z) for which:

(i) the moduli space M+
z (X ∗, [b]) is non-empty;

(ii) the dimension of the moduli space is at most d0; and
(iii) ι([bα1 ]) ≥ i0, where ι is as defined in (16.2).

Remark. Proposition 24.6.6 has an extra hypothesis (the bound on ι([bα1 ]))
which has no counterpart in Proposition 16.4.3. Unlike the case of the cylin-
der, there may be infinitely many different spinc structures on a general X ,
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all having the same restriction to the boundary. This necessitates the stronger
hypothesis. This is ultimately the reason why we need to pass from ĤM∗ to the
completion ĤM•.

Proof of Proposition 24.6.5. As with Proposition 16.4.1 this follows from
Proposition 24.6.4 and a uniform energy bound analogous to Lemma 16.4.4.
This analogous bound states that there exists a C such that for every [b] and z,
and every broken X -trajectory [γ] in M+

z (X ∗, [b]), we have

E top
q (γ) ≤ C − 8π2ι([b]).

In the proof of this inequality the counterpart to (16.4) is the statement that, for
[γ ] ∈ Mz(X ∗, [b]), the quantity

Eq(γ )+ 4π2 grz(X , [b])

does not depend on z. The remainder of the proof is essentially unaltered. �

Proof of Proposition 24.6.6. As in the proof of Proposition 16.4.3, we observe
that

E top
q (γ )+ 4π2 (grz(X , sX ; [b])− 2ι([b]))

is a function of π([b]) alone, and so takes only finitely many values. (Here ι([b])
denotes the sum of ι([bαi ]) over all components.) A bound on the dimension
and on −ι([b]) therefore provides a bound on the energy. �

We will also need a compactness result for a family of moduli spaces. Let
P again be a smooth manifold parametrizing a family of metrics and perturba-
tions on X , all of which are equal in a neighborhood of the boundary, and let
M(X ∗, [b])P denote the family over P. We can form a space M+(X ∗, [b])P as
the disjoint union

M+(X ∗, [b])P =
⋃

p

{p} ×M+(X ∗, [b])p.

Since the metric and perturbation on the cylindrical part are independent of p,
there is no difficulty in extending our definition of the topology on the fibers so
as to define a topology on the total space. The small adjustments to the proof
of Theorem 24.6.2 which are needed to prove the following version can safely
be omitted.
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Theorem 24.6.7. Suppose that the families M(X ∗, [b])P are regular for all [b].
Then for each [b] the family of moduli spaces is proper over P: that is, the map

M+
z (X ∗, [b])P → P

is proper. For fixed [b], this family of moduli spaces is non-empty for only
finitely many components z ∈ π0(Bσ

k (X , [b])). �

The space M+
z (X ∗, [b])P is a disjoint union of subspaces of the form

Mz0(X
∗, [b0])P ×

∏
α

M̆+
zα ([bα0 ], [bα]), (24.27)

in which each of the factors is a space stratified by manifolds. In this way,
M+

z (X ∗, [b])P is eventually a disjoint union of manifolds. As in Proposi-
tion 16.5.2, some straightforward bookkeeping shows that the frontier of any
of these manifold pieces is contained in a union of lower-dimensional pieces.
The following proposition elaborates on this statement, and is the counterpart
to Proposition 16.5.2:

Proposition 24.6.8. Suppose that Mz(X ∗, [b])P is non-empty, and let d be its
dimension. Then the space M+

z (X ∗, [b])P is a d-dimensional space stratified
by manifolds, proper over P. For e ≥ 0, the e-dimensional stratum is the union
of the e-dimensional strata of all the pieces of the form (24.27).

If Mz(X ∗, [b])P contains irreducible trajectories, then the top stratum
consists of the irreducible part of Mz(X ∗, [b])P. �

As well as the compactification M+
z (X ∗, [b]), there is a smaller compactifi-

cation M̄z(X ∗, [b]) which we shall use:

Definition 24.6.9. The space M̄z(X ∗, [b]) is the image of M+
z (X ∗, [b]) under

the map

r : M+
z (X ∗, [b])→ Bσ

k,loc(X
∗)

([γ0], [γ̆]) �→ [γ0].

Similarly, if P is a manifold parametrizing a family of metrics and perturbations
on X , then M̄z(X ∗, [b])P is defined as the image of M+

z (X ∗, [b])P under the map

M+
z (X ∗, [b])P → P ×Bσ

k,loc(X
∗)(

p, ([γ0], [γ̆])
) �→ (

p, [γ0]
)
. ♦
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As with M+, the smaller M̄z(X ∗, [b])P is a space stratified by manifolds,
and the map to P is proper. To help understand the relationship between M+
and M̄ , it is helpful to consider the case that X is just a finite cylinder so
that X ∗ is the infinite cylinder. In this case (reverting to our notation used in the
cylindrical case) we can consider M+

z ([a], [b]) and M̄z([a], [b]) as two different
compactifications of the space of trajectories M([a], [b]). This is different from
our earlier construction of M̆+

z ([a], [b]), which was a compactification of the
space of unparametrized trajectories M̆z([a], [b]). The same objects can be
considered also for a finite-dimensional flow for an ordinary Morse function on
a compact manifold B. In this case, M̄(a, b) is a compactification of the space of
trajectories from a to b, which can be described quite simply: we can identify
the trajectory space M(a, b) with a subset of B, by evaluating a trajectory at
t = 0, and the space M̄(a, b) is then simply the closure if M(a, b) in B. For
example, if B is the torus T n with a standard Morse function given by

f =
n∑

i=1

cos(θi)

then each M̄(a, b) is a torus, stratified by its intersection with the coordinate
hyperplanes θi = 0 and θi = π . The compactification M+(a, b) is larger, and
contains one codimension-1 face for each stratum of broken trajectories of the
form M̆ (a, c)×M(c, b) or M(a, c)× M̆ (c, b) (allowing that c = b in the first
case or c = a in the second). In the case that M̄(a, b) is a 3-torus, the stratified
space M+(a, b) is a solid truncated octahedron, stratified by the faces, edges
and vertices, as shown in Figure 6.

M(a, a) � M(a, b) M(a, a1) � M(a1, b)

Fig. 6. A picture of the combinatorics of M+(a, b) in the case that M̄(a, b) is a
3-torus carrying a standard Morse function. Two of the codimension-1 faces are
labelled. The critical point a1 has index 1 less than a.
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The next proposition classifies the codimension-1 strata in the space
M̄z(X ∗, [b]), in the case that the moduli space contains irreducibles. Recall
that for a typical element

([γ0], [γ̆]) ∈ Mz0(X
∗, [b0])P ×

∏
α

M̆+
zα ([bα0 ], [bα]), (24.28)

we write nα for the number of components of [γ̆α]. We write the ith component
of [γ̆α] as

[γ̆ α
i ] ∈ M̆zαi

([bαi−1], [bαi ]).

Proposition 24.6.10. Suppose Mz(X ∗, [b])P contains irreducible solutions
and has dimension d. Then both M+

z (X ∗, [b])P and M̄z(X ∗, [b])P are d-
dimensional spaces stratified by manifolds, with top stratum the irreducible part
of Mz(X ∗, [b])P. The (d −1)-dimensional stratum in M+

z (X ∗, [b])P consists of
elements of the following types.

(i) The elements (24.28) with nα = 1 for exactly one component α = α∗ and
all other nα zero. In this case, neither [γ̆ α∗

1 ] nor [γ0] can be boundary-
obstructed.

(ii) The elements (24.28) with nα = 2 for exactly one component α = α∗ and
all other nα zero. In this case, [γ̆ α∗

1 ] must be boundary-obstructed while
[γ̆ α∗

2 ] and [γ0] are not.
(iii) The elements (24.28) for which [γ0] is boundary-obstructed of corank c.

In this case nα∗ = 1 for exactly c + 1 components (say for α∗ ∈ A where
|A| = c + 1), and all other nα are zero. For α∗ in A, the trajectory [γ̆ α∗

1 ]
cannot be boundary-obstructed.

(iv) The unbroken reducible solutions (all nα are zero), in the case that
Mz(X ∗, [b])P contains both irreducibles and reducibles.

(v) The unbroken irreducible solutions lying over ∂P, if P has boundary.

In the first three cases above, if any of the moduli spaces involved contain
both reducibles and irreducibles then only the irreducibles contribute to the
(d − 1)-dimensional stratum.

The (d − 1)-dimensional strata in M̄z(X ∗, [b])P are the image under r of
the strata described with the additional constraint that, in the first three cases,
each of the [γ α∗

i ] belongs to a 1-dimensional moduli space. �

Note that in all cases of this proposition, because the moduli space
Mz(X ∗, [b])P contains irreducibles, each component [bα] of [b] must be either
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irreducible, or reducible and boundary-stable. In the fourth case of the proposi-
tion, all the [bα] must be reducible and boundary-stable. In the third case, [bα]
must be reducible and boundary-stable for α not in A.

24.7 Gluing

We shall extend the results of Section 19 to the case of a manifold with cylin-
drical ends. One difference from the case of a cylinder is that a regular solution
can be boundary-obstructed with corank greater than 1 (if the manifold has
more than one end). In the cylindrical case, we saw that (under mild hypothe-
ses) the codimension-1 strata in the compactification M+ had neighborhoods
that either were manifolds with boundary or had a codimension-1 δ-structure
(Definition 19.5.3 and Theorem 19.5.4). In the case of a general X , we have
a similar result; but at codimension-1 strata involving a boundary-obstructed
solution of larger corank, we will see a more general structure, which we now
define.

Definition 24.7.1. Let N be a d -dimensional space stratified by manifolds and
M d−1 ⊂ N a union of components of the (d − 1)-dimensional stratum. We
say that N has a codimension-c δ-structure along M d−1 if M d−1 is smooth and
we have the following additional data. There is an open set W ⊂ N containing
M d−1, an embedding j : W → EW , and a map

S = (S1, . . . , Sc+1) : EW → (0,∞]c+1

with the following properties:

(i) the map S is a topological submersion along the fiber over ∞ =
(∞, . . . ,∞);

(ii) the fiber of S over ∞ is j(M d−1);
(iii) the subset j(W ) ⊂ EW is the zero set of a map δ : EW → $c, where

$c ⊂ Rc+1 is the hyperplane $c = { δ ∈ Rc+1 |∑ δi = 0 };
(iv) if e ∈ EW has Si0(e) = ∞ for some i0, then δi0(e) ≤ 0, with equality only

if Si(e) = ∞ for all i;
(v) on the subset of EW where all Si are finite, δ is smooth and transverse

to zero.

♦
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Example. Let EW ⊂ Rc+1 be the set { x | xi ≥ 0 for all i }, let Si = 1/xi as a
function from EW to (0,∞], and let

δi = cxi −
∑
j =i

xj.

The zero locus of δ is the half-line W ⊂ EW where all xi are equal.

With this definition in place, we state our theorem concerning the structure
of the compactification at codimension-1 strata.

Theorem 24.7.2. Suppose that the moduli space Mz(X ∗, [b])P is d-dimensional
and contains irreducible trajectories, so that M+(X , [b])P is a d-dimensional
space stratified by manifolds having Mz(X ∗, [b])P as its top stratum. Let M ′ ⊂
M+(X ∗, [b])P be any component of the codimension-1 stratum. Then, along M ′,
the moduli space M+(X ∗, [b])P either is a C0 manifold with boundary, or (more
generally) has a codimension-c δ-structure in the sense of Definition 24.7.1.

To flesh out the statement of this theorem, consider the five cases itemized in
Proposition 24.6.10. The relevant stratum of M+(X ∗, [b])P has a neighborhood
which is a manifold with boundary in the first, fourth and fifth cases of the
proposition. In the second case, there is a codimension-1 δ-structure, while
in the third case there is a codimension-c δ-structure. We shall indicate how
to adapt the material of Section 19 to prove these assertions, focusing on the
situation that arises in the third case of Proposition 24.6.10.

Proof of Theorem 24.7.2. To show how to adapt our earlier arguments, we
begin by examining a particular case that does not involve any boundary-
obstructed solutions. We will treat only the case that the parametrizing space P
is a point, as the general parametrized case is really no more difficult.

Consider a stratum in M+
z (X ∗, [b]) consisting of elements of the form

(24.28), with each nα either zero or 1, and let A = {α | nα = 1 }. Such an
element belongs to a stratum

M ′ = Mz0(X
∗, [b0])P ×

∏
α∈A

M̆zα ([bα0 ], [bα]), (24.29)

and bα0 = bα for α ∈ A. We suppose that none of the factors in this product are
boundary-obstructed moduli spaces. This stratum has codimension |A|, and the
case |A| = 1 is the first case of Proposition 24.6.10.

Let K ⊂ M ′ be a compact subset. We will describe a neighborhood W of
K in M+

z (X ∗, [b]) as a fiber product. This is the same plan that we carried
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through in Subsection 19.3. The main difference here is that we use a different
decomposition of the 4-manifold. Fix L > 0, and let

X L = X ∪ [0, L] × Y (24.30)

be the compact manifold obtained by attaching the finite cylinder of length L
at the common boundary {0} × Y . Let ZT

α be the cylinder

ZT
α = [−T , T ] × Y α

for finite positive T . For T = ∞, as in Section 19, we again adopt the notation

Z∞α = Z+α  Z−α
= ([0,∞)× Y α

) (
(−∞, 0] × Y α

)
.

Fix positive real numbers Tα for each α in A, and write T = (Tα)α∈A. For any
choice of T , we can consider the cylindrical-end manifold X ∗ as obtained from
the disjoint union

X T = X L  
(⋃
α∈A

ZTα
α  ZL

α  Z+α

)
 
⎛⎝⋃

α ∈A

Z+α

⎞⎠ , (24.31)

by identifying boundary components in pairs. (See Figure 7.) If we allow some
of the components Tα to be infinite, then the identification space becomes a
union of X ∗ and some cylinders R × Y α . Associated with this disjoint union

Z 2
T2 Z 2

L Z 2
+

Z 3
+

Z 1
T1 Z 1

L Z 1
+

2T1L

XL

Fig. 7. Decomposing the cylindrical-end manifold X ∗ into the pieces (24.31).



496 VII Cobordisms and invariance

X T is a product of moduli spaces,

M T = M(X L)P ×
(∏
α∈A

M(ZTα
α )×M(ZL

α )×M(Z+α ; [bα])
)

×
⎛⎝∏

α ∈A

M(Z+α ; [bα])
⎞⎠ .

(Compare this with (19.7).) Here and below we have omitted the spinc structure
from our notation. Inside M T is a subset,

M T ⊃ M cen
T ,η,

obtained by replacing each M(ZL
α ) above by M cen and replacing each M(ZTα

α )

or M(Z+α ) with Mη(Z
Tα
α ) or Mη(Z+α ) respectively. (See Equation (19.8).) We

again define the spaces

M ⊃⊃ M cen
η ,

by taking a disjoint union over T (including those where some Tα are infinite).
When we form X ∗ by identifying boundary components of X T , the identi-

fications are made along three copies of each Y α for α in A, and one copy of
each Y α for α not in A. Set

B =
(∏
α∈A

Bσ
k−1/2(Y

α)3

)
×
⎛⎝∏

α ∈A

Bσ
k−1/2(Y

α)

⎞⎠ ,

and let

R+ : M → B (24.32)

R− : M → B (24.33)

be obtained from restrictions to the positively and negatively oriented moduli
spaces respectively. Let Fib(R+, R−) be the fiber product (i.e. the inverse image
of the diagonal in B×B under the map (R+, R−)), and c the concatenation map,

c : Fib(R+, R−) : M+(X ∗, [b])P .

If all Tα are finite, the image of Fib(R+, R−)∩M T is contained in the top stratum,
M(X ∗, [b]). In general, if some Tα are infinite, the result of concatenation is a
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configuration that has nα = 1 if α is in A and Tα is infinite; all other nα are
zero. The proof of the following proposition, which we omit, is little different
from that of the earlier version, Proposition 19.3.1.

Proposition 24.7.3. There exists η0 > 0 such that for all η < η0 and all
L > L1(η), the image of the map

c : Fib(R−, R+) ∩M cen
η → M+(X ∗, [b])P , (24.34)

obtained by concatenating trajectories, contains an open neighborhood
W (η, L) of the given compact piece K ⊂ M ′. Furthermore, c is injective on

c−1(W (η, L)) ∩M cen
η .

�

As in Subsection 19.3, we write Sα = 2Tα + 2L for α in A. Via the map c−1

in the above proposition, we regard Sα as defined on W (η, L), so providing a
function

S : W (η, L)→ (0,∞]A.

The union of W (η, L), over all L > L1(η) is an open neighborhood W of
the entire stratum M ′, and S is well-defined on W . We have the analog of
Theorem 19.2.8 for the present situation: the main ingredient is again the
parametrization of Mη(ZT ) provided by the material of Section 18.

Proposition 24.7.4. Suppose the moduli spaces appearing in the product
(24.29) are all boundary-unobstructed. Let W be the open neighborhood of
M ′ in M+(X ∗, [b]) just described. Then the map

S : W → (0,∞]A

is a topological submersion along M ′ = S−1(∞). �

When |A| = 1, this theorem states that the compactification is a C0 mani-
fold with boundary along M ′, and establishes Theorem 24.7.2 in the situation
covered by the first case in Proposition 24.6.10.

We now turn to the situation that arises in the third case of Proposition 24.6.10.
We are again considering a product such as (24.29) in M+

z (X ∗, [b]). However,
we now suppose that the moduli space M(X ∗, [b0]) is boundary-obstructed
of corank c. This means that c + 1 of the components [bα0 ] are boundary-
unstable. Since all [bα] are irreducible or boundary-stable (because the moduli
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space contains irreducibles), it must be that [bα0 ] is boundary-unstable precisely
for α ∈ A. Note that for α ∈ A the moduli space Mzα ([bα0 ], [bα]) contains
irreducibles; it may contain reducibles as well if bα is reducible. As in the last
remark in Proposition 24.6.10 the codimension-1 stratum contained in M ′ is

M ′′ = Mz0(X
∗, [b0])×

∏
α∈A

M̆ irr
zα ([bα0 ], [bα]). (24.35)

The space M ′′ is contained in the open set, U , where for each α either
γ0|[0,∞)×Y α is irreducible or some component of [γ̆α] is irreducible.

As above we can construct a neighborhood W of M ′′ in M+
z (X ∗, [b]) and a

map S : W → (0,∞]A; however, it is no longer the case that S is a topological
submersion along M ′′. What is missing is the transversality at ∞. As in the
cylindrical case, we will exhibit Mz(X ∗, [b]) as a subspace of a larger moduli
space EMz(X ∗, [b]) where this transversality can be achieved.

Let X L be as above, (24.30). The moduli space M(X L), which is a Hilbert
manifold with boundary, has a fiber product description, corresponding to the
decomposition in (24.30): we can write it as

Fib(R+, R−) ⊂ M(X )×M([0, L] × Y ),

where

R+ : M(X )→ Bσ
k−1/2(Y )

R− : M([0, L] × Y )→ Bσ
k−1/2(Y ).

Let sα be the s coordinate on the αth factor Bσ
k−1/2(Y

α) of the product space

Bσ
k−1/2(Y ) =

∏
α

Bσ
k−1/2(Y

α).

Thus

sα : Bσ
k−1/2(Y )→ [0,∞).

Define

B′(Y ) = [0,∞)×
(∏
α∈A

∂Bσ
k−1/2(Y

α)

)
×
⎛⎝∏

α ∈A

Bσ
k−1/2(Y

α)

⎞⎠ .



24 The moduli space on a manifold with boundary 499

We have a map

π : Bσ
k−1/2(Y )→ B′(Y )

whose first coordinate is
∑

α∈A sα and whose remaining components are either
the projection

π∂ : Bσ
k−1/2(Y

α)→ ∂Bσ
k−1/2(Y

α)

for α in A, or the identity for α not in A. (See (19.1).) Let

R′+ = π � R+ : M(X )→ B′(Y )

R′− = π � R− : M([0, L] × Y )→ B′(Y ),

and define EM(X L) as the fiber product Fib(R′+, R′−).
We can think of an element of EM(X L) as being a solution on X L whose

s coordinate is allowed to have a discontinuity at {0} × Y α , for α in A, but
which is constrained by the condition that the sum of the discontinuities is
zero. For a configuration ([γ0], [γα]α∈A) in EM(X L), we define δα to be the
discontinuity in sα:

δα = s(R−[γα])− sα(R+[γ0]).

Thus we have δ : EM(X L)→ $c, where$c ⊂ RA is the hyperplane
∑

δα = 0.
The moduli space M(X L) is the zero set of δ.

We define EM(X ∗, [b]) in just the same way, except that we use the moduli
space M([0,∞)×Y ; [b]) on the half-infinite cylinder, in place of M([0, L]×Y )

in the fiber product,

R′+ : M(X )→ B′(Y )

R′− : M([0,∞)× Y ; [b])→ B′(Y ).

Lemma 24.7.5. Suppose M(X ∗, [b]) is regular and not boundary-obstructed.
Then the maps R′± above are transverse along M(X ∗, [b]) in the fiber product
EM(X ∗, [b]). In the case that M(X ∗, [b]) is boundary-obstructed and [bα] is
boundary-unstable precisely for α in A, then the corresponding moduli spaces
M and EM are equal; and in this case, the maps R′± are transverse everywhere
(though the maps R± are not).

Proof. We deal with the second case in this lemma. Because [bα] is boundary-
unstable for α in A, an element in the fiber product defining EM has [γα]
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reducible for all α in A, from which it follows that each δα is non-positive.
Since the sum is zero, each δα is zero, and so the configuration belongs to M .

To see that R′± are transverse, note that, because at least one [bα] is boundary-
unstable, the moduli space M consists only of reducibles. Since we are working
at a reducible configuration the domains of differentials of R′± decompose as
direct sums along the reducible configurations and the normal directions. Note
that forα ∈ A, M red([0,∞)×Y α; [bα]) is the boundary of M([0,∞)×Y α; [bα])
while for α ∈ A the two moduli spaces coincide. The regularity hypothesis
means that

Rred+ : M red(X )→ Bred(Y )

Rred− : M red([0,∞)× Y ; [b])→ Bred(Y )

are transverse. The remaining directions to hit are the initial R factor and∏
α ∈A R accounting for the difference between Bred

k−1/2(Y
α) and Bk−1/2(Y α)

for α ∈ A. We can hit the R factor by variations in the normal direction to
M red(X ). The

∏
α ∈A R factors are hit by variations in the normal direction to

M red on cylinders Z+α for α ∈ A. �

As above, we can view X ∗ as obtained as an identification space of X T . This
leads to a fiber product description of the moduli space EM(X ∗, [b]). Under our
present hypothesis that bα0 is boundary-unstable precisely for α ∈ A, the above
lemma tells us that the fiber product description of EM(X ∗, [b0]) is transverse.
This leads to the following analog of Theorem 19.4.1.

Proposition 24.7.6. There is a topological embedding j : W → EW and a
map S : EW → (0,∞]A such that the following diagram commutes:

W

S
��

� �
j

�� EW

S
��

(0,∞]A (0,∞]A.

Further, the map S : EW → (0,∞]n−1 is a topological submersion along the
fiber over ∞, and j(W ) ⊂ EW is the zero set of a continuous map

δ : EW → $c ⊂ RA.

�
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To conclude the proof of Theorem 24.7.2 in the present case, it remains to
show that we can achieve the fourth condition of the definition of codimension-
c δ-structure. (See Definition 24.7.1.) We can regard EW as parametrizing pairs
([γ0], [γ̆]) where [γ0] ∈ EM(X ∗, [b1]) and [γ̆α] ∈ M̆+

zα ([bα1 ], [bα]) with nα = 0
unless α ∈ A and Sα = ∞. In the latter case nα = 1 and [bα0 ] = [bα1 ], so
[bα1 ] is boundary-unstable. Thus the restriction of γ0 to the end [0,∞)× Y α is
reducible whenever Sα = ∞, from which it follows that δα ≤ 0 in this case. If
δα∗ = 0 for one α∗ with Sα∗ = ∞, then γ0 is reducible on the compact piece
X and so the components δα are non-negative for all α in A. Since the sum of
the δα is zero, δ vanishes and we conclude that ([γ0], [γ̆]) ∈ W . We now see
that we need to choose W to be contained in the open set U discussed after
equation (24.35) so that the only configurations in W with [γ0] reducible have
all Sα = ∞.

We have verified the conclusions of Theorem 24.7.2 in the situation covered
by Cases (i) and (iii) of Proposition 24.6.10. The proof in Case (ii) is similar to
the corresponding situation in the cylindrical case. Case (iv) is the statement that
the moduli space (rather than its compactification) is a manifold with boundary.

�

24.8 Orienting moduli spaces

The definition of a homology orientation for a 4-manifold X with boundary
was given in Definition 3.4.1. We will write �(X ) for the set of homology
orientations X .

We wish to obtain an analytic reinterpretation of �(X ). Let C ⊂
L2

k−1/2(Y ; T ∗Y ) be the coclosed 1-forms, and let

C = C− ⊕ C0 ⊕ C+

be the spectral decomposition provided by the Fredholm operator ∗d : C → C:
the kernel, C0, is the space of harmonic 1-forms, and C± are the strictly positive
and negative spectral subspaces. Consider the Fredholm operator

B : { a ∈ L2
k(X ; T ∗X ) | d∗a = 0, d+a = 0, 〈aY , ν〉 = 0 } → C− (24.36)

given by restricting the 1-form a to the boundary and projecting onto C−.

Lemma 24.8.1. Then the kernel of B is isomorphic to H 1(X ; R). The co-
kernel of B is isomorphic to a maximal positive-definite subspace for the
(non-degenerate) quadratic form on I2(X ).
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Proof. We identify the kernel of this operator B. For a real-valued 1-form,
we have ∫

X
da ∧ da =

∫
X

(|d+a|2 − |d−a|2).
So for a in the kernel of B we have (writing b for the 1-form on Y obtained by
restriction)

−
∫

X
|d−a|2 =

∫
X

da ∧ da

=
∫

Y
b ∧ db

=
∫

Y
〈b, ∗Y db〉. (24.37)

Because B(a) = 0, the boundary value b satisfies

b− dξ ∈ C+ ⊕ C0

for some function ξ on Y . So the term on the last line of (24.37) is non-negative.
It follows that d−a is zero; so a is closed, and represents an element of H 1(X ; R).
If a ∈ ker(B) is exact, then a = df , where f is harmonic and satisfies Neumann
boundary conditions. It follows that a is zero (such an f is constant), so the
map from ker(B) to H 1(X ; R) is injective. To see that it is surjective also, we
recall that any 1-dimensional cohomology class is represented by a coclosed
1-form satisfying 〈a, ν〉 = 0 on the boundary. Such a 1-form is in the kernel of
B, because the projection of a|Y to C is closed and therefore lies in C0. So the
kernel of B and H 1(X ; R) are isomorphic.

Next we identify the cokernel. Let

E = { a ∈ L2
k(X ; T ∗X ) | 〈a, ν〉 = 0 at ∂X }

F = {( f ,ω) ∈ L2
k−1(X ; R⊕�+(X )) | ∫X f = 0 }.

The domain of B is the kernel of the map

D = d∗ ⊕ d+ : E → F ;
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and the operator D is surjective (as follows from Corollary 17.1.5). So the
cokernel of B is isomorphic to the cokernel of

(D, B) : E → F ⊕ C−.

If ( f ,ω, h) is in the cokernel of this last operator, then by considering variations
of a ∈ E supported in the interior, we see that

∗dω + df = 0. (24.38)

By considering a variation a that is non-zero on the boundary, we then see that

∫
Y

a ∧ ω +
∫

Y
a ∧ ∗h = 0

for all a, and hence h = − ∗ (ω|Y ). In particular, ∗(ω|Y ) belongs to C−, and
is orthogonal to the exact 1-forms on Y . Stokes’ theorem now tells us that ∗dω
and df are L2 orthogonal on X ; and so it follows from (24.38) that dω = 0
and df = 0. From the definition of E , we have f = 0. Thus we have identified
coker(B) as

coker(B) ∼= {ω ∈ 	+(X ) | dω = 0, ∗(ω|Y ) ∈ C− }.

Consider now the two subspaces

Z+ = {ω ∈ 	+(X ) | dω = 0, ∗(ω|Y ) ∈ C− }
Z− = {ω ∈ 	−(X ) | dω = 0, ∗(ω|Y ) ∈ C+ }

and let Z = Z+ ⊕ Z−. There is a map

Z → H 2(X ; R)

(ω+,ω−) �→ [ω+ + ω−], (24.39)

which we shall show is injective. So suppose

ω+ + ω− = da.
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Then, much as above,∫
X
|da|2 =

∫
X
ω+ ∧ ω+ −

∫
X
ω− ∧ ω−

=
∫

Y
a ∧ ω+ −

∫
Y

a ∧ ω−

=
∫

Y
〈a, ∗ω+〉 −

∫
Y
〈a, ∗ω−〉

=
∫

Y

〈
$−a −$+a, ∗da

〉
≤ 0,

where ∗ is the Hodge star on Y , and $± are the projections to C±. So ω++ω−
is zero, and ω± are individually zero because they are pointwise orthogonal.

To understand the image of Z in H 2(X ; R), consider first a 2-form ω on
a cylinder R × Y , decomposed into its self-dual and anti-self-dual parts, ω =
ω++ω−. Let η±(t) be the time-dependent 1-forms on Y obtained as ∗(ω±|t×Y ).
Then the equations dω = d∗ω = 0 are equivalent to the conditions that η±(t)
belong to C for all t and satisfy the equations

(d/dt)η+ = ∗dη+, (d/dt)η− = − ∗ dη−.

Now supposeω is a closed and coclosed 2-form on the cylindrical-end manifold
X ∗ = X ∪ [0,∞) × Y , and let η±(t) be defined as above, for t ≥ 0. If ω is
exponentially decaying on the cylindrical end, it follows from the above obser-
vation that η+(0) and η−(0) belong to the negative and positive eigenspaces of
∗d : that is,

η+(0) ∈ C−

η−(0) ∈ C+.

The converse is also true, so the image of Z is the cohomology classes in
H 2(X ∗; R) represented by L2 harmonic forms ω. The space of L2 harmonic
2-forms is isomorphic to I2(X ) in such a way that the cup product pairing Q
corresponds to the pairing

(ω1,ω2) �→
∫

X ∗
ω1 ∧ ω2.
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(See [8].) This form is strictly positive and negative on the images of Z+ and
Z− respectively, because these are the subspaces represented by the self-dual
and anti-self-dual L2 harmonic forms.

Thus we have identified the cokernel of B with Z+ whose (injective) image in
H 2(X ; R) is a maximal positive subspace for the quadratic form Q on I2(X ) ⊂
H 2(X ; R). �

The lemma allows us to identify det(B) in topological terms. After a modi-
fication of this operator, we obtain an operator whose determinant line can be
identified with �(X ), as this corollary explains:

Corollary 24.8.2. The 2-element set �(X ) can be canonically identified with
the set of orientations of the determinant line of the operator

B̃ : { a ∈ L2
k(X ; T ∗X ) | d∗a = 0, d+a = 0, 〈aY , ν〉 = 0 } → C− ⊕ C0

(24.40)

given by restricting the 1-form a to the boundary and projecting onto C−⊕C0.

Proof. The operator B̃ is homotopic to the operator B ⊕ 0, where 0 denotes
the operator {0} → C0 whose determinant line is �maxH 1(Y ; R). The lemma
identifies the determinant of B, and we can fix a particular isomorphism by
using our standard convention for the orientation of a sum of operators. �

The relevance of �(X ) to orienting the moduli spaces on X ∗ is contained in
the next proposition. Before stating it, we need to point out that the definition
of the 2-element orientation set �([b]) for a non-degenerate critical point in
Bσ (Y ) (see Definition 20.3.5) can be extended in a straightforward way to
the case that Y has more than one component: we simply join each bα to a
reducible configuration (with the zero perturbation) and define �([b]) as the
set of orientations of the determinant of the resulting operator. If we have a
chosen ordering of the components, then we can identify �([b]) with the tensor
product of the �([bα]); but in general �([b]) does not depend on an ordering.

Proposition 24.8.3. For any critical point [b], the moduli space M(X ∗, [b]) is
orientable.

(i) If the moduli space is not boundary-obstructed, the orientation double
cover is canonically identified with the product(

�(X )�([b]))×M(X ∗, [b])
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(so that an element of �(X )�([b]) determines an orientation of the moduli
space).

(ii) In the boundary-obstructed case, let Y u ⊂ Y be the union of those com-
ponents Y α for which bα is boundary-unstable, and let �H 0(Y u) be the
set of orientations of H 0(Y u; R). Then the orientation double cover of the
moduli space is canonically identified with(

�(X )�([b])�H 0(Y u)
)×M(X ∗, [b]).

Proof. As we saw in Proposition 24.3.1 the differential of the Seiberg–Witten
equations on the compact manifold with boundary, X , is always a surjective
operator, hence its kernel defines a gauge-invariant vector bundle over the con-
figuration space. This bundle descends to define a vector bundle [ker(DFσ

p )]
on Bσ

k (X , sX ), a subbundle of the tangent bundle. Furthermore, restricted to the
moduli space M(X , sX ), [ker(DFσ

p )] is the tangent bundle of the moduli space.
Let [b0] be a point in Bσ

k−1/2(Y , s) (not necessarily a critical point). The
tangent space T[b0]Bσ

k−1/2(Y , s) is identified with Kσ
k−1/2,b0

. Much as in
Subsection 18.4 the operator Hessσb0

gives a spectral decomposition

Kσ
k−1/2,b0

= K+(Y )⊕K−(Y )

where the generalized eigenspaces with purely imaginary eigenvalue go in
the second summand. Choose a configuration γ0 on X extending b0. The
composition

$− ◦Dγ0 r : ker(DγFσ
p )→ K−(Y ) (24.41)

is a Fredholm operator by Proposition 24.3.2.

Definition 24.8.4. Define �γ0(X , [b0], q) to be the set of orientations of the
determinant line of the operator (24.41). ♦

Because the space of perturbations is contractible, �γ0(X , [b0], q) is well-
defined: it does not depend on p, only on q. Furthermore if γs is a continuous
family of configurations with boundary value b0, parametrized by a space S,
then the sets �γs(X , b0, q) form a double cover of S: their union has a natural
topology (see Subsection 20.2). The proof of the following lemma is similar to
the case of the cylinder and is omitted.

Lemma 24.8.5. Let γ be a configuration on X∼ = X ∪ [0, 1] × Y ,

γ ∈ Cσ (X ∪ [0, 1] × Y , sX ),
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and let b0 and b1 be its restrictions to {0} × Y and {1} × Y . Let γ0 be the
restriction of γ to X , and let γ1 be the path arising from the restriction of γ to
[0, 1] × Y . Then we have the following product rule:

�γ (X
∼, [b1], q1) = �γ0(X , [b0], q0)�γ1([b0], q0, [b1], q1)

where �γ1([b0], q0, [b1], q1) is as defined in Definition 20.3.1. The product
depends continuously on γ and is compatible with the product rule (20.9), in
that it satisfies the natural associativity law in this setting. �

This �γ (X , [b], q) is related to �(X ), via Corollary 24.8.2:

Lemma 24.8.6. If both b0 and γ0 are reducible and q = 0 then there is a
canonical isomorphism

�[γ0](X , [b0], 0) ∼= �(X ), (24.42)

which is continuous in [γ0].
Proof. After a standard homotopy the operator (24.41) becomes a direct sum
of a complex-linear operator and the operator B̃ of equation (24.40) thought of
as acting on purely imaginary rather than real forms. So the result follows from
Corollary 24.8.2. �

Corollary 24.8.7. For any [b] and q, the double cover of Bσ
k (X ; [b]) obtained

from �[γ ](X ; [b], q) is trivial, and is isomorphic to the product(
�(X )�([b], q))× Bσ

k (X ; [b]).

The isomorphism is compatible with composition.

Proof. In the case that [b0] is reducible and q = 0, we obtain from the preceding
lemma an isomorphism of the double cover obtained from �[γ ](X ; [b0], 0) with
the product

�(X )× Bσ
k (X ; [b0]),

because Bσ
k (X ; [b0]) deformation-retracts onto the reducible locus s = 0.

The general case then follows from the composition law and the definition
of �([b], q) in Definition 20.3.5. �

We can now complete the proof of Proposition 24.8.3, which is similar to the
proof of Corollary 20.4.1. The device is to replace X by X∼ = X ∪ ([0, T ]×Y )
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for large T , and regard the moduli space on X ∗ as a fiber product of the moduli
spaces on X∼ and [T ,∞)× Y . Given [γ ] in the moduli space M(X ∗; [b]), let
([γ0], [γ1]) be the corresponding elements of the fiber product, and [b′] their
common boundary value. If T is sufficiently large, then [γ1] is approximately
constant, and the tangent space to the moduli space M([0, T ] × Y ; [b]) maps
to a subspace approximating K+(Y ) at b′. When the fiber product is transverse
(i.e. when the moduli space is not boundary-obstructed), this identifies the kernel
of the (surjective) operator (24.41) with the tangent space to the moduli space,
and so identifies the two orientation sets as required.

In the boundary-obstructed case, we can decompose the domain and
codomain of the operator (24.41) into the reducible part and the (finite-
dimensional) normal part. The operator on the reducible part is surjective, with
kernel approximating the tangent space to the moduli space. The normal part
of the operator is the operator

R →
⊕
α

R

1 �→ (1, . . . , 1),

(24.43)

where the sum is over all α for which bα is boundary-unstable. To be explicit,
we take the element 1 ∈ R on the left-hand side to be −∂/∂s, the outward
normal to the boundary of Bσ

k (X ) at the reducibles. (Recall here that, unlike
Y , the 4-manifold X is supposed to be connected.) We take “1” in the αth
component on the right to be the outward normal in Bσ

k−1/2(Y
α). To orient

�(X )�([b]) ×M(X ∗; [b]), we need to choose an orientation for the cokernel
of the map (24.43). The codomain of this operator is H 0(Y u). An orientation
for H 0(Y u) determines an orientation for the quotient H 0(Y u)/R by our usual
“fiber-first” convention. �

25 Maps from cobordisms

25.1 Moduli spaces on cobordisms

At this point, we switch our attention back to the situation in which W is
an oriented cobordism between a pair of non-empty, connected 3-manifolds.
Departing from our earlier terminology, we shall call the incoming and outgoing
boundaries Y− and Y+ respectively. We continue to suppose that a Riemannian
metric on W is given, and that the metric is cylindrical in collar neighborhoods
of the boundary components. Because the boundary of W is now−Y− Y+, we
have to make some adjustments to the notation of the previous section, in which
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Y = ∐
Y α was the oriented boundary of W . We recap some of the definitions

and results, with the appropriate alterations to our notation.
We suppose that admissible perturbations q± are given for Y±. We write the

manifold W ∗ with two cylindrical ends as

W ∗ = (−∞, 0] × Y− ∪W ∪ [0,∞)× Y+.

We again adopt the convention that

Bσ
k−1/2(Y−) =

⋃
s−

Bσ
k−1/2(Y−, s−)

Bσ
k−1/2(Y+) =

⋃
s+

Bσ
k−1/2(Y+, s+).

Given critical points [a] ∈ Bσ
k−1/2(Y−) and [b] ∈ Bσ

k−1/2(Y+) for the perturbed
Chern–Simons–Dirac functionals, we have a moduli space

M([a], W ∗, [b]) ⊂ Bσ
k,loc(W

∗)

=
⋃
sW

Bσ
k,loc(W

∗, sW ).

This moduli space decomposes as a union of pieces corresponding to the
different homotopy classes of W -paths, and we write⋃

sW

M([a], W ∗, sW , [b]) =
⋃

z

Mz([a], W ∗, [b]),

where z runs through π([a], W , [b]) (see Definition 23.3.2). Adapting Defini-
tion 24.4.4 to account for the altered orientation of Y−, we say that the moduli
space is boundary-obstructed (with corank 1) if [a] is boundary-stable and [b]
is boundary-unstable. This is just as in the cylindrical case. We assume that a
perturbation p = (p−, p+) is chosen in the collars of Y± so that the moduli
spaces are regular.

We adopt the notation grz([a], W , [b]) in place of grz(W , [b]) now.
This agrees with the dimension of the moduli space, except in the
boundary-obstructed case, when the dimension of the moduli space is larger
by 1.

There is a compactification of M([a], W ∗, [b]) using broken trajectories:
it is the specialization of the moduli space M+(X ∗, [b]) to the case of
a cobordism, and we denote it by M+([a], W ∗, [b]). It consists of triples
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([γ̆−], [γ0], [γ̆+]), where

[γ̆−] ∈ M̆+([a], [a0])
[γ̆+] ∈ M̆+([b0], [b])
[γ0] ∈ M([a0], W ∗, [b0]).

(So [γ̆±] are both possibly broken trajectories, each with any number of
components, including zero.) There is also the smaller compactification,
M̄([a], W ∗, [b]), which is the image of M+([a], W ∗, [b]) in Bσ

k,loc(W
∗) (see

Definition 24.6.9).
We spell out the statement of Proposition 24.6.10 in this case, to classify

the codimension-1 strata in M+
z ([a], W ∗, [b]), in the case that the moduli space

contains irreducibles.

Proposition 25.1.1. Suppose Mz([a], W ∗, [b]) contains irreducible solutions
and has dimension d. Then both M+

z ([a], W ∗, [b]) and M̄z([a], W ∗, [b]) are
d-dimensional spaces stratified by manifolds, with top stratum the irreducible
part of Mz([a], W ∗, [b]). The (d −1)-dimensional stratum in M+

z ([a], W ∗, [b])
consists of elements of the types

M̆−1 ×M0 (25.1a)

M0 × M̆1 (25.1b)

M̆−2 × M̆−1 ×M0 (25.1c)

M̆−1 ×M0 × M̆1 (25.1d)

M0 × M̆1 × M̆2, (25.1e)

and finally

M red
z ([a], W ∗, [b]) (25.1f )

in the case that the moduli space contains both reducibles and irreducibles.
We have used M0 to denote a typical moduli space on W ∗, and M̆−n and M̆n

(n > 0) to denote typical unparametrized moduli spaces on Y− and Y+ (which
change from line to line). In the strata with three factors, the middle factor is
boundary-obstructed .

The image of one of the above strata has codimension 1 in the smaller com-
pactification M̄([a], W ∗, [b]) when the unparametrized moduli spaces on the
cylinder, M̆−1, M̆1 etc., are all 1-dimensional. �
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Remark. To clarify the description of the strata, M̆−1 × M0 in the first of the
five cases is an abbreviation for a stratum of the form

M̆z−1([a], [a0])×Mz0([a0], W ∗, [b]).

In the first five cases, if any of the moduli spaces contain both reducibles and
irreducibles, only the top stratum is really codimension-1.

If we take W to be a cylinder I × Y , so that W ∗ is R × Y , then the space
M+([a], W ∗, [b]) is a compactification of the ordinary moduli space of trajec-
tories M([a], [b]) on the cylinder, a compactification we can call M+([a], [b]).
This is distinct from the compactification M̆+([a], [b]) of the moduli space
of unparametrized trajectories that we previously studied in Subsection 16.1.
In the cylindrical case, the classification (25.1) is essentially the same as the
classification of codimension-1 strata given in Proposition 16.5.5, for the space
M̆+([a], [b]). In both cases, the statement is that the strictly broken trajectories
which contribute to the codimension-1 strata either have two components, or
have three components of which the middle one is boundary-obstructed. In the
case of M+([a], [b]), one factor in each product is a parametrized moduli space
and the others are unparametrized.

25.2 Orientations and cobordisms

Because the orientation sets �(Y ; [a]) and �(−Y ; [a]) are not canonically iso-
morphic (see Subsection 22.5), the orientation for moduli spaces on cobordisms
requires a few words. For critical points [a] and [b] on Y− and Y+, we denote
by �([a]) and �([b]) their usual orientation sets; we put the manifold into our
notation for emphasis:

�([a]) = �(Y−; [a])
�([b]) = �(Y+; [b]).

We can regard W either as a cobordism from Y− to Y+, or as simply a manifold
with boundary – a cobordism from the empty set to−Y− Y+; and according to
Definition 3.4.1, the appropriate notion of homology orientation is different in
the two cases. To temporarily distinguish the two cases, let us write W ′′ for W
regarded in the latter sense, with two “outgoing” boundary components. Then
Definition 3.4.1 gives the relationship:

�(W ) = �(Y−)�(W ′′). (25.2)
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Because the boundary of W ′′ is−Y− Y+, Proposition 24.8.3 tells us that the
moduli space M([a], (W ′′)∗, [b]) is canonically oriented by a choice of element
from the orientation set

�(W ′′)�(−Y−  Y+; [a]  [b]), (25.3)

which we can identify with

�(−Y−; [a])�(W ′′)�(Y+; [b])

by writing the operator on (−Y−  Y+) × R as a direct sum, using the given
ordering of the two components. (In the boundary-obstructed case, Proposi-
tion 24.8.3 tells us that we also need to orient H 0(Y ), or equivalently choose an
ordering of the two components. We choose the order with Y− first.) Using the
isomorphism of Definition 22.5.3 and the relation (25.2) above, we can write
this as

�([a])�(W )�([b]).

We therefore have:

Proposition 25.2.1. A regular moduli space M([a], W ∗, [b]) on the cobordisms
W with cylindrical ends is canonically oriented by a choice of element λ from
the 2-element set �([a])�(W )�([b]), where �(W ) is the set of homology
orientations of the cobordism, in the sense of Definition 3.4.1, and �([a]),
�([b]) are as defined in Definition 20.3.5. �

Suppose now that we choose trivializations of �(a), �(b) and �(W ), so as
to orient the moduli space Mz([a], W ∗, [b]) and also (using the product rule)
the lower strata such as (25.1) in the compactification M+

z ([a], W ∗, [b]). As
long as the moduli space contains irreducibles, the compactification either
is a manifold with boundary or has a codimension-1 δ-structure along the
strata (25.1) by Theorem 24.7.2. We can therefore ask whether the orienta-
tions of these codimension-1 strata are the boundary orientation. The answer
is given by the next proposition, whose proof follows the same lines as that of
Proposition 20.5.2.

Proposition 25.2.2. Suppose that Mz([a], W ∗, [b]) contains irreducibles, so
that M+

z ([a], W ∗, [b]) is a space stratified by manifolds with top stratum
Mz([a], [b]). Let M ′ be a codimension-1 stratum of M+

z ([a], W ∗, [b]) of one
of the five forms given in the first five cases of (25.1). Then the canonical
orientation of M ′ differs from the boundary orientation by the sign
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(i) 1,
(ii) (−1)dim(M0)+1,

(iii) (−1)dim(M−1),
(iv) (−1),
(v) (−1)dim(M0)

respectively. �

As in Subsection 20.6, which dealt with the moduli spaces of reducible
solutions on the cylinder, we can also consider the compactification
M red+

z ([a], W ∗, [b]) of the moduli space M red
z ([a], W ∗, [b]) of reducible solu-

tions on a general cobordism. This is a space stratified by manifolds, and the
codimension-1 strata are of one of the two forms

M red
0 × M̆ red

1

M̆ red−1 ×M red
0 ,

in the same notation as above. Once again, we can compare the canonical
orientations of these strata with their boundary orientations, as we did in
the cylindrical case in Subsection 20.6. In particular, with straightforward
modifications, Lemma 20.6.4 still holds.

25.3 Chain maps

Let W again be a cobordism from Y− to Y+, as above. In order to use the moduli
spaces Mz([a], W ∗, [b]) to define chain maps between the Floer complexes of
Y− and Y+, we need a finiteness result, along the lines of Proposition 16.4.3.
This lemma is merely a reformulation of Proposition 24.6.6, adapted to the case
of a cobordism between connected manifolds:

Lemma 25.3.1. For any [a] and d0 and i0, there are only finitely many pairs
(z, [b]) such that

(i) the moduli space M+
z ([a], W ∗, [b]) is non-empty;

(ii) the dimension of the moduli space is at most d0; and
(iii) ι([b]) ≥ i0, where ι is as defined in (16.2).

�

As pointed out in the remark following Proposition 24.6.6, the need for a
bound on ι is also the reason that we need to form a completion of the Floer
groups before proceeding further. Recall that ĤM•(Y ) (for example) is formed
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from ĤM∗(Y ) by negative completion, in the sense of Definition 3.1.3. As in
that definition, let us choose an element js in J(Y , s) for each s with c1(s)

torsion, and let us filter J(Y ) by the decreasing sequence of subsets

J(Y )[n] = {js − m | s a spinc structure and m ≥ n }.

Then the lemma above has the equivalent formulation:

Lemma 25.3.2. For any [a] and d0 and n, there are only finitely many pairs
(z, [b]) such that

(i) the moduli space M+
z ([a], W ∗, [b]) is non-empty;

(ii) the dimension of the moduli space is at most d0; and
(iii) the grading of [b] does not belong to J(Y )[n].

�

We can use negative completion at the chain level also, and indicate it always
by the • notation. Thus we introduce the chain group Ĉ•(Y ) and so on. We will
also understand that a sum over all spinc structures is implied. Thus:

Ĉ•(Y ) =
⊕

s

Ĉ•(Y , s).

With these remarks out of the way, let us recall that our aim is to define mapŝ

HM•(u |W ;�W ) :

̂

HM•(Y−;�−)→

̂

HM•(Y+;�+)

ĤM•(u |W ;�W ) : ĤM•(Y−;�−)→ ĤM•(Y+;�+)

HM•(u |W ;�W ) : HM•(Y−;�−)→ HM•(Y+;�+)

associated to a triple (u, W ,�W ), where W is a cobordism with a homology
orientation, u is a cohomology class on Bσ

k (W ), and �W is a W -morphism of
local systems. (See Subsections 23.2 and 23.3.) Using these “generalized cap
products”, we can then define the promised cap products

� : H∗(Bσ (Y ); R)⊗

̂

HM•(Y ;�)→

̂

HM•(Y ;�)

� : H∗(Bσ (Y ); R)⊗ ĤM•(Y ;�)→ ĤM•(Y ;�)

� : H∗(Bσ (Y ); R)⊗ HM•(Y ;�)→ HM•(Y ;�)
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by taking W to be the cylinder I × Y with its canonical homology orientation,
and using the formulae

u � ξ =

̂

HM•(u | I × Y ; 1)(ξ)

etc.
To construct these maps, and the corresponding generalized cup products on

Floer cohomology, we make use of the compact moduli space M̄z([a], W ∗, [b]).
From its definition (see Definition 24.6.9 and the end of Subsection 25.1), we
have inclusions

Mz([a], W ∗, [b]) ⊂ M̄z([a], W ∗, [b]) ⊂ Bσ
k,loc(W

∗).

The ambient space Bσ
k,loc(W

∗) has the same cohomology ring as Bσ (W ) (and
the same weak homotopy type), so we will regard u as a cohomology class on
Bσ

k,loc(W
∗).

Fix a positive integer d0, and consider all triples (z, [a], [b]) for which the
moduli space Mz([a], W ∗, [b]) or M red

z ([a], W ∗, [b]) has dimension d0 or less.
The compactifications M̄z([a], W ∗, [b]) and M̄ red

z ([a], W ∗, [b]) form a locally
finite collection of closed subsets of Bσ

k,loc(W
∗), so we can apply Lemma 21.2.1:

every open cover of Bσ
k,loc(W

∗) has a refinement transverse to all strata in all

compactified moduli spaces M̄ and M̄ red of dimension at most d0. We can
therefore compute the cohomology of Bσ

k,loc(W
∗) using Čech cochains carried

by open covers U that are transverse to all these moduli spaces. Let U be such
an open cover of Bσ

k,loc(W
∗), and let

u ∈ Cd (U ; R)

be a Čech cochain, with d ≤ d0. Here R is a commutative ring. If
Mz([a], W ∗, [b]) has dimension d , then there is a well-defined evaluation as
in (21.3), 〈

u, [Mz([a], W ∗, [b])] 〉 ∈ Hom(R�[a], R�(W )⊗ R�[b]),

where ⊗ denotes tensor product over R and Hom means homomorphisms of
R-modules. (Recall here that the moduli space is canonically oriented by a
choice of element in �[a]�(W )�[b].) Fix a homology orientation µW for the
cobordism, so that we can regard the above evaluation as〈

u, [Mz([a], W ∗, [b])] 〉 ∈ Hom(R�[a], R�[b]).



516 VII Cobordisms and invariance

As usual, we define the above evaluation to be zero if the dimension of the
moduli space is not d . Now let �− and �+ be local systems of R-modules
on Bσ (Y−) and Bσ (Y−), and let �W be a W -morphism between them (see
Definition 23.3.1 and the remarks following). We define operators, for d ≤ d0,

mo
o : Cd (U ; R)⊗ Co• (Y−;�−)→ Co• (Y+;�+)

mo
s : Cd (U ; R)⊗ Co• (Y−;�−)→ Cs•(Y+;�+)

mu
o : Cd (U ; R)⊗ Cu• (Y−;�−)→ Co• (Y+;�+)

mu
s : Cd (U ; R)⊗ Cu• (Y−;�−)→ Cs•(Y+;�+)

by

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

mo
o(u⊗−) =

∑
[a]∈Co(Y−)[b]∈Co(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z)

mo
s (u⊗−) =

∑
[a]∈Co(Y−)[b]∈Cs(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z)

mu
o(u⊗−) =

∑
[a]∈Cu(Y−)[b]∈Co(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z)

mu
s (u⊗−) =

∑
[a]∈Cu(Y−)[b]∈Cs(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z),

(25.4)

where in each case the sum extends over all z in π([a], W ∗, [b]). Lemma 25.3.2
assures us that these sums, although potentially infinite, are well-defined on the
completions.

We similarly define operators on the reducible part of the Floer complexes:
we have an operator

m̄ : Cd (U ; R)⊗ C̄•(Y−;�−)→ C̄•(Y+;�+)

m̄ =
[

m̄s
s m̄u

s
m̄s

u m̄u
u

]
,

(25.5)
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where

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

m̄s
s(u⊗−) =

∑
[a]∈Cs(Y−)[b]∈Cs(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z)

m̄u
u(u⊗−) =

∑
[a]∈Cu(Y−)[b]∈Cu(Y+)

∑
z

(−1)d 〈 u, [Mz([a], W ∗, [b])] 〉�W (z)

m̄s
u(u⊗−) =

∑
[a]∈Cs(Y−)[b]∈Cu(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z)

m̄u
s (u⊗−) =

∑
[a]∈Cu(Y−)[b]∈Cs(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z).

(25.6)

Remarks. Compare these with the formulae (22.6), (22.7), and note that,
as with ∂̄u

s and ∂u
s , the two maps m̄u

s and mu
s have the same domain and

range but are defined using different moduli spaces. For m̄u
s , we have ori-

ented M red
z ([a], W ∗, [b]) as the boundary of Mz([a], W ∗, [b]), as in Defini-

tion 20.6.1, and the non-zero contributions to the sum come from moduli spaces
Mz([a], W ∗, [b]) of dimension d +1: compare with the definition of ε̄[γ ] in the
similar case. Note that m̄u

s is a map

m̄u
s : Cd (U ; R)(Y−;�−)⊗ Cu

k+1(Y−;�−)→ Cs
k−d (Y+;�+),

which is as it should be: see (22.17). In the case of m̄u
u, the sign (−1)d is

explained by Item (iii) of Lemma 20.6.4. (See also the remark at the end of
Subsection 25.2.)

We now put together these various pieces to define operators on the complexes
Č and Ĉ.

Definition 25.3.3. On Č• = Co• ⊕ Cs•, we define

m̌ : Cd (U ; R)⊗ Č•(Y−;�−)→ Č•(Y+;�+),

for d ≤ d0, by the formula

m̌ =
[

mo
o −mu

o∂̄
s
u(Y−)− ∂u

o (Y+)m̄s
u

mo
s m̄s

s − mu
s ∂̄

s
u(Y−)− ∂u

s (Y+)m̄s
u

]
,
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in which ∂u
o (Y+), for example, denotes the operator ∂u

o on Y+. On Ĉ• = Co•⊕Cu• ,
we define

m̂ : Cd (U ; R)⊗ Ĉ•(Y−;�−)→ Ĉ•(Y+;�+)

by the formula

m̂ =
[

mo
o mu

o
m̄s

u∂
o
s (Y−)σ − ∂̄s

u(Y+)mo
s m̄u

uσ + m̄s
u∂

u
s (Y−)σ − ∂̄s

u(Y+)mu
s

]
,

where σ is the sign operator (−1)d on Cd (U ; R)⊗ C•. ♦

These operators, together with m̄, will define the generalized cup products.
Note the similarity of the formulae to the definitions of the differentials ∂̂ and ∂̌

in Definition 22.1.3. The main task of this subsection is to establish the following
proposition.

Proposition 25.3.4. The operators m̌, m̂ and m̄ satisfy the identities:⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(−1)d ∂̌(Y+)m̌

(
u⊗ ξ̌

)
= −m̌

(
δu⊗ ξ̌

)
+ m̌

(
u⊗ ∂̌(Y−)ξ̌

)
(−1)d ∂̂(Y+)m̂

(
u⊗ ξ̂

)
= −m̂

(
δu⊗ ξ̂

)
+ m̂

(
u⊗ ∂̂(Y−)ξ̂

)
(−1)d ∂̄(Y+)m̄

(
u⊗ ξ̄

) = −m̄
(
δu⊗ ξ̄

)+ m̄
(
u⊗ ∂̄(Y−)ξ̄

) (25.7)

for u ∈ Cd (U ; R), ξ̌ ∈ Č•(Y ;�−) etc. and d ≤ d0 − 1. Thus they give rise to
operators ⎫⎪⎪⎪⎬⎪⎪⎪⎭

m̌ : Ȟ d (U ; R)⊗

̂

HMj(Y−;�−)→

̂

HMk−d (Y+;�+)

m̂ : Ȟ d (U ; R)⊗ ĤMj(Y−;�−)→ ĤMk−d (Y+;�+)

m̄ : Ȟ d (U ; R)⊗ HMj(Y−;�−)→ HMk−d (Y+;�+)

(25.8)

for any open cover U of Bτ
k,loc(W

∗) transverse to all the moduli spaces of
dimension less than or equal to d0.

The operators m̌, m̂ and m̄ at the level of homology commute with the refine-
ment maps when we refine an open cover. We can therefore take a limit: we
obtain operators

m̌ : H d (Bσ (W ); R)⊗

̂

HMj(Y−;�−)→

̂

HMj−d (Y+;�+)

m̂ : H d (Bσ (W ); R)⊗ ĤMj(Y−;�−)→ ĤMj−d (Y+;�+)

m̄ : H d (Bσ (W ); R)⊗ HMj(Y−;�−)→ HMj−d (Y+;�+)
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by taking the limit of the operators (25.8) over all open covers of Bσ
k,loc(W

∗)
transverse to the moduli spaces, and identifying the Čech cohomology
Ȟ d (Bσ

k,loc(W
∗); R) with H d (Bσ (W ); R). To obtain the generalized cup prod-

ucts, we need to dualize these definitions, so creating operators

m̌∗(u⊗−) : Ȟ d (U ; R)⊗

̂

HM •(Y+;�+)→

̂

HM •(Y−;�−)

together with m̂∗ and m̄∗. At the chain level, m̌∗ for example is defined by a
2-by-2 matrix whose top left entry is the operator

(mo
o)
∗ : Cd (U ; R)⊗ (Co)•(Y+;�+)→ (Co)•(Y−;�−)

defined by

(mo
o)
∗(u⊗−) =

∑
[a]∈Co(Y−)[b]∈Co(Y+)

∑
z

〈
u, [Mz([a], W ∗, [b])] 〉�W (z−1).

The definitions of the generalized cap products

̂
HM•(u |W ;�W ) and its rela-

tives are obtained directly from those of the operators m̌ etc. with only a change
of notation:

Definition 25.3.5. Let W be a cobordism from Y− to Y+, equipped with a
Riemannian metric and a perturbation p, chosen to make the moduli spaces
regular, as above. Let u be an element of H d (Bσ (W ); R), and let µW be a
homology orientation of W . Let �W : �− → �+ be a morphism of local
coefficient systems. Then we definê

HM•(u |W ;�W ) :

̂

HM•(Y−;�−)→

̂

HM•(Y+;�+)

ĤM•(u |W ;�W ) : ĤM•(Y−;�−)→ ĤM•(Y+;�+)

HM•(u |W ;�W ) : HM•(Y−;�−)→ HM•(Y+;�+)

as the operators

m̌(u⊗−)

m̂(u⊗−)

m̄(u⊗−)
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respectively. The dual map m̌∗(u ⊗ −) defines a homomorphism between the
Floer cohomology groups in the same way,̂

HM •(u |W ;�W ) :

̂

HM •(Y+;�+)→

̂

HM •(Y−;�−)

ĤM •(u |W ;�W ) : ĤM •(Y+;�+)→ ĤM •(Y−;�−)

HM •(u |W ;�W ) : HM •(Y+;�+)→ HM •(Y−;�−),

as the limit of the operators

m̌∗(u⊗−)

m̂∗(u⊗−)

m̄∗(u⊗−)

over open covers. ♦

The proof of Proposition 25.3.4 proceeds rather like the proof that ∂̌2, ∂̂2

and ∂̄2 are zero. The first lemma is similar to Lemma 22.1.5. In the formulae
below, we write ∂o

o for example, without indicating any more whether this is
the operator for Y− or Y+, since the formulae never allow any ambiguity.

Lemma 25.3.6. We have the following identities for any open cover U trans-
verse to the moduli spaces of dimension d0 or less. In these formulae, σ is again
the sign operator (−1)d on Cd (U)⊗C•. On the right-hand sides, δ is the Čech
coboundary operator, δ : Cd (U ; Z)→ Cd+1(U ; Z).

(i) mo
o∂

o
o − ∂o

o mo
oσ − mu

o∂̄
s
u∂

o
s − ∂u

o m̄s
u∂

o
s + ∂u

o ∂̄
s
umo

sσ = mo
o(δ ⊗ 1).

(ii) mo
s∂

o
o − ∂o

s mo
oσ + m̄s

s∂
o
s − ∂̄s

s mo
sσ − mu

s ∂̄
s
u∂

o
s − ∂u

s m̄s
u∂

o
s + ∂u

s ∂̄
s
umo

sσ =
mo

s (δ ⊗ 1).

(iii) mo
o∂

u
o−∂o

o mu
oσ−mu

o∂̄
u
u−∂u

o m̄u
u−mu

o∂̄
s
u∂

u
s −∂u

o m̄s
u∂

u
s +∂u

o ∂̄
s
umu

sσ = mu
o(δ⊗1).

(iv) m̄u
s+mo

s∂
u
o−∂o

s mu
oσ+m̄s

s∂
u
s −∂̄s

s mu
sσ−mu

s ∂̄
u
u−∂u

s m̄u
u−mu

s ∂̄
s
u∂

u
s −∂u

s m̄s
u∂

u
s +

∂u
s ∂̄

s
umu

sσ = mu
s (δ ⊗ 1).

Proof. The four parts are each proved by considering a moduli space
Mz([a], W ∗, [b]) of dimension d + 1 whose interior consists of irreducible
trajectories. As in Lemma 22.1.5, the four parts correspond to the four possibil-
ities for the type of the critical points [a] and [b]. In each case, the identity is the
result of applying our version of Stokes’ theorem (21.4) to the compactification
M̄z([a], W ∗, [b]) in Bσ

k,loc(W
∗). As in the previous proof, when u is fixed, the
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four operators on the left-hand sides of the identities are operators

B1 : Co(Y−;�−)→ Co(Y+;�+)

B2 : Co(Y−;�−)→ Cs(Y+;�+)

B3 : Cu(Y−;�−)→ Co(Y+;�+)

B4 : Cu(Y−;�−)→ Cs(Y+;�+),

and each is a sum

Bi =
∑

Bi
[a],[b],z ⊗ �W (z),

where

Bi
[a],[b],z : R�[a] ⊗ �−[a] → R�[b] ⊗ �+[b].

The sum is taken over all [a], [b] and z of the appropriate type.
For the first of the four identities, we consider the case that [a], [b] are

both irreducible. Let Mz([a], W ∗, [b]) be such a (d + 1)-dimensional moduli
space, and let M̄z([a], W ∗, [b]) be the compactification in Bσ

k,loc(W
∗). It is

convenient again to choose trivializations of �[a] and �[b], so that the top
stratum Mz([a], W ∗, [b]) is oriented. Because d ≤ d0 − 1, our transversality
condition for the open cover means that there is a well-defined evaluation〈

δu, Mz([a], W ∗, [b])〉 ∈ R. (25.9)

The right-hand side of the identity in the first part of the lemma is the sum〈
δu, Mz([a], W ∗, [b])〉�W (z).

Using Stokes’ theorem (21.4), we can express (25.9) as∑
β

δβ
〈
u, N d

β

〉
(25.10)

where the sum is over all components of the d -dimensional stratum, and δβ is the
boundary multiplicity (Definition 21.1.1). The lemma is proved by identifying
the sum (25.10) with the component Bi

[a],[b],z of Bi, regarded now as an element
of R using the fixed orientations.

To deal correctly with the boundary multiplicities it is simplest to pull
back the calculation to the larger compactification M+

z ([a], W ∗, [b]), using the
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quotient map

v : M+
z ([a], W ∗, [b])→ M̄z([a], W ∗, [b]).

The image under v of any stratum of M+
z ([a], W ∗, [b]) is contained in strata

of equal or lower dimension in M̄z([a], W ∗, [b]); so the pull-back of the open
cover U is an open cover U+ of M+

z ([a], W ∗, [b]) that is transverse to all
strata. We denote the pull-back cochain by u+. We have Stokes’ theorem on
M+

z ([a], W ∗, [b]), in the form∑
β

δ+β
〈
u+, (N+)d

β

〉 = 〈
δu+, Mz([a], W ∗, [b])〉

= 〈
δu, Mz([a], W ∗, [b])〉 (25.11)

where (N+)d
β runs through those components of the d -dimensional stratum of

M+
z ([a], W ∗, [b]) whose image in M̄z([a], W ∗, [b]) is also d-dimensional: the

contribution from the other d -dimensional components of M+
z ([a], W ∗, [b])

is zero, because U is transverse to the stratification of M̄z([a], W ∗, [b]). The
boundary multiplicities δ+β will all be ±1.

The components of the codimension-1 stratum N d are already described by
Proposition 25.1.1, (25.1a)–(25.1e). The case (25.1f) does not occur because
[a], [b] are not reducible. Note that the d that appears in Proposition 25.1.1 is
now d + 1. Consider a stratum of the type (25.1a) in M+

z ([a], W ∗, [b]). This is
a stratum of the form

(N+)d = M̆z−1([a], [a0])×Mz0([a0], W ∗, [b]), (25.12)

where the second factor is d -dimensional and the first (unparametrized) moduli
space is 0-dimensional – a finite set. The image of (25.12) in M̄z([a], W ∗[b]) is
the second factor. Give (25.12) its canonical orientation, determined by the cho-
sen trivializations of �[a] and �[b] and �(W ). According to Theorem 24.7.2
and Proposition 25.2.2, the space M+

z ([a], W ∗, [b]) is a C0 manifold with
boundary along (25.12), and the canonical orientation agrees with the boundary
orientation. Thus the boundary multiplicity of each connected component of
(25.12) in the stratified space M+

z ([a], W ∗, [b]) is 1. The critical point [a0]must
be irreducible; and as [a0] runs through all irreducible critical points, the total
contribution to the left side of (25.11) is∑

[a0],z−1

ε([a], [a0])
〈
u, Mz0([a0], [b])

〉
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which is the component of mo
o∂

o
o from R�[a] to R�[b]. This gives the first

term in the first identity. The remaining four terms on the left-hand side of
the first identity arise from the four remaining types of codimension-1 strata,
(25.1b)–(25.1e).

The other three identities in the lemma are all treated the same way. In
the case of the fourth identity, the moduli space Mz([a], W ∗, [b]), with [a]
boundary-unstable and [b] boundary-stable, contains both irreducibles and
reducibles. There is therefore an extra term to consider, corresponding to the
case (25.1f) in Proposition 25.1.1: this extra term is the first term in the fourth
identity. �

Lemma 25.3.7. The identity of Proposition 25.3.4 holds in the case of m̄: in
terms of the four components of m̄, we have

−m̄s
s∂̄

s
s + ∂̄s

s m̄s
sσ − m̄u

s ∂̄
s
u + ∂̄u

s m̄s
uσ = −m̄s

s(δ ⊗ 1)

−m̄s
s∂̄

u
s + ∂̄s

s m̄u
sσ − m̄u

s ∂̄
u
u + ∂̄u

s m̄u
uσ = −m̄u

s (δ ⊗ 1)

−m̄s
u∂̄

s
s + ∂̄s

um̄s
sσ − m̄u

u∂̄
s
u + ∂̄u

u m̄s
uσ = −m̄s

u(δ ⊗ 1)

−m̄s
u∂̄

u
s + ∂̄s

um̄u
sσ − m̄u

u∂̄
u
u + ∂̄u

u m̄u
uσ = −m̄u

u(δ ⊗ 1).

Proof. As with Lemma 22.1.6, this lemma is parallel to the previous one, but
involves the reducible moduli spaces. �

Proof of Proposition 25.3.4. We have just verified the identity for m̄ in the
preceding lemma; and the identities for m̌ and m̂ proceed quite formally from
the case of m̄ and the identities of Lemma 25.3.6. Let us examine the identity
to be proved for m̌: we can write it as

−m̌∂̌ + ∂̌m̌σ + m̌(δ ⊗ 1) = 0.

We again use the decomposition Č = Co ⊕ Cs to write the left side in 2-by-2
matrix form. For illustration, let us show that the top right matrix entry is
zero, as asserted. From the definitions of m̌ and ∂̌ , we calculate the top right
entry as

mo
o∂

u
o ∂̄

s
u + mu

o∂̄
s
u∂̄

s
s + ∂u

o m̄s
u∂̄

s
s − mu

o∂̄
s
u∂

u
s ∂̄

s
u − ∂u

o m̄s
u∂

u
s ∂̄

s
u

− ∂o
o mu

o∂̄
s
uσ − ∂o

o∂
u
o m̄s

uσ − ∂u
o ∂̄

s
um̄s

sσ + ∂u
o ∂̄

s
umu

s ∂̄
s
uσ + ∂u

o ∂̄
s
u∂

u
s m̄s

uσ

− mu
o∂̄

s
u(δ ⊗ 1)− ∂u

o m̄s
u(δ ⊗ 1).
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Using the identity ∂̄u
u ∂̄

s
u = −∂̄s

u∂̄
s
s , and adding and subtracting a term ∂u

o m̄u
u∂̄

s
u,

we rewrite this as

(mo
o∂

u
o − mu

o∂̄
u
u − mu

o∂̄
s
u∂

u
s − ∂u

o m̄s
u∂

u
s − ∂o

o mu
oσ + ∂u

o ∂̄
s
umu

sσ − ∂u
o m̄u

u)∂̄
s
u

+ ∂u
o (m̄

u
u∂̄

s
u + m̄s

u∂̄
s
s − ∂̄s

um̄s
sσ)+ ∂u

o ∂̄
s
u∂

u
s m̄s

uσ − ∂o
o∂

u
o m̄s

uσ

− mu
o(δ ⊗ 1)∂̄s

u − ∂u
o m̄s

u(δ ⊗ 1).

The terms on the first line cancel with the first term on the last line, because of
the third identity in Lemma 25.3.6. Adding and subtracting a term ∂u

o ∂̄
u
u m̄s

uσ to
and from the remainder, we obtain

∂u
o (m̄

u
u∂̄

s
u + m̄s

u∂̄
s
s − ∂̄s

um̄s
sσ − ∂̄u

u m̄s
uσ)

+ (∂u
o ∂̄

u
u − ∂o

o∂
u
o + ∂u

o ∂̄
s
u∂

u
s )m̄

s
uσ

− ∂u
o m̄s

u(δ ⊗ 1).

The terms on the second line vanish, thanks to the third identity in
Lemma 22.1.5. The terms on the first line cancel with the last term, on account
of the third part of Lemma 25.3.7. So this expression is indeed zero. Verification
of the other components of the identities for m̌ and m̂ is very similar. �

At this point, it has not been made clear whether the homomorphisms such
as

̂

HM•(u |W ;�W ) depend on the choice of metric gW and perturbation p. (We
still understand that the metrics and perturbations on Y± are fixed.) The next
proposition states that they do not.

Proposition 25.3.8. Let g(0) and g(1) be two metrics on W , isometric in a
collar of the boundary to the same cylindrical metric. Let p(0) and p(1) be two
perturbations on W , again constructed using the same perturbations on Y±.
Assume that the corresponding moduli spaces on W ∗ are regular in both cases.
Let u and �W be as above, and let m̌(0) and m̌(1) be defined by the formulae
of Definition 25.3.3, using the moduli spaces obtained from (g(0), p(0)) and
(g(1), p(1)) respectively. Then there is an operator

Ǩ : Cd (U ; Z)⊗ Č•(Y−;�−)→ Č•(Y+;�+)

for d ≤ d0, satisfying the chain-homotopy identity

(−1)d ∂̌Ǩ(u⊗ ξ̌ ) = −Ǩ(δu⊗ ξ̌ )+ Ǩ(u⊗ ∂̌ ξ̌ )

+ (−1)d m̌(0)(u⊗ ξ̌ )− (−1)d m̌(1)(u⊗ ξ̌ )
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for u ∈ Cd (U ; Z) (d < d0) and ξ̌ ∈ Č•(Y−;�−). There are similar chain
homotopies for Ĉ• and C̄•.

Corollary 25.3.9. The homomorphisms

̂

HM•(u |W ;�W ) etc. do not depend
on the metric gW or the perturbation p on the interior of W . �

Proof of Proposition 25.3.8. The chain-homotopy will be constructed using
the moduli spaces M([a], W ∗, [b])P for a family of metrics and perturbations
parametrized by P = [0, 1].

Consider more generally a compact, oriented manifold P as the parame-
ter space, and suppose first that P does not have boundary. Suppose that the
family of metrics and perturbations parametrized by P is such that the mod-
uli spaces Mz([a], W ∗, [b])P are regular (Definition 24.4.9). An element of
�(a)�(W )�(b) determines an orientation of the parametrized moduli space,
using the “fiber-first” convention and regarding P as the “base”. Using open
covers transverse to the parametrized moduli spaces, we define maps m̌(P)

etc. by exactly the same formulae as m̌ etc. in Definition 25.3.3, but using the
moduli spaces Mz([a], W ∗, [b])P in the definition of the components mo

o etc.
The “fiber-first” convention means that the introduction of P has no effect on
the orientations of the lower strata, so the identities (25.7) continue to hold with
m̌(P) etc. in place of m̌.

Suppose now that P has oriented boundary Q, and that the moduli spaces
Mz([a], W ∗, [b])Q are also regular. The compactification M+

z ([a], W ∗, [b])P is
still a space stratified by manifolds; its codimension-1 strata now include the top
stratum of Mz([a], W ∗, [b])Q, in addition to the strata we previously classified.
In the identities corresponding to those of Lemma 25.3.6, there will therefore
be one extra term: we will have, for example,

mo
o(P)∂o

o − ∂o
o mo

o(P)σ − mu
o(P)∂̄s

u∂
o
s − ∂u

o m̄s
u(P)∂o

s + ∂u
o ∂̄

s
umo

s (P)σ

+ (−1)dim Pmo
o(Q)σ = mo

o(P)(δ ⊗ 1).

The sign (−1)dim Pσ = (−1)d−dim P accompanies the term mo
o(Q) because

the orientation of Mz([a], W ∗, [b])Q differs from the boundary orientation of
Mz([a], W ∗, [b])P by this sign, on account of the fiber-first convention: the
number d − dim P is the dimension of the fiber Mz([a], W ∗, [b])p for the con-
tributing moduli spaces. The result is that, when P has boundary, m̌(P) satisfies
an identity like those of (25.7), but with one extra term:

(−1)d ∂̌m̌(P)(u⊗ ξ̌ )

= −m̌(P)(δu⊗ ξ̌ )+ m̌(P)(u⊗ ∂̌ ξ̌ )+ (−1)d−dim Pm̌(Q)(u⊗ ξ̌ ).
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Taking P to be the interval [0, 1] and Ǩ to be m̌(P) gives the result, as m̌(Q) =
m̌(1)− m̌(0). �

25.4 Mod two gradings and cobordisms

If W is a cobordism from Y− to Y+, then the maps on the Floer groupŝ

HM•(Y−) →

̂

HM•(Y+) etc. obtained from a pair (u |W ) are not homoge-
neous in general: they do not have a well-defined degree, because the map is
defined as a sum over all spinc structures on W . However, the degree of the map
mod 2 is well-defined. To formalize this a little, recall that we have a canonical
mod 2 grading of the Floer groups (Subsection 22.4). We can ask whether the
maps

̂

HM•(u |W ;�W ) preserve the mod 2 grading. The answer depends on a
quantity that appears in the following definition.

Definition 25.4.1. Let W be an oriented cobordism between connected (non-
empty) 3-manifolds Y− and Y+. For such a cobordism, we define

ι(W ) = 1

2

(
χ(W )+ σ(W )+ b1(Y+)− b1(Y−)

)
,

where χ is the Euler number and σ is the signature of the quadratic form on
I2(W ). ♦

We state two important properties of ι(W ) as a lemma.

Lemma 25.4.2.

(i) For any cobordism W , the quantity ι(W ) is an integer (rather than a half-
integer).

(ii) If W = W2 �W1 is a composite cobordism, then ι(W ) = ι(W1)+ ι(W2).

Proof. The second part holds because both χ and σ are additive (the former
because 3-manifolds have Euler number zero). The first part can be verified
directly, using the fact that σ is equal to the dimension of I2 mod 2, and
exploiting the long exact sequence of the pair (W , ∂W ).

A more illuminating explanation of both parts is to reinterpret −ι(W ) as
the index of the operator d∗ ⊕ d+ acting on weighted Sobolev spaces on the
cylindrical-end manifold W ∗,

d∗ ⊕ d+ : eδwL2
1(W

∗;�1)→ eδwL2(W ∗;�0 ⊕�+), (25.13)

where w is equal to the coordinate function t on both ends and δ is a small
positive weight. �
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The operator (25.13) appears as one block in the linearization of the Seiberg–
Witten equations at a reducible configuration; the other block is the complex
Dirac operator. So if a0 and b0 are reducible configurations on Y− and Y+
respectively, and if γ ∈ Cσ

k (W ) is a configuration on the compact mani-
fold W whose restriction to the two boundary components is a0, b0, then
we have

ι(W ) = index (Pγ ) (mod 2),

where Pγ is the linearized operator with gauge fixing and our usual Atiyah–
Patodi–Singer boundary conditions. As in the cylindrical case, we then
obtain

dim Mz([a], W ∗, [b]) = ι(W )+ gr(2)(a)+ gr(2)(b) (mod 2)

for arbitrary critical points a, b and any W -path, z. When defining the map̂

HM•(u |W ;�W ) for u a cohomology class of degree d , the non-zero matrix
entries are contributed by moduli spaces of dimension d . We therefore have:

Proposition 25.4.3. For u a class in H d (Bσ (W )), and �W an arbitrary W -
morphism of local coefficient systems, the mapŝ

HM•(u |W ;�W )

ĤM•(u |W ;�W )

HM•(u |W ;�W )

are either even or odd with resect to the canonical mod 2 grading, according
to the parity of

ι(W )+ d .

�

25.5 Exact sequences, duality, and conjugate spinc structures

We have now completed the construction of the homomorphisms such aŝ

HM•(u |W ;�W ), associated to a cobordism W between 3-manifolds, and we
turn to briefly address a few formal properties. We postpone treatment of the
most important property – the composition law for a composite cobordism –
until the next section.
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The first proposition deals with the maps i∗, j∗ and p∗ in the long exact
sequence of Proposition 22.2.1.

Proposition 25.5.1. Let (u |W ,�W ) be a morphism in the category cob-lc,
from (Y0,�0) to (Y1,�1), and suppose the cohomology class u has degree d.
Then in the diagram

�� HM•(Y0)

HM•(u |W )

��

i∗ ��

̂

HM•(Y0) ̂

HM•(u |W )

��

j∗
�� ĤM•(Y0)

ĤM•(u |W )

��

p∗
�� HM•(Y0)

HM•(u |W )

��

��

�� HM•(Y1)
i∗ ��

̂

HM•(Y1)
j∗

�� ĤM•(Y1)
p∗

�� HM•(Y1)
��

the first two squares commute, while the third square commutes or anti-
commutes according to the sign (−1)d . (We have omitted the local coefficients
from the diagram, for compactness.) The same signs apply to the dual diagram

HM •(Y0)
��

̂

HM •(Y0)
i∗�� ĤM •(Y0)

j∗
�� HM •(Y0)

p∗
�� ��

HM •(Y1)
��

HM •(u |W )

��
̂

HM •(Y1)
i∗��

̂
HM •(u |W )

��

ĤM •(Y1)
j∗

��

ĤM •(u |W )

��

HM •(Y1)
p∗

��

HM •(u |W )

��

·��

Proof. The proof is a straightforward manipulation of the definitions: the
equalities hold at the chain level. �

If we take W to be a cylinder [0, 1]×Y , we obtain a result about the cap and
cup products.

Corollary 25.5.2. The maps

i∗ : HM•(Y )→

̂

HM•(Y )

j∗ :

̂

HM•(Y )→ ĤM•(Y )

p∗ : ĤM•(Y )→ HM•(Y )

are homomorphisms of H∗(Bσ (Y ))-modules, up to sign: they satisfy

i∗(u � ξ̄ ) = u � i∗ξ̄

j∗(u � ξ̌ ) = u � j∗ξ̌

p∗(u � ξ̂ ) = (−1)d u � p∗ξ̂
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for u in H d (Bσ (Y )). Similarly, the maps i∗, j∗ on the Floer cohomology groups
satisfy

i∗(u � x̄) = u � i∗x̄

j∗(u � x̌) = u � j∗x̌

p∗(u � x̂) = (−1)d u � p∗x̂.

�

Next we consider the interaction of the maps obtained from cobordisms and
the duality maps ωµ. For the special case u = 1, the following proposition was
stated in the introductory Subsection 3.4.

Proposition 25.5.3. Let W be a morphism in cob, from Y0 to Y1. Let µ0 and
µ1 be homology orientations for Y0 and Y1. Let W † be the same oriented 4-
manifold, regarded as a cobordism from−Y1 to−Y0, and give W † the homology
orientation determined by µ0, µ1 and the given homology orientation of W .
Then the duality maps

ω̌µi :

̂
HM•(−Yi)→ ĤM •(Yi)

ω̂µi : ĤM•(−Yi)→
̂

HM •(Yi)

ω̄µi : HM•(−Yi)→ HM •(Yi)

satisfy

ω̌µ0

̂

HM•(u |W †)ω̌−1
µ1

(x̂) = (−1)sĤM •(u |W )(x̂)

ω̂µ0 ĤM•(u |W †)ω̂−1
µ1

(x̌) = (−1)s

̂

HM •(u |W )(x̌)

ω̄µ0 HM•(u |W †)ω̄−1
µ1

(x̄) = (−1)tHM •(u |W )(x̄),

where

s = (gr(2)(x)+ ι(W ))(d + ι(W ))

t = ḡr(2)(x)(d + ι(W ))+ d ι(W ),

for u in H d (Bσ (W )) = H d (Bσ (W †)).

Proof. In each case, the proposition comes down to comparing two different
orientations on a moduli space associated to the cylindrical-end manifold W ∗.
In the case of the cylinder, the relevant comparison is the same one that was
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established in Lemma 22.5.4. For a general cobordism W , the computation can
be done in essentially the same way. �

Again, there is a corollary to be drawn in the case that W is a cylinder.

Corollary 25.5.4. If µ is a homology orientation of Y , the duality maps

ω̌µ :

̂

HM•(−Y )→ ĤM •(Y )

ω̂µ : ĤM•(−Y )→

̂

HM •(Y )

ω̄µ : HM•(−Y )→ HM •(Y )

satisfy

ω̌µ(u � ξ̌ ) = (−1)su � ω̌µξ̌

ω̂µ(u � ξ̂ ) = (−1)su � ω̂µξ̂

ω̄µ(u � ξ̄ ) = (−1)su � ω̄µξ̄

where

s = gr(2)(o(j))d ,

for u in H d (Bσ (Y )) and ξ̌ , ξ̂ , ξ̄ in grading j. �

There is a different type of duality present in Floer homology. If s is a spinc

structure on Y , there is a complex conjugate spinc structure s∗: the correspond-
ing spin bundle S̄ is the conjugate of S, while Clifford multiplication and the
Dirac operator are unchanged as real-linear maps. We can identify Bσ

k (Y , s)
with Bσ

k (Y , s∗): the critical points and trajectories are the same for s and its
conjugate.

There is just one point at which our construction of the Floer groups distin-
guishes between s and s∗: we used the complex orientation of the kernel and
cokernel of the Dirac operator to define the 2-element orientation set �(a), for
[a] ∈ Bσ

k (Y , s). (The complex orientations of a complex vector space V and its
conjugate V̄ are the same only if the dimension of V is even.)

Let us denote by � the orientation sets associated with s as before, and use
�∗ for the orientation sets arising from s∗. For any path ζ from [a1] to [a2] in
Bσ

k (Y , s) = Bσ
k (Y , s∗), there is a canonical identification

�(a1, q1, a2, q2, ζ ) = �∗(a1, q1, a2, q2, ζ ). (25.14)
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This is because both sides are defined as the set of orientations of the determinant
line of a single operator Pγ . We can recast this statement as saying that a path
ζ joining a1 to a2 determines an isomorphism

�(a1)�
∗(a1)→ �(a2)�

∗(a2).

(We have omitted the perturbations now from the notation.) The isomorphism
may depend on ζ . We therefore have a local system of groups �s, with

�s[a] = Z�[a] ⊗ Z�∗[a].
There are canonical isomorphisms of chain complexes, such as

Č(Y , s∗;�) = Č(Y , s;� ⊗�s)

for any system of local coefficients �. Hence:

Proposition 25.5.5. For any local system �, we have canonical isomorphismŝ

HM∗(Y , s∗;�)→

̂

HM∗(Y , s;� ⊗�s)

ĤM∗(Y , s∗;�)→ ĤM∗(Y , s;� ⊗�s)

HM∗(Y , s∗;�)→ HM∗(Y , s;� ⊗�s).

These commute with the maps i∗, j∗ and p∗ of Proposition 22.2.1, as well as
with the cap and cup products. �

The local system �s, which has fiber Z, can be characterized as follows. Let
[a0] be a basepoint, choose an identification of the fiber there with Z, and let z
be a homotopy class of loops based at [a0]. The automorphism

�s(z) : Z → Z

is±1 and is 1 if and only if the rules defined prior to Lemma 20.3.3 specify the
same standard trivialization for the 2-element sets

�(a0, 0, a0, 0, z) = �∗(a0, 0, a0, 0, z).

This 2-element set is, by definition, the set of orientations of the determinant
line of an operator Pγ , which has a complex Dirac operator as a diagonal block.
The real index of this Dirac operator is given by the formula in the first part of
Lemma 14.4.6: it is

−([u] � c1(S))[Y ],
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where u is the element of H 1(Y ; Z) corresponding to the class z. The complex
index is half of this. (The class c1(S) is always divisible by 2.) The complex
orientation of the real determinant line is the same for s and s∗ if and only if
the complex index is even. We therefore obtain:

Lemma 25.5.6. The local system �s is trivial if and only if the first Chern
class, c1(S), of the corresponding spin bundle is divisible by 4 (rather than just
by 2) in H 2(Y ; Z)/torsion. �

Even when the local system �s is non-trivial, the Floer homology groups for
the spinc structures s and s∗ are actually isomorphic, though the isomorphism
is not canonical:

Proposition 25.5.7. For any local system �, we have isomorphismŝ

HM∗(Y , s;�)→

̂

HM∗(Y , s;� ⊗�s)

ĤM∗(Y , s;�)→ ĤM∗(Y , s;� ⊗�s)

HM∗(Y , s;�)→ HM∗(Y , s;� ⊗�s),

which commute with the maps i∗, j∗ and p∗ of Proposition 22.2.1, but not in
general with the cap product. So we have isomorphismŝ

HM∗(Y , s∗;�)→

̂
HM∗(Y , s;�),

etc., where s∗ is the conjugate spinc structure.

Proof. Consider more generally a local system � carrying an automorphism
φ. Suppose that c1(S) is not torsion, so we have a non-trivial homomorphism
defined by the spectral flow of the Hessian operator (see (12.4) for example):

sf : π1(B)→ Z.

Here we write B for Bσ (Y , s). Let p : B1 → B be the infinite cyclic cover
corresponding to the subgroup of π1(B) that is the kernel of sf . From �, φ and
p, we can build a new local system �φ on B as follows. The fiber �φ[a] is the
quotient of

�[a] × p−1[a]

by the equivalence relation generated by

(γ , x) ∼ (φ[a]γ , τ−1x).
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Here τ : B1 → B1 is the covering transformation corresponding to the positive
generator of the image of sf . If ζ is a path from [a] to [b], let

τζ : p−1[a] → p−1[b]

be defined by path lifting. The map

�(ζ )× τζ : �[a] × p−1[a] → �[b] × p−1[b]

respects the equivalence relation ∼, and so descends to the quotient, where it
defines

�φ(ζ ) : �φ[a] → �φ[b].

In the special case that φ is−1, we recover the tensor product �⊗�s this way
(up to isomorphism).

Let d0 be the positive generator of the image of sf . Let [a0] be the chosen
basepoint, and let x0 be a chosen basepoint in B1 lying over [a0]. For each
critical point [a], we can choose a path ζ from [a0] to [a] so that the Fredholm
operator Pζ satisfies

index Pζ ∈ [0, d0 − 1].

In this way, we obtain a preferred element x = τζ (x0) in p−1[a] for each critical
point [a], and hence a preferred isomorphism

θ : �[a] → �φ[a],

sending γ to the equivalence class of (γ , x). Thus our choice of basepoint
determines an isomorphism of groups,

θ : Čj(Y , s;�)→ Čj(Y , s;�φ)

for all j ∈ J(Y , s).
The map θ is not a chain map. If ∂̌j denotes the component of the differential

∂̌j : Čj → Čj−1,

then we have

θ−1∂̌jθ =
{
∂̌jφ

−1, j = j0

∂̌j, j = j0.
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Here j0 = gr[a0] ∈ J(Y , s). (See the definition of J(Y , s) above at (22.12).)
Becauseφ is an automorphism of the local system�, the differential ∂̌ commutes
with φ. So both the kernel and image of ∂̌j are the same as those of ∂̌φ−1. So
although θ is not a chain map, it induces isomorphisms

θ :

̂

HMj(Y , s;�)→

̂

HMj(Y , s;�φ)

for all j.
The isomorphism θ does not, in general, respect cap products. If u is in H d (B)

and ξ is in Čj(Y , s;�), then we have

θ−1(u � θξ) = φ−r(u � ξ),

where

r = ∣∣{ e | 0 ≤ e ≤ d − 1, j − e = j0 ∈ J(Y , s) }∣∣.
�

25.6 The module structure for S3

We earlier identified the Floer groups of S3, as groups: the description of these
groups was first given in Proposition 3.3.1, and proved in Subsection 22.7.
However, we have not yet identified the module structure of the Floer groups
of S3, though the result was stated without proof in Subsection 3.3: see (3.10).
We shall now verify that the module structure is as stated.

Note that, because of the short exact sequence (3.9), it is enough to identify
HM•(S3) as a module over H∗(Bσ (S3)). In Subsection 3.3, the result was stated
as

HM•(S3) ∼= Z[U−1
† , U†]].

Recall from Subsection 22.7 that with a small admissible perturbation we can
arrange that the critical points in Bσ (S3) all lie over a single point in B(S3).
We again label these [ai] for i ∈ Z, and we identify J(S3) with Z again in such
a way that gr[ai] = 2i for i ≥ 0. In the complex C̄(S3), we then have

ḡr[ai] = 2i

for all i positive and negative. These are the generators of the complex, and the
differential is zero.
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The assertion to be proved is that

u2 � [ai] = [ai−1] (25.15)

for all i, where u2 is the standard generator for the cohomology of
Bσ (S3) ∼= CP∞. To compute this, we need to understand the moduli space
M([ai], W ∗, [ai−1]), where W is the cylindrical cobordism from S3 to S3, and
W ∗ is obtained from W by adding cylindrical ends. Of course, W ∗ is just the
usual cylinder R × S3. There is a slight difference however. When viewing
W as a cobordism, we used perturbations supported in collars of the boundary
components, and extended these to be translation-invariant on the two ends;
whereas the usual setup on a cylinder R×Y is to consider translation-invariant
perturbations. Nevertheless, it can be easily verified that there is no harm in
using a translation-invariant perturbation on the entire cylinder in the case that
W is cylindrical. We can therefore safely regard the cap product as being defined
using the moduli space M([ai], [ai−1]) associated with the cylinder.

The space M([ai], [ai−1]) is identified in a slightly more general setting in
Proposition 14.6.1, which tells us that this moduli space is CP1 \ {0,∞}. More
explicitly, we can consider the image of M([ai], [ai−1]) under the restriction
map to Bσ ({0} × S3), where its image lies in the copy of CP∞ lying over the
unique critical point in B(S3). This image is the set

{φ | φ = aφi + bφi−1, a, b both non-zero and |a|2 + |b|2 = 1 }/S1,

where φi−1 and φi are unit eigenvectors corresponding to the two eigenvalues.
The compactification M̄([ai], [ai−1]) is the copy of CP1 obtained by dropping
the constraints that a and b are non-zero. We chose a canonical orientation of
each �([ai]) in Subsection 22.7, and the resulting orientation of the moduli
space is the complex orientation of CP1. The class u2 evaluates to 1 on CP1,
so we have m̄(u2 ⊗ [ai]) = [ai−1]. We therefore have

u2 � [ai] = [ai−1]

for all i. In the Floer cohomology group we have u2 � [ai−1]† = [ai]†.

26 Composing cobordisms

26.1 Stretching a composite cobordism

To show that the groups and homomorphisms that we have constructed
define a functor from the category cob-lc (Definition 23.3.3) as asserted in
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Theorem 23.3.4, it remains to check two properties. The first of these properties
is elementary:

Proposition 26.1.1. If W is the trivial, cylindrical cobordism from (Y , g, q) to
itself and �W is the identity map from �Y to �Y , then

̂

HM•(1 |W ;�W ) etc. are
the identity maps on the appropriate Floer (co)homology groups.

Proof. Because u is 1, the homomorphism is defined using 0-dimensional mod-
uli spaces. The 0-dimensional moduli spaces Mz([a], W ∗, [b]) must consist of
translation-invariant solutions on the infinite cylinder W ∗: non-constant solu-
tions otherwise belong to moduli spaces of dimension at least 1. In particular,
the moduli space is 0-dimensional only when [a] = [b] and z is trivial: it
then consists of a single point, oriented with the sign +1 by our conventions,
provided we give the cylinder its canonical homology orientation. �

The second property is much less trivial: it is the composition law,
Proposition 23.2.2. We restate the proposition here, with local coefficients.

Proposition 26.1.2. Let Y0, Y1 and Y2 be 3-manifolds with metrics and admis-
sible perturbations, and let �i be a local system of R-modules on Yi, R a
commutative ring. Let W01, W12 be cobordisms with homology orientations,
from Y0 to Y1 and from Y1 to Y2, and let �01 and �12 be homomorphisms of
local coefficient systems. Let cohomology classes

u01 ∈ H d01(Bσ (W01); R)

u12 ∈ H d12(Bσ (W12); R)

be given, and let u = u12u01 be the product in H d (Bσ (W )), as defined in (23.6),
where W = W12 �W01 is the composite cobordism with homology orientation.
Then we havê

HM•(u |W ;�W ) =

̂

HM•(u12 |W12;�W12) �

̂

HM•(u01 |W01;�W01)̂

HM •(u |W ;�W ) =

̂

HM •(u01 |W01;�W01) �

̂

HM •(u12, W12;�W12),

with parallel formulae for ĤM and HM .

Remarks. In the case that W01 and W12 are both cylindrical and Y0 = Y1 = Y2,
this proposition is the associative law for the cap product, Proposition 23.2.1.
For a general composite cobordism W = W12 � W01, the statement of the
proposition uses the fact that homology orientations of the two factors can be
“composed” to give a homology orientation of W , as stated following Defini-
tion 3.4.1. To define this composition, we can reinterpret �(W ) in the same way
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[ 0, S ] � Y 1
Y0

Y2

W 01 W 12

Fig. 8. The composite cobordism W (S).

as we did for a manifold X with boundary in Corollary 24.8.2. The appropriate
modification to state is that, for a cobordism W from Y0 to Y2, we can interpret
�(W ) as the set of orientations of the determinant of an operator

B̃ : { a ∈ L2
k(W ; T ∗W ) | d∗a = 0, d+a = 0, 〈a|∂W , ν〉 = 0 }

→ C+(Y0)⊕
(
C− ⊕ C0)(Y2) (26.1)

given by restricting the 1-form a to the boundary and projecting onto the
given spectral subspaces at the two ends. With this reinterpretation, the com-
position rule can be defined in the same way as for the similar situation in
Definition 20.3.2.

The proof of Proposition 26.1.2 will be based on an application of Stokes’
theorem to a suitable moduli space. Let W (S) be the composite cobordism, with
a cylinder of length S inserted in the middle (see Figure 8):

W (S) = W01 ∪
([0, S] × Y1

) ∪W12. (26.2)

This is a cobordism diffeomorphic to W , from Y0 to Y2, but the metric varies
with S. As S increases, the neck stretches.

Let q0, q1, q2 be admissible tame perturbations for the three 3-manifolds Y0,
Y1 and Y2. Extend these to t-dependent perturbations p̂ supported in the collars
of the four components of the boundaries of W01 and W12, as is done in (24.2).
When W01 and W12 are joined together to form the composite cobordism W ,
the perturbations near the two copies of Y1 match, so there is a well-defined
perturbation of the equations on W , compatible with the restriction maps to the
two components. Similarly on W (S), we have a perturbation p̂ which is equal
to the perturbation q̂1 on the cylindrical piece [0, S] × Y1.

Remark. Note that this sort of perturbation on W or W (S) is a little differ-
ent from those that arose before, because it is no longer supported in a collar
neighborhood of the boundary.
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Let [a] and [b] be critical points for two 3-manifolds Y0 and Y2, and consider
a moduli space Mz([a], W (S)∗, [b]) on the cylindrical-end manifold W (S)∗.
As pointed out in the remark just above, our perturbations are now a little
different; but we maintain the notation Mz([a], W (S)∗, [b]). As S varies, these
form a parametrized moduli space, parametrized by S ∈ [0,∞):

Mz([a], [b]) =
⋃

S∈[0,∞)

{S} ×Mz([a], W (S)∗, [b]). (26.3)

We can choose the perturbations p̂ on W01 and W12 (independent of S) so as
to make the parametrized moduli space regular, for all [a], [b] and z. This is
because we can regard the total space as a fiber product, in which one of the
factors is the union ⋃

S∈[0,∞)

{S} ×M([0, S] × Y1);

so we can argue as in the proof of Proposition 24.4.7. Thus:

Proposition 26.1.3. For suitable choice of perturbation, all the moduli spaces
Mz([a], [b]) are smooth manifolds with boundary. The boundary is the fiber
over S = 0, which is the moduli space Mz([a], W , [b]). �

We can also form a union of the compactifications,⋃
S≥0

{S} ×M+
z ([a], W (S)∗, [b]).

The map to [0,∞) is proper by Theorem 24.6.7, but the total space is not com-
pact because of the non-compactness of the base. To form a compactification,
we add a fiber over S = ∞, which we denote by M+

z ([a], W (∞)∗, [b]) and
which we define as follows. An element of this space is a quintuple([γ̆0], [γ01], [γ̆1], [γ12], [γ̆2]

)
, (26.4)

where

[γ̆0] ∈ M̆+([a0], [b0])
[γ01] ∈ M([b0], W ∗

01, [a1])
[γ̆1] ∈ M̆+([a1], [b1])
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[γ12] ∈ M([b1], W ∗
12, [a2])

[γ̆2] ∈ M̆+([a2], [b2])
[a0] = [a]
[b2] = [b]

and the homotopy classes of these elements compose to give z. The union

M+
z ([a], [b]) =

⋃
S∈[0,∞]

{S} ×M+
z ([a], W (S)∗, [b])

has a topology whose definition is similar to the topology we defined on
M+

z (X , [b]) in Subsection 24.6. For simplicity of exposition, we explain only
what it means for a sequence

[γn] ∈ Mz([a], W (Sn)
∗, [b])

to converge to a quintuple (26.4) in the case that [γ̆ i] is the trivial trajectory
with zero components for i = 1, 2, 3. So the quintuple is really just a pair

[γ01] ∈ Mz1([a], W ∗
01, [a1])

[γ12] ∈ Mz2([a1], W ∗
12, [b])

with z2�z1 = z. If V is a precompact open subset of the cylindrical-end manifold
W ∗

01, then there is a canonical isometric copy of V ′ of V inside W (S)∗ for all
sufficiently large S. Because of this, it makes sense to ask that [γn] converges
to [γ01] on compact subsets of W ∗

01: it means that for all such V , the restriction
[γn|V ′ ] converges to [γ01|V ]. If [γn] converges on compact subsets of W ∗

01 to
[γ01] and on compact subsets of W ∗

12 to [γ12], then we say that the sequence
converges in M+

z ([a], [b]).
Proposition 26.1.4. For any [a], [b] and z, the moduli space M+

z ([a], [b]) is
compact.

Proof. The new part of this proposition is the assertion that a sequence in
M+

z ([a], [b]) with the S coordinate going to infinity has a convergent sub-
sequence. As usual, we may suppose that each element of this sequence is
unbroken, so we have

[γn] ∈ Mz([a], W (Sn)
∗, [b]),
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with Sn increasing. As in the basic cylindrical case, the proof proceeds by first
showing that, after passing to a subsequence, we have convergence of the images
π[γn], where π again is the map from the blown-up configuration space Bσ

k to
Bk . This is the counterpart of Proposition 16.2.1, and the proof is little changed
from the corresponding step in the proof of the similar Proposition 24.6.4:
the essential points are the additivity of the topological energy and the local
compactness result, Theorem 24.5.2. The remaining step is to obtain uniform
bounds on the function � along the trajectory.

Write W (Sn)
∗ as the union

W (Sn)
∗ = (

(−∞, 0] × Y0
) ∪W01 ∪

([0, Sn] × Y1
) ∪W12 ∪

([0,∞)× Y2
)
.

(26.5)

Let �0(n), . . . ,�5(n) be the values of the function �q at various junctions in
this decomposition:

�0(n) = �q(a)

�1(n) = �q(γn|0×Y0)

�2(n) = �q(γn|0×Y1)

�3(n) = �q(γn|Sn×Y1)

�4(n) = �q(γn|0×Y2)

�5(n) = �q(b).

The differences between consecutive values,

�0(n)−�1(n), . . . ,�4(n)−�5(n),

are the drops in �q across the five pieces in the decomposition (26.5). On the
cylindrical pieces, we have lower bounds ⎫⎪⎪⎬⎪⎪⎭

�0(n)−�1(n) ≥ −C

�2(n)−�3(n) ≥ −C

�4(n)−�5(n) ≥ −C

(26.6)

by the argument of Lemma 16.3.1. It is also the case that an upper bound
on � “propagates” across the cobordism W01: that is, if there exists C1 such
that �1(n) ≤ C1 for all n, then there exists C2 such that �2(n) ≤ C2 for
all n. To see this, suppose the contrary: �1(n) ≤ C1 for all n while �2(n)
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increases without bound. Then �1(n) and −�2(n) are both bounded above,
by a constant independent of n. The values of �q and −�q are then also
bounded above, independent of n on collar neighborhoods of the respective
boundary components in W01. It then follows from Theorem 24.5.2 that we have
convergence on an interior submanifold W ′

01 after passing to a subsequence. In
particular �q is bounded above, independent of n in the subsequence, on the
positive boundary component of W ′

01, and hence also on the positive boundary
component of W01. This contradicts the assumption that �2(n) was increasing
without bound.

The quantity �0(n) is independent of n, so using the three inequalities (26.6)
and the propagation of upper bounds across the cobordisms, we obtain an upper
bound on �i(n) for all n and i. Similarly we obtain a lower bound, using the
fact that �5(n) is fixed too. �

There is a finiteness statement that accompanies the compactness proposition
above, and which is proved in the same way: it is the analog of Lemma 25.3.1.
(See also Proposition 24.6.6.) The statement is:

Lemma 26.1.5. For any [a] and d0 and i0, there are only finitely many pairs
(z, [b]) such that

(i) the moduli space M+
z ([a], [b]) is non-empty;

(ii) the dimension of the moduli space is at most d0; and
(iii) ι([b]) ≥ i0, where ι is as defined in (16.2).

�

In addition to M+
z ([a], [b]), we have a smaller compactification of the

parametrized moduli space Mz([a], [b]) on the cylinder, similar in spirit to the
compactification M̄z([a], [b]) of Mz([a], [b]). The latter compactification was
defined as a subset of Bσ

k,loc(W
∗), but could equally well have been defined

as a subset of Bσ
k (W ), because of the unique continuation results. For the

parametrized moduli space Mz([a], [b]), we define the compactification

M̄z([a], [b]) ⊂ [0,∞] ×Bσ
k (W01)×Bσ

k (W12) (26.7)

to be the image of M+
z ([a], [b]) via a map

r : M+
z ([a], [b])→ [0,∞] ×Bσ

k (W01)×Bσ
k (W12)

defined as follows. For finite S, an element of M+
z can be written as a triple

([γ̆0], [γ02], [γ̆2]), where [γ02] is a solution on the cylindrical-end manifold
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W (S)∗. For finite S, we define

r :
(
S, [γ̆0], [γ02], [γ̆2]

) �→ (
S, [γ02]|W01 , [γ02]|W12

)
.

When S is ∞, we write a typical element as a quintuple, as in (26.4), and we
define

r :
(∞, [γ̆0], [γ01], [γ̆1], [γ12], [γ̆2]

) �→ (∞, [γ01]|W01 , [γ12]|W12

)
.

The following two propositions are adaptations of our earlier results. See,
in particular, the classification of codimension-1 strata of M+

z ([a], W ∗, [b])
given by (25.1), and the result concerning boundary orientations in Proposi-
tion 25.2.2. Our indexing of the moduli spaces has changed to suit our new
circumstances, but otherwise the proofs need little modification and are again
omitted.

Proposition 26.1.6. Suppose the parametrized moduli space Mz([a], [b])
defined at (26.3) contains irreducibles and has dimension d + 1. Then the
compactification M+

z ([a], [b]) is a space stratified by manifolds and has
Mz([a], [b]) as its top stratum. In the fiber over S = ∞, the strata of dimension
d are the top strata of the following pieces of M+

z ([a], W (∞)∗, [b]):
(i) M01 ×M12,

(ii) M̆0 ×M01 ×M12,
(iii) M01 × M̆1 ×M12,
(iv) M01 ×M12 × M̆2,

where Mij denotes a typical moduli space on Wij and M̆i denotes a typical
unparametrized moduli space on R × Yi. In the last three cases, the middle
moduli space of the three is boundary-obstructed . The moduli space has a
codimension-1 δ-structure along the strata in the last three cases, and is a
manifold with boundary along the stratum in the first case. �

Choose trivializations of �(W ), �([a]) and �([b]). This orients
Mz([a], W (S)∗, [b]) for all S, including S = ∞. Contrary to our usual con-
vention, we orient the parametrized moduli space Mz([a], [b]) by putting the
S coordinate first.

Proposition 26.1.7. The canonical orientations of the four types of strata in
the previous proposition differ from their boundary orientations by the signs

(i) 1,
(ii) (−1)d0+d01+1,
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(iii) (−1)d1 ,
(iv) (−1)

accordingly, where d0 and d1 are the dimensions of the parametrized moduli
spaces M0 and M1, and d01 is the dimension of M01. �

26.2 Proof of the composition law

We now turn to the proof of Proposition 26.1.2. Because of the unique continua-
tion property, each moduli space Mz([a], W ∗

01, [b]) is embedded in Bσ
k (W01) by

the restriction map. Fix d0, and let U01 be an open cover of Bσ
k (W01), transverse

to all moduli spaces Mz([a], W01, [b]) of dimension at most d0. Let U12 be a
similar open cover for Bσ

k (W12). We may suppose that the cohomology classes
in the proposition are given by Čech cocycles, also called u01 and u12, carried
by these open covers:

u01 ∈ Cd01(U01; R)

u12 ∈ Cd12(U12; R).

Let U01 × U12 be the product open cover on the product space, and let V be an
open cover of

[0,∞] ×Bσ
k (W01)×Bσ

k (W12) (26.8)

that refines the open cover [0,∞] × U01 × U12 and is transverse to all strata
in the subset M̄z([a], [b]) defined in (26.7), whenever this moduli space has
dimension d0 + 1 or less. Let

Bσ
k (W )◦ ⊂ Bσ

k (W )

be the domain on which the restriction maps to both W01 and W12 are defined.
Let U◦02 be the pull-back of V to this domain via the map

Bσ
k (W )◦ → {0} ×Bσ

k (W01)×Bσ
k (W12),

and let

u◦02 ∈ Cd01+d12(U◦02; R)

be the resulting representative for the pull-back of the cocycle u01 × u12. At
the level of cohomology, u◦02 represents the class u = u12u01 as defined in the
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proposition. What this construction has provided is an “external” product

Cd01(U01; R)⊗ Cd12(U12; R)→ Cd01+d12(V; R)

u01 ⊗ u12 �→ u01 × u12

and an “internal” product

c : Cd01(U01; R)⊗ Cd12(U12; R)→ Cd01+d12(U◦02; R)

u01 ⊗ u12 �→ u◦02.
(26.9)

Note that the moduli spaces Mz([a], W ∗, [b]) are embedded in Bσ
k (W )◦.

When S = 0, the space W (0) is just W , and the fiber of M̄z([a], [b]) over S = 0
is a copy of M̄z([a], W ∗, [b]), embedded in the product space (26.8). (See the
remark on page 537, however, concerning the perturbations.) The transversality
hypothesis on V therefore implies that the open cover U◦02 is transverse to the
moduli spaces Mz([a], W ∗, [b]).

Proof of Proposition 26.1.2. We regard Mz([a], [b]) as a subset of the product
space

[0,∞] ×Bσ
k (W01)×Bσ

k (W12)

using the inclusion (26.7). When d = d01 + d12 is less than or equal to d0, we
have a well-defined evaluation

〈
u01 × u12, Mz([a], [b])

〉 ∈ Hom(R�[a], R�[b])

whenever dim Mz([a], W ∗, [b]) is d − 1. Using this, we define maps

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

Ko
o : Cd01(U01)⊗ Cd12(U12)⊗ Co• (Y0;�0)→ Co• (Y2;�2)

Ko
s : Cd01(U01)⊗ Cd12(U12)⊗ Co• (Y0;�0)→ Cs•(Y2;�2)

Ku
o : Cd01(U01)⊗ Cd12(U12)⊗ Cu• (Y0;�0)→ Co• (Y2;�2)

Ku
s : Cd01(U01)⊗ Cd12(U12)⊗ Cu• (Y0;�0)→ Cs•(Y2;�2)

(26.10)
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for d01 + d12 ≤ d0, by ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ko
o (u01 ⊗ u12 ⊗−) =

∑
[a]∈Co(Y0)[b]∈Co(Y2)

∑
z

〈
u01 × u12, Mz([a], [b])

〉
�02(z),

Ko
s (u01 ⊗ u12 ⊗−) =

∑
[a]∈Co(Y0)[b]∈Cs(Y2)

∑
z

〈
u01 × u12, Mz([a], [b])

〉
�02(z),

Ku
o (u01 ⊗ u12 ⊗−) =

∑
[a]∈Cu(Y0)[b]∈Co(Y2)

∑
z

〈
u01 × u12, Mz([a], [b])

〉
�02(z),

Ku
s (u01 ⊗ u12 ⊗−) =

∑
[a]∈Cu(Y0)[b]∈Cs(Y2)

∑
z

〈
u01 × u12, Mz([a], [b])

〉
�02(z).

(26.11)

(The ring of coefficients is understood to be R.) The non-zero contributions to
these sums come from moduli spaces Mz([a], [b]) of dimension d = d01+d12.
We also have an operator

K̄ : Cd01(U01)⊗ Cd12(U12)⊗ C̄•(Y0;�0)→ C̄•(Y2;�2)

K̄ =
[

K̄s
s K̄u

s
K̄s

u K̄u
u

]
,

where

K̄s
s (u01 ⊗ u12 ⊗−) =

∑
[a]∈Cs(Y0)[b]∈Cs(Y2)

∑
z

〈
u01 × u12, Mred

z ([a], [b]) 〉�02(z)

K̄u
u (u01 ⊗ u12 ⊗−) = (−1)d−1

×
∑

[a]∈Cu(Y0)[b]∈Cu(Y2)

∑
z

〈
u01 × u12, Mred

z ([a], [b]) 〉�02(z)

K̄s
u(u01 ⊗ u12 ⊗−) =

∑
[a]∈Cs(Y0)[b]∈Cu(Y2)

∑
z

〈
u01 × u12, Mred

z ([a], [b]) 〉�02(z)

K̄u
s (u01 ⊗ u12 ⊗−) =

∑
[a]∈Cu(Y0)[b]∈Cs(Y2)

∑
z

〈
u01 × u12, Mred

z ([a], [b]) 〉�02(z).
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Definition 26.2.1. Let τ : Ca(U01)⊗ Cb(U12) → Cb(U12)⊗ Ca(U01) be the
operator interchanging the two factors. Let σ01, σ12 and σ be the sign operators
on C∗(U01)⊗ C∗(U12) given by

σ01 = (−1)a

σ12 = (−1)b

σ = (−1)a+b

on Ca(U01)⊗ Cb(U12). We define an operator

Ǩ : Cd01(U01)⊗ Cd12(U12)⊗ Č•(Y0;�0)→ Č•(Y2;�2)

Ǩ =
[

Ko
o −Ku

o ∂̄
s
u − mu

om̄s
uτσ01 − ∂u

o K̄s
u

Ko
s K̄s

s − Ku
s ∂̄

s
u − mu

s m̄s
uτσ01 − ∂u

s K̄s
u

]
.

(26.12)

In this formula, the term Ku
o ∂̄

s
u (for example) stands for Ku

o � (1⊗1⊗ ∂̄s
u), where

the operator ∂̄s
u belongs to Y0; and mu

om̄s
u stands for mu

o � (1 ⊗ m̄s
u), where m̄s

u
and mu

o are the operators of Subsection 25.3, defined using the open covers U01

and U12 and the cobordisms W01 and W12 respectively. ♦

Remark. The need for τ in the above definition is related again to our wish to
have operators acting on the left. The term m̄s

umo
s τ , for example acts as

m̄s
umo

s τ(u01 ⊗ u12 ⊗ ξ) = m̄s
u(u12 ⊗ mo

s (u01 ⊗ ξ)),

where the inner mo
s belongs to the “first” factor W01 of the composite cobordism

and the outer m̄s
u belongs to W12.

With suitable signs, the operator Ǩ provides a chain-homotopy which will
establish the composition laws for

̂

HM•(Y ). The next lemma expresses the
chain-homotopy formula. In the statement, the operators m̌01, m̌12 and m̌02 are
the operators of Definition 25.3.3, corresponding to the cobordisms W01, W12

and W , using the open covers U01, U12 and U◦02. (The fact that the last of these
open covers only covers the subset Bσ

k (W )◦ is of no consequence.) There is
a slight modification, however, because in the case of m̌02 we have in mind
an operator defined by the moduli spaces on the composite cobordism W ∗,
equipped with perturbations as described in the remark on page 537. This is an
inessential matter, because the resulting map m̌02 will be chain-homotopic to
the usual chain map, defined using perturbations supported near the boundary
components in W02.
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Lemma 26.2.2. The operator Ǩ satisfies the identity

− Ǩ(δ ⊗ 1)− Ǩ(1⊗ 1⊗ ∂̌)− ∂̌Ǩ(σ ⊗ 1)

− m̌02(c⊗ 1)+ m̌12(1⊗ m̌01)(τ ⊗ 1) = 0,

in which δ : C∗(U01)⊗ C∗(U12)→ C∗(U01)⊗ C∗(U12) is the coboundary on
the tensor product complex,

δ = (δ ⊗ 1)+ (1⊗ δ)σ01

= δ01 + δ12σ01,

and the operator c is the product operator (26.9).

Proof. In the lemma, we have written out the identity in full, writing (1⊗ m̌01),
for example, rather than just m̌. In more abbreviated style, consistent with
Definition 26.2.1, we can write the identity as

−Ǩδ − Ǩ ∂̌ − ∂̌Ǩσ − m̌c + m̌m̌τ = 0, (26.13)

there being no potential ambiguity about which cobordism each m̌ belongs to.
For example, writing the left-hand side out as a 2-by-2 matrix, the top right
entry is, in full,

Ku
o δ∂̄

s
u − mu

om̄s
uτδ01σ01 + mu

om̄s
uτδ12 + ∂u

o K̄s
uδ

+ Ko
o ∂

u
o ∂̄

s
u + Ku

o ∂̄
s
u∂̄

s
s + mu

om̄s
uτ ∂̄

s
sσ01 + ∂u

o K̄s
u∂̄

s
s

− Ku
o ∂̄

s
s∂

u
s ∂̄

s
u − mu

om̄s
uτ∂

u
s ∂̄

s
uσ01 − ∂u

o K̄s
u∂

u
s ∂̄

s
u

+ ∂o
o Ku

o ∂̄
s
uσ + ∂o

o mu
om̄s

uτσ12 + ∂o
o∂

u
o K̄s

uσ

+ ∂u
o ∂̄

s
uK̄s

sσ − ∂u
o ∂̄

s
uKu

s ∂̄
s
uσ − ∂u

o ∂̄
s
umu

s m̄s
uτσ12 − ∂u

o ∂̄
s
u∂

u
s K̄s

uσ

+ mu
oc∂̄s

u + ∂u
o m̄s

uc

− mo
omu

oτ ∂̄
s
u − mo

o∂
u
o m̄s

uτ − mu
o∂̄

s
um̄s

sτ − ∂u
o m̄s

um̄s
sτ

+ mu
o∂̄

s
umu

s ∂̄
s
uτ + ∂u

o m̄s
umu

s ∂̄
s
uτ + mu

o∂̄
s
u∂

u
s m̄s

uτ + ∂u
o m̄s

u∂
u
s m̄s

uτ .

We have used the fact that σ01 and δ01 anti-commute. The fact that this long
expression vanishes (along with its companions in the other three corners of
the 2-by-2 matrix) is deduced from the following two lemmas, by the same
sort of manipulations as Proposition 25.3.4 is deduced from Lemma 25.3.6 and
Lemma 25.3.7. Since these manipulations are both lengthy and straightforward,
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we omit them, and content ourselves with indicating the proof of the first of the
two lemmas below. �

Lemma 26.2.3. We have the following identities:

(i) −Ko
o ∂

o
o − ∂o

o Ko
oσ + Ku

o ∂̄
s
u∂

o
s + ∂u

o K̄s
u∂

o
s + ∂u

o ∂̄
s
uKo

s σ − mo
oc + mo

omo
oτ +

mu
om̄s

u∂
o
s τσ01 − mu

o∂̄
s
umo

s τ − ∂u
o m̄s

umo
s τ = Ko

o (δ ⊗ 1).

(ii) −Ko
s ∂

o
o−∂o

s Ko
oσ−K̄s

s ∂
o
s −∂̄s

s Ko
s σ+Ku

s ∂̄
s
u∂

o
s +∂u

s K̄s
u∂

o
s +∂u

s ∂̄
s
uKo

s σ−mo
s c+

mo
s mo

oτ + m̄s
sm

o
s τ + mu

s m̄s
u∂

o
s τσ01 − mu

s ∂̄
s
umo

s τ − ∂u
s m̄s

umo
s τ = Ko

s (δ ⊗ 1).

(iii) −Ko
o ∂

u
o−∂o

o Ku
oσ+Ku

o ∂̄
u
u+∂u

o K̄u
u +Ku

o ∂̄
s
u∂

u
s +∂u

o K̄s
u∂

u
s +∂u

o ∂̄
s
uKu

s σ−mu
oc+

mo
omu

oτ+mu
om̄u

uτσ01+mu
om̄s

u∂
u
s τσ01−mu

o∂̄
s
umu

s τ−∂u
o m̄s

umu
s τ = Ku

o (δ⊗1).

(iv) −K̄u
s − Ko

s ∂
u
o − ∂o

s Ku
oσ − K̄s

s ∂
u
s − ∂̄s

s Ku
s σ + Ku

s ∂̄
u
u + ∂u

s K̄u
u + Ku

s ∂̄
s
u∂

u
s +

∂u
s K̄s

u∂
u
s +∂u

s ∂̄
s
uKu

s σ−mu
s c+mo

s mu
oτ+m̄s

sm
u
s τ+mu

s m̄u
uτσ01+mu

s m̄s
u∂

u
s τσ01−

mu
s ∂̄

s
umu

s τ − ∂u
s m̄s

umu
s τ = Ku

s (δ ⊗ 1).

Lemma 26.2.4. The analog of (26.13) holds for K̄. We have:

−K̄δ − K̄ ∂̄ − ∂̄K̄σ − m̄c + m̄m̄τ = 0.

�

Proof of Lemma 26.2.3. Each of these identities is proved by applying Stokes’
theorem to the evaluation of δ(u01 × u12) on moduli spaces M̄z([a], [b]) con-
taining irreducibles. As in Lemmas 22.1.5 and 25.3.6, the four parts correspond
to the four possibilities for [a] and [b].

Let us just examine the first identity, which is an equality between two
operators

Cd01(U01; R)⊗ Cd12(U12; R)⊗ Co(Y0;�0)→ Co(Y2;�2).

Let [a], [b] and z be such that grz([a], W , [b]) is d = d01 + d12. For each such
[a], [b] and z, the two operators in the identity have a contribution

Cd01(U01; R)⊗ Cd12(U12; R)→ Hom(R�[a] ⊗ �0[a], R�[b] ⊗ �2[b]),
or simply

Cd01(U01; R)⊗ Cd12(U12; R)→ Hom(�0[a],�2[b]),
if we trivialize �[a] and �[b]. Because evaluation commutes with refinement,
this component of the right-hand side of the first identity is the map

u01 ⊗ u12 �→
〈
δ(u01 × u12), Mz([a], [b])

〉
�02(z),
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from the definition of Ko
o . We use Stokes’ theorem (21.4) to re-express this as

u01 ⊗ u12 �→
∑
β

δβ
〈
u1 × u2, N d

β

〉
�02(z),

where the sum is over all components of the codimension-1 stratum of
M̄z([a], [b]), and δβ are the boundary multiplicities. As in the proof of
Lemma 25.3.6, we can pull back to the larger compactification, in this case
to M+

z ([a], [b]), and sum over components (N d )+β of the codimension-1 stra-

tum of M+
z ([a], [b]) whose image is d -dimensional in M̄z([a], [b]). Thus we

can rewrite the expression as

u01 ⊗ u12 �→
∑
β

δ+β
〈
u1 × u2, (N d )+β

〉
�02(z).

We will identify this operator with the corresponding component of the operator
on the left-hand side of the identity.

The next task is to enumerate the relevant contributions to the codimension-1
stratum (N d )+. First, there is the fiber over S = 0, which is a copy of the moduli
space associated to the composite cobordism W = W (0):

{0} ×Mz([a], W ∗, [b]). (26.14)

Next there are contributions lying over 0 < S < ∞, which take the form of
parametrized moduli spaces ⋃

S∈R

{S} × N d−1(S), (26.15)

where N d−1(S) ⊂ M+
z ([a], W (S)∗, [b]) is a codimension-1 stratum of one

of the first five types enumerated in Proposition 25.1.1. Finally, there are
the contributions from the strata over S = ∞, which are described in
Proposition 26.1.6.

We now explain how each of these types of stratum contributes to the left-
hand side of the first identity in the lemma, and the sign with which it contributes.
The stratum (26.14) occurs with multiplicity −1, because {0} is minus the
boundary of [0,∞); and this stratum contributes the term mo

oc to the identity.
The five possibilities listed in (25.1) for the types of components that arise in
(26.15) contribute the first five terms of the identity. The sign with which the
stratum (26.15) appears in the boundary of M+

z ([a], [b]) is the opposite sign to
that with which the corresponding stratum N d−1 appears in M+

z ([a], W ∗, [b]);
these signs were the ones that appeared in Lemma 25.3.6.
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The remaining terms in the first identity are the four terms that have two
ms in them. These terms arise from codimension-1 strata in M+

z ([a], [b]) over
S = ∞, which are (in the notation of Proposition 26.1.6)

{∞} ×M01 ×M12

{∞} × M̆0 ×M01 ×M12

{∞} ×M01 × M̆1 ×M12

{∞} ×M01 ×M12 × M̆2.

Such strata have dimension d in the smaller compactification M̄z([a], [b])
only if the unparametrized moduli spaces M̆i on the cylindrical pieces are zero-
dimensional. The signs with which these occur in the boundary are given in
Proposition 26.1.7. The quantities d0 and d1 there are now 1, so that the signs are
respectively 1, (−1)d01 ,−1,−1, which accounts for the signs of the remaining
four terms. �

We can now complete the proof of Proposition 26.1.2. Let u01 and u12 be
Čech cocycles and ξ̌ a cycle in the complex Č•(Y0;�0). Let

u02 = c(u01 ⊗ u12)

as in (26.9). Then the chain-homotopy formula of Lemma 26.2.2 tells us

−m̌02(u02 ⊗ ξ̌ )+ m̌12(u12 ⊗ m̌01(u01 ⊗ ξ̌ )) = (−1)d ∂̌Ǩ(u01 ⊗ u12 ⊗ ξ̌ ),

so the two terms on the left are homologous in Č•(Y2;�2). At the level of
homology then, we have

m̌02(u02 ⊗ ξ̌ ) = m̌12(u12 ⊗ m̌01(u01 ⊗ ξ̌ )).

The cocycle u02 represents the class of (−1)d01d12 u, where u = u12u01 is the
product class defined in (23.6). Recalling also the signs in Definition 25.3.5,
we can write the last equality aŝ

HM•(u |W02;�02)

=

̂

HM•(u12 |W12;�12)

̂

HM•(u01 |W01;�01).

This establishes the composition law for

̂

HM•. The composition law for ĤM•
can be proved by constructing a similar chain-homotopy K̂ , or it can be deduced
from the long exact sequence of Proposition 22.2.1, the naturality given in
Proposition 25.5.1 and the five-lemma. The composition laws for the operators
on the Floer co-homology follow by duality. �



27 Closed four-manifolds 551

27 Closed four-manifolds

27.1 Invariants of closed four-manifolds

We now revisit the monopole invariants m(X , sX ) discussed in Section 1, with
the aim of establishing the results of Subsection 3.6. If X is a closed, oriented,
connected 4-manifold equipped with a Riemannian metric and spinc structure
sX , we used N (X , sX ) in Section 1 to denote the moduli space of solutions of
the (possibly perturbed) Seiberg–Witten equations:

N (X , sX ) ⊂ B(X , sX ).

Although it is not essential to the definition of m(X , sX ), it is more consistent
with our present approach to instead consider the moduli space M(X , sX ) of
solutions to the Seiberg–Witten equations in the blown-up configuration space,
defined as

M(X , sX ) = { [γ ] ∈ Bσ
k (X , sX ) | Fσ (γ ) = 0 },

where

Fσ (A, s,φ) =
(

1

2
ρ(F+At )− s2(φφ∗)0, D+A φ

)
, (27.1)

as in (6.5). (Compare Definition 24.2.1.) Recall here that φ is a section of
S+ → X of unit L2 norm and s ∈ [0,∞). Given an imaginary-valued 2-form
ω on X , we can also consider the perturbed equation Fσ

ω(A, s,φ) = 0, where

Fσ
ω(A, s,φ) =

(
1

2
ρ(F+At − 4ω+)− s2(φφ∗)0, D+A φ

)
. (27.2)

(Compare with (1.10) in Section 1.) As we have done previously, we shall
omit the perturbation from our notation and continue to write M(X , sX ) for the
moduli space of solutions to the perturbed equations. We also have the larger
moduli space

M̃ (X , sX ) ⊂ B̃σ
k (X , sX )

obtained by dropping the condition s ≥ 0.
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The following is the counterpart of the regularity theorem for N (X , sX )which
we stated (without proof) as Proposition 1.4.2. (We are now working with
Sobolev completions rather than spaces of smooth sections.)

Lemma 27.1.1. For a residual set of perturbing 2-formsω ∈ L2
k−1(X ; i�2(X )),

the section Fσ
ω is transverse to zero and the corresponding moduli space

M̃ (X , sX ) is a smooth, compact manifold of dimension

d = 1

4

(
c2

1(S
+
X )[X ] − 2χ(X )− 3σ(X )

)
.

For such perturbations, the moduli space M(X , sX ) is a smooth manifold with
(possibly empty) boundary, and can be identified with the quotient of M̃ (X , sX )

by the involution s �→ −s.

Proof. Consider first the locus of solutions of D+A φ = 0, as a subset of
B̃σ

k (X , sX ). This subset Z̃ ⊂ B̃σ
k (X , sX ) is a Hilbert submanifold. To verify this,

consider the linearization of the equation D+A φ = 0 at a solution in Cσ
k (X , sX ),

which yields the operator

Q : (b,ψ) �→ ρ(b)φ + D+A ψ .

If η ∈ L2
k−1(S

−) is L2-orthogonal to the image of Q, then by considering just
variations (0,ψ), we see that D−A η = 0. If η is not zero, then the unique contin-
uation results imply that η cannot vanish on an open set. The same observation
applies to ψ , so there is an open set on which both η and ψ are non-zero. We can
then find on this open set a form b such that ρ(b)ψ is proportional pointwise to
η. This shows that η cannot be orthogonal to the image of Q unless it is zero.
Elliptic theory then tells us that Q is surjective, and that Z̃ is a submanifold, as
claimed.

Next, we can describe M̃ (X , sX ) as the fiber over 2ρ(ω+) of the map

' : Z̃ → L2
k−1(X ; i su(S+))

given by

(A, s,φ) �→ 1

2
ρ(F+At )− s2(φφ∗)0.

This map is Fredholm, so for a residual set of ω+ the fiber M̃ (X , sX ) is regular
and its dimension is the index of the Fredholm map.
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To calculate the index, we note that the tangent space to Z̃ at (A, s,φ) can be
identified with

{ (b, t,ψ) | D+A ψ + ρ(b)φ = 0, 〈φ,ψ〉L2 = 0,−d∗b+ ist Re〈iφ,ψ〉 = 0 },

where the first condition is the linearization of the Dirac equation, and the
remaining conditions define the tangent space of Bσ

k (X ), via the Coulomb slice
conditions of Definition 9.3.7. Dropping the zeroth-order terms, we see that the
index of the linearization of ' is equal to the index of the Fredholm operator

' ′ : { (b, t,ψ) | 〈φ,ψ〉L2 = 0 } → L2
k−1(X ; S− ⊕ iR⊕ i�+)

given by

' ′(b, t,ψ) = (D+A ψ , d∗b, d+b).

This index in turn is i1 + i2, where i1 and i2 are the (real) indices of the
operators

D+A : L2
k(X ; S+)→ L2

k−1(X ; S−)

d∗ ⊕ d+ : L2
k(X ; iT ∗X )→ L2

k−1(X ; iR⊕ i�+).
(27.3)

The complex index of the Dirac operator is given in (1.7), and i1 is twice this.
The index i2 is

b1(X )− b0(X )− b+(X ) = 1

2

(
χ(X )+ σ(X )

)
.

The sum of these two gives the result stated.
The fact that M(X , sX ) is a quotient of M̃ (X , sX ) by the involution is

an immediate consequence of the fact that the equations are invariant under
s �→ −s. �

The statement and proof of the lemma above are valid for any X . But the
lemma hides the fact that the boundary of the moduli space may be empty for
topological reasons:

Lemma 27.1.2. If b+(X ) is positive, then there is a residual set of perturbing
2-forms ω satisfying the conditions of Lemma 27.1.1 and such that, in addition,
the moduli space M(X , sX ) has empty boundary.
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Proof. This is a restatement of Lemma 1.4.3: the equations have no solutions
with s = 0 unless ω satisfies

4
∫

X
ω ∧ κ = −(2π ic1(S

+)� [κ])[X ]

for all self-dual harmonic forms κ ∈ H+. The residual set of the lemma is the
intersection of the residual set of the previous lemma with the complement of
an affine linear subspace defined by this last condition. �

Remark. When the boundary is empty (that is, when there are no reducible
solutions), the moduli spaces N (X , sX ) and M(X , sX ) are diffeomorphic, via
the blow-down map π : Bσ

k (X , sX )→ Bk(X , sX ).

When transversality holds, we also have a finiteness result, the specialization
of Proposition 24.6.5 to the case of a closed manifold:

Lemma 27.1.3. Suppose the perturbing 2-form ω is chosen so that the moduli
spaces M(X , sX ) are regular for all sX . Then there are only finitely many spinc

structures sX for which the moduli space M(X , sX ) is non-empty. �

As in Subsection 24.4, we can also consider a family of Riemannian metrics
gp on X , parametrized by a smooth manifold P, perhaps with non-empty bound-
ary ∂P = Q. Given a family of forms ωp for p in P, we form the M(X , sX )P

as the union over P of the corresponding moduli spaces. With the same slight
abuse of notation as was explained in the remark preceding Definition 24.4.9,
we can write

M(X , sX )P ⊂ P × Bσ
k (X , sX ).

Lemma 27.1.4. Suppose b+(X ) > dim P and let gp be a family of metrics
parametrized by a smooth manifold P with boundary Q. Suppose ωq is a family
of perturbing 2-forms, defined for q ∈ Q, and suppose that the parametrized
moduli space M(X , sX )Q is regular and contains no reducible solutions. Then
there is a family of forms ωp, extending the given family to all of P, such that
M(X , sX )P is again regular and contains no reducible solutions. In this case
M(X , sX )P is a manifold with boundary M(X , sX )Q.

Proof. This generalization of the previous lemmas is proved in the same manner
as Proposition 24.4.10. �

As a particular case, if b+(X ) > 1, we can take P to be an interval. The
conclusion of the lemma then provides a cobordism between the moduli spaces
corresponding to the two points of the boundary Q.
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Corollary 27.1.5. Suppose b+(X ) > 1. Let g0 and g1 be two Riemannian
metrics on X , and let ω0 and ω1 be imaginary-valued 2-forms such that the
corresponding moduli spaces M(X , sX )0 and M(X , sX )1 are regular and have
no reducibles. Then these moduli spaces are cobordant in Bσ

k (X , sX ). �

A choice of homology orientation µX for X determines an orientation for
the moduli space M(X , sX ), using the same conventions as were laid out in the
proof of Proposition 24.8.3. The cobordism in the corollary above is an oriented
cobordism.

Once the moduli space is oriented and without boundary, it has a fundamental
class; and given a cohomology class u ∈ H d (Bσ (X , sX )), there is a pairing〈

u, [M(X , sX )]〉 ∈ Z. (27.4)

Because of the corollary, this integer is independent of the choice of metric
and perturbation if b+(X ) > 1. The following definition generalizes our previ-
ous definition of m(ue

2 |X , sX ) slightly (see Definition 1.5.4), because we now
replace ue

2 by an arbitrary cohomology class in Bσ (X )

Definition 27.1.6. Let X be a closed, connected, oriented 4-manifold X with
b+(X ) > 1, equipped with a homology orientation. The monopole invariant of
X for the spinc structure sX is the map

m(− |X , sX ) : H∗(Bσ (X , sX ))→ Z

defined by

m(u |X , sX ) = 〈
u, [M(X , sX )]〉.

♦

For a given X , this function of u is zero for all but finitely many sX , by
Lemma 27.1.3. We again write Bσ (X ) for the union

⋃
sX

Bσ (X , sX ).

Definition 27.1.7. Let R be a commutative ring R. Then given any R×-valued
map �X on the set of spinc structures, and any u ∈ H∗(Bσ (X ); R), we write

m(u |X ,�X ) =
∑
sX

�X (sX )m(u |X , sX ).

As a special case, when �X = 1, we write

m(u |X ) =
∑
sX

m(u |X , sX ).

♦
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Remark. Note that an R×-valued function �X on the set of spinc structures is
essentially the same thing as a W -morphism �W , where W is the cobordism
from S3 to S3 obtained by removing two balls from X and we take the trivial
rank-1 local coefficient system on both copies of Bσ (S3). The example to have
in mind corresponds to the W -morphism �ν corresponding to a closed 2-form
ν, as in (23.8). Given a real 2-cycle ν on X , or simply a real homology class
h = [ν], we can define a function �ν on spinc structures on X by

�ν(sX ) = exp〈c1(sX ), h〉. (27.5)

In this case, the above definition becomes

m(u |X ,�ν) =
∑
sX

m(u |X , sX ) exp〈c1(sX ), h〉.

This is the function of h ∈ H2(X ; R) that we called m(u |X , h) in Subsection 3.8:
see (3.25) and (3.28).

27.2 Reducible solutions on cobordisms

A key point in the definition of m(X | sX ) is the absence of reducible solutions
(for a generic perturbation) when b+(X ) ≥ 1, and the absence of reducible
solutions in 1-parameter families of perturbations when b+(X ) ≥ 2. We now
turn to consider the analog of these statements for solutions on cobordisms.

Let W be an oriented cobordism between connected, oriented 3-manifolds
Y− and Y+. As usual we equip W with a Riemannian metric which is cylindrical
in a collar neighborhood of both boundary components, and we write W ∗ for
the cylindrical-end manifold obtained by attaching (−∞, 0]×Y− and [0,∞)×
Y+ to W .

Let L be a line bundle on W ∗ whose restriction to the ends either is trivial,
or more generally has torsion first Chern class. We examine the equation F+A =
ω+ for a connection A in L with square-integrable curvature. The condition
on the first Chern class means that c1(L) belongs to the subspace I2(W ∗) ⊂
H 2(W ∗; R), the image of the compactly supported cohomology.

Lemma 27.2.1. Let L be a complex line bundle on W ∗ whose Chern class
restricts to a torsion class on the two ends. Let A be a connection on L with
square-integrable curvature. Let κ be a square-integrable closed, self-dual
2-form on W ∗. Then ∫

W ∗
F+A ∧ κ = −2π i

〈
c1(L), [κ]

〉
where the pairing on the right is the non-degenerate cup pairing on I2(W ∗).
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Proof. For convenience, we can replace L by Lk for some k, so that L is topo-
logically trivial on the ends. If the connection A is a trivial connection on the
ends of the manifold, with respect to some trivialization of the bundle, then
(i/2π)FA is a compactly supported 2-form representing c1(L) as an element of
I2(W ∗) ⊂ H 2(W ∗; R), and the result is clear.

Consider next the case that A is not trivial but flat on the ends. The curvature
2-form (i/2π)FA is still compactly supported, and its image in I2(W ∗) still
represents c1(L): as the flat connection on the ends is changed by the addition
of a closed 1-form θ , the class of FA in H 2

c (W
∗; iR) ∼= H 2(W , ∂W ; iR) changes

by the image [θ ] ∈ H 1(∂W ; iR) under the coboundary map.
Finally, if FA is merely L2 but not compactly supported, the result can be

proved by making suitable cut-offs. For any ε > 0 we can find cylinders
[0, 1] × Y± contained in the ends and flat connections A± on these cylinders
with ‖A−A±‖L2

1
≤ ε. We can then use a standard cut-off function to replace A

by a connection A′ that is flat on the ends. The difference FA−FA′ will converge
to zero in L2 norm as ε goes to zero. �

Remark. The space I2(W ∗), the image of the compactly supported cohomology
in the ordinary cohomology, appeared in the guise of I2(W ), the image of
H 2(W ; ∂W ; R) in H 2(W ; R) in Subsection 24.8.

Lemma 27.2.2. The closed, self-dual square-integrable 2-forms on W ∗ rep-
resent a maximal positive-definite subspace I+(W ∗) ⊂ I2(W ∗) for the
non-degenerate cup-pairing.

Proof. This follows from the related result, that the square-integrable harmonic
forms represent I2(W ∗). A proof is contained in [8]. The statement can be
compared with the related result, Lemma 24.8.1. �

Recall that we write b+(W ) for the dimension of a maximal positive-definite
subspace of I2(W ) (or equivalently I2(W ∗)).

Corollary 27.2.3. If b+(W ) is non-zero, then exists a compactly supported
imaginary-valued 2-form ω on W ∗ such that there exists no connection A with
L2 curvature in any line bundle L → W ∗ satisfying the equation F+A = ω+. �

We now return to the Seiberg–Witten equations. Fix metrics again on Y±
and W , and let q± be admissible perturbations for Y±. On the cylindrical-end
manifold W ∗ we take a perturbation p̂ defined as in (24.2), and we then have the
perturbed equations Fσ

p̂
(γ ) = 0 defining the moduli space M([a], W ∗, sW , [b])

for critical points [a], [b] on Y±, as in Definition 24.2.1. In the interior of the
compact part W , away from the collar regions, the equations are the equations
Fσ (A, s,φ) = 0, where Fσ is as in Equation (27.1). At this point we observe
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T

Support of p

T

Support of v 

Fig. 9. Supports of ω and p̂ separated by cylinders of length T in W (T ).

that we can perturb the equations Fσ
p̂
= 0 further by introducing a 2-form ω

supported in the interior of W and replacing the equations over W with the
equation from (27.2), as we previously did in the case of a closed manifold. We
write the modified equations on W ∗ as Fσ

p̂,ω
(γ ) = 0, and we continue to denote

the space of solutions by M([a], W ∗, sW , [b]).
In W , we take it that there are cylindrical regions I × Y± disjoint from the

support of both ω and p̂. Let gT be a Riemannian metric on W obtained from
the original metric by increasing the length of both of these cylinders by a
quantity T > 0. Let W (T ) denote the manifold W equipped with this metric,
and W (T )∗ the corresponding cylindrical-end manifold. Of course, W (T )∗ is
isometric to W ∗; but on W (T )∗ the support of ω and the support of p̂ are
separated by two long cylinders. (See Figure 9.) We examine the equations
Fσ

p̂,ω
(γ ) = 0 for the metric gT with T large, and the corresponding moduli

space Mz([a], W (T )∗, sW , [b]) belonging to a particular component z.

Proposition 27.2.4. Suppose that b+(W ) > 0, and choose ω so that

4
∫

W ∗
ω ∧ κ = (−2π i)〈c1(sX ), [κ]〉

for at least one closed, self-dual, square-integrable 2-form κ on W ∗. Then there
exists T0 such that for all T ≥ T0, there are no reducible solutions in the moduli
space Mz([a], W (T )∗, sW , [b]) defined by the equations Fσ

p̂,ω
= 0.

Proof. Suppose the moduli space contains reducibles for all sufficiently large T ,
and let (A(T ), 0,φ(T )) represent a reducible element. Identify all the manifolds
W (T )∗ isometrically with W ∗. After passing to a subsequence and applying
gauge transformations, the connections A(T ) will converge on compact subsets
of W ∗ to a connection A with F+A = 4ω+. The curvature FA will be square-
integrable, by the same sort of energy arguments used in Proposition 24.6.4 and
Proposition 26.1.4, and we obtain a contradiction to Lemma 27.2.1. �
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Remark. If the moduli spaces are regular, we can choose T0 to be independent of
sW , [a], [b] and z. This can be seen from the finiteness result, Proposition 24.6.5,
combined with the observation that the existence of reducible trajectories is an
issue which does not involve the blow-up picture, Bσ (Y ): before blowing up,
there are only finitely many critical points [α] in B(Y ).

We can also deal with a family of Riemannian metrics and perturbations. Let
P be a compact manifold with boundary, and let gp be a family of Riemannian
metrics on W parametrized by P, all of which are isometric to each other in
cylindrical regions near Y±. We obtain a family of metrics on the cylindrical-
end manifold W ∗, and we denote by H+(W ∗, gp) the space of closed, self-dual,
square-integrable, real-valued 2-forms κ on W ∗ for the given metric. Simple
transversality gives us:

Lemma 27.2.5. Suppose b+(W ) > dim P. Then there exists a family of com-
pactly supported 2-forms ωp on W with the following transversality condition:
for all p ∈ P there exists κp in H+(W ∗, gp) such that

4
∫

W ∗
ωp ∧ κp = (−2π i)〈c1(sX ), [κp]〉.

If ωq is previously specified for q in Q = ∂P, then ωp can be chosen so as to
agree with the given family on the boundary. �

We can now state a version of Proposition 27.2.4 for the family of met-
rics gp. Let gp(T ) be obtained by increasing the neck length, as before, and
let M([a], W ∗(T ), sW , [b])P denote the corresponding parametrized moduli
space.

Proposition 27.2.6. Suppose that ωp is chosen for all p ∈ P so that the
conclusion of the above lemma holds. Then there exists T0 such that for all
T ≥ T0, there are no reducible solutions in the parametrized moduli space
Mz([a], W (T )∗, sW , [b])P. �

27.3 Definition of
−−→
HM

Let X be a closed, connected, oriented 4-manifold, and let W be the cobordism
from S3 to S3 obtained by removing two balls from X . Note that b+(W ) =
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b+(X ). The cobordism W induces mapŝ

HM•(u |W ) :

̂

HM•(S3, s)→

̂

HM•(S3, s)

ĤM•(u |W ) : ĤM•(S3, s)→ ĤM•(S3, s)

HM•(u |W ) : HM•(S3, s)→ HM•(S3, s)

as given in Subsection 25.3 and we might hope that these maps determine
m(u |X ). This is not the case. To examine these maps, we take the round metric
on S3 and recall from Subsection 22.7 that there are then no irreducible critical
points for S3, that the reducible critical points in Bσ (S3, s) all lie over a unique
critical point in B(S3, s), and that the differentials involved in the construction
of the Floer homology are all zero. From Definition 25.3.3 we can then see that
in this case the map m̌ is given by the matrix[

0 0
0 m̄s

s

]
so the map only involves reducible solutions on the cobordism W . As we saw
in the previous subsection, if b+(X ) > 0 then we can arrange that there are no
reducible solutions, so the map

̂
HM•(u |W ) is zero. Similar remarks apply to

ĤM and HM .
The invariant m(u |X ) involves the irreducible solutions of the Seiberg–

Witten equations on X . We should expect that these are related to the irreducible
solutions on the cylindrical-end manifold W ∗; and because there are no irre-
ducible critical points for S3, these irreducible solutions should be asymptotic
to critical points in Cu on the incoming end of W ∗ and Cs on the outgoing
end of W ∗. In Equations (25.4) we showed how a cobordism defines a map
mu

s (u ⊗−) : Cu(S3)→ Cs(S3), using just these irreducible solutions on W ∗.
We shall see that when b+(X ) ≥ 2 the map on homology induced by mu

s is
independent of both the metric and perturbation on W and that the induced map
determines m(u |X ) in a simple way. Indeed, the map we shall obtain from mu

s
is the map

−−→
HM•(u |W ) : ĤM•(S3)→

̂

HM•(S3)

promised in Subsection 3.5; and its relationship to m is stated in the
equation (3.18). We shall now construct

−−→
HM•(u |W ) for cobordisms between

general 3-manifolds.
Let

(u, W ,�W ) : (Y−,�−)→ (Y+,�+)
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be a morphism in the category cob-lc, and suppose that b+(W ) ≥ 1. From the
results above, we know that we can choose a 2-form ω, compactly supported in
the interior of W , and a suitable Riemannian metric, so that the moduli spaces
M([a], W ∗, [b]) defined using the equations Fσ

p̂,ω
contain no reducible solutions.

The four components m̄s
s(u ⊗ −) etc. of the map m̄, defined at (25.5), are all

zero, because they involve only the reducible parts of the moduli spaces.
In the same spirit as Definition 25.3.3, we make the following definition. It

is understood here that U is an open cover transverse to all the moduli spaces
of dimension d ≤ d0.

Definition 27.3.1. We define

!m : Cd (U ; R)⊗ Ĉ•(Y−;�−)→ Č•(Y+;�+),

for d ≤ d0, by the formula

!m =
[

mo
o mu

o
mo

s mu
s

]
.

♦

Proposition 27.3.2. We have the identity

(−1)d ∂̌(Y+) !m(u⊗ ξ̂ ) = −!m(δu⊗ ξ̂ )+ !m(u⊗ ∂̂(Y−)ξ̂ ).

Hence the map !m on chains descends to the level of homology to define
a map

!m : H d (U ; R)⊗ ĤM•(Y−;�−)→

̂

HM•(Y+;�+).

Proof. The four matrix components of this identity are (after an overall change
of sign, and writing σ again for the operator (−1)d on Cd (U ; R)):

(i) mo
o∂

o
o − ∂o

o mo
oσ − mu

o∂̄
s
u∂

o
s + ∂u

o ∂̄
s
umo

sσ = mo
o(δ ⊗ 1);

(ii) mo
s∂

o
o − ∂o

s mo
oσ − ∂̄s

s mo
sσ − mu

s ∂̄
s
u∂

o
s + ∂u

s ∂̄
s
umo

sσ = mo
s (δ ⊗ 1);

(iii) mo
o∂

u
o − ∂o

o mu
oσ − mu

o∂̄
u
u − mu

o∂̄
s
u∂

u
s + ∂u

o ∂̄
s
umu

sσ = mu
o(δ ⊗ 1);

(iv) mo
s∂

u
o − ∂o

s mu
oσ − ∂̄s

s mu
sσ − mu

s ∂̄
u
u − mu

s ∂̄
s
u∂

u
s + ∂u

s ∂̄
s
umu

sσ = mu
s (δ ⊗ 1).

These are the same identities as appear in Lemma 25.3.6, without the terms
involving m̄s

s, m̄u
s , m̄s

u and m̄u
u, all of which are zero in the present situation. �
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As in Subsection 25.3, we can take a limit over transverse open covers to
obtain a map

!m : H d (Bσ (W ); R)⊗ ĤM•(Y−;�−)→

̂

HM•(Y+;�+).

To within a sign change, this is the map
−−→
HM that we seek to define.

Definition 27.3.3. Suppose b+(W ) ≥ 2. Let u be an element of
H d (Bσ (W ); R), and let µW be a homology orientation of W . Let �W : �− →
�+ be a morphism of local coefficient systems. Choose a Riemannian metric g
and perturbing 2-form satisfying the hypothesis of Proposition 27.2.4, and let
T0 be as in the conclusion of that proposition. Then we define

−−→
HM•(u |W ;�W )(g,ω) : ĤM•(Y−;�−)→

̂

HM•(Y+;�+)

as the operator

!m(u⊗−),

where !m is calculated using a metric g(T ) with T ≥ T0, so that there are no
reducible solutions on W . The dual map m̌∗(u ⊗−) defines a homomorphism
between the Floer cohomology groups in the same way:

−−→
HM •(u |W ;�W )(g,ω) :

̂

HM •(Y+;�+)→ ĤM •(Y−;�−).

♦

The maps
−−→
HM • and

−−→
HM• are related by duality, along the same lines as

Proposition 25.5.3. Thus, if W † denotes the same oriented manifold as W , but
now regarded as a cobordism from −Y− to −Y+, then

ω̌µ0

−−→
HM•(u |W †)ω̂−1

µ1
(x̂) = (−1)s−−→HM •(u |W )(x̂),

for x̂ in ĤM •(Y+). The sign (−1)s is the same as appears in Proposition 25.5.3.
When b+(W ) = 1, the map

−−→
HM•(u |W ;�W )(g,ω) may depend on g and ω.

But when b+ ≥ 2, they do not:

Proposition 27.3.4. If b+(W ) ≥ 2, the map
−−→
HM •(u |W ;�W )(g,ω) does not

depend on g and ω.

Proof. We suppose given (g0,ω0) and (g1,ω1) satisfying the hypothesis of
Proposition 27.2.4. By Lemma 27.2.5, we can find a family of metrics gt and
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forms ωt parametrized by the interval [0, 1], so that by Proposition 27.2.6 we
can then find T0 such that the moduli spaces on W defined by the metrics gt(T )

with perturbing 2-forms ωt contain no reducibles (for all t ∈ [0, 1] and T ≥ T0).
We now follow the proof of Proposition 25.3.8. The parametrized moduli

spaces M([a], W , [b])[0,1], defined using the metric g(T ) for large T , contain
no irreducibles, and define operators mo

o([0, 1]), mo
s ([0, 1]) etc. (The absence

of reducibles in the family means that the operators m̄s
s([0, 1]) etc. are zero.)

These we combine to define an operator

!K : Cd (U ; R)⊗ Ĉ•(Y−;�−)→ Č•(Y+;�+)

by the same recipe that defined !m, but using the parametrized moduli spaces:

!K =
[

mo
o([0, 1]) mu

o([0, 1])
mo

s ([0, 1]) mu
s ([0, 1])

]
.

This operator satisfies an identity of the same shape as the identity satisfied
by !m, but with an additional pair of terms arising from the boundary of the
P = [0, 1]:

(−1)d ∂̌ !K(u⊗ ξ̂ ) = −!K(δu⊗ ξ̂ )+ !K(u⊗ ∂̂ ξ̂ )

+ (−1)d !m(0)(u⊗ ξ̂ )− (−1)d !m(1)(u⊗ ξ̂ ).

Thus !K provides a chain-homotopy, and the maps obtained from !m(0) and !m(1)
are the same at the level of homology. �

Having defined
−−→
HM•(u |W ;�W ), we now turn to establishing the properties

that were discussed in the introductory subsection, Subsection 3.5. We begin
with the composition laws described in Theorem 3.5.3. As we proceed, we note
that the statement and proof of this theorem are readily adaptable to the case of
local coefficients.

Proof of Theorem 3.5.3. The above proposition tells us that, when b+(W ) ≥ 2,
we have a well-defined map

−−→
HM•(u |W ;�W ) : ĤM•(Y0;�0)→

̂

HM•(Y1;�1)

associated to a morphism

(u, W ,�W ) : (Y0,�0)→ (Y1,�1)
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in our cobordism category. The commutative diagram in Theorem 3.5.3 asserts
that we have the relations:

j∗ � −−→HM•(u |W ;�W ) = ĤM•(u |W ;�W )

−−→
HM•(u |W ;�W ) � j∗ =

̂

HM•(u |W ;�W ).

These can be directly verified at the chain level by multiplying the 2-by-2
matrices (Definition 27.3.1 and Proposition 22.2.1) which define !m and j, and
comparing with the definition of m̌ and m̂ in Definition 25.3.3, under the
hypothesis that m̄s

u etc. are zero.
It remains to prove the composition laws (3.14). We will indicate the proof

only of the first of the two composition laws,

−−→
HM•(W ) =

̂

HM•(W12) � −−→HM•(W01) (27.6)

as the second can be deduced from the first using duality. (We have renamed W1

and W2 from (3.14), to fit with the terminology of the present section.) The proof
has the same setup as the proof of the composition laws in Subsection 26.2. We
use the notation of that subsection here. In place of the operator (26.12), we
require an operator

!K : Cd01(U01; R)⊗ Cd12(U12; R)⊗ Ĉ•(Y0;�0)→ Č•(Y2;�2)

satisfying an identity:

− !K(δ ⊗ 1)− !K(1⊗ 1⊗ ∂̂)− ∂̌ !Kσ

− !m02(c⊗ 1)+ m̌12(1⊗ !m01)(τ ⊗ 1) = 0. (27.7)

(Compare Lemma 26.2.2.) Because b+(W01) is positive, we can choose a metric
g01 on W1 and perturbing 2-form ω01 satisfying the condition of Proposi-
tion 27.2.4, so that the moduli spaces on W01(T )∗ contain no reducibles, for
T ≥ T0, where W01(T ) is defined using the metric g01(T ) as in that proposition.
Now let W (S, T ) be the composite cobordism, defined as in (26.2), with a neck
of length S in the middle and using the metric g01(T ) on W01.

Lemma 27.3.5. There exists T0, such that for all T ≥ T0, the moduli spaces
on W (S, T ) contain no reducible solutions.

Proof. This is proved in the same way as Proposition 27.2.4. �
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Now fix T ≥ T0, and form the parametrized moduli space

Mz([a0], [b2]) =
⋃

S∈[0,∞)

{S} ×Mz([a0], W (S, T )∗, [b2]), (27.8)

as in (26.3), and its compactification M+
z ([a0], [b2]). Once again, we use a

perturbation which is non-zero on the middle neck, [0, S] × Y1: see the remark
on page 536. Using these moduli spaces, we can define maps Ko

o ,Ko
s , Ku

o and
Ku

s , exactly as in (26.11). The absence of reducibles means that the maps K̄s
s ,

K̄s
u, K̄u

s and K̄u
u are all zero. The required map !K is then defined by the matrix

!K =
[

Ko
o Ku

o
Ko

s Ku
s

]
.

The four matrix components of the required identity (27.7) coincide with the
identities in Lemma 26.2.3, once these are simplified using the vanishing of K̄s

s
and its companions and the vanishing of m̄s

s etc. for the cobordism W1. For exam-
ple, in the first identity of Lemma 26.2.3, the terms ∂u

o K̄s
u∂

o
s and mu

om̄s
u∂

o
s τσ1

vanish, leaving an identity

− Ko
o ∂

o
o − ∂o

o Ko
oσ12 + Ku

o ∂̄
s
u∂

o
s + ∂u

o ∂̄
s
uKo

s σ12 − mo
oc

+ mo
omo

oτ − mu
o∂̄

s
umo

s τ − ∂u
o m̄s

umo
s τ = Ko

o (δ ⊗ 1).

This is the top left component of the identity (27.7). �

We now check that when a cobordism W is factored as the composition of two
cobordisms W1, W2, both with b+ ≥ 1, the map

−−→
HM•(W ) coincides with the

map Z(W1, W2) defined by the diagram chase as in (3.15). Note that the proof of
the composition law (27.6) which we have just given did not use the condition
b+(W1) ≥ 2 in an essential way, but only the condition b+(W1) ≥ 1. So if
b+(W1) and b+(W2) are both positive, so that b+(W ) ≥ 2, then we can write

−−→
HM•(W ) =

̂

HM•(W2) � −−→HM•(W1)(g1,ω1)

for any appropriate choice of g1 and ω1. The composite on the right calculates
Z(W1, W2).

27.4 Closed four-manifolds revisited

We shall now show that the invariants of a closed 4-manifold X given by Defi-
nition 27.1.7 can be recovered from

−−→
HM•(W ), where W is the cobordism from
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S3 to S3 obtained by removing two balls from X , as promised in Subsection 3.6.
(See (3.19) and Proposition 3.6.1.) We restate the result here.

Proposition 27.4.1. Let X be a closed, oriented 4-manifold with b+(X ) ≥ 2,
equipped with a homology orientation, and let W be the cobordism from S3 to
S3 obtained by removing two balls from X . Let m(u |X ) be the Seiberg–Witten
invariants of the closed manifold, as in Definition 27.1.7. Let 1 be the standard
generator of ĤM•(S3) and 1̌ ∈

̂

HM •(S3) ∼= Z[[U ]] the generator for the Floer
cohomology group. Then

m(u |X ) = 〈−−→
HM•(u |W )(1), 1̌

〉
,

for u a class of degree d, where the angle brackets denote the Z-valued pairing
between

̂

HM•(S3) and

̂

HM •(S3).

Proof. The proof will be another stretching argument. Consider the 4-ball B4

equipped with a metric with positive scalar curvature containing a collar region
[0, 1] × S3 in which the metric is cylindrical. Let the metric on S3 be the
round metric. Let (B4)∗ be obtained from B4 by attaching a cylindrical end
[0,∞) × S3. Let [B0, 0] ∈ B(S3, s0) denote the unique critical point for the
unperturbed functional L (so B0 is the connection with FBt

0
= 0). Choose a

small perturbation q ∈ P(S3) as in Subsection 22.7, so that there is still a
unique critical point [B, 0] and so that the perturbed Dirac equation Dq,B has
simple spectrum. A family of self-adjoint operators on S3 joining DB0 to Dq,B

will have no spectral flow. As in Subsection 22.7, we can label the eigenvalues
of Dq,B in increasing order as λi, with λ0 the first positive eigenvalue, and label
the corresponding critical points in Bσ

k (Y , s0) as ai. Choose a perturbation p̂ on
(B4)∗, equal to q on the end as usual, so that the corresponding moduli spaces
M((B4)∗, [ai]) are regular.

Lemma 27.4.2. If q and p̂ are sufficiently small, then there is a unique gauge-
equivalence class [A0] of connections on (B4)∗ such that M((B4)∗, [ai]) consists
only of solutions [A, s,φ] with s = 0 and [A] = [A0].

The moduli space M((B4)∗, [ai]) is empty if i ≥ 0. The moduli space
M((B4)∗, [a−i]) has dimension 2i − 2 for i ≥ 1 and can be identified with

CPi−1 \ CPi−2 = P(Vi) \ P(Vi−1),

where Vi is the space of solutions φ to the perturbed Dirac equation on
(B4)∗ with growth |φ(t)| ≤ Ce−λ−i t on the cylindrical end. In particular,
M((B4)∗, [a−1]) is a single point.
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Proof. Examine first the unperturbed equation F(A,�) = 0 on (B4)∗, without
blowing up. Because the scalar curvature is positive, there is no solution with �

non-zero and |�(t)| → 0 on the end, by the same argument as Proposition 4.6.1.
There are no square-integrable, closed, anti-self-dual 2-forms on the manifold,
so if (A, 0) is a solution of the equations F+At = 0, asymptotic to the constant
solution on the cylindrical end, then FAt must be zero. Up to gauge equivalence,
there is a unique such connection A0. This solution to the unperturbed equations
is regular, so persists under sufficiently small perturbations.

The description of M((B4)∗, [a−i]) as P(Vi) \P(Vi−1) now follows from the
definition of the moduli space, much as in Proposition 14.6.1; and the only
additional point to verify is that the complex dimension of Vi is 2i. It is enough
to check that the L2 index of the unperturbed Dirac operator D+A0

is zero on

(B4)∗, and this follows again from the positivity of the scalar curvature. �

We have a similar result for the oppositely oriented ball−B4, with an “incom-
ing end”, (−∞, 0] × S3, attached. The cylindrical-end manifold (−B4)∗ is
isometric to (B4)∗ by an orientation-preserving map, but because of our (possi-
bly asymmetric) perturbation and our asymmetric labelling of the eigenvalues
(λ0 is positive), the final result looks slightly different. We have

M([ai], (−B4)∗) ∼= CPi \ CPi−1

for i ≥ 0, so that M([a0], (−B4)∗) is a point. These moduli spaces are empty
for negative i.

We return to the proof of the proposition. Equip W with a metric g and 2-form
ω, so that for T ≥ T0 there are no reducible solutions on the cylindrical-end
manifold W (T )∗, as in the statement of Proposition 27.2.4. Let X (S, T ) be
the closed manifold (diffeomorphic to X ) obtained by attaching two cylinders
[0, S] × S3 and the balls B4 and −B4 (see Figure 10):

X (S, T ) = B4 ∪ ([0, S] × S3) ∪W (T ) ∪ ([0, S] × S3) ∪ (−B4).

S T

Support of p

T

Support of v 

B4B4
S

Fig. 10. The manifold X (S, T ) obtained by adding cylinders and two 4-balls to W .



568 VII Cobordisms and invariance

The equations on X carry the perturbation p̂ on both copies of [0, S] × S3 and
the 2-form ω in the interior of W . Consider the moduli space M(X (S, T ), sX )

for the manifold equipped with this metric and perturbation, and a fixed spinc

structure sX . Form the union

M(X , sX ) =
⋃

S∈[0,∞)

{S} ×M(X (S, T ), sX ),

as in (26.3). This has a compactification formed by attaching a fiber at S = ∞:
as in Subsection 26.1, we define M(X (∞, T ), sX ) to be the set of quintuples([γ0], [γ̆1], [γ2], [γ̆3], [γ4]

)
where

[γ0] ∈ M((B4)∗, [ai1 ])
[γ̆1] ∈ M̆+([ai1 ], [ai2 ])
[γ2] ∈ M([ai2 ], W (T )∗, sW , [ai3 ])
[γ̆3] ∈ M̆+([ai3 ], [ai4 ])
[γ4] ∈ M([ai4 ], (−B4)∗),

and we form

M+(X , sX ) =
⋃

S∈[0,∞]
{S} ×M(X (S, T ), sX ).

This is a space stratified by manifolds. Its codimension-1 strata consist of the
fiber over 0 and those strata over S = ∞ with ai1 = ai2 and ai3 = ai4 ,
so that [γ̆1] and [γ̆3] belong to point moduli spaces. The latter strata are of
the form

M((B4)∗, [a])×M([a], W (T )∗, sW , [b])×M([b], (B̄4)∗),

where each of [a] and [b] is a critical point on S3. Among these, there is one
stratum

M((B4)∗, [a−1])×M([a−1], W (T )∗, sW , [a0])×M([a0], (B̄4)∗) (27.9)

which is diffeomorphic to M([a−1], W (T )∗, sW , [a0]) by the lemma. We have
a continuous map

r : M+(X , sX )→ [0,∞] × Bσ (W (T ), sW )
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whose image is again a space stratified by manifolds. The only codimension-
1 strata in r(M+(X , sX )) are the moduli space M(X (0, T ), sX ) over S = 0,
and the moduli space M([a−1], W (T )∗, sW , [a0]) over S = ∞. The latter is
the image of the stratum (27.9). The proposition now follows by the usual
application of Stokes’ theorem, because the evaluation〈

u, [M([a−1], W (T )∗, sW , [a0])]
〉

calculates the contribution from the spinc structure sW to the matrix entry of−−→
HM•(u |W ) from the generator 1 in ĤM•(S3) corresponding to [a−1] and the
generator of

̂

HM•(S3) corresponding to [a0], which is the generator that pairs
with 1̌ ∈

̂

HM •(S3). �

The proof of the proposition above establishes an equality for each spinc

structure separately; so we can also formulate a version with “local coefficients”
with no change in the proof. Let R be a ring, let�S3 be the trivial local coefficient
system on Bσ (S3) with fiber R, and let �W : �S3 → �S3 be a W -morphism,
where W is still the complement of two balls in X . As we remarked earlier, such
a �W is equivalent to an R×-valued function �X on the set of spinc structures
sX . Then we have:

Proposition 27.4.3. Let X and W be as above, and let �W be a W -morphism
corresponding to an R×-valued function �X on the set of spinc structures
on X . Then

m(u |X ;�X ) = 〈−−→
HM•(u |W ;�W )(1), 1̌

〉
,

where the angle brackets denote the R-valued pairing between

̂

HM•(S3; R) and̂

HM •(S3; R). �

Taking �X to be as in Equation (27.5) we recover Proposition 3.8.1. The
related formulae (3.27) and (3.29) in Subsection 3.8 are formal consequences
of this proposition and the composition laws.

27.5 The wall-crossing formula

So far, we have only considered the monopole invariants m(X , [ν]) for closed
manifolds X with b+(X ) ≥ 2. Recall that when b+ = 1, the difficulty which
arises is that, although the associated moduli spaces M(X , sX ) are closed man-
ifolds for generic choice of metric and perturbing 2-form, it is not the case in
general that the pairings 〈[ud

2 ], M(X , sX )〉 are independent of the choices made.
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This issue was raised earlier in Subsection 1.5 (see the discussion following
Theorem 1.5.2). We return to it now, to investigate more carefully how the
pairing depends on the metric and perturbation.

Suppose then that X is an oriented closed manifold with b+(X ) = 1. Our
starting points are Lemma 27.1.1 and Lemma 27.1.2, which tell us that for
any metric g on Y there is a dense open set of forms ω in L2

k−1(X ; i�2(X ))

for which the corresponding moduli space M(X , sX ) is smooth, compact and
without boundary.The second condition – that the moduli space has no boundary
– arises by ensuring that there are no reducible solutions to the equations; and
this condition is equivalent to requiring

4
∫

X
ω ∧ κ = −(2π ic1(S

+)� [κ])[X ] (27.10)

where κ is any non-zero self-dual harmonic form for the metric g on X . (There
is only one such form, up to scalar multiple, because b+ is 1.) A picture of
what is going on can be obtained from the proof of Lemma 27.1.1. Inside the
configuration space B̃σ

k (X , sX ) is the Hilbert submanifold

Z̃ ⊂ B̃σ
k (X , sX )

defined as the gauge-equivalence classes of triples (A, s,φ) with D+A φ = 0. The
configuration space Bσ

k (X , sX ) is the subset of B̃σ
k (X , sX ) where s ≥ 0, and we

have equally a Hilbert submanifold with boundary

Z ⊂ Bσ
k (X , sX ).

(The s coordinate is a product factor in all these cases, and the boundary of Z
occurs at s = 0.) As in the proof of the lemma, we have a map

' : Z → L2
k−1(X ; i su(S+))

given by

(A, s,φ) �→ 1

2
ρ(F+At )− s2(φφ∗)0,

and the moduli space M(X , sX ) for a given perturbing 2-form ω is the fiber of
' over 2ρ(ω+). The restriction of ' to ∂Z is a map

∂' : ∂Z → WsX
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where WsX ⊂ L2
k−1(X ; i su(S+)) is the affine linear subspace of codimension 1

consisting of all elements 2ρ(ω+) where ω runs through forms with

4
∫

X
ω ∧ κ = −(2π ic1(S

+)� [κ])[X ].

The domain and codomain of ∂' are codimension-1 submanifolds of the
domain and codomain of ' ; so, like ' , the map ∂' is a proper Fredholm
map, and its index is given by the same formula as appears in Lemma 27.1.1.
In particular, the generic fiber of ∂' is a smooth compact manifold whose
dimension is the same as that of M(X , sX ). The normal direction to WsX is
oriented by a choice of a non-zero self-dual harmonic form, while the normal
direction to ∂Z in Z is canonically oriented. The difference between the deter-
minant lines of D' and D∂' is therefore the line of self-dual harmonic forms,
and it follows that the fibers of ∂' can be canonically oriented by a choice of
orientation for H 1(X ; R). A regular fiber (∂')−1(w) ⊂ Bσ

k (X , sX ), being a
closed oriented manifold, has a homology class,

[(∂')−1(w)] ∈ Hd (Bσ (X , sX ).

The overall sign of the class depends on orienting H 1(X ; R), but the homology
class is otherwise independent of the choice of w in WsX .

Now let ω0 and ω1 be two choices of perturbing 2-form for the Seiberg–
Witten equations on X , and let M(X , sX )0 and M(X , sX )1 be the corresponding
moduli spaces. Suppose that 2ρ(ω+0 ) and 2ρ(ω+1 ) are both regular values of
' , so that the moduli spaces are smooth, and suppose also that both perturbing
2-forms satisfy the condition (27.10), so that the moduli spaces are closed. Fix
a homology orientation of X , to orient both moduli spaces, so that we have
classes [M(X , sX )0] and [M(X , sX )1] in Hd (Bσ

k (X , sX )). We can consider two
cases. First, it may be that 2ρ(ω+0 ) and 2ρ(ω+1 ) lie on the same side of the affine
hyperplane WsX in L2

k−1(X ; i su(S+)). In this case, we can join ω0 and ω1 by a
path of forms ωt all of which satisfy the inequality (27.10). If the intermediate
forms are chosen so that 2ρ(ω+t ) is transverse to ' , then we obtain a cobordism
between the moduli space, showing that

[M(X , sX )0] = [M(X , sX )1]

as before. However, if 2ρ(ω+0 ) and 2ρ(ω+1 ) lie on different sides of WsX , the
classes may not be equal. We can choose ωt so that the path P : [0, 1] →
L2

k−1(X ; i su(S+)) given by P(t) = 2ρ(ω+t ) is transverse to both ' and ∂' ,
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and crosses WsX at one point w. In this case the parametrized moduli space
M(X , sX )P is a (d + 1)-manifold with three boundary components:

∂M(X , sX )P = M(X , sX )0 ∪M(X , sX )1 ∪ (∂')−1(w).

Thus

[M(X , sX )0] = [M(X , sX )1] ± [(∂')−1(w)].

The fundamental class of the moduli M(X , sX ) therefore depends only on which
side of the wall, WsX , the element 2ρ(ω+) lies on.

To say something more, and to pin down the sign here, consider the case that
b1(X ) = 0, so that the fiber (∂')−1(w) can be canonically oriented. Indeed,
the fiber is something we can describe quite explicitly: it is the quotient by the
gauge-group of the space of solutions (A,φ) to the equations

D+A φ = 0

F+At = 4ω+
(27.11)

(where w is again written as 2ρ(ω+)). In the case that b1 = 0 and w lies on the
wall, the second equation determines the connection A uniquely up to gauge
equivalence, so (∂')−1(w) is the (complex) projectivization of the kernel of
the Dirac operator D+A . If w is a regular value of ∂' , then this Dirac operator
is surjective, and so

(∂')−1(w) = CPd/2

where d is the (real) dimension of the moduli space M(X , sX ). This fiber is
indeed canonically oriented, for we can give it the complex orientation. We can
therefore write

[M(X , sX )0] = [M(X , sX )1] ± [CPd/2]. (27.12)

To understand the sign, let us first specify a homology orientation by picking
a non-zero, real, self-dual harmonic form κ , so as to orient H+(X ). (We still
suppose that H 1(X ; R) is zero.) If ω is a form for which the inequality (27.10)
holds, let us say that ω ∈ 	2(X ; iR) lies on the positive side of the wall if

4i
∫

X
ω ∧ κ > (2πc1(S

+)� [κ])[X ].
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Let us choose ω0 and ω1 to lie on the negative and positive sides respec-
tively. The question of the sign in (27.12) is now well-defined, and with our
conventions, the sign is negative:

[M(X , sX )0] = [M(X , sX )1] − [CPd/2]. (27.13)

When we evaluate the class ud/2
2 against these homology classes, the extra

CPd/2 yields 1 in the formula. Rather than having a single, well-defined
monopole invariant

m(ud/2
2 |X , sX ) = 〈

ud/2
2 , [M(X , sX )]〉,

we have two versions,

m+(ud/2
2 |X , sX ) = 〈

ud/2
2 , [M(X , sX )1]

〉
m−(ud/2

2 |X , sX ) = 〈
ud/2

2 , [M(X , sX )0]
〉
,

obtained using the moduli spaces from the positive and negative sides of the
wall. They are related by

m+(ud/2
2 |X , sX ) = m−(ud/2

2 |X , sX )+ 1. (27.14)

This is the wall-crossing formula for the case that b1(X ) = 0.
The wall-crossing formula can be extended also to the case of manifolds with

b1 positive. In the general case, the fiber of ∂' is still described as the moduli
space of solutions to the pair of equations (27.11), but now the solutions of the
second equation, F+At = 4ω+, mod gauge, form a torus T of dimension b1(X ).
Let us consider the case that the dimension d of the moduli space (and of the
generic fiber of ∂' ) is zero. In this case, the torus T parametrizes a family of
Dirac operators D+A of complex index 1−b1/2. The index of the family defines
an element ζ in the K-theory of the torus, K(T), and generically the number of
points in T where D+A has kernel, counted with sign, is given by

cb1/2(−ζ )[T].

In the case b1 = 2, for example, we are evaluating c1 of the index of a family of
operators parametrized by a 2-torus T, and an application of the index theorem
for families leads to an answer

1

2

(
c1(sX )� a1 � a2

)[X ], (27.15)
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where a1 and a2 form a basis for H 1(X ; Z) = Z2. (The overall sign depends
on an orientation of H 1.) The calculation for general b1 appears in [65].

Example. Aparticularly simple case is the manifold X = CP2. If we choose the
homology orientation given by the symplectic form, then the zero perturbation
ω = 0 lies on the positive or negative side of the wall, according as c1(s) is
respectively a negative or positive multiple of the Kähler class h. Furthermore,
because the manifold has positive scalar curvature, the unperturbed equations
admit no irreducible solutions, and so the corresponding monopole invariant is
zero. Thus, writing d(s) for the dimension of the moduli space,

m−(ud(s)/2
2 |CP2, s) = 0, if c1(s)� h > 0

m+(ud(s)/2
2 |CP2, s) = 0, if c1(s)� h < 0.

(The case c1 = 0 does not arise, because c1(s) is an odd multiple of the
generator.) Using the wall-crossing formula, we obtain

m+(ud(s)/2
2 |CP2, s) =

{
0, if c1(s)� h < 0

1, if c1(s)� h > 0,

while similarly

m−(ud(s)/2
2 |CP2, s) =

{
0, if c1(s)� h > 0

−1, if c1(s)� h < 0.

We can calculate invariants for the manifold X = S2 × T 2 in a similar way,
at least for spinc structures sX with c1(sX ) = 0 (so that the moduli space is
zero-dimensional).Again, there is a metric with positive scalar curvature, so the
invariants are zero for small perturbations ω. Each non-zero invariant is related
to a zero invariant by the wall-crossing formula (27.15). In that formula, the
term a1 � a2 is the class Poincaré dual to [S2] in X . So the non-zero invariants
are given by a formula

±(c1(sX ) · [S2])/2. (27.16)

The proof that m± are independent also of the choice of Riemannian metric
on X proceeds in the same way as the case of manifolds with b+ ≥ 2. The
affine subspace WsX = WsX depends on the metric g through the self-dual
harmonic form κ = κg ; but if we choose an orientation for H+(X ), we can
still make sense of the “positive” and “negative” sides as g varies, and so talk
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consistently about m+ and m−. It makes sense, in particular, to ask whether the
zero perturbation ω = 0 lies on the positive or negative side of the wall WsX ,g

for a given g, or whether it lies on the wall. This is the question of the sign of
the pairing

(c1(S
+)� [κg])[X ]

for a self-dual g-harmonic form κg of the chosen orientation. Specifically, if this
pairing is negative, then the moduli space [M(X , sX ] for small perturbations ω
computes the invariant m+, while if the pairing is positive, then it computes
m−. Geometrically, if the Chern class is not torsion, the spinc structure sX

determines a hyperplane in H 2(X ; R), namely the space orthogonal to c1(S+)
with respect to the cup product; and from this point of view, the question is,
on which side of this hyperplane does the ray spanned by the harmonic form
[κg] lie?

There is an addition observation to be made here. When b+ = 1 and b1 = 0,
the formula for the dimension d of the moduli space M(X , sX ) can be written

d = (1/4)(c2
1(S

+)[X ] − 9+ b−(X )).

A necessary condition to obtain a non-zero invariant m is that d is non-negative.
So in the case that b−(X ) ≤ 8, we are only concerned with classes c1(S+) with
positive square. Since κg also defines a class in the positive cone, it is not
possible for c1(S+) and [κg] to be orthogonal when b− ≤ 8. We still need a
homology orientation to fix the overall sign of the invariant; but if we choose the
perturbing 2-formω always to be small, then it will never lie on the wall, and we
obtain in this way a well-defined invariant, independent of g. In the borderline
case, when b− = 9, the same applies if c1(S+) is not torsion, because a non-zero
null vector cannot be orthogonal to a positive vector when b+ = 1. Figure 11
shows the situation when b− ≥ 10. In this range, the class c1(S+) may have
negative square, so that the complementary hyperplane intersects the positive
cone. As the metric g varies, the positive ray spanned by [κg] may cross this
hyperplane; and when this happens, the invariant defined by the moduli space
M(X , sX ) for small perturbations ω will change by 1.

Gluing formulae when b+ = 1. Finally, we mention the gluing formula, Propo-
sition 3.9.3, and its extension to the case of manifolds with b+ = 1. Recall the
setting of Proposition 3.9.3. We have a closed manifold X with a real 2-cycle
ν, and a decomposition of X as X1∪X2 along a manifold Y , which also decom-
poses ν as ν1+ν2. We write η for the 1-cycle ∂ν1 (equivalently−∂ν2) in Y , and
we recall the important hypothesis that the class [η] is non-zero in H1(Y ; R).
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c1(S
+)⊥ c1(S

+)

[kg]

Fig. 11. Wall crossing when b− ≥ 10 and c1(S+) has negative square.

Because of this last condition, the map j :

̂

HM•(Y ;�η) → ĤM•(Y ;�η)

is an isomorphism, allowing us to identify these two groups: we just write
HM•(Y ;�η). The manifolds X1 and X2 give rise to invariants

ψ(X1,ν1) ∈ HM•(Y ;�η)

ψ(X2,ν2) ∈ HM•(−Y ;�−η)

and with appropriate homology orientations, Proposition 3.9.3 expresses the
invariant of the closed manifold X as a pairing,

m(X , [ν]) = 〈
ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

,
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as long as b+(X ) ≥ 2, so that the left-hand side is defined. The slightly para-
doxical observation that we made earlier was that the topological setup only
guarantees that b+(X ) ≥ 1, so the left-hand side may not be well-defined as it
stands, even though the pairing on the right is unambiguous. We will not prove
the pairing formula until later in the book (Section 32), but we do now have
the means to resolve the paradox by explaining what the pairing on the right
actually computes in this situation.

The decomposition of X along Y allows us to define a family of metrics gT on
X (for T ≥ 0) by starting, as usual, with a metric g0 which is cylindrical near Y
and then lengthening the cylinder by T while keeping the metric constant outside
the cylindrical region. Let us suppose that b+(X ) = 1. This means that each
Xi has b+ = 0, and the image of H2(Y ; R) in H2(X ; R) is 1-dimensional. (See
Lemma 3.9.2.) Let k ∈ H 2(X ; R) be the Poincaré dual of a non-zero element in
the image of this map. The element k is a null vector for the cup square, so it lies
on the boundary of the positive cone: it therefore picks out one component of the
cone, or equivalently an orientation of H+(X ). Having chosen k therefore, we
can talk unambiguously about m+(X , sX ) and m−(X , sX ) (although the overall
sign of these invariants depends additionally on an orientation of H 1(X ; R) if
b1 is non-zero).

For each Riemannian metric gT , let κT be a self-dual harmonic form, lying
in the distinguished component of the positive cone. As T → ∞, the metric
degenerates; but the rays spanned by the classes [κT ] in H 2(X ; R) have a well-
defined limit. If they are suitably normalized, we have

[κT ] → k

as T → ∞. For each spinc structure sX , let us define an invariant mk(X , sX )

by specifying:

mk(X , sX ) =
{

m+(X , sX ), if (c1(sX )� k)[X ] < 0

m−(X , sX ), if (c1(sX )� k)[X ] > 0.

In the borderline case when (c1(sX ) � k)[X ] = 0 we resolve the situation
using the sign of the pairing k[ν], between the limiting cohomology class of
the self-dual forms and the homology class ν: we set

mk(X , sX ) =
{

m+(X , sX ), if (c1(sX )� k)[X ] = 0 and k[ν] < 0

m−(X , sX ), if (c1(sX )� k)[X ] = 0 and k[ν] > 0.
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We combine these into a generating function, much as m(X , [ν]) is defined in
the case b+ ≥ 2: that is,

mk(X , [ν]) =
∑
sX

mk(X , sX ) exp〈c1(sX ), [ν]〉.

(This is not a finite sum, though all but finitely many of the non-zero terms
arise from spinc structures sX with c1(sX ) � k = 0. Although there will be
infinitely many terms of the latter sort, the sum converges, as we will see in
the example below.) With this notation, we have the following extension of
Proposition 3.9.3.

Proposition 27.5.1. Suppose X has b+(X ) = 1, and let Y separate X into
manifolds X1, X2 each with b+ = 0. Let ν and η be as above, and let ψ(Xi ,νi)

be the invariants of the two manifolds with boundary. Let k be Poincaré dual
to a non-zero element of the image of H2(Y ) in H2(X ), and define mk(X , [ν])
as above. Then we have

mk(X , [ν]) = 〈
ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

,

for appropriate homology orientations, as in Proposition 3.9.3.

To see an example of the calculation of mk(X , [ν]), from the definition,
consider the manifold

X = CP2#9C̄P
2
,

which has b+ = 1 and b− = 9. The dimension formula tells us that the moduli
spaces M(X , sX ) have dimension zero only when c1(sX )2 = 0. The manifold
has odd intersection form, so the invariants m±(X , sX ) are potentially non-zero
for spinc structures whose first Chern class is a non-zero vector on the null cone.
Pick one component, C+, of the cone C, so as to define a homology orientation.

As discussed above, we are in a situation where the orthogonal space to each
class c1(sX ) does not meet the interior of the positive cone. For perturbations
ω which are small, we therefore have an invariant which does not depend on
the metric g, because c1(sX ) and [κg] cannot be orthogonal. On the other hand,
the manifold X admits a metric of positive scalar curvature, so the invariant for
small perturbations and any metric g is always zero. This gives:

m−(X , sX ) = 0, if c1(sX ) ∈ ∂C+

m+(X , sX ) = 0, if c1(sX ) ∈ ∂C− .
(27.17)
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The manifold contains a smooth 2-torus F with zero self-intersection number:
in algebro-geometric terms, it can be obtained by starting with a cubic curve
in CP2, blowing up CP2 at nine points along this cubic, and taking F to be the
proper transform of the curve. Let X1 be a closed tubular neighborhood of F ,
and X2 the closure of the complement. This decomposes X into two pieces with
common a boundary a 3-torus Y = ∂X1. The image of H2(Y ; Z) in H2(X ; Z)

is generated by [F]. Let k be the class in X Poincaré dual to [F]. We suppose
orientations are chosen so that k lies in the boundary of C+.

If a non-zero vector c in H 2(X ; R) lies on the boundary of the positive cone
C, then c ∪ k is non-zero unless c is proportional to k. If they are not propor-
tional, the sign of the pairing is positive if c is in ∂C+ and negative otherwise.
From the definition of mk(X , sX ) and the vanishing results (27.17), we therefore
see that

mk(X , sX ) = 0, if c1(sX ) ∈ span(k).

In the special case that c1(sX ) and k are proportional (and hence orthogonal),
the value of mk(X , sX ) depends on ν. Let us pick a homology class h with
k(h) > 0, and choose ν with

[ν] = λh

for some non-zero λ. For spinc structures whose first Chern class is orthogonal
to k, we then have

mk(X , sX ) =
{

m+(X , sX ), if λ < 0

m−(X , sX ), if λ > 0.

Because k is a primitive class, the first Chern classes of spinc structures that are
proportional to k have the form

c1(sX ) = lk,

for l an odd integer. For this spinc structure, we know that m+(X , sX ) = 0 if
l < 0 and m−(X , sX ) = 0 if l > 0, by (27.17). From the wall-crossing formula,
we have m−(X , sX ) = −1 if l < 0 and m+(X , sX ) = 1 if l > 0. Using the
definition of mk(X , [ν]), we see that if λ is negative

mk(X , λh) =
∑

l≡1 (2)
l>0

exp(λlk · h)
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while if λ is positive then

mk(X , λh) =
∑

l≡1 (2)
l<0

− exp(λlk · h).

The sum is convergent in either case; and conveniently, both of these cases can
be summarized in a single formula, valid for all [ν] with k · [ν] non-zero:

mk(X , [ν]) = 1

2 sinh
(
k · [ν]) . (27.18)

A similar calculation can be done for the manifold X = S2 × T 2. Let k =
P.D.[F] be the class dual to the torus T 2 again, and decompose X along the
3-torus into two copies of D2× T 2. For a spinc structure sX with c1(sX ) = mk
(with m now an even integer), the wall-crossing formula (27.15) evaluates to
m/2. We again choose a homology class h having positive pairing with k, and
set [ν] = λh. Then, as above, if λ is negative, we have

mk(S
2 × T 2, λh) =

∑
m≡0 (2)

m>0

m

2
exp(λmk · h),

while if λ is positive, we have

mk(S
2 × T 2, λh) =

∑
m≡0 (2)

m<0

−m

2
exp(λmk · h).

(There is an overall sign ambiguity here, depending on an orientation of H 1(X ).)
The formulae can again be combined into a single formula,

mk(S
2 × T 2, [ν]) =

(
1

2 sinh
(
k · [ν])

)2

, (27.19)

valid whenever k · [ν] is non-zero.
We will return to these calculations and Proposition 27.5.1 in Section 38,

where we will use the proposition to extend these calculations to other
4-manifolds.
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28 Canonical gradings

The Floer homology groups

̂

HM•(Y ) and their companions are “graded” abelian
groups, but the grading set, let us recall, is not Z. In Section 3, we promised to
describe a grading by the set π0(�(Y )), the set of homotopy classes of oriented
2-plane fields, or equivalently the homotopy classes of nowhere-zero vector
fields. Thus far, we have graded these groups by a set with a rather different
definition: a set we denoted J(Y ), defined in Subsection 22.3. This space was a
union over spinc structures,

J(Y ) =
∐

s

J(Y , s).

In this section we will study J(Y ) as an object naturally associated to Y .
We will show how J(Y ) can be identified with π0(�(Y )), and discuss also a
“Q-grading” of the Floer groups: a Z-equivariant map from J(Y , s) to Q which
can be defined whenever c1(s) is a torsion class.

28.1 Spinc structures, two-plane fields and complex structures

We will write ξ for a typical oriented 2-plane field on Y : an oriented, rank-2
subbundle of the tangent bundle. The following lemma provides a relationship
between 2-plane fields and spinc structures.

Lemma 28.1.1. On an oriented Riemannian 3-manifold Y , there is a one-to-one
correspondence between

(i) oriented 2-plane fields ξ ;
(ii) 1-forms θ of length 1; and

(iii) isomorphism classes of pairs (s,�) consisting of a spinc structure and a
unit-length spinor �.

Proof. Given an oriented 2-plane field ξ , there is a unique unit-length 1-form
θ which annihilates ξ and is positive on the positively-oriented normal field to
ξ . This gives a bijection between (i) and (ii). If a pair (s,�) is given, there is a
unique 1-form θ such that the i and−i eigenspaces of ρ(θ) on the corresponding
spin bundle S are C� and �⊥ respectively.

To recover the pair (s,�) from θ and ξ , we proceed as follows. We can define
the spin bundle S to be the rank-2 complex vector bundle C⊕ ξ . We define �

to be the section 1 of the first summand. Clifford multiplication by θ is defined
to be i on the first summand and−i on the second. Clifford multiplication by a
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1-form α orthogonal to θ is defined so that ρ(α)� = (0,α†), where α† is the
vector in ξ which is dual to α using the Riemannian metric. �

An oriented 2-plane field on an oriented Riemannian 3-manifold Y gives
an almost-complex structure on the cylinder R × Y : we define J so that (i)
the 2-planes ξ are J -invariant and have their complex orientation, and (ii) the
complex orientation of the tangent bundle to R× Y is the product orientation.
The above construction which assigns a spinc structure to a 2-plane field on Y
has a more familiar 4-dimensional counterpart involving complex structures.
Given an almost-complex structure J , acting isometrically on the tangent bundle
of a Riemannian 4-manifold X , we can construct a spinc structure from the
Dolbeault spaces of forms �p,q. We set

S+ = �0,0 ⊕�0,2

S− = �0,1,

and we define Clifford multiplication

ρ : T ∗X ⊗ S+ → S−

by the symbol of
√

2(∂̄ + ∂̄∗). Slightly more concretely, ρ can be characterized
by two properties: first, for any unit-length element e in T ∗X , we have

ρ(e)(1) = 1√
2
(e + ie � J ) ∈ �0,1

for the element 1 in �0,0; and second, the determinant of ρ(e), as a map
from �2S+ to �2S−, coincides with the canonical identification of �0,2 with
�2(�0,1).

In the case that X is a cylinder R×Y and J is such that it preserves a 2-plane
field ξ coming from Y , this construction coincides with the one in the lemma
above. On a general X , we do not recover all spinc structures this way, only
those spinc structures admitting a non-vanishing section of S+.

These two constructions are useful in combination, to prove the following
proposition.

Proposition 28.1.2. Let Y be an oriented Riemannian 3-manifold equipped
with a spinc structure s. Then there exists an oriented 4-manifold X with oriented
boundary Y , carrying a spinc structure sX whose restriction to the boundary is
isomorphic to s.
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Proof. We use the fact that every 3-manifold is an oriented boundary to obtain
a manifold X1 with boundary Y . Let ξ be a 2-plane field corresponding to s on
Y , and let J be the corresponding almost-complex structure on a collar of Y in
X1. An almost-complex structure on a 4-manifold is the same thing as a unit
section of �+; and from this we see that, although J may not extend to all of
X1, it will extend to X1 \ Z , where Z is a union of smoothly embedded circles
(the zero set of a section of �+ transverse to zero). In this way, the proof of
the proposition is reduced to the case that Y is S1 × S2 (the boundary of the
regular neighborhood of a component of Z). For this manifold, the result is easy
to verify. �

28.2 Gradings and two-plane fields

Returning to dimension 3, we note that the spinc structure which is associated to
a given 2-plane field ξ by Lemma 28.1.1 is not enough to recover the homotopy
class of ξ in general: the extra data provided by the section � is needed also.
The next lemma quantifies this statement. In the statement of the lemma, the
divisibility of a class ε ∈ H 2(Y ; Z) is defined to be 0 if ε is torsion, and is defined
to be the divisibility of the image of ε in the free abelian group H 2(Y ; Z)/torsion
otherwise.

Lemma 28.2.1. Let Y and a spinc structure s0 be given. The pairs (�, s)
consisting of a spinc structure s isomorphic to s0 and a nowhere-zero section
� of the associated bundle S → Y are classified up to homotopy by Z/(dZ),
where d is the divisibility of c1(s0).

Proof. Let S0 be the spin bundle of s0. The unit sphere bundle in S0 is a topo-
logically trivial 3-sphere bundle P → Y , and if we choose a trivialization of
P we obtain a bijection between the homotopy classes of sections of P and the
set [Y , S3], which we can identify with Z using the degree of the map. Another
way to say this is that given two sections �0 and �1, there is a well-defined
difference element δ(�0,�1) ∈ Z which determines the homotopy class of �1

once�0 is known. We can construct δ directly as the Euler class of the pull-back
of S to the cylinder I × Y , relative to the sections �0, �1 at the boundary:

δ(�0,�1) = e(I × S0,�0  �1)[I × Y , ∂I × Y ].

The spin bundle S0 is acted on by the automorphism group G = Map(Y , S1).
Thus G acts on sections of P; and the component group [Y , S1] = H 1(Y )
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therefore acts on [Y , S3] = Z. To compute this action, we examine

e(I × S0,�0  u�0)[I × Y , ∂I × Y ]

for u : Y → S1. This computes the Euler number, or equivalently the second
Chern number, of the bundle on S1×Y obtained from S0 using u as a clutching
function. As a complex vector bundle, S0 is isomorphic to C⊕ L, where L is a
line bundle with the same first Chern class; and with this observation we can
calculate

δ(�0, u�0) =
([u] � c1(s)

)[Y ].
The homotopy classes of pairs (S,�) are therefore classified by the quotient
of Z by the image of the map H 1(Y ) → Z given by pairing with c1(s). That
image is dZ. �

Let Y and s be given, equipped with a metric and admissible perturbation. We
will now explain how to associate to each critical point [a] a homotopy class of
non-vanishing sections �0 of the bundle S → Y . By Proposition 28.1.2 we can
find a manifold X with oriented boundary Y carrying a spinc structure sX extend-
ing s.Write S+ for the associated spin bundle. Recall that the configuration space
Bσ (X ∗, sX ; [a]) of configurations asymptotic to [a] on the cylindrical-end man-
ifold falls into different connected components in general. Pick a component
z and consider the corresponding configuration space Bσ

z (X
∗, sX ; [a]) and the

index grz(X , sX ; [a]) ∈ Z (which is the dimension of Mz(X ∗, [a]) if this moduli
space is regular and non-empty). We can choose a section �0 of S = S+|Y such
that the relative Euler class satisfies

e(S+,�0)[X , ∂X ] = grz(X , sX ; [a]). (28.1)

Note that isomorphism class of (S,�0), up to homotopy, is independent of z by
the lemma, because if we change z then grz changes by a multiple of d .

Proposition 28.2.2. Let �0 be a section of S → Y determined as above by the
condition (28.1). Then the isomorphism class of (S,�0), up to homotopy of �0,
is independent of the choice of bounding 4-manifold X , and depends only on
Y , s and [a].
Proof. We can find a manifold X o with oriented boundary −Y and a spinc

structure extending s, so that the union X ∪ X o is closed. Using the additivity
of grz and the additivity of the relative Euler classes, we reduce to the case that
X is a closed manifold. That is, we need to know that for a closed manifold X
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with spinc structure the difference of the dimension of the moduli space on the
closed manifold and the Euler number of S+ is independent of X . Indeed this
difference is zero, as the next lemma states. (See Lemma 27.1.1 for the formula
for the dimension of the moduli space on a closed manifold.) �

Lemma 28.2.3. For a closed 4-manifold with spinc structure, we have(
c2(S

+)− 1

4
c1(S

+)2
)
[X ] = −1

4

(
2χ(X )+ 3σ(X )

)
.

Proof. Both sides are equal to (1/4)p1(�
+X )[X ]. �

Combining the above proposition with Lemma 28.1.1, we have a well-defined
way of associating to each (s, [a]) on Y a homotopy class of 2-plane fields ξ .
We denote this association by grπ (where π stands to remind us of “2-plane”):

Definition 28.2.4. We write �(Y ) for the space of all oriented 2-plane fields
on Y . Given a critical point [a] belonging to a spinc structure s on Y with an
admissible tame perturbation q, we write grπ ([a]) for the homotopy class of
the 2-plane field ξ on Y corresponding to (S,�0) under the equivalences in
Lemma 28.1.1. Here �0 is a nowhere-zero section of S → Y chosen according
to the prescription (28.1). ♦

We can view grπ as defining an isomorphism of sets with Z-action,

grπ : J(Y )→ π0(�(Y )).

To be explicit about the Z action on π0(�(Y )), and in particular its sign, we
observe first that if j ∈ J(Y ) and grπ (j) corresponds to a pair (S,�), then
grπ (j+ n) corresponds to a pair (S,�′), where the degrees of � : Y → S3 and
�′ : Y → S3 are related by

deg(�′) = deg(�)− n.

(The minus sign is there because the grading of [a] reflects minus the dimension
of Mz(X ∗, [a]).) So we should make the homotopy classes of sections of the
sphere bundle P → Y into a Z-set using minus the degree, and give π0(�(Y ))

the inherited action.
When dealing with HM•(Y ) we should again use a modified grading. If [a]

is a reducible critical point, we define

ḡrπ ([a]) =
{

grπ ([a]), [a] is boundary-stable

grπ ([a])− 1, [a] is boundary-unstable,
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where the notation grπ ([a])−1 refers to the Z action defined above. In this way,
we make

̂

HM•(Y ), ĤM•(Y ) and HM•(Y ) into abelian groups graded π0(�).
As an illustration, we can describe a 2-plane field on S3 whose class is

grπ ([a0]), where [a0] is the standard generator of

̂

HM•(S3). The 3-sphere is the
oriented boundary of the ball in R4, and we can calculate the index grz(B

4, [a0])
from Lemma 27.4.2. (There is only one component z because the sphere has no
H2.) That lemma tells us that grz(B

4, [a−i]) = 2i−2 for positive i; and for i = 0
we therefore have grz(B

4, [a0]) = −1 by an application of Corollary 14.6.2.
Let S± be the spin bundles of R4, let �− be a constant section of S−, and let
� be the section of S+ on R4 given by

�(x) = ρ(x)�−, x ∈ R4.

Then � provides a non-vanishing section of S = S+|S3 which extends to the
ball to have a single zero, of degree −1, at the origin. So we have the correct
relation (28.1), and the 2-plane field ξ corresponding to this � is the one we
seek. This ξ can be characterized, up to homotopy, as a 2-plane field invariant
under the subgroup SU (2)+ in Spin(4) = SU (2)+ × SU (2)− (the subgroup
that acts trivially on S−). This is the vector field we called ξ− in the introductory
Subsection 3.3.

If we recall that the generators for̂ HM•(S3) are the critical points [ai] for
i ≥ 0 (see Subsection 22.7), then we see that

̂
HM•(S3) is non-zero in degrees

[ξ−] + n for even, positive integers n, as stated in Subsection 3.3.

28.3 Torsion spinc structures

If c is an integral 2-dimensional cohomology class on a cobordism W such that
c|∂W is a torsion class, then there is a well-defined square 〈c, c〉 in Q, obtained as

〈c, c〉 = (c̃ � c̃)[W , ∂W ],

where c̃ is any class in H 2(W , ∂W ; Q) whose image in H 2(W ; Q) is the same
as the image of c. We can use this cup square to define a Q-valued grading as
follows.

Given a spinc structure on Y , we again choose 4-manifold X with boundary
Y over which the spinc structure extends (see Proposition 28.1.2). We let W
be the cobordism from S3 to Y obtained by removing a ball from X . In the
following definition, an admissible tame perturbation on Y is understood as
always, and [a0] is again the critical point on S3 which gives the lowest-degree
generator for

̂

HM•(S3).
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Definition 28.3.1. Let s be a spinc structure on Y with c1(s) torsion, and [a]
be a corresponding critical point. Let W be any cobordism from S3 to Y over
which s extends, as above, and let z be any W -path from [a0] to [a]. We define
a rational number grQ([a]) by the formula

grQ([a]) = − grz

([a0], W , [a])+ 1

4

〈
c1(S

+), c1(S
+)
〉− ι(W )− 1

4
σ(W )

where ι(W ) is the characteristic number defined in Definition 25.4.1 and S+ is
the spin bundle for the corresponding spinc structure corresponding to z. For
reducible critical points, we also define a modified grading,

ḡrQ([a]) =
{

grQ([a]), [a] is boundary-stable

grQ([a])− 1, [a] is boundary-unstable.

♦

The above definition makes sense, because grQ([a]) as defined is independent
of the choice of W and z. To see this, note first that ι(W ), σ(W ) and 〈c1, c1〉
are all additive under the operation of composing cobordisms and W -paths,
including the obvious extension to the case that we use a “cobordism” with one
or both boundary components empty. Because grz is additive also, we can reduce
to showing that the above expression is zero in the case of a closed manifold
(replacing grz([a0], W , [a]) by the formal dimension d of the moduli space.
We can confirm the vanishing of this expression by examining the definition of
ι(W ) and the formula for d in Lemma 27.1.1.

Definition 28.3.1 gives a Z-equivariant map from J(Y , s) to Q for each s with
torsion first Chern class. This identifies each such J(Y , s) with a coset of Z in
Q. The definition is normalized so that the standard generator [a0] for

̂

HM•(S3)

has Q-grading zero.
The definition of ι(W ) already involves the signature σ(W ), so the reader

may wonder why the formula in Definition 28.3.1 is written as it is. The point
is just that ι(W ) is an integer; so the formula makes clear that the fraction part
of grQ([a]) is equal to the fractional part of (〈c1, c1〉 − σ(W ))/4. If [a] is a
reducible critical point, we can say a little more:

Lemma 28.3.2. If [a] is a boundary-stable, reducible critical point, then

grQ([a]) = 1

4

〈
c1(S

+), c1(S
+)
〉− 1

4
σ(W ) (mod 2Z)

where S = S+ ⊕ S− is any extension of the spinc structure over a cobordism
W from S3 to Y .
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Proof. We can compute grz([a0], [a]) in Definition 28.3.1 by using a reducible
configuration on W , in which case the index of the operator that defines grz is
the sum of two terms: one term is the (real) index of a perturbed Dirac operators,
which is even; and the other term is equal to ι(W ). The remaining terms in the
formula for grQ([a]) are the terms in the lemma. �

Corollary 28.3.3. If Y is an integral homology 3-sphere and [a] is a boundary-
stable reducible critical point, then grQ([a]) is an even integer.

Proof. When Y has no homology, the intersection form of W is unimodular, and
the square of any characteristic vector is then equal to the signature mod 8. �

Remark. The last lemma above highlights the fact that the quantity

1

4

〈
c1(S

+), c1(S
+)
〉− 1

4
σ(W ) (mod 2Z) (28.2)

depends only on the restriction of the spinc structure to Y , and is otherwise
independent of both W and the extension of the spinc structure. It is worth
noting that knowing only c1(s) on Y (rather than the restriction of s itself) is
not enough to determine (28.2). A good example is the manifold Y = RP3,
which we can regard as the boundary of a disk bundle Z of degree 2 over a
2-sphere �. We can take W to be the complement of a ball in Z , and we can
consider the spinc structures s0 and s1 on W which are uniquely characterized
by specifying that c1(s0) = 0 and c1(s1) · [�] = 2. As rational classes on W ,
these first Chern classes have square 0 and 2 respectively, so the corresponding
quantities (28.2) differ. It follows that s0 and s1 have different restrictions as
spinc structures on Y , although both have the same first Chern class on Y .

If we have a cobordism W between two general 3-manifolds Y0 and Y1, and
if s is a spinc structure on W , then we have an associated map̂

HM∗(W , s) :

̂

HM∗(Y0, s0)→

̂

HM∗(Y1, s1)

where si is the restriction of s to Yi. If both si have torsion first Chern class,
then the two groups above are both graded by cosets of Z, via the map grQ :
J(Yi, si) → Q. With respect to these Q-gradings, the map

̂

HM∗(W , s) has a
well-defined degree, a formula for which can be read off from the definition of
grQ using the additivity of that expression: the degree of the map is given by
the rational number

1

4

〈
c1(S

+), c1(S
+)
〉− ι(W )− 1

4
σ(W ). (28.3)
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It is also worth recording how the canonical Q-grading behaves under the
duality isomorphisms:

Proposition 28.3.4. When c1(s) is torsion, the duality isomorphism

ω̌µ :

̂

HM•(−Y )→ ĤM •(Y )

maps elements in Q-grading j to elements in Q-grading −1− b1(Y )− j. �

Notes and references for Chapter VII

The fact that the instanton Floer homology groups of 3-manifolds extend to a
“functor” from a cobordism category to the category of groups was understood
by Floer, and is treated in [32], where the composition law is proved by a
stretching argument, much as we have done. (This proof is sometimes called
the “continuation method”.) The functoriality was used by Floer to prove the
topological invariance of his instanton homology groups. The resulting “pairing
formulae” for the instanton invariants of closed 4-manifolds were pointed out
by Donaldson. From the beginning, it was understood that the behavior of
reducible solutions (particularly on manifolds with b+ = 0) meant that this
functorial picture did not fit into the axiomatic framework of a “topological
quantum field theory” in the sense of [4]. The structure we have described,
involving the three flavors of Floer homology and the maps

−−→
HM•(W ) defined

by cobordisms W with b+ ≥ 2, is modelled on the similar story for Heegaard
Floer groups, developed in [97].

The Q-grading of the Floer groups in the case of rational homology 3-spheres
was observed by Frøyshov [41], and appears also in [97].

The exceptional place of 4-manifolds with b+ = 1, and associated wall-
crossing formulae, are features also of Donaldson’s instanton invariants. Indeed,
the very first examples of simply connected 4-manifolds that were homeomor-
phic but not diffeomorphic were discovered using an invariant that was special
to this case, see [18].



VIII

Non-exact perturbations

One of the differences between the Morse theory of the Chern–Simons–Dirac
functional and the standard picture from finite-dimensional Morse theory is that,
on the quotient configuration space B(Y , s), our functional is not a single-valued
real function: its derivative has non-zero periods around loops in B(Y , s). The
perturbations that we have introduced have been single-valued: they have not
changed the periods of the functional. It is natural to consider a larger class of
perturbations, allowing the periods of the functional to change. We call such
perturbations “non-exact”, and they are the subject of this chapter.

In general, when we make a non-exact perturbation, the Morse homology
groups of the corresponding gradient flow will change. Indeed, with ordinary
coefficients, the Morse complex may cease to be defined. Nevertheless, there
are isomorphisms in certain cases, between the various groups that arise this
way.

One application of non-exact perturbations is to the proof of a gluing result,
Proposition 3.9.3 (although the proposition itself makes no reference to non-
exact perturbations). The argument is presented in Section 32.

29 Closed two-forms as perturbations

29.1 Perturbations revisited

The class of tame perturbations that we defined in Section 10 consists of sections
q of the L2 tangent bundle T0 → C(Y , s) that are formal gradients of functions,

f : C(Y , s)→ R,

invariant under the gauge-group G(Y ). Rather than asking that f is invariant
under G(Y ), we can instead ask that its gradient is invariant, and that f itself is

590
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invariant only under the identity component Ge(Y ). We refer to such sections
of T0 as non-exact perturbations.

A non-exact perturbation determines a homomorphism

f∗ : G(Y )/Ge(Y )→ R

by

f∗(u) = f (ua)− f (a),

wherea ∈ C(Y , s) is any chosen point and u : Y → S1 is a chosen representative
in G(Y ). (The right-hand side is independent of the choice of a because C(Y , s)
is connected.) Such homomorphisms f∗ are parametrized by the real second
cohomology of Y : there is a unique element c in H 2(Y ; R) such that

f∗(u) = (c � [u])[Y ],

where [u] denotes the cohomology class corresponding to u, the de Rham class
of the form u−1du/(2π i). We call c the period class for the non-exact per-
turbation on C(Y , s). The notion of tameness for a perturbation, as defined in
Definition 10.5.1, extends straightforwardly to non-exact perturbations, because
tameness is a condition on the gradient of f . We can therefore talk about tame
perturbations with period class c.

An example of a tame perturbation with period class c is the formal gradient
of the function f : C(Y , s)→ R defined by

fω(B,�) =
∫

Y
(B− B0)

t ∧ ω, (29.1)

where ω is a closed, imaginary-valued 2-form belonging to the class (i/4π)c.
The general tame perturbation with class c is obtained from the above example
by adding an exact perturbation q: we write such a perturbation as

grad( fω)+ q.

If P(Y , s) is a large Banach space of (exact) perturbations, as described in
Definition 11.6.3, then we define an affine space of non-exact perturbations
Pω(Y , s) by

Pω(Y , s) = grad( fω)+ P(Y , s).
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For future reference, we give the perturbed functional corresponding to the
perturbation (29.1) a name: we write

Lω(B,�) = L(B,�)+
∫

Y
(B− B0)

t ∧ ω.

For this functional, the equations for a critical point (B, s,ψ) in the blown-up
model Cσ (Y , s) are

1

2
ρ(FBt − 4ω)− s2(ψψ∗)0 = 0

DBψ = 0.
(29.2)

The corresponding perturbed 4-dimensional equations for (A, s,φ) ∈ Cτ (R×Y )

on the cylinder are ⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

1

2
ρ(F+At − 4ω+)− s2(φφ∗)0 = 0

d

dt
s+�(A, s,φ)s = 0

D+A φ −�(A, s,φ)φ = 0

(29.3)

(cf. Equations (6.11) and (6.10)). Here we have pulled ω back to the cylinder
before taking its self-dual part. In the σ model for the blow-up, the equations
are the same 4-dimensional equations we saw in (27.2): on a general 4-manifold
equipped with a closed 2-form ω, we studied the equations

1

2
ρ(F+At − 4ω+)− s2(φφ∗)0 = 0

D+A φ = 0,
(29.4)

for (A, s,φ) in Cσ (X , sX ). In the blown-down coordinates (A,�), the
equations are

1

2
ρ(F+At − 4ω+)− (��∗)0 = 0

D+A � = 0.
(29.5)

For these modified equations (29.5), we can write down appropriate modifica-
tions of the integration-by-parts formulae from Subsection 4.5, and in particular
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the relationship (4.16) between the topological and analytic energy. Given a gen-
eral 4-manifold X with compact boundary Y , and a closed 2-form ω, we define
the topological energy E top

ω as

E top
ω (A,�) = 1

4

∫
X
(FAt − 4ω) ∧ (FAt − 4ω)−

∫
Y
〈�|Y , DB�|Y 〉.

(The fact that ω is closed means that this expression is invariant under
deformations of (A,�) supported in the interior of X .) We then have an identity

Ean
ω (A,�) = E top

ω (A,�)+ ‖Fω(A,�)‖2, (29.6)

where the analytic energy Ean
ω is defined as

Ean
ω (A,�) = 1

4

∫
X
|FAt − 4ω|2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2

−
∫

X

s2

16
+ 2

∫
X
〈�, ρ(ω)�〉 −

∫
Y
(H/2)|�|2,

and Fω(A,�) is the left-hand side of the two equations (29.5). (As before, B
denotes the spinc connection obtained by restriction to the boundary and H is
the second fundamental form.) If we expand it out, the equation (29.6) becomes
the following identity, which is valid whether or not ω is closed, and which can
be verified by a straightforward modification of the earlier argument:∫

X

∣∣∣ 1
2ρ(F

+
At − 4ω+)− (��∗)0

∣∣∣2 + ∫
X
|D+A �|2

= 1

4

∫
X
|FAt − 4ω|2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2 −

∫
X

s2

16

+ 2
∫

X
〈�, ρ(ω)�〉 − 1

4

∫
X
(FAt − 4ω) ∧ (FAt − 4ω)

+
∫

Y
〈�|Y , DB�|Y 〉 −

∫
Y
(H/2)|�|2.

In the cylindrical case, when ω is the pull-back of a form on Y , the topological
energy is twice the drop in the functional Lω between the two ends of the
cylinder. Note that, although the last term in the analytic energy is not positive,
the integrand is quadratic in �, and so can be absorbed by the positive quartic
term in |�|.
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For a general non-exact perturbation grad( fω) + q on Y , we can write the
perturbed functional −L as

−L = Lω + g,

where g is fully gauge-invariant and has gradient q, and we define the
corresponding topological energy E top

q on X as

E top
ω,q(A,�) = E top

ω (A,�)+ 2g(A,�).

The term E top
ω (A,�) depends on the extension of ω to a closed 2-form on X . In

the case of a cobordism, the term g(A,�) becomes the difference between the
value of g at the two ends. In particular, in the cylindrical case cEtop

ω,q(A,�) is
twice the drop in the perturbed functional along the cylinder.

The Chern–Simons–Dirac function L is itself a function on C(Y , s) which is
invariant under Ge(Y ) and whose gradient is invariant under G(Y ). It too has a
period class therefore, which we calculated in Lemma 4.1.3. The period class for
L is 2π2c1(s). So if a non-exact perturbation has period class c, then the period
class of the corresponding perturbed functional−L = L+ f is 2π2c1(s)+ c, the
sum of the two.

Definition 29.1.1. Let −L = Lω + g be a non-exact perturbation of the Chern–
Simons–Dirac functional, corresponding to a closed 2-form ω. Let c be the
period class of fω, so that 2πc1(s)+c is the period class of−L. We say that−L is a
balanced perturbation of L if −L is fully gauge-invariant, or equivalently if the
period class 2π2c1(s)+ c of−L is zero. We say that−L is monotone if the period
class of −L is a real multiple of c1(s). It is positively or negatively monotone if

2π2c1(s)+ c = t2π2c1(s)

and t is positive or negative respectively. ♦

In the balanced case,−L descends to a single-valued function on B(Y , s). This
is the only case in which reducible solutions need concern us, as the following
lemma states.

Lemma 29.1.2. If Lω = L + fω is not balanced, then there are no reducible
critical points for Lω in B(Y , s).
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Proof. The equations for a reducible critical point (B, 0,ψ) of the perturbed
equations in the blown-up picture are:

FBt − 4ω = 0

DBψ = 0.

The first equation implies that c1(s) is equal to (2i/π)[ω], or −(1/2π2)c, so
there are no solutions except in the balanced case. �

29.2 Compactness and finiteness

Most of the theory we have developed needs very little modification in the
case of a non-exact perturbation. Let us fix a spinc structure s and a closed
2-form ω on Y , with period class c. With no change to the previous proofs,
one shows that there exist admissible perturbations grad( fω) + q in Pω(Y , s)
such that the critical points [a] in Bσ

k (Y , s) are non-degenerate and such that
the moduli spaces (which we continue to denote by M([a], [b])) are regular. If
the perturbation is not balanced, we can also assume that there are no reducible
critical points, by the preceding lemma.

The space of broken trajectories M̆+
z ([a], [b]) can be defined as before, along

with its various cousins, and this space is still compact, for any [a], [b] and z, just
as in Theorem 16.1.3. The essential point in this is to verify that Theorem 10.7.1,
and Lemma 10.6.1 on which it depends, still hold. The principal raw ingredient
of the argument is the identity (29.6) relating the analytic and topological energy
in our new, perturbed setting: with Ean

ω in place of Ean, we can repeat the previous
arguments without difficulty.

Despite these similarities, there is one important point at which the non-
exact theory departs from the exact case. This is in the finiteness results of
Subsection 16.4, and in particular at Proposition 16.4.1 and Proposition 16.4.3.
We state a version of Proposition 16.4.3 appropriate for the new situation.

Proposition 29.2.1. Suppose that all the moduli spaces Mz([a], [b]) for the
non-exact perturbation q are regular.

(i) Suppose −L is balanced. Then for a given [a] and any d0, there are only
finitely many pairs ([b], z) for which the moduli space M̆+

z ([a], [b]) is
non-empty and of dimension at most d0.

(ii) Suppose −L is negatively monotone, and that the perturbation has been
chosen so that there are no reducible solutions. Then the same conclusion
holds as in the balanced case above.
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(iii) Suppose −L is positively monotone, and that the perturbation has again
been chosen so that there are no reducible solutions. Then for a given
[a], there are only finitely many pairs ([b], z) for which the moduli space
M̆+

z ([a], [b]) is non-empty (without restriction on the dimension).

Proof. The proof of Proposition 16.4.3 in the non-torsion case hinged on the
fact that, for paths w joining two given critical points [a] and [b], the energy
E top
ω,q(w) (i.e. twice the drop in −L) is negatively proportional to the relative

grading grw([a], [b]). This proportionality is expressed as the statement that
the quantity in (16.4) is independent of w. In the positively monotone case, the
same is true: there is a positive constant t such that

E top
ω,q(w)+ t grw([a], [b]) (29.7)

is independent of w. With this in hand, the proof of the third case of the
present proposition is the same as the proof of the non-torsion case of
Proposition 16.4.3.

Now consider the negatively monotone case. There is now a negative t such
that the quantity (29.7) is independent of w. To say that the dimension of
Mw([a], [b]) is at most d0 is to bound grw([a], [b]) from above; and since t
is negative this bounds E top

ω,q(w) from above. Proposition 16.1.4 still holds for
non-exact perturbations; so the energy bound implies that only finitely many
of these moduli spaces can be non-empty. There are only finitely many critical
points in the absence of reducibles, so the result follows.

Finally we do the balanced case. Suppose that the moduli spaces Mzi ([a], [bi])
are non-empty. Because the image of the critical set under π is finite, we may
as well assume that π[bi] = [β] for all i. In the balanced case, −L descends to
a single-valued function on Bk(Y , s), so the energy of trajectories in all these
moduli spaces is uniformly bounded, as in the torsion case of Proposition 16.4.3.
Proposition 16.2.1 now tells us that there are only finitely many possibilities
for the homotopy class of the path π(zi) in Bk(Y , s). A bound on the dimension
(above by d0 and below by zero) now bounds ι([bi]) above and below, so only
finitely many [bi] occur. �

In the light of the proposition above, it is natural to define a class of admis-
sible non-exact perturbations, extending the definition made for the exact case
in Definition 22.1.1. We say that a tame non-exact perturbation is regular if
the corresponding critical points are all non-degenerate, the moduli spaces of
trajectories are regular, and there are no reducible critical points unless the
perturbed functional is balanced.
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30 Floer groups and non-exact perturbations

30.1 Floer homology in the monotone and balanced cases

In the monotone and balanced cases, the construction of Floer homology groups
proceeds with essentially no modification from the exact case. We have learned
that, if the perturbation is admissible and if there are no reducibles in the non-
exact case, then for any given [a] and d0, there are only finitely many [b] and
z for which the moduli space Mz([a], [b]) can be non-empty. This allows us to
construct the Floer complexes Č∗, Ĉ∗ and C̄∗ as before. We give names to the
resulting groups:

Definition 30.1.1. Let � be a local system of abelian groups on Bσ (Y , s). If
the perturbation grad( fω)+ q ∈ Pω(Y , s) has period class c and is balanced or
monotone, we writê

HM∗(Y , s, c;�), ĤM∗(Y , s, c;�), HM∗(Y , s, c;�)

for the resulting Floer homology groups, where c is the period class of
fω. In particular,

̂

HM∗(Y , s, 0;�) for example coincides with our original̂
HM∗(Y , s;�). ♦

These groups depend only on the period class c of the perturbation and are
independent of the metric on Y : this can be proved, as in the exact case, by
considering maps defined by a cylindrical cobordism W = [a, b] × Y , on
which we use a t-dependent perturbation in the class Pω(Y , s) and a varying
metric. (We will study cobordisms in more detail in Section 31 below.) The
results of Section 22, meanwhile, carry over. We have, for example, the i–j–p
exact sequence, a grading of the Floer homology group by J(Y , s), and duality
isomorphisms as in (22.36), such as

ωµ :

̂

HM∗(−Y , s, c;�)→ ĤM ∗(Y , s, c;�).

(Note that c does not change sign.) There are also cup and cap products, making
these groups into modules over H∗(Bσ (Y , s))opp.

There is an additional point that arises in the balanced case. Recall that in the
exact case, in addition to the usual chain complexes Č∗(Y , s;�), Ĉ∗(Y , s;�) and
C̄∗(Y , s;�), we introduced their negative completions, Č•(Y , s;�), Ĉ•(Y , s;�)
and C̄•(Y , s;�). (See page 514.) These are different from the ∗ versions only
in the case that c1(s) is torsion (which is the case that the exact perturbations
are balanced). In the general case that c1(s) is not torsion and the perturbed
functional −L is balanced, we can again introduce completions Ĉ•(Y , s, c;�)
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etc., but their definition needs to be phrased differently, because there is no Z

grading on Ĉ∗(Y , s, c;�) if c1(s) is not torsion. Rather than use a Z grading, we
can define a filtration of Ĉ∗(Y , s, c;�) as follows. Label the reducible critical
points for the perturbed functional on Bk(Y , s) as [α1], …, [αp], and label the
corresponding critical point in the blow-up as [ar

i ]with i ∈ Z and r = 1, . . . , p,
so that, as usual, the points [ar

i ] correspond to the eigenvaluesλr
i of the perturbed

Dirac operator at [αr], arranged in increasing order, with λr
0 the first positive

eigenvalue. Then define a subgroup

Ĉ∗(Y , s, c;�)m ⊂ Ĉ∗(Y , s, c;�)

to be the sum of the contributions from the critical points [ar
i ] with i ≤ −m.

We define

Ĉ•(Y , s, c;�) ⊃ Ĉ∗(Y , s, c;�) (30.1)

to be the completion of this filtered group. We define C̄•(Y , s, c;�) in the same
manner. For Č∗, there is no completion to be done; but as in the exact case, we
use Č•(Y , s, c;�) as a synonym for Č∗(Y , s, c;�). We writê

HM•(Y , s, c;�), ĤM•(Y , s, c;�), HM•(Y , s, c;�).

Remark. In the exact case, when c1(s) is torsion, we can form the completion
at the chain level, or at the level of homology: the homology of the completion
is the completion of the homology. In the non-exact case, where there is no Z

grading, we need to form the completion at the chain level. As we shall see,
there are cases where ĤM•(Y , s, c;�) is zero, though ĤM∗(Y , s, c;�) is non-
zero. An example of a related phenomenon in ordinary homology is the 2-step
complex

Z[u] d→ Z[u]
where d is multiplication by 1−u. This complex has non-trivial first homology
group. However, if we consider the same d but replace Z[u] by the completion
Z[[u]], then the homology becomes trivial, because 1 − u has an inverse in
the ring of power series. When the filtration is defined using the homological
degree, as in the exact case, completion commutes with taking homology.

30.2 Floer homology in the general non-exact case

If the period class of the perturbed functional −L = L+ f is not proportional to
c1(s) (i.e. if we are not in the monotone case), then there will always be a closed
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loop w in Bσ (Y , s) on which the spectral flow is zero and on which the drop in
−L is positive. If [a] and [b] are two critical points, and z is a relative homotopy
class of paths joining them, with grz([a], [b]) = d , then the homotopy classes

zk = z + kw ∈ π1(Bσ
k (Y , s); [a], [b])

have the property that grzk
([a], [b]) = d for all k, while the energy E top

ω,q(zk)

increases without bound. It may well be that infinitely many of the moduli
spaces Mzk ([a], [b]) are non-empty. Any analog of Proposition 29.2.1 therefore
fails.

Let us consider how this affects our construction of the Morse complex
Č∗(Y , s, c;�). Note first that, because we are now concerned with a situation in
which c is not balanced, we may assume there are no reducible critical points.
This means that the set of all critical points will be finite, and it also means that
there will be no difference between Č∗ and Ĉ∗. We simply write C∗ for this
object, which we define as

C∗(Y , s, c;�) =
⊕
[a]

Z�[a] ⊗ �[a].

When we try to define the differential, we encounter a problem. We wish to
define, as before,

∂ =
∑
[a]

∑
[b]

∑
z

∑
[γ ]∈M̆z([a],[b])

ε[γ ] ⊗ �(z)
(30.2)

where the sum is over all moduli spaces for which Mz([a], [b]) is 1-dimensional.
But the contribution for a fixed [a] and [b] is potentially an infinite sum, because
infinitely many classes z may contribute. After choosing trivializations for �[a]
and �[b], the contribution for a given pair of critical points takes the form∑

z

nz�(z), (30.3a)

where z runs through all relative homotopy classes satisfying the conditions

grz([a], [b]) = 1 (30.3b)

and [z] counts the trajectories γ with appropriate sign. Although this sum may
have infinitely many non-zero terms, the support

supp(n) = { z | nz = 0 }
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is constrained, on account of Proposition 16.1.4: for all C, the intersection

supp(n) ∩ { z | E top
ω,q(z) ≤ C }

is finite. The support of n therefore satisfies a finiteness condition, which we
now define:

Definition 30.2.1. Let c be the period class of fω, and let E top
ω,q be a corresponding

perturbation of the topological energy. We say that a subset

S ⊂ π1(Bσ
k (Y , s), [a], [b])

is c-finite if the following two conditions hold:

(i) for all C, the intersection

S ∩ { z | E top
ω,q(z) ≤ C }

is finite;
(ii) there exists d such that | grz([a], [b])| ≤ d for all z in S.

(This condition depends on the period class c, but not otherwise on ω or q.) ♦

Remarks. In the monotone case, including the balanced case, a set S has this
property only if it is finite.

What we want, then, is a local system of abelian groups in which a sum of
the form (30.3a) makes sense whenever the support of n �→ nz is c-finite.

We consider a local system of complete topological abelian groups � on
Bσ (Y , s). This means that each �[a] is a complete topological group, and
the homomorphisms �(z) : �[a] → �[b] are continuous. We suppose that
0 ∈ �[a] has a neighborhood basis (not necessarily countable) consisting of
subgroups: so �[a] is a complete filtered group, filtered by the open subgroups.
We write Hom(�[a],�[b]) for the group of continuous homomorphisms, which
we equip with the compact–open topology. In this way, Hom(�[a],�[b]) is
again a topological group, with a topology obtained from a filtration by open
subgroups. A neighborhood basis for 0 in Hom(�[a],�[b]) consists of the
subgroups

	(N , V ) = { k : �[a] → �[b] | k(N ) ⊂ V }
⊂ Hom(�[a],�[b])



30 Floer groups and non-exact perturbations 601

where N runs over compact subsets of �[a] and V runs through open subgroups
of �[b]. Because an open subgroup V is also closed, we can equivalently define
the neighborhood basis by letting N run over precompact subsets, rather than
compact subsets. To recognize a precompact set, we note that a subset N ⊂ �[a]
is precompact if and only if (N+U )/U is finite for all open subgroups U of�[a].

With this topology, a sufficient condition for a countable series
∑

k∈K k in
Hom(�[a],�[b]) to converge is that the terms converge to zero and that the
terms are equicontinuous: that is, for each open subgroup U in �[b], there
exists an open subgroup V in �[a] such that k(V ) ⊂ U for all k ∈ K . In many
simple cases, �[a] contains a compact set which generates an open subgroup,
and in such cases, the equicontinuity is automatic. The reason for considering
equicontinuous series is that this condition allows us to rearrange sums: if we
have countable sets K ⊂ Hom(�[a],�[b]) and H ⊂ Hom(�[b],�[c]), both of
which are equicontinuous and have terms going to zero, then we have( ∑

h∈H

h

)
◦
( ∑

k∈K

k

)
=

∑
H×K

h ◦ k.

We now impose a condition on our local systems so as to ensure that the infinite
sums we encounter are summable and equicontinuous:

Definition 30.2.2. Let ω be an imaginary-valued closed 2-form on Y , and let c
be the corresponding period class. We say that a local system of complete, fil-
tered abelian groups � is c-complete if it satisfies the following two conditions,
for every pair of points [a], [b]:
(i) For any c-finite set S ⊂ π1(Bσ

k , [a], [b]), the set {�(z) | z ∈ S } ⊂
Hom(�[a],�[b]) is equicontinuous.

(ii) For any c-finite set S ⊂ π1(Bσ
k , [a], [b]), the homomorphisms �(z)

converge to zero in the compact–open topology as z runs through S.

♦

These two conditions on � imply that a series such as∑
z

nz�(z)

is convergent in the compact–open topology to a continuous limit, provided
that the support of z �→ nz is c-finite. Furthermore, the equicontinuity condition
means that we can rearrange sums, as noted above. Thus the sum defining the
operator ∂ in (30.2) is convergent, and the proof that ∂∂ = 0 goes through. In
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the monotone case, any local system of groups is c-complete, with the discrete
topology. We summarize this discussion with a definition.

Definition 30.2.3. Let grad( fω)+ q be an admissible, non-exact perturbation.
Assume that we are not in the balanced case, and that the perturbation is chosen
so that there are no reducible critical points. Let c be the period class of fω and
let � be a c-complete local system of filtered abelian groups. We define the
complex C∗(Y , s, c;�) to be the (finite) direct sum

C∗(Y , s, c;�) =
⊕
[a]

Z�[a] ⊗ �[a],

and define ∂ : C∗ → C∗ by the convergent series (30.2). We define

HM∗(Y , s, c;�)

to be the homology of the complex (C∗, ∂). For consistency, we also introduce
the notations ̂

HM∗(Y , s, c;�), ĤM∗(Y , s, c;�), HM∗(Y , s, c;�),

using the first two as synonyms for HM∗ and defining the third to be zero. ♦

If we wish to construct Floer cohomology groups HM ∗(Y , s, c;�), we need
the coefficients to satisfy a condition dual to c-completeness: whenever S ⊂
π1(Bσ

k , [a], [b]) is c-finite, we require

(i) the set {�(z−1) | z ∈ S } ⊂ Hom(�[b],�[a]) is equicontinuous; and
(ii) the homomorphisms �(z−1) converge to zero in the compact–open

topology as z runs through S.

We call such a local system c-dual-complete. If � is a c-complete local system
for Y , then it is a c-dual-complete system for the manifold −Y with reversed
orientation. The duality isomorphism ωµ is still defined in this context.

Examples. We consider examples of c-complete local systems, following
Novikov [87]. (The situation with Floer homology is slightly different from
that in [87], because there may be non-trivial spectral flow on closed loops. In
a finite-dimensional situation, there is no need for a counterpart to the second
clause in our definition of the finiteness condition, Definition 30.2.1.)

The first case is when b1(Y ) = 1. If c1(s) is non-zero as a real cohomology
class, or if both c1(s) and c are zero, then the perturbation is monotone, and
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all local systems are c-complete. So consider the case that c1(s) = 0 and c is
non-zero.

The fundamental group of Bσ (Y , s) is Z, and we can describe a local system
up to isomorphism by giving the fiber at a basepoint [a0] and specifying the
automorphism �(z), where z is a closed loop at the basepoint representing a
generator. Let z0 be the generator for which E top

ω (z0) is positive. Let R be a com-
mutative ring, and let R[t, t−1] be the ring of finite Laurent series in a variable
t, with coefficients in R. Let U−k ⊂ R[t, t−1] be the R-submodule spanned by
the generators tj for j ≤ −k. Topologize R[t, t−1] so that the subgroups U−k

are a neighborhood base at 0, and let R[t, t−1]− be the completion. This is the
ring of formal Laurent series, infinite in the negative direction:

k0∑
i=−∞

rit
i.

We specify a local system by taking the fiber at [a0] to be R[t, t−1]− and taking
�(z0) to be multiplication by t−1. A subset S of π1 can be written in terms of
the generator z0 as

{ ksz0 | s ∈ S };

the set S satisfies the c-finiteness condition when the coefficients ks ∈ Z are
bounded below. This coefficient system is c-complete, and a series such as∑

s∈S

ns�(ksz0)

converges to the continuous homomorphism given by multiplication in
R[t, t−1]− by the element ∑

s∈S

nst
−ks .

Consider now the general case. Let I ⊂ R be the set of periods of the perturbed
functional, viewed as a discrete group: it is the image of the homomorphism

E top
ω : π1(Bσ

k (Y , s))→ R

z �→ E(z).

Let R[I ] be the group ring of I . For κ ∈ R, let U−κ be the R-submodule spanned
by the generators i in I satisfying i ≤ −κ . Use these as open neighborhoods,
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and form the completion R[I ]−, which is a topological ring. We define a local
system of topological groups by taking the fiber at [a0] to be R[I ]−, and speci-
fying that for each closed loop z based at [a0], the automorphism �(z) should
be multiplication by the group ring element −E top

ω (z) ∈ I . This defines a c-
complete local system in the general case. One can write elements of R[I ]− in
a Laurent-series notation, by introducing a formal variable t and allowing the
exponent i in ti to be an element of I . In this way, a typical element is∑

i∈I

rit
i,

where the support of i �→ ri is required to have finite intersection with every
positive half-line [C,∞). If R is a field, then so is R[I ]−.

Although the construction just described is applicable in all cases, there is
a modification of this construction that is possible in the case that c1(s) is
non-torsion. Let Ann(c1(s)) ⊂ π1(Bσ (Y , s)) be the annihilator of c1(s), or
equivalently the set of loops on which the spectral flow is trivial. Let I ′ ⊂ I
be the image of E top

ω restricted to this annihilator. Unless there is a loop with
E top
ω = 0 and non-trivial spectral flow, the subgroup I ′ is a proper subgroup of

I , and the quotient is Z. In any event, we can choose a projection

p : I → I ′.

Now construct a local system whose fiber at [a0] is R[I ′]− and in which the
loops z based at [a0] act by

�(z) = (
multiplication by p(−E top

ω (z)) ∈ I ′
)

.

This is a c-complete local system. Unlike the case of R[I ]−, this modified version
makes use of the second clause in the definition of the c-finiteness condition,
Definition 30.2.1. In any monotone case, the group I ′ is trivial, and the local
system � constructed this way is the trivial local system R.
In [87], Novikov introduced a completeness condition which is equivalent to
c-complete in the case that the spectral flow around all loops is trivial, but which
is in general stronger. We call this condition strongly c-complete:

Definition 30.2.4. Let c be the period of fω, and let E top
ω,q be a corresponding per-

turbed energy function. We say that a local system of complete, filtered abelian
groups � is strongly c-complete if it satisfies the following two conditions for
every pair of points [a], [b]:
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(i) for all subsets S of π1(Bσ
k , [a], [b]) such that

S ∩ { z | E top
ω,q(z) ≤ C } (30.4)

is finite for all C, the set of homomorphisms {�(z) | z ∈ S } ⊂
Hom(�[a],�[b]) is equicontinuous;

(ii) for the same class of subsets S, the homomorphisms �(z) converge to zero
in the compact–open topology as z runs through S.

In other words, the notion of strongly c-complete is obtained from that of c-
complete (Definition 30.2.2) by replacing the c-finiteness condition on S by the
weaker finiteness condition on (30.4). ♦

In the example above, the local system with fiber R[I ′]− defined above is
always c-complete, while R[I ]− is strongly c-complete. In the case of first Betti
number 1 and a non-torsion spinc structure, the trivial local system with fiber Z

is c-complete, while a strongly c-complete system has fiber Z[I ]−, isomorphic
to the ring of negative Laurent series with integer coefficients.

31 Some isomorphisms

31.1 Statement of results

We now begin to address the question of the extent to which the variants of Floer
homology which we obtain by non-exact perturbations differ from the earlier
versions. We begin with a statement about the balanced case. Recall that, in the
balanced case, we have two versions of the groups, the second of which was
obtained by completing the complex: see (30.1). In the balanced case, there is
no need to consider any completion of the coefficients �: we may take � to be
any local system of abelian groups, without topology.

Theorem 31.1.1. For any Y , any spinc structure s on Y and any coefficients
�, we have isomorphisms ̂

HM•(Y , s, cb;�) ∼=

̂

HM•(Y , s;�)

ĤM•(Y , s, cb;�) ∼= ĤM•(Y , s;�)

HM•(Y , s, cb;�) ∼= HM•(Y , s;�),

where cb = −2πc1(s) denotes the period class corresponding to a balanced
perturbation −L of L.
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Let us expand on the statement of this theorem. First, we can recall that̂

HM• is always isomorphic to

̂

HM∗ in both the exact and non-exact cases, as
negative completion does not affect the complex Č∗. Second, we note that if
c1(s) is torsion, then there is no content to this theorem, because the balanced
perturbations are exact in this case. Third, we observe that if c1(s) is not torsion,
then the groups on the right-hand sides coincide with the “∗” versions, because
the negative completion has no effect when there are no reducibles. In this
third case additionally, HM•(Y , s;�) is zero by default and

̂

HM•(Y , s;�) is
isomorphic to ĤM•(Y , s;�), so the theorem implies that these statements hold
also for the balanced versions.

Next, we have an extension of the above result to the positively mono-
tone case:

Theorem 31.1.2. Let s be a spinc structure with c1(s) non-torsion, and let �
be any system of coefficients. Then we have an isomorphism

HM•(Y , s, c;�) ∼= HM•(Y , s;�)

for any period class c corresponding to a positively monotone perturbation,−L,
of the Chern–Simons–Dirac functional L.

Neither of the two theorems above says anything about the case that c1(s)

is torsion. In the torsion case, strictly non-exact perturbations of the functional
are never monotone, and it is therefore necessary to use a c-complete local
coefficient system �. In these circumstances, we again have an isomorphism:

Theorem 31.1.3. Suppose that c1(s) is torsion, let c be any non-zero period
class, and let � be a c-complete local system of groups on Bσ (Y , s). Then we
have isomorphisms ̂

HM∗(Y , s;�) ∼=

̂

HM∗(Y , s, c;�)

ĤM∗(Y , s;�) ∼= ĤM∗(Y , s, c;�)

HM∗(Y , s;�) ∼= HM∗(Y , s, c;�);

consequently, we have HM∗(Y , s;�)= 0 and

̂

HM∗(Y , s;�)∼= ĤM∗(Y , s;�),
because these properties hold (by definition) for the groups on the
right.

The isomorphisms in all the above theorems respect the cup and cap products
by elements of H∗(Bσ (Y , s)), and behave as expected with respect to Poincaré
duality. We are not in a position to discuss their naturality with respect to the
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maps obtained from cobordisms, because such maps have not been defined for
the Floer groups with non-exact perturbations.

31.2 Proof of Theorem 31.1.1

We begin by proving Theorem 31.1.1. The technique will later be adapted to
prove the other theorems. As noted above, we may as well assume that c1(s)

is not torsion. Fix a closed 2-form ωb on Y so that L + fωb is balanced. Let
U = [0, 1] × Y be a cylindrical cobordism from Y to Y , equipped with 2-form
ω̃ which is equal to ωb near {0}×Y and which is zero near {1}×Y . (This form
cannot be closed.) Extend this form to the cylindrical-end manifold U ∗ = R×Y
so that it is equal to ωb on the incoming end and zero on the outgoing end. On
the 4-dimensional cylinder U ∗, we can now consider the equations

Fω̃(A,�) = 0,

on Bk,loc(U ∗, s), together with the corresponding equations on the blown-up
configuration spaces. We choose (exact) tame perturbations q0 = grad f0 and
q1 = grad f1, so that the two perturbed functionals

−L0 = L+ fωb + f0

−L1 = L+ f1

both have non-degenerate critical points and regular moduli spaces of trajecto-
ries on R×Y as usual. We choose a corresponding time-dependent perturbation
p on the cylinder, equal to q0 on the incoming end and q1 on the outgoing end,
so that we can consider the equations Fω̃,p(A,�) on U ∗. Given critical points
a and b for −L0 and −L1, we have moduli spaces of solutions of the blown-up
equations, M([a], U ∗, [b]). Each of these is a union

M([a], U ∗, [b]) =
⋃

z

Mz([a], U ∗, [b]).

Here z runs over the homotopy classes of paths from [a] to [b] in Bσ
k (Y , s).

We will use these moduli spaces to define chain maps, giving rise to
homomorphisms

ı̌ :

̂

HM•(Y , s, cb)→

̂

HM•(Y , s)

ı̂ : ĤM•(Y , s, cb)→ ĤM•(Y , s),
(31.1)

commuting with j∗. (On the right, the two groups are isomorphic, indeed iden-
tical, and j∗ is the identity.) Later, we will construct inverse homomorphisms,
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to show that the homomorphisms are isomorphisms. We use Z coefficients
here, and will continue to do so: the extension to arbitrary coefficients � is
straightforward.

We give U ∗ its standard homology orientation, so that to each trajectory
γ in a zero-dimensional moduli space Mz([a], U ∗, [b]) we can associate a
homomorphism

ε([γ ]) : Z�([a])→ Z�([b])

by comparing the positive orientation of the point [γ ] with the orientation of
the moduli space determined by given elements of �([a]), �([b]). We define
homomorphisms

mo
o : Co(Y , s, cb)→ Co(Y , s)

mu
o : Cu(Y , s, cb)→ Co(Y , s)

by counting trajectories with signs:

mo
o =

∑
[a]∈Co(Y ,s,cb)

∑
[b]∈Co(Y ,s)

∑
[γ ]∈Mz([a],U ∗,[b])

ε[γ ]

mu
o =

∑
[a]∈Cu(Y ,s,cb)

∑
[b]∈Co(Y ,s)

∑
[γ ]∈Mz([a],U ∗,[b])

ε[γ ].
(31.2)

We then define

m̌ : Č•(Y , s, cb)→ Č•(Y , s)

m̂ : Ĉ•(Y , s, cb)→ Ĉ•(Y , s)

by

m̌ = [
mo

o 0
]

m̂ = [
mo

o mu
o

]
,

(31.3)

using the descriptions

Č•(Y , s, cb) = Co• (Y , s, cb)⊕ Cu• (Y , s, cb)

Č•(Y , s) = Ĉ•(Y , s) = Co• (Y , s).

We must check that these homomorphisms are well-defined, using our com-
pactness and finiteness results. To make this work, we use the topological
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energy E top
0 corresponding to the balanced functional L0 as a book-keeping

device. Before proceeding, let us consider what possibilities we are trying to
rule out. Fix [a] and [b], and consider [γ ] in M([a], U ∗, [b]). Since −L0 is fully
gauge-invariant, the corresponding topological energy

E top
0 = 2

(−L0([a])−−L0([b])
)

is a fixed quantity, not depending on a choice of homotopy class z. The topo-
logical energy of γ on the half-cylinder (−∞, 0] × Y is non-negative, because
γ corresponds to a gradient trajectory of −L0 there. The potential problem is
that −L0 may be increasing along the other end, [1,∞) × Y ; and unless we
can bound this increase, we do not have an energy bound on either end. The
following lemma remedies the situation: it tells us that, for a gradient trajectory
of −L1, the value of −L0 cannot increase too much.

Lemma 31.2.1. Let I be an interval and consider the equations Fq1(A,�) = 0
on I×Y , corresponding to the gradient-flow of−L1. Then there exists a constant
K, depending only on the perturbations and not on I , such that for each solution
γ and each t ∈ I , we have either

(i) d
dt−L0(t) ≤ 0, or

(ii)
∣∣−L0(t)

∣∣ ≤ K.

Proof. We have

d

dt
−L0(t) = −

〈
grad−L0, grad−L0

〉− 〈
r, grad−L0

〉
,

where r is the difference in the perturbations:

r = q1 − q0 − grad fωb .

So for each t in I , either d
dt L(t) ≤ 0, or

‖ grad−L0‖L2({t}×Y ) ≤ ‖r‖L2({t}×Y ).

Suppose that the latter holds, for some t in I , and write γ̌ (t) = (A,�). The
hypotheses on the perturbations mean that the L2 norm of r is bounded by
a multiple of ‖�‖L2 . So from this bound on grad L we obtain, via the usual
inequalities, bounds on the L2

1 norms of Ã − A0 and �̃, where (Ã, �̃) is
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gauge-equivalent to (A,�). The functional −L0, being balanced, is fully gauge-
invariant; and −L0 is controlled by the L2

1 norm (or indeed the L2
1/2 norm) of

(A,�). �

Corollary 31.2.2. There is a constant K1 such that for all [γ ]belonging to one of
the moduli spaces Mz([a], U ∗, [b]), the topological energy E top

0 corresponding
to the balanced functional −L0 is bounded below on [1,∞)× Y by −K1:

E top
0 (γ |[1,∞)×Y ) ≥ −K1,

or equivalently,

−L0(γ |{1}×Y )−−L0(b) ≥ −K1/2.

�

If we examine the proof of Lemma 31.2.1, we see that it can also be applied
when the term r is time-dependent. We can therefore apply the same argument
to the compact part of the cylinder, U , to obtain:

Corollary 31.2.3. There is a constant K2 such that for all [γ ]belonging to one of
the moduli spaces Mz([a], U ∗, [b]), the topological energy E top

0 corresponding
to the balanced functional −L0 is bounded below on U = [0, 1] × Y by −K2:

E top
0 (γ |U ) ≥ −K1,

or equivalently,

−L0(γ |{0}×Y )−−L0(γ |{1}×Y ) ≥ −K2/2.

�

From the two corollaries above, we have lower bounds on the topological
energy E top

0 on the compact part of U ∗ and on the outgoing end. On the incom-

ing end, E top
0 is non-negative. On the set of critical points of −L0 or −L1, the

balanced functional−L0 takes only finitely many values. Using the additivity of
the topological energy, we now see that there is a constant K3 such that, for
any pair of critical points [a], [b], any trajectory [γ ] in M([a], U ∗, [b]), and any
t ∈ R, we have bounds

−K3 ≤ −L0(γ |{t}×Y ) ≤ K3. (31.4)
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From these bounds, we can obtain convergence on compact sets. For exam-
ple, it follows that if [γn] is any sequence belonging to moduli spaces
Mzn([an], U ∗, [bn]), then the blown-down configurations [πγn] converge in
Bk,loc(U ∗) after passing to a subsequence.

Having obtained convergence on compact sets, we need to investigate global
convergence in the sense of broken trajectories, in the downstairs moduli spaces
N ([α], U ∗, [β]), as we did in (16.1). Because there is no blow-up involved, there
are only finitely many critical points [α], [β]. The next proposition tells us that
only finitely many moduli spaces are non-empty:

Proposition 31.2.4. For each [α] and [β], there are only finitely many homo-
topy classes z such that the moduli space Nz([α], U ∗, [β]) is non-empty.
The corresponding moduli spaces N+z ([α], U ∗, [β]) of broken trajectories are
compact.

Proof. Let [γn] belong to Nzn([α], U ∗, [β]). The bound (31.4), and the fact
that γn corresponds to a gradient trajectory of −L0 on the incoming end, means
as usual that we have convergence of a subsequence, in the sense of broken
trajectories, on the incoming end (−∞, 0] × Y . The fact that we have conver-
gence on compact sets means that the same is true for the slightly larger piece
U− = (−∞, 1] × Y . It follows that the topological energy E top

1 corresponding
to the functional−L1 is uniformly bounded on this part of U ∗: there is a constant
E such that ∣∣E top

1 (γn|U−)
∣∣ ≤ E

for all n. On the remainder of U ∗, namely the outgoing end U+ = [1,∞)× Y ,
the energy E top

1 is non-negative, because on this piece we have the gradient-flow
equations of −L1. Putting these together, we have

E top
1 (γn) ≥ −E

on U ∗. Because −L1 is an exact perturbation, the quantity

E top
1 (γn)+ 4π2 dim Nzn([α], U ∗, [β]) (31.5)

is independent of the homotopy class zn (see (16.5), for example); so we also
have an upper bound for E top

1 (γn). Thus we obtain

∣∣E top
1 (γn|U+)

∣∣ ≤ E′
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for some E′ independent of n. This allows us to extract a subsequence that con-
verges in the sense of broken trajectories on U+. We already have convergence
on U−, so we now have convergence on U ∗. This shows that only finitely many
homotopy classes can arise among the zn, and that each moduli space of broken
trajectories is compact. �

Having dealt with the downstairs moduli spaces, the corresponding result for
the upstairs moduli spaces follows quite quickly. It is only on the incoming end
that there are any reducible critical points, so the only question is whether there
can be infinitely many non-empty moduli spaces of the form

Mzn([an], U ∗, [b]),

where [b] is the preimage of some [β] and all [an] belong to the preimage
of some [α]. Because b must be irreducible, these moduli spaces consist of
irreducible solutions only, and this forces all the an to be boundary-unstable.
By the preceding proposition, we may take it that all the paths zn project to the
same homotopy class of paths from [α] to [β] downstairs; and in this case, if
[an] corresponds to the eigenvalue λn of the perturbed Dirac operator at α, and
if λn decreases without bound, then the dimension of the above moduli spaces
becomes negative (see (16.5) again). Thus only finitely many [an] can occur,
and we have:

Corollary 31.2.5. There are only finitely many triples ([a], [b], z) for which
the moduli space Mz([a], U ∗, [b]) is non-empty; and for each such triple the
corresponding space of broken trajectories M+

z ([a], U ∗, [b]) is compact. �

This compactness theorem validates our definition (31.2), and hence the def-
inition of m̌ and m̂. With compactness out of the way, the arguments previously
used in the context of exact perturbations adapt without difficulty: the fact that
m̌ and m̂ are chain maps follows from the usual considerations, and so we have
constructed the desired maps (31.1) as

ı̌ = m̌∗
ı̂ = m̂∗.

It is a straightforward matter to verify that these maps commute with j∗.
To show that these maps are invertible, we construct maps in the opposite

direction, which we will then show are inverses of ı̌ and ı̂. To construct these,
we replace the cylindrical cobordism U with another cylindrical cobordism
V = [0, 1] × Y , this time carrying a 2-form which is equal to ωb at the end
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{1}×Y and zero at the end {0}×Y . The corresponding cylindrical-end manifold
V ∗, equipped with a corresponding 2-form, will define maps

no
o : Co(Y , s)→ Co(Y , s, cb)

no
s : Co(Y , s)→ Cs(Y , s, cb)

and hence maps

ň : Č•(Y , s)→ Č•(Y , s, cb)

n̂ : Ĉ•(Y , s)→ Ĉ•(Y , s, cb)

by

ň =
[

no
o

no
s

]
and

n̂ =
[

no
o

0

]
.

Corollary 31.2.5 has a mirror-image version applicable to U ∗, so these maps
are well-defined. Once again, ň and n̂ are chain maps, and they define maps on
the homology groups

ǰ :

̂

HM•(Y , s)→

̂

HM•(Y , s, cb)

ĵ : ĤM•(Y , s)→ ĤM•(Y , s, cb).
(31.6)

To show that the maps ǰ and ĵ are inverse to ı̌ and ı̂, we examine the
composites. The composites

ǰ ◦ ı̌ :

̂

HM•(Y , s, cb)→

̂

HM•(Y , s, cb)

ĵ ◦ ı̂ : ĤM•(Y , s, cb)→ ĤM•(Y , s, cb)
(31.7)

present a more interesting story than ı̌ ◦ ǰ and ı̂ ◦ ĵ , so we will discuss only the
former two.

The maps ı̌ etc. are defined via the chain maps m̌ etc. on the negative com-
pletions of the complexes. The reader should notice that the maps could equally
well have been defined without completion, on the ∗ version of the complexes.
However, if we had used the ∗ versions, the composites (31.7) would not have
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been the identity (though the proof that the other composites, ı̌ ◦ ǰ and ı̂ ◦ ĵ ,
are 1 would still have held).

To examine the composites (31.7), we form the composite cobordism W =
V◦U . Recall that with our conventional notation for composition of cobordisms,
this means that the outgoing end of U is attached to the incoming end of V . We
also form W (S) by inserting a cylinder of length S between the two parts, as in
(26.2), and we then attach two cylindrical ends to form W (S)∗. The cylindrical
cobordism W (S)∗ carries a 2-form ω̃(S), which is equal to ωb on the two ends
and is zero on the interior neck of length S. For each pair of critical points
[a], [b] of (grad−L0)

σ , and each homotopy class of paths z, we have a moduli
space Mz([a], W (S)∗, [b]). As in (26.3), we take the union over S to form a
parametrized moduli space

Mz([a], [b]) =
⋃

S∈[0,∞)

{S} ×Mz([a], W (S)∗, [b]). (31.8)

A parametrized moduli space of this sort was the basis of the proof of the
composition law for cobordisms in Section 26: the moduli spaces (31.8) were
used to define a chain-homotopy. The same constructions will carry over to the
non-exact case, as long as we can establish the necessary finiteness results. The
next proposition addresses the finiteness issue.

Proposition 31.2.6. Suppose that, for some fixed [a], there are infinitely many
distinct pairs ([bn], [zn]) such that the moduli space Mzn([a], [bn]) is non-
empty. Then ι(bn)→−∞ as n →∞.

Proof. Let [γn] belong to the nth moduli space Mzn([a], W (Sn)
∗, [bn]). As

before, we obtain bounds (31.4) on the functional −L0 and hence on the topo-
logical energy E top

0 , leading to convergence of subsequences on compact sets.
If we write W (Sn) as a union

W (Sn) = W− ∪ [0, Sn] × Y ∪W+

then we also have convergence in the sense of broken trajectories, downstairs,
on both W− and W+, and hence bounds on the other topological energy:∣∣E top

1 (γn|W−)
∣∣ ≤ E∣∣E top

1 (γn|W+)
∣∣ ≤ E.

On [0, Sn] × Y , the energy E top
1 is non-negative, because there we have

the gradient-flow equation for −L1. If γn is irreducible for all n, then
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Mzn([a], W (Sn)
∗, [bn]) is a subset of some Nzn([α], W (Sn)

∗, [βn]), and we can
apply the same type of dimension argument that we used for Proposition 31.2.4
to obtain an upper bound on E top

1 , which leads to a finiteness result. So if the pairs
([bn], zn) are distinct, it must be that infinitely many of the [γn] are reducible.
We may then assume that all [bn] lie over the same downstairs critical point
[β], and that all [γn] are reducible. We may also assume that E top

1 (γn)→∞ as
n increases.

At this point, we again use a dimension argument. As in (16.5), the quantity

E top
1 (γn)+ 4π2(grzn

([a], [bn])− 2ι(a)+ 2ι(bn)
)

(31.9)

is independent of n. The non-emptiness of the parametrized moduli spaces
means that grzn

([a], [bn]) ≥ −1; so as E top
1 (γn) goes to +∞, it follows that

ι(bn) must go to −∞. �

The proposition tells us that we can use the moduli spaces Mz([a], [b])
in the definition of maps between chain complexes, provided that we use
negative completion when dealing with Cu(Y , s, cb). The proofs that the com-
positions (31.7) are the identity can now proceed, following the general outline
of Section 26. This completes the proof of Theorem 31.1.1. �

31.3 Proof of the remaining two isomorphisms

Having proved Theorem 31.1.1, we can now turn to the proof of its two com-
panion theorems. Theorem 31.1.2 can be deduced very quickly. Because of the
previous theorem, we need only establish isomorphismŝ

HM•(Y , s, cb;�) ∼=

̂

HM•(Y , s, c;�)

ĤM•(Y , s, cb;�) ∼= ĤM•(Y , s, c;�)

HM•(Y , s, cb;�) ∼= HM•(Y , s, c;�),

between the balanced and positively monotone groups. We can write E top
0 again

for the topological energy corresponding to the balanced functional, and E top
1

for the topological energy corresponding to the perturbation −L1 whose period
class 2πc1(s) + c is positively proportional to c1(s). The construction of the
maps ı̌ etc. can be repeated almost verbatim from the proof of Theorem 31.1.1.
The only minor change is that the quantity (31.5) is no longer independent of
the path zn: instead, we simply have another positive constant τ such that

E top
1 (γn)+ τ dim Nzn([α], U ∗, [β]) (31.10)
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is independent of n. This allows us to bound the energy E top
1 (γn) as before,

and deduce the necessary finiteness. In proving that the composites ǰ ◦ ı̌ and
ĵ ◦ ı̂ are the identity, there is a corresponding change at Formula (31.9), but the
argument is otherwise identical. �

The last of the three is Theorem 31.1.3. Because this theorem is concerned
only with torsion spinc structures, the exact perturbations are also the perturba-
tions which make the functional−L balanced. The groups on the left-hand sides
of the isomorphisms in Theorem 31.1.3 are therefore the balanced groups, and
we are once again looking to construct isomorphisms

ı̌ :

̂

HM∗(Y , s, cb;�)→

̂

HM∗(Y , s, c;�)

ı̂ : ĤM∗(Y , s, cb;�)→ ĤM∗(Y , s, c;�),

as we were in the immediately previous case, Theorem 31.1.2. Now, however,
the coefficients � are assumed to be c-complete; and we are not taking the
negative completion that was previously implied by the • notation. We again
write −L0 and −L1 for the perturbed functionals that are used in the construction
of the groups on the left- and right-hand sides respectively, and E top

0 and E top
1

for the corresponding notions of topological energy. The situation is again that
−L0 will have reducible critical points, but −L1 will not.

We define chain maps

mo
o : Co(Y , s, cb;�)→ Co(Y , s;�)

mu
o : Cu(Y , s, cb;�)→ Co(Y , s;�)

by counting trajectories with signs and using the coefficient system �. That is,

mo
o =

∑
[a]∈Co(Y ,s,cb)

∑
[b]∈Co(Y ,s)

∑
z

∑
[γ ]∈Mz([a],U ∗,[b])

ε[γ ] ⊗ �(z)

mu
o =

∑
[a]∈Cu(Y ,s,cb)

∑
[b]∈Co(Y ,s)

∑
z

∑
[γ ]∈Mz([a],U ∗,[b])

ε[γ ] ⊗ �(z).
(31.11)

As usual, the sum is over zero-dimensional moduli spaces; and the summand
is to be interpreted as a homomorphism

ε[γ ] ⊗ �(z) : Z[a] ⊗ �[a] → Z[b] ⊗ �[b].

These sums, however, may have infinitely many non-zero terms; and in order
to show that the sums converge, we need to establish that, for each [a], the
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set of homotopy classes z that contribute to the above sums is energy-finite for
the energy function E top

1 (see Definitions 30.2.2 and 30.2.1). Because c1(s) is
torsion, the relative grading grz([a], [b]) depends only on the endpoints of z,
and not on its relative homotopy class; so the energy-finite condition simplifies.
What we need to prove is therefore that, for fixed [a] and any constant C, there
are only finitely many solutions [γ ] which contribute to the above sums and
which satisfy in addition the energy bound

E top
1 (γ ) ≤ C. (31.12)

Let [γn] be a sequence of solutions contributing to the sum and let zn denote
the corresponding sequence of homotopy classes. In the earlier proof of The-
orem 31.1.1, we used the fact that the quantity (31.5) was independent of the
homotopy class zn in order to obtain an upper bound on the energy E top

1 (γ ).
There is no longer any invariant quantity of this sort, but the upper bound on the
energy has now been added as a hypothesis (31.12). So the proof of finiteness
continues as before. Indeed, we have slightly more: for given C, there can be
only finitely many triples ([an], [bn], zn) such that E top

1 (zn) ≤ C and such that
the corresponding moduli space is non-empty. (In other words, we did not need
to fix [a].)

This establishes that the homomorphisms (31.11) are well-defined. The chain
maps m̌ and m̂ are defined as before, (31.3), and give rise to the desired maps ı̌
and ı̂ on cohomology.

The maps ǰ and ĵ are constructed in the same way, as in the proof of The-
orem 31.1.1. The proof that these are the inverses of ı̌ and ı̂ respectively uses
the moduli spaces Mz([a], [b]) defined as in (31.8), for critical points [a], [b]
of (grad−L0)

σ in Bσ
k (Y , s). Once again, the question is whether these moduli

spaces have the necessary finiteness properties to define maps on the groups
Co∗(Y , s, cb;�) and the companions Cs and Cu.

Because c1(s) is torsion, the critical points have a grading by J(Y , s) ∼= Z;
so for given [a], there are only finitely many [b] for which Mz([a], [b]) can
be zero-dimensional; and in the other direction, for each [b], there are only
finitely many [a]. There is therefore no need to use negative completion in
order for the maps defined by Mz([a], [b]) to be well-defined: the issue is only
whether, for given [a] and [b], the set of homotopy classes of paths z for which
Mz([a], [b]) is zero-dimensional is energy-finite for the energy function E top

1 .
In other words, we must show that given any [a], [b] and C, there are only
finitely many non-empty, zero-dimensional moduli spaces Mz([a], [b]) with
energy E top

1 ≤ C. The proof runs as before, but uses the given upper bound of

E top
1 instead of deducing one via (31.9). �
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31.4 Proportional period classes

The isomorphism theorems that we have proved in this section leave open
some questions on how the Floer homology groups might vary as we vary the
period class of a non-exact perturbation. There is one further result that we
can prove along these lines however. To motivate this, we can look again at
Theorem 31.1.2, which tells us that the Floer groups do not change as we vary
the period class c along a particular open ray emanating from the class of the
balanced perturbation. In Theorem 31.1.2, the relevant ray is the set of period
classes of positively monotone perturbations. But in fact a similar result holds
along all rays from the balanced perturbation.

If −L1 and −L2 are two non-exact perturbations of the Chern–Simons–Dirac
functional L, then to say that their period classes lie on the same ray or half-line
is to say that the periods of −L1 and −L2 are non-trivial and positively propor-
tional. In other words, there are positive constants µ1 and µ2 such that the
difference

µ1−L1 − µ2−L2

is invariant under the full gauge-group and so descends a single-valued function
on B(Y , s). As long as the period classes of −L1 and −L2 are not actually equal,
then the above difference is proportional to some balanced perturbation −L0 of
L: after scaling the µi and possibly interchanging the roles of−L1 and−L2 to get
the correct sign, we may assume that

µ1−L1 − µ2−L2 = −L0, (31.13)

where −L0 is balanced. If we write the period classes of the perturbations as
c1 and c2, then this proportionality also means that the notions of c1-complete
and c2-complete for a local system � are the same. We can therefore fix a
local system � that is c-complete for both period classes, and consider the
corresponding Floer groups HM•(Y , s, ci;�), for i = 1, 2. (Note that, because
the ci are not balanced, there are no reducibles and there is only one flavor of
Floer group.) We then have:

Theorem 31.4.1. Suppose, as above, that the period classes c1 and c2 are such
that the corresponding perturbed functionals −L1 and −L2 are not balanced but
satisfy the proportionality condition (31.13) for positive constants µi. Then
for any local system � that is ci-complete (for one and hence both ci), the
corresponding Floer groups are isomorphic:

HM•(Y , s, c1;�) ∼= HM•(Y , s, c2;�).
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The theorem tells us that, up to isomorphism, HM•(Y , c1;�) is constant as
c varies along a ray emanating from the balanced class cb. The key point in the
proof of this theorem, as in the previous isomorphism theorems, is to obtain
uniform bounds on the value of the functionals −Li along trajectories belonging
to moduli spaces on a cylindrical manifold. We take closed 2-forms ω1 and
ω2 such that the corresponding perturbations fωi of the Chern–Simons–Dirac
functional L on Y have period class c1 and c2 respectively. (So the de Rham
class of ωj is 4πcj/i.) We again write U for the cylinder [0, 1] × Y , equipped
with a form ω̃ which now interpolates between the form ω1 near {0} × Y and
ω2 near {1} × Y . The manifold

U ∗ = U− ∪ U ∪ U+

is the infinite cylinder, obtained by attaching cylindrical ends to U , equipped
with a perturbation of the Seiberg–Witten equations, so that solutions on U ∗
give rise to gradient trajectories of −L1 on the negative end U− and of −L2

on the positive end U+. We will again make use of a balanced non-exact
perturbation of L, which we call −L0. This functional, which is invariant under
the full gauge-group, will be used as an auxiliary to the argument.

The strategy again is to use moduli spaces on U ∗ to define a map from
HM•(Y , s, c1;�) to HM•(Y , s, c2;�). A map in the opposite direction can be
constructed in the same manner, and one must then show the maps are mutually
inverse. Let a and b be critical points for −L1 and −L2, and consider a moduli
space

Mz([a], U ∗, [b])

of solutions to these perturbed equations. The first point is that we have uniform
bounds, above and below, independent of [a], [b] and z, for the value of −L0 at
γ (t) for any γ in such a moduli space. This is what we obtained at (31.4),
using Lemma 31.2.1 and Corollary 31.2.3 in the previous proofs; and the same
argument applies. From this we again conclude that if we have a sequence

[γn] ∈ Mzn([an], U ∗, [bn])

then we can pass to a subsequence that converges on every compact set in U ∗,
up to gauge transformation.

When � is ci-complete, we can use these moduli spaces to define a map
on the Floer groups provided we have a compactness theorem for the spaces
M+

z ([a], U ∗, [b]) and a finiteness theorem: specifically, we need to know that
given any constant C, there are only finitely many homotopy classes of paths
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zn for which the moduli space above is non-empty and for which, in addition,
the total drop in −L1 along zn is bounded by C.

On U−, each [γn] defines a gradient trajectory γ̌n of −L1; so −L1(γ̌n(t)) is
decreasing for t in (−∞, 0]. To proceed further, we need a bound on the mag-
nitude of the decrease, assuming only a uniform bound on the total change of
−L1 along the paths zn. Convergence on compact sets already tells us that, on the
compact piece [0, 1] ×U , the change in−L1 is bounded above and below. What
remains, therefore, is to bound the possible increase in −L1 along the positive
end U+: we want a bound

−L1(bn)−−L1(γn(1)) ≤ K , (31.14)

for some K independent of n. Along U+, it is the function −L2 which is
decreasing: we have

−L2(bn)−−L2(γn(1)) ≤ 0.

On the other hand, the proportionality condition says that

−L1 = (µ2/µ1)−L2 + (1/µ1)−L0,

and because we already know that −L0 is uniformly bounded above and below,
the monotonicity of −L2 implies the desired inequality (31.14). We now know
enough to conclude that the functional −L1 is uniformly bounded above and
below along any sequence of trajectories γn belonging to moduli spaces
Mzn([an], U ∗, [bn]), provided only that the total drop in −L1 (or equivalently
−L2) along the paths zn is uniformly bounded above by a constant C. There
is a similar bound on −L2, and we can proceed without further difficulty to
obtain maps

HM•(Y , s, c1;�)→ HM•(Y , s, c2;�)

and

HM•(Y , s, c2;�)→ HM•(Y , s, c1;�).

The bounds necessary to prove that these two maps are mutually inverse are
established using the same ideas. �

31.5 An exact sequence

We have seen in Theorem 31.4.1 that as the period class c of the perturbation
moves along a straight line passing through cb, the corresponding Floer groups
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remain unchanged except as c passes cb. If we look at a particular line and
choose period classes c− and c+ which lie on this line and are separated by cb,
then the groups we can consider are

HM∗(Y , s, c−,�−)

ĤM∗(Y , s, cb), HM∗(Y , s, cb),

̂

HM∗(Y , s, cb)

HM∗(Y , s, c+,�+)

for some coefficient systems �− and �+ which are c−-complete and c+-
complete respectively. It is natural to ask what further relations there are
amongst these. In particular, we will focus here on the case that c1(s) is non-
torsion and where c+ and c− are positively and negatively monotone. (So c+
may as well be zero.) In this special case, we can take �± both to be Z, because
the completeness condition becomes trivial. In the following theorem, the first
isomorphism follows from Theorem 31.1.1, after we recall that there is no dif-
ference between

̂

HM∗ and

̂

HM• (unlike ĤM∗ and ĤM•, which are different in
general). The second isomorphism is proved in a very similar manner, and we
omit the argument.

Theorem 31.5.1. Suppose c1(s) is not torsion, let c+ and c− be period classes
for positively and negatively monotone perturbations respectively, and let cb

be the class of the balanced perturbation. Then we have isomorphisms (with Z

coefficients)

HM∗(Y , s, c+) ∼=

̂

HM∗(Y , s, cb)

HM∗(Y , s, c−) ∼= ĤM∗(Y , s, cb).

�

Corollary 31.5.2. There is a long exact sequence

· · · i∗−→HM∗(Y , s, c+)
j∗−→ HM∗(Y , s, c−)

p∗−→ HM∗(Y , s, cb)

i∗−→ HM∗(Y , s, c+)
j∗−→ · · ·

Proof. The sequence is the usual exact sequence (Proposition 22.2.1) relat-
ing

̂

HM∗, ĤM∗ and HM∗ for the manifold (Y , s, cb), reinterpreted using the
isomorphisms of the theorem. �

To summarize, when we consider a non-torsion spinc structure and non-
exact perturbations on the monotone line, then (with Z coefficients and no
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completion), we encounter only three distinct groups; and these three are related
by a long exact sequence.

32 Applications to gluing

32.1 A generating function and a gluing formula

In this section, we shall prove a gluing result, along the lines of Proposition 3.9.3.
The latter proposition requires, for its statement, that HM•(Y ;�η) is zero,
something that we will not establish in this chapter. The version of the gluing
proposition that we will prove here will use instead a suitable c-complete local
coefficient system for which the vanishing of HM• can be deduced from Theo-
rem 31.1.3. The original version of Proposition 3.9.3 will be proved afterwards,
in Subsection 32.3.

Fix a closed imaginary-valued 2-form ω on Y , and let s be a fixed spinc

structure with c1(s) torsion. We introduce a local coefficient system $ω that
is a variant of the examples introduced in Subsection 30.2. For the fiber of
$ω we take everywhere the ring R[R]−, the completed group ring of R with
coefficients in a commutative ring with 1. We again introduce a formal symbol
t and write elements of R[R]− as sums

∑
riti, where i runs through the reals,

and the coefficients ri satisfy the finiteness constraint, that the support of i �→ ri

meets every positive half-line in a finite set. If z is a homotopy class of paths
in Bσ (Y ) joining [a] to [b], then $ω(z) : R[R]− → R[R]− is defined to be
multiplication by t−x, where

x = E top
ω (z)

is the ω-perturbed topological energy of a corresponding configuration on the
cylinder. This local system is c-complete, where c is the cohomology class of
(i/4π)ω (which is also the period class of Lω because c1(s) is torsion). Suppose
now that c is non-zero. From Theorem 31.1.3, we then obtain

HM∗(Y , s;$ω) = 0,

and j is an isomorphism,

j :

̂

HM∗(Y , s;$ω)
∼=−→ ĤM∗(Y , s;$ω).

Let X be a closed 4-manifold that contains Y as a separating hypersurface, so
that X = X1∪X2, with ∂X1 = Y and ∂X2 = −Y . We suppose that ω extends to



32 Applications to gluing 623

a closed form ωX on X . We write ωi for the restriction of ωX to Xi. If b+(X ) is
2 or more, and if a homology orientation is chosen, then we have well-defined
integer invariants m(X , sX ) for each spinc structure sX on X . From these, we
can form a generating function∑

sX

t−E top
ω (sX )m(X , sX ),

regarded as an element of R[R]−. Here E top
ω (sX ) denotes the topological energy

of any configuration belonging to the spinc structure, which is just the quantity

1

4

∫
X
(FAt − 4ω) ∧ (FAt − 4ω).

We can also restrict the sum to those spinc structures sX whose restriction to Y
is s: we denote this restricted sum by

ms =
∑

sX |Y=s

t−E top
ω (sX )m(X , sX ). (32.1)

We shall write down a gluing formula for this invariant ms. Let W1 denote
the cobordism X1 \ B4, from S3 to Y . We can regard $ω as defining a local
coefficient system $0 (with no monodromy) also on Bσ (S3); and we have a
W1-morphism of local coefficient systems,

$ω1 : $0 → $ω

defined using the perturbed topological energy of a configuration on W1:

$ω1(z) = t−E top
ω1 (z).

Using this cobordism and the canonical element 1 in ĤM•(S3;$0), we obtain
in the usual way an element

ψ1 = ĤM•(W1;$ω1)(1) ∈ ĤM•(Y ;$ω).

In this construction, we can again restrict the spinc structures on W1 to those
whose restriction to Y is s; and in this way we obtain a restricted version of the
above invariant, ψ1,s ∈ ĤM•(Y , s;$ω). Because j is an isomorphism, we can
also regard ψ1,s as lying in the reduced group

ψ1,s ∈ HM•(Y , s;$ω).
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In a similar way, we obtain an invariant

ψ2,s ∈ HM•(−Y , s;$∗ω),

where $∗ω is the coefficient system whose definition mimics that of $ω but
which uses the orientation−Y in place of Y . We can describe$∗ω as a coefficient
system on Bσ (Y ; s), using the original orientation of Y , by saying that its fiber
at each point is R[R]− (the same negative completion), and that for a path z
from [a] to [b], we have

$∗ω(z) = t+E top
ω (z).

(This is the inverse of $ω(z).) When a homology orientation µ for Y is given,
we have a duality isomorphism

ωµ : HM•(−Y , s;$∗ω)→ HM •(Y , s;$∗ω). (32.2)

There is also a pairing, resulting from the obvious multiplication pairing at the
chain level,

HM•(Y , s;$ω)⊗ HM •(Y , s;$∗ω)→ R[R]−.

Combining this pairing with (32.2), we obtain a pairing

〈−,−〉ωµ : HM•(Y , s;$ω)⊗ HM•(−Y , s;$∗ω)→ R[R]−;

and using this we can form the element 〈ψ1,ψ2〉ωµ in R[R]−.

Proposition 32.1.1. If b+(X ) ≥ 2 and the cohomology class c = (i/4π)[ω] is
non-zero, then we have the following pairing formula for the restricted invariant
ms in R[R]−:

ms = 〈ψ1,ψ2〉ωµ ,

whether or not either of the Xj has b+ = 0.

Proof. As a preliminary step, we can reformulate the result without referring
to the duality isomorphism ωµ. We have maps

ĤM•(W1;$ω1)s : ĤM•(S3;$0)→ ĤM•(Y , s;$ω)

j−1 : ĤM•(Y , s;$ω)→

̂

HM•(Y , s;$ω)̂

HM•(W2;$ω2)s :

̂

HM•(Y , s;$ω)→

̂

HM•(S3;$0),
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where, in the first and third lines, the subscript s in the notation for the map
indicates that we use only the contribution of spinc structures on the cobordism
that restrict to s on Y . The composition of these three gives a map̂

HM•(W2;$ω2)s ◦ j−1 ◦ ĤM•(W1;$ω1)s : ĤM (S3;$0)→

̂

HM (S3;$0).

On the other hand, the cobordism W : S3 → S3 obtained by removing two
balls from X (the composite W2 ◦W1) has b+ ≥ 2 and gives rise to a map with
the same domain and codomain:

−−→
HM•(W ;$ωX ) : ĤM (S3;$0)→

̂

HM (S3;$0).

(See Subsection 27.3 for the definition of this map.) Here$ωX is a W -morphism
defined in the same manner as $ω1 etc., using the perturbed topological energy
E top
ωX . There is also a version of this map that counts only the contribution

from spinc structures sX on X whose restriction to Y is s. We denote this
map by

−−→
HM•(W ;$ωX )s. The real content of the proposition is a composition

law, expressing the equality of these two:̂
HM•(W2;$ω2)s ◦ j−1 ◦ ĤM•(W1;$ω1)s =

−−→
HM•(W ;$ωX )s. (32.3)

Indeed, the proposition follows from this equality because we have (for formal
reasons)

〈ψ1,ψ2〉ωµ =
〈 ̂

HM•(W2;$ω2)s ◦ j−1 ◦ ĤM•(W1;$ω1)s(1), 1̌
〉

where 1 and 1̌ are the canonical generators for ĤM•(S3;$0) and

̂

HM •(S3;$∗0),
and the angle brackets denote the R[R]−-valued pairing between homology and
cohomology. (See also Proposition 3.8.1.)

In order to prove the composition law (32.3), we need to get a handle on
j−1. Note that j is an isomorphism between homology groups, but the chain
complexes giving rise to these homology groups are not isomorphic: so j and
its inverse are non-trivial maps. We can construct an explicit j−1 at the chain
level using the isomorphisms of Theorem 31.1.3. The proof of Theorem 31.1.1
provides isomorphisms

ı̂ : ĤM•(Y , s;$ω)→ ĤM•(Y , s, c;$ω)

and

ǰ :

̂

HM•(Y , s, c;$ω)→

̂

HM•(Y , s;$ω),
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both of which are obtained from solutions to the suitably perturbed equations on
a cylindrical cobordism. The groups ĤM•(Y , s, c;$ω) and

̂

HM•(Y , s, c;$ω)

are not just isomorphic, but actually equal, because there are no reducible critical
points for the non-exact perturbation. So we have a composite isomorphism,

ǰ ◦ ı̂ : ĤM•(Y , s;$ω)→

̂

HM•(Y , s;$ω). (32.4)

Theorem 31.1.3 tells us that this composite is j−1.
The merit of the formula (32.4) is that it expresses j−1 (and hence everything

on the left-hand side of (32.3)) in terms of solutions to various versions of the
Seiberg–Witten equations on cobordisms. We can therefore regard (32.3) as
simply another composition law for maps resulting from cobordisms.

When we substitute ǰ ◦ ı̂ for j−1 in (32.3), we have a composite of four maps.
If we split these four maps into two composites of two maps each, we can write
the left-hand side in (32.3) as the composite of the two maps

ı̂ ◦ ĤM•(W1;$ω1)s : ĤM•(S3;$0)→ HM•(Y , s, c;$ω)̂
HM•(W2;$ω2)s ◦ ǰ : HM•(Y , s, c;$ω)→

̂
HM•(S3;$0).

(32.5)

(We have simply written HM•(Y , s, c;$ω) for the two equal groups

̂
HM• and

ĤM•.) Each of the two composites in (32.5) has a more direct interpretation,
as we now explain.

Consider first the composite ı̂ ◦ ĤM•(W1;$ω1)s. Let W ∗
1 denote the

cylindrical-end manifold obtained from the cobordism W1, and consider the
form ω1 extended to W ∗

1 so as to be equal to the translation-invariant form ω

on the cylindrical end R≥ × Y and zero on the cylindrical end R≤ × S3. After
choosing an auxiliary (exact) tame perturbation p to achieve transversality, we
have the 4-dimensional equations Fσ

ω1,p = 0 on W ∗
1 , and corresponding moduli

spaces

Mz([a], W1,ω1, [b]) ⊂ Bσ
k,loc(W

∗
1 ).

Here [a] is a critical point in Bσ (S3), and [b] is a critical point for the non-
exact perturbation (grad Lq,ω)

σ in Bσ (Y , s). Using these moduli spaces, we
can define a map (for example)

mu
o : Cu(S3;$0)→ Co(Y , s, c;$ω)
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by the recipe ∑
[a]

∑
[b]

∑
z

∑
[γ ]∈Mz([a],W ∗

1 ,ω1,[b])
ε[γ ] ⊗$ω1(z)

(compare (31.11), for example), in which $ω1(z) : R[R]− → R[R]− is multi-

plication by t
−E top

ω1(z) . For fixed [a] and [b], there may be infinitely many z which
contribute to this sum; but for any constant C, only finitely many z with energy
less than C will contribute. So, because $ω is c-complete, the map mu

o is well-
defined. As long as the perturbation on S3 is chosen small, so that ĤM•(S3;$0)

is simply the homology of the complex (Cu, ∂̄u
u ), then mu

o is a chain map, and
gives rise to a map on homology,

(mu
o)∗ : ĤM•(S3;$0)→ HM•(Y , s, c;$ω).

(Again, there being no reducibles for the non-exact perturbation, the homology
group on the right is just the homology of (Co, ∂o

o ).) In a similar manner, we
obtain a map

(mo
s )∗ : HM•(Y , s, c;$ω)→

̂
HM•(S3;$0)

using moduli spaces on W ∗
2 .

The equality (32.3) is now a consequence of three separate composition laws:
first a composition law involving W1,

(mu
o)∗ = ı̂ ◦ ĤM•(W1;$ω1)s;

second a similar composition law involving W2,

(mo
s )∗ =

̂

HM•(W2;$ω2)s ◦ ǰ ;

and finally a natural composition law for the composite cobordism
W = W2 ◦W1,

(mo
s )∗ ◦ (mu

o)∗ =
−−→
HM•(W ;$ωX )s.

With each of these three, we are on familiar territory. The three identities above
all follow in the usual way from chain-homotopies obtained from parametrized
moduli spaces, the parameter being the length of the neck. Because we are
dealing with non-exact perturbations, we only have to check in addition that
the chain-homotopies (which will involve infinite sums) are really well-defined.



628 VIII Non-exact perturbations

We have seen a model for such arguments in the proofs of Theorems 31.1.1–
31.1.3; and in the present situation, because the definition of the coefficient
system $ω makes direct use of the energy E top

ω , checking the convergence of
the sums that arise is straightforward. �

32.2 Remarks on the generating function

It is worth expanding a little the generating function ms that is defined in the
previous subsection, (32.1), and the more general sum that precedes it (without
the restriction to spinc structures sX that restrict to s on Y ):∑

sX

t−E top
ωX (sX )m(X , sX ). (32.6)

As we noted above, on the closed manifold, we have

E top
ω = 1

4

∫
X
(FAt − 4ω) ∧ (FAt − 4ω).

The 2-form FAt represents (2π/i)c1(sX ). If we introduce the class

k = −2i

π
[ωX ]

in H 2(X ; R), then we can write

E top
ωX

(sX ) = −π2
∫

X
(c1(sX )+ k)2,

so that

t−E top
ωX (sX ) = tπ

2(c1(sX )2+2c1(sX )�k+k2)[X ].

We can make our expression more closely resemble the generating function
m(X , h) from (3.25) by writing h for the Poincaré dual of k, and formally
substituting

t2π2 = e.

We can also use the fact that the spinc structures which contribute to the sum
(32.6) are those for which the moduli space on X is zero-dimensional, which
means that

c1(sX )2[X ] = 2χ(X )+ 3σ(X ).
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Thus the term t−E top
ωX (sX ) becomes

exp

(
h · h

2
+ 2χ + 3σ

2
+ 〈c1(sX ), h〉

)
.

With these same substitutions, the generating function (32.6) becomes

exp

(
h · h

2
+ 2χ + 3σ

2

)∑
sX

exp
(〈c1(sX ), h〉),

or equivalently

exp

(
h · h

2
+ 2χ + 3σ

2

)
m(X , h),

where m(X , h) is the original version of the generating function from (3.25).

32.3 Proof of Proposition 3.9.3

We can deduce the original version of Proposition 3.9.3 by a largely formal argu-
ment, starting from Proposition 32.1.1. One part of the argument is not formal:
we need to use the vanishing of HM•(Y ;�η) for non-zero classes [η], as asserted
in Proposition 3.9.1. We use, in fact, a slight amplification of Proposition 3.9.1
which will be proved in Subsection 35.2 in the next chapter.

To keep the notation under control, let us write R for the group ring of R

with real coefficients,

R = R[R],

and R− for the completion R[R]− that we introduced previously. The latter is
a field, and we have inclusions

R ⊂ Q ⊂ R−,

where Q is the field of fractions of R. We can write an element of R again as
an expression

∑
riti, with real exponents i and real coefficients, in a formal

variable t.
Fix once more a spinc structure s on Y , and an imaginary-valued closed

2-form ω in a non-zero cohomology class. We introduced in Subsection 32.1
above the local system $ω on Bσ (Y , s). We now introduce a slightly modified
version of the construction, which is a little closer to our construction of �η. Fix
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a real 1-cycle η in the class dual to−(i/4π)ω: we will dispense with ω and use
η in its place. Define a local system Rη on Bσ (Y , s) as follows. The fiber of Rη

at every point is R. And for a relative homotopy class of paths z, represented
by a particular path ζ : I → Bσ (Y , s), we define Rη(z) to be multiplication by
tf (z), where f (z) is the real number

f (z) = i

2π

∫
I×η

FAt
ζ
, (32.7)

and A is the connection on the cylinder I ×Y obtained from the path ζ . In other
words, Rη is defined in exactly the same manner as we defined �η on page 445,
but replacing the e in the exponential function with the formal symbol t. We
can apply the same construction with Q and R− in place of R, and we obtain
local coefficient systems

Rη ⊂ Qη ⊂ R−
η .

The local system R−
η is isomorphic to the system $ω considered earlier. It

is c-complete for the non-zero class c = (i/4π)[ω]; and we therefore have a
vanishing result,

HM•(Y , s; R−
η ) = 0.

The inclusion Q ⊂ R− is a field extension, and we have the general relationship

HM•(Y , s; Qη)⊗Q R− = HM•(Y , s; R−
η ).

So we also have a vanishing result for the smaller field:

HM•(Y , s; Qη) = 0.

For the coefficient system Rη, we do not have vanishing: the previous line
tells us

HM•(Y , s; Rη)⊗R Q = 0,

which says that every element of the R-module HM•(Y , s; Rη) is torsion. We
can extract much more explicit information about the torsion, from the calcula-
tions in the next chapter (Subsection 35.2): we state a slightly simplified version
of the result here, without proof.
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Proposition 32.3.1. If p ∈ R is any period of η (that is, the pairing of η with an
integer cohomology class), then HM•(Y , s; Rη) is annihilated by some power
of the element a = 1− t2p in R.

Fix a non-zero p as in the proposition, and set a = 1− t2p. Consider the ring
S = R[a−1] obtained from R by inverting a. We have

R ⊂ S ⊂ Q.

Because S is a torsion-free R-module, we have

HM•(Y , s; Sη) = HM•(Y , s; Rη)⊗R S;

and the tensor product on the right is zero, because some power of the unit
a ∈ S annihilates HM•(Y , s; Rη). Thus

HM•(Y , s; Sη) = 0. (32.8)

Consider now the ring homomorphism τ : R → R given by t �→ e. Because
e is not a zero of 1− t2p, this ring homomorphism extends to a homomorphism
τ : S → R, and there is a corresponding homomorphism of local systems

τ : Sη → �η.

From (32.8) and the universal coefficient theorem, we obtain (as claimed in
Proposition 3.9.1)

HM•(Y , s;�η) = 0.

Consider again the situation in which Y separates a closed manifold X as
X1 ∪ X2; and as in Proposition 3.9.3, suppose that there are 2-chains ν1 and ν2

in X1 and X2, with boundary η and −η respectively. Write ν = ν1 + ν2. Let
W1 be the cobordism from S3 to Y obtained by removing a ball from X1, and
similarly let W2 be the cobordism from Y to S3. The vanishing of HM•(Y , s;�η)

means that

j :

̂

HM•(Y , s;�η)→ ĤM•(Y , s;�η)

is an isomorphism. We also have homomorphisms arising from the pairs
(Wi, νi):

ĤM•(W1;�ν1)s : ĤM•(S3; R)→ ĤM•(Y , s;�η)̂

HM•(W2;�ν2)s :

̂

HM•(Y , s;�η)→

̂

HM•(S3; R).
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The subscript s again indicates that we count only the contributions from spinc

structures which restrict to s on Y . The key point we have to verify is that
a composition law holds, exactly parallel to (32.3). This is the content of the
following lemma.

Lemma 32.3.2. We havê

HM•(W2;�ν2)s ◦ j−1 ◦ ĤM•(W1;�ν1)s =
−−→
HM•(W ;�ν)s

as homomorphisms from ĤM•(S3; R) to

̂

HM•(S3; R).

Proof. In addition to�η and the Wi-morphisms�νi , we have the local coefficient
system Rη, obtained by replacing e with the formal symbol t; and there are
Wi-morphisms Rνi constructed analogously. Thus we have, for example,

ĤM•(W1;�ν1)s : ĤM•(S3; R)→ ĤM•(Y , s; Rη).

We can apply the same construction with S, Q or R− in place of R. In the
case of R−, we already know that the counterpart of the equality in the lemma
holds, ̂

HM•(W2; R−
ν2
)s ◦ j−1 ◦ ĤM•(W1; R−

ν1
)s = −−→HM•(W ; R−

ν )s, (32.9)

because R−
η is c-complete and the arguments of Subsection 32.1 can be applied.

Indeed, the remarks in Subsection 32.2 show that R−
ν differs from the earlier

$ωX by inconsequential factors when the dimension of the moduli space is
fixed.

The homomorphisms of local systems

R−
η

Sη

i ��������

τ

�����
���

�

�η

give rise to natural transformations of the corresponding Floer groups, respect-
ing j. For each of R−

η , Sη and �η, the map j is invertible. So from (32.9), we
deduce that the corresponding equality holds for the coefficients Sη, and also
for �η as required. �
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The lemma above can be applied to any spinc structure s on Y with c1(s)

torsion. In the non-torsion case, the equality still holds, but is more elementary,
because j is the identity. Taking the sum over all s, we therefore obtain̂

HM•(W2;�ν2) ◦ j−1 ◦ ĤM•(W1;�ν1) =
−−→
HM•(W ;�ν).

Proposition 3.9.3 follows formally from this equality, just as Proposition 32.1.1
followed from (32.3). �

Notes and references for Chapter VIII

The fact that one can perturb the 4-dimensional Seiberg–Witten equations by
adding a 2-form was exploited by Witten in [125], where a holomorphic 2-form
was used to simplify the calculation of the invariants for Kähler surfaces. Taubes
[114] perturbed the equations by a large multiple of the symplectic form to prove
a fundamental result about the invariants of symplectic 4-manifolds. The Floer
homology groups arising from non-exact perturbations of the Chern–Simons–
Dirac functional arise naturally from such perturbations of the 4-dimensional
equations.



IX

Calculations

Until now, we have calculated the Floer homology groups

̂

HM•, ĤM• and HM•
only for the simplest case of the 3-sphere. In this chapter, we shall add to this
small supply of calculations. First, we shall examine HM•(Y ), which can be
calculated for quite general 3-manifolds, at least in the sense that the resulting
Floer groups have filtrations for which the graded quotients can be explicitly
identified. In the case of a product 3-manifold, S1 × �, we will describe the
differentials explicitly, to calculate HM•.

The groups
̂

HM• and ĤM• are usually hard to calculate. When the homomor-
phism j :

̂
HM• → ĤM• is zero, one can determine

̂
HM• and ĤM• completely

once one knows HM• and some additional information concerning gradings.
We will illustrate this in the case of S1 × S2. We will then examine the case of
T 3, which is the simplest manifold for which j is non-zero (when using twisted
local coefficients). The calculation for T 3 extends to the similar case of a general
flat 3-manifold.

An understanding of the Floer groups of T 3 allows us to calculate the
monopole invariants of 4-manifolds which decompose along 3-tori into stan-
dard pieces. In particular, it leads to a calculation of the invariants of elliptic
surfaces, which we take up in Section 38.

33 Coupled Morse theory

The group HM∗(Y , s) is calculated from a complex that does not involve the
irreducible solutions to the (perturbed) Seiberg–Witten equations, but only
the reducible solutions. Before perturbation, the reducible critical points for
the functional L on C(Y , s) are pairs (A,�), where the spinc connection A on Y
has FAt = 0, and � = 0. When c1(s) is torsion, the gauge-equivalence classes
of these pairs comprise a torus whose dimension is b1(Y ), as we explained

634
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in Subsection 4.2. This torus parametrizes a family of self-adjoint Fredholm
operators, namely the Dirac operators DA on Y . (Essentially the same situation
arises for a balanced perturbation by a closed 2-form on Y , in the case that c1(s)

is not torsion.)
In the next two sections of this chapter, we shall see how to compute the

group HM∗(Y , s) starting only from the family of Dirac operators parametrized
by the torus. To understand the situation, we first generalize the picture: we
replace the torus by a general compact manifold Q, and instead of the family
of Dirac operators, we consider a family L of self-adjoint Fredholm operators
parametrized by Q (of a type we make precise below).Associated to Q and L will
be a group H̄∗(Q, L), which we shall define using a Morse-theory construction
analogous to the construction of HM (Y , s). We call H̄∗(Q, L) the homology of
Q coupled to the family of operators L, or simply the coupled homology of Q.

A family of (complex) self-adjoint Fredholm operators on Q is classified by
a map

u : Q → U (∞)

to the infinite unitary group, or equivalently, by an element of K1(Q). Up to
isomorphism, the coupled group H̄ (Q, L) depends only on the homotopy class
of the classifying map. We shall explain how to calculate it in a case sufficiently
general for our application to the Floer groups.

33.1 Self-adjoint operators and the infinite unitary group

Let H be a separable complex Hilbert space, let K : H → H be a compact self-
adjoint operator without kernel, and let H1 = K(H ). The subspace H1 ⊂ H is
dense in H and is itself a Hilbert space, with norm

‖h‖1 = ‖K−1h‖.

Let K = K+ ⊕K− be the decomposition of K into positive and negative parts,
let H+

1 and H−
1 be the images of these, and let H+ and H− be their closures in

H . We shall suppose that all these are infinite-dimensional.
The model we have in mind is the case when H arises as L2(Y ; E), the L2

sections of a vector bundle E on a compact manifold Y , and the subspace H1

is the Sobolev space L2
1(Y ; E). We need to impose some restriction on K (and

hence on H1) in order to rule out potential pathology.
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Definition 33.1.1. Let J be a compact, positive self-adjoint operator on a
Hilbert space, having no kernel. Let the eigenvalues of J be written as

µi = λ−1
i ,

with 0 < λ0 ≤ λ1 ≤ · · · . We say that the spectrum of J is mild if there exists
a constant C such that, for all N ,

λ2N

λN
≤ C.

♦

Let B(H : H1) be the Banach algebra of bounded operators x on H with the
additional property that

x(H1) ⊂ H1

x∗(H1) ⊂ H1

and x, x∗ have finite H1-operator norm. (Here x∗ is the Hilbert space adjoint on
H .) The norm on B(H : H1) is

max
{‖x‖H , ‖x‖H1 , ‖x∗‖H1

}
.

Let U (H : H1) ⊂ B(H : H1) be the group

{ x | x∗x = 1 }.

It is a Banach Lie group with the inherited topology. Let S(H : H1) denote the
space of operators

S(H : H1) = {L : H1 → H | L is Fredholm of index zero

and 〈Lφ,ψ〉 = 〈φ, Lψ〉 for all φ, ψ }.

Such an L is an unbounded self-adjoint operator on H . In our model case,
S(H : H1) includes the first-order self-adjoint differential operators acting on
sections of E.

Lemma 33.1.2. If L belongs to S(H : H1), then there is a complete orthonormal
system ei for H, such that ei ∈ H1 for all i, and

Lei = λiei.
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Proof. An elementary argument shows that L+ ε has no kernel for sufficiently
small ε; and the fact that L+ ε has index zero then tells us that it is an isomor-
phism. Now regard the inverse as defining a compact operator on H , and apply
the standard theory of compact operators. The eigenvectors of this compact
operator lie in H1, because the eigenvalues are non-zero and H1 is the image of
the compact operator. �

The eigenvalues λi have no accumulation point, and there are three pos-
sible cases: (i) the eigenvalues are bounded below; (ii) the eigenvalues are
bounded above; or (iii) we can order the eigenvalues so that λi ≤ λi+1,−∞ <

i <∞, and

λi →±∞, as i →±∞.

Definition 33.1.3. Given H , H1 and K , we write

S∗(H : H1) ⊂ S(H : H1)

for the operators L ∈ S(H : H1) of the third of the above types, satisfying the
following additional condition. Let H±

1 (L) and H±(L) be the closures in H1

and H respectively of the span of the eigenvectors belonging to non-negative
and negative eigenvalues of L. Then we require that there is an element u ∈
U (H : H1) with

u(H±) = H±(L)

u(H±
1 ) = H±

1 (L),

where the spaces H± that appear on the left are defined, as before, in terms of
the eigenvectors of K . ♦

Suppose Q is a compact Riemannian manifold, and suppose we are given a
smooth principal bundle over Q with structure group U (H : H1): that is, the
principle bundle is defined in terms of transition functions on Q that are smooth
maps to U (H : H1). Associated to the principal bundle are a pair of Hilbert
bundles H1 ⊂ H over Q.

Definition 33.1.4. By a family of self-adjoint operators of type S∗(H : H1)

over Q, we mean a principal U (H : H1) bundle, as just described, together
with a bundle map

L : H1 → H
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which is a smooth section of the associated bundle S∗(H : H1)→ Q with fiber
S∗(H : H1). ♦

According to Kuiper’s theorem [64], the unitary group U (H ) is contractible.
We have the following variant:

Proposition 33.1.5. If the spectrum of |K | = K+ −K− is mild, then the group

U (H : H1) = B(H : H1) ∩ U (H )

is contractible.

Proof. We may as well assume that K is positive, and so write K instead of |K |.
Let en be a complete orthonormal system in H , indexed by the non-negative
integers, with

K−1en = λnen

and λ2N /λN ≤ C for all N . This is the condition that the spectrum is “mild”.
If H ′ is a closed subspace of H and H ′

1 = H ′ ∩ H1, then we shall say that
(H ′ : H ′

1) is equivalent to (H : H1) if there is a unitary isomorphism ψ from H
to H ′ such that both ψ and its inverse are bounded with respect to the H1 norms
on both sides. The mild condition makes it easy to construct such subspaces
H ′ ⊂ H . For example, given any sequence of integers n1, n2, …, such that ni/i
is bounded above and below, we can take H ′ to be the closed span of the eni ,
and the map H → H ′ given by ei �→ eni restricts to a bounded map H1 → H ′

1
with bounded inverse. By the same token, there is a unitary isomorphism

� : H →
⊕̂∞

i=1
H (33.1)

such that both � and its inverse are bounded with respect to the H1 norms on
both sides. (The symbol

⊕̂
means we are to take the Hilbert-space sum.)

We now follow Kuiper’s argument, from [64], with appropriate modifica-
tions. We begin by showing that the larger group GL(H : H1) of invertible
elements in B(H : H1) is contractible. It will be enough to show the homotopy
groups vanish, so we consider a map from a sphere, f0 : Sk → GL(H : H1).
The map f0 is a homotopic to map f1 : Sk → GL(H : H1) with the addi-
tional property that f1 is linear on each simplex of some triangulation of Sk . Let
W ⊂ B(H : H1) be the finite-dimensional space spanned by the image of f1,
and let N be its dimension.
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We will inductively construct a sequence of elements ai and ao
i in H1, as

follows. Take a1 = e1 in H1, and consider the space

Ca1 +W (a1) ⊂ H1. (33.2)

Let us say that elements of H1 are “doubly orthogonal” if they are orthogonal
for both the H and H1 inner products. The linear space (33.2) has dimension at
most N + 1; and to be doubly orthogonal to this space imposes 2N + 2 linear
conditions at most. We can therefore find an element ao

1, of unit H norm, which
is doubly orthogonal to the above subspace and which lies in the span of the
vectors

e1, . . . , e2N+3.

Let A1 ⊂ H1 be the linear space

A1 = Ca1 + Cao
1 +W (a1).

Having defined a1 and ao
1, we choose an a2 with the property that

Ca2 ⊕W (a2)

is doubly orthogonal to A1. This constraint imposes at most 2(N + 1)(N + 2)
linear conditions on a2, so we can select a2 of unit H norm lying in the span of
the vectors

e2, . . . , e2(N+1)(N+2)+2.

Next choose ao
2 to be doubly orthogonal to both A1 and Ca2 ⊕W (a2). This a2

can be chosen to lie in the span of the vectors

e2, . . . , e4N+8.

Define A2 to be the space

A2 = Ca2 + Cao
2 +W (a2).

Proceeding in this way, we construct a sequence of subspaces

A1, A2, A3, . . .
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which are mutually doubly orthogonal. Each has dimension at most N + 2 and
has the form

Ai = Cai + Cao
i +W (ai),

with ao
i doubly orthogonal to the other two summands. Furthermore, we may

arrange that

ai, ao
i ⊂ span{ei, . . . , eMi} (33.3)

where M is an integer depending only on N .
Let H ′ ⊂ H be the H -closure of the span of the doubly orthogonal sequence

vectors ai, and let H ′
1 ⊂ H1 be the closure in the H1 topology. The mild condition

on the spectrum, together with the constraint imposed on the ai by (33.3), means
that the pair (H ′ : H ′

1) is equivalent to (H : H1). More specifically, we have
inequalities

C1λi ≤ ‖ai‖H1 ≤ C2λi

C1λi ≤ ‖ao
i ‖H1 ≤ C2λi

for some constants C1 and C2.
The next step is to homotope f1 in stages to a new map f4 with the property

that f4(s)|H ′ = 1 for all s ∈ Sk . Given s, set w = f1(s) ∈ W . Because the
image of Sk is a compact subset of GL(H : H1), there are positive constants Cj

independent of s ∈ Sk and independent of i such that

C3 ≤ ‖w(ai)‖H ≤ C4

C5λi ≤ ‖w(ai)‖H1 ≤ C6λi.

These bounds, and the mutual double orthogonality of ao
i and w(ai), give us a

uniform bound on the H1 operator norm of the rotation expressed by

ρs
i,t =

[
cos(π t/2) − sin(π t/2)
sin(π t/2) cos(π t/2)

]
with respect to the H -orthonormal basis

w(ai)

‖w(ai)‖ , ao
i

of the 2-dimensional space spanned by these vectors. We can therefore define a
continuous path ρs

t ∈ U (H : H1) to be the direct sum of these 2-by-2 blocksρs
i,t .
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The transformation ρ1 carries w(ai) to ‖w(ai)‖ao
i , for all i. Define a homotopy

from f1 to a new map f2 by the formula

f1+t(s) = ρs
t f1(s).

The endpoint of this homotopy has

f2(s)(ai) = cs,ia
o
i

where the constants cs,i all satisfy

C3 ≤ cs,i ≤ C4.

We now construct a similar homotopy from f2 to a new f3, using rotations
σi,t in the planes spanned by ai and ao

i : we define

f2+t(s) = σt f2(s)

in such a way that

f3(s)(ai) = cs,iai.

Because of the bounds on the cs,i, we can define a homotopy

f3+t(s) = τ s
t f3(s),

by specifying that

τ s
t (ai) = (1− t)cs,i + t

and arranging that τ s
t = 1 on the H -orthogonal complement of H ′. At the end

of this homotopy, we have an f4, with

f4(s)(ai) = ai

for all i. That is, f4(s) is the identity on H ′.
Now write H = H ′ ⊕H ′′, where as before H ′ is the span of the ai and H ′′ is

its H -orthogonal complement. We have a corresponding decomposition of H1

as H ′
1 ⊕ H ′′

1 , where H ′′
1 = H ′′ ∩ H1. The pairs (H ′ : H ′

1) and (H ′′ : H ′′
1 ) are

both equivalent to (H : H1). With respect to this decomposition, we have

f4(s) =
[

1 X (s)
0 B(s)

]
.
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Define a homotopy to a new f5 by

f4+t(s) =
[

1 (1− t)X (s)
0 B(s)

]
so that f5(s) is block diagonal:

f5(s) =
[

1 0
0 B(s)

]
.

The final stages of the homotopy use the isomorphism (33.1). This isomor-
phism allows us to view f5(s) as an infinite block diagonal matrix

f5(s) = diag(B(s), 1, 1, . . . )

acting on the the Hilbert sum. The remaining device is to use a homotopy from
f5(s) to

f6(s) = diag(B(s), B−1(s), B(s), . . . )

and thence to the constant map

f7(s) = diag(1, 1, 1, . . . ).

These last two homotopies both exploit a standard homotopy between diag(1, 1)
and diag(B−1, B), applied to adjacent diagonal blocks.

These homotopies establish the vanishing of the homotopy groups of GL(H :
H1). In the usual case of U (H ), one then appeals to “polar decomposition” to
show that U (H ) and GL(H ) have the same homotopy type. In the present con-
text, it is not clear that we have a counterpart to the usual polar decomposition
theorem for operators on Hilbert space; so it is not a priori clear that the homo-
topy type of U (H : H1) is the same as that of the group of invertible elements,
GL(H : H1). However, we shall obtain a “local version” of polar decomposition
for a tubular neighborhood of U (H : H1), and apply that instead.

Let S(H ) ⊂ B(H ) be the symmetric bounded operators on H , and consider
the map

π : GL(H : H1)→ B(H : H1) ∩ S(H )

given by

A �→ A∗A.
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This map is a submersion, and its image is an open set in the codomain. Let Vε

be the metric ball of radius ε in B(H : H1) ∩ S(H ), centered on the point 1.
We can choose ε small enough that Vε is contained in the image of π . Let
	ε ⊂ GL(H : H1) be π−1(Vε). The map

π : 	ε → Vε

is a fibration: its fibers are orbits of U (H : H1) acting by left multiplication on
GL(H : H1). Because the base is contractible, 	ε has the same homotopy type
as U (H : H1). We can think of 	ε as a tubular neighborhood of the unitary
subgroup U (H : H1) in GL(H : H1).

To show that U (H : H1) is contractible, we will show that any map f0 : Sk →
U (H : H1) can be contracted to a constant map in the larger space 	ε . To do
this, we will reexamine the sequence of homotopies from f0 to f7 described
above, and check that they can be chosen so as to remain in 	ε .

We begin by choosing an ε0 less than ε: further requirements will be placed
on ε0 shortly. There is no difficulty about making the piecewise linear approx-
imation f1, homotopic to f0 in 	ε0 , as this step is applicable to an open set in
any Banach space. The subsequent homotopies from f1 to f5 all have the form

fn+t(s) = Zt(s)fn(s). (33.4)

In the cases n = 1 and n = 2, the transformation Zt is a map from Sk into the
unitary group; so these homotopies remain inside 	ε0 because 	ε0 is invariant
under left multiplication by U (H : H1). In the case n = 3, we can look at the
homotopy f3+t and see from its shape that the norm of f (s)∗f (s) is decreasing
along the homotopy; so we remain withing 	ε0 .

The homotopy from f4 to f5 has the shape (33.4) also; but for this case the
transformations Zt(s) are not unitary. We have

f4+t(s)
∗f4+t(s) =

[
1 (1− t)X (s)

(1− t)X (s)∗ (1− t)2X (s)∗X (s)+ B(s)∗B(s)

]
.

Since f4(s) lies in 	ε0 , the term X (s) has norm at most ε0 in B(H : H1). So the
distance between f4+t(s) and f4(s) is O(ε0). We can therefore choose ε0 < ε

small enough to ensure that f4+t(Sk) is contained in 	ε .
At this point, it is convenient to introduce an additional intermediate step in

the homotopy. In 	ε , we can deform f4 to a homotopic map

f̃4 =
[

1 0
0 B̃(s)

]
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with B̃(s) now taking values in U (H : H1). After this, we proceed with the
remaining two steps of the homotopy as before: they have the form (33.4), so
they remain inside 	ε . This completes the proof. �

Just as the above proposition is a variant of Kuiper’s theorem, adapted to our
present setting, so the next proposition is a modification of a result from [10].

Proposition 33.1.6. If the positive operators K+ and−K− have mild spectrum,
then the space S∗(H : H1) has the homotopy type of the infinite unitary group,
U (∞) = lim U (n).

Proof. Let β : R → [−1, 1] be a monotonic function with β(λ) = 1 for
λ ≥ �+ and β(λ) = −1 for λ ≤ �−. The map L �→ β(L) defines a continuous
map from S∗(H : H1) to

Sf (H : H1) = {A ∈ B(H : H1) ∩ S(H ) |
A2 − 1 has finite rank, im(A2 − 1) ⊂ H1 and ‖A‖ = 1}.

The image is the subset

Sf∗(H : H1) ⊂ Sf (H : H1)

consisting of operators satisfying the additional condition that there exist unitary
isomorphisms

ker(A− 1)→ H+

ker(A+ 1)→ H−

which restrict to bounded isomorphisms

ker(A− 1) ∩ H1 → H+
1

ker(A+ 1) ∩ H1 → H−
1 .

The fiber of the resulting map

β : S∗(H : H1)→ Sf∗(H : H1)

over an element A can be identified with the space of pairs (L+, L−), where

L+ : ker(A− 1) ∩ H1 → ker(A− 1)
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is a symmetric Fredholm operator of index zero having spectrum contained in
[�+,∞), with a similar condition on L−. The fiber is contractible, and by an
argument similar to that in [10, Lemma 3.7 ff.], it follows that β is a homotopy
equivalence.

Next we have the exponential map

ε : Sf∗(H : H1)→ U f (H : H1)

A �→ − exp(π iA),

whose image U f (H : H1) is the subset of U (H : H1) consisting of elements u
with u− 1 of finite rank. The fibers of this map are homeomorphic to copies of

U (H : H1)
/(

U (H+; H+
1 )× U (H−; H−

1 )
)
,

a space which parametrizes the orbit of the decomposition H = H+⊕H− under
the action of U (H : H1). These fibers are contractible by Proposition 33.1.5; so
by the same arguments from [10], the map ε is also a homotopy equivalence.

Let ei (i ≥ 0) be an orthonormal basis of H consisting of eigenvectors of K ,
arranged in decreasing order of the absolute value of the eigenvalue. Let En ⊂
H1 be the span of the first n of these eigenvectors, and let U (n) ⊂ U (H : H1)

consist of the elements u such that u− 1 is supported in En. An approximation
argument shows that the direct limit of these inclusions,

U (∞)→ U f (H : H1),

is a weak homotopy equivalence, and hence a homotopy equivalence as these
spaces have the homotopy type of CW complexes. �

Corollary 33.1.7. If the operators K+ and −K− have mild spectrum, then
families of self-adjoint operators of type S∗(H : H1) over Q are classified by

[Q, U (∞)].

Proof. Proposition 33.1.5 provides a unique homotopy class of trivializations
of any U (H : H1) bundle, so the corollary follows from Proposition 33.1.6. �

33.2 A model for the universal family

Having learnt that families of self-adjoint operators (of type S∗(H : H1)) are
classified by maps to U (∞), it is natural to look for a universal family of such
self-adjoint operators, parametrized by the unitary group itself. More precisely,



646 IX Calculations

the classification result, Corollary 33.1.7, assures us that there is a family of
self-adjoint operators over the compact unitary group U (N ) for which the clas-
sifying map is the inclusion U (N ) → U (∞). We will identify such a map.
We begin with a lemma concerning the closely related unitary group U f (H ),
defined as the unitary transformations u such that u − 1 has finite rank. The
lemma gives a criterion for when two maps to U f (H ) are homotopic.

Lemma 33.2.1. Let Q be any space, and let u1, u2 be two maps from Q to
U f (H ), the group of unitary transformations u : H → H such that u − 1 has
finite rank. Suppose there exists a continuous map θ to the space of bounded
operators of finite rank,

θ : Q → Bf (H ),

such that θu1 = u2θ and such that, for all q ∈ Q, the restriction

θ |ker(u1+1) : ker(u1 + 1)→ ker(u2 + 1)

is an isomorphism. Then u1 and u2 are homotopic.

Proof. We will demonstrate the equivalent statement, that the map

u =
[

u1 0
0 u−1

2

]
from Q to U f (H ⊕ H ) is null-homotopic. Replace θ by a smaller multiple if
necessary so that ‖θ(q)‖ < π for all q. Let ũ be the map

ũ = exp

[
0 −θ∗
θ 0

] [
u1 0
0 u−1

2

]

=
[

c(θ)u1 −s(θ∗)u−1
2

s(θ)u1 c(θ∗)u−1
2

]
,

where

c(θ) = cos(
√
θ∗θ)

s(θ) = θ
sin(

√
θ∗θ)√

θ∗θ
.

The maps u and ũ are homotopic maps to U f (H ⊕H ). The operators c(θ) and
c(θ∗) commute with u1 and u2 respectively, and we have the relation s(θ)u1 =
u2s(θ).
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We now show that −1 is not an eigenvalue of ũ(q), for any q in Q. Suppose
on the contrary that h = (h1, h2) is a unit vector in H ⊕ H with ũ(q)h = −h.
We then have (omitting q),

−1 = Re〈h, ũ(q)h〉
= Re〈h1, c(θ)u1h1〉 + Re〈h2, c(θ∗)u−1

2 h2〉 (33.5)

because the cross-terms cancel. The operator c(θ) is self-adjoint, and our
assumption that ‖θ‖ < π means that its spectrum is contained in (−1, 1].
We therefore have

‖c(θ)u1h1‖ ≤ ‖h1‖

with equality only if u1h1 is in the kernel of θ . A similar remark applies to the
h2 term. So the only way that (33.5) can hold is if u1h1 and u−1

2 h2 belong to the
kernels of θ and θ∗ respectively; and we then see that we must have u1h1 = −h1

and u−1
2 h2 = −h2. But the hypothesis of the lemma states that θ is injective on

the kernel of u1 + 1, and the hypothesis implies also that θ∗ is injective on the
kernel of u2 + 1. So we have a contradiction.

Having learned that −1 is never an eigenvalue of ũ(q), we conclude that
ũ : Q → U f (H ⊕ H ) is null-homotopic. Indeed, the subspace of U f (H ⊕ H )

consisting of operators for which −1 is not in the spectrum is contractible: if

gt : S1 \ {−1} → S1 \ {−1}

is a homotopy that retracts the punctured circle to the point {1}, then u �→ gt(u)
is a contraction of the corresponding subset of U f (H ⊕ H ) to the identity
element. �

For z ∈ U (N ), let C∞(S1; z) denote the space of smooth functions

h : R → CN

satisfying

h(t + 1) = zh(t).
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Let ‖h‖ and ‖h‖1 denote the L2 norm and L2
1 norm:

‖h‖2 =
∫ 1

0
|h(t)|2 dt

‖h‖2
1 =

∫ 1

0

(
|h(t)|2 + |(d/dt)h(t)|2

)
dt.

Let H (z) and H1(z) denote the completions of C∞(S1; z) in these two norms.
Write H and H1 for the ordinary CN -valued Sobolev spaces H (1) and H1(1).

As z varies, these spaces form a bundle over U (N ) with structure group
U (H : H1). Let

L(z) : H1(z)→ H (z)

be the Fredholm operator

h �→ −i
d

dt
h.

The operators L(z) form a family of self-adjoint Fredholm operators of type
S∗(H : H1) parametrized by z ∈ U (N ). According to Corollary 33.1.7, the
family L(z) is classified by a map

ψ : U (N )→ U (∞).

Proposition 33.2.2. The classifying map ψ : U (N )→ U (∞) is homotopic to
the inclusion.

Proof. We first examine the operator L(z) and its spectrum. Let ζ be a self-
adjoint transformation of CN with exp(iζ ) = z. We have

spec(L(z)) = spec(ζ )+ 2πZ,

for the following reason. If v ∈ CN is an eigenvector of ζ with eigenvalue λ,
then

h(t) = ei(λ+2πk)tv

is an eigenvector of L(z) with eigenvalue λ + 2πk, for any k in Z; and these
eigenvectors form a complete orthonormal system in H (z) if we also let v run
through an orthonormal basis of eigenvectors for z in CN .
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Let β : R → [−1, 1] satisfy

β(λ) = λ/π , for −π ≤ λ ≤ π ,

and let β(λ) = 1 for λ ≥ π and −1 for λ ≤ −π . Let A(z) be the bounded
self-adjoint operator β(L(z)), and let

u(z) = ε(A(z))

= − exp(iπA(z)) ∈ U f (H (z)).

The spectrum of A(z) is

spec(A(z)) =
(

1

π
(spec(ζ ) ∩ (−π ,π))

)
∪ {−1, 1},

and the spectrum of u(z) is

spec(u(z)) = − spec(z) ∪ {1}.

With the exception of 1, all points in spec(u(z)) are eigenvalues whose (finite)
multiplicities are the same as their multiplicities as eigenvalues of z. Moreover,
there is a densely defined map

ev(z) : H (z)→ CN

h �→ h(0)

and for each λ = 1 in the spectrum, the restriction

ev(z) : ker(u(z)− λ)→ ker(z − λ)

is an isomorphism. The evaluation map ev is not defined on the whole L2 space
H (z), but if we choose a continuous map

f : R → R

with compact support and equal to 1 on [−π ,π ], then we can set

ẽv(z) = ev(z) � f (L(z)).

This is a bounded map

ẽv(z) : H (z)→ CN
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depending continuously on z and satisfying

ẽv(z)u(z) = z ẽv(z).

It restricts to an isomorphism on (in particular) the −1 eigenspaces. After
applying Kuiper’s theorem to trivialize the bundle of Hilbert spaces H (z), and
embedding CN in H as the span of the first N basis vectors, we arrive at the
situation described in the lemma above. �

Remark. The proposition above can also be deduced from the index theorem
for families of self-adjoint operators, see [9, section 3].

33.3 Coupled homology in the absence of spectral flow

We are now ready to define “coupled Morse homology”. Let Q be a smooth
compact manifold, and L : H1 → H be a family of self-adjoint Fredholm
operators of type S∗(H : H1) as in Definition 33.1.4. Let a Riemannian metric
on Q be given and let

f : Q → R

be a Morse function satisfying the Morse–Smale transversality condition. We
also suppose that we are given a smooth connection ∇ for the principal bun-
dle with structure group U (H : H1). In local trivializations, ∇ is defined by
a smooth connection 1-form taking values in the Banach space that is the Lie
algebra of U (H : H1). For each critical point q of f , we suppose that the spec-
trum of L(q) : H1(q) → H (q) is simple and does not contain zero. (Compare
Lemma 2.5.5 or Proposition 12.2.5.)

From this data, we shall now form a chain complex. We mimic the construc-
tion of the complex C̄∗ from Subsection 2.5, replacing the finite-dimensional
vector bundle N that appeared there with the Hilbert bundle H. To keep the
comparison with the finite-dimensional case close by, we shall suppose that the
family of operators L has no spectral flow around loops in Q. This is equiv-
alent to saying that the classifying map for the family is a map from Q to
SU (∞) ⊂ U (∞).

Because there is no spectral flow around loops, we can label the eigenvalues
of L(q) at each critical point q as

· · · < λ−1(q) < λ0(q) < λ1(q) < · · ·
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in such a way that for any path q(t) joining critical points q1 and q2, the spectral
flow along q(t) satisfies

sf = s(q2)− s(q1)

where

s(q) = |{i | i < 0 and λi(q) > 0 }|. (33.6)

Having so labelled the eigenvalues, we take φi(q) to be a unit eigenvector in
H (q) belonging to the eigenvalues λi(q). We define C̄∗ = C̄∗(Q, L) to be a free
abelian group with one generator for each pair (q, i) (cf. Subsection 2.5); but as
we are working with an oriented theory, we now set

C̄∗ =
⊕

q

⊕
i

Z�q (33.7)

where �q is the 2-element set of orientations of the unstable manifold of
− grad( f ) at q. See (22.1). This is a graded abelian group: we define

C̄n =
⊕
q,i

index (q)+2i=n

Z�q. (33.8)

To define the boundary map on the complex, we write down the same
equations as appeared in (2.21):

d

dt
γ + (grad f )γ (t) = 0 (33.9a)

γ ∗(∇)φ + (L(γ (t))φ)dt = 0. (33.9b)

We can interpret these as equations for a smooth path γ : R → Q and a section
φ of γ ∗(H), i.e. a section of H along the path. More precisely, let

Hloc(γ ) = L2
loc(R, γ ∗(H))

be the L2
loc sections of γ ∗(H) along the path, and let

H1,loc(γ ) = L2
loc(R, γ ∗(H1)) ∩ L2

1,loc(R, γ ∗(H)).

Then in the above equations we can regard φ as an element of H1,loc(γ ).
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Definition 33.3.1. Given critical points q0 and q1 of f in Q, and integers i0 and
i1, we define M(q0, i, q1, j) to be the quotient by C∗ of the space of solutions
(γ ,φ) to the equations (33.9), with the following properties:

(i) the flow line γ (t) joins q0 to q1,
(ii) φ(t) ∼ c0e−λi tφi(q0), as t →−∞,

(iii) φ(t) ∼ c1e−λj tφj(q1), as t →+∞,

for some non-zero constants c0 and c1. (The C∗ action as usual scales φ.) ♦

We can set up suitable Sobolev spaces so that the operator that appears in
(33.9b) is Fredholm. For each trajectory γ joining two critical points in q0 and
q1 in Q, let

H(γ ) = L2(R, γ ∗(H))

and let

H1(γ ) = L2(R, γ ∗(H1)) ∩ L2
1(R, γ ∗(H)).

For each i and each critical point q, choose λ̄i with

λi(q) < λ̄i(q) < λi+1(q).

Given i and j, let wij : R → R be a function with

wij(t) =
{
λ̄i−1(q1)t for t > 1

λ̄j(q0)t for t < −1.

We can define weighted versions of these spaces. We set

H(γ ; wij) = e−w(t)H(γ )

and

H1(γ ; wij) = e−w(t)H1(γ ).

Let M(q0, q1) denote the moduli space of trajectories γ for the downward
gradient flow of f . Recall that we are assuming that this flow satisfies the
Morse–Smale transversality conditions so that this is a manifold.



33 Coupled Morse theory 653

Proposition 33.3.2. For fixed γ ∈ M(q0, q1), the operator acting on φ on the
right-hand side of Equation (33.9b) is Fredholm, viewed as an operator

Pγ ,i, j : H1(γ ; wij)→ H(γ ; wij).

The index of this operator is given by

index C(Pγ ,i, j) = i − j + 1.

The operator varies smoothly as a function of γ .

Proof. The proof can be modelled on the standard “freezing coefficients” argu-
ment, that is used to show that an elliptic operator is Fredholm (but see also
Proposition 14.2.1). First one shows that if γ is a constant trajectory, then
the corresponding translationally invariant operator is invertible. One needs
also to check the map h �→ β(t)h is a compact operator, thought of as a map
H1(γ ) ↪→ H(γ ), whenever the support of β is compact. �

The moduli space M(q0, i, q1, j) can now be described as⋃
γ∈M(q0,q1)

P
(
ker(Pγ ,i, j)

)
(with the understanding that P({0}) = ∅). We describe a condition which
ensures that the moduli space is smooth. Let (γ , [φ]) be an element of
M(q0, i, q1, j). We say that this element is regular if the map

Tγ M(q0, q1)→ coker(Pγ ,i, j)

γ̇ �→ Dγ P−,i, j(γ̇ )φ + im Pγ ,i, j

is surjective. We say that the moduli space is regular if it is regular at every
(γ , [φ]).
Remark. There are two alternative viewpoints on the moduli space
M(q0, i, q1, j), corresponding to our two versions of “blowing up” when we
studied the Seiberg–Witten equations on a cylinder (Section 6): the description
we have given above corresponds to the σ model for the blow-up, though we
are now using weighted Sobolev spaces, as is appropriate in the non-compact
case. There is also a “τ -model” description of these moduli spaces (see Subsec-
tion 6.3 and the discussion in Subsection 2.5). To describe this, let P(H) be the
projectivization of the Hilbert bundle H over Q. If (γ ,φ) solves the equations
(33.9), then φ(t) is non-zero for all t and determines a section of P(H) along
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the path γ . As in Subsection 2.5, we can therefore interpret the moduli space
M(q0, i, q1, j) as a space of paths joining the points [φi(q0)] and [φj(q1)]. We
can interpret these paths, formally, as the flow lines of a vector field V σ on the
total space of P(H). (Compare (2.20).) The paths can be lifted to paths in the
unit sphere bundle of H, satisfying the equations

d

dt
q+ (grad f )q(t) = 0 (33.10a)

q∗(∇)φ + (
(L(γ (t))−�(φ))φ

)
dt = 0, (33.10b)

where the function

� : P(H1)→ R

is defined by

�(φ) = 〈Lφ,φ〉H
/〈φ,φ〉H .

The regularity condition above then corresponds to the Morse–Smale condition
for the vector field V σ .

The next lemma justifies our use of the word “regular”, and shows that
regularity can be achieved by deforming L.

Lemma 33.3.3. If the moduli space M(q0, i, q1, j) is regular, then it is a smooth
manifold of dimension

index (q0)− index (q1)+ 2(i − j).

Given any family of self-adjoint Fredholm operators L of type S∗(H : H1) over
Q, there exists a homotopic family L̃, equal to L in a neighborhood of the critical
set of f , such that M(q0, i, q1, j) is regular for all (q0, i, q1, j).

Proof. The formula for the dimension is the real index of the operator that is
the linearization of the pair of equations (33.9), less 2 for the action of C∗.
The proof of the second part can be modelled on the proof for the case of the
Seiberg–Witten equations, given in Section 15. �

Hypothesis 33.3.4. We assume from now on that L is chosen so that all moduli
spaces are regular. ♦
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For a moduli space M(q0, i, q1, j) of non-constant trajectories, we write
M̆ (q0, i, q1, j) for the moduli space of unparametrized trajectories

M̆ (q0, i, q1, j) = M(q0, i, q1, j)/R.

This is contained in a larger space of unparametrized broken trajectories,
M̆+(q0, i, q1, j), as in Subsection 2.1 (see also Definition 16.1.2). The topology
on M̆+(q0, i, q1, j) can be defined by imitating the definition in Subsection 16.1.
We have:

Proposition 33.3.5. The moduli spaces of unparametrized broken trajectories
M̆+(q0, i, q1, j) are compact.

Proof. The proof for the Seiberg–Witten equations provides a model. The two
ingredients are first the standard Morse-theory argument on the compact man-
ifold Q, and second a differential inequality for the function �(φ) defined
above, which we now explain. The issue is the following. Let γn be a sequence
of gradient trajectories from q0 to q1, converging to a broken trajectory, in the
usual sense of Morse theory for the Morse function f on Q. For each n, let
φn be an element of the kernel of Pγn,i, j. To establish compactness, following
our earlier model, we need a uniform bound on the total variation of the real
functions �(φn): see Lemma 16.3.1, which is the corresponding statement in
the Seiberg–Witten case.

To obtain this bound, we note that, for a fixed trajectory γn(t), the correspond-
ing 1-parameter family of operators L(t) = L(γn(t)) satisfies an inequality of
the form (7.6b); and the constants in that inequality are uniform in n. We can
therefore follow the proof of the Lemma 7.1.3 to obtain an inequality of the
same type as (7.9), which (recalling that l̇ in (7.9) corresponds to −�) we can
write:

�̇(φn)− C3|�(φn)| − C5 ≤ 0.

As it stands, this inequality is not sufficient (it allows � to grow exponentially).
We can do better by noting that the constants C1 and C2 in (7.6b) can be replaced
by functions of t, of the form ci|γ̇n|. This provides a differential inequality for
� which, when combined with the exponential decay results for the converging
trajectories γn, is sufficient to bound the total variation as required. �

Because the operator Pγ ,i, j is complex, we can identify the orientation bun-
dle of the manifold M(q0, i, q1, j) with the pull-back of the orientation bundle
of M(q0, q1). In the case that M̆ (q0, i, q1, j) is zero-dimensional, and hence
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canonically oriented, each element (γ , [φ]) therefore determines an element

ε(γ , [φ]) ∈ Hom(Z�q0 , Z�q1).

As in the usual Morse complex, we define

∂̄ : C̄∗ → C̄∗

by the formula

∂̄ =
∑ ∑

(γ ,[φ])
ε(γ , [φ]),

in which the first sum is over all unparametrized moduli spaces M̆ (q0, i, q1, j)
of dimension zero. The operator ∂̄ has degree −1, and we have:

Proposition 33.3.6. The operator ∂̄ : C̄∗ → C̄∗ has square zero.

Remarks on the proof. The proposition requires proving the gluing theorem
for the moduli spaces of trajectories M(q0, i, q1, j), leading to a result such as
Corollary 19.5.1. To set this proof up in a manner similar to our proof for the
Seiberg–Witten equations, one can work with the alternative model (33.10) for
the trajectory spaces, so that the picture resembles the standard one in which
trajectories are glued near a hyperbolic critical point of a flow. The model
argument in Subsection 18.3 can then be applied. �

Definition 33.3.7. We write H̄∗(Q, L) for the cohomology of the complex
(C̄∗, ∂̄) defined above. ♦

Proposition 33.3.8. Let L0 and L1 be homotopic families of self-adjoint Fred-
holm operators of type S∗(H : H1) over Q. Assume that all the trajectory moduli
spaces M(q0, i, q1, j) for both of these families are regular. Then the homol-
ogy groups H̄∗(Q, L0) and H̄∗(Q, L1) are isomorphic, by an isomorphism that
preserves degree.

Proof. Let L(s, q) be a family of self-adjoint Fredholm operators of type S∗(H :
H1) over R×Q, chosen so that L(s,−) = L0 for s ≤ −1 and L(s,−) = L1 for
s ≥ 1. One constructs a chain map

m : C̄∗(Q, L0)→ C̄∗(Q, L1)
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using the moduli spaces of solutions (γ , [φ]) to the non-autonomous equations

d

dt
γ + (grad f )γ (t) = 0

γ ∗(∇)φ + (L(t, γ (t))φ)dt = 0.

That this is a chain map, and that it is invertible, are statements that have proofs
along the same lines as the arguments in Subsection 25.3.

There is one additional twist however. The chain map m may not have degree
zero. Indeed, the degree of m depends on the choice of homotopy L(s,−)

(−1 ≤ s ≤ 1) between L0 and L1. If we choose a basepoint q0 in Q and examine
the operators L(s, q0), we obtain a path from L0(q0) to L1(q0) in the space
S∗(H : H1), a space with the homotopy type of U (∞), whose fundamental
group is Z. Given two homotopies L(s, q) and L′(s, q), there is therefore a
difference element, δ = L − L′ in Z. The degrees of the corresponding chain
maps m and m′ differ by 2δ. The mod 2 grading is canonical, being just the
index mod 2 of the corresponding critical point in Q. So we can always choose
the homotopy so that m has degree zero. �

Remark. The isomorphism constructed in the proof of this proposition may
depend on the choice of homotopy.

The group H̄∗(Q, L) has the structure of a module over the ordinary coho-
mology ring of P(H), by a construction like that of Subsection 25.3. We have
continuous embeddings of each moduli space M(q0, i, q1, j) in P(H) (by eval-
uation of γ and φ at t = 0), and the module maps are defined using Čech
representatives of classes in H∗(P(H)), defined with respect to open covers U
transverse to the moduli spaces.

In particular, H̄∗(Q, L) is a module over the ordinary cohomology of the
base Q; and there is in addition a distinguished 2-dimensional class u2 on
P(H), minus the first Chern class of the tautological bundle. Because Q is
finite-dimensional, we can choose a nowhere-vanishing smooth section s of
the dual bundle of H, whose zero set s−1(0) will be a smooth codimension-2
submanifold. We can choose a Čech representative ũ2 for u2 supported in a
neighborhood of s−1(0), and the transversality conditions will hold if s−1(0) is
transverse to the moduli spaces M(q0, i, q1, j). The resulting map

(u2 �−) : H̄∗(Q, L)→ H̄∗−2(Q, L) (33.11)
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arises from a chain map

(ũ2 �−) : C̄∗(Q, L)→ C̄∗−2(Q, L)

whose matrix entry from (q0, i) to (q1, j) counts (with sign) the elements (γ ,φ)
in the 2-dimensional moduli space M(q0, i, q1, j) satisfying the constraint

s(φ(0)) = 0.

The map u2 has a property not shared by the operators arising from other
cohomology classes:

Lemma 33.3.9. The map (ũ2�−) : C̄k(Q, L)→ C̄k−2(Q, L) is invertible, for
all k.

Proof. The complex C̄∗(Q, L) has a decreasing filtration

· · · ⊃ Fk C̄∗(Q, L) ⊃ Fk−1C̄∗(Q, L) ⊃ · · · (33.12)

where Fk C̄∗(Q, L) is spanned by the generators corresponding to pairs (q, i′)
where q ∈ Q is a critical point of f of ordinary Morse index at most k. If
eq,i ∈ Z�q is a generator corresponding to the pair (q, i), and if q has Morse
index k, then at the chain level we have

ũ2 � eq,i = eq,i−1 (mod Fk−2),

just as in (25.15), because the moduli space M(q, i, q, i−1) can be identified with
the copy of CP1 \ {0,∞} spanned by φi(q) and φi−1(q), which will intersect
s−1(0) in one point. So the map is an isomorphism on the graded complex
associated to the filtration. The result follows. �

34 Calculation of coupled homology

34.1 The standard family over S3

We take Q to be the 3-sphere, SU (2), and take on Q a standard Morse function
with one maximum and one minimum. We take these to be the points

q+ =
[

i 0
0 −i

]
q− =

[−i 0
0 i

]
.
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In Subsection 33.2, we described a family of operators L over U (N ) of type
S∗(H : H1), where H1 was the space L2

1(S
1; CN ) ⊂ L2(S1; CN ). Taking N = 2

and restricting to the special unitary group, we obtain a family of self-adjoint
Fredholm operators LSU (2) over SU (2). The operator LSU (2)(z) is the operator
−id/dt acting on H1(z), as described earlier.

Take the standard orientation on the 3-sphere. The complex C̄∗ in this case
then becomes a free abelian group with basis elements indexed by pairs (q, i),
where q ∈ {q+, q−} and i ∈ Z. Let us denote these generators by

e+i , e−i ∈ C̄∗.

Proposition 34.1.1. In the model complex on SU (2), the boundary map ∂̄ :
C̄∗ → C̄∗ is given by

∂̄e+i = e−i+1

∂̄e−i = 0

up to an overall sign.

Remark. It follows that the homology of the complex is trivial; but it is the
complex itself that interests us here.

Proof of Proposition 34.1.1. Because ∂̄ has degree −1, the only non-zero
matrix entries of ∂̄ are from e+i to e−i+1 (see (33.8)). The unparametrized trajec-

tories of− grad( f ) from q+ to q− comprise a 2-sphere M̆ (q+, q−). If γ is one
of these trajectories, then there exists a trajectory (γ , [φ]) in M(q+, i, q−, i+1)
if and only if there is a non-zero element φ in the kernel of the operator

Pγ ,i,i+1 : H1(γ ; wi,i+1)→ H(γ ; wi,i+1)

that appears in Proposition 33.3.2. We must count, with sign, the number of
points in the 2-sphere for which this Fredholm operator (of index zero) has
kernel; and this is the same as calculating

〈c1(index(P−,i,i+1)), [S2]〉 (34.1)

up to an overall sign. Our description of the operator L(z) can be recast as a
Dirac operator on the circle; and the operators Pγ ,i,i+1 are Cauchy–Riemann
operators on R×S1, acting on weighted Sobolev spaces of sections of a rank-2
bundle.
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By an excision argument, we can replace R× S1 with a torus S1 × S1. This
involves replacing the paths γ from q+ to q− with loops δ based at q+ by
composing with a fixed path from q− to q+. We obtain a family of Cauchy–
Riemann operators on S1 × S1 parametrized by a family of loops δs : S1 →
SU (2) parametrized by s ∈ S2.

The family of Cauchy–Riemann operators on S1 × S1 is carried by a vector
bundle

E → S1 × S1 × S2

which is constructed as follows: take the trivial bundle

C2 × S1 × [0, 1] × S2

and make the identifications

(v, θ , 1, s) ∼ (δs(θ), θ , 0, s).

By the index theorem for families, the pairing (34.1) is equal to minus the
second Chern number of the bundle E. This in turn is equal to the degree of
the map

(θ , s) �→ δs(θ)

from S1 × S2 to SU (2). This is equal to ±1, because there is a unique
unparametrized trajectory γ̆ in M̆ (q+, q−) passing through any (non-critical)
point. �

34.2 Families pulled back from the three-sphere

When Q carries a family of operators L which is the pull-back of the standard
family LS3

by a map Q → S3, then we can obtain a description of the coupled
Morse homology H̄∗(Q, L) that eventually makes no explicit reference to the
Fredholm operators. The main step in this direction is the following proposition.
See also Lemma 34.3.2 below.

Proposition 34.2.1. Let Q be a compact manifold, let L be a family of self-
adjoint Fredholm operators of type S∗(H : H1) over Q, and suppose that
the classifying map for this family factors through the inclusion SU (2) ↪→
U (∞). Let

ξ ∈ H 3(Q; Z)

be the pull-back of the generator of H 3(U (∞); Z) via the classifying map.
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Then there is a Riemannian metric on Q, a Morse function f satisfying the
Morse–Smale condition, and a homotopic family of operators L̃, such that the
corresponding complex C̄∗(Q, L̃) can be described as follows. As a graded
abelian group,

C̄∗(Q, L̃) = C∗(Q, f )⊗ Z[T−1, T ], (34.2)

where C∗(Q, f ) is the ordinary Morse complex and T has degree 2. The
differential has the form

∂̄x = ∂x + T (ξ̃ � x)

where ∂ is the Morse differential on C∗(Q, f ), and

ξ̃ ∈ C3(U)

is a certain Čech representative for the class ξ with respect to an open cover
U that is transverse to the trajectory spaces M(a, b) ⊂ Q.

Remark. The cap product

� : Cd (U)⊗ Ci(Q, f )→ Ci−d (Q, f )

is defined as in Subsection 25.3. Note that the Čech representative ξ̃ in the
proposition is special (and is constructed in the proof). In particular, for this
representative, the map x �→ ξ̃ � x has square zero at the chain level, for
otherwise the formula for ∂̄ does not define a differential.

Corollary 34.2.2. There is a homology spectral sequence abutting to H̄∗(Q, L)
whose E2 and E3 terms are given by

E2
s,2j = E3

s,2j = T jHs(Q)

and whose differential d3
s,2j is the map

d3
s,2j : E3

s,2j → E3
s−3,2j+2

T j[x] �→ T j+1ξ � [x].

Proof. This is the spectral sequence arising from the filtration Fk of C̄∗(Q, L)
defined at (33.12). �
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The higher differentials d5, d7 etc. in the spectral sequence are obtained from
a construction resembling that of Massey products such as {ξ , . . . , ξ , [x]}. Later
in this section, we will describe in more detail the relationship between this
construction and the “twisted de Rham cohomology” introduced by Atiyah and
Segal in [5].

Corollary 34.2.3. If the higher differentials d2l+1 (l ≥ 2) are all zero, then
H̄∗(Q, L) has a decreasing filtration

· · · ⊃ FsH̄∗(Q, L) ⊃ Fs−1H̄∗(Q, L) ⊃ · · ·

such that the associated graded groups satisfy

FsH̄∗(Q, L)

Fs−1H̄∗(Q, L)
∼= ker(βs)

im(βs+3)
⊗ Z[T−1, T ]

where

βs : Hs(Q)→ Hs−3(Q)

is given by the cap product with ξ . This isomorphism respects the homological
degree, when we interpret T as having degree 2. �

Proof of Proposition 34.2.1. Let LS3
be a family of operators on S3 homotopic

to the standard family described in Subsection 34.1 above, but arrange that the
family is constant outside of a small 3-ball W ⊂ S3 centered at a point w on
the equator. Let

v : Q → S3

be a map homotopic to the classifying map for the family L on Q, so that we
can identify L with v∗(LS3

). We can arrange that v is transverse to w and that
v−1(W ) is diffeomorphic to the product

v−1(W ) ∼= v−1(w)×W

in such a way that the map v coincides with projection to the second factor.
Choose a Riemannian metric on Q which is a product metric on v−1(W ), and
choose a Morse function f that is equal to the composite y�v on v−1(W ), where
y : S3 → [−1, 1] is a linear coordinate vanishing at w.

The effect of these choices is that if γ : R → Q is a trajectory for the gradient
of the function f , then the path v � γ : R → S3 passes through W ∩ {y = 0}
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at most once; and if v � γ does pass through W ∩ {y = 0}, then the part of this
path that lies in W is a trajectory of the gradient flow of the linear function y.

We can also arrange that f is Morse–Smale, and that for every trajectory
space M(a, b) ⊂ Q, the restriction of v to M(a, b) is transverse to w. After
replacing W by a smaller neighborhood if necessary, we can arrange that for all
the 3-dimensional moduli spaces M(a, b), the intersection v−1(W ) ∩ M(a, b)
has a product structure,

v−1(W ) ∩M(a, b) ∼= (
v−1(w) ∩M(a, b)

)×W , (34.3)

where v−1(w) ∩M(a, b) is a finite set. We can also arrange that the v−1(W ) ∩
M(a, b) is empty if the dimension of M(a, b) is less than 3.

Now fix a and b in Q, critical points with index difference 3. Suppose that
f (a) > 0 and f (b) < 0. Let M̆ (a, b) be the moduli space of unparametrized
trajectories, which we can identify with the trajectories γ : R → Q with
f (0) = 0. This moduli space parametrizes a family of Fredholm operators
Pγ ,i, j, as described earlier. If γ does not pass through v−1(W ), then the
operator Pγ ,i, j is translation-invariant because L is constant outside v−1(W ). In
this case Pγ ,i, j has no kernel if j > i. If γ does pass through v−1(W ), then the
operator Pγ ,i, j is the same as the operator Pδ,i,j, where

δ : R → S3

is the unique trajectory of the standard Morse function y on S3 whose
intersection with the equator y = 0 is the point (v � γ )(0).

Specialize now to the case that j = i + 1, so that the operator Pγ ,i,i+1 has
index zero. We wish to find finitely many elements γ in M̆ (a, b) for which the
operator has kernel, and count these elements with sign. By our calculation for
S3 in Subsection 34.1 above, there are finitely many trajectories δ for the Morse
function y such that Pδ,i,i+1 has kernel, and the number of such trajectories
counted with sign is 1. All these trajectories pass through W . Because of the
product structure (34.3), the number of γ in M̆ (a, b) for which Pγ ,i,i+1 has
kernel, counted with sign, is the number of points in v−1(w)∩M(a, b) counted
with sign, once an orientation of M(a, b) is given.

Now choose an open cover of S3 and a Čech representative for the generator
of H 3(S3) whose support is contained in W . Let ξ̃ be the pull-back of this
representative to Q, carried by the pulled-back open cover U . Then the number
of points in v−1(w) ∩M(a, b) coincides with the evaluation of the compactly
supported Čech cocycle, 〈

ξ̃ , [M(a, b)]〉
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in the notation of Subsection 25.3.According to our definition of ∂̄ , this quantity
is therefore the matrix entry of ∂̄ ,

∂̄(a, i, b, i + 1) : (Z�a)i → (Z�b)i+1

in the notation of (33.7).
As alternative notation, we can identify C̄∗(Q, L) with C∗(Q, f )⊗Z[T−1, T ]

in the obvious way, and write

∂̄ = ∂1 + T∂3,i + T 2∂5,i + · · · , (34.4)

where ∂1 is the ordinary Morse differential and

∂m,i : Ci(Q, f )→ Ci−m(Q, f ).

In these terms, we have calculated ∂3,i and shown it to be the chain-level cap
product with ξ̃ , independent of i.

The maps ∂m,i for m > 3 are zero, because the operators Pγ ,i, j have no
kernel when j > i+ 1. This is because these operators are again isomorphic to
operators Pδ,i, j for suitable trajectories δ of the Morse function y on S3, none
of which have kernel for j > i + 1. �

We can also identify the action of the class u2 in Proposition 34.2.1.

Proposition 34.2.4. Under the isomorphism (34.2) arising in Proposi-
tion 34.2.1, the action of ũ2 on C̄∗(Q, L) becomes the map

C∗(Q, f )⊗ Z[T−1, T ] → C∗(Q, f )⊗ Z[T−1, T ]

given by multiplication by T−1, for a suitable chain representative of the
cohomology class u2.

Proof. We are continuing to suppose that H on Q, and the operator L, are both
pulled back from S3 by the map v. To define a suitable representative of u2, we
take a section s of the dual bundle of H which is also pulled back from S3 and
take ũ2 to be supported in the neighborhood of s−1(0). We choose the section
on S3 so that it is constant outside the neighborhood of w.

We saw in the proof of Lemma 33.3.9 that the cap product with ũ2 has the
property that, if x ∈ Fk , then

ũ2 � x = T−1x + y
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for some y ∈ Fk−2. We wish to show that ũ2 � x = T−1x. To investigate y, we
examine the matrix entry of (ũ2 �−) from (Z�a)i → (Z�b)i′ for i′ ≥ i.

In the case i′ = i, the moduli space M(a, b) ⊂ Q is 2-dimensional. The
corresponding matrix entry for ũ2 counts pairs (γ , [φ]), where γ ∈ M(a, b) and
φ is a solution of the Fredholm equation Pγ ,i,iφ = 0 satisfying the additional
constraint s(φ(0)) = 0. Our assumptions ensure that the image of M(a, b) under
the map v : Q → S3 is disjoint from the neighborhood of w, so the operator
Pγ ,i,i has the form (d/dt)+L for some L independent of t. The solution φ must
be the eigensolution e−λi tφi(a), independent of γ ; and this will not satisfy the
constraint s(φ(0)) = 0 if s is chosen generically. The matrix entry is therefore
zero in this case.

In the case i′ > i, the moduli space M(a, b) has dimension 4 or more. In this
case, the vanishing of the matrix entry can be seen by a dimension argument,
based on the fact that the dimension of M(a, b) exceeds the dimension of S3. �

34.3 Relation with twisted cohomology

In [5], Atiyah and Segal introduce the “twisted cohomology” of a compact
smooth manifold Q equipped with a closed 3-form ζ , as

H∗
ζ (Q) = H∗(	∗(Q), d + ζ ).

That is, H∗
ζ (Q) is the cohomology of the differential

x �→ dx + ζ ∧ x

acting on real forms. This cohomology is (Z/2)-graded.
There is a slight formal difference between this twisted de Rham cohomology

and the coupled Morse theory, in that the latter involves a formal variable T of
degree 2, whose inclusion makes the theory Z-graded rather than just (Z/2)-
graded. Another formal difference is that, for coupled Morse theory, we have
been discussing homology rather than cohomology. To dispense with these two
points first, let us modify theAtiyah–Segal construction by introducing a formal
variable T and defining H̄∗

ζ (Q) as the Z-graded cohomology theory given by

H̄∗
ζ (Q) = H∗(	∗(Q)⊗ R[T−1, T ], d + Tζ

)
;

so the differential is the map

x �→ dx + Tζ ∧ x (34.5)



666 IX Calculations

acting on differential forms with values in Laurent polynomials in T . The
construction of the coupled Morse homology H̄∗(Q, L) leads as usual to a cor-
responding cohomology theory, H̄∗(Q, L); and after passing to real coefficients
this is what we should compare with the de Rham version. The following
theorem confirms that these two coincide:

Theorem 34.3.1. Let L be a family of operators of type S∗(H : H1) over the
manifold Q, whose classifying map factors through the 3-sphere as in Propo-
sition 34.2.1. Let ζ be a closed 3-form on Q whose de Rham class represents
the pull-back of the 3-dimensional generator of the cohomology of S3. Then
the coupled Morse cohomology H̄∗(Q, L)⊗ R is isomorphic to the twisted de
Rham cohomology H̄∗

ζ (Q) defined by the differential (34.5) above.

We begin the proof with a discussion of the issues involved. A cohomology
version of Proposition 34.2.1 tells us that the coupled Morse homology arises
from a differential

x �→ dx + Tζ1 � x (34.6)

acting on the Morse complex with values in R[T−1, T ]. Here d is the ordinary
Morse coboundary map, ζ1 is a Čech representative for the 3-dimensional class,
and the operation � is the Morse-theoretic cup product at the chain level. The
structure of this differential is so close to the de Rham version (34.5) that the
theorem would seem inevitable; but some work is required to pass from Morse
homology to de Rham cohomology. In particular, in (34.6), it is necessary to
impose the condition that the map x �→ ζ1 � (ζ1 ∪ x) is zero at the chain level,
or we do not have a differential at all, and this condition has no parallel on the
de Rham side. The fact that ζ1 ∪ ζ1 need not be zero reflects the fact that the
anti-commutativity of the cup product holds only at the cohomology level, not
at the chain level, for simplicial or Čech cohomology.

Our first step is to pass from Morse homology to simplicial homology. Let
K be a simplicial complex with a homeomorphism φ : |K | → Q which is
smooth on each simplex. Let �n be the standard closed n-simplex, regarded as
the intersection of the plane σxi = 1 with the positive “octant”. Let �̃n be the
corresponding locus in the unit sphere Sn obtained by radial projection. On �̃n,
we consider a standard Morse function

g = −
∑

x4
i

and its gradient vector field V . Via radial projection, V becomes a vector field
on �n. The stationary points are precisely the barycenters of �n and all its
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proper “facets” (subsimplices). The index of the critical point at the barycenter
of a k-dimensional facet is k. Furthermore, there is a trajectory of V from
an index-k critical point to an index-(k − 1) critical point precisely when the
corresponding (k−1)-simplex is in the boundary of the k-simplex. If we equip
each top-dimensional simplex of |K | with such a vector field and transfer these
to Q via the homeomorphism φ, we obtain a piecewise smooth, C0 vector field
V on Q.

Although it is neither smooth nor a gradient, the vector field V on Q is quite
adequate for the constructions of Morse theory, including the construction of
the coupled Morse complex which defines H̄∗(Q, L). This is because, for any
pair of critical points a and b, the moduli space of trajectories M(a, b) can be
non-empty only if a is the barycenter of some �k and b is the barycenter of
some facet of �k ; in this case, the moduli space of trajectories M(a, b) and its
compactification by broken trajectories coincide with the corresponding objects
defined by a smooth gradient flow of a function such as g above on a standard
smooth k-simplex in the k-sphere.

What we have done here is described a flow on a triangulated smooth man-
ifold with the property that its Morse complex coincides with the simplicial
chain complex of the triangulation. To work with orientations, we can fix an
ordering of the vertices of the complex, and define the boundary maps as usual in
simplicial homology. That is, the simplicial chain complex is defined as having
generators the simplices

[e0, e1, . . . , ek ]

with the ei strictly increasing; and the boundary map is

∂[e0, e1, . . . , ek ] =
k∑

i=0

(−1)i[e0, . . . , êi, . . . , ek ].

Now triangulate S3 and let v : |K | = Q → S3 be a simplicial representative
of the map by which the family L is pulled back from S3. Order the vertices in
both complexes so that the map on vertices is monotone increasing. As in the
proof of Proposition 34.2.1, we suppose that the family LS3

on S3 is constant
outside a small ball W ⊂ S3. We now impose the additional constraint that W is
contained entirely in the interior of one 3-simplex, say �3

0 ⊂ S3. Furthermore,
we ask that W is contained in a small neighborhood of the highest-numbered
vertex etop of �3

0; what we require is that the only trajectories of V on S3 which
meet W are trajectories belonging to M(a, etop), where a is the critical point at
the barycenter of �3

0.
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Following the arguments in Proposition 34.2.1, we obtain the following
picture. Let w be the center of the ball W as before, and let � be the piece-
wise linear submanifold of Q arising as v−1(w). The choices we have made
mean that the contribution ∂3 to the differential in the coupled Morse complex
(see (34.4)) counts unparametrized trajectories of V that meet �. Let ζ1 denote
the simplicial 3-cocycle obtained as the pull-back by the simplicial map v of
the cocycle on S3 which assigns 1 to the distinguished 3-simplex �3

0. This ζ1

assigns 1 to every 3-simplex in Q which meets � and zero to all others. Then
∂3 becomes simply the simplicial cap product with ζ1. Passing to cohomology,
we can summarize this part of the discussion:

Lemma 34.3.2. There is a triangulation of Q as a simplicial complex |K | and
a simplicial 3-cocycle ζ1 representing the pull-back of the generator from S3,
such that the coupled Morse cohomology can be computed as the cohomology
of the differential

x �→ δx + T (ζ1 � x)

acting on the simplicial cochain complex C∗�(K) ⊗ R[T−1, T ]. Here δ is the
usual simplicial coboundary map and� is the standard simplicial cup product,
so that

(α � β)[e0, . . . , ep+q] =
(
α[e0, . . . , ep]

)(
β[ep, . . . , ep+q]

)
for p- and q-cocycles α and β. Note that the representative ζ1 has been chosen
so that ζ1 � ζ1 = 0. �

Proof of Theorem 34.3.1. The lemma above has taken us from coupled Morse
cohomology to the more familiar simplicial cohomology, with a twisted differ-
ential. The remaining step is to pass from simplicial cohomology to de Rham
cohomology. We state a version of the necessary result, without the variable T :

Lemma 34.3.3. Let Q be a compact smooth manifold, with a C∞ triangulation
φ : |K | → Q. Let ζ1 be a 3-cocycle on K arising as the pull-back of a cocycle
on S3 supported on a single simplex, via an order-preserving simplicial map.
Let ζ2 be a smooth 3-form representing the same class in de Rham cohomology.
Then the (Z/2)-graded cohomology of the differential

x �→ δx + ζ1 � x (34.7)
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acting on C∗�(K ; R) is isomorphic to the twisted de Rham cohomology arising
from the differential

χ �→ dχ + ζ2 ∧ χ

acting on differential forms.

Proof. For each vertex of K , there is a standard open neighborhood in Q con-
sisting of the interiors of all simplices which contain the vertex. The nerve of the
resulting open cover U coincides with K ; so the Čech complex C∗(U ; R) with
coefficients in the constant sheaf R matches the simplicial cochain complex.
We set up our conventions for Čech cohomology to match our conventions
for simplicial cohomology, making use of the given ordering of the vertices of
K (which is the indexing set for U). The coboundary map (34.7) can then be
viewed as a differential on C∗(U ; R).

Both the Čech complex C∗(U ; R) and the de Rham complex are subcom-
plexes of the Čech–de Rham complex, CΩ∗(U) (see [14] for example). This is
defined by

CΩp(U) =
⊕

r+a=p

Cr(U ;	a),

where Cr(U ;	a) is the usual Čech group with coefficients in the sheaf 	a:

Cr(U ;	a) =
∑

i0<···<ir

	a(Ui0 ∩ · · · ∩ Uir ).

The differential on the Čech–de Rham complex,

D : CΩp(U)→ CΩp+1(U),

is given by the formula

Dφ = δφ + (−1)rdφ

for φ in Cr(U ;	a), in which δ and d are the Čech and de Rham derivatives
respectively. The cup product �̄ on CΩ∗(U) is defined by

φ �̄ ψ = (−1)asφ � ψ

for

φ ∈ Cr(U ;	a)

ψ ∈ Cs(U ;	b).
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On the right of the above formula, � denotes the naive cup product

(φ � ψ)i0,...,ir+s = φi0,...,ir ∧ ψir ,...,ir+s .

With this convention, we have the usual sign in the Leibniz rule:

D(φ �̄ ψ) = Dφ �̄ ψ + (−1)pφ �̄ Dψ

for φ in CΩp(U). We have inclusions

C∗(U ; R) ⊂ CΩ∗(U)

	∗(Q) ⊂ CΩ∗(U),

the former from the inclusion of the constant sheaf R in 	0 and the latter as
the kernel of δ on the Čech 0-cochains C0(U ;	∗). In this way, both ζ1 and
ζ2 are 3-cocycles in (CΩ∗(U), D), where they are cohomologous: for some
η ∈ CΩ2(U), we have

ζ1 + Dη = ζ2.

Both have �̄ square zero, so we can consider the differentials

Dζ1 : CΩ∗(U)→ CΩ∗(U)Dζ2 : CΩ∗(U)→ CΩ∗(U)

given by

Dζnφ = Dφ + ζn �̄ φ.

By the usual argument [14], the two cohomologies which appear in the
statement of the lemma are isomorphic to the cohomologies

H∗(CΩ∗(U), Dζ1)

H∗(CΩ∗(U), Dζ2)

respectively. So we are left to show that these last two groups are isomorphic.
To do this, we will seek an element

z = 1+ z1 + z2 + · · ·
in CΩ∗(U), with zn ∈ CΩ2n(U), such that cupping with z intertwines the two
derivatives:

Dζ1(z �̄ φ) = z �̄ Dζ2φ, ∀φ.
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In terms of zn, this says

Dzn+1 = −ζ1 �̄ zn + zn �̄ ζ2. (34.8)

The awkwardness in constructing z stems from the fact that �̄ is not graded-
commutative: like the cup product on simplicial or Čech cohomology, it is
graded-commutative only at the level of cohomology, not at the level of
cochains.

In the commutative case, one should define z as the exponential of η, so that
zn = (1/n!)ηn. The reason that this does not work in our case is that η and Dη

do not commute:

η �̄ Dη = Dη �̄ η. (34.9)

The non-commutativity at the cochain level in simplicial homology gives rise
to hierarchy of products, Steenrod’s higher products �i defined in [104]. In
the simplicial case (or by the same formulae in the Čech case), these satisfy
�0 = � and

δ(u �i v) = (−1)p+q−iu �i−1 v + (−1)pq+p+qv �i−1 u

+ δu �i v + (−1)pu �i δv (34.10)

for u, v in Cp(U ; R) and Cq(U ; R) respectively. Just as we defined �̄ in terms
of �, so we can define �̄i on the Čech–de Rham complex in terms of the Čech
product �i: the appropriate sign for φ in Cr(U ;	a) and ψ in Cs(U ;	b) is

φ �̄i ψ(−1)as+i(a+b)φ �i ψ

with which the reader can verify that we again have

D(φ �̄i ψ) = (−1)p+q−iφ �̄i−1 ψ + (−1)pq+p+qψ �̄i−1 φ

+ Dφ �̄i ψ + (−1)pφ �̄i Dψ (34.11)

for φ and ψ in CΩp(U) and CΩq(U), just as in Steenrod’s formula (34.10).
A correct formula for zn involves �̄1. We make use of the fact that ζ1 and ζ2

are both special: the latter is in the graded center of CΩ∗(U); while ζ1 satisfies
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ζ1 �̄ ζ1 = 0. These properties pass to the higher products, so that we have, for
example

ζ2 �̄1 φ = 0

for all φ, and

ζ1 �̄1 ζ1 = 0

because ζ1 is pulled back from S3. We also have, for example,

ζ1 �̄ φ �̄ (ζ1 �̄1 ψ) = 0

for any φ and ψ . Consider now the 4-cochain w defined by

w = (Dη �̄1 η).

Using the above observations and (34.11), we can verify that Dw is the
commutator of Dη and η:

Dw = D(Dη �̄1 η)

= Dη �̄ η − η �̄ Dη + DDη �̄1 η − Dη �̄1 Dη

= Dη �̄ η − η �̄ Dη + 0− (ζ2 − ζ1) �̄1 (ζ2 − ζ1)

= Dη �̄ η − η �̄ Dη. (34.12)

Once we have this, a routine calculation shows that a working formula for a
zn which solves the relations (34.8) is

zn = 1

n!

(
ηn +

n−1∑
i=1

(n− i)ηi−1 �̄ w �̄ ηn−1−i

)
.

To verify this, note first that, because ζ2 is central, we can rewrite the desired
relation (34.8) as

Dzn+1 = Dη �̄ zn.
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Now we compute, using the fact that any product involving both w and Dw is
zero,

(n+ 1)!Dzn+1 = D

(
ηn+1 +

n∑
i=1

(n+ 1− i)ηi−1wηn−i

)

=
n+1∑
j=1

η j−1(Dη)ηn−j+1 +
n∑

i=1

(n+ 1− i)ηi−1(Dw)ηn−i

+
n∑

i=2

(n+ 1− i)(i − 1)Dηηi−2wηn−i

+
n−1∑
i=1

(n+ 1− i)(n− i)Dηηi−1wηn−i−1

= (n+ 1)(Dη)ηn + (n+ 1)
n−1∑
i=1

(n− i)Dηηi−1wηn−i−1

= (n+ 1)!Dηzn.

This completes the proof of the lemma. �

Theorem 34.3.1 now follows from the above lemma (with the variable T
reinstated) and the previous one. �

Remark. If we work over the integers, and consider C∗�(K) equipped with the
differential

x �→ δx + ζ1 � x

where ζ1 is pulled back from S3 by a map v : Q → S3 as in Lemma 34.3.3,
then we know that the isomorphism class of the resulting cohomology depends
only on the homotopy class of the composite map

v : Q → S3 ↪→ U (∞),

i.e. on the resulting element of K1(Q). This follows from Lemma 34.3.2 to the
fact K1(Q) classifies the families of self-adjoint operators L over Q of type
S∗(H : H1). Over the reals or rationals, the isomorphism class of this coho-
mology group depends only on the cohomology class χ = [ζ1]; but our results
do not make clear whether this is true over Z. There remains the possibility
that two maps Q → S3, which determine different elements of K1(Q) but the
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same element of H 3(Q; Z), might give rise to different cohomology groups.
The authors do not have an example to show whether this occurs.

34.4 Families with spectral flow

We now suppose that the family L of self-adjoint Fredholm operators has spec-
tral flow. Let l ∈ Z generate the image of the spectral flow, regarded as a map
sf : H1(Q) → Z. Because our operators are complex, we will take this to be
the complex spectral flow.

When the spectral flow is non-trivial, we are not able to label the eigenvalues
of L at the critical points q ∈ Q so as to satisfy the conditions (33.6). Instead,
we label the eigenvalues λi(q), still in increasing order, but with λ0(q) the first
positive eigenvalue of L(q).

A complex C̄∗(Q, L) is still defined in this situation, but it is not graded by
Z. As a group, we still take

C̄∗(Q, L) =
⊕

q

⊕
i

Z�q,

the sum being over all critical points in Q. The boundary map is defined as
before by counting, with sign, the points of the zero-dimensional components
of the moduli spaces M̆ (q0, i, q1, j) = M(q0, i, q1, j)/R defined just as in Def-
inition 33.3.1. Now, however, the dimension of a component depends on the
homotopy class of the trajectory γ from q0 to q1. Write z for a typical homo-
topy class, and let Mz(q0, i, q1, j) be the corresponding subset of M(q0, i, q1, j).
When the necessary transversality holds, we have

dim Mz(q0, i, q1, j) = index (q0)− index (q1)− 2j + 2i + 2 sf (L, z),

where the last term is the spectral flow of the family L along a path in the
component z.

As a group, we can again identify C̄∗(Q, L) as

C̄∗(Q, L) = C(Q, f )⊗ Z[T−1, T ]

in the obvious way. We write the boundary map ∂̄ as a sum

∂̄ = ∂̄1 + ∂̄3 + · · · ,

where

∂̄m : Ci(Q, f )⊗ Z[T−1, T ] → Ci−m(Q, f )⊗ Z[T−1, T ].
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The differential ∂̄1 can be regarded as the ordinary Morse differential on
C(Q, f ) with coefficients in a non-trivial local system with fiber Z[T−1, T ].
Namely, for each critical point q, let �(q) be a copy of Z[T−1, T ], and for each
path z between critical points let

�(z) : �(q0)→ �(q1)

be multiplication by T s, where s = sf (L, z). The ordinary Morse complex of
(Q, f ) with coefficients in this local system is

C∗(Q, f ;�) =
⊕

q

Z�q ⊗ �(q)

with differential ∑
γ

ε(γ )⊗ �([γ ]), (34.13)

where the sum is over trajectories in zero-dimensional moduli spaces M̆ (q0, q1).
This is exactly the differential ∂̄1.

If U is an open cover transverse to the trajectory spaces M(q0, q1) ⊂ Q, then
we have a cap product

� : Cd (U)⊗ Ci(Q, f ;�)→ Ci−d (Q, f ;�). (34.14)

With this understood, we can state:

Proposition 34.4.1. Let Q and L be as before, and suppose that the classifying
map for this family factors through the inclusion U (2) ↪→ U (∞). Let

ξ1 ∈ H 1(Q; Z) (34.15)

ξ3 ∈ H 3(Q; Z) (34.16)

be the pull-backs of the two generators of H∗(U (2); Z) via the classifying map.
Then there is a Riemannian metric on Q, a Morse function f satisfying the

Morse–Smale condition, and a homotopic family of operators L̃, such that the
corresponding complex C̄∗(Q, L̃) can be described as follows. As an abelian
group,

C̄∗(Q, L̃) = C∗(Q, f ;�ξ1)
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(the ordinary Morse complex of Q with coefficients in a local system). The
differential has the form

∂̄ = ∂̄1 + ∂̄3

where ∂̄1 is the Morse differential on C∗(Q, f ;�ξ1) for the local system, and

∂̄3x = T (ξ̃3 � x).

Here

ξ̃3 ∈ C3(U)

is a certain Čech representative for the class ξ3 carried by a transverse open
cover, and the cap product is the map referred to at (34.14). The multiplication
by T in the formula for ∂̄3 refers to the structure of �ξ1 as a local system of
Z[T−1, T ]-modules.

As in the case of zero spectral flow treated in Proposition 34.2.1, there is a
spectral sequence arising from this description of the differential. We still have
the filtration of C̄∗(Q, L); but C̄∗(Q, L) is now only a differential group (it is
not a complex with a Z grading), and the filtration is by differential subgroups
Fk C̄∗(Q, L).

Corollary 34.4.2. There is a homology spectral sequence abutting to H̄∗(Q, L)
whose E2 and E3 terms are given by

E2
s = E3

s = Hs(Q;�ξ1)

and whose differential d3
s is the map

d3
s : E3

s → E3
s−3

[x] �→ T (ξ3 � [x]).

�

Corollary 34.4.3. If the higher differentials d2l+1 (l ≥ 2) all vanish, then
H̄∗(Q, L) has a decreasing filtration

· · · ⊃ FsH̄∗(Q, L) ⊃ Fs−1H̄∗(Q, L) ⊃ · · ·
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such that the associated graded groups satisfy

FsH̄∗(Q, L)

Fs−1H̄∗(Q, L)
∼= ker(βs)

im(βs+3)

where

βs : Hs(Q;�ξ1)→ Hs−3(Q;�ξ1)

is given by the cap product with ξ3. �

Proof of Proposition 34.4.1. We can choose a diffeomorphism of U (2) with
S1×S3 so that the first coordinate is the determinant. Let W be a small neighbor-
hood of a point w in S3, and let y : S3 → [−1, 1] be a linear function vanishing
at w. We can homotope the standard family of operators L parametrized by
U (2) ∼= S1× S3 so that, outside S1×W , it coincides with the family LS1 ⊕L0,
where LS1

is the standard family parametrized by U (1) ∼= S1, and L0 is the
constant family given by the Dirac operator i∂/∂θ on L2

1(S
1; C).

Choose v : Q → S1 × S3 in the homotopy class of the classifying map of
the given family of operators on Q, and arrange that v is transverse to S1 ×w.
As before, we can arrange that v−1(S1 ×W ) has a product structure,

v−1(S1 ×W ) ∼= v−1(S1 × {w})×W ,

and has a product metric. We choose our Morse function f so that it coincides
with y in v−1(S1 × W ). For L̃ we take the pull-back by v of the family on
S1 × S3.

To examine the matrix entries of ∂̄3, let a and b be critical points of f , let z
be a homotopy class of paths joining them, and consider the operators Pγ ,i, j

for γ ∈ Mz(a, b) and j = i + 1 + sf (L, z). This operator has index zero. Let
δ = v � γ be the corresponding path in S1 × S3, so that the operators Pγ ,i,j

and Pδ,i,j are isomorphic. Our choices mean that Pδ,i,j can have kernel only
if δ passes through S1 × W ; and whether or not it has kernel is determined
entirely by the intersection of the path with S1 × W . From this point on, the
proof proceeds as in the case of no spectral flow. For ξ̃3 we take the pull-back
by v of a Čech cocycle on S1 × S3 representing the 3-dimensional generator
and supported in S1 ×W . �
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35 Application to the Floer groups HM

In the previous sections, we have defined a group H̄∗(Q, L) associated to a
compact manifold Q carrying a suitable family of self-adjoint operators L, and
we have shown how to calculate this group when L has a particularly restricted
form. We now return to Floer homology, where we can realize our Floer group
HM∗(Y , s) as an example of such a “coupled homology” group.

With our present framework, there is very little difference between the cases
that c1(s) is torsion and non-torsion, if we use a non-exact perturbation in the
“balanced” class for the non-torsion case; but we still choose to describe them
separately. After stating theorems describing the general structure of the Floer
group, we shall give some examples.

35.1 A general calculation of HM

Let Y be an oriented 3-manifold, and let s be a spinc structure with c1(s)

torsion. The reducible critical points of the unperturbed Chern–Simons–Dirac
functional L in B(Y , s) comprise the torus T of gauge-equivalence classes of
spinc connections A in S such that tr(A) is flat. This torus T is isomorphic to
H 1(Y ; R)/H 1(Y ; Z). If we introduce A∗(Y ) as the exterior algebra generated
by the free abelian group A1(Y ) = H 1(Y ; Z), then we can identify Ak(Y ) with
the homology group of T in dimension k:

Ak(Y ) = Hk(T; Z).

There is a distinguished map

β : Ak(Y )→ Ak−3(Y )

defined using the cup product on Y and the fundamental class:

α1α2 . . . αk �→∑
i1<i2<i3

(−1)i1+i2+i3
〈
αi1 � αi2 � αi3 , [Y ]〉 α1 . . . α̂i1 . . . α̂i2 . . . α̂i3 . . . αk .

Here juxtaposition denotes the product in A∗(Y ). The following theorem
describes HM∗(Y , s) over the rationals when c1(s) is torsion.

Theorem 35.1.1. Let Y be a closed, connected, oriented 3-manifold and s

a spinc structure with c1(s) torsion. Then HM∗(Y , s; Q) has a decreasing
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filtration

· · · ⊃ FsHM∗(Y , s; Q) ⊃ Fs−1HM∗(Y , s; Q) ⊃ · · ·

such that the associated graded groups satisfy

FsHM∗(Y , s; Q)

Fs−1HM∗(Y , s; Q)
∼= ker(βs)

im(βs+3)
⊗Q[T−1, T ]

where

βs : As(Y )→ As−3(Y )

is as above. If b1(Y ) is even, this isomorphism respects the canonical mod 2
grading, when T is assigned even degree and As(Y ) is assigned grading s mod
2. If b1(Y ) is odd, then these isomorphisms have degree 1 mod 2.

Proof. There is a gauge-invariant retraction

p : B(Y , s)→ T

arising from a linear map on the affine space of connections. Let f1 : B(Y , s)→
R be the composite f �p, where f is a Morse function on T, and let−L = L+ f1.
This is a perturbation belonging to our allowed class P .

The reducible critical points of −L are exactly the critical points [α] of f in
T ⊂ B(Y , s). The torus T is invariant under the gradient flow of − grad(−L),
and the trajectories there are the gradient trajectories for the Morse function f .

In the blow-up Bσ (Y , s), the reducible critical points [a] are the gauge orbits
of configurations (α, [φ]), where [α] ∈ T is a critical point of f and φ ∈
L2(Y ; S) is an eigenvector of the corresponding Dirac operator Dα . If we add
a further perturbation from the class P , chosen so that its gradient is zero
on the reducible locus in C(Y , s), then the picture is unchanged except that the
Dirac operator Dα becomes a more general self-adjoint Fredholm operator Dq,α .
(See Subsection 12.2.) We can choose this perturbation so that the reducible
critical points [a] are non-degenerate in the blow-up and so that the perturbed
Seiberg–Witten moduli spaces M red

z ([a], [b]) are regular.
At this point, the complex that computes HM (Y , s) is of the type C̄∗(Q; L)

we have been considering in this chapter: for Q we have the torus T, and for L
we have the family of perturbed Dirac operators Dq,α , for [α] ∈ T.

Lemma 35.1.2. The classifying map v : T → U (∞) for the family of self-
adjoint Dirac operators Dα on Y factors through the inclusion SU (2) ↪→
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U (∞). The pull-back of the 3-dimensional generator is the class

ξ3 ∈ H 3(T; Z)

∼= �3H 1(T; Z)

∼= �3H 1(Y ; Z)∗

given by the triple cup product,

(a1, a2, a3) �→
〈
a1 � a2 � a3, [Y ]〉.

Proof. The homotopy classes [T, U (∞)] classify K−1(T), which is torsion-
free. Two elements of K−1(T) are therefore equal if they have the same Chern
character in H odd(T; Q); and two maps v : T → U (∞) are homotopic if they
induce the same map on rational cohomology.

The Chern character of the element ζ ∈ K−1(T) arising from the family of
Dirac operators can be computed using the index theorem in [9, section 3]. Let
S → T× Y be the vector bundle that carries the family of spinc connections:
that is, S is a rank-2 bundle with unitary connection, and the restriction of S to
[α] × Y is isomorphic to (S,α) as a bundle with connection. We can normalize
S by making it trivial on T×{y0} for some basepoint y0. There is a line bundle
P → T × Y , the Poincaré line bundle, with a connection that is flat on each
[α] × Y , such that

S = P ⊗ p∗2(S)

where p2 is the projection to Y . The first Chern class of P is the class

c1(P) =
∑

i

p∗1(a∗i )� p∗2(ai),

where the classes ai are a basis for H 1(Y ; Z) and a∗i are the dual basis in

H 1(T; Z) ∼= Hom(H 1(Y ; Z), Z).

Then the index theorem tells us in this case that

ch(ζ ) =
∫

Y
ch(P)

= 1

6

∫
Y

c1(P)3

=
∑

i1<i2<i3

〈
ai1 ai2 ai3 , [Y ]〉 a∗i1 � a∗i2 � a∗i3 . (35.1)
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(Note that c1(P)r is zero for r ≥ 4.) Under the isomorphisms in the statement
of the lemma, this element of H 3(T; Q) coincides with ξ3.

The restriction of the universal family to SU (2) has Chern character equal
to the 3-dimensional generator. Since every 3-dimensional cohomology class
on the torus is the pull-back of the generator on S3 by some map, it follows
that there is a map v : T → SU (2) such that the pull-back of the universal
family of self-adjoint Fredholm operators by v has the same Chern character as
the family of Dirac operators. By our opening remarks, it follows that v is the
classifying map for the family of Dirac operators. �

When we identify H∗(T; Z) with A∗(Y ), then the operation of cap product
with ξ3 becomes the map β described in the statement of the theorem. So the
theorem would now follow from Proposition 34.2.1 and Corollary 34.2.3 if we
could verify that the higher differentials in the spectral sequence (that is, d5 and
beyond) are all zero. Indeed, there would be no need to pass to rational coeffi-
cients, if one could prove that the higher differentials in the spectral sequence
vanished over Z.

While we do not have an argument that works over Z, we can see that the
higher differentials in the spectral sequence vanish with rational (or equivalently
real) coefficients by exploiting the de Rham interpretation detailed in Subsec-
tion 34.3 above. The results of that section mean that it suffices to consider the
de Rham model, where we consider the differential

(d + Tζ ) : 	∗(T)⊗ R[T−1, T ] → 	∗(T)⊗ R[T−1, T ]

in which ζ is a closed 3-form representing the class of ξ3. In the corresponding
spectral sequence, we again see, at the E3 term, the differential

[x] �→ T [ζ ∧ x]
H∗(T)⊗ R[T−1, T ] → H∗(T)⊗ R[T−1, T ]

and the question again is whether the higher differentials are non-zero. In this de
Rham model, however, the vanishing of the higher differentials is a straightfor-
ward consequence of the fact that, on a flat torus, the cohomology is represented
by the parallel forms, which are closed under cup product. This is the same
mechanism that leads to the vanishing of the Massey products on a torus.

This completes the calculation of the group HM•(Y ). The statement about
the canonical mod 2 grading follows from the original definition of gr(2) in
Subsection 22.4. �
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As a corollary of this theorem, we have:

Corollary 35.1.3. For any 3-manifold Y and any spinc structure s with c1(s)

torsion, the group HM•(Y , s) is non-zero (and has infinite rank as a Z-module).

Proof. Because of Theorem 35.1.1, the statement reduces to showing that at
least one of the groups

ker(βs)

im(βs+3)

has non-zero rank, where

β : As(Y )→ As−3(Y )

is as in the statement of the theorem. Let ζ = e2π i/6, and consider the quantity

∑
s

rank

(
ker(βs)

im(βs)

)
ζ s. (35.2)

Just as the Euler characteristic of a bounded complex is equal to the Euler
characteristic of its homology, the above sum is also equal to∑

s

rank As(Y )ζ s (35.3)

becauseβ drops degree by 3 and we can regard A∗(Y ) therefore as a sum of three
complexes, each having β as differential. The sum (35.3) is just the evaluation
at ζ of the Poincaré polynomial of the torus T, which is

(1− ζ )b1(Y ).

This quantity is non-zero, whatever b1(Y ), so the result follows. �

We also have:

Corollary 35.1.4. For any 3-manifold Y and any spinc structure s with c1(s)

torsion, the group

̂

HM∗(Y , s) is non-zero in infinitely many gradings, as is
ĤM∗(Y , s).

Proof. This follows from the previous corollary, and the fact that

̂

HM∗(Y , s)
and its siblings are graded by J(Y , s) which is a copy of Z when c1(s) is torsion.
More specifically, it follows from the definitions that the set of gradings in which
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̂

HM∗(Y , s) is non-zero is bounded below, and the set of gradings in which
ĤM∗(Y , s) is non-zero is bounded above. The previous corollary establishes
that HM∗(Y , s) is non-zero in gradings extending infinitely in both directions.
So the long exact sequence relating the three flavors reveals that the gradings
in which

̂

HM∗(Y , s) and ĤM∗(Y , s) are non-zero are unbounded above and
unbounded below respectively. �

We can also describe the completed version of this Floer group, in similar
terms. The description of HM•(Y , s) can be obtained from that of HM∗(Y , s)
by replacing the ring of finite Laurent series Z[T , T−1] by the completion
Z[T , T−1]]which allows Laurent series which extend infinitely in the direction
of negative powers of T .

We should also address the question of the module structure of the group
HM•(Y , s). Recall (from Subsection 3.2, for example) that HM•(Y , s) is a
module for the ring A†(Y ), which is the exterior algebra on H1(Y ; Z)/torsion
tensored by a polynomial algebra Z[U†]. More invariantly, A†(Y ) is the coho-
mology ring of Bσ (Y , s), with the negative of the standard grading and the
opposite multiplication. The proof of Theorem 35.1.1 identifies HM•(Y , s)with
H̄∗(Q, L), where Q is the torus T, and L is the family of Dirac operators. In gen-
eral, as we explained in Subsection 33.3, the group H̄∗(Q, L) is a module over
the cohomology of P(H), where H is the Hilbert bundle over Q. In the case
of the torus T, the cohomology rings of P(H) and Bσ (Y , s) are canonically
identified. It is easy to verify that the two module structures coincide.

The proof of the theorem also shows that, once a spinc structure s on Y is
chosen, the structure of HM•(Y , s) is entirely determined by the cohomology
H 1(Y ; Z) and the triple cup product �3H 1(Y ; Z)→ Z, for this data determines
the family of Dirac operators on the torus T, up to homotopy in the class of
operators of type S∗(H : H1). We therefore have:

Proposition 35.1.5. Let (Y , s) and (Y ′, s′) be two 3-manifolds carrying spinc

structures s and s′ each of which has torsion first Chern class. Suppose that
H 1(Y ; Z) and H 1(Y ′; Z) are isomorphic by an isomorphism h that respects
the triple cup product, regarded as a 3-form on the first cohomology. Then
HM•(Y , s) and HM•(Y ′, s′) are isomorphic. This isomorphism respects the
canonical mod 2 grading, as well as the module structure, once we identify
A†(Y ) with A†(Y ′) using h. �

Note that the above proposition holds over Z, not just over Q, because in the
course of the proof of Theorem 35.1.1, we saw that the cohomology ring of Y
determines the family of operators L on T up to homotopy. This proposition
verifies the claim made earlier, in Proposition 3.3.2. �
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Suppose now that c1(s) is not torsion. Let T be once more the torus
H 1(Y ; R)/H 1(Y ; Z) and let

ξ1 ∈ H 1(T; Z)

∼= Hom(H 1(Y ; Z), Z)

be the element corresponding to the homomorphism

a �→ 1

2
(a � c1(s))[Y ].

Let ξ3 ∈ H 3(T; Z) be the element arising from the triple cup product on
H 1(Y ; Z) as in the proof of the preceding theorem. Let �ξ1 be the local coeffi-
cient system on T with fiber Z[T−1, T ] and whose holonomy around a loop γ

in T is multiplication by T k , where k = ξ1[γ ].
Let cb ∈ H 2(Y ; R) be the class of the balanced perturbation (Defini-

tion 29.1.1), and consider the Floer group HM∗(Y , s, cb) defined with respect
to a perturbation with period class cb (and integer coefficients).

Theorem 35.1.6. Let Y be a closed, connected, oriented 3-manifold and s a
spinc structure with c1(s) non-torsion, as above. Then for the class of the bal-
anced perturbation, HM∗(Y , s, cb) is isomorphic to the homology of a complex
(C, ∂̄1 + ∂̄3), where

C = C∗(T, f ;�ξ1)

is the Morse complex of the torus with local coefficients �ξ1 , for a suitable
Morse function f ,

∂̄1 : C∗(T, f ;�ξ1)→ C∗(T, f ;�ξ1)

is the Morse differential for the local coefficient system, and

∂̄3 : C∗(T, f ;�ξ1)→ C∗(T, f ;�ξ1)

is given by the chain-level cap product x �→ ξ̃3 � x, where

ξ̃3 ∈ C3(U)

is a Čech representative of ξ3 with respect to an open cover U of T transverse
to the Morse stratification.
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Corollary 35.1.7. The group HM∗(Y ; cb, s) has a decreasing filtration

· · · ⊃ FsHM∗(Y ; cb, s) ⊃ Fs−1HM∗(Y ; cb, s) ⊃ · · ·

such that the associated graded groups satisfy

FsHM∗(Y ; cb, s)

Fs−1HM∗(Y ; cb, s)
⊗Q ∼= ker(βs)

im(βs+3)
⊗Q

where

βs : Hs(T;�ξ1)→ Hs−3(T;�ξ1)

is given by the cap product with ξ3. �

Proof of Theorem 35.1.6 Let ω be a harmonic 2-form on Y belonging to the
class (4π/i)cb. A perturbation of the correct period class is the formal gradient
on C(Y , s) of the function (29.1). With this perturbation, the critical points with
� = 0 in B(Y , s) comprise the torus T of gauge-equivalence class connections
[A]with d(A−A0)

t harmonic. After this initial step, the proof proceeds as with
Theorem 35.1.1, but appealing to Proposition 34.4.1. �

As in the torsion case, we can also consider the completed version
HM•(Y , s, cb), which we can again obtain from the above description by pass-
ing to the ring of infinite Laurent series Z[T , T−1]]. When ξ1 is non-zero, this
Floer group is trivial however: this follows from the theorem above, because
the ordinary homology of T with local coefficients �ξ1 is already trivial. The
vanishing of the twisted homology of the torus follows from the fact that 1−T d

is invertible, together with the following general lemma.

Lemma 35.1.8. Let � be a local system of free R-modules on a torus T. Let z
be a primitive loop in T, and suppose that the corresponding automorphism of
� at the basepoint is given by multiplication by the unit r ∈ R. If (1− r) is not a
zero-divisor, then the R-module H∗(T;�) is annihilated by the element (1− r).
In particular, if (1− r) is a unit, then the homology is zero.

Proof. If the torus is simply a circle, then the zeroth and first homology groups
are the kernel and cokernel of multiplication by 1 − r on � at the basepoint.
So if 1− r is not a zero-divisor, then only the first homology is non-zero, and
it is annihilated by 1 − r. In the higher-dimensional case, we can regard the
n-torus as a fiber bundle over the (n−1)-torus, with fiber a circle, and calculate
accordingly. �
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35.2 Local coefficients

The theorems above describe the Floer groups HM∗ and HM• with Z or Q

coefficients. We are also interested in the Floer groups with values in a local
coefficient system, such as the system �η mentioned in Subsection 3.7 and
defined in more detail in Subsection 22.6. We treat the case that c1(s) is torsion.

If � is a local system on B(Y , s), then Theorem 35.1.1 continues to be appli-
cable, with minor modification. As before, we need to either tensor with Q or
suppose from the start that � is a local system of vector spaces over a field
of characteristic zero. Under these conditions, the group HM∗(Y , s;�) has a
filtration for which the associated graded is again of the form

ker(βs)

im(βs)
⊗ Z[T−1, T ]

where now βs is the map

βs : Hs(T;�)→ Hs−3(T;�)

given by cap product with the integer class ξ corresponding to the triple cup
product. (Note that the torus sits inside B(Y , s), and � therefore defines a local
system on T.)

Lemma 35.1.8 is useful again here. The description of HM∗(Y , s;�) shows
that it is annihilated by anything that annihilates H∗(T;�). Consider, for exam-
ple, the local system Rη corresponding to a real 1-cycle η in Y , with fiber
R = R[R], as defined in Subsection 32.3. Let S ⊂ T be a primitive loop. The
monodromy of the local system Rη around S has the form tf , where f is the
first Chern class of a spinc bundle on S1×Y , evaluated on the real cycle S1×η.
(See the definition of f (z) in (32.7).) This quantity f may take the value 2p,
where p is any period of η. Lemma 35.1.8 therefore tells us that HM∗(Y , s; Rη)

has a filtration for which all the terms in the associated graded R-module are
annihilated by 1 − t2p. This means that 1 − t2p strictly lowers the filtration
degree in HM∗(Y , s; Rη); and since there are only finitely many steps in the
filtration, we conclude that some power of (1− t2p) annihilates HM∗(Y , s; Rη).
This proves Proposition 32.3.1. �

For the local system �η, which has fiber R, we similarly deduce that
HM∗(Y , s;�η) is zero if η belongs to a non-trivial real cohomology class, for
this group is annihilated by a power of the non-zero real number 1 − e2p, for
any non-zero period p. This completes the proof of Proposition 3.9.1. �
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35.3 Examples

Rational-homology spheres. If Y is a rational homology sphere, then every
spinc structure s has torsion first Chern class. For each s, HM∗(Y , s) is isomor-
phic to Z[T , T−1], and the action of the class U† in A†(Y ) (corresponding to
the 2-dimensional class u2) is multiplication by T−1. Thus, as a Z[U−1

† , U†]
module, HM∗(Y , s) is free of rank 1. The non-zero terms are all in even degree
for the canonical mod 2 grading. These statements can be deduced directly from
Theorem 35.1.1, or they can be seen as an instance of Proposition 35.1.5. But
the direct explanation is more straightforward. Before blowing up the configu-
ration space, there is exactly one reducible critical point αs in B(Y , s) for each
spinc structure s (as well as possible irreducible critical points): this critical
point corresponds to the spinc connection A for which Atr is flat. After blowing
up and perturbing to achieve non-degeneracy, the critical points correspond to
pairs (αs, λ), where λ runs through the eigenvalues of the perturbed Dirac oper-
ator. These generators correspond to the generators of Z[U−1

† , U†] as an abelian
group. This picture is the same as the one presented earlier for the special case
of S3 in Subsection 22.7. The difference is that we now do not know anything
about the irreducible critical points, so the result is only for HM . We state the
result as a proposition.

Proposition 35.3.1. Let Y be a rational homology sphere, and let s be a spinc

structure on Y . Then

HM∗(Y , s) ∼= Z[U−1
† , U†]

as modules over Z[U†], with all generators appearing in even grading for the
canonical mod 2 grading. Similarly

HM•(Y , s) ∼= Z[U−1
† , U†]]

as modules over Z[[U†]]. �

Manifolds with vanishing triple cup product. Let Y be a 3-manifold for which
the triple cup product vanishes, as a skew trilinear form on H 1(Y ). If b1 = 1 or 2,
the vanishing of this form is inevitable; but there are 3-manifolds with arbitrary
first Betti number satisfying this condition. Simple examples are connected
sums in which the summands are copies of S1 × S2 or any other manifold
with b1 < 3. For such manifolds, the class ξ3 on T is zero; and the proofs
of Theorems 35.1.1 and 35.1.6 show that the cochain representative ξ̃3 can be
taken to be zero also.
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In the case that c1(s) is torsion, the proof of Theorem 35.1.1 then tells us that
HM∗(Y , s) is isomorphic to A∗(Y ) ⊗ Z[T−1, T ], or equivalently H∗(T; Z) ⊗
Z[T−1, T ]. There is no need here to pass to the graded object associated to the
filtration, nor is it necessary to tensor with Q, for we have complete information
about the differential when ξ̃ is zero at the cochain level. The isomorphism is
again an isomorphism of graded abelian groups, up to an overall degree shift.
In particular, the rank of HMj(Y , s) is 2b1(Y )−1 for all j.

If c1(s) is not torsion, let ξ1 be the corresponding element of H 1(T) as
before. If the divisibility of c1(s) in H 2(Y ; Z)/torsion is 2d with d positive,
then we can choose a basis γi (i = 1, . . . , b1(Y )) for T such that ξ1[γ1] = d and
ξ1[γi] = 0 for i = 1. Because there is no ξ3, the group HM∗(Y , s, cb) described
by Theorem 35.1.6 is the homology of T with coefficients �ξ1 . Write

T = T1 ⊗ T′,

where the first factor is the circle with homology generated by γ1, and the
homology of the second is generated by the γi with i > 1. Then

H∗(T;�ξ1) = H∗(T1;�ξ1)⊗ H∗(T′; Z).

In T1, there are two trajectories from the maximum to the minimum of the
standard Morse function; and then we can normalize the coefficient system so
that the corresponding differential in the Morse complex is the map

∂̄1 : Z[T−1, T ] → Z[T−1, T ]

given by

p(T ) �→ (T d − 1)p(T ).

The differential is injective, and its cokernel is the rank-d group Z[T ]/(T d−1).
Thus

HM∗(Y , s, cb) ∼=
(
Z[T ]/(T d − 1)

)
⊗ H∗(T′; Z), (35.4)

where T′ is a torus of dimension b1(Y ) − 1. As we saw earlier, the version
HM•(Y , s, cb) formed from the completed complex is zero, because (T d − 1)
is a unit in the ring of formal Laurent series.

Manifolds with b1 = 3. The triple cup product may be non-zero on a 3-manifold
with b1 = 3. The simplest example is the 3-torus, in which the product of the
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three standard generators of H 1 is the generator for H 3. In general, if b1(Y ) = 3
and a1, a2, a3 is a basis for H 1(Y ; Z), then we can write

a1 � a2 � a3 = mν,

where ν is the oriented generator of H 3(Y ; Z). We can arrange that m ≥ 0 (so
that the 3-torus has m = 1). Manifolds with b1 = 3 and arbitrary m can be
constructed by integer surgeries on the Borromean rings [100].

There is a further simplification that we can make in the case b1(Y ) = 3. In
the proofs of Theorems 35.1.1 and 35.1.6 above, the relevant Morse complex
is the Morse complex of a Morse function f on the torus T which we cannot
choose arbitrarily: in the proof of Proposition 34.2.1, we required f to have
a particular form in the neighborhood of v−1(w), where w : T → S3 was
a classifying map for the family. In the present case, v is a map of degree m
between 3-manifolds, and v−1(w) is a finite set: the restriction on the Morse
function does not now prevent us from taking f to be a small perturbation of
the standard Morse function on the torus, with v−1(w) lying in some level set.

Suppose that s has torsion first Chern class. For the standard Morse function,
the differential in the Morse complex of the torus T is zero, and the Morse
complex C∗(T, f ) can be identified with A∗(Y ). There is no spectral sequence
in this case: the complex that computes HM∗(Y , s) is A∗(Y ) ⊗ Z[T−1, T ],
with boundary map the map T (ξ3 � −). The only non-zero component of the
differential is the component

A3(Y )⊗ Z[T−1, T ] → A0(Y )⊗ Z[T−1, T ]

given by multiplication by mT (the groups A3(Y ) and A0(Y ) are both Z).
The homology of this complex is isomorphic to Z3 ⊕ Z/mZ in every even

dimension, and Z3 in every odd dimension. The Z/mZ summand arises from
the cokernel of the non-zero component of the differential above, and the Z3

summands arise from A1(Y ) and A2(Y ). Taking account of the change in the
canonical mod 2 grading that is detailed in Theorem 35.1.1, we obtain:

Proposition 35.3.2. Suppose Y has b1 = 3 and let m, as above, be the integer
determined by the triple cup product. Then for each spinc structure s with
c1(s) torsion, the group HMj(Y , s) is isomorphic to Z3 if gr(2)(j) is even and is
isomorphic to Z3 ⊕ Z/mZ if gr(2)(j) is odd. �

When c1(s) is non-torsion, we again write T as a product T1×T′, where the
second factor is now a 2-torus. Once again, we take the Morse function f to be
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standard. The Morse complex C∗(T, f ;�ξ1) can be written as

(C1 ⊕ C0)⊗ H∗(T′; Z),

where (C1⊕C0) = Z[T−1, T ]⊕Z[T−1, T ] is the Morse complex of the circle
T1, in which the differential has one non-zero component

Z[T−1, T ] ∂̄1−→ Z[T−1, T ]
given by p(T ) �→ (T d − 1)p(T ) as before. There will be m Morse trajectories
on T that pass through points of v−1(w); and the spectral flow along each of
these will be either d or 0, with our normalization. Let a and b be the number
of trajectories of each type, so a+ b = m. The only non-zero component of the
operator ∂̄3 is the map

C1 ⊗ H∗(T′; Z)→ C0 ⊗ H∗(T′; Z)

given by

p(T )⊗ δ �→ (aT d+1 + bT )p(T )(ν2 � δ),

where ν2 is the 2-dimensional generator of H∗(T′; Z). Let us write H∗(T′) =
Z4, in such a way that the cap product (ν2 � −) maps the fourth generator to
the first. Then our complex has the form

(Z4 ⊕ Z4)⊗ Z[T−1, T ],
and the differential maps the first summand to the second by a map given by
the 4-by-4 matrix ⎡⎢⎢⎣

T d − 1 0 0 mT
0 T d − 1 0 0
0 0 T d − 1 0
0 0 0 T d − 1

⎤⎥⎥⎦ . (35.5)

This map is injective, and the cokernel is a free abelian group of finite rank, 4d .
The group HM∗(Y , s) is graded by the set J(s) ∼= Z/(2d), and its rank is 2 in
each grading.

The manifold S1×�g. We now examine the case that Y is the product S1×�g

of a circle and a closed 2-manifold of genus g. In this case, we can write

T = T1 × (T2)
g ,
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where the first factor is dual to the circle S1. The 3-dimensional class ξ3 has
the form

ξ3 = η � ω

where ω =∑
ωi is the sum of the pull-backs of the 2-dimensional generators

of the 2-dimensional torus factors, and η is dual to the circle.
We treat the case that c1(s) is the pull-back to S1 ×�g of a class in H 2(�g)

equal to 2d times the generator; we denote this spinc structure by sd . On T, the
1-dimensional class ξ1 which determines the spectral flow is now

ξ1 = d × η.

We can improve on the general result of Theorem 35.1.6 by choosing a particular
Morse function and a particular representative of ξ3. On the circle, let f1 be the
Morse function f1(θ) = cos(gθ). Let f2 be a standard Morse function on T2g

and set

f = f1 + εβ(θ)f2,

where β(θ) = 0 in the neighborhood of the 2g zeros of f1 on the circle and
β(θ) = 1 in the neighborhood of the 2g critical points of f1. Let

T(i)
2g−2 ⊂ T2g

be the subtorus

T(i)
2g−2 = T2 × · · · × {q} × · · · × T2,

where q is a basepoint in the ith copy of T2, and let

S =
g⋃

i=1

{θi} × T(i)
2g−2 ⊂ T,

where θi = 2π(4i − 3)/(4g) is the ith of the g zeros of f1 at which df1/dθ is
negative. The submanifold S is dual to ξ3; and using the standard framing of S
in T, we can construct a map v : T → S3 such that v−1(w) = S, as a framed
submanifold. We can do this in such a way that f1 coincides with z � v on a
tubular neighborhood of S.
The critical points of f are pairs (θ , p) ∈ T1×T2g , where θ is a multiple of π/g
and p is a critical point of f2. We can normalize the spectral flow, so that for a
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trajectory of f , the (complex) spectral flow is d if the trajectory joins a critical
point of the form (0, p) to some ((2g − 1)π/g, p′), and is zero otherwise.

For such representatives, the Morse complex can be described explicitly. We
can write

C∗(T, f ;�ξ1) = H∗(T2g ; R)g ⊕ H∗(T2g ; R)g (35.6)

where R = Z[T−1, T ]. The first summand comes from the critical points in the
g copies of T2g lying over the points θ = 2nπ/g in T1 (0 ≤ n < g), and the
second summand comes from the copies lying over the points θ = (2n+1)π/g.
The grading of the first summand is shifted by 1. The differential ∂̄1 for the Morse
complex (twisted by T d in the case that d is non-zero) has non-zero components
only from the first summand to the second. We write this component as

∂̄1 : H∗(T2g ; R)g → H∗(T2g ; R)g .

It has the block form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0 . . . . . . 0
0 1 −1 . . . . . . 0
...

. . .
. . .

...

0 0 0 . . . 1 −1
−T d 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The map ∂̄3 counts trajectories which intersect S and can be expressed in the
same block form as ⎡⎢⎢⎢⎣

T�1

T�2
. . .

T�g

⎤⎥⎥⎥⎦ ,

where �i : H∗(T2g) → H∗(T2g) denotes the cap product with the class ωi

(defined above). The sum of the two matrices describes the component of ∂̄ =
∂̄1+ ∂̄3 from the first summand to the second (the only non-zero component). So
the sum of the kernel and cokernel of this matrix is isomorphic to HM∗(Y , s, cb).

We can use the fact that (1 + T�i) is an invertible operator on
H∗(T2g ; R), with inverse (1 − T�i), to reduce the matrix by row and column
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operations to the form ⎡⎢⎢⎢⎣
1

1
. . .

A

⎤⎥⎥⎥⎦ ,

where A is the operator

A =
g∏

i=1

(1+ T�i)− T d ,

as a map

A : H∗(T2g ; R)→ H∗(T2g ; R).

The fact that �2
i = 0 means that we can write (1+ T�i) as exp(T�i); so the

formula for A can be more succinctly written as

A = exp(T�)− T d ,

where � =∑
�i is the cap product with ω.

Returning to the description of the Morse complex (35.6), we see that the Floer
homology can be described as:

HM∗(S1 ×�, sd , cb) = (ker A)〈1〉 ⊕ (coker A), (35.7)

where the notation 〈1〉 indicates that the grading has been shifted up by 1.
If we work over the rational field, then we can analyze the situation a little
further. Let

Pj ⊂ Hj(T2g ; Q) (j ≤ g)

be the kernel of � : Hj(T2g ; Q) → Hj−2(T2g ; Q) (the primitive part of the
homology). The dimension of Pj is given by

dim Pj =
(

2g

j

)
−
(

2g

j − 2

)
.

The Jordan canonical form of the nilpotent operator � has one Jordan block of
size g − j + 1 for each vector in Pj. Each Jordan block of size k + 1 gives a
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diagonal block in A of the form⎡⎢⎢⎢⎢⎢⎣
1− T d T T 2/2 T 3/6 . . .

1− T d T T 2/2 . . .

. . .

T
1− T d

⎤⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(k + 1). (35.8)

For d = 0, the operator A is injective, so

HM∗(Y , s, cb) ∼= H∗(T2g ; R)/im(A).

By row and column operations over Q[T−1, T ], such a block can be reduced to⎡⎢⎢⎢⎣
1

1
. . .

(1− T d )k+1

⎤⎥⎥⎥⎦ .

This block contributes a summand Q[T−1, T ]/(1− T d )k+1 to the cokernel of
A over Q. Thus we obtain:

Proposition 35.3.3. Let d be non-zero and let sd be the spinc structure whose
first Chern class is the pull-back of d times the generator on �. Then for cb the
class of a balanced perturbation, we have

HM∗(S1 ×�, sd , cb)⊗Q ∼=
g⊕

k=0

(
Q[T−1, T ]
(1− T d )k+1

)
⊗Q Pg−k

∼=
g⊕

k=0

(
Q[T−1, T ]
(1− T d )k+1

)mk

,

where

mk =
(

2g

g − k

)
−
(

2g

g − k − 2

)
= dim Pg−k .

�

When d = 0, the analysis of the cokernel of A is essentially unchanged: each
Jordan block now contributes a summand Q[T−1, T ]. In this case, however, A is
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not injective: its kernel and cokernel are isomorphic. Because the first summand
in (35.6) has degree shifted by 1, the end result is:

Proposition 35.3.4. For the trivial spinc structure s0 on S1 ×�, we have

HM∗(S1 ×�, s0)⊗Q ∼= (P∗〈1〉 ⊕ P∗)⊗Q[T−1, T ],

where P∗ ⊂ H∗(T2g ; Q) is the primitive part of the homology (the kernel of �)
and P∗〈1〉 is the same group with grading shifted by 1. In particular, for all k,
we have

dimQ HMk(S
1 ×�, s0)⊗Q = dim P∗

=
(

2g

g

)
+
(

2g

g − 1

)
.

�

36 The manifold S1 × S2

36.1 Positive scalar curvature

The calculation of HM•(Y ) in the previous sections was possible because HM•
involves only the reducible solutions of the monopole equations. In general,
we cannot calculate

̂

HM•(Y ) or ĤM•(Y ) without information about the irre-
ducible solutions also; and for most 3-manifolds, a direct understanding of these
solutions is not possible.

There is, however, a particularly simple situation if Y has a metric of positive
scalar curvature, for in such cases all solutions are reducible. We have already
exploited this observation in our discussion of homology spheres in Subsec-
tion 22.7. We can consider manifolds with non-zero Betti number and positive
scalar curvature in a similar manner.

This class of manifolds is not large. The results of Schoen and Yau [101] tell
us that an orientable 3-manifold with positive scalar curvature can always be
obtained from a manifold with b1 = 0 by making a connected sum of a number
of copies of S1×S2. Thurston’s geometrization conjecture would further imply
that the remaining manifold with b1 = 0 is a sum of spherical space forms (see
[51] for a survey).

Suppose then that Y has positive scalar curvature, and let s be a spinc struc-
ture with c1(s) torsion. Let T again be the torus H 1(Y ; R)/H 1(Y ; Z) which
parametrizes reducible solutions to the unperturbed equations, let f be a Morse
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function on T and let f1 = f ◦ p be the corresponding function on B(Y , s). (See
the proof of Theorem 35.1.1 for this notation.)

The connections [A] in T are those with At flat, and it follows from the
Weitzenböck formula that the corresponding Dirac operator DA has no kernel.
This means, in particular, that if [A(t)] is any path in T, then the corresponding
family of 3-dimensional Dirac operators has no spectral flow. If [α] and [β]
are critical points of Morse function on T, then we can label the corresponding
critical points in the blow-up as [ai] and [bj] in increasing order of the index,
with [a0] and [b0] corresponding to the first positive eigenvalues of the Dirac
operator at α and β respectively. Thus the points [ai] and [bi] are boundary-
stable for i ≥ 0 and boundary-unstable for i < 0. The absence of spectral flow
means that the relative grading in the complex C̄∗ is given by

ḡr([ai], [bj]) = index f [α] − index f [β] + 2i − 2j, (36.1)

where the first two terms are the ordinary Morse indices of these two critical
points of the function f on T. Our first lemma is a straightforward consequence:

Lemma 36.1.1. The component ∂̄s
u of the boundary map ∂̄ in the complex

C̄∗(Y , s) is zero.

Proof. The differential ∂̄ counts trajectories in the blow-up Bσ (Y , s) which lie
over ordinary Morse trajectories of f on T ⊂ B(Y , s). For any such trajectory,
from [ai] to [bj] say, the difference index f [α]− index f [β] in the formula above
is non-negative. If the trajectory contributes to ∂̄s

u then i ≥ 0 and j < 0, from
which it follows that

ḡr([ai], [bj]) ≥ 2.

The contributions to ∂̄ , however, come only from trajectories satisfying
ḡr([ai], [bj]) = 1. �

The next lemma makes use of positive scalar curvature in a slightly more
delicate way.

Lemma 36.1.2. If we replace the Morse function f by a smaller positive mul-
tiple, εf , then for small enough ε, the component ∂̄u

s of the boundary map ∂̄ in
the complex C̄∗(Y , s) is zero.

Proof. A gradient trajectory of f gives rise to a family At(t) of flat connections
on Y . The corresponding 4-dimensional connection on the cylinder has curva-
ture whose size pointwise is controlled by dAt/dt, and hence by the size of the
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gradient of f on the torus T. If we replace f by εf , then the trajectories are
reparametrized but otherwise unchanged, and the size of the curvature of the
4-dimensional connection scales by ε.

The contributions to ∂̄u
s arise from solutions (A,φ) to the coupled equations

on the 4-dimensional cylinder, with φ a non-zero solution of the Dirac equation
D+A φ = 0 having exponential decay at both ends. The exponential decay allows
us to apply the Weitzenböck formula (4.14) and integrate by parts. The positive
contribution of the term involving the scalar curvature dominates the term
involving F+At pointwise once ε is sufficiently small, and the usual contradiction
establishes that there is no solution φ of this sort. �

Now let us examine the complexes Č∗ and Ĉ∗ which compute

̂

HM∗(Y , s)
and ĤM∗(Y , s). Recall that, in general, the underlying group of the complex Č∗
is the sum Co∗ ⊕ Cs∗. The first summand is generated by the irreducible critical
points, of which there are none, so

Č∗ = Cs∗

and similarly

Ĉ∗ = Cu∗ .

The formula for the differential ∂̌ for Č∗ is given in Definition 22.1.3, and when
Co∗ is absent this formula becomes

∂̌ = ∂̄s
s − ∂u

s ∂̄
s
u.

When ∂̄s
u is zero also (as in our present case), we simply have ∂̌ = ∂̄s

s . Similarly
(after examining the sign in the definition of ∂̂), we see that ∂̂ = −∂̄u

u .
It follows from this discussion that when the parameter ε is small enough to

make ∂̄u
s = 0, we simply have

∂̄ =
[
∂̌ 0
0 −∂̂ .

]

So, as differential groups, we have (to within an irrelevant sign)

C̄∗ = Č∗ ⊕ Ĉ∗[−1],

where the notation [−1] tells us that a boundary-unstable critical point con-
tributes a generator in C̄∗ whose degree is 1 lower than the corresponding
generator of Ĉ∗.
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On a 3-manifold with positive scalar curvature, the triple cup product is zero.
This one can see, for example, by using the families index theorem in the form
(35.1). So our general structure theorem for HM∗ gives us

HM∗(Y , s) = H∗(T)⊗ Z[U−1
† , U†].

Taking account of the information about gradings in (36.1), we obtain the
following picture.

Proposition 36.1.3. If Y has strictly positive scalar curvature, and s is a spinc

structure on Y with c1(s) torsion, then the map j in the long exact sequence
relating

̂

HM∗, ĤM∗ and HM∗ is zero, and we have

HM∗(Y , s) =

̂

HM∗(Y , s)⊕ ĤM∗(Y , s)[−1]

as groups graded by J(Y , s) ∼= Z. Furthermore, we can choose the identification
of J(Y , s) with Z so that, as Z-graded modules over Z[U†], we have

HM∗(Y , s) = H∗(T)⊗ Z[U−1
† , U†]

ĤM∗(Y , s) = H∗(T)⊗ Z[U†],

and ̂

HM∗(Y , s) = H∗(T)⊗ (
Z[U−1

† , U†]/Z[U†]
)
.

If c1(s) is not torsion, then the Floer groups are zero. �

We can apply this result to Y = S1 × S2. In this case, T is a circle, and its
homology has two generators in degrees differing by 1. We recall that U† has
degree−2, and we learn from the above theorem that if s0 is the spinc structure
with c1 = 0, then HMk(S1 × S2, s0) is isomorphic to Z for all k in J(Y , s0).
Furthermore, there exists a k0 such that

̂

HMk is non-zero precisely in degrees
k ≥ k0 while ĤMk is non-zero precisely in degrees k ≤ k0. (Remember the
shift of grading by 1 when reading the last sentence.)

When we identify J(Y ) with the set of homotopy classes of 2-plane fields
on Y , then we can find the class of 2-plane fields which must correspond to k0

using a symmetry argument, exploiting the duality for the Floer groups. The
manifold Y = S1×S2 admits an orientation-reversing self-homeomorphism, sô

HM∗(Y ) is isomorphic to ĤM ∗(Y ). Since both of these groups are non-zero only
in grading k0, it must be that k0 is invariant under the orientation-reversing self-
homeomorphism. There is only one class of oriented 2-plane fields on S1 × S2
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which is invariant under the orientation-reversing map (θ , x) �→ (−θ , x). This
class can also be characterized as the one represented by any 2-plane field ξ0

which is invariant under rotation of the S1 factor and has Euler class zero. Thus
we recover the statement of Proposition 3.10.3 of Subsection 3.10.

When the scalar curvature is positive, the conclusion that HM∗ is the sum of̂

HM∗ and ĤM∗ as groups remains valid if we replace Z by any local coefficient
system. Since we already know that HM∗(Y ;�η) is zero if the class [η] is non-
zero, we can deduce the vanishing of

̂

HM∗(Y ;�η) and ĤM∗(Y ;�η) also. In the
case of S1 × S2, this result is Proposition 3.10.4.

37 The three-torus

37.1 Perturbations of the Chern–Simons–Dirac functional

Although we have calculated HM• for the 3-torus, we have not yet calculated̂

HM• or ĤM•. That task will be taken up here. The line of argument that we use
is applicable to any flat 3-manifold (i.e. to any quotient of a flat torus).

Let Y be the 3-torus T 3 equipped with a flat metric, and let S = C2 × T 3

be the spinc bundle for the unique spinc structure s0 with c1 = 0. Because
T 3 has zero scalar curvature, Proposition 22.7.1 tells us that all solutions of
the unperturbed Seiberg–Witten equations on T 3 are reducible. However, to
examine the Floer groups, we must perturb the Chern–Simons–Dirac functional
to achieve transversality; and in so doing, we may introduce irreducible critical
points. With a careful choice of perturbation, this potential difficulty can be
avoided. We will describe a perturbation of the Chern–Simons–Dirac functional
L for which we can explicitly describe all the critical points (A,�): all critical
points will be non-degenerate, and all will lie on the reducible locus. This, with
a small amount of extra input, will allow a straightforward calculation of the
Floer groups.

Let T denote the dual 3-torus which parametrizes the flat spinc connections in
S up to gauge equivalence, and let [A0] ∈ T denote the connection with trivial
holonomy. The point [A0] is the only class of flat connections in T for which
the corresponding Dirac operator DA0 has kernel: the kernel is 2-dimensional
and consists of parallel sections of S. There is a gauge-invariant projection
p : C(T 3, s) → T which sends (A,�) to [A′], where A′ is the unique flat
connection such that A−A′ is orthogonal to the harmonic 1-forms and A0−A′
is harmonic. (See also Section 11.) We consider two types of tame perturbations
of L. For the first, we fix a Morse function f on T, and pull it back to C(T 3, S)
using p, as we have done before. We call the resulting function f still. The second
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perturbation we consider is the function ‖�‖2, the L2 norm of the spinor. We
consider an arbitrary combination of these, with small coefficients ε and δ:
we set

−L = L− (δ/2)‖�‖2 + εf . (37.1)

Proposition 37.1.1. Let f be chosen so that it has a local minimum at [A0] ∈ T.
Then there exist δ0 > 0 and a positive function ε0 : (0, δ0) → R, such that
whenever δ and ε satisfy 0 < δ ≤ δ0 and 0 < ε ≤ ε0(δ), the perturbed
functional −L above has only reducible critical points in C(T 3, s).

Before proving the proposition, we make a few remarks. The signs are impor-
tant here: if we change the sign of one of ε and δ, then the proposition fails. This
dependence on this sign can be seen by looking at a finite-dimensional model
which captures some of the behavior of L near the point (A0, 0) ∈ C(T 3, s).
(This model is essentially the restriction of L to the kernel of the Hessian of L
in the Coulomb slice through (A0, 0).) Take V to be a 2-dimensional hermitian
vector space, and consider the function L on i su(V )× V defined by

L(α,�) = 1

2
〈�,α�〉.

This has a degenerate critical point at the origin. We perturb it, and write

L̃(α,�) = L(α,�)− (δ/2)|�|2 + ε|α|2.

The equations for a critical point of L̃ are:

α� = δ�

(��∗)0 + 2εα = 0.

Applying the second equation to � we have

(��∗)0�+ 2εα� = 0,

and using the first equation this becomes

(1/2)|�|2�+ 2εδ� = 0.

When εδ is positive, this equation tells us that� is zero, and the second equation
then gives α = 0. So in this case the only critical point is the origin, which is
now non-degenerate. If εδ is negative, then in addition to the origin, there is a
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3-sphere of critical points, consisting of all pairs (α,�) with |�|2 = −4εδ and
α = −(��∗)0/(4ε). Like the bona fide Chern–Simons–Dirac functional, this
finite-dimensional model has a circle symmetry, and the 3-sphere of critical
points which arises when εδ descends to a 2-sphere in the quotient space.
If we replaced |α|2 above with a different positive-definite quadratic form,
with distinct eigenvalues, then the 2-sphere would be replaced by eight points
corresponding to the eight eigenvectors of the quadratic form lying on the
sphere.

Proof of Proposition 37.1.1. Consider first the perturbed functional (37.1) in
the case ε = 0. The equations for a critical point (A,�) are then:

DA� = δ�

1
2ρ(FAt ) = (��∗)0.

(37.2)

Suppose that there exist a sequence δi converging to zero, and corresponding
irreducible solutions (Ai,�i) (so�i is non-zero). We will obtain a contradiction.

In the blown-up configuration space Cσ (T 3, s), we have corresponding points
(Ai, si,φi), with ‖φi‖ = 1 in L2 norm; and after passing to a subsequence and
applying gauge transformations, these will converge to a solution (A, s,φ) of
the unperturbed equations in Cσ (T 3, s). The only solutions for the unperturbed
equations are the reducible ones; so s = 0 and [A] belongs to T. Furthermore,
by taking the limit of the first equation as δi → 0, we see that DAφ = 0. This
implies that A = A0 up to gauge transformation, for otherwise DA has no kernel.
We can therefore take it that A = A0 and φ is a parallel section of S = C2×T 3.
Because c1(S) = 0, the curvature FAt is exact. So the second equation gives∫

T 3
ρ−1(φiφ

∗
i )0 ∧ η = 0

for all closed 1-forms η, and in particular for the parallel 1-forms. The limiting
φ satisfies the same condition, but since φ and η are parallel we obtain

ρ−1(φφ∗)0 ∧ η = 0

pointwise. This tells us that (φφ∗)0 = 0, and hence φ = 0, contradicting the
fact that φ has unit L2 norm.

From this contradiction, we conclude that there is a δ1 > 0 such that for
|δ| ≤ δ1 the only solutions of the above equations are reducible. Let us now
examine the Dirac equation

DAφ = δφ (37.3)
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for [A] in the torus T of flat connections and δ small.After gauge transformation,
we may suppose that A = A0+b⊗1S for an imaginary-valued parallel 1-form b.
The operator DA then preserves the A0-parallel spinors (the kernel of DA0 ), and
it follows that for δ sufficiently small, the only solutions to the above equation
have φ parallel with respect to A0. The equation is then

ρ(b)φ = δφ. (37.4)

This tells us that the parallel 1-form b has pointwise length δ. For each such b,
the δ-eigenspace is 1-dimensional. We conclude that, for some δ0 > 0 and any
positive δ < δ0, the flat connections [A] ∈ T for which the equation (37.3) has
a solution comprise a round sphere �δ surrounding [A0]: in the metric coming
from the pointwise norm of the parallel 1-forms b, this sphere has radius δ.
By choosing δ0 perhaps smaller, we can arrange that the gradient of the Morse
function f : T → R has positive inner product with the radial direction at all
points of �δ , because [A0] is a minimum for f .

Fix δ in the interval 0 < δ ≤ δ0, and consider next the perturbed functional
(37.1) with ε non-zero. Let us suppose that there is a sequence of positive
numbers εi converging to zero and corresponding irreducible solutions (Ai,�i).
As before, we can suppose that the corresponding points (Ai, si,φi) in the blown-
up configuration space are converging to a solution (A, s,φ) of the equations
(37.2). By our choice of δ, this limiting solution must have s = 0. Furthermore,
φ satisfies the equation (37.3), so [A] lies on the small sphere �δ . We again
write A = A0 + b ⊗ 1S , so that φ is parallel with respect to A0 and satisfies
(37.4). From this last equation, we obtain

〈ρ(b), (φφ∗)0〉 = δ|φ|2/2

> 0

pointwise on T 3. On the other hand, the perturbed equation for (Ai, si,φi) has
the form

1
2 ∗ FAt

i
+ s2

i ρ
−1(φiφ

∗
i )0 = −εiηi

where ηi is a parallel imaginary-valued 1-form arising from the gradient of
the perturbation f . More precisely, if the harmonic projection of Ai is gauge-
equivalent to Ah

i = A0 + bi ⊗ 1S in the torus T, then ηi is the gradient of f ,
regarded as a periodic function on the space of imaginary-valued parallel 1-
forms. We have bi → b, and so ηi → η, where by our choice of δ0 we have
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〈b, η〉 > 0. For large i we therefore have (using again the exactness of FAt
i
)∫

T 3

〈
ρ−1(φiφ

∗
i )0, b

〉
< 0,

and so the limiting A0-parallel spinor φ satisfies〈
ρ−1(φφ∗)0, b

〉 ≤ 0

pointwise. This contradicts the earlier inequality above, which went the other
way. The contradiction tells us that for δ ≤ δ0 and all sufficiently small ε

(depending on δ), there can be no irreducible solutions. �

37.2 The Floer groups with Z coefficients

Let ε and δ be chosen small, as in the above proposition and its proof. For
f , we choose a Morse function of a standard type, with eight critical points:
a minimum at [A0], a single maximum and three each of index 1 and 2. The
Morse differential for (T, f ) is zero. As we saw, the Dirac operator DA for
[A] in T has kernel only when [A] lies on the small 2-sphere �δ . We arrange
that the critical points other than [A0] are separated from [A0] by this sphere.
The (complex) spectral flow for the family of Dirac operators corresponding
to a path which starts outside �δ and ends at [A0] is −1 with our choice of
sign for δ.

Let us label the critical points of f as

w

z1 z2 z3

y1 y2 y3

x

so that w is the maximum, x is the minimum and the yα and zα have index 1
and 2 respectively. In Bσ (T 3, s), we label the critical points

wi

z1
i z2

i z3
i

y1
i y2

i y3
i

xi

(37.5)

with i running through Z. The indexing is chosen so that i = 0 corresponds
to the first positive eigenvalue of the Dirac operator at the critical point, and
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i = −1 corresponds to the first negative eigenvector. The complex Č∗(T 3, s)
therefore has generators corresponding to Entries (37.5) with i ≥ 0.

We can calculate the canonical Q grading of these critical points, using the
definition in Definition 28.3.1. To make the calculation, we use the cobordism
W from S3 to T 3 obtained by removing a ball from D2 × T 2, and make use
of the vanishing of the L2 index of the Dirac operator on the cylindrical-end
version of this cobordism. From this we obtain ⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

grQ(wi) = 2i

grQ(zαi ) = 2i − 1

grQ(yαi ) = 2i − 2

grQ(xi) = 2i − 1

(37.6a)

for i ≥ 0, while ⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

grQ(wi) = 2i + 1

grQ(zαi ) = 2i

grQ(yαi ) = 2i − 1

grQ(xi) = 2i

(37.6b)

for i < 0. In these formulae, note that the grading of xi is shifted by 2 from what
one would expect if there were no spectral flow for the Dirac operators. When
viewed as generators of the complex that computes HM∗, we must recall that
the gradings of the boundary-unstable critical points are shifted by 1: the “bar”
grading ḡrQ is given by the formulae (37.6a) for all i, positive or negative.

As there are no irreducible critical points, the complex that computeŝ

HM∗(T 3, s) is the group Cs generated by the boundary-stable critical points
equipped with the differential

∂̄s
s − ∂u

s ∂̄
s
u.

From our study of the structure of HM∗ in general, we have some information
about ∂̄ and its four components ∂̄s

s , ∂̄s
u, ∂̄u

s and ∂̄u
u . First, each trajectory γ that

contributes to ∂̄ lies over a trajectory γf of the Morse function f on the finite-
dimensional manifold T, and the trajectory γf must have index 1 or 3. For each
trajectory γf of index 1, there is a unique trajectory γ which contributes to ∂̄ ,
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which gives us trajectories of the type ⎫⎪⎪⎪⎬⎪⎪⎪⎭
wi → zαi

zαi → yβi

yβi → xi−1.

(37.7)

(We see xi−1 rather than xi because of the spectral flow.) The only trajectories
γf of index 3 run from w to x, giving us, for each i, a possible contribution

wi → xi. (37.8)

With Z coefficients, the differential in the finite-dimensional Morse complex
of (T, f ) is zero, and accordingly the components of (37.7) are zero also. The
only non-zero contribution to ∂̄ therefore comes from trajectories from wi to
xi, and is a map (one for each i)

Z�[wi] → Z�[xi], (37.9)

where �[a] denotes the 2-element set of orientations at [a] as before. Since we
already know that HM∗(T 3) is equal to Z3 in each degree, the map (37.9) must
be an isomorphism for each i. (Referring back to our earlier calculation, we see
that this reflects the fact that the map β : A3(T 3) → A0(T 3) defined by the
triple cup product is an isomorphism: see Subsection 35.1.)

The maps (37.9) with i ≥ 0 contribute to ∂̄s
s , while those with i < 0 contribute

to ∂̄u
u . The maps ∂̄u

s and ∂̄s
u are zero. We therefore have

∂̄ =
[
∂̄s

s 0
0 ∂̄u

u

]
and accordingly

HMk(T
3, s0) =

̂

HMk(T
3, s0)⊕ ĤMk+1(T

3, s0).

Looking at the degrees of the generators of the two complexes we see:̂

HMk(T
3, s0) =

{
Z3, grQ(k) ≥ −2

0, otherwise,

and

ĤMk(T
3, s0) =

{
Z3, grQ(k) ≤ −2

0, otherwise.
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The map j :

̂

HMk → ĤMk is zero, because ∂̄s
u is zero. (See the definition of j

in Proposition 22.2.1.)
We have described these groups using the Z-valued canonical Q grading,

but we can also describe the gradings using the corresponding 2-plane fields.
The element of J(T 3) with c1 = 0 and grQ = −2 is the unique element which
is invariant under an the orientation-reversing self-diffeomorphism t �→ −t of
T 3. The corresponding homotopy class of oriented 2-plane fields must therefore
be the class represented by the parallel 2-plane fields. Denoting by ξ0 such a
2-plane field, we see for example that

̂

HM∗(T 3, s0) is non-zero in the gradings
[ξ0] + j for j ≥ 0. Thus we recover the statement of Proposition 3.10.1 from
Chapter I.

37.3 Local coefficients on the three-torus

We now replace Z coefficients by the local system �η on C(T 3, s0). We take η to
be a real 1-cycle with non-zero homology class in T 3, so that HM∗(T 3, s0;�η)

is zero by Proposition 3.9.1.
Each critical point wi etc. now contributes a summand �η[wi] = R to the

complex Č, and the differential ∂̄ again has components of two types: first,
the contribution from index-1 trajectories of the Morse function f on T as in
(37.7); second, from the index-3 trajectories as in (37.8). The first kind give
us maps

�η[wi] →
3∑

α=1

�η[zαi ]

3∑
α=1

�η[zαi ] →
3∑

α=1

�η[yβi ]

3∑
α=1

�η[yβi ] → �η[xi−1]

which coincide with the differential in the finite-dimensional Morse complex
of T. The second give us maps

�η[wi] → �η[xi].
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Let us examine the complex Ĉ∗(T 3, s0) which calculates ĤM∗(T 3, s0). The
generators of this complex, arranged by their canonical Q grading, begin with:

index −1: w−1

index −2: z1−1 z2−1 z3−1 x−1

index −3: y1−1 y2−1 y3−1 w−2.

Excluding for a moment the generators in boldface, the differentials among
the remaining generators here coincide with the ordinary Morse differentials,
arising from trajectories of the first kind. The only other contributions to the
differential ∂̂ = −∂̄u

u−∂̄s
u∂

u
s which appear between these generators are possible

maps

�η[w−1] → �η[x−1].

(Potentially, there are two contributions here: one from the reducible trajec-
tories contributing to ∂̄u

u and one from ∂̄s
u∂

u
s , which would involve irreducible

trajectories also.) Without calculating this last contribution, we already have
enough information here to conclude that ĤMk(T 3, s0;�η) is 1-dimensional in
canonical grading grQ(k) = −2, and that a generator can be taken to be the
image of the chain

1 ∈ �η[x−1] ∼= R.

In all lower gradings, ĤM∗ and HM∗ coincide; so this is the only non-zero
contribution to ĤM∗.

Because HM∗ is zero, we know that j is an isomorphism; so

̂

HM∗ is also
1-dimensional. We can see this directly, by looking at the generators as we just
did for ĤM∗. In degrees −1 and −2, we have generators

index −1: z1
0 z2

0 z3
0 x0

index −2: y1
0 y2

0 y3
0,

and there are no generators in lower degree. The differential from the zs to
the ys in this picture coincides with the corresponding Morse differential with
local coefficients on T; so this map has rank 2 and a 1-dimensional cokernel.
There are no possible trajectories from x0 to the ys. So we confirm again that̂

HMk(T 3, s0;�η) is R in canonical grading −2. We can see the non-zero map j
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arise explicitly at the chain level, from the Morse trajectories

yα0 → x−1 (α = 1, 2, 3)

which contribute to ∂̄s
u.

This completes the proof of Proposition 3.10.2, with the exception of the
statement that the group of self-diffeomorphisms of T 3 which preserve the
class [η] acts trivially on the group

̂

HM∗(T 3;�η) ∼= R. This is true by default if
[η] is proportional to a rational class, because in this case the component group
G of this group of diffeomorphisms is an extension

Z2 → G → SL2(Z).

The latter is the group of special unitary automorphisms of Z3 preserving the
first basis vector: it is a perfect group, and therefore cannot act non-trivially on
R. For general η, the result follows by continuity. �

37.4 Other flat three-manifolds

In addition to the 3-torus, there are five other compact, orientable 3-manifolds
which admit flat metrics. Four of these five Euclidean space forms are bundles
over S1 with fiber T 2: the monodromies of these fiber bundles are automor-
phisms of T 2 fixing a point and having order 2, 3, 4 or 6. The last of the five
is the Hantzsche–Wendt manifold, which is the quotient of T 3 by an action of
the Klein 4-group. The first four all have b1 = 1, while the Hantzsche–Wendt
manifold has b1 = 0 and H1 = Z/4⊕ Z/4.

Of the four non-trivial flat T 2 bundles over S1, only one admits an orientation-
reversing diffeomorphism; so as oriented manifolds, we should count these as
seven examples. All can be dealt with together in a uniform manner, leading
to a result very similar to the one we obtained for the 3-torus. In particu-
lar, if [η] ∈ H1(Y ; R) is a non-zero class in any of these seven oriented
manifolds, then ̂

HM∗(Y ;�η) ∼= ĤM∗(Y ;�η) ∼= R. (37.10)

The grading in which these groups are non-zero corresponds to the class of the
2-plane field ξ0 which is tangent to the fibers of the fibration over S1.

We sketch briefly why (37.10) holds for one of these manifolds Y . Because
Y is flat, the only solutions to the unperturbed 3-dimensional Seiberg–Witten
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equations on Y are the reducible solutions (A, 0), with A a flat connection. For
each torsion spinc structure s, there is a circle T(s) pararametrizing the flat spinc

connections [A] up to gauge (because b1(Y ) = 1). If DA has no kernel for any
[A] in T(s), then the spinc structure s will make no contribution to the Floer
groups with twisted local coefficients. So we must look for spinc structures
admitting spinc connections with parallel spinors.

Lemma 37.4.1. If Y is one of the non-trivial flat torus bundles over S1, then
the only spinc structure for which there are flat connections admitting parallel
spinors is the spinc structure s0 corresponding to the 2-plane field ξ0 tangent
to the fibers.

For this spinc structure s0, there are exactly two points [A0], [A1] on the
circle T(s0) for which the corresponding Dirac operator DA has kernel.

Proof. This proposition is quite easy to verify. If � is a parallel spinor for a
flat spinc connection A, then the quadratic ρ−1(��∗)0 is a parallel 1-form. For
these manifolds, all parallel 1-forms annihilate the tangents to the fibers: up to
rescaling by positive reals, there are two possibilities, differing by sign. �

To determine the contribution of s0 to ĤM∗ and

̂
HM∗, we can use the same

type of perturbation (37.1) as before. For the Morse function f , we take a
function on the circle T(s0) having two local minima, at [A0] and [A1]. Because
Y is covered by a flat 3-torus, our previous analysis tells us that there are no
irreducible solutions. The reducible solutions in B(Y , s0) correspond to the four
critical points x0, x1, y0, y1 on T(s0), where the xi are the two local minima.
We can label the two maxima as y0 and y1 so that, on paths joining y0 to either
of the local minima, there is no spectral flow for the family of Dirac operators
DA − δ; while on paths joining y1 to the local minima, the complex spectral
flow is −1. We label the critical points in the blow-up as xαi and yαi as before,
with i = 0 corresponding to the first positive eigenvalue.

We make a table of the generators that contribute to the complex Č(Y , s0)

that computes

̂

HM∗(Y , s0), grouping generators with the same grading
in rows:

· · · · · ·
y0

1 y1
2

x0
1 x1

1

y0
0 y1

1

x0
0 x1

0

y1
0.

(37.11)
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The only differentials that arise are those corresponding to differentials in the
ordinary Morse complex of the circle T(s0) with the Morse function f . These
differentials run from the ys to the xs. From the second row up in the table above,
the complex is just a number of copies of the Morse complex of the circle. The
generator corresponding to y1

0 is not hit by any differential. We conclude that,
with twisted local coefficients, the homology

̂

HM∗(Y , s0;�η) is R, and that
a generator is provided by the element 1 in �η[y1

0]. Because HM∗ is zero for
twisted coefficients, ĤM∗(Y , s0;�η) is isomorphic to

̂

HM∗(Y , s0;�η).
With Z coefficients, the description of Č(Y , s0) still applies and tells us that̂

HMk(Y , s0) is Z for all k = k0+ n, where k is the grading of y1
0 and n ≥ 0. We

also see from this description that the map

i : HM∗(Y , s0)→

̂

HM∗(Y , s0)

is onto, so the map j in the long exact sequence is zero and ĤMk(Y , s0) is Z for
all k of the form k0 + n with n < 0.

There remains the question of why the grading of the generator y1
0 corresponds

to the 2-plane field ξ0. In the case of T 3, we argued using the existence of an
orientation-reversing self-diffeomorphism of the manifold; but, for the flat torus
bundles with monodromy of orders 3, 4 and 6, this argument is not available to
us. Instead, we can argue that the corresponding 2-plane field must be ξ0 using
a later result, Theorem 41.4.1, which tells us (amongst other things) that if a
3-manifold fibers over the circle with fibers of positive genus, then the Floer
group

̂

HMk(Y ;�η) must be non-zero in the grading corresponding to the 2-
plane field tangent to the fibers. (Of course, one could also work more directly,
from the definitions.)

Finally, we mention again the remaining flat 3-manifold, the Hantzsche–
Wendt manifold. Since b1 is zero in this case, non-trivial local coefficient
systems such as �η do not arise. With Z coefficients, we can verify that the
Floer groups for each spinc structure s follow the same pattern as for manifolds
of positive scalar curvature, as outlined in Subsection 22.7. In particular, j is
zero. The point that underlies this calculation is that, for each flat spinc connec-
tion A, the Dirac operator DA has no kernel. Indeed, if DA had kernel, then as
above there would be a non-zero parallel 1-form obtained as ρ−1(��∗)0; but
there is no such form, because b1 = 0. Once we know that DA has no kernel,
we are in the same situation as when Y has positive scalar curvature: we can
perturb to achieve transversality without introducing irreducible critical points.
Note that, although the Hantzsche–Wendt manifold is known as the unique flat
3-manifold with b1 = 0, the argument we have just used did not depend on any
particular properties of this example.
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38 Elliptic surfaces

38.1 The smooth classification of elliptic surfaces

Elliptic surfaces are smooth, connected complex surfaces E admitting a holo-
morphic map to a Riemann surface �, π : E → �, such that there is a regular
value of π with fiber an elliptic curve. In any elliptic surface, all but finitely
many fibers will be smooth elliptic curves; the possibilities for the singular fibers
were classified by Kodaira [56, 57]. We shall restrict ourselves to the simply
connected case in which case � = CP1. We will also restrict ourselves to rela-
tively minimal elliptic surfaces. This means that there are no exceptional curves
in the fibers of π . We will describe the C∞ classification of the underlying
4-manifolds of simply connected elliptic surfaces, following Kodaira.

The simplest such elliptic surface is obtained by taking a generic pair of
homogenous cubic polynomials q0 and q1 in three variables. They give rise to
a rational map

r : CP2 ��� CP1, (38.1)

and after blowing up CP2 at nine points we get an honest map from

π : E(1)→ CP1.

The fiberπ−1([z0 : z1]) is the projectivization of the zero set of the homogenous
cubic z0q0 − z1q1 and hence (unless the qi are particularly special) the generic
fiber is an elliptic curve. From the C∞ point of view, the regular fibers of
π are embedded 2-dimensional tori with trivialized normal bundle (with the
trivialization provided by the derivative of the projection π ). As a smooth
4-manifold, E(1) is independent of the choice of the two general cubics. In
addition, the isotopy classes of both the fiber and the trivialization of the fiber’s
normal bundle are independent of the choices made.As a smooth manifold E(1)
is diffeomorphic to the connected sum

CP2#9(−CP2).

This manifold appeared earlier as an example in Subsection 27.5. The homology
class of the fibers is the same class [F] as we discussed in Subsection 27.5.

We get further elliptic surfaces by the process sometimes called the fiber sum.
Consider a pair of 4-manifolds X and X ′ each containing tori F and F ′ with triv-
ialized normal bundle. Let X̂ and X̂ ′ be the manifolds with boundary obtained
by removing tubular neighborhoods of F and F ′. Thanks to the trivialization of
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the normal bundle of the fiber we can write the boundaries as products

∂X̂ = S1 × F

∂X̂ ′ = S1 × F ′

respecting orientation. Choose an orientation-reversing self-diffeomorphism
of S1 and an orientation-preserving diffeomorphism φ : F → F ′. (The
first choice is essentially unique, the second is not.) Together, these give an
orientation-reversing diffeomorphism ∂X̂ → ∂X̂ ′, and we can form a new
oriented manifold

X #F ,φX ′

by identifying the boundaries. If F and F ′ arise as fibers of elliptic fibrations π
and π ′, then X #F ,φX ′ is also elliptically fibered.

We can apply this construction to two copies of E(1): we set

E(2) = E(1)#F ,1E(1).

Although we have specified the identity map 1 as the diffeomorphism from F
to F here, it does not matter which map we choose. One way to understand this
is as follows. If γ is a loop in S2 so that the map π is a submersion over γ ,
then we obtain a torus bundle over the circle, by pulling back π over γ . This
torus bundle has a monodromy, well-defined up to isotopy, ψ : F → F . The
construction makes clear that

E(1)#F ,ψE(1) ∼= E(1)#F ,1E(1)

as smooth 4-manifolds. On the other hand, in the case of E(1), we can obtain
any element of the mapping class group of the torus by suitable choice of γ . In
fact, in the case of E(1), rather more is true; we record the following:

Proposition 38.1.1. Let Ê(1) denote the manifold with T 3 as its boundary
obtained by removing an open tubular neighborhood of the fiber F from E(1).
Then any orientation-preserving diffeomorphism of the boundary T 3 extends
to a diffeomorphism of E(1). �

So the same manifold E(2) can be obtained by gluing two copies of Ê(1)
using any orientation-reversing diffeomorphism of the boundaries.

We can repeat the construction, defining E(n) inductively:

E(n) = E(n− 1)#F E(1).
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Once again, the choice of φ does not affect the diffeomorphism type, so we
omit it from our notation. The fiber sum construction as we have described it is
not a holomorphic operation. Nevertheless, it can be realized in a holomorphic
manner. In particular, each of the 4-manifolds E(n) arises as the total space of a
genuine elliptic surface. It is natural to write E(0) for the trivial elliptic surface
S2 × F ; we then have

E(n1)#F E(n2) = E(n1 + n2)

all ni ≥ 0. For n ≥ 1, the manifold E(n) is simply connected and has b+ =
2n + 1; its signature is −8n, and the manifold is spin if n is even. From the
point of view of complex surfaces, the integer n records the holomorphic Euler
characteristic, h0,0 − h0,1 + h0,2.

The other construction we need is that of adding a multiple fiber. Consider
the circle group S1 acting on the unit sphere S3 in C2 by the action (z1, z2) �→
(λz1, λmz2) for some fixed m ≥ 2. All orbits are free except the orbit of (0, 1),
which has stabilizer of order m. The quotient is topologically a 2-sphere, and
the quotient map πm : S3 → S2 exhibits S3 as a Seifert-fibered space over S2,
with one multiple fiber of multiplicity m. If we take the product of this picture
with an extra circle, we obtain a C∞ elliptic surface π : Qm → S2. All fibers in
Qm are regular except one, the multiple fiber. We write F as usual for a regular
fiber. The multiple fiber is also an embedded 2-torus, but the derivative of πm is
singular along the whole multiple fiber. If we write Q̂m for the complement of
an open tubular neighborhood of a fiber, then Q̂m is simply a copy of D2 × T 2

as a smooth manifold, because it is a regular neighborhood of the multiple fiber.
But again, as an elliptic surface, Q̂m is not the trivial product example.

We write E(n)m for the fiber sum

E(n)m = E(n)#F Qm

defined using any diffeomorphism φ of the generic fibers F . As long as n ≥ 1,
the result is independent of φ, for the same reason as before. The elliptic surface
E(n)m fibers over S2, with one multiple fiber of multiplicity m. Again, we have
described the construction in C∞ terms, but there is a complex-analytic version
of the construction. Two caveats are in order. First, although the construction can
be performed in the complex-analytic context, introducing a multiple fiber in
this way can turn an algebraic surface into a complex surface that is not algebraic
and not even Kähler. For example if we start with a 4-torus T 4 = T 2×F , then
the fiber sum T 4#F Qm has odd first Betti number; this manifold therefore has
no Kähler structure. The second remark is that introducing a multiple fiber of
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“multiplicity 1” – that is, forming a fiber sum with Q1 – is in general a non-trivial
operation, although the effect on E(n) is trivial in the C∞ setting. We can also
form a fiber sum with several Qm of different multiplicities, so forming elliptic
surfaces

E(n)m1,...,mr

with r multiple fibers.
Kodaira’s classification establishes that the underlying smooth 4-manifold

of any simply connected elliptic complex surface is diffeomorphic to one of⎫⎪⎪⎪⎬⎪⎪⎪⎭
E(n) (n ≥ 1)

E(n)p (n ≥ 2, p ≥ 2)

E(n)p,q (n ≥ 1, p > q ≥ 2, (p, q) = 1)

(38.2)

or to a blow-up of one of these at any number of points.
The reason for excluding E(n)p from the list when n = 1 can be seen in

Proposition 38.1.1; the manifold Q̂m is just a standard D2 × T 2, so that propo-
sition tells us that E(1)p and E(1) are diffeomorphic manifolds, even though
they have different structures as elliptic fibrations. Indeed, a diffeomorphism
between these manifolds cannot preserve even the homology class of the fiber,
because our description of E(1) shows that the fiber class in E(1) is primitive
in integral homology, whereas in E(1)p the regular fiber is divisible by p, for it
is homologous to p times the multiple fiber. The following proposition clarifies
the point.

Proposition 38.1.2. Let E(1) be the standard elliptic surface, as above, and
let E(1)m be obtained as E(1)#F Qm, introducing a multiple fiber of multi-
plicity m. Let F and F ′ be regular fibers in the elliptic fibrations E(1) and
E(1)m respectively. Then there is a diffeomorphism ψ : E(1)m → E(1) with
ψ∗[F ′] = m[F]. �

38.2 Gluing along three-tori

Our computation of the Floer homology groups of the 3-torus allows us to
understand how the monopole invariants of 4-manifolds behave when gluing 4-
manifolds with 3-torus boundary.We take the point of view that we are interested
in determining the generating function m(X , [ν]) on a given homology class
[ν]. We discuss the simplest case, when the Poincaré dual of [ν] has non-trivial
restriction to the splitting 3-torus. Our calculations are based on the framework
of the following theorem.
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Theorem 38.2.1. Let X12 and X34 be oriented 4-manifolds which are each
decomposed as a union of manifolds with boundary,

X12 = X1 ∪ X2 and X34 = X3 ∪ X4.

We assume that the boundary of each of the pieces in either decomposition is
diffeomorphic to T 3. Suppose further that these 4-manifolds contain 2-cycles
ν12 ⊂ X12 and ν34 ⊂ X34 so that ν12 meets ∂X1 transversally in the 1-cycleη and
ν34 meets ∂X3 transversally in η′. We assume that [η] ∈ H1(∂X1) is non-zero.
Finally suppose that we are given an orientation-preserving diffeomorphism
f : ∂X1 → ∂X3 which takes η to η′. Then we can form the 4-manifolds

X14 = X1 ∪f X4 and X32 = X3 ∪f −1 X2.

Writing νi = Xi ∩ ν12 for i = 1, 2 and νi = Xi ∩ ν34 for i = 2, 4, we can
construct corresponding 2-cycles in X14 and X32;

ν14 = ν1 ∪f ν4 and ν32 = ν3 ∪f −1 ν2.

If each closed 4-manifold has b+ ≥ 2, then the generating functions for the
monopole invariants of these manifolds are related by

m
(
X12, [ν12]

)
m
(
X34, [ν34]

) = m
(
X14, [ν14]

)
m
(
X32, [ν32]

)
.

In the case that one or more Xij has b+ = 1, then the same result holds if we
replace the invariant m by mk defined in Subsection 27.5, where k ∈ H 2(Xij)

is Poincaré dual to a non-zero element in the image of H2(∂Xi) in H2(∂Xij).

Proof. From Proposition 3.9.3 we can write the invariants of the four 4-
manifolds as pairings in the appropriate Floer groups: if b+ ≥ 2 for all four
closed manifolds, then we have

m
(
X12, [ν12]

) = 〈ψX1,ν1 ,ψX2,ν2〉ωµ

m
(
X34, [ν34]

) = 〈ψX3,ν3 ,ψX4,ν4〉ωµ

m
(
X14, [ν14]

) = 〈ψX1,ν1 ,ψX4,ν4〉ωµ

m
(
X32, [ν32]

) = 〈ψX3,ν3 ,ψX2,ν2〉ωµ .

If any of the manifolds have b+ = 1, then we must use mk in place of m, and
appeal to Proposition 27.5.1 for the appropriate version of the gluing formula.
The pairings on the right-hand sides of these formulae all take place in the
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vector space HM•(T 3;�η) and its dual. The result now follows from Proposition
3.10.2, which states

HM•(T 3;�η) ∼= R;

the equality of the products is simply a formal consequence of the fact that this
space is 1-dimensional. �

We can apply this theorem to obtain a formula for the monopole invariants
of fiber sums. Let X and X ′ again be closed 4-manifolds containing embedded
2-tori F and F ′ with trivialized normal bundles. Form as before the fiber sum
X #F ,φX ′ using any orientation-preserving diffeomorphism φ : F → F ′. Let ν
and ν′ be real 2-cycles in the two manifolds, having non-zero pairing with F
and F ′. We can suppose that ν and ν′ meet the tubular neighborhoods of F and
F ′ each in a standard 2-disk with a non-zero real multiplicity. If [ν] ·F is equal
to [ν′] · F ′, then we are in the situation described in the theorem: we can write

X = N (F) ∪ X̂

X ′ = N (F ′) ∪ X̂ ′

where N (F) and N (F ′) are tubular neighborhoods. Cutting and re-gluing as
specified in the theorem, we obtain new manifolds

S2 × T 2 = N (F) ∪ N (F ′)

and

X #F ,φX ′ = X̂ ∪ X̂ ′.

The cycles ν and ν′ give rise to cycles in S2×T 2 and the fiber sum. In S2×T 2,
the cycle we obtain is a copy of the 2-sphere with multiplicity [ν] · F . In the
fiber sum, it is natural to call the 2-cycle ν#ν′. The theorem then gives

m
(
X , [ν])m(

X ′, [ν′])
= mk

(
S2 × T 2, ([ν] · [F])[S2])m(

X #F ,φX ′, [ν#ν′]). (38.3)

The invariant of S2 × T 2 was computed in Subsection 27.5, at (27.19), using
the wall-crossing formula. So we can rewrite the formula as

m
(
X , [ν])m(

X ′, [ν′]) = (
1

2 sinh
([ν] · [F])

)2

m
(
X #F ,φX ′, [ν#ν′]). (38.4)
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The above formula for the invariant of a fiber sum allows us to calculate
inductively the invariants of the elliptic surfaces E(n):

Proposition 38.2.2. The invariants of the elliptic surface E(n) for n ≥ 2 are
given by

m(E(n), h) = (
2 sinh(h · F)

)n−2

for any h ∈ H2(E(n); R), where F is the fiber. In the case n = 1, the above is a
valid formula for mk(E(1), h), where k is the dual of the fiber class, as long as
h · F is non-zero.

Proof. The formula in the case of E(1) = CP2#9C̄P
2

was already established
in (27.18). For larger n, apply the gluing theorem with X = E(1) and X ′ = E(n),
with 2-cycles ν and ν′ having [ν] ·F = [ν′] ·F ′. Then X #F X ′ = E(n+ 1), and
we obtain (

1

2 sinh
([ν] · [F])

)2

m
(
E(n+ 1), [ν#ν′])

= mk
(
E(1), [ν])m(

E(n), [ν′])
=
(

1

2 sinh
([ν] · [F])

)
m
(
E(n), [ν′]).

Any homology class h arises as [ν#ν′] on E(n+ 1) in this way, as long as it has
non-zero pairing with the fiber; so the result follows by induction on n, as long
as h ·F is non-zero. When n ≥ 2, the result for h ·F = 0 follows by continuity,
because when b+ ≥ 2 the invariant is a continuous function of the homology
class. �

The 4-manifold E(2) is better known as the K3 surface. In this special case,
the formula becomes

m(K3, h) = 1

for all h. In terms of the individual spinc structures, this means that m(X , sX )

is 1 for the spinc with c1(sX ) = 0 and is 0 for all other spinc structures. This
result can be derived from a different starting point, making use of the fact that
the K3 surface has a Ricci-flat Kähler metric.

We can also compute the invariants of elliptic surfaces with multiple fibers.
We are helped by the fact that, in the case n = 1, the 4-manifolds E(1)m and
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E(1) are diffeomorphic; which means that, in a sense, we already know the
invariants of E(1)m. More specifically, Proposition 38.1.1 tells us that there is
a diffeomorphism carrying the fiber class [F ′] in E(1)m to [mF], and taking
therefore the ray spanned by the dual k ′ = P.D.[F ′] to the ray spanned by
k = P.D.[F]. Our calculation for E(1) therefore gives

mk ′(E(1)m, h) =
(

2 sinh

(
F ′ · h

m

))−1

where F ′ is the regular fiber. Once we have this, we can apply Theorem 38.2.1
to obtain the result for a general elliptic surface with multiple fibers:

Theorem 38.2.3. Let X = E(n)m1,...,mr be the elliptic surface with holomorphic
Euler characteristic n ≥ 2 and multiple fibers of multiplicity m1, . . . , mr. Let
[F] be the class of a regular fiber. Then the monopole invariants of X are
given by

m(X , h) = 2n−2 sinh(F · h)n−2+r∏r
s=1 sinh

(
(F · h)/ms

) .

In the case n = 1, the same formula holds as an expression of mk(X , h), where
k is the dual of the fiber class. �

When n ≥ 2, the formula in this theorem can be expressed as a polynomial
function of exp( f ḣ), where f = F/

∏
mi:

m(X , h) = Pn,m1,...,mr (e
f ·h).

It follows quite easily from this formula that, in the list of elliptic surfaces
(38.2), no two are diffeomorphic, at least for n ≥ 2, essentially because the
polynomials Pn, Pn,p and Pn,p,q are all distinct. In the case n = 1, one can
pass to the “small-perturbation” invariant m(X , h), to obtain the same result.
By contrast, for each n, the list of elliptic surfaces (38.2) contains either one
homeomorphism type (if n is odd), or two homeomorphism types (if n is even)
distinguished by whether or not the manifold is spin. (For even n, the manifold
E(n)p,q is spin if and only if both p and q are odd.) See the references at the end
of this chapter.

An alternative way to summarize these calculations is as follows. Let η be a 1-
cycle in a torus T 3, with non-zero homology class. We know that ĤM•(T 3,�η)

is R, but we can now specify a canonical generator, up to sign, for this copy
of R. To do this, realize T 3 as the boundary of Ê(1), and extend η to a relative
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2-cycle ν with ∂ν = η. Regarding T 3 as the oriented boundary of Ê(1), we
obtain an invariant

ψÊ(1),ν ∈ ĤM•(T 3,�η).

Our calculation of the invariant of E(1) and Proposition 38.1.1 imply that this
element is independent of the choice of extension: it is a preferred basis element

ψ(1) = ĤM•(T 3,�η).

If we us this basis element to identify the Floer homology group with R, then
given any other manifold X̂ with boundary T 3, and given a 2-chain ν in X̂
with boundary η representing a non-zero class, we can regard the associated
invariant ψX̂ ,ν as a real number. For example, in these terms, we have

ψ(D2×T 2,ν) =
1

2 sinh(T 2 · ν) .

Notes and references for Chapter IX

The fact that the Floer homology of the 3-torus with twisted coefficients is
1-dimensional means that a suitable invariant of a compact 4-manifold with
3-torus boundary can be interpreted as a single real number. This observation,
and the consequent gluing formulae for manifolds cut along 3-tori, have been
pursued and developed by several authors. In particular, Taubes’ paper [118]
develops gluing results which correspond to the case of twisted local coefficients
on the torus (in our exposition), leading to the same formalism which we used
in our discussion of elliptic surfaces in this chapter. Other gluing results for
decompositions along 3-tori are obtained in [80], where formulae are obtained
corresponding to the case of ordinary coefficients, where the Floer group is Z3.
A similar phenomenon arises in instanton Floer theory, where it was used, for
example, to understand the effect of “logarithmic transforms” on Donaldson’s
polynomial invariants in [49].

Because of the conjectured isomorphism between the Seiberg–Witten Floer
homology groups and the Heegaard Floer groups of Ozsváth and Szabó (see
Subsection 3.12), it is interesting to compare the calculations here with what
is known in the case of Heegaard Floer homology. The Heegaard homology
group HF∞(Y ) is completely understood (at the time of writing) only for small
values of b1(Y ) and in some examples with higher Betti number. Nevertheless,
it is known that the Heegaard group HF∞(Y ) has a description of the same
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sort as we obtained in Corollary 34.4.2 for HM•(Y ); it is only the vanishing
of the higher differentials which is not known to hold in general. See [90].
The result of Proposition 35.3.3 and Proposition 35.3.4 for S1 × � matches
a corresponding calculation in Heegaard Floer homology by Jabuka and
Mark [54].

The fact that the Floer groups are non-trivial, as stated in Corollary 35.1.4,
plays a role in Taubes’ proof of the Weinstein conjecture on the existence of
closed orbits for the Reeb flow on a contact 3-manifold [107].

The calculation of the invariants of elliptic surfaces has a long history. A
calculation of a rather special instanton invariant for E(1) and E(1)2,3 in [18]
gave the first example of an h-cobordant pair of simply connected 4-manifolds
that could be shown not to be diffeomorphic. Further contributions to the cal-
culation of instanton invariants for elliptic surfaces, and to the proof that the
elliptic surfaces listed in (38.2) represent distinct diffeomorphism types, include
[37, 38, 81, 79, 11, 67, 36, 105, 60, 30]. A detailed study of the topology of
elliptic surfaces is given in [39].
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Further developments

In this final chapter, we give a taste of some further results concerning Floer
homology and its topological applications. We do not always give complete
proofs, nor do we aim to give a comprehensive survey.

Section 39 discusses Frøyshov’s invariant and its application to negative-
definite cobordisms. The topological results of this section, originating from
Frøyshov’s paper [41], can be seen as a natural extension of Donaldson’s the-
orem, that the intersection form of a smooth, closed 4-manifold must be the
standard diagonal form if it is positive- or negative-definite.

If a 3-manifold has positive scalar curvature, then the map j from
̂

HM•
to ĤM• is identically zero, which in particular means that the Floer groups
HM•(Y , s) must vanish for all spinc structures with non-torsion first Chern
class. Section 40 explores an extension of this idea, an inequality between the
genus of an embedded surface � ⊂ Y and the value of c1(s) on � which holds
whenever HM•(Y , s) is non-zero. While Section 40 exploits scalar curvature to
bound the genus from above, a rather deeper result shows that these bounds are
essentially sharp. More precisely, the Thurston norm (which encodes the genus
of embedded surfaces as a function of their homology class) can be recovered
from the Floer groups of a 3-manifold. The proof of this result is in Section 41.
It uses a circle of ideas involving symplectic structures, contact structures and
foliations. The central result of Section 41 is a non-vanishing theorem for Floer
homology, Theorem 41.4.1.

Many of the topological applications of Floer homology rest on a long exact
sequence relating the Floer groups of three 3-manifolds obtained by different
Dehn fillings of a given 3-manifold with torus boundary. We present the exact
sequence (without proof), and explain some topological applications. Such
topological applications were pioneered in the context of Heegaard homol-
ogy by Ozsváth and Szabó. Further references are given, as usual, at the end of
the chapter.

721
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39 Homology spheres and negative-definite cobordisms

39.1 Frøyshov’s invariant

For homology 3-spheres, there is an integer-valued invariant that one can extract
from the Floer homology groups, using the canonical grading from Subsec-
tion 28.3. An invariant of this type was first constructed by Frøyshov in [42]
in the context of instanton Floer homology. The Seiberg–Witten version was
introduced in [43], and a similar construction was used by Ozsváth and Szabó
for their Heegaard Floer homology [89]. The definition can be extended to
rational homology 3-spheres equipped with a spinc structure, but we keep to
the simplest case here.

So let Y be a homology 3-sphere, and let s be its unique spinc structure. In
B(Y ), with a small perturbation of L, there is exactly one reducible critical
point, contributing a sequence of generators to HM•(Y ), just as in the case of
S3 (see also Subsection 35.3). We work with real coefficients, so that

HM•(Y ) ∼= R[U−1
† , U†]],

as modules over the ring R[[U†]]. The construction of Subsection 28.3 gives
HM∗(Y ) a canonical Z grading; and in the case of a homology sphere, HMk(Y )

is non-zero for even integers k, as stated in Corollary 28.3.3. In the above
isomorphism, we can regard the element 1 ∈ R[U−1

† , U†]] as having degree
zero and U† as having degree−2; and in this case the isomorphism can be taken
to preserve the canonical grading. As an abbreviation, let us write

L = R[U−1
† , U†]],

so that HM•(Y ) ∼= L as graded modules over the ring

S = R[[U†]].

The only non-trivial proper S-submodules of L are the submodules Lh ⊂ L,
defined as

Lh = U h+1
† S

for h in Z. This is the closure of the span of all graded components of L in
degree less than −2h. (In particular, our notation implies we are regarding S
itself as a submodule of L, consisting of the elements involving non-negative
powers of U†, i.e. the elements of non-positive degree.)
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From the 3-manifold Y , we obtain a preferred submodule of L, from the
image of the map

p : ĤM•(Y )→ HM•(Y )

or equivalently the kernel of

i : HM•(Y )→

̂

HM•(Y ).

This submodule is proper and non-zero, so it coincides with Lh for some h.
In this way, one obtains an integer invariant h(Y ) associated to an oriented
homology 3-sphere Y . The definition is normalized so that h is zero for the
standard 3-sphere:

Definition 39.1.1. If Y is an oriented integral homology 3-sphere, the Frøyshov
invariant h(Y ) is defined as the unique integer h such that the image of p :
ĤM•(Y )→ HM•(Y ) ∼= L coincides with the S-submodule Lh. ♦

Because i defines an injective map on HM•(Y )/im(p), an alternative way to
think about h is in terms of the image of i: the definition says that the lowest
grading of any element of the image of i in

̂
HM•(Y ) is −2h.

A notable property of h, which motivated Frøyshov’s definition, is its mono-
tonicity with respect to negative-definite cobordisms. To describe this, suppose
we have a cobordism W between homology 3-spheres Y0 and Y1. Suppose that
W has zero integral first homology and negative-definite intersection form. The
cobordism gives a commutative diagram

ĤM•(Y0)

p

��

�� ĤM•(Y1)

p

��

HM•(Y0)
HM•(W )

�� HM•(Y1),

(39.1)

and hence a commutative diagram

Lh0� �

��

�� Lh1� �

��
L

x �� L,

(39.2)

in which the two vertical maps are the inclusions, and hi denotes h(Yi). The
map x is what becomes of HM•(W ) under the identification of the two groups
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HM•(Yi) with L, and this map can be described quite precisely, as we now
explain.

For each choice of spinc structure sW on W , there is a unique spinc connec-
tion A0 (up to gauge equivalence) on the cylindrical-end manifold W+ having
F+

At
0
= 0, because of the topological assumptions on Y . Let us label the reducible

critical point in Bσ (Y0) with grading 2k as ak , and write bk similarly on Y1.
For each k and k ′, the compactified moduli space M red

z ([ak ], W , [bk ′ ]) is either
empty (if the formal dimension is negative) or a complex projective space,
whose dimension depends on W , sW and the difference k − k ′. In particular,
looking at the contribution of the zero-dimensional moduli spaces, we see that
the contribution of the spinc structure sW to the map

x : L → L

has a simple form, given by multiplication by U−r
† . We can read off r from

the formula for the canonical Q grading, Definition 28.3.1, as we did in (28.3):
we have

2r = 1

4

〈
c1(S

+), c1(S
+)
〉− ι(W )− 1

4
σ(W ),

which becomes

r = 1

8

(〈
c1(S

+), c1(S
+)
〉+ b2(W )

)
.

Note that c1(S+) is a characteristic vector in the negative-definite, unimodular
lattice H 2(W ; Z), which is to say that

〈c, a〉 = 〈a, a〉 (mod 2)

for all integer classes a. For a characteristic vector, the square 〈c, c〉 is equal to
minus the rank mod 8, which confirms that r is an integer.

When we sum over all spinc structure, we obtain a formula for x:

Proposition 39.1.2. Let W be a negative-definite cobordism with b1 = 0,
between homology spheres Y0 and Y1, and let x : L → L be the map arising
from

HM•(W ) : HM•(Y0)→ HM•(Y1)
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after identifying each HM•(Yi) with L, preserving the canonical grading. Then
x is given by multiplication by the power series

x =
∑

c

U−(c·c+b2(W ))/8
† ,

where the sum is over all characteristic vectors. �

Note that this power series extends infinitely in the direction of positive
powers of U†, and depends only on the intersection form QW (as a quadratic
form over Z). The series contains at least one non-zero term involving a non-
positive power of U†, according to the following result of Elkies concerning
unimodular forms:

Proposition 39.1.3 ([27]). Let Q be a unimodular quadratic form over Z, either
positive- or negative-definite. Then there is a characteristic vector c for Q
satisfying

|Q(c)| ≤ rank(Q).

If Q is not the standard diagonal form, then there is a characteristic vector c
which achieves strict inequality here. �

Note that for even forms, the result is clear, for in that case 0 is a characteristic
vector. For the diagonal form Q = diag(1, . . . , 1), the characteristic vector
c = (1, . . . , 1) achieves equality, but no characteristic vector achieves strict
inequality. We introduce the notation

ρ(Q) = 1

8

(
rank(Q)− inf

c
|Q(c)|

)
,

and interpret Elkies’ result as saying that ρ(Q) is non-negative, and is strictly
positive if Q is not standard. The leading term in the power series x above is a
non-zero multiple of U−ρ(QW )

† :

x = U−ρ(QW )

†

(
a0 + a1U† + · · ·

)
.

From this, we can now deduce:

Theorem 39.1.4 (Frøyshov [43]). Let Y0 and Y1 be integral homology 3-
spheres, and W an oriented cobordism from Y0 to Y1 with H1(W ; Z) = 0
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and QW negative-definite. Then the invariants h0 = h(Y0) and h1 = h(Y1)

satisfy

h0 ≥ h1 + ρ(QW ).

In particular, h0 ≥ h1, with strict inequality if QW is not the standard diagonal
form.

Proof. The result follows from the commutative diagram (39.2). Our descrip-
tion of the power series x and the definition of Lh together tell us that

xLh0 = Lh0−ρ

where ρ = ρ(QW ). The diagram therefore tells us that

Lh0−ρ ⊂ Lh1 ,

which means that

h0 − ρ ≥ h1.

�

Remark. We have considered only the case that H1(W ; Z) = 0 so as to simplify
the exposition. If H1(W ; Z) is a torsion group, very little changes, except that
for each characteristic vector c in H 2(W ; Z)/torsion there will be more than
one spinc structure: there will be |Tor| spinc structures for each c, where Tor
is the torsion subgroup. The only effect of this is that the formula for x given
in Proposition 39.1.2 needs to be corrected by including a factor of |Tor|. In
addition, even if W has non-zero first Betti number, it can be altered by surgery
to make b1 = 0 without affecting the intersection form; so in the above theorem
the hypothesis on H1(W ; Z) can be entirely removed.

The strict monotonicity property in Frøyshov’s theorem, i.e. the statement
that h0 > h1 if QW is non-standard, already implies that if W is a negative-
definite cobordism from S3 to S3, then QW is standard. This provides a
proof of the theorem of Donaldson, first proved using Yang–Mills theory, that
a closed negative-definite 4-manifold must have standard intersection form.
Another application is to the case of even intersection forms, where ρ(W ) is
rank(QW )/8:
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Corollary 39.1.5. If Y is a homology sphere arising as the oriented boundary
of a 4-manifold X with even, negative-definite intersection form, then

b2(X )/8 ≤ −h(Y ).

�

As an example, Frøyshov computes the invariant h for the Poincaré homology
sphere Y , oriented as the boundary of the negative-definite E8 plumbing: the
result, h(Y ) = −1, implies that Y cannot be the boundary of a negative-definite
4-manifold with even intersection form if the form has rank larger than 8.

39.2 Frøyshov’s invariant with mod two coefficients

One can define a Frøyshov-type invariant using any field in place of R. We use
h̄(Y ) to denote the invariant obtained by using a field of characteristic 2. (In
[43], the notation hp is used for the invariant obtained by using coefficients with
characteristic p.) Theorem 39.1.4 continues to hold for this modified version
of the invariant. In the proof, it might at first appear that we have made use of
the fact that no cancellation can occur in the sum that defines the power series
x, something that would cease to hold if the coefficients had finite character-
istic. But one can simply consider the spinc structures on a cobordism W one
by one, rather than using the map HM•(W ) which is defined using them all.
Equivalently, one can use a W -morphism to separate the spinc structures.

To illustrate this, consider the field K of characteristic 2 obtained as the field
of fractions of the ring F2[R], the group ring of R over the field F2. This field
comes equipped with a group homomorphism

exp : R → K× (39.3)

arising from the tautological inclusion of R in F2[R]×. Associated to a real 1-
cycle η in a 3-manifold is a local coefficient system �η on Bσ (Y ), as described
in Subsections 3.7 and 22.6. As defined, �η has fiber R. However, as pointed
out in Subsection 22.6, we can modify the definition of �η by replacing R with
any other field, such as K, as long as it is equipped with an exponential map
such as (39.3). In this way, given a real 1-cycle η, we obtain a local coefficient
system on Bσ (Y ) which we will denote by Kη. Its fibers are all canonically
isomorphic to K, which is a field of characteristic 2. As with �η, if W is a
cobordism between 3-manifolds and ν is a 2-chain in W with

∂ν = −η0 + η1,
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then ν gives rise to a W -morphism of local coefficient systems,

Kν : Kη0 → Kη1 ,

and hence a map

HM•(W ; Kν) : HM•(Y0; K)→ HM•(Y1; K).

We now consider the case that Y0 and Y1 are homology 3-spheres and ν0 and
ν1 are zero. The 2-chain ν is therefore a cycle in W . We can again identify

HM•(Yi; K) ∼= L̄,

where L̄ is now the ring of Laurent series

L̄ = K[U−1
† , U†]].

This identification is again chosen to preserve the canonical grading. If W is
negative-definite and H1(W ; Z) = 0, then we have a formula for HM•(W ; Kν)

as multiplication by the Laurent series

x̄ =
∑

c

exp(c · ν)U−(c·c+b2(W ))/8
† (39.4)

where the sum is again over all characteristic vectors, and the exponential map
that appears is again the tautological map R → K×. (There is nothing special
about our choice of K, of course, as far as this formula is concerned: the same
formula would hold for K = R, with exp being the usual exponential map.) If
ν is chosen so that it has non-zero pairing with every non-zero integer class,
then there will be no chance of cancellation occurring in this sum, and x̄ will
therefore have the form

x̄ = U−ρ(QW )

†

(
ā0 + ā1U† + · · ·

)
,

with non-zero leading coefficient ā0 ∈ K. In this way, we obtain a convenient
framework in which to carry over our previous arguments to the case of a field
of characteristic 2. We shall make further use of the field K later in this chapter.

39.3 The blow-up formula

The blow-up of a smooth 4-manifold means the connected sum

X̃ = X #C̄P
2
.
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(The terminology comes from algebraic geometry.) In Subsection 3.11, we
deduced a general vanishing result for the monopole invariants of connected
sums, Corollary 3.11.3. That result, however, is applicable only when both
summands have b+ non-zero: it does not apply to the case of X̃ , since the

intersection form of C̄P
2

is negative. Indeed, if X has non-zero monopole
invariants, then so does X̃ , and there is a straightforward formula relating the
two. This is the blow-up formula, which we now describe.

Rather than consider the case of C̄P
2

alone, we can consider a general
closed 4-manifold N with negative-definite intersection form QN and trivial
integral first homology. (One can also treat the case that H1(N ; Z) is a non-zero
torsion group in much the same way: see the remark following the proof of
Theorem 39.1.4.) We set

X̃ = X #N .

A homology orientation for X determines one also for X̃ , and we suppose that
these have been fixed. We can then consider the monopole invariants

m(ũ | X̃ ) =
∑

s̃

〈
ũ, M(X̃ , s̃)

〉

where the sum is over all spinc structures on X̃ and ũ is a cohomology class on
Bσ (X̃ ).

Note that each component Bσ (X̃ , s̃) of Bσ (X̃ ) has the same cohomology ring
as the components of Bσ (X ), namely the algebra

A(X ) = �(H1(X )/torsion)⊗ Z[U ].

We can therefore regard m(− | X̃ ) as a function on A(X ). The following theorem
expresses this invariant of X̃ in terms of the invariant of X . As a technical point
in the statement, we note that the expression m(a |X ) makes sense not just for
a ∈ A(X ), but also for a in the completion

A•(X ) = �(H1(X )/torsion)⊗ Z[[U ]].

The reason is that only finitely many moduli spaces M(X , s) are non-empty, so
only finitely many terms of a make any contribution. With this understood, we
can state the blow-up formula:
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Theorem 39.3.1. For any a ∈ A•(X ), we have

m(a | X̃ ) = m(xa |X )

where x ∈ A•(X ) denotes the expression

x =
∑

c

U−(c·c+b2(N ))/8,

and the sum is over all characteristic vectors in H 2(N ; Z).

Some remarks are in order. First, Donaldson’s theorem [17] tells us that the
intersection form of N is the standard, diagonal form. So the series x actually
only depends on the Betti number b2(N ), and it is simply the b2’th power of
the series that arises from the quadratic form (−1):

x =
(∑

n odd

U (n2−1)/8

)b2(N )

.

Second, the simple-type conjecture (Conjecture 1.6.2, slightly generalized),
would say that m(U ea |X ) = 0, for e positive. If X satisfies this condition
(which holds in all known cases at the time of writing), then the only odd
integers n which contribute are n = ±1. In such cases, the blow-up formula
says more simply

m(a | X̃ ) = 2b2(N )m(a |X ).

A third remark is that, if we drop the condition that H1(N ; Z) is zero and instead
ask only that b1(N ) is zero, then we have essentially the same formula with an
additional factor of the order of the torsion group. (See the similar remark after
the proof of Theorem 39.1.4 above.)

In addition to the invariant m(u |X ), there is the generalization

m(u |X , h) =
∑

s

〈
u, M(X , s)

〉
exp

〈
c1(s), h〉

for h in H 2(X ; R). The blow-up formula extends to this more general invariant.
We write H2(X̃ ; R) as a direct sum, and so write a typical element

h̃ = (h, l),

where l ∈ H2(N ; R). Then we have:
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Theorem 39.3.2. For any a ∈ A•(X ) and h̃ = (h, l) in H2(X̃ ; R), we have

m(a | X̃ , h̃) = m(xla |X , h)

where xl ∈ A•(X ) denotes the expression

xl =
∑

c

U−(c·c+b2(N ))/8 exp〈c, l〉,

and the sum is over all characteristic vectors in H 2(N ; Z).

The formula for xl that appears can be expressed in terms of a ϑ-function.
In the case that b2(N ) is 1, for example, we pick a generator E for H2(N ) and
write l = λE for R; we can then write xl as∑

m

U m(m+1)/2e−(2m+1)λ.

This can be written in terms of the Jacobi ϑ-function

ϑ2(z, q) =
∑

m

q(m+1/2)2
e(2m+1)iz

as

xl = U−1/8ϑ2(U
1/2, iλ).

In the case of larger b2, after diagonalizing the quadratic form, and writing
l = (λ1, λ2, . . . , λb2(N )), we obtain

xl = U−b2(N )/8
b2(N )∏
k=1

ϑ2(U
1/2, iλk).

When X has simple type, all terms involving higher powers of U disappear.

So for N = C̄P
2
, if we write h̃ = (h, λE) where E is a generator of H2(C̄P

2
; Z),

then the formula becomes

m(X̃ , h+ λE) = 2 cosh(λ)m(X , h). (39.5)

If we go back to considering individual spinc structures on X rather than the
generating function, then this last formula can be expressed more directly. Let
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s be a spinc structure on X , and let s̃ be a spinc structure on the blow-up X̃
whose first Chern class is given by

c1(s̃) = c1(s)± P.D.[E]

with respect to the direct sum description of the cohomology. Then the result
is simply:

m(X̃ , s̃) = m(X , s). (39.6)

Proof of Theorem 39.3.2 The proof of the blow-up formula in the general form
of Theorem 39.3.2 is a straightforward adaptation of our earlier result about
negative-definite cobordisms, and in particular the formula (39.4) in the case of
the real field. To understand this, recall that the invariant m(u |X , h) of a closed
manifold X can be expressed in terms of the map on Floer groups resulting
from the cobordism WX : S3 → S3 obtained by removing two balls from X .
The formula relating m(u |X , h) to the map

−−→
HM•(u |WX ;�ν) : ĤM•(S3)→

̂
HM•(S3)

is given in Proposition 27.4.3. Here ν is a closed cycle in WX representing the
class h. When we replace X by X̃ = X #N , then we can write the corresponding
cobordism WX̃ as a composite,

WX̃ = WX �WN ,

where WN is obtained from N by removing two balls. We also have a
composition law from Theorem 3.5.3 (see also Subsection 27.3),

−−→
HM•(u |WX̃ ;�ν̃) = −−→HM•(u |WX ;�ν) � ĤM•(u |WN ;�π) (39.7)

where ν̃ = ν + π is a cycle representing the class h̃ = h + l in the connected
sum. The factor

ĤM•(u |WN ;�π) : ĤM (S3)→ ĤM (S3)

that appears in (39.7) is known to us. Indeed, ĤM (S3) is a submodule of
HM (S3), and this map is just the restriction of the map

HM•(u |WN ;�π) : HM (S3)→ HM (S3)
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which we calculated above: see Equation (39.4), which is the formula for
the case of a general negative-definite cobordism W . Thus (39.7) expresses−−→
HM•(u |WX̃ ;�ν̃) in terms of

−−→
HM•(u |WX ;�ν) and a known power series (39.4).

Using the relationship between the latter and m(u |X , h), we obtain the blow-up
formula in the form given in the theorem. �

40 Genus bounds and scalar curvature

40.1 Dimension three

Recall that when we decompose

̂

HM•(Y ) and its companions according to spinc

structures, ̂

HM•(Y ) =
⊕

s

̂

HM•(Y , s),

there are only finitely many spinc structures which contribute. This was stated
as Proposition 3.1.1, and the proof was based on an L2 bound on the curvature,
(10.17). If we take a closer look at this bound, and exploit the topological
invariance of the Floer groups by choosing very particular Riemannian metrics,
we can get a much sharper result than just the finiteness of the set of contributing
spinc structures.

The result we shall state involves the spinc structures s with c1s non-torsion.
For such spinc structures,

̂

HM•(Y , s) and ĤM•(Y , s) are isomorphic; so, as we
have done before, we simply write HM•(Y , s).

Proposition 40.1.1. Let � be a smoothly embedded, oriented connected 2-
manifold in Y of genus at least 1, and let s be a spinc structure. If∣∣〈c1(s), [�]〉

∣∣ > 2 genus(�)− 2

then there is a Riemannian metric on Y for which the unperturbed Seiberg–
Witten equations admit no solution belonging to the spinc structure s.

Corollary 40.1.2. Under the hypotheses of the proposition above, if∣∣〈c1(s), [�]〉
∣∣ > 2 genus(�)− 2 ≥ 0

then the group HM•(Y , s) is zero. �



734 X Further developments

To state the corollary the other way around, the spinc structures s for which
HM•(Y , s) is non-zero are constrained by the inequality

∣∣〈c1(s), [�]〉
∣∣ ≤ 2 genus(�)− 2.

If we represent a basis for H2(Y , Z) by embedded surfaces �i, then the corre-
sponding inequalities bound the coefficients of c1(s)when expressed in terms of
the dual basis for H 2(Y , Z)/torsion. In this way, the image of c1(s) in H 2(Y , R)

is constrained to lie in a compact polytope. We shall return to this in more detail
when we discuss the Thurston norm later in this chapter.

Proof of Proposition 40.1.1. To prove the proposition, we construct a Rieman-
nian metric on Y which contains a long cylindrical piece, [−T , T ] ×�. To be
more specific, we first fix a Riemannian metric h� on � with constant sectional
curvature and total area 1. We then consider a 1-parameter family of metrics hT

on Y , with the property that (Y , hT ) contains an isometric copy of the cylinder
[−T , T ] × Y with the product metric

dt2 + h� .

We further require that the geometry of (Y , hT ) in the complement of the
cylindrical piece is independent of T .

On the cylindrical part of (Y , hT ), the scalar curvature s is a constant, and by
the Gauss–Bonnet theorem this constant is−8π(g−1), where g is the genus of
�. Since the geometry is fixed outside the cylindrical piece, we therefore have∫

Y
s2 dvol = T (8π)2(g − 1)2 + C

for this metric, where C is a constant independent of T .
Now let A be any spinc connection for the spinc structure s. By the Chern–Weil

theorem, we have ∫
�

iFAt = 2π〈c1(s), [�]〉.

So for each t ∈ [−T , T ], we have∫
{t}×�

∣∣FAt |t×�

∣∣2 dvol� ≥ 4π2〈c1(s), [�]〉2,
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because � has area 1. Integrating with respect to t, we find∫
Y
|FAt |2 dvolY ≥ 4π2T 〈c1(s), [�]〉2.

Having estimated the L2 norms of both s and FAt , we now use the basic
identity of Corollary 4.5.3: in its 4-dimensional version, this identity states that
on a closed 4-manifold X , solutions (A,�) to the Seiberg–Witten equations are
characterized by

0 = 1

4

∫
X
|FAt |2 +

∫
X
|∇A�|2 + 1

4

∫
X

(|�|2 + (s/2)
)2 −

∫
X

s2

16

− 1

4

∫
X

FAt ∧ FAt . (40.1)

The 3-dimensional version of this identity can be obtained by considering X =
S1 × Y and pulling back a solution from the 3-manifold. In this case, the term
FAt ∧ FAt is zero, and we have

0 = 1

4

∫
Y
|FAt |2 +

∫
Y
|∇A�|2 + 1

4

∫
Y

(|�|2 + (s/2)
)2 −

∫
Y

s2

16

for any solution on Y . In particular,∫
Y
|FAt |2 ≤ 1

4

∫
Y

s2.

If a solution exists on (Y , hT ), then the above estimates give us

4π2T 〈c1(s), [�]〉2 ≤ (1/4)T (8π)2(g − 1)2 + C,

or more simply

〈c1(s), [�]〉2 ≤ (2g − 2)2 + C/(4π2T ).

If a solution (AT ,�T ) exists for all metrics in the family hT , then it follows that∣∣〈c1(s), [�]〉
∣∣ ≤ 2g − 2.

This proves the proposition. �

A simple illustration of Corollary 40.1.2 is the case Y = S1 × �. A basis
for the second homology in this case is provided by the surface {p} × � and
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the tori S1 × γi, for loops γi in � forming a basis for H1(�). The corollary
tells us that, for HM•(Y , s) to be non-zero, it is necessary that c1(s) evaluate
to zero on the tori S1 × γi, which means that the spinc is pulled back from the
�. Furthermore, the remaining pairing 〈c1(s), [�]〉 is constrained to lie in the
interval from −(2g − 2) to (2g − 2). (In this simple case, much more can be
said, in fact: the solutions of the equations can be parametrized explicitly.)

Corollary 40.1.2 says nothing about the case that � is a 2-sphere. There is,
however, a vanishing theorem for the Floer homology groups, with a non-trivial
local coefficient system, for 3-manifolds containing a 2-sphere in a non-trivial
homology class.

Proposition 40.1.3. Suppose that Y contains an embedded 2-sphere � in a
non-trivial homology class. Let η be a real 1-cycle such that the Poincaré dual
of the class [η] has non-zero pairing with [�]. Then

HM•(Y ;�η) = 0.

Proof. Fix a spinc structure s and consider the contribution HM•(Y , s;�η). As
in the proof of the previous proposition, we consider a metric hT on Y containing
an isometric copy of a cylinder [−T , T ] ×�, equipping � with a round metric
of radius 1.

Suppose HM•(Y , s;�η) is non-zero. Then for all T there must exist solutions
to the Seiberg–Witten equations on (Y , hT ). The inequalities which we used
previously no longer lead to a contradiction for any finite T . But if we take the
limit as T increases to infinity, then a straightforward compactness argument
shows that there will be a solution (B,�) to the 3-dimensional Seiberg–Witten
equations on the infinite cylinder R×�. Furthermore, the spinor � will satisfy
a pointwise bound.

It is not hard to see, in fact, that the limiting spinor � must be zero on the
cylinder. One way to demonstrate this is to use the differential inequality (4.22),
which gives

�|�|2 ≤ −|�|2.

Because we know that � is bounded, this differential inequality forces � to be
zero, as one can see, for example, by replacing |�|2 by its average value over
the 2-spheres, reducing the question to a differential inequality in one variable.

Knowing that � is zero, we see that FBt = 0, so c1(s) is zero on the 2-sphere
�. To finish the argument, we exploit the fact that we have non-trivial local
coefficients, and use Theorem 31.1.3. We perturb the equations by a closed, non-
exact 2-form ω of period class c = (4π/i)[ω]. We arrange that c is non-zero on
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the class [�]. If ω is smaller than a fixed multiple of the scalar curvature, then
the compactness argument can be repeated: the conclusion is that, if solutions
of the perturbed equations exist on (Y , hT ) for all T , then there exists a solution
(B,�) on the cylinder, with � = 0 and

FBt = 4ω.

But there is no such B because c1(s) is zero on � and [ω] is non-zero. With the
non-exact perturbation, there are therefore no solutions when T is large. From
Theorem 31.1.3, we deduce that

HM•(Y , s;�) = 0

for any c-complete local system �. The local system �η is not c-complete; but if
we choose c to be a small multiple of the Poincaré dual of η, then we can use the
universal coefficient theorem, as in Subsection 32.3, to deduce the vanishing
of HM•(Y , s;�η) also. �

40.2 Dimension four

The results in the previous subsection can be extended from dimension 3 to
dimension 4. We consider a closed 4-manifold X (oriented as always) and an
embedded, oriented, connected surface � ⊂ X . To begin with, we suppose
that � has trivial normal bundle in X . In this situation, we have the following
adaptation of Proposition 40.1.1.

Proposition 40.2.1. Let � be a smoothly embedded, oriented connected 2-
manifold in X of genus at least 1 with trivial normal bundle and let s be a spinc

structure. If ∣∣〈c1(s), [�]〉
∣∣ > 2 genus(�)− 2

then there is a Riemannian metric on X for which the unperturbed Seiberg–
Witten equations admit no solution belonging to the spinc structure s.

Proof. Let Y ⊂ X be the copy of S1×� that arises as the boundary of a tubular
neighborhood of the surface. Fix metric h� on � with constant curvature and
area 1 as before, and let hY be the product metric on S1 × � in which the S1

factor has length 1. The total volume of (Y , hY ) is thus 1, and its scalar curvature
is the constant 8π(1−g). As we previously did in dimension 3, we consider on
X a family of metrics hT containing a cylindrical piece [−T , T ] × Y with the



738 X Further developments

metric dt2 + hY , and whose geometry is independent of T on the complement.
Much as before, we have∫

X
s2 dvol = T (8π)2(g − 1)2 + C

for the metric hT .
Now let A be a spinc connection for the spinc structure s. On each copy of

� of the form

{t} × {θ} ×� ⊂ [−T , T ] × Y ,

we can apply the Chern–Weil formula as before to obtain∫
{t}×{θ}×�

∣∣FAt |�
∣∣2 dvol� ≥ 4π2〈c1(s), [�]〉2,

so ∫
X
|FAt |2 dvolX ≥ 4π2T 〈c1(s), [�]〉2,

just as in dimension 3.
If (A,�) is a solution of the Seiberg–Witten equations, we use the identity

(40.1) again. There is now an additional term, which was absent in the 3-
dimensional case, namely the term

1

4

∫
X

FAt ∧ FAt .

But this term is a topological quantity, independent of the metric and of A: it is
equal to −π2c2

1(s)[X ]. The identity therefore yields∫
X
|FAt |2 ≤ −4π2c2

1(s)[X ] +
1

4

∫
X

s2 dvol.

The additional topological constant does not affect the remainder of the argu-
ment: if a solution (AT ,�T ) exists for the metric hT for all T , then our estimates
again yield ∣∣〈c1(s), [�]〉

∣∣ ≤ 2 genus(�)− 2

as in the 3-dimensional case. �
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When b+(X ) > 1, we can draw a corollary phrased in terms of the invariants
m(X , s). We recall from Subsection 1.5 that a class c in H 2(X ; Z) is a basic class
if it arises as c1(s) for some spinc structure s with m(X , s) non-zero. We also
take the opportunity to point out that, in dimension 4, an oriented embedded
surface � ⊂ X has trivial normal bundle if and only if the self-intersection
number � ·� is zero. We can then state:

Corollary 40.2.2. Let X be a closed, oriented smooth 4-manifold with
b+(X )> 1. Let � be a connected, oriented surface embedded in X , of genus at
least 1, with � ·� = 0. Then

2 genus(�)− 2 ≥ ∣∣〈c, [�]〉∣∣
for all basic classes c ∈ H 2(X ; Z). �

This result can be extended to surfaces with positive normal bundle if we
incorporate a term� ·� into the inequality. This is an application of the blow-up
formula. We state the result:

Theorem 40.2.3. Let X be a closed, oriented smooth 4-manifold with
b+(X ) > 1. Let � be a connected, oriented surface embedded in X , of genus
at least 1, with � ·� ≥ 0. Then

2 genus(�)− 2 ≥ ∣∣〈c, [�]〉∣∣+� ·�

for all basic classes c ∈ H 2(X ; Z). �

Proof. We have already proved the result for the case � · � = 0. If � · � is
positive, we can proceed by induction on � · �. Let X̃ denote the connected

sum X #C̄P
2
, and let E ∈ H2(C̄P

2
; Z) be a generator, represented by a sphere

S. Inside X̃ , we can form the connected sum of � and S, to obtain an embedded
surface

�̃ = �#S

⊂ X̃ .

This surface has the same genus as �. It represents the class [�] + E, so

�̃ · �̃ = � ·� − 1.



740 X Further developments

If c is a basic class for X , then the blow-up formula, in the form (39.6), tells us
that the class

c̃ = c ± P.D.[E]

is a basic class for X̃ . Because �̃ has smaller self-intersection number, our
induction hypothesis tells us

2 genus(�̃)− 2 ≥ ∣∣〈c̃, [�̃]〉∣∣+ �̃ · �̃,

which becomes

2 genus(�)− 2 ≥ ∣∣〈c, [�]〉 ∓ 1
∣∣+� ·� − 1.

Choosing the favorable sign, we obtain

2 genus(�)− 2 ≥ ∣∣〈c, [�]〉∣∣+� ·�

as required. �

The inequality for the genus that appears in the theorem above is usu-
ally called the adjunction inequality. This terminology arises from algebraic
geometry, where the adjunction formula expresses the genus of a smooth alge-
braic curve C in an algebraic surface X in terms of its homology class: in
algebro-geometric notation, the formula is written

2 genus(C)− 2 = C · C + KX · C.

Here KX is the canonical class (in cohomology, minus the first Chern class of
X ); so we can also write this formula

2 genus(C)− 2 = C · C − 〈c1(X ), [C]〉.

Of course, when we are dealing with C∞ embedded surfaces rather than alge-
braic curves, the homology class of the surface can no longer determine the
genus. The theorem, however, tells us that the equality that holds in the algebro-
geometric case becomes an inequality in the C∞ case. To apply the theorem
to the case of an algebraic surface X , we need to know the additional impor-
tant fact that on any smooth algebraic surface X with b+(X ) > 1, the classes
±c1(X ) are basic classes. (This result is discussed below in Subsection 41.2.)
Thus:
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Corollary 40.2.4. Let X be a smooth Kähler surface with b+(X ) > 1, and let
C ⊂ X be a smooth, connected algebraic curve with C · C ≥ 0. Let � be a
C∞ embedded surface, representing the same homology class as C. Then the
genus of � is not less than the genus of C. �

In fact, the hypotheses b+(X ) > 1 and C · C ≥ 0 can both be removed
from this corollary. The case that b+(X ) = 1 includes the interesting case of
the projective plane, in which case the corollary is traditionally known as the
Thom conjecture: it was proved in [59] and [82]. The case that C ·C < 0 needs
additional techniques, and was proved by Ozsváth and Szabó in [88]. All these
results extend also to symplectic 4-manifolds X , when we replace the notion of
a smooth algebraic curve by a symplectic submanifold C ⊂ X , i.e. a smooth 2-
dimensional submanifold on which the symplectic form is everywhere positive.

41 Foliations and non-vanishing theorems

41.1 Taut foliations

Let Y be a smooth 3-manifold, and let ξ be a field of 2-planes. The 2-plane
field defines a foliation F of Y with smooth leaves if, for each y ∈ Y , there is a
2-manifold � and a smooth embedding � → Y whose image passes through
y and is everywhere tangent to ξ . In this case, for each y, there is a maximal
connected �, whose image is the leaf through y. The leaves of a foliation F
need not be closed, but they partition Y .

The definition of a foliation just given does not require that the 2-plane field
ξ be smooth, though the smoothness of the leaves imposes some restriction. We
do however require continuity of ξ for our purposes: thus we will be working
with foliations with smooth leaves and C0 tangent planes. Locally, ξ can always
be defined as the kernel of a non-vanishing 1-form α. This can be done globally
if ξ is coorientable. An example of a non-smooth foliation of R3, with smooth
leaves, is provided by the continuous 1-form

α =
{

dz + zdx, z > 0

dz, z ≤ 0.

In the case that α is C1, the corresponding 2-plane field defines a foliation if
and only if the Frobenius integrability condition holds:

α ∧ dα = 0.
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Our foliations will always be cooriented: equivalently, since Y will be oriented,
we will have a chosen orientation for the 2-plane field.

Suppose now that Y is closed. A foliation F (oriented, with smooth leaves
and C0 tangent planes) is said to be taut if there is a smooth closed 2-form ω

whose restriction to the leaves is everywhere positive. This condition implies,
in particular, that there is no closed leaf which separates Y , as one sees from
Stokes’ theorem. A more topological condition, which implies the existence of
such a 2-form, is that there is a smooth closed curve δ in Y which is transverse
to the leaves and meets every leaf. Given such a δ, one can construct a 2-form ω

positive on the leaves as follows. Start by constructing a form ωδ , supported in
the tubular neighborhood, which represents the Poincaré dual class and is non-
negative on the leaves. Then observe that given any y in Y , we can construct a
new δ′ passing through y, by “pushing δ along the leaves”. Using compactness,
we can construct a collection of forms ωδi whose supports cover Y and whose
sum will be a form ω which is everywhere positive on the leaves. At least when
F is smooth, one can also go in the other direction, as stated in the following
lemma from [106, p. 244, Remark].

Lemma 41.1.1. If F is a smooth, oriented foliation of a closed oriented 3-
manifold Y , and if there is a closed 2-form ω that is positive on the leaves, then
there is a closed curve δ that is everywhere transverse to the leaves and meets
every leaf.

Proof. It will be sufficient to show that, given any leaf L0, there is a curve
δ : [a, b] → Y , not necessarily closed, that is transverse to the leaves and meets
L0 twice: one can then form a single closed curve by pushing along the leaves
and using a compactness argument.

The existence of the closed form means that, for any volume form on Y , there
is a nowhere-zero, volume-preserving vector field on Y which is transverse
to the leaves. We write φt for the neighborhood flow. Given any leaf L0, let
	0 ⊂ L0 be an open set and ε a positive real, chosen so that the flow φt for
t ∈ (−ε, ε) embeds (−ε, ε) × 	0 as an open set 	 in Y . By the Poincaré
recurrence theorem, there is a point x in 	 and a t1 > 2ε such that φt(x) also
lies in 	. The path t �→ φt(x) then meets L0 at least twice: once each within
distance ε of t = 0 and t = t1. �

We will not make use of the above lemma, as we will always take the existence
of the closed 2-form as our characterization of tautness. (The advantage of the
alternative formulation – using a curve transverse to the leaves – is that it makes
sense even when the foliation has no smoothness. If the foliation has smooth
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leaves and C0 tangent planes, it is also easy to see that a C0 curve transverse
to the leaves can be approximated by a smooth one.)

A general existence theorem for taut foliations of 3-manifolds with non-
zero Betti number was proved by Gabai in [44]. Before stating the result, we
recall that the Thurston norm of a closed orientable surface � with connected
components �1, . . . ,�n is defined as

|�| =
n∑

i=1

max{0, 2g(�i)− 2}, (41.1)

where g denotes the genus. Every integral 2-dimensional homology class in a
closed 3-manifold is represented by a closed embedded surface, and therefore
also by a closed embedded surface of smallest possible norm. Indeed given a
class h we can find a representative � satisfying the following three conditions:

(i) � achieves the smallest possible Thurston norm among surfaces repre-
senting the class h;

(ii) no component of � is a sphere;
(iii) each genus-1 component of � represents a non-trivial homology class (i.e.

does not separate the 3-manifold.)

Remarks. To achieve (ii), one can add a handle to any spherical component,
thus turning it into a torus, without increasing the norm. In (iii), only the genus-
1 components need be mentioned, because the higher-genus components are
automatically non-trivial in homology by Item (i).

The following is a somewhat restricted statement of Gabai’s theorem. Recall
that a closed orientable 3-manifold Y is irreducible if every embedded 2-sphere
bounds a ball. This condition means that Y is not a connected sum and is not
S1 × S2.

Theorem 41.1.2 (Gabai [44]). Let Y be a closed, oriented, irreducible 3-
manifold and � a closed, oriented embedded surface representing a non-zero
homology class. Suppose that � satisfies the three conditions above. Then
there exists a taut, oriented foliation F of Y having � as a union of closed
leaves. This foliation can be taken to be C∞, except possibly along genus-1
components of �. �

Remarks. (i) The fact that F is smooth away from the genus-1 closed leaves
allows us to arrange also that F has smooth leaves and C0 tangent planes.
This is because the structure of F in the neighborhood of a genus-1 closed leaf
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is determined by a pair ( f , g) of commuting germs of self-homeomorphisms
of (R, 0), both of which are smooth away from 0. Given ( f , g), it is straight-
forward to construct a corresponding foliation of a neighborhood of T 2 in
such a way that the tangent planes are continuous.

(ii) The condition that no component of� separates Y can always be achieved
by discarding any components that do. This will not increase the norm. Fur-
thermore, when this condition is satisfied and Y is irreducible, no component
of � can be a sphere (because all spheres bound balls).

Corollary 41.1.3. If Y is a closed, oriented, irreducible 3-manifold with non-
zero Betti number, then Y admits a taut foliation with smooth leaves and C0

tangent planes. �

To give a little context for Gabai’s theorem, we point out that, without the
tautness condition, there is a quite general existence theorem for smooth folia-
tions of manifolds of any dimension [126, 119, 120]. In particular, any 2-plane
field on a 3-manifold is homotopic to one that defines a foliation. Taut folia-
tions of 3-manifolds, by contrast, are constrained: on a given 3-manifold, only
finitely many homotopy classes of 2-plane fields are realized [62].

We recall also the closely related concept of an (oriented) contact structure.
On an oriented 3-manifold Y , an oriented 2-plane field ξ is a contact structure
compatible with the orientation of Y if it is defined as the kernel of a 1-form α

which satisfies

α ∧ dα > 0.

Thus a contact structure is a 2-plane field which is “maximally non-integrable”.
The sign here makes reference to the given orientation of Y . Note that we can
change the orientation of ξ , or the sign of α, without consequence. As with
foliations, there is a general existence theorem for contact structures homotopic
to any given 2-plane field [69, 72].

41.2 Taubes’ theorem

The non-vanishing theorem whose proof we will shortly give is based on a
rather simpler result of Taubes which tells us that the monopole invariants of
symplectic 4-manifolds are not zero.

Recall from Subsection 28.1 that an almost complex structure J on a 4-
manifold X determines a spinc structure sJ .Asymplectic structureω determines
a preferred homotopy class of almost complex structures and so also a preferred
spinc structure sω. When the 4-manifold is X closed, the formal dimension of
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the Seiberg–Witten moduli space for the spinc structure sω is zero, so there is
a well-defined monopole invariant m(X , sω), as long as b+(X ) > 1. With this
notation in place we can state a version of Taubes’ theorem.

Theorem 41.2.1 (Taubes [114]). Let X be a smooth closed 4-manifold with
b+(X ) > 1 admitting a symplectic form ω. Then

m(X , sω) = ±1

and

0 ≥ 〈c1(sω)� [ω], [X ]〉.

Furthermore for any other spinc structure s with m(X , s) = 0, we have

〈c1(s)� [ω], [X ]〉 ≥ 〈c1(sω)� [ω], [X ]〉,

with equality if and only if s = sω. �

Remarks. By c1(s) we mean as usual the first Chern class of either of the spin
bundles S±. In the case of sω, this coincides with the first Chern class of the
complex vector bundle (TX , J ), for a compatible complex structure J .

One can expand on the statement of the theorem by using the fact that

m(X , s) = ±m(X , s̄)

when s and s̄ are complex conjugate spinc structures. We obtain∣∣∣〈c1(s)� [ω], [X ]〉
∣∣∣ ≤ ∣∣∣〈c1(sω)� [ω], [X ]〉

∣∣∣,
whenever m(X , s) is non-zero, with equality if and only if s is sω or s̄ω.

In the language of “basic classes” (see Subsection 1.5), the non-vanishing of
m(X , sω) and m(X , s̄ω) means that both c1(X ) and −c1(X ) are basic classes
for a symplectic manifold with b+(X ) > 1. This fact, and also the inequality
of Taubes’ theorem, can be seen as generalizations of previously known results
for Kähler manifolds, due to Witten [125].

41.3 Embedding three-manifolds in symplectic four-manifolds

It is interesting to try to characterize those 3-manifolds which embed in closed
symplectic 4-manifolds, or even into closed Kähler 4-manifolds. We can ask the
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more specific question: given a 3-manifold with a closed nowhere-zero 2-form
ω, when does the 3-manifold embed in a symplectic 4-manifold (X ,ωX ) in such
a way thatω is the restriction ofωX ? (Every 2-dimensional cohomology class on
any 3-manifold can be represented by a nowhere-vanishing form; and one may
even specify the homotopy class: this follows from the existence theorem for
contact structures, which supplies us with nowhere-vanishing exact 2-forms.)
In this subsection, by pulling together many different results, we will prove a
fairly general result for the symplectic case:

Theorem 41.3.1. Let Y be a closed oriented 3-manifold. Suppose that Y has
a taut foliation F which either (a) is smooth, or (b) has smooth leaves and C0

tangent planes. In Case (b), suppose also that F is smooth outside the closed
leaves and has holonomy. Let ω be a closed 2-form on Y which is positive on the
leaves of F . Then there is a closed symplectic 4-manifold (X ,ωX ) containing
Y as a separating submanifold, such that the restriction of ωX to Y is ω.

Furthermore, if Y is not S1 × S2, then we can arrange that the map
H 2(X ; Z)→ H 2(Y ; Z) is surjective, and that the two components X1, X2 into
which Y divides X both have b+ > 0.

Remark. The foliations which arise from Gabai’s theorem 41.1.2 satisfy either
(a) or (b). In Case (b), the condition that the foliation has holonomy excludes
the case that F is a C0 fibration with smooth fibers and C0 tangent planes. In
this latter case, there is a new smooth structure on Y which makes the fibration
smooth (for the fibration is determined by an element of the mapping class
group of the fiber, and the mapping class group is insensitive to the choice
of C∞ versus C0). For the new smooth structure Ỹ , there will be a closed 2-
form ω̃ positive on the leaves, but (Ỹ , ω̃) is not the same as the original (Y ,ω),
considered as a smooth manifold equipped with a 2-form. The theorem provides
an embedding of (Ỹ , ω̃), not of (Y ,ω).

Although the statement has been repackaged here, the above theorem is
essentially due to Eliashberg [25] and independently Etnyre [28], drawing on
earlier results of Eliashberg and Thurston [26], Giroux [48], and Etnyre and
Honda [29].

We shall explain some of the steps in the proof of the theorem. We immedi-
ately dispose of the exceptional case of S1 × S2, on which both the foliation
and the form ω can be taken to be standard and which can be embedded in
the symplectic manifold S2 × S2. We turn to the construction for the case of a
manifold other than S1 × S2.

Given a closed, oriented 3-manifold Y carrying a smooth non-vanishing
closed 2-form ω, we can explicitly construct a symplectic form on the manifold
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with boundary, [−1, 1] × Y . To see this let α be a 1-form such that ω ∧ α = 0.
Then for ε sufficiently small the 2-form

	 = ω + εd(tα) (41.2)

is symplectic on [−1, 1] × Y , and its restriction as a 2-form to {0} × Y is ω.
Thus the question of which 3-manifolds carrying closed nowhere-zero 2-forms
embed into closed symplectic 4-manifolds fits into the more general question
of which symplectic 4-manifolds with boundary embed into closed symplectic
4-manifolds.

In complex geometry there is the notion of pseudo-convexity for a bounded
domain with smooth boundary in Cn. In the symplectic case, one can also define
notions of “convexity” for a boundary; but there is more than one possible
formulation. We say that a boundary component Y of a symplectic 2n-manifold
(X ,ω) is weakly convex if we can equip Y with a contact structure ξ , compatible
with the boundary orientation of Y , such that the restriction of ω to the (2n −
2)-planes ξy (y ∈ Y ) is everywhere non-degenerate (or equivalently, the 1-
dimensional null-space of ω|Y is everywhere transverse to ξ ). We say that Y is
strongly convex (sometimes called contact type) if, in some collar neighborhood
of Y , there is a 1-form α satisfying dα = ω whose restriction to Y defines a
contact structure compatible with the orientation.

Note that the weakly convex condition does not require even that ω be exact
near the boundary, unlike the strong condition. When the boundary is strongly
convex and a primitive α is given, one can define a vector field V near the
boundary by the condition

ıVω = α

and from the Cartan formula for the Lie derivative we then have

LVω = ω.

Thus the flow φt generated by V has the property that φ∗t (ω) = etω. We can
therefore choose a collar neighborhood (−1, 0] × Y of the boundary on which
ω can be expressed as

ω = d(etα).

In the case of a domain X ⊂ Cn with smooth, pseudo-convex boundary Y , one
can choose a pluri-subharmonic function φ having Y as a level set, in which
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case the symplectic form

ωφ = i

4
∂∂̄φ

makes Y strongly convex, with the primitive given by

αφ = i

8
(∂̄ − ∂)φ.

For the differential form	 on [−1, 1]×Y defined by (41.2), there is no reason
in general to expect that the boundary components {−1} × Y and {1} × Y are
even weakly convex (and they cannot be strongly convex if ω is not exact).
However, one can say more if ω arises from a taut foliation:

Theorem 41.3.2 (Eliashberg–Thurston [26]). Let Y be a closed oriented 3-
manifold other than S1 × S2. Suppose that Y has a foliation F which either
(a) is smooth, or (b) has smooth leaves and C0 tangent planes. In Case (b),
suppose also that F is smooth outside the closed leaves and has holonomy. Let
ω be a smooth closed 2-form on Y which is positive on the leaves of F . Then
there exist a smooth 1-form α on Y , with α ∧ ω > 0, and an ε0 > 0 such that
for all ε < ε0:

• the 2-form 	 on [−1, 1] × Y defined by (41.2) is symplectic; and
• the boundary components {−1} × Y and {1} × Y are both weakly convex.

�

The main point of the theorem above is the construction of the contact struc-
tures ξ− and ξ+ on Y which establish the weak convexity of {−1} × Y and
{1}×Y . Eliashberg and Thurston show that, given any foliation F with tangent
plane field ξ0 satisfying the given hypotheses, one can construct smooth contact
structures ξ+ and ξ− which are C0-close to ξ0 and which are compatible with
the two different orientations of Y . This is proved first in [26, Theorem 2.4.1]
for any smooth foliation that is not the trivial foliation of S1× S2 by 2-spheres.
The case of a non-smooth foliation with holonomy and C0 tangent planes is
Proposition 2.9.4 of [26]. We can, in particular, assume that ξ± are close enough
to ξ0 that ω is positive on both these 2-plane fields. For α, we take a smooth
approximation to the continuous 1-form α0 that defines ξ0, so chosen that α∧ω

is positive. We have already observed that 	 is a symplectic form when ε is
small; and by the same token, it is positive on ξ± when ε is small, because ω

is. This gives us the weak convexity of the boundary components.
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We have now seen that, given Y , F and ω as in the statement of
Theorem 41.3.1, we can embed Y in a symplectic manifold with boundary,
([−1, 1] × Y ,	), so that the restriction of 	 to {0} × Y is ω, and so that the
boundary components are weakly convex. The remaining big step in the proof
of Theorem 41.3.1 is the following result:

Theorem 41.3.3. Let (W ,ωW ) be a compact symplectic 4-manifold with
weakly convex boundary. Then there is a closed symplectic 4-manifold (X ,ωX )

containing W as a submanifold, such that the restriction of ωX to W is ωW . �

The above statement is from [25], and is proved independently in [28].
Both proofs depend on Giroux’s work [48] on open-book decompositions of
contact 3-manifolds. The case that (W ,ωW ) is a regular sub-level set of a pluri-
subharmonic function on a Stein manifold was treated earlier by Lisca and
Matić, and with a different construction by Akbulut and Ozbagci [3]. The case
of a strongly convex boundary is proved in [29].

The constructions in [25] and [28] which supply the proof of Theorem 41.3.3
allow considerable freedom in construction of X . In particular, we can take
it that the connected components of X \ W correspond one-to-one with the
components of ∂W , and that each component has large b+. One can also arrange
that H1(X ) is zero, and that the restriction map H 2(X )→ H 2(W ) is surjective.
By combining this theorem with Theorem 41.3.2, one obtains Theorem 41.3.1:
the given 3-manifold Y , with its 2-form ω, is embedded first in the cylinder
W = [−1, 1] × Y with weakly convex boundary using the first theorem, and
then in a closed symplectic manifold using the second theorem.

41.4 A non-vanishing theorem for Floer homology

We are now ready to state and prove a general non-vanishing theorem for
Floer homology groups of 3-manifolds with taut foliations. Recall that

̂

HM•(Y )

and ĤM•(Y ) are always non-zero if we use ordinary coefficients: indeed, they
have infinite rank. To be non-trivial, a non-vanishing theorem must assert the
non-vanishing of the reduced Floer homology, i.e. the image of the map

j∗ :

̂

HM•(Y )→ ĤM•(Y ).

Our theorem involves not just the trivial coefficient system, but also the local
coefficient system�η defined on page 445 (though other variations are possible).
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Let us also recall that if we fix a grading element

k ∈ J(Y ) =
⋃
s

J(Y , s)

then the map

j∗ :

̂

HMk(Y ;�η)→ ĤMk(Y ;�η)

is automatically an isomorphism in either of two cases: the first case is when
the spinc structure s corresponding to k has non-torsion first Chern class, for
in this case there are no reducible solutions; and the second case is when the
homology class [η] ∈ H1(Y ; R) is non-zero, by Proposition 3.9.1. In any event,
we always write

HMk(Y ;�η) = im
(

j∗ :

̂

HMk(Y ;�η)→ ĤMk(Y ;�η)
)

,

with the understanding that all three groups in this formula are isomorphic if
either of the above two conditions holds.

Our non-vanishing theorem, then, concerns the group HM•(Y ;�η). We
should note, however, that this group is zero in some important cases. For
example, we know that HM•(Y ;�η) is zero for all η if Y admits a metric of
positive scalar curvature (see Subsection 36.1). This applies to S3 and S1× S2,
whose groups we earlier described in detail. When η = 0, we also know that
HM•(Y ; R) is zero in the case that Y is a 3-torus. These examples limit the
possible generality of a non-vanishing theorem. The result which we state
asserts the non-vanishing of HMk(Y ;�η) for specific k and η arising from
a taut foliation of Y .

Theorem 41.4.1. Let Y be a closed, oriented 3-manifold other than S1 × S2,
carrying a taut foliation F which either (a) is smooth or (b) has smooth leaves
and C0 tangent planes. In Case (b), suppose also that F is smooth outside the
closed leaves and has holonomy. Letω be a closed 2-form on Y which is positive
on the leaves. Then

HMk(Y ;�η) = 0

when [η] = P.D.[ω] and k ∈ J(Y ) is the grading element corresponding to the
homotopy class of the 2-plane field [ξ ] given by the tangent planes to F (as in
Subsection 28.2).
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Because the theorem above only states that the reduced homology group is
non-zero for certain η, we turn briefly to the question of how this group might
vary with η. In line with our previous remarks, we observe that the conclusion
of the theorem is equivalent to the non-vanishing of the group

̂

HMk(Y ;�η) if
either:

• the Euler class e(F) (by which we mean the Euler class of the tangent plane-
field ξ on Y ) is not a torsion class; or

• the homology class [η] is non-zero in H1(Y ; R).

(For the first case, we recall that e(F) is also the first Chern class of the
corresponding spinc structure.) Unlike HMk(Y ;�η) in general, the group̂

HMk(Y ;�η) is simply the k’th homology of a complex (C∗, ∂̌∗) (graded by
J(Y )), in which only the differential ∂̌∗ depends on η: the vector space C∗ does
not change. Because the Floer groups depend only on the homology class [η]
(up to isomorphism), we may choose a real vector space H1 inside the space
of real 1-cycles which represents the homology H1(Y ; R), and we can restrict
η to lie in H1. The matrix entries of ∂̌η are then analytic functions of η on the
finite-dimensional vector space H1. The complex Č∗ is finite-dimensional in
each grading; so the semi-continuity of homology groups tells us that the rank
of the homology group Hk(Č∗, ∂̌η) achieves its minimum on an open dense
subset of H1 (the complement of an analytic set).

The condition that a closed 2-form be positive on the leaves is an open condi-
tion; so Theorem 41.4.1 tells us that HMk(Y ;�η), and hence also

̂

HMk(Y ;�η),
is non-zero for all η in a non-empty open subset of H1. The semi-continuity
then gives:

Corollary 41.4.2. Let Y and F be as in Theorem 41.4.1, and let k ∈ J(Y )

again be the grading element corresponding to the tangent 2-plane field. Then
the group

̂

HMk(Y ;�η) is non-zero for all cycles η.
In particular, if either e(F) is non-torsion or [η] is non-zero, then the reduced

group HMk(Y ;�η) is non-zero, for it is isomorphic to

̂

HMk(Y ;�η) in these
cases. �

Remark. There is an important case of Theorem 41.4.1 which is not covered by
the corollary above, namely the case that e(F) is zero and there is an exact 2-
form ω positive on the leaves. In this case, the theorem tells us that HMk(Y ; R)

is non-zero. The above corollary makes no assertion about HMk(Y ; R) in this
case, because j∗ is not an isomorphism.

Gabai’s theorem supplies us with taut foliations, so we can draw an important
corollary:
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Corollary 41.4.3. Suppose that Y is a closed, oriented irreducible 3-manifold
with non-zero Betti number. Then for all real 1-cycles η with non-zero coho-
mology class, the group HM•(Y ;�η) is non-zero. If we suppose in addition that
there is at least one class in H2(Y ; Z) that cannot be represented by a union of
embedded tori, then the reduced group

HM•(Y ) = im(j∗)

is non-zero also for the trivial coefficient system R.

Proof. Let � be a norm-minimizing representative of any non-zero class in
H2(Y ; Z), satisfying the three conditions on page 743. According to Theo-
rem 41.1.2, there is a taut foliation having � as a union of closed leaves.
As stated in the remark following Theorem 41.3.1, this foliation satisfies the
hypotheses of Theorem 41.4.1, so we have non-vanishing when [η] is non-zero,
by the previous corollary.

If there is a class that cannot be represented by tori, then we may arrange that
some connected component �′ ⊂ � is a surface of negative Euler number, and
it follows that e(F) is not a torsion class, because �′ is a leaf of the foliation
and 〈e(F), [�′]〉 is the Euler number. �

Using a refinement of the existence theorem for foliations, Gabai proves in
[45] that if K is a non-trivial knot in the 3-sphere, then the 3-manifold Y obtained
by longitudinal surgery (0-surgery) on K is irreducible, and in particular is not
S1 × S2. Furthermore, the genus of a norm-minimizing representative for the
generator of H2(Y ; Z) is the same as the classical genus of the knot (the smallest
possible genus for a Seifert surface). We therefore have:

Corollary 41.4.4. Suppose that Y is obtained by longitudinal surgery on a non-
trivial knot K in S3. Then for all real 1-cycles η with non-zero cohomology class,
the group HM•(Y ;�η) is non-zero. If the genus of the knot is greater than 1,
then the reduced group HM•(Y ) is non-zero also for the trivial coefficient
system. �

Note that the trivial knot (the “unknot”) is a genuine exception. The man-
ifold obtained by 0-surgery on the unknot is just S1 × S2, and the reduced
group HM•(S1 × S2;�η) (the image of j∗) is zero, for all η, as stated in
Propositions 3.10.3 and 3.10.4. We may therefore amplify the preceding
corollary:
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Corollary 41.4.5. Let Y be obtained by longitudinal surgery on a knot K in S3,
and let η represent a generator of homology in Y . Then HM•(Y ;�η) is zero if
and only if K is the unknot. �

In this sense, via Gabai’s theorem, Floer homology detects the unknot, dis-
tinguishing it from other knots. We shall see in the following subsection that
we can strengthen this statement: Floer homology detects also the genus of a
knot.

We turn to the proof of Theorem 41.4.1. Let Y and η be as in the statement of
the theorem. According to Theorem 41.3.1, we can embed Y as a submanifold
in a symplectic manifold (X ,ωX ), separating X into two pieces X1, X2 both
with b+ > 1. We can also ensure that the restriction of ωX to Y is ω, and that
the restriction of c1(X ,ωX ) to Y is e(ξ). (Here, c1(X ,ωX ) refers as usual to the
first Chern class of an almost-complex structure compatible with the symplectic
form ωX .)

Let sω denote the canonical spinc structure on X corresponding to the
symplectic form ωX , and let

h = P.D.[ωX ] ∈ H2(X ; R).

The restriction of the dual of h to Y is [η], so we can represent h by a 2-cycle
ν meeting Y in the 1-cycle

η = ∂ν1 = −∂ν2.

Recall from (3.27) the pairing formula

m(X , h) = 〈
ψ(X1,ν1),ψ(X2,ν2)

〉
ωµ

, (41.3)

where

ψ(X1,ν1) ∈ HM•(Y ;�η)

ψ(X2,ν2) ∈ HM•(−Y ;�η).

(The applicability of this pairing formula depends on the fact that b+(X1) and
b+(X2) are both positive.)

If we knew that the invariant m(X , h)were non-zero, then this pairing formula
would tell us at once that HM•(Y ;�η) is non-zero. Although we shall not
establish that m(X , h) is non-zero, we have the following result:
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Lemma 41.4.6. There exists λ0 > 0 such that m(X , λh) = 0 for all λ with
|λ| > λ0.

Proof. We have

m(X , λh) =
∑

s

m(X , s) exp
(
λ〈c1(s), h〉),

from the definition. In this sum, s runs through all isomorphism classes of
spincstructures, but the non-zero contributions come from the finitely many
spinc structures with m(X , s) = 0. According to Theorem 41.2.1, there is a
non-zero contribution from sω, and therefore also from the conjugate spinc

structure, s̄ω. In addition, that theorem tells us that all other spinc structures s

with non-zero invariant satisfy∣∣〈c1(s), h〉∣∣ < ∣∣〈c1(sω), h〉∣∣.
It also tells us that sω and s̄ω must be equal if the right-hand side is zero. As a
function of λ then, m(X , λh) is a sum of exponentials with a non-zero leading
term: the sum is dominated by the term arising from s̄ω or sω as λ→ +∞ or
−∞ respectively. �

The pairing formula (41.3) and the lemma above together tell us that

HM•(Y ;�λη) = 0

for all sufficiently large λ. If the class [η] is non-zero, then HM• =

̂

HM• here,
and the semi-continuity argument tells us that HM•(Y ;�η) is non-zero (the case
λ = 1). On the other hand, if [η] is zero, then the factor of λ is irrelevant, and
we have the same conclusion.

We have now almost proved the theorem, but our conclusion so far is only
that HM•(Y ;�η) is non-zero, without yet knowing in which degree it might be
non-zero. To deal with this point, consider the following modified version of
m: we set

m′(X , h) =
∑′

s

m(X , s) exp〈c1(s), h〉,

where the sum now runs only over isomorphism classes of spinc structures s

satisfying

s|Xi = sω|Xi , i = 1, 2.
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For this modified invariant, we can give a pairing formula of the same shape as
(41.3). To do this, recall that the definition of ψ(Xi ,νi) expresses it as a sum over
all isomorphism classes of spinc structures on Xi; we then define

ψ ′(X1,ν1)
∈ HMk(Y ;�η)

ψ ′(X2,ν2)
∈ HMk(−Y ;�η)

to be the contribution to ψ(X1,ν1) and ψ(X2,ν2) arising from the spinc struc-
tures s1 and s2 respectively. In both cases, because ψ ′ is defined in terms of
zero-dimensional moduli spaces, the grading k ∈ J(Y , sω|Y ) is completely
determined by knowing the topology of one of the Xi and the corresponding
spinc structure si. According to our canonical identification of J(Y ) with the
space of homotopy classes of 2-plane fieldsπ0(�) described in Subsection 28.2,
the grading element k is the one corresponding to the 2-plane field determined
by the almost-complex structure, i.e. the 2-plane field ξ defined by the foliation
F . The pairing formula then reads:

m′(X , h) = 〈
ψ ′(X1,ν1)

,ψ ′(X2,ν2)

〉
ωµ

. (41.4)

The proof of the lemma above shows equally that m′(X , λh) is non-zero for
large λ, so we conclude in the same way that HMk(Y ;�η) is non-zero as desired.
This completes the proof of Theorem 41.4.1. �

41.5 The unit ball of the dual Thurston norm

Recall the definition of the norm (41.1) for an embedded surface � ⊂ Y .
From this notion, Thurston [121] defined a semi-norm on the homology group
H2(Y ; R), also called the Thurston norm. For an integer class h in H2(Y ; Z),
the Thurston norm is defined as

|h| = inf
{ |�| ∣∣ � ⊂ Y , [�] = h

}
.

It is shown in [121] that this function on the integer classes extends to a semi-
norm on the real homology group. This semi-norm fails to be a norm if there are
non-zero homology classes represented by embedded tori in Y , for the Thurston
norm of these classes is zero.

There is a dual norm on the second cohomology, though because there may
be homology classes of norm zero, we must allow the dual norm to take the
value∞, or we must restrict its domain. We adopt the latter policy, by writing
T ⊂ H2(Y ; R) to be the span of the classes of Thurston norm zero and defining
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a dual norm on the annihilator Ann(T ) ⊂ H 2(Y ; R) by the usual recipe: for
α ∈ Ann(T ),

|α| = inf {C ≥ 0 | α(h) ≤ C|h|, ∀h ∈ H2(Y ; R) }.
In [121], it is shown that if F is a taut foliation on Y , then the Euler class

e(F) has dual Thurston norm at most 1 (and in particular, this class annihilates
T ). Thus the convex hull of the classes e(F), as F runs through taut foliations,
is contained in the unit ball of the dual norm, a compact subset of H 2(Y ; R).
The reverse inclusion also holds, if Y is irreducible. This is a consequence of
Gabai’s theorem 41.1.2. One therefore has:

Theorem 41.5.1 (Gabai [44]). If Y is a closed, orientable irreducible 3-
manifold, then the unit ball of the dual Thurston norm in Ann(T ) ⊂ H 2(Y ; R)

is the convex hull of the classes e(F), as F runs through all taut foliations on
Y (with smooth leaves and C0 tangent planes). �

Combining this result with the already established relationship between
foliations and the non-vanishing of the Floer groups, we shall derive:

Theorem 41.5.2. If Y is a closed, orientable irreducible 3-manifold, then the
unit ball of the dual Thurston norm in Ann(T ) ⊂ H 2(Y ; R) is the convex hull
of the classes c1(s), as s runs through all spinc structures on Y for which the
Floer group

̂

HM•(Y , s; R) is non-zero.

Proof. From Corollary 41.4.2, we already know that that the classes c1(s) witĥ

HM•(Y , s; R) = 0 include the Euler classes of all taut foliations on Y . So in
the present theorem, we do know that the convex hull of these classes c1(s)

contains the unit ball, because of Theorem 41.5.1. What remains is to show that

|c1(s)| ≤ 1, (41.5)

whenever

̂

HM•(Y , s; R) = 0, where the norm denotes the dual Thurston norm.
Since the inequality is not in question when c1(s) is zero or torsion, we may as
well assume that c1(s) is non-torsion and replace

̂

HM• here by HM•.
This inequality for the norm has a more down-to-earth interpretation: it is the

statement that, for any connected, oriented embedded surface � ⊂ Y of genus
1 or more, and any s with HM•(Y , s; R) = 0, we have〈

c1(s), [�]
〉 ≤ 2g(�)− 2.

This is the adjunction inequality, Corollary 40.1.2 which we discussed in
Section 40, so the proof of Theorem 41.5.2 is complete. �
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A particular case of Theorem 41.5.2 occurs when Y is obtained by longi-
tudinal surgery on a knot K ⊂ S3. As we remarked earlier in the context of
Corollary 41.4.4, the results of [45] tell us that the unit ball of the dual Thurston
norm is the interval [−(2g− 2), (2g− 2)], where g denotes the classical genus
of K and the cohomology H 2(Y ; R) has been identified with R by the choice
of an integral generator σ . If we write sn for the spinc structures on Y with
c1(sn) = 2nσ , then we can restate the conclusion of the theorem in this case as:

Corollary 41.5.3. Let Y be obtained by longitudinal surgery on a non-trivial
knot K ⊂ S3 of genus g. Then

g − 1 = sup{ n |

̂

HM•(Y , sn) = 0 }.
�

This corollary tells us that the Floer homology groups detect the genus of
a knot. This result is of significance, since the genus is an invariant with a
geometric–topological nature and is not accessible through, for example, the
Alexander or Jones polynomials of the knot. Although the proof of the corollary
leverages Gabai’s results, which tell us that taut foliations also “detect” the
genus of a knot, the Floer groups have functorial properties which have no
counterpart on the foliations side. In particular, as we have seen, cobordisms
between 3-manifolds give maps between their Floer groups. This functoriality
is a strong tool when combined with an additional property of Floer homology,
which we discuss in the next section, namely a long exact sequence relating the
Floer groups of 3-manifolds obtained by different surgeries on a knot.

42 Surgery and exact triangles

42.1 Surgery and elementary cobordisms

By a knot in a smooth 3-manifold Y we simply mean a smooth submanifold
diffeomorphic to the circle, and by a framing φ of a knot K we mean a trivi-
alization of its normal bundle. If K is oriented and a framing is given, then a
tubular neighborhood of K can be identified with S1 × D2, canonically up to
isotopy.

If X is an oriented 4-manifold having Y as a boundary component, and if an
oriented framed knot K ⊂ Y is given, then we can form a new 4-manifold X ′
by attaching a 2-handle D2×D2 to X in such a way that the portion ∂D2×D2

is attached to the tubular neighborhood of K using the identification supplied
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by the framing. The resulting manifold does not depend on the orientation of
K , but does depend on the framing.

If we are given for reference a 2-chain � ⊂ X with boundary K , then the
various homotopy classes of framings can be indexed by the integers, as follows.
The union of� and the “core” 2-disk D2×{0} in the 2-handle is a closed 2-cycle
�. We say that the framing is the l-framing (relative to the chosen �) if the
self-intersection number of � ⊂ X is l. This notion is again insensitive to the
orientation of K .

In the special case that X has the form of a cylinder [0, 1] × Y0, and when
(K0,φ0) is a framed knot in {1} × Y0, the resulting 4-manifold is a cobordism
from Y0 to a new manifold Y1: we call a cobordism an elementary cobordism
if it arises in this way, by the addition of a single 2-handle.

Given an elementary cobordism W0 from Y0 to Y1 as above, the manifold Y1

itself comes equipped with a new knot K1 ⊂ Y1, namely the curve {0} × S1 on
the 2-handle: this is the boundary of the “co core” {0} ×D2. We equip K1 with
the framing −1 relative to the co core, and call this framing φ1. In this way,
given Y0 with a framed knot (K0,φ0) we have produced a new 3-manifold Y1

with a framed knot (K1,φ1). Repeating the procedure, we obtain an elementary
cobordism W1 from Y1 to a new manifold Y2, together with a framed knot
(K2,φ2).

The reason for choosing the framing to be −1 here, rather than any other
integer, is two-fold. The interesting topological consequence of choosing ±1
for the framing is that the resulting sequence of 3-manifolds has a periodicity
of order 3, as stated in the next lemma. The reason for choosing−1 rather than
+1 appears later, when we bring Floer homology into the picture.

Lemma 42.1.1. If 3-manifolds Yn are produced by the procedure above, then
there is an orientation-preserving diffeomorphism

Y3
∼=−→ Y0

which carries the oriented framed knot (K3,φ3) to (K0,φ0).

Proof. The periodicity can be understood by first observing that the knot com-
plements are the same, for all n. More specifically, let Zn denote the manifold
with torus boundary obtained by removing an open tubular neighborhood of Kn.
Let µn and λn be the meridional and longitudinal curves on the torus boundary,
as determined by the framing φn: that is, µn and λn are the oriented curves on
∂Zn which the framing identifies with {point} × S1 and S1 × {point}. If ∂Zn is
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oriented as the boundary of Zn, then the intersection number of the two curves is

µn · λn = −1.

The point then is that we can naturally identify Zn+1 with Zn in such a way that
the isotopy classes of these curves satisfy

µn+1 = λn

λn+1 = −µn − λn.

In the homology of T 2 therefore, the classes of the new curves are related to
the classes of the old via the matrix[

0 −1
1 −1

]
.

Because this matrix has order 3, the curves µn+3, λn+3 coincide with µn, λn up
to isotopy. �

Because all the manifolds Zn are the same, an alternative starting point for
this construction is a 3-manifold Z with torus boundary, from which all the
3-manifolds Yn can be obtained by gluing a solid torus S1×D2 to ∂Z . The data
which we need to describe how the attaching is done is given by three simple
closed curves

µ0,µ1,µ2

on ∂Z , with intersection numbers

µ0 · µ1 = µ1 · µ2 = µ2 · µ0 = −1, (42.1)

a condition that also ensures

µ0 + µ1 + µ2 = 0.

Given these curves, we obtain 3-manifolds Y0, Y1, Y2 by attaching S1 × D2

to Z in such a way as to identify {point} × S1 with µ0, µ1 or µ2 respectively.
Thus these manifolds are the Dehn fillings of Z along the three curves. Note
that the orientation of the curves is not relevant to the Dehn filling, but only
serves to describe the relationship of the three. We may change the orientation
of all three of the µi simultaneously while preserving the algebraic constraints
above.
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Consider, in particular, the case that Z ⊂ S3 is a knot complement: that is, Z
is obtained from S3 by removal of an open tubular neighborhood of a knot K .
In this case, once we orient K , there are a canonical pair of curves on ∂Z (up to
isotopy), namely the classical meridian and longitude, m and l. The latter is a
curve on ∂Z which is null-homologous in Z , while the former bounds a disk in
the tubular neighborhood of K . They are oriented so that m · l = −1 in ∂Z . An
arbitrary oriented simple closed curve µ can be described, up to isotopy, by its
homology class, which is a linear combination

[µ] = p[m] + q[l]

for some integers (p, q) with no common factor. If we forget the orientation of
µ, then its isotopy class is described by the ratio

r = p/q ∈ Q ∪ {∞}.

For a knot K in S3, we denote by S3
r (K) the manifold obtained by Dehn

filling of the knot complement K along the curve µ whose slope is r. In the
case r = ∞, the resulting manifold is S3. If r = p/q in lowest terms, with
p ≥ 0, then the first homology of S3

r (K) is Z/pZ. In the special case r = 0, the
first homology is Z: this is the case that we earlier called longitudinal surgery,
because the corresponding curve µ is the longitude of the knot.

To obtain curves µn satisfying the conditions (42.1), we require pairs

(p0, q0), (p1, q1), (p2, q2)

with

−pnqn+1 + pn+1qn = −1,

for all n, where the subscripts are interpreted mod 3. As a particular case, we
can take it that the corresponding slopes rn = pn/qn are given by

r0 = 0, r1 = 1/(q+ 1), r2 = 1/q

corresponding to the pairs (0, 1), (−1,−q− 1) and (1, q). Another special case
occurs when

r0 = p, r1 = p+ 1, r2 = ∞,

corresponding to the pairs (p, 1), (−p− 1,−1), (1, 0). In the general case, we
can isolate two possibilities: either
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(i) one of the slopes rn is zero, in which case we may take it that r2 = 0 after
cyclic relabelling; or

(ii) after relabelling the indices by a cyclic permutation, p0 and p2 have the
same sign, and p1 has the opposite sign.

In the second case, we can change the overall sign of all (pn, qn) so that p0 and
p2 are positive, and write the three rational numbers as

r0 = p

q
, r1 = p+ p′

q+ q′
, r2 = p′

q′
(p, p′ > 0). (42.2)

In each of these cases, we have 3-manifolds Yn obtained by different Dehn
fillings of the knot complement, repeating with period 3 and each related to the
next by an elementary cobordism.

42.2 The exact sequence

We continue to suppose, as above, that a sequence of manifolds and framed knots
(Yn, Kn,φn) is generated by the above construction, together with elementary
cobordisms Wn, so that

∂Wn = (−Yn) (Yn+1).

Theorem 42.2.1. Let F2 be the field of two elements. Then the sequence

−→

̂

HM•(Yn−1; F2)

̂

HM•(Wn−1)−→

̂

HM•(Yn; F2)

̂

HM•(Wn)−→

̂

HM•(Yn+1; F2) −→

is exact, as are the corresponding sequences with ĤM or HM in place
of

̂

HM . �

Because the manifolds and cobordisms repeat with period 3, the exact
sequence of the theorem is a long exact sequence relating the Floer groups
of the 3-manifolds Y0, Y1 and Y2. As is usual in a homology exact sequence,
the maps induced by two of the cobordisms Wn have even degree, and one has
odd degree (with respect to the canonical mod 2 grading, Subsection 22.4). The
question of which map has odd degree is taken up in the subsection below.

Exact sequences of the sort appearing in this theorem were pioneered by Floer
[33, 34, 15], though his results for instanton homology were not so general. A
general surgery exact sequence was established by Ozsváth and Szabó for their
Heegaard Floer homology groups [94]. A second proof for the Heegaard Floer
groups was given in [96], and the latter proof was adapted to the Seiberg–Witten
case in [63].
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As is often the case for an exact sequence, the proof that the composite of
two consecutive maps in the sequence is zero is relatively straightforward. As
in Floer’s original argument (see [15]), the key point is that the cobordism
Wn+1 �Wn contains an embedded 2-sphere � of self-intersection number −1.
When one has such an embedded sphere, there is a self-diffeomorphism ψ of
the 4-manifold, mapping [�] to−[�], acting on the homology by reflection in
[�]. The spinc structures on Wn+1 �Wn can therefore be placed in pairs s, s′,
with s′ = ψ∗(s). The contributions of s and s′ to the map̂

HM•(Wn+1) �

̂

HM•(Wn)

are equal, because of diffeomorphism invariance. Since we are working with
mod 2 coefficients, the contributions of the spinc structures cancel in pairs.

The above argument seems to hinge on the use of F2 as the coefficients.
But in fact, by using suitably twisted coefficients, the contributions of s and s′
can be made to cancel also over Z. It is expected that, with such coefficients,
the exact sequence remains valid more generally, but the details have not been
checked.

42.3 Mod two gradings in the exact sequence

To determine which of the maps

̂

HM•(Wn) have even and which have odd
degree, we need to look a little more closely at the topology of the cobordisms.
The degree of

̂

HM•(Wn) depends on the Euler number and signature of Wn.
The Euler number is always 1, but the signature is more subtle. Recall that the
manifolds Yn can all be obtained from a single manifold Z with torus bound-
ary. On ∂Z , there is a distinguished curve σ , namely the curve representing a
primitive class in the kernel of the map H1(∂Z)→ H1(Z). (The orientation of
σ is not determined.) In Wn, there is a closed 2-cycle S, formed as the union of
three pieces: a surface T ⊂ Z with boundary σ , the core of the 2-handle, and a
piece in the solid torus ∂D2 × D2. To determine the signature of Wn, we need
to know the sign of the self-intersection number S · S.

To understand S · S, recall that, in forming Yn+1, we attach a solid torus
D2× S1, so picking out curves µn and λn on ∂Z , as the images of {point} × S1

and S1 × {point}. More invariantly, these are the curves µn and µn+1 on ∂Z
which bound meridional disks in the fillings Yn and Yn+1. The orientations of
these two satisfy

µn · µn+1 = −1
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in ∂Z . It is the relationship between the three curves σ , µn and µn+1 in ∂Z that
determines the sign of S · S:

Lemma 42.3.1. The self-intersection number S · S is positive if

µn · σ , µn+1 · σ

have the same (non-zero) sign, and is negative if they have opposite signs. If
either of µn · σ or µn+1 · σ is zero, then S · S is zero. �

In the case that both µn · σ and µn+1 · σ are non-zero, then the manifolds
Yn and Yn+1 have the same first Betti number, and the space I2(Wn) (the image
of relative in absolute cohomology) has rank 1; the signature of Wn is then±1,
according to the sign of S · S. Referring to Definition 25.4.1, we see that the
quantity ι(Wn), which determines the effect on the mod 2 grading, is given by

ι(Wn) =
{

0, if sign(µn · σ) = −sign(µn+1 · σ)
1, if sign(µn · σ) = sign(µn+1 · σ).

If either µn · σ or µn+1 · σ is zero, then Wn has signature zero, and the Betti
numbers of the two 3-manifolds differ by 1: the manifold Yn has the larger Betti
number if µn ·σ = 0, so that σ is proportional to µn; otherwise, Yn+1 has larger
Betti number. We therefore have the remaining cases,

ι(Wn) =
{

0, if µn · σ = 0

1, if µn+1 · σ = 0.

Let us illustrate this by seeing what happens in the case that Z is a classical
knot complement, in which case σ is the longitudinal curve l on ∂Z . We take
Y0, Y1 and Y2 to be obtained by Dehn filling with slopes r0, r1 and r2, where the
rn are given by (42.2), with both p and p′ positive. In this case, we can write

[µn] = pn[m] + qn[l]

where

(p0, q0) = (p, q)

(p1, q1) = (−p− p′,−q− q′)

(p2, q2) = (p′, q′),
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and σ · [µn] = pn. We therefore see that

̂

HM•(Wn) is a map of even degree for
n = 0 and 1 (mod 3), and is of odd degree for n = 2 (mod 3). A particular case
is the sequence relating the surgeries

S3
p (K), S3

p+1(K), S3∞(K).

When p ≥ 0, the map induced by the cobordism from S3∞(K) to S3
p (K) is the

one with odd degree. When p ≤ −2, it is the cobordism from S3
p+1(K) to S3∞(K)

that is odd. When p = −1, it is the cobordism from S3
p (K) to S3

p+1(K) which
is odd.

Another special case, where one of the manifolds has larger Betti number, is
the exact sequence relating the Floer groups of the Dehn fillings

S3
0 (K), S3

1/(q+1)(K), S3
1/q(K) (42.3)

in which the map ̂

HM•(S3
1/q(K))→

̂

HM•(S3
0 (K))

has odd degree, while the other two maps have even degree.

42.4 The exact sequence and local coefficients

The surgery exact sequence becomes more useful in an elaborated version using
a local coefficient system.

We observed that the knot complements Zn can all be identified. The product
I × Zn is also a submanifold (with corners) of Wn. In particular, if we have a
real C∞ singular 1-cycle η in Z0, then we can regard it also as a 1-cycle ηn in
Yn for each n; and there are 2-chains

νn = I × ηn

in Wn, with ∂νn = −ηn + ηn+1.
The stated theorem for the surgery exact sequence requires, in its present

form, a coefficient system of characteristic 2, and this prevents us from using
the local systems �ηn , which have fiber R (see Subsections 3.7 and 22.6). As in
Subsection 39.2, we can modify the definition of �η by using the field K, the
field of fractions of the ring F2[R]. We again denote the resulting local system
on Bσ (Y ) by Kη. Its fibers are all canonically isomorphic to K, which is a field
of characteristic 2.
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For each n, we have Floer groups with local coefficients,̂

HM•(Yn; Kηn),

and the 2-chains νn in the cobordisms Wn give homomorphismŝ

HM•(Wn; Kνn) :

̂

HM•(Yn; Kηn)→

̂

HM•(Yn+1; Kηn+1).

The following version of the surgery exact sequence reduces to Theorem 42.2.1
in the case that η is zero.

Theorem 42.4.1. With ηn and νn as above, the sequence

→

̂

HM•(Yn−1; Kηn−1)→

̂

HM•(Yn; Kηn)→

̂

HM•(Yn+1; Kηn+1)→,

in which the maps are provided by the pairs (Wn, νn), is exact, as are the
corresponding sequences for ĤM• and HM•.

The proof of this version of the theorem is, not surprisingly, very little dif-
ferent from the proof of Theorem 42.2.1. In particular, the part of the proof
that we sketched above, showing that the composite of consecutive maps in the
sequence is zero, remains valid. (This argument now uses the fact that the union
of the 2-cycles νn does not meet the embedded spheres of self-intersection−1,
so that the spinc structures s and s∗ continue to contribute cancelling terms.)

42.5 Floer homology and the Alexander polynomial

When a short exact sequence of chain complexes gives rise to a long exact
sequence for the corresponding homology groups, then one also has a linear
relation among the Euler characteristics of the homology groups (as long as
these are defined). In particular, when Y0, Y1 and Y2 are 3-manifolds obtained
by three different surgeries on a knot, and when the surgery coefficients are such
that one has a long exact sequence of their Floer groups, as in Theorem 42.4.1,
then one should expect that an alternating sum of Euler characteristics will
be zero.

The study of the Euler characteristic of the Floer homology, and the devel-
opment of the corresponding surgery formulae, both predate the construction
of the Floer groups themselves. One of the important antecedents is Casson’s
surgery formula for the Casson invariant [2]. We will state a result, first proved
by Meng and Taubes [74], for the Seiberg–Witten Floer groups of a 3-manifold
Y obtained by 0-surgery on a knot K in S3. The result relates the Euler char-
acteristic of the Floer groups of Y to the Alexander polynomial of the knot K .
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L+ L_ L0

Fig. 12. Three skein-related links, L+, L− and L0.

We recall here that the Alexander polynomial �L(t) of a knot or link L in S3

is a Laurent polynomial in t1/2 which can be characterized by Conway’s skein
relation

�L+(t)−�L−(t) = (t1/2 − t−1/2)�L0(t)

with the normalization that the Alexander polynomial of the unknot is 1. In
the skein relation, L+, L− and L0 denote three links whose projections differ at
a single crossing, as shown in Figure 12. (Despite the appearance of t1/2, the
Alexander polynomial lies in Z[t, t−1] in the case of a knot, or a link with an
odd number of components.) This version of the Alexander polynomial is often
called the symmetrized Alexander polynomial, because if we write it as∑

ak tk

then a−k = ±ak , with the sign depending on whether k is an integer or a
half-integer.

To obtain a clean formulation of the relationship between the Floer groups
and the Alexander polynomial, it is convenient to study the Floer homology
groups using a non-exact perturbation of the sort discussed in Section 29. For
now, let Y be any 3-manifold with H 2(Y ; Z) = Z, and let h be a generator. For
each integer k, there is a unique spinc structure sk with

c1(sk) = 2kh.

We will use Z/2 coefficients for our Floer group (without further comment in
this subsection), and we consider the groups

HM•(Y , sk , c)
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where c ∈ H 2(Y ; R) is the period class of the non-exact perturbation. Recall
that the perturbation is balanced if 2πc1(sk) + c = 0. In general, if we write
c = λh, so that

2πc1(sk)+ c = (4πk + λ)h,

then the group HM•(Y , sk , c) depends only on k and the sign of 4πk + λ (pos-
itive, negative or zero): this is the content of Theorem 31.4.1. All these groups
have a canonical Z/2 grading, so we can consider their Euler characteristics.

Definition 42.5.1. After choosing a generator h for the group H 2(Y ; Z) = Z

and an integer k = 0, we write

χ(Y , sk)b

for the Euler characteristic of the (Z/2)-graded homology group HM•(Y , sk).
We write

χ(Y , sk)+

for the Euler characteristic of the group HM•(Y , sk , c), where c = λh is any
period class with 4πk + λ > 0. We similarly write

χ(Y , sk)−

for the Euler characteristic of this homology group in the case that 4πk+λ < 0.
Note that χ(Y , sk)b coincides with χ(Y , sk)+ in the case that k is positive and
with χ(Y , sk)− in the case that k is negative.

In the case k = 0, we write

χ(Y , s0) = χ(Y , s−)+ = χ(Y , s0)−

for the Euler characteristic of the group

HM•(Y , s0,�) ∼= HM•(Y , s0, c,�) (42.4)

where c is any non-zero period class and � is any c-complete local system of
fields. ♦
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Remark. Some clarifying remarks are needed in the case that k is zero.
The two groups in (42.4) are isomorphic by Theorem 31.1.3. The group
HM•(Y , s0, c,�) is the homology of a bounded complex of finite-dimensional
vector spaces, with generators corresponding to the critical points of the
non-exact perturbed functional; so one can see that the Euler characteristic
is independent of �. Also, when k is zero, one can use the symmetry pro-
vided by complex conjugation to prove that c and −c lead to the same Euler
characteristic.

The next lemma is an example of a “wall-crossing” formula, related to the
results of Subsection 27.5:

Lemma 42.5.2. We have

χ(Y , sk)+ = χ(Y , sk)− − k.

Proof. We consider the case that k is non-zero, because the result holds for k = 0
by the definition and the remark above. The homology groups HM∗(Y , sk , λh)
for the λh either side of the balanced case are related by a long exact sequence,
as stated in Corollary 31.5.2. The third term in the long exact sequence is
HM∗(Y , sk , cb), where cb is the balanced class, and the map p∗ in the sequence
has odd degree. In the statement of Corollary 31.5.2, the class that is referred
to as c+ refers to the case that 4πk + λ has the same sign as k. So when k is
positive, we have

χ(Y , sk)+ = χ(Y , sk)− + χ
(
HM∗(Y , sk , cb)

)
.

When k is negative, the roles of c+ and c− are switched, so that

χ(Y , sk)+ = χ(Y , sk)− − χ
(
HM∗(Y , sk , cb)

)
.

The group HM∗(Y , sk , cb) is calculated in Subsection 35.3, at Equation (35.4).
This formula tells us that the group has rank |k|. Furthermore, in the case
that b1 is 1, the non-zero part of this group occurs in odd degree. (See
Theorem 35.1.1.) So

χ
(
HM∗(Y , sk , cb)

) = −|k|.
This gives the result stated in the lemma. �
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We can combine the Euler numbers χ(Y , sk) into generating functions

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

χ(Y )b(t) =
∑
k∈Z

tkχ(Y , sk)b

χ(Y )+(t) =
∑
k∈Z

tkχ(Y , sk)+

χ(Y )−(t) =
∑
k∈Z

tkχ(Y , sk)−.

(42.5)

Without the non-exact perturbation, finitely many of the Floer groups
HM•(Y , sk) are non-zero, so χ(Y )b(t) is a polynomial in t. This and the above
wall-crossing formula give us

χ(Y )+(t) = χ(Y )b(t)−
∑
k<0

ktk

χ(Y )−(t) = χ(Y )b(t)+
∑
k>0

ktk

so that χ(Y )+ and χ(Y )− are Laurent series which extend infinitely in the
negative and positive directions respectively.

As a particular example, if Y is S1 × S2, then χ(Y )b = 0, and so

χ(S1 × S2)− =
∑
k>0

ktk

= t/(1− t)2

where it is understood that the rational function is to be expanded as a positive
power series in t. As another example, if Y is obtained by 0-surgery on the
trefoil knot, then Y0 is one of the flat torus-bundles over the circle discussed in
Subsection 37.4. From the results of that subsection, we know that χ(Y , sk)b

is 1 for k = 0 and zero for all other k. So in this example,

χ(Y )− = 1+
∑
k>0

ktk

= (1− t + t2)/(1− t)2.
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These two calculations are special cases of the following general result:

Theorem 42.5.3 (Meng–Taubes [74]). If Y is obtained by 0-surgery on a knot
K in S3, then

χ(Y )− =
(∑

k>0

ktk

)
�K (t)

= t

(1− t)2
�K (t)

where �K is the symmetrized Alexander polynomial of the knot K, normalized
so that �K (1) = 1.

Remark. In the statement of the theorem, the rational function t/(1− t)2 is to
be expanded as a positive power series in t, as shown. We can write this rational
function as 1/(t−1/2 − t1/2)2 to exhibit its symmetry with respect replacing t
by t−1. The same rational function has a negative expansion,

−
∑
k<0

ktk .

If we use this expansion in negative powers, we obtain an expression
for χ(Y )+:

χ(Y )+ =
(
−
∑
k<0

ktk

)
�K (t).

The theorem can be deduced using an argument, based on the surgery exact
sequence for the Floer groups and the skein relation satisfied by �K (t). Such
an argument is given by Ozsváth and Szabó in the context of Heegaard Floer
homology, in [92, section 2]. An earlier related argument is in [31].

42.6 Applications to surgery

Applications of Floer homology to classical questions about Dehn surgery on
knots were given in [63]. In this subsection, we give a flavor of those results, by
indicating how the surgery exact sequence can be used to prove the following
illustrative theorem:
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Theorem 42.6.1. Let K be a knot in S3, and let S3
1/q(K) be obtained by Dehn

surgery, with q ∈ Z. If q is non-zero and

S3
1/q(K) = S3,

then K is the unknot.

This result was proved for |q| ≥ 2 by Culler, Gordon, Luecke and Shalen in
[16], as a corollary of their cyclic surgery theorem. For q = ±1, it was proved
by Gordon and Luecke in [50]. Since Dehn surgery with coefficient p/q yields
a manifold with non-trivial homology if p = ±1, the theorem can be restated
as saying that non-trivial Dehn surgery on a non-trivial knot cannot yield S3.
The argument using Floer homology in [63] is independent of [16] and [50],
except in that it draws on Gabai’s work. The more general result of [63] states
that, if Ku is the unknot and

S3
r (K) = S3

r (Ku)

as oriented manifolds for some rational number r, then K is also unknotted.
To prove the above theorem, we apply the surgery exact sequence with local

coefficients. Let η be a closed 1-cycle in the knot complement Z ⊂ S3, repre-
senting a generator of the real homology. To make the notation more compact
in the commutative diagrams that follow, let us introduce the abbreviation

Sr = S3
r (K)

for the manifold obtained by Dehn surgery. Let us also write

Šr =

̂

HM•(Sr ; Kη)

Ŝr = ĤM•(Sr ; Kη)

S̄r = HM•(Sr ; Kη),

where Kη is the local system used in Subsection 42.4. The Floer groups of the
manifolds S0, S1/(q+1), S1/q are related by a long exact sequence: see the exam-
ple (42.3). There is one such sequence for each flavor of Floer homology, and the
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three sequences are the rows of the following commutative diagram, in which
the columns are also exact, being the exact sequences of Proposition 22.2.1.

�� Ŝ0

��

�� Ŝ1/(q+1)

��

�� Ŝ1/q

p

��

�� Ŝ0

��

��

�� S̄0

��

�� S̄1/(q+1)

��

∼= �� S̄1/q

i
��

�� S̄0

��

��

�� Š0

��

Bq
�� Š1/(q+1)

��

Cq
�� Š1/q

j
��

Aq
�� Š0

��

��

�� Ŝ0
�� Ŝ1/(q+1)

�� Ŝ1/q
�� Ŝ0

��

We have one such diagram for each q. An important feature is that the manifold
S0 has non-zero Betti number; and because η represents a non-zero class in its
homology, we have

S̄0 = 0

from Proposition 3.9.1. As we have indicated in the diagram, it follows that the
map S̄1/(q+1) → S̄1/q is an isomorphism.

There is one other topological input to the argument, which is contained in
the next lemma.

Lemma 42.6.2 ([63]). The composite Bq−1 ◦ Aq : Š1/q → Š1/q is zero.

Proof. As explained in [63], this lemma follows from a borderline case of the
adjunction inequality. The composite cobordism which induces the map Bq−1 ◦
Aq contains an embedded 2-sphere with trivial normal bundle, representing a
non-zero homology class, and this forces the corresponding map to vanish. �

Corollary 42.6.3. The map Aq is zero, for all q ≥ 0, so we have a short exact
sequence relating

̂

HM• of S0, S1/(q+1) and S1/q:

0 → Š0 → Š1/(q+1) → Š1/q → 0.
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Proof. The proof uses the lemma, and is by induction on q. For q = 0,
the manifold S1/0 is S3, for which we know that the map j : Š1/0 → Ŝ1/0

is zero and the map i : S̄1/0 → Š1/0 is surjective. From the commutativ-
ity of the diagram, it follows that C0 is surjective also, and hence that A0

is zero.
For the induction step, suppose Aq−1 is zero. Then Bq−1 is injective, from

the exactness of the rows. The composite Bq−1 ◦ Aq is zero by the lemma, and
it follows that Aq is zero. �

Lemma 42.6.4. If j : Š1/(q+1) → Ŝ1/(q+1) is zero for some q ≥ 0, then so too
is j : Š1/q → Ŝ1/q.

Proof. The preceding corollary tells us that Cq is surjective. The hypothesis of
the lemma and the commutativity of the diagram tell us that j ◦ Cq is zero as a
map Š1/(q+1) → Ŝ1/q; so it follows that j is zero also. �

The lemma and the preceding corollary together give us the following sim-
plification of part of the commutative diagram, whenever j : Š1/(q+1) → Ŝ1/q

is zero (the rows and columns are exact):

Ŝ1/(q+1)
� �

��

�� Ŝ1/(q)
� �

p

��

S̄1/(q+1)

��

∼= �� S̄1/q

i
��

0 �� Š0
�� Š1/(q+1)

��

Cq
�� Š1/q

��

�� 0

0 0.

By the definition of Frøyshov’s invariant, this diagram can be described in the
following way, where L̄ is again K[U−1

† , U†]] and h(q + 1) and h(q) are the
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Frøyshov invariants h̄(Sq+1) and h̄(Sq) using coefficients of characteristic 2:

L̄h(q+1)
� �

��

�� L̄h(q)
� �

��

L̄

��

x �� L̄

i
��

0 �� Š0
�� L̄/L̄h(q+1)

��

Cq
�� L̄/L̄h(q)

��

�� 0

0 0.

From this we read off

dimK Š0 = dimK(L̄h(q)/L̄h(q+1)),

or in other words

h̄(S1/q)− h̄(S1/(q+1)) = dimK HM•(S0; Kη). (42.6)

Lemma 42.6.4 gives us exactly the same relationship also for a smaller q, and
we therefore obtain the following proposition.

Proposition 42.6.5. Suppose that for some q0 ≥ 0 the homology 3-sphere S1/q0

has j = 0 for its Floer groups with coefficients K. Then the characteristic-2
Frøyshov invariant h̄(S1/q0) is given by

h̄(S1/q0) = q0 dimK HM•(S0; Kη),

where S0 is the manifold obtained by longitudinal surgery and the coefficient
system Kη is the non-trivial local system described in Subsection 42.4 above.

Proof. Apply (42.6) to the successive differences, starting with the fact that
S1/0 is S3, which has h̄ = 0. �

We can now deduce the theorem. By replacing the knot with its mirror image
if necessary, we can reduce our considerations to the case q > 0. Suppose then
that S1/q is S3 when q = q0 ≥ 1. Being S3, the manifold S1/q0 has j = 0,
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so the above proposition is applicable. Also, h̄(S3) is zero; so the proposition
tells us

HM•(S0; Kη) = 0.

From Corollary 41.4.5, it follows that K is the unknot. �
The statement and proof of Proposition 42.6.5 can be extended in the

following way:

Proposition 42.6.6. Let Y be an integral homology 3-sphere, let K be a knot
in Y , and let Y1/q denote the integral homology 3-sphere obtained by 1/q Dehn
surgery on K. Suppose that the homomorphism j :

̂

HM• → ĤM• is zero for
both the manifolds Y1/p and Y1/q, where p and q are integers with p < q. Then
j is zero also for Y1/q′ for integers q′ in the range p ≤ q′ ≤ q. Furthermore,

h̄(Y1/q) = h̄(Y1/p)+ (q− p) dim HM•(Y0; Kη),

where Y0 is the manifold obtained by longitudinal surgery. �

This proposition highlights the class of 3-manifolds for which j = 0. Ozsváth
and Szabó introduced the term L-space for a rational homology sphere which
has the corresponding property in their Heegaard Floer homology theory. For
monopole Floer homology, we already know that a rational homology sphere is
an L-space if it has positive scalar curvature. Other examples of L-spaces arise
from applications of the surgery exact triangle, as the above proposition shows.

Aparticular example is the Poincaré homology sphere YP , the oriented bound-
ary of the negative-definite E8 plumbing. This manifold is obtained by 1/q
surgery on a trefoil knot, with q = −1. Longitudinal surgery on the same tre-
foil knot K gives a manifold S3

0 (K) with b1 = 1 which is a non-trivial flat
torus bundle over the circle. By the results of Subsection 37.4, we know that
HM•(Y0; Kη) has rank 1, so the above proposition tells us that the h̄-invariant of
the Poincaré homology sphere YP is−1, a result obtained by Frøyshov (cf. [41]).
Having obtained the h̄ invariant, we can turn Proposition 42.6.6 around: it tells
us that if YP is obtained by (1/q)-surgery on any knot K in S3, then q must be
−1 and the rank of HM•(Y0(K); Kη) must be 1.

One can take this result a little further. If HM•(Y0(K); Kη) has rank 1, then
the Euler characteristic defined in (42.5) is χ(Y0)b(t) = ±1 (with the sign
depending on whether the generator is in even or odd grading); and hence

χ(Y0)−(t) =
{
(1− t + t2)/(1− t)2, or

(−1+ 3t − t2)/(1− t)2.
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From the relationship between the Alexander polynomial of K and χ(Y0)− we
deduce that

�K (t) =
{

t−1 − 1+ t, or

−t−1 + 3− t.
(42.7)

In the case that (1/q)-surgery on K yields the Poincaré homology sphere, the
single generator of HM•(Y0(K); Kη) lies in even degree, and

�K (t) = t−1 − 1+ t

is the only possibility. This argument was used in [95] (using Heegaard Floer
homology), and it proves:

Proposition 42.6.7 (Ozsváth–Szabó [95]). If (1/q)-surgery on a knot K yields
the Poincaré sphere, oriented as the boundary of the negative-definite E8 plumb-
ing, then q must be−1 and K must have the same Alexander polynomial as the
trefoil. �

Theorem 42.6.1 has the following extension, as an application of Proposi-
tion 42.6.6.

Theorem 42.6.8. Let Y be an integral homology 3-sphere, and let p and q be
distinct integers. If

Y1/p(K) = Y1/q(K)

as oriented 3-manifolds, and if j :

̂

HM•(Y1/p(K)) → ĤM•(Y1/p(K)) is zero,
then Y0(K) is reducible. �

42.7 Fibered knots

We have just seen that if the manifold Y0(K) obtained by zero-surgery on a
knot K has Floer homology HM•(Y0(K); Kη) of rank 1, then the Alexander
polynomial of K is one of the two possibilities in (42.7) above. These two
polynomials are the Alexander polynomials of the trefoil and figure-eight knot
respectively: the two fibered knots of genus 1. A striking strengthening of this
observation concerning the Alexander polynomials was proved by Ghiggini:

Theorem 42.7.1 ([47]). Let K be a knot in S3 and let Y0(K) be obtained by
longitudinal surgery. Let η be a 1-cycle generating H1(Y0(K); R). Then the
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Floer group HM•(Y0(K); Kη) has rank 1 if and only if K is a fibered knot of
genus 1: that is, a trefoil or figure-eight knot.

Combined with the previous arguments, this result shows that the trefoil is
indeed the only knot which can give rise to the Poincaré homology sphere by
surgery. The proof of the theorem has two parts. We already know that K has
genus 1, so the generator of H2(Y0(K); Z) is represented by an embedded 2-
torus �. The first part of the argument is then to show that, if we cut along the
torus � and re-glue by any element φ of SL(2, Z) to obtain a new 3-manifold
Yφ , then the two groups

HM•(Yφ ; Kη), HM•(Y0(K); Kη)

have the same rank. For this, it is enough to show that if φ and φ′ differ by a
single Dehn twist, then the corresponding Floer groups are the same. In this
case, the manifolds Yφ and Yφ′ differ by a Dehn surgery along a curve γ lying
on �, and their Floer groups are related by a surgery exact sequence. The third
manifold that appears in the long exact sequence contains a sphere represent-
ing a generator of homology (obtained by ordinary surgery on � along γ ),
and the Floer groups of this third manifold with twisted coefficients are zero,
by Proposition 40.1.3. The groups HM•(Yφ ; Kη) and HM•(Yφ′ ; Kη) are there-
fore isomorphic as desired. The second part of Ghiggini’s argument leverages
Gabai’s existence theorems for taut foliations, to show that, if K is not fibered,
then for suitable φ the manifold Yφ admits two distinct taut foliations that can be
distinguished by the Euler classes of the corresponding 2-plane fields. Because
of the fundamental non-vanishing theorem, Theorem 41.4.1, this shows that,
if K is not fibered, then there are two different spinc structures which make
non-zero contributions to HM•(Yφ ; Kη). The rank of this group is therefore at
least 2 if K is not fibered, as is their rank of HM•(Y0(K); Kη), by the first part
of the argument.

In the setting of Heegaard homology, Theorem 42.7.1 has been extended by
Ni [85], who shows that fibered knots of genus g are characterized amongst all
genus-g knots by the condition

dimK HM∗(Y0(K), sc; Kη) = 1,

where sc is the spinc structure whose first Chern class is 2g − 2 times the
generator in H 2(Y0(K); Z). This result was first conjectured by Ozsváth and
Szabó in [91].
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Notes and references for Chapter X

For a survey of applications of foliations to topology from 1990, see [46].
Taubes’ non-vanishing theorem for symplectic manifolds was first proved in
[114], though the proof was simplified shortly afterwards (see [116, 21, 58]). A
similar statement for Kähler manifolds was observed earlier, by Witten [125].

One precursor of Theorem 41.3.3 is the theorem of Etnyre and Honda [29]
that a closed contact 3-manifold can be realized as a strongly concave boundary
of a symplectic 4-manifold. The question of which contact 3-manifolds arose as
concave boundaries appears to have received little attention before [29], perhaps
because there were no techniques to address the question prior to Giroux’s
work [48]. The question of which contact 3-manifolds arise as (weakly) convex
boundaries arose earlier in Eliashberg’s work: see [24] for a survey of this and
other developments in contact topology.

An earlier approach to the non-vanishing for Floer homology appeared in
[62] (though the result there was formulated in terms of the non-emptiness
of the set of critical points, rather than in terms of the corresponding Floer
groups). The argument in [62] made use of the symplectic structure with weakly
convex boundary on the cylinder [−1, 1] × Y , as supplied by Theorem 41.3.2,
but did not use the embedding theorem, Theorem 41.3.3, or Giroux’s results
(which were not known at the time that [62] was written). The approach in
[62] was to define monopole invariants of symplectic 4-manifolds with contact
boundary, essentially using the contact structure to supply a boundary condition
for the Seiberg–Witten equations. Taubes’ non-vanishing theorem extends to
this context, when the 4-manifold admits a symplectic form which is positive on
the contact planes at the boundary. This non-vanishing result can be applied to
the cylinder [−1, 1]×Y to obtain the non-vanishing of the Floer homology of Y .

After Floer’s treatment of a surgery exact sequence for the instanton homol-
ogy of homology spheres, the first proof of a surgery exact triangle with the
generality of Theorem 42.2.1 was proved for Heegaard Floer groups by Ozsváth
and Szabó [94]. The non-vanishing theorem for symplectic manifolds also holds
for the Heegaard invariants for 4-manifolds, so topological applications such as
those of Subsection 42.6 can be made using either monopole Floer homology
or Heegaard Floer homology, using the same arguments.

Additional properties of the invariant h(Y ) are proved by Frøyshov in [43], in
the more general setting of rational homology spheres. In particular, Frøyshov
establishes the additivity of this invariant under connected sums.
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Glossary of notation

A Used to denote a typical spinc connection, usually on a 4-manifold,
page 5.

A(Y ) The graded ring �(H1(Y )/torsion) ⊗ Z[U ], over which the Floer
groups of Y are modules, page 56.

A†(Y ) The ring A(Y ) equipped with the opposite multiplication and a
reversed grading, page 56.

a, b Used to denote solutions of the Seiberg–Witten equations in the
blown-up configuration space, Cσ

k (Y , s). Also referred to as critical
points, page 196.

[a], [b] Used to denote the gauge equivalence classes represented by
solutions a, b of the Seiberg–Witten equations in the blown-up
configuration space, Bσ

k (Y , s). Also referred to as critical points,
page 197.

Ǎ If A is a connection on bundle over a 4-dimensional cylinder, R×Y ,
then for each t ∈ R we obtain by restriction a connection Ǎ(t) on
{t} × Y ; thus Ǎ is a path of connections on Y , page 97.

B Used to denote a typical spinc connection, usually on a 3-manifold,
page 6.

b+(X ) For a closed oriented 4-manifold X , the second betti number can
be written b2 = b+ + b−, where the difference b+ − b− is the
signature. Thus b+ is the dimension of a maximal positive-definite
subspace for the quadratic form on H 2(X ; R).

b+(W ) For an oriented 4-dimensional cobordism, the dimension of a max-
imal positive-definite subspace for the non-degenerate quadratic
form on the image of H 2(W , ∂W ; R) in H 2(W ; R).

B(X , s) The quotient of C(X , s) by the gauge group G(X ), page 8.
Bσ (X , s) The quotient of Cσ (X , s) by the gauge group G(X ), page 138.
Bσ

k (X , s) The quotient of Cσ
k (X , s) by the action of the group Gk+1(X ),

page 138.
B∗(X , s) The quotient of C∗(X , s) by the gauge group G(X ), page 11.
B(Y , s) The quotient of C(Y , s) by the gauge group G(Y ), page 138.
Bσ (Y , s) The quotient of Cσ (Y , s) by the gauge group G(Y ), page 138.

785
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Bσ
k (Y , s) The quotient of Cσ

k (Y , s) by the action of the group Gk+1(Y ),
page 138.

Bσ (Y ) The union of Bσ (Y , s) taken over all spinc structures s on Y ,
page 454.

B∗(Y , s) The quotient of C∗(Y , s) by the gauge group G(Y ), page 140.
B̃σ (Y , s) The quotient of C̃σ (Y , s) by the action of the gauge-group G(Y ),

page 323.
Bτ

k,loc(Z) On an infinite cylinder Z = R× Y , the quotient of Cτ
k,loc(Z) by the

action of the gauge group, page 219.
B̃τ

k (Z) On a finite cylinder Z = [a, b] × Y , the quotient of C̃τ
k (Z) by the

action of the gauge group, page 138.
c1(s) For spinc structure s, the first Chern class of either the associated

bundle S (in the 3-dimensional case) or S+ (in the 4-dimensional
case).

cn The nth Chern class.
C(X , s) The configuration space of pairs (A,�) consisting of a smooth

spinc connection A and spinor �, on a 4-manifold X , possibly with
boundary, page 91.

Cσ (X , s) The blow-up of C(X , s) along the locus � = 0. A typical element
is represented as a triple (A, s,φ), where A is a spinc connection, s
is a non-negative real number and φ is a spinor on X with L2 norm
1, page 113.

Cσ
k (X , s) The L2

k Sobolev completion of Cσ (X , s), page 135.
C∗(X , s) The irreducible part of C(X , s): the configurations (A,�) with �

non-zero, page 140.
C(Y , s) The configuration space of pairs (B,�) consisting of a smooth spinc

connection B and spinor �, on a closed 3-manifold Y , page 85.
Cσ (Y , s) The blow-up of C(Y , s) along the locus � = 0. A typical element

is represented as a triple (B, r,ψ), where B is a spinc connection, r
is a non-negative real number and ψ is a spinor on Y with L2 norm
1, page 115.

Cσ
k (Y , s) The L2

k Sobolev completion of Cσ (Y , s), page 135.
C∗(Y , s) The irreducible part of C(Y , s): the configurations (B,�) with �

non-zero, page 113.
C̃σ (Y , s) The double of Cσ (Y , s). A typical element is represented as a triple

(B, r,ψ), where B is a spinc connection, r is a real number and ψ

is a spinor on Y with L2 norm 1. It contains Cσ (Y , s) as the subset
where r ≥ 0, page 137.

Cτ
k,loc(Z) On an infinite cylinder Z = R× Y , a space of triples (A, s,φ), with

s a non-negative real-valued function of the first coordinate, lying
in an L2

k,loc Sobolev space, page 218.

C̃τ
k (Z) On a finite cylinder Z = [a, b]×Y , a space of triples (A, s,φ), with s

a real-valued function of the first coordinate, lying in an L2
k Sobolev

space. This space contains Cτ
k (Z) as the locus where s is everywhere

non-negative, page 137.
Č∗, Ĉ∗, C̄∗ The Floer homology groups ĤM ∗(Y , s) etc. are the homology of

differentials ∂̌ : Č∗ → Č∗ etc., page 412.
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Cs, Cu, Co The summands of the groups Č∗ etc. formed from critical points
that are boundary-stable, boundary-unstable, and irreducible respec-
tively , page 412.

D In the context of a Banach manifold, D is used to denote a derivative.
∂̌ , ∂̂ , ∂̄ The differentials on Č∗, Ĉ∗, C̄∗ (qq.v.), page 415.
∂u

s etc. The individual maps Cu → Cs etc. from which the differentials ∂̌

and ∂̂ are constructed, page 415.
∂̄u

s etc. The maps Cu → Cs etc. from which the differential ∂̄ is constructed.
These are defined in terms of the reducible solutions to the Seiberg–
Witten equations, page 414.

F On a 4-manifold X , the Seiberg–Witten equations for a pair (A,�)

in C(X , s) are written F(A,�) = 0, page 8.
Fq The Seiberg–Witten equations on a cylinder, perturbed by q̂,

page 154.
Fσ On a 4-manifold X , the Seiberg–Witten equations for a triple

(A, s,φ) in the blown-up configuration space Cσ (X , s) are written
Fσ (A, s,φ) = 0, page 114.

Fτ On a cylinder Z = [a, b] × Y , the Seiberg–Witten equations for a
triple (A, s,φ) in the τ model of the blown-up configuration space
Cτ (Z , s) are written Fτ (A, s,φ) = 0, page 120.

gr([a]) For a critical point a, the grading in which the corresponding gen-
erator of the Floer complex Č∗ or Ĉ∗ appears. An element of J(Y ),
page 424.

gr(2)([a]) The image of the grading element gr([a]) under the canonical map
J(Y )→ Z/2, page 427.

ḡr(2)([a]) For a reducible critical point a, the image of the grading element
ḡr([a]) (q.v.) under the canonical map J(Y )→ Z/2, page 428.

ḡr([a]) For a reducible critical point a, the grading in which the correspond-
ing generator of the Floer complex C̄∗ appears. An element of J(Y ),
equal to gr([a])− 1 if a is boundary-unstable, page 293.

grQ([a]) The image of the grading element gr([a]) under the canonical map
J(Y , s)→ Q in the case that c1(s) is torsion, page 587.

grad L The gradient of the Chern–Simons–Dirac functional on C(Y , s),
page 86.

(grad L)σ Formally, the vector field on the blown-up configuration space,
Cσ (Y , s) obtained from grad L on C(Y , s), page 117.

G(X ) The gauge group, consisting of all smooth maps u : X → S1,
page 5.

Gk+1(X ) The L2
k+1 Sobolev completion of the gauge group G(X ), page 135.

Gk+1(Y ) The L2
k+1 Sobolev completion of the gauge group G(Y ), page 135.

� A system of local coefficients on Bσ (Y , s) or on Bσ (Y ), page 443.
�η The local system on Bσ (Y ) with fiber R, corresponding to a choice

of C∞ real 1-cycle η in Y , page 445.
ĤM ,

̂

HM Two flavors of Floer homology, page 420.
HM The third flavor of Floer homology, constructed using the reducible

critical points, which appears with ĤM and

̂

HM in a long exact
sequence, page 420.
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ĤM ∗(Y ) One flavor of the Floer homology of a 3-manifold Y , page 420.
ĤM ∗(Y ) One flavor of the Floer cohomology of a 3-manifold Y , page 426.
ĤM j(Y ) One summand of ĤM ∗(Y ) in grading j. The group HM ∗(Y ) is

graded by the set of homotopy classes of oriented 2-plane fields on
Y , page 425.

ĤM ∗(Y , s) The summand of ĤM ∗(Y ) corresponding to the spinc structure s

on Y , page 420.
ĤM•(Y , s) The completion of ĤM ∗(Y , s), page 513.
HM •(Y ) The image of

̂

HM•(Y ) in ĤM•(Y ) under the map j in the long exact
sequence; a finitely generated abelian group. Often identified with
both

̂

HM•(Y ) and ĤM•(Y ) when j is an isomorphism, page 68.
ĤM•(Y ;�) The Floer homology of type ĤM with coefficients in a local system

�, page 444.
ĤM•(Y , s, c) The Floer homology obtained from a non-exact perturbation of L,

with period class c, page 597.
ĤM•(W ) The map from ĤM•(Y1) to ĤM•(Y2) arising from a cobordism W

equipped with a homology orientation, page 451.
i The involution r �→ −r on C̃σ (Y , s) (q.v.). The quotient space can be

identified with Cσ (Y , s).Also used for the corresponding involution
on M ([a], [b]) for example, page 137.

I2(X ) For a 4-manifold with boundary, the image of H 2(X , ∂X ; R) in
H 2(X ; R). Also used for a cobordism W , page 60.

ι(W ) A characteristic number of a cobordism, page 526.
J(Y ) The set with Z-action by which the Floer groups of Y are graded.

This set can be identified with π0(�(Y )) (q.v.), page 424.
J , K On the irreducible part C∗k (Y , s) ⊂ Ck (Y , s) of the configuration

space, the L2 completion of the tangent bundle has an orthogonal
decomposition as J ⊕K, where the J is tangent to the gauge orbits,
page 140.

J σ , Kσ The L2 completion of the tangent bundle to Cσ
k (Y , s) decomposes

as J σ ⊕ Kσ . Away from the reducibles, this decomposition cor-
responds to the decomposition J ⊕ K via the blow-down map
π : Cσ

k (Y , s)→ Ck (Y , s), page 142.
K+, K− The spectral decomposition of Kσ determined by the Hessian of the

perturbed Chern–Simons–Dirac functional, page 313.
L2

k (M ) For k ≥ 0, the space of distributions on the Riemannian manifold

M having k derivatives in L2. On a closed manifold, the space L2−k
is the dual to L2

k . We also use fractional Sobolev spaces, in particular

L2
k−1/2(Y ); see Subsection 17.1.

L2
j,k (R× Y ) An anisotropic Sobolev space, Subsection 11.4.

L The Chern–Simons–Dirac functional, as a function on C(Y , s) or
Cσ (Y , s), page 85.

−L The perturbed Chern–Simons–Dirac functional, page 152.
−Lq The perturbed Chern–Simons–Dirac functional given by L + f ,

where f is a function with gradient q, page 265.



Glossary of notation 789

�([a]) A 2-element set canonically associated with a critical point [a], used
in orienting the moduli spaces M ([a], [b]), page 376.

�(B, r,ψ) The gauge-invariant function of (B, r,ψ) on Cσ (Y ) defined by
〈ψ , DBψ〉L2 for a spinor ψ of L2 norm 1, page 117.

�q(B, r,ψ) The perturbation of the function�(B, r,ψ)defined by 〈ψ , Dq,Bψ〉L2 ,
page 157.

M ([a], [b]) On the infinite cylinder Z = R×Y , the space of solutions to the per-
turbed Seiberg–Witten equations in Bτ

k,loc(Z) which are asymptotic
to the critical points [a] and [b] at the two ends, page 220.

M̆ ([a], [b]) The moduli space of unparametrized trajectories: the quotient of
M ([a], [b]) by translations, excluding the constant trajectory if
[a] = [b], page 275.

M̆+([a], [b]) The compactification of M̆ ([a], [b]) (q.v.) by broken trajectories,
page 276.

M̃ ([a], [b]) On the infinite cylinder Z = R × Y , the space of solutions to the
perturbed Seiberg–Witten equations in B̃τ

k,loc(Z) which are asymp-
totic the critical points [a] and [b] at the two ends. This contains
M ([a], [b]) just as B̃τ

k,loc(Z) contains Bτ
k,loc(Z), page 220.

Mz([a], [b]) The moduli space M ([a], [b] has a decomposition into parts
Mz([a], [b]) according to the homotopy classes z for paths from
[a] to [b] in Bσ

k (Y , s), page 220.
M ([a], W ∗, [b]) For the manifold with cylindrical ends, W ∗ (q.v.), obtained by

attaching half-infinite cylinders to a cobordism W , the moduli space
of solutions to the perturbed Seiberg–Witten equations, asymptotic
to [a] and [b] on the two ends. Like M (X ∗, b) (q.v.), it is defined
using a fiber product description, page 509.

M̄ ([a], W ∗, [b]) A compactification of M ([a], W ∗, [b]) which is smaller than
M+([a], W , [b]), page 510.

M+([a], W ∗, [b]) The compactification of M ([a], W ∗, [b]) (q.v.) by broken trajecto-
ries, page 509.

M (X , s) The space of solutions to the (possibly perturbed) Seiberg–Witten
equations on a compact 4-manifold X , as a subset of the blown-up
configuration space Bσ

k (X , s). This space is infinite-dimensional if
X has non-empty boundary, page 463.

M (X ∗, s, [b]) The space of solutions to the (possibly perturbed) Seiberg–Witten
equations on a 4-manifold X ∗ (q.v.) with a cylindrical end R≥ ×Y ,
asymptotic to [b] on the end, defined using a fiber product descrip-
tion. The 3-manifold Y may have more than one component,
page 465.

M̄ (X ∗, [b]) A compactification of M (X ∗, [b]) which is smaller than
M+(X , [b]), page 491.

M+(X ∗, [b]) The compactification of M (X ∗, [b]) (q.v.) by broken trajectories,
page 485.

M (X , s)P The space of solutions to the Seiberg–Witten equations for a fam-
ily of metrics and perturbations, parametrized by a manifold P,
page 479.

M̃ (X , s) The double of M (X , s), as a subset of B̃σ
k (X , s), page 463.
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P A Banach space of tame perturbations for the Seiberg–Witten
equations on Y , page 191.

π A blow-down map, such as the map from Cσ (Y , s) to C(Y , s),
page 113.

q A typical tame perturbation of the gradient of the Chern–Simons–
Dirac functional on Y . Formally, q is the gradient of a function f on
C(Y , s) with respect to the L2 inner product, page 153.

Qγ A linear operator associated to a trajectory γ , constructed from the
linearized Seiberg–Witten equations and a gauge-fixing condition,
page 254.

q̂ The perturbation of the 4-dimensional Seiberg–Witten equations on
a cylinder Z = [a, b] × Y resulting from a perturbation q of the
gradient of the Chern–Simons–Dirac functional, page 153.

ρ Clifford multiplication on the 3-manifold Y : a bundle map ρ :
TY → Hom(S, S), whose domain is also extended to the bundles
of forms, �iY , page 2.

ρX Clifford multiplication on the 4-manifold X , page 4.
s A typical spinc structure, usually on a 3-manifold Y .
S+ ⊕ S− The decomposition of the spinc bundle on a 4-manifold into its two

half-spin bundles.
sX A typical spinc structure on a 4-manifold X .
S(V ) The unit sphere in V : if V is a topological vector space equipped

with a continuous norm, then S(V ) denotes the set of elements of
norm 1. Without a norm, one can define S(V ) as the quotient of V \0
by the action of the positive reals, page 113.

σ , τ The two different ways to construct a blown-up version of the con-
figuration space are referred to as the σ model and the τ model. The
former is used both on a 3-manifold and on a general 4-manifold.
The latter is applicable only to a cylindrical manifold. In finite-
dimensional Morse theory on a manifold B, the τ model corresponds
to the path space of a blow-up of B. See Section 6.

T The torus H 1(Y ; R)/H 1(Y ; Z) which parametrizes flat U (1) con-
nections in the trivial bundle on Y , page 55.

Tj The L2
j completion of the L2

k tangent bundle of Ck (Y , s), page 137.

T σ
j The L2

j completion of the L2
k tangent bundle of Cσk (Y , s), page 136.

W Usually used to denote a cobordism between connected 3-manifolds
w2 The second Stiefel–Whitney class.
W ∗ The complete manifold with cylindrical ends obtained by attach-

ing two half-infinite cylinders to the boundary components of a
4-dimensional cobordism W , page 509.

X Usually used to denote a compact, oriented 4-manifold, possibly
with boundary.

X ∗ The complete manifold with cylindrical ends obtained by attaching
half-infinite cylinders to the boundary components of a 4-manifold
X , page 464.
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�(Y ) The space of all oriented 2-plane fields on Y . Its path-components
can be identified with J(Y ) (q.v.), the set with Z-action by which
the Floer groups are graded, page 51.

Y Usually used to denote a compact, oriented 3-manifold, usually
connected and without boundary.

Z Usually used to denote a cylinder such as [a, b] × Y or R× Y
Z� If � is a 2-element set, then Z� is an infinite cyclic group con-

structed so that a choice of element from � corresponds to a choice
of generator for Z�, page 20.

ZT The cylinder [−T , T ] × Y , page 323.
Z∞ In Subsection 18.2, the disjoint union of two half-infinite cylinders

(R≥ × Y )  (R≤ × Y ), regarded as a limit of ZT as T → ∞,
page 323.

z Often used to denote a homotopy class of paths between critical
points [a], [b] in Bσ

k (Y , s), or more generally an X -path or a W -path.
The last letter of the alphabet, page 220.
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adjunction inequality, 740, 756, 772
admissible, see perturbation, admissible
Agmon, 120
Akbulut, 749
Alexander polynomial, 757, 765, 766, 770, 776
Alexander–Spanier cohomology, 448
almost self-adjoint, see asafoe
anisotropic Sobolev space, 183
asafoe, 197, 200, 203, 210, 239, 241, 304,

306, 308, 313, 314, 338
Atiyah, 7, 294, 311, 312, 327, 374, 527
Atiyah–Patodi–Singer, 294, 311, 312, 327,

374, 527
Atiyah–Singer, 7

Bismut, 377
blow-up, 31, 112

and double manifold, 38
and gradient of L, 117
of configuration space, 115
of gradient flow, 35
of normed space, 113

blow-up formula, 728–733, 739, 740
Bott, 83
boundary multiplicity, 407, 409, 521, 522, 549
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371, 372, 391, 398, 430, 435, 497

broken trajectory, 17, 27, 39, 274, 275
broken X -trajectory, 485

c-complete, 601, 602–606, 616, 618, 622, 627,
630, 632, 737, 767

strongly, 604–605
c-dual-complete, 602
c-finite, 600–605
canonical grading

mod 2, 52, 427
rational, 587

cap product, 54–56, 71, 73, 454, 455, 457,
459, 514, 519, 528–536, 597, 606,
661–686, 690, 692, 693

Cartan, 747
Casson, 765
Cauchy–Riemann, 659, 660
center of mass, 351–354, 366, 395
centered, 351, 350–354, 368
centering interval, see local centering interval
Chern–Simons, 132, 273
Chern–Simons–Dirac, 49, 81, 84, 85, 109–111,

130, 132, 134, 152–678
on S3, 446
on T 3, 699–703
perturbed, 152, 171, 195, 482, 509, 699

by 2-form, 590–633
Chern–Simons–Dirac functional

and gauge transformations, 87

792
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Chern–Weil, 133, 734, 738
Clifford multiplication, 2
commensurate projection, 303, 303–311
compactification, 274, 275, 289, 291,

319–322, 396, 405, 414, 417, 418,
485–501, 509–513, 515, 520, 521, 525,
535, 538, 541, 542, 549, 550, 565, 568

compactness, 9, 99–111
and blow-up, 130–132
and broken trajectories, 275–289

completion, negative, 52
contact structure, 721, 744, 749
Conway, 766
Coulomb, 171, 314
Coulomb gauge, 102, 106, 109, 185, 344, 483
Coulomb slice, 145, 150, 160, 194, 196, 202,

234, 254, 553, 700
Coulomb–Neumann, 149, 230
Coulomb–Neuman chart, 145

in τ model, 148
Coulomb–Neuman gauge, 102, 112, 145, 146,

151, 163, 316, 344
Coulomb–Neuman slice, 145, 227, 229, 231,

341
in τ model, 148

coupled Morse homology, 634
calculation, 658–678
grading, 651

Culler, 771
cup product, 54, 55, 71, 73, 454, 455, 457,

459, 504, 515, 518, 528, 531, 575, 597,
606, 678–689, 698, 705

d -dimensional space stratified by manifolds,
289
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codimension-c, 493–494, 501
codimension-1, 373–374, 393–394, 410,

416, 512, 542
Dehn filling, 721, 759, 760, 761, 763, 764
Dehn surgery, 770, 771, 775, 777
Dehn twist, 777
Dirac operator, 5, 5–7

in dimension four, 5
in dimension three, 7
index of, 7
perturbed, 200, 262, 263, 448, 566, 588,

598, 612, 679, 687
unique continuation, 122, 127

Dolbeault, 582

Donaldson, xi, xii, 81–83, 374, 448, 589, 719,
721, 726, 730

polynomial invariants, 81, 82, 589, 719
duality, 31, 45, 53, 54, 56, 62, 68, 71, 75, 82,

438, 440, 441, 445, 448, 529, 530, 550,
562, 589, 597, 602, 624

eigenspace, 4, 15, 21, 198, 295, 447, 504,
581, 702

generalized, 198, 305, 313, 429, 438, 506
Eliashberg, 746, 748, 778
Elkies, 725
elliptic surfaces, 711
energy

analytic, 84, 96, 97
perturbed, 161

identity, 96
perturbed by 2-form, 593
topological, 84, 96

perturbed, 483
energy-finite, 617
Etnyre, 746, 778
extended Hessian, 203, 206, 207, 210, 211,

255, 257, 338

fiber product, 343–350, 363–366, 368, 369,
466, 471, 472, 479, 494, 498–500,
508, 538

Floer, xi, 82, 83, 194, 374, 448, 589
Floer homology, 49

as functor, 61, 451
of flat 3-manifolds, 708
of S1 × S2, 79
of S3, 56
of T 3, 78, 699
of the Poincaré sphere, 775

Fredholm operator, 7
Freed, 377
Frobenius integrability condition, 741
Frøyshov, xii, 83, 448, 589, 721–723, 726,

727, 775, 778
Frøyshov’s invariant, 721, 722, 773, 774

mod 2 version, 727

Gabai, 743, 744, 746, 751–753, 756, 757,
771, 777

gauge fixing, see Coulomb etc.
gauge group, 5, 87, 135, 224

action of, 87
components of, 87
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gauge transformation, 5
Gauss–Bonnet theorem, 734
Ghiggini, 776
Giroux, 746, 749, 778
Gordon, 771
gradient flow, 15

of Chern–Simons–Dirac functional, 88, 89
of perturbed functional, 155

Green’s operator, 256

Hantzsche–Wendt manifold, 708, 710
Heegaard homology, xii, 82, 83, 589, 719, 721,

761, 770, 775–778
Hessian, 22, 38, 202–204

and perturbations, 197
extended, 203, 206, 207, 210, 211, 255, 257,

338
in normal directions, 36
of cylinder functions, 176
on the blow-up, 204–213

Hirzebruch, 82
homology orientation, 13, 53, 59, 62, 66, 69,

71, 73, 431, 440, 445, 451, 456, 459, 501,
511, 515, 529, 536, 555, 562, 571, 572,
575, 576, 608, 623, 729

of a 3-manifold, 431
of a 4-manifold, 11, 60
of a cobordism, 60

Honda, 746, 778
Hopf, 82
hyperbolic, 210, 240, 240–258, 272, 303–308,

313–315, 338, 381, 391, 438, 439,
471, 656

index
and spectral flow, 244
of a critical point, 15
of Dirac operator, 7

index theorem, 7, 11, 247
for families, 573, 650, 660, 680, 698

instanton homology, xi, xii, 83, 589, 719, 722,
761, 778

integration by parts, 92, 160, 228, 250, 477

Jacobi, 731
Jones polynomial, 757
Jordan form, 693

k-commensurate, see commensurate projection
Klein 4-group, 708

Kodaira, 711, 714
Kuiper’s theorem, 151, 638, 650
Kuranishi, 273

L-space, 775
Leray–Hirsch theorem, 39, 152
Lichnerowicz–Weitzenböck formula, 93, 94,

98, 133
Lisca, 749
local centering interval, 351, 351–355,

358–359, 364, 367
local coefficients, 69, 443
Luecke, 771

Marcolli, xii
Matić, 749
Meng, 765, 770
moduli space, 8
monopole equations

four-dimensional, 7
perturbed by 2-form, 8

Morse complex, 49, 53, 59, 70, 81, 376, 377,
590, 599, 656, 661, 675, 676, 684,
688–690, 692, 705, 706, 710

Morse differential, 661, 664, 675, 676, 684,
703, 707

Morse function, 1, 53, 81, 82, 134, 274, 319,
390, 491, 650, 655, 661–664, 675, 677,
679, 684, 688, 689, 691, 696, 699,
702–704, 706, 709, 710

Morse homology, 53, 590
Morse index, 258, 658, 696
Morse inequalities, 83
Morse–Smale transversality condition, 16, 24,

44, 46, 650, 652, 654, 661, 663, 675
Morse stratification, 684
Morse theory, xi, 1, 14–49, 53, 59, 81, 82, 84,

112, 134, 195, 274, 343, 375, 377, 390,
411, 433, 443, 461, 590, 635, 655

Morse trajectory, 690, 696, 708
multiplicity, of boundary component, 407

negative completion, 52, 57, 76, 451, 514,
606, 613, 615–617, 624

Neumann, see Coulomb–Neumann
Ni, 777
Nirenberg, 120
non-exact, see perturbation
Novikov, 76, 81, 602, 604
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open-book decomposition, 749
Ozbagci, 749
Ozsváth, xii, 82, 83, 719, 721, 722, 741, 761,

770, 775–778

Patodi, 294, 311, 312, 327, 374, 527
Pauli matrices, 2
perturbation

admissible, 411, 424, 428, 449–451, 509,
534, 536, 537, 557, 584–586

Banach spaces of, 193, 190–194, 197
k-tame, 159
non-exact, 81, 449, 590–633, 678, 737,

766, 769
tame, 159, 158–169, 195–197, 590

and non-exact, 591
perturbations, construction, 171–193
pluri-subharmonic function, 747, 749
Poincaré duality, see duality
Poincaré homology sphere, 775, 776, 777
Poincaré line bundle, 680
Poincaré polynomial, 682
Poincaré recurrence theorem, 742
projection, commensurate, see commensurate

projection
pseudo-convex, 747

Quillen, 377

reducible, 9, 10, 88
convergence to, 167
transversality, 215

regular solution, 9, 261
restpoint, 275, 279, 286
Ricci curvature, 103, 717

Sard–Smale theorem, 152, 213, 215, 217,
267, 273

Sard-Smale theorem, 134, 160, 194
Schoen, 695
Schur’s lemma, 3
Sedlacek, 374
Seiberg-Witten equations, see monopole

equations
Seifert surface, 752
Seifert-fibered space, 713
Shalen, 771
simple type, 14, 731
Singer, 7, 294, 311, 312, 327, 374, 527

skein relation, 766
slice, see Coulomb
Sobolev embedding theorem, 165, 222, 251
Sobolev extension theorem, 296
Sobolev multiplication theorem, 135, 148,

200, 224
Sobolev restriction theorem, 103, 295, 296
Sobolev spaces, fractional, 295
space forms

Euclidean, 708
spherical, 695

spectral flow, 244–247, 303, 305, 385, 532,
566, 599, 602, 604, 650, 674

spectral subspace, 306, 308, 310, 317, 340,
381, 383, 384, 387, 402, 429, 471,
501, 537

spectrum
of asafoe operator, 198
of extended Hessian, 210
simple, 21

spinc connection, 5
spinc structure, 2

associated line bundle, 6
automorphism of, 5
classification, 3
existence of, 5
on boundary, 92

stable manifold, 15, 18, 24, 317, 375, 390
Stein manifold, 749
stratifed, see d -dimensional space stratified by

manifolds
stratum, see d -dimensional space stratified by

manifolds
Szabó, xii, 82, 83, 719, 721, 722, 741, 761,

770, 775–778

τ model, 118
Taubes, xii, 83, 374, 633, 719, 744, 765, 778
taut foliation, 741–756, 777
ϑ-function, 731
Thom, 83, 741
Thurston, 695, 746, 748
Thurston norm, 721, 734, 743, 755–757

Uhlenbeck, 374
unique continuation, 84, 116, 120–130, 133,

165–167, 267, 271, 278, 284, 308, 312,
318, 464, 468, 541, 543, 552

unstable manifold, 15, 18, 24, 317, 375,
390, 651
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W -morphism, 458, 458–461, 514, 516, 527,
556, 569, 625, 727

W -path, 458, 509, 527, 587
Wang, xii
Weinstein, 682, 720
Weitzenböck, see Lichnerowicz–Weitzenböck

formula

Witten, 1, 82, 745, 778

Yang–Mills theory, xi, 726
Yang–Mills equation, anti-self-dual, xi,

132, 374
Yau, 695
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