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Friedhelm Waldhausen

This is an account of foundational material on the algebraic K-theory of spaces

functor X... A(X) .

The paper is in three parts which are entitled "Abstract K-theory", "A(X)",

and "Relation of A(X) to WhPL(X)", respectively.

The main result of the paper is in the second part. It says that several defi-

nitions of A(X) are in fact equivalent to each other, up to homotopy. The proof

uses most of the results of the first part. An introduction to this circle of ideas

can be obtained from looking at the sections entitled "Review of A(X)" and "Review

of algebraic K-theory" in the papers [17] and [18] (these two sections were written

with that purpose in mind).

The third part of the paper is devoted to an abstract version of the relation

of the A-functor to concordance theory. The content of the parametrized h-cobordism

theorem in the sense of Hatcher is that PL concordance theory, stabilized with re-

spect to dimension, can be re-~xpressed in terms of non-manifold data. A detailed

account of the translation is given elsewhere [16], in particular the relevant re-

sults of Hatcher's are (re-)proved there. The result of the translation (after a

dimension shift) is a functor XW WhPL(X) .It is shown here that there is a map

A(X) -WhPL(X) and that the homotopy fibre of that map is a homology theory (i.e.,

that, as a functor of X, the homotopy fibre satisfies the excision property).

The first part of the paper, on which everything else depends, may perhaps look

a little frightening because of the abstract language that it uses throughout. This

is unfortunate, but there is no way out. It is not the purpose of the abstract lan-

guage to strive for great generality. The purpose is rather to simplify proofs, and

indeed to make some proofs understandable at all. The reader is invited to run the

following test: take theorem 2.2.1 (this is about the worst case), translate the

complete proof into not using the abstract language, and then try to communicate it

to somebody else.

~
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I. ABSTRACT K-THEORY.

1.1. Categories with c:ofibrations, and the language~ filtered objects.

A category C is called pointed if it is equipped with a distinguished zero

object *, i.e. an object which is both initial and terminal.

A aategory with aofibrations shall mean a pointed category C together with a

subcategory coC satisfying the axioms Cof I -Cof 3 below. The feathered arrows
, >--+' will be used to denote the morphisms iri coC. Informally the morphisms

in coC will simply be referred to as the aofibrations in C.

~ 1. The isomorphisms in Care cofibrations (in particular coC contains all

the objects of C).

~ 2. For every A E C , the arrow * ~ A is a cofibration.

~ 3. Cofibrations admit cobase changes. This means the following two things.

If A- B is a cofibration, and A ~ C any arrow, then firstly the pushout CUAB

exists in C, and secondly the canonical arrow C ~ CUAB is a cofibration again.

Here is some more language. If A~B is a cofibration then BfA will denote

any representative of *UAB. We think of it as the quotient of B by A. The

canonical map B ~ BfA will be referred to as a quotient map. The double headed

arrows '~' are reserved to denote quotient maps. (Note that it is neither

asked, nor asserted, that the quotient maps form a category, i.e. that the composite

of two quotient maps i. always a quotient map again.)

~

Our usage of the term aofibpation sequenae conforms to the usage in homotopy

theory. It refers to a sequence A ~ B ~BfA where B ~ BfA is the quotient

map associated to A -B .

Beware that we will also be using the term sequence of cofib~ations which of

course refers to a sequence of the type Aj>--+AZ- An.

The most important example of a (:ategory with cofibrations, for our purposes,

is that of the spaces having a given space X as a retract. We will denote this

category by R(X) .As a technical point, there will be several cases to consider

depending on whether space means simplicial set, or cell complex, or whatever, and
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together with a

feathered arrows

the morphisms

perhaps with a finiteness condition imposed. In any case the term cofibration has

essentially its usual meaning here. (As a technical point again, note that the

axiom Cof 2 may force us to put a condition on one of the structural maps of an

object of R(X) -the section dhould be a cofibration).

Another important example, though of less concern to us here, is that of an

exact catego~ in the sense of Quillen. Any exact category can be considered as a

category with cofibrations by choosing a zero object, and declaring the admissible

monomorphisms to be the cofibrations. The re-interpretation involves a loss of

structure: one ignores that pullbacks used to playa role, too (the base change by

admissible epimorphisms).

Since our axioms a~e so primitive it will not be surprising that they admit

examples which are not important at all, and perhaps even embarrassing. Here is a

particularly bad case. Consider a category having a zero object and finite colimits.

It can be made into a category with cofibrations by declaring all morphisms to be

cofibrations.contains all

Here is some more language. A functor between categories with cofibrations is

called exact if it preserves all the relevant structure: it takes * to *, co-

fibrations to cofibrations, and it preserves the pushout diagrams of axiom Cof 3 .

For example, a map X -+ Xl induces an exact functor R(x) -+ R(x') .On total

spaces it is given by plJshout of X -+ Xl with the structural sections.

two things.

pushout CUAB

bration again.

Another example of an exact functor is the linearization functor (or Hurewicz

map) which takes an object of R(x) to the abelian-group-object in R(X) which it

generates.

BIA will denote

by A. Thefouble 

headed

t is neither

~t the composite

! 

in homotopy

the quotient

There is a concept slightly stronger than that of an exact inclusion functor

which we will have to consider. We say that C' is a subcategory with cofibrations

of C if in addition to the exactness of the inclusion functor the following condi-

tion is satisfied: an arrow in C' is a cofibration in C' if it is a cofibration

in C and the quotient is in C' (up to isomorphism).

An example of a subcategory-with-cofibrations arises if we consider a subcate-

gory of R(X) defined by a finiteness condition.
which of

our purposes,

L denote this!s 

to consider

whatever, and

Here is a more interesting example. For n ~ 2 let Rn(x) denote the full

subcategory of R(X) whose obj~cts are obtainable from X by attaching of n-cells

(up to homotopy). It can be considered as a subcategory with cofibrations of R(X) .

In the remainder of the s~ction we will check that certain elementary construc-

tions with categories do not l~.d one out of the framework of categories with cofi-

brations. In particular we will be interested in fiLtered objects; that is, sequen-

ces of cofibrations. (Despite the fact, exemplified above, that cofibrations need

not be monomorphic at all, we shall let ourselves be guided by the more relevant
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examples to justify using this terminology). The arguments below will not go beyond

trivial manipulation with colimits. There is, however, one idea involved. The idea

is that the notion of bifitteped object (or ~ttice) can be formulated without pull-backs. 

Namely if the diagram

A--+B

! !C-D
is to be a 'lattice' we are inclined to ask this'in the form of two conditions:

firstly, that all the arrows be cofibrations, and secondly, that the 'images' in D

satisfy Im(A) ~ Im(B) n Im(C) .The latter does not make sense in our context, in

general, but we can substitute it with the condition that the arrow BUAC ~ D be a

cofibration.

For any category C we let ArC denote the category whose objects are the

arrows of C and whose morphisms are the commutative squares

in C. If C is a category with cofibrations then so is ArC in an obvious way:

a map is in coArC if and only if the two associated maps in C are in coC.Definition. 

FIC is the full subcategory of ArC whose objects are the cofibra-

tions in C, and coFIC is the class of the maps (A>+ B) -+ (A'... B') in FIC

having the property that both A -+ A' and A'UAB -+ B' are cofibrations in C.

Lemma. 1.1.1. coFIC makes F(C a category with cofibrations.

Proof. There are two points that require proof:

that the axiom Cof 3 is satisfied.

that 

coF)C is a category, and

As to the first, let (A... B) (A' B') and (A' B')"" (A" B") be in

coF C. Then A... A" since coC is a category. By assumption about the second
1

map A"UA,B"'" B"; and by assumption about the first map and by axioms Cof 1 and

Cof 3 for coC, all the following terms are defined and the composed map

,., ,.,
A" U B --+ A" U A'U 8 --+A"U A'U BU B' --A"U B'

A A' A A' A (A'U B) A'
A

is also in coC. Taking the composition of the two maps we obtain that A"UAB'" B"

is in coC, as was to be shown.

As to the second, let (A'" B) ...(A I >+ B') and (A>+ B) ..(C... D) be maps in

coF)C, resp. F)C. Their pushout exists in ArC by Cof 3 for C (because

A 1-+ A' and A'UAB"" B' implies B B') where it is represented by

A'UAC --B'UBD .

.
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We show below that this is an object of (and consequently also a pushout in) FIC,

We nrost in addition show that the canonical map (C'" D) -+ (A'UAC -+ B'UBD) is in

coFIC, This amounts to the two assertions that C... A'UAC, which is clear, and

that (A'UAC)UCD... (B'UBD) .The latter map is isomorphic to A'UAD -+ B'UBD which

in turn is isomorphic to the composed map

~c:onditions:

'images' in D)ur 

context. in

BUAC -+ D be a

and this is a cofibration since A'UAB ~ B' is one. Finally A'UAC ~ (A'UAC)UCD

is a cofibration since C ~ D is one. Composing it with the cofibration

(A'UAC)UCD ~ B'UBD (above) we obtain the map A'UAC ~ B'UBD. This proves the post-

poned claim that the latter map is a cofibration. c

Definition. f7C is the category equivalent to f)C in which an object consists

of an object A>+ B of f)C together with the choice of a quotient B/A; in other

words, f7C is the category of cofibration sequences A... B -B/A in C. It is

made into a category with cofibrations by means of the equivalence f7c ~ f)C .

obvious way:

In coC.

! 

the cofibra-

B') in FIC

.ons in C.

as claimed.

:ategory, 

and

As to the second, let such a pushout diagram in F7C be given by the diagram

I") be

the se

Cof

(A... B ...BfA) .(C"" D ...DfC)

(A'... B' -B'/A') --.(A'U C... B'U D -(B'U D)/(A'U C))A B B A'

hat A"UAB -+ B"

D) be maps in

C (because

Then the assertion means that

(B'UBD)/(A'UAC) and B'/A'UB!AD/C

are canonically isomorphic. But this is clear from the fact that an iterated colimit

may be computed in any way desired provided only that all the colimits involved exist.

In particular the two objects at hand are canonically isomorphic because both repre-

sent the colimit of the diagram

t 

go b

.Thethout

eyond

ideapull-

~ 1.1.2. The three functor$ s, t, q: F7C... C sending A... B -BfA to A, B,

and BfA, respectively, are exact.}Toof. 

For s this holds by definition, and for t almost so. The case of q
+

requires proof. We must show that q takes coFIC to coC, and that q pre-

serves the pushout diagrams of axiom Cof 3 .

As to the first, if (A>-+ B) ...(A' >+ B') is in coF7C then, by definition,

A'UAB... B' is in coC. Hence so is

incond

1 and
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Leoma 1.1.5 There are natural isomorphisms of categories with cofibrations

F F C ~ F F C F+F+C ~ F+F+C .
nm mn' nm mn

Proof. It suffices to remark that an object of F F C can be more symmetrically

n m
defined as a rectangular array of squares each of which consists of cofibrations

only and satisfies the condition in the definition of a cofibration in FtC; the

point is that the condition is symmetric with respect to horizonta~ and vertioa~.

Similarly, a cofibration in F F C, or sequence of such, may be identified to a
n m

3-dimensional diagram satisfying conditions with respect to which none of the three

directions is preferred.

0

of cofibrations

~s. 

F+C is the
m

F C together
m

c

...

1

that the maps

We will want to kno~ that categories with cofibrations reproduce under certain

other simple constructions. By the fibre product of a pair of functors f: A... C ,g: 

B... C is meant the category n(f,g) whose objects are the triples

...
(A,c,B) , A E A, B E B, c: f(A) -g(B) ,

and where a morphism from (A,c,B) to (A',c',B') is a pair of morphisms (a,b)

compatible with the isomorphisms c and c'. In some special cases the fibre pro-

duct category is equivalent to the pullback category AxCS; notably this is so if

either f or g is a retraction. (If the two are not the same, up to equivalence,

the pullback should be regarded as pathological.)

,i
1)

~;".
.'~I~i; ,.

;
,;.,

Lemma. 

1.1.6. If f: A ~ C and g: B ~ C are exact functors of categories with co-

fibrations then n(f,g) can be made into a category with cofibrations by letting

to the cofibra-
co(n(f,g» .n(co(f),co(g» ,

and the projection functors from n(f,g) to A and B are exact.
D

~

Similarly, if j -+ C. , j E J, is a direct system of categories with cofibra-
J

tions and exact functors then lim C. is a category with cofibrations, with
..J

co ( lim C.) = lim coC. .
-+J -+ J

aT!! exact.

Definition and aoroZ~. Let A. B. C be categories with cofibrations and let A

and B be subcategories of C in such a way that the inclusion functors are exact.

Define E(A.C.B) as the category of the cofibration sequences in C.

and the functors C. ~ lim C.
J ~ J c

bration if it

roposition just
A""C--B, AEA, BEB.

Then E(A,C,B) is a category with cofibrations, and the projections to A, C, B

are exact.

[]

t"ations 

F F Cnm
Indeed, E(A,C,B) is the pullback of a diagram F7c --+ C xC+-- A x B; the

pullback is not pathological since the first arrow has a section. c
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1.2. Categories with cofibrations and weak equivalences.

Let C be a category with cofibrations in the sense of section 1.1 (we will

from now on drop explicit mentioning of the category of cofibrations cor from thenotation). 

A category of weak equivaLences in C shall mean a subcategory wC

of C satisfying the following two axioms.

~ I. The isomorphisms in C are contained in wC (and in particular therefore

the category wC contains all the objects of C).

~ 2. (GLuing Lemma). If in the commutative diagram

B-A--+C

1 1 1B'-A'-C'
the horizontal arrows on the left are cofibrations, and all three vertical arrows

are in wC, then the induced map

BUAC -B'UA'C'

is also in wC.

Here are some examples. Any category with cofibrations can be equipped with a

category of weak equivalence8 in at least two ways: the minimal choice is to let

wC be the category of i8omorphi8ms in C. while the maximal choice is to let wC

be equal to C itself.

To obtain an example of a category of weak equivalences on the category R(X)

(the preceding section) chooae a homology theory and define wR(x) to be the cate-

gory of those maps which induce isomorphisms of that homology theory.

To obtain another example define hR(X) to be the category of the ~eak homotopy

equivaZenaes.

To obtain yet another example define sR(X) to be the category of the simpZe

maps, i.e. the maps whose point inverses have the shape (or Cech homotopy type) of a

point. (We shall consider simple maps in the simplicial setting only in which case

the definition simplifies to asking that the point inverses in the geometric realiza-

tion of the map are contractible.) Neither the fact that sR(x) is a category nor

the gluing lemma are trivial to prove.

The following two further axioms may, or may not, be satisfied by a given cate-

gory of weak equivalences.
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saturation axiom. If a, bare composable maps in C and if two of a, b, ab are

in wC then so is the third.

For example the simple maps do not satisfy the saturation axiom. E.g. consider

the two maps a, b in R(*) given by the inclusion of the basepoint in a I-simplex

and by the projection af that I-simplex to the basepoint, respectively.

l 1.1 (we will

coC from the

ategory wC

Extension axiom. Let

ular therefore A-B -B/A
! ! !
A' ~B'- B'/A'

~

If the arrows A ~ A' and B/A ~ B'/A' arebe a map of cofibration sequences.

rtical 

arrows

where BZ is the classifying space of the infinite cyclic group and BG the classi-

fying space of a suitable non-abelian group which is normally generated by a sub-

group Z, for example a classical knot group.

equipped 

with a

ice is to let

e is to let wC

category R(X)

to be the cate-

As the examples show there may be a great profusion of categories of weak equi-

valences on a given category with cofibrations. Also, we will have occasion to con-

sider a category with cofibrations equipped with two categories of weak equivalences

at the same time, one finer than the other, and study their interplay. We must

therefore exercise some care with the notation, and in general the category of weak

equivalences will be explicitly mentioned.

he !A1eak ho7/l:)topy Still there are some situations where there is no danger of confusion. On

those occasions we will allow ourselves the abuse of referring to the maps in wC

as the ~eak equivaLences in C ~ and denote them by the decorated arrows' -=:. '
of the simpleotopy 

type) of ay 

in which case

eometric realiza-

a category nor

by 

a given cate-

By a category ~th calibrations and weak equivaZences will be meant a category
with cofibrations equipped with one (and only one) category of weak equivalences. A

functor between such is called ezaat if it preserves all the relevant structure.

As in the preceding section, the notion of an exact inclusion functor may be

sharpened to that of a suboategory ~th cofibPations and weak equivaZences.

Finally we note that categories of weak equivalences are inherited by diagram

categories. There are lemmas similar to, but easier than, those of the preceding

section. We omit their formulation.

in wC then it follows that B ~ B' is in ~, too.

For example the weak homotopy equivalences do not satisfy the extension axiom.

E.g. consider the diagram in R(*)

BZ~BZ -*

-1 ! !
BZ ~ BG -BG!BZ
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1.3. ~ K-~ ~.! category ~ cofibrations ~ ~ equivalences.

Consider the partially o~dered set of pai~s (i,j) , 0' i, j 'n, where

(i,j) ~ (i',j') .if and only if i, if and j" j' .Regarded as a category it

may be identified to the a~row category Ar[n] where as usual [n] denotes the

ordered set (0 < 1 < ...< n) (considered as a category).

Let C be a category with cofibrations. We consider the functo~s

A: Ar[n] --C

(i,j) ~A. .
1.,J

having the property that for every j ,

A. .~ * ,
J,J

and that for every triple i ~ j ,k, the map

A. .--A. k1.,J 1.,

is acofibration, and the diagram

A. .-A. kL,] L,

A. .-A. kJ ,J J,

is a pushout; in other words,

A. .-A. k A. k1,J 1, J.

is a cofibration sequence. We denote the category of these functors and their

natural transformations by S C .n
To give an object A E S is really the same thing as to give a sequence of

n
cofibrations

A I >--+ A 2 >--. ...>--. A
0, 0, o,n

together with a choice of subquotients

A. .~ A .fA .
J.,J o,J 0,1..

It results that the category S C can be identified with one of the categories of
n

filtered objects considered in section 1.1 (namely F:-I) and in particular there-

fore S C can be regarded as a category with cofibrations in a natural way.
n
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The definition of S C given here has the advantage of making it clear thatn
[n] ~ Ar[n] ~ S C is contravariantly functorial on the category A of the ordered

n
sets [0], [1], We therefore have a simplicial category

S.C: AoP -(cat)
"n, whereI 

category it

denotes the [n] ~ S C .n
In fact, we have a simplicial aategory with aofibrations; that is, a simplicial ob-

ject in the category whose objects are the categories with cofibrations and whose

morphisms are the exact functors between those. This results from the lemmas of

section 1.1 upon inspection of what the face and degeneracy maps are. For example

the face map d.: S C ~ S I c corresponds, for i > 0, to the forgetful map which1 n n-
drops A .from the sequence A 1 '" A ; and for i -0 it corresponds

0,1 0, o,n

to the map "quotient by A I " which replaces that sequence by A
I 2 -+ ...'" AI n .

0, "

If C is equipped with a category of weak equivalences, wC, then S C comes
n

naturally equipped with a category of weak equivalences, wS C. By definition here
n

an arrow A ~ A' of S C is in wS C if and only if the arrow A. .~ A! .is in
n n 1,J 1,J

wC for every pair i ~ j ; or what amounts to the same in view of the assumed glu-

ing lemlila, if this is so for i. O. It results that S.C is a simplicial aategory

with aofibrations and ~eak equivalences in this case.

~

Let us take a look at the simplicial category of weak equivalences

wS.C: 6oP -(cat)

[n] --wS C .n

I

c

The category S C. and therefore also its subcategory wS C. is the trivial
0 0

category with one object and one morphism. Hence the geometric realization IwS CI
0

is the one-point space.

and 

their

:1

,
"

The category SIC is the category of diagrams
sequence of

* = A

and is thus isomorphic to C.

tified to wC.

-A ---+A =*
0,0 0,] ] ,]

Hence the category of weak equivalences may be iden-

Consider IwS.CI , the geometric realization of the simplicial category wS.C .

The 'I-skeleton' in the S.-direction is obtained from the 'O-skeleton' (which is

IwSoCl) by attaching of IwS]CI x IA] I (where IA]' denotes the topological space

]-simple%). It results that the 'I-skeleton' is naturally isomorphic to the suspen-

sion S]AlwCl .As a consequence we obtain an inclusion slAlwCl ~ IwS.CI , and by

adjointness therefore an inclusion of IwCl into the loop space of IwS.CI,

ategories of

'ticular there-

IwCl -GlwS.CI

is reminiscent of the 'group completion'The passage from IwCl to olwS.CI
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process of Segal [11] (by which it was originally motivated, to some extent). We

will have occasion to make an actual comparison later (in section 1.8).
1

(

Definition. The a~gebraia X-theory of the category with cofibrations C, with

respect to the category of weak equivalences wC, is given by the pointed space

II I wS. C I .

To pursue the analogy with Segal's version of group completion a little further,

one can actually describe K-theory as a spectrum rather than just a space. Namely

the S.~construction extends, by naturality, to simplicial categories with cofibra-

tions and weak equivalences. In particular therefore it applies to S.C to produce

a bisimplicial category with cofibrations and weak equivalences, S.S.C. Again the

construction extends to bisimplicial categories with cofibrations and weak equiva-

lences; and so on. There results a spectrum

n~lwS. ...S.CI-n-
whose structural maps are defined just as the map IwCl ~ alwS.CI above.

It turns out that the spectrum is a a-spectrum beyond the first term (the addi-

tivity theorem is needed to prove this, below). As the spectrum is connective (the

n-th term is (n-I)-connected) an equivalent assertion is that in the sequence

IwCl- alwS.CI- aalwS.S.CI- ...

all maps except the first are homotopy equivalences. It results that the K-theory

of (C,wC) could equivalently be defined as the space

m (m) .n (n) I (n) C S Ca IwS. CI .11m a IwS. C, wS. = wS. ~

n -n-

There is another way of making K-theory into a spectrum. Namely the pushout of

the cofibrations * ~ A induces a sum in C and therefore a composition law in the

sense of Segal on wC, wS.C, wS~2)C, and so on. As alwS.CI is 'group-like'

Segal's machine produces a connective a-spectrum from it. To see that the spectrum

is equivalent to the former it suffices to note that the two spectra can be combined

into a connective hi-spectrum. (A more direct relationship can also be established.)

The definition of K-theory is natural for categories with cofibrations and weak

equivalences: an exact functor F: C' ~ C induces maps wS.F: wS.C' ~ wS.C, etc.

Let a weak equivaZence of exact functors F, F': C' ~ C mean a natural trans-

formation F ~ F' having the property that for every A E C' the map F(A) ~ F'(A)

is a weak equivalence in C.

Proposition 1.3.1. A weak equivalence from F to F' induces a homotopy between

wS.F and wS.F' .
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ame extent). We

1.8) .
Proof. The weak equivalence from F to F' restricts to a natural transformation

of the restricted functors F, F': wC' ~ wC and thereby induces a homotopy between

these by a well known remark due to Segal [10]. Similarly there is what may be

called a simplicial natural t~unsformation from wS.F to wS.F'. It gives rise

to a homotopy in the same way. c

18 

C. with

pointed space

."

on a little further,

a space. Namelyies 

with cofibra-:0 

S.C to produce

S.S.C. Again the

and weak equiva-

Let a aofibration sequenoe of exact functors C' ~ C mean a sequence of natu-

ral transformations F' ~ F ~ F" having the following two properties: (i) for

every A E C' the sequence F'(A) ~ F(A) ~ F"(A) is a cofibration sequence, and

(ii) for every cofibration A' ~ A in C' the square of cofibrations

F'(A') -F'(A)

l l
F(A') --F(A)

is admissibZe in the sense that F(A') UF'(A') F'(A) -+ F(A) is also a cofibration.

Recall the category E(A,C,8) (section 1.1), and let E(C) ~ E(C,C,C) .

above.st 

term (the addi-

s connective (the

~e sequence

Proposition 1.3.2. (Equivalent formulations of the additivity theorem). Each of
the following four assertions implies all the three others.

(1) The following projection is a homotopy equivalence,

wS.E(A,C,B) + wS.A x wS.B

A,..C..B I 'A, B.
the K-theory

.s.c.- (2) The following projection is a homotopy equivalence,

wS.f(C) ~ wS.C x wS.C

A)-OC--B I .A, B.

,1y 

the pushout of

sition law in the

is 'group-like'hat 

the spectruma 

can be combined

0 be established.)

(3) The following two maps are homotopic (resp. weakly homotopic),

wS.f(C) ~ wS.C

A>-o C ...B ~ C, resp. AvB .

(4) If F' -+ F -+ F" is a cofibration sequence of exact functors C' -+ C then

there exists a homotopy

IwS.FI ~ IwS.F'1 y IwS.F"1 (= IwS.(F'YF")I) .

brat 

ions and weak:' 
-+ wS.C. etc.

natural trans-

ip F (A) -+ F' (A)

--

Proof. (2) is a special case of (I), and (3) is a special case of (4). So it will

suffice to show the implications (2) -(3) -(4) and (4) -(I) .

Ad (3)-(4). To give a cofibration sequence of functors F'... F ..F" from C' to C

is equivalent to giving an exact functor G: C' ~ E(C) , with F' -sG, F -tG ,

and F" ~ qG, where s, t, q are the maps A... C "BI--.A, C, B, respectively
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(which are exact by proposition 1.1.4). Thus (4) follows from (3) by. naturality.

Ad (2)-(3). The desired homotopy IwS.tl ~ IwS.(svq) I is certainly valid upon re-

striction along the map

IwS.CI x IwS.CI .IwS.E(C) I

A .B I .A,... AvB ...B .

so it will suffice to know that this map is a homotopy equivalence. But the map is

a section to the map in (2) and therefore is a homotopy equivalence if that is one.

Ad (4)-(1). The map p: wS.E(A,C,B) ~ wS.A x wS.B is a retraction, with section a

given by A,B ~ A ~ AvB ~ B. To show P is a homotopy equivalence it therefore

suffices to show that the identity map on wS.E(A,C,B) is homotopic to the map ap.

(In fact, it would sufficft to know that the two maps are ~eakLy homotopic, that is,

hamotopic upon restriction to any compactum, for that would still imply that the

map a is surjective, and hence bijective, on homotopy groups.) The desired homo-

topy results from (4) applied to a suitable cofibration sequence of endofunctors

on E(A,C,B) .The cofibration sequence is shown by the following diagram which

depicts the functors (the rows) applied to an object A~ C"'B ,

(A ~ A ~ *)

t'
(A)+ C ~ B)~ .
(* ~ B ~ B)

This completes the proof. a

The actual proof of the additivity theorem is rather long and it will be given

later (it occupies the next section). We will now convince ourselves that a consi-

derable short cut to the proof is possible if the definition of K-theory is adjusted

somewhat. We begin with the

Observation 1.3.3. Let 8, t, q denote the maps from E(C) to C given by

A- C" B -A, C, B, respectively, and let svq denote the sum of s and q.

Then the following two composite maps are homotopic,

t ~
IwE(C) I ; IwCl --.rllwS.CI .

svq

This results from an inspection of IwS.CI(Z) , the 'Z-skeleton' of IwS.CI

in the S.-direction. Let us identify wC to wS)C, as before, and let us identify

wE(C) to wSZC whose objects are the cofibration sequences Ao,)'" Ao,Z "A),Z .

The face maps from wSZC to wS)C then correspond to the three maps s, t, q ,

respectively, and which is which can be seen from the diagram
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,. 

naturality.

valid upon re-
2

A
0,2

AJ,Z

0 ~]
A
0,1

But the map is

if that is one.

, 

with section C1Ice 

it therefore: 

to the map C1p.'tapia, 

that is,

!ply that the

le desired homo-

endofunctors

iagram which

Let us consider the canonical map IwS2CI x IA21 ~ IwS.CI(2) .Regarding the 2-sim-

2
plex IA I as a homotopy from the edge (0,2) to the edge path (O,I)() ,2) we

obtain a homotopy from the composite map jt ,

t .
IwE(C) 1---+ IwCl -.l.- OlwS.CI (2) ,

to the Zoop product of the two composite maps js and jq. But in olwS.CI the

loop product is homotopic to the composition law, by a well known fact about loop

spaces of H-spaces, whence the observation as stated.

The same consideration shows, more generally,

Observation ].3.4. For every n ~ 0 the two composite maps

t
IwS~n)E(C) I =: IwS~n)CI---+ I1lwS~n+])CI

svq
are homotopic, where wS~n)C = wS. ...S.C.

-n-

~~

a Corollary 1.3.5. The additivity theorem (proposition 1.3.2) is valid if the defini-

tion of K-theory as alwS.cl is substituted with a~lwS~~)CI ~ lim anlwS~n)CI .
...

: 

will be given

I that a consi-

!ory is adjusted
Proof. First, proposition 1.3.2 is formal in the sense that it applies to the pre-

sent definition of K-theory just as well. Second, by the preceding observation the

two composite maps

given by

,f sand q .

Q~lwS~~)E(C) I =:::=:Q~lwS~~)CI-f' Q~lwS~~)CI
svq

are weakly homotopic. Sin~e the arrow on the right is an isomorphism this is one of

the equivalent formulations of the additivity theorem (proposition 1.3.2). c

Remark. As a consequence of the corollary we could add yet another reformulation of

the additivity theorem to the list of proposition 1.3.2. Namely the additivity theo-

rem as stated there implies (section 1.5) that the maps IwS~n)CI ~ GlwS~n+I)CI are

homotopy equivalences for n ~ 1 .Conversely if these maps are homotopy equivalen-

ces then so is GlwS.CI ~ G~lwS~-)CI .and thus the additivity theorem is provided

by the corollary.

'of IwS.CI

let us identifyAo.2 
"*AI.2 .

s. t. q .
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To conclude this section we describe a modification of the simplicial category

wS.C which was suggested by Thomason. It is a simplicial category wT.C. By de-

finition wT C is a subcategory of the functor category C[n] .The objects of
n

wT C are the sequences of cofibrations
n

1.4

notC -C I C0 n

and the morphisms are the natural transformations C ~ C'

that for every i ~ j the induced map
satisfying the condition

~..

of
C! Uc c. -C!

1. .J J
1.

Lem

am

ind1

is a map in wC .

wT.C is 'better' than wS.C insofar as it may be regarded as the horizontal

nerve of a bicategory.

Cor'

a b.

(2)

of

~.C

[m]
and

In order to compare the two we have to modify wT.C a little, by including

choices. Namely let wT+C be defin&d just as wT C except that in the data of an
n n

object we include a choice of quotients c.. -C./C. for every i, j ; the choice
1J J 1

is to be arbitrary except if i -j where we insist that c.. -*, the basepoint.
+ 11

The forgetful map wT.C ~ wT.C is an equivalence of categories in each degree, and

therefore a homotopy equivalence. The comparison is now made by means of a map of

simplicial categories wT;C ~ wS.C which we show to be a homotopy equivalence. The

map is defined as the forgetful map which forgets the C. and remembers only the
1

subquotients C.. .
1J

To show the map is a homotopy equivalence it suffices to show wT+C ~ wS C is
n n

a homotopy equivalence for every n. For fixed n now wS C may be regarded as a
n

retract of wT+C; the section is the map which defines C. as C .(the section
n 1 0,1

is not induced by a simplicial map). We show the retraction is a deformation retrac-

tion by exhibiting a homotopy explicitly. There is a natural transformation from

the identity functor to the composed map wT+C ~ wS C ~ wT+C, it is given on an
n n n

object C ~ ...~ C by the quotient map to C ~ ...~ C which is a map in
0 n 0,0 o,n

wT C in view of the definition of ~hat this means. The natural transformation
n

gives the desired homotopy.

Pl'O

ly
is

fun

tra

hom

garX:

The

tra
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[

liCial category wT.C. By de-

e objects of

1.4. ~ additivity theorem.

the condition

The proof of the additivity theorem involves only the cofibration structure,

not the weak equivalences. It will therefore be convenient to explicitly concentrate

on the cofibrations, a kind of 'separation of variables'.

If C is a (small) category with cofibrations we let ~ C -Ob(S C) , the set
n n

of objects of S C, and ~.C the simplicial set [n] ~ ~ C .
n n

~ 1.4.1. An exact functor of categories with cofibrations f: C ~ C' induces

a map ~.f: ~.c ~ 4.C' .An isomorphism between two such functors f and f'

induces a homotopy between ~.f and ~.f' .'izontal {~..
~* Before proving this we note the following consequence.

by including

l the data of an

,j ; the choice

the basepoint.

ach degree, and

ns of a map ofquivalence. 

Thebers 

only the

Corollary. (I) An exa(:t equivalence of categories with cofibrations C... C' induces

a homotopy equivalence h.C... h.C' .

(2) Let C be made into a category with cofibrations and weak equivalences by means

of the category iC of isomorphisms in C. Then there is a homotopy equivalence

h.C... is.C .

Indeed, (I) is clear, and (2) results by considering the simplicial object

[m] Hi S.C, the nerve of is.C in the i-direction, and noting that i S.C -~.C
m 0

and that the face and degeneracy maps are homotopy equivalences by (I).

EToof of Zemma. The first part is clear. To prove the second part we will explicit-

ly write down a simplicial homotopy. This is best done in categorical language. It

is quite well known that simplicial objects in a category V can be regarded as

functors X: 6oP ~ V, [n] ~ X[n] ; and maps of simplicial objects as natural

transformations of such functors. It seems to be less well known that simplicial

homotopies can be described in similar fashion. Namely let 6/[1] denote the cate-

gory of objects over [I] in 6; the objects are the maps [n] ~ [I] .For any

X: 6oP ~ V let X* denote the composed functor

X
(6/[I])oP --+ 6oP --+1]

([n] ~ [I]) .--[n] ~ X[n] .

Then a simplicial homotopy of maps from X to Y may be identified with a natural

transformation X* ~ Y* .

In the case at hand suppose that a functor isomorphiBm from f to ft is given

be regarded as a

.(the section,1

formation retrac-

Jrmation from! 

given on an

Lch is a map in

lsformation
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and write it as a functor F: C x [I] ~ C' .The required simplicial homotopy then

is the map from ([n]~[1]) ~ ~ C to ([n]~[I]) ~ ~ C' given by
n n

(a: [n] ~ [I]) I. ( (A: Ar[n] ~ C) ~ (A': Ar[n] ~ C') )

where A' is defined as the compo.ition

(A,a.) id x p
Ar[n] .C x Ar[l] .

and p: Ar[l] ~ [I] i$ given by (0,0) ~ 0 ,

F
C x [I] --+ C'

(1,1)"1. and (0,1).. c

Recall the equivalent formulations of the additivity theorem given in proposi-

tion 1.3.2. We will now prove one of them.

Theor~ 1.4.2. (Additivity theorem). Let C be a category with cofibrations and

weak equivalences. Than the following map is a homotopy equivalence,

wS.E(C) --+ wS.C x wS.C

A... C -B ~ A ,B .

We deduce this from

~ ].4.3. The map ~.E(C) ~ ~.C x ~.C is a homotopy equivalence.

The lemma may be regarded as a special case of the theorem, namely the case of

the map is.E(C) ~ is.C x is.C, in view of lemma 1.4.1. Conversely,

~of of theorem from lemma 1.4.3. Define C(m,w) to be the full subcategory of

the functor category C[m] of those functors which take values in wC. Then

C(m,w) is a subcategory-with-cofibrations of C[m] , and [m] ~ C(m,w) defines a

simplicial category with cofibrations. Applying the lemma we obtain that each of

the maps ~.E(C(m,w)) ~ ~.C(m,w) x ~.C(m,w) is a homotopy equivalence. It follows,

by the realization lemma, that the map of simplicial objects

( [m] ...~.E(C(m,w)) ) --( [m] ~ ~.C(m,w)) x ([m] ~ ~.C(m,w) )

is a homotopy equivalence. But this is equivalent to the assertion of the theorem

in view of the natural isomorphism of [m],[n] ~ ~ C(m,w) with the bisimplicial set
n

[m],[n]... w S C, the nerve of the simplicial category wS.C .c
mn

~

In the proof of lemma 1.4.3 we will need a version of the fibration criterion,

theorem B of Quillen [ 8], in the framework of simplicial sets. We proceed to for-

mulate this.

Let An denote the simplicial set standard n-simplex, [m] ~ HomA ([m], [n]) .

If Y is any simplicial set then its set of n-simplices may be identified with the

set of maps An ~ Y (a case of the Yoneda lemma). Let f: X ~ Y be a map of sim-

plicial sets and let y be a n-simplex of Y. Define a simplicial set f/(n,y)
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~

i.e. it is the

t this map is a

.3, so that map

c

The homotopy to be constructed will be a lifting of the simplicial homotopy

that contracts An to its last vertex. In categorical language, this simplicial

homotopy is given by a map of the composed functor

(A![I])oP + hoP + (sets)

([m] ...[I]) ~ [m] ~ Hom([m] ,[n])

I 

w: [m] -+ [n]~e.

tJ. 

For any map

to itself, namely by

(v: [m] ~ [I]) ~ ( (u: [m] ~ [n]) ~ (~: [m] ~ [n]) )

where u is defined as the composite

(u,v) w
[m] ~ [n] x [I] --+ [n]

and where w(j,O) -j , w(j,l) -n .

A lifting of this homotopy to one on f/(n,A') will be a map taking

(v: [m)"'[I))it follows

to

,
"L"

":.'
';;

~

4.C. for
denote the

(A>+ C --B, u: [m] ...[n]) ~ (x... c --i, u: [m] ...[n])

where ~ is obtained from (v,u) as before and where certain compatibility condi-

tions must be satisfied. In particular A must be equal to the composite

~ A'.
Ar[m] ---+ Ar[n] -C

and is thus entirely forced.

that is,
To see that the rest of the data can be found in the required way we note that

for every j E [m] we have

.C ...B together

:ion that A is
u(j) ~ u(j) .

This may be expressed by saying that there is a map of functors

(u: [m] ~ [n]) + (u: [m] ~ [n]) .

(n,A') -+ ~.C .

p is left

Consequently there is also a map of functors

(u*:" Ar[m] ~ Ar[n]) + (u*: Ar[m] ~ Ar[n]) .

and the latter induces a map of the composed functors

Ar[m] ---+Ar[n] --+ C ,

lence 

also v.. ,
J.

equivalence

that is, a map from A to A in S C .
m

For later reference we record that a map A ~ A obtained in this fashion is

necessarily unique. Indeed, A ~ A is induced by a map of functors Ar[m] ~ Ar[n]

and the latter map, if it exists at all, is unique because Ar[n] is a partially

ordered set.



340

1.5
and

We now define a cofibration sequence A -C .B as being obtained from

A ~ C ~ B by cobase change, in S C, with the map A ~ A. Thus
m

A C-B
1 1 1"I-C-B

The definition involves a choice of pushouts; that is, given A~ A>+ C we must

complete it to a pushout diagram, with pushout C, in some definite way. We

insist at this point that those choices shall be made in C rather than in S C . m

Because of the way pushouts in SCare computed (proposition 1.1.4) this gives
m

the required choices in S C as well.
m

""',
I;;.,

We are left to verify that the construction of A... G ...B is compatible with

the structure maps of the category 6/[1] ; t~at is. if in our data we replace [m]

by [m'] throughout. by means of some map [m'] ~ [m] .then the structure map

in h.E(C) induced by [m'] ~ [m] takes the one cofibration sequence to the other.

To see this we review the steps of the construction. The first step was the

definition of the map A ~ A. The definition is compatible with structure maps

because of the uniqueness property pointed out above.

The second step was the choice of actual pushout diagrams. But this choice was

made in C. and an element of S C is a certain kind of diagram in C on which
mthe simplicial structure maps operate by omission and/or reduplication of data. So

again there is the required compatibility.

With a little extra care we can arrange the choices so that the homotopy starts

from the identity map (namely if A ~ A is an identity map we insist that C ~ C

is also an identity map); and that the image of v *j* is fixed under the homotoPY
n

(namely if A -* w~ insist that C ~ B is the identity map on B). We have now

constructed the desired homotopy. This completes the proof of the sublemma and

hence that of the additivity theorem. C
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tained from

us

1.5. Applications & ~ additivity theorem!:2. relative K-~, ~-looping,

~ cofinality.

Let X: AoP ~ V be a simplicial object in a category V. The associated path

object PX is defined as the composition of X with the shift functor A ~ A

which takes [n] to [n+]] (by 'sending i to i+1 '- this fixes the behaviour

on morphisms). The fact that a path space deforms into the subspace of constant

paths has the following well known analogue here, e.g. [I]], which we record in de-

tail because we need to know the homotopy.

fA)O+ C we must

ite way. We

r than in S C .

.4) this giv:s

~ 1.5.1. PX is simplicially homotopy equivalent to the constant simplicial

object [n]... X .
0

I compatible withI

ta we replace [m]

structure map

ence to the other.

Proof. We show there is a simplicial homotopy between the identity on PX and the

composite map PX ~ X ~ PX induced from
0

[n] ~ ( [n+l] ~ [0] ~ [n+l] )

0"--0.

st step was the

structure maps

~ut 

this choice was

in C on which

tion of data. So

The homotopy is given by the natural transformation

(a: [n] ...[I]) I--. (~: Xn+1 ...Xn+l)

induced from (a: [n] ...[I]) t+ (~ : [n+I] ...[n+I]) where ~ (0) a 0 and
a a

~

<P (j+l) s
a

j+1 if a(j) -I

0 if a(j) a 0 . D

1e 

homotopy starts

lst that C -+ C-

Ider the homotopy

i ). We have now

sublemma and

PX comes equipped with a projection PX-X (it is induced by the a-face map

of X which is not otherwise used in PX) and there is an inclusion of XI con-

sidered as a constant simplicial object (because (PX)o = XI)' There results a

sequence XI -+ PX -+ X .

In particular if C is a category with cofibrations and weak equivalences we

obtain a sequence wSIC ~ P(wS.C) ~ wS.C which in view of the isomorphism of wSIC

with wC we may rewrite as

wC --+ P(wS.C) ~ wS.C .

The composite map is constant, and IP(wS.C) I is contractible (for by the preceding

lemma it is homotopy equivalent to the one-point space IwS CI), so we obtain a
0

map, well defined up to homotopy,

IwCl --+ olwS.CI
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~ 1.5.2. The map can be chosen to agree with the corresponding map in the

preceding section.

~of. From the explicit homotopy of the preceding lemma one actually obtains an

explicit choice of the map. This i8 the map in question.

By naturality we can substitute C with the simplicial category S.C in the

above sequence. We obtain a sequence

wS.C --+ P(wS.S.C) --+ wS.S.C

(where the' p' refers to the first S.-direction, say).

Proposition 1.5.3. The sequ&nce is a fibration up to homotopy.

from IwS.CI to the homotopy fibre of IP(wS.S.C) I ~ IwS.S.CI

valence.

That is, the map

is a homotopy equi-

Proof. This is a special case of proposition 1.5.5 below

Thus IwS.CI ~ nlwS.S.CI is a homotopy equivalence and more generally there-

fore. in view of the realization lemma. also the map IwS~n)CI ~ nlwS~n+I)CI for

every n ~ 1 .proving the postponed claim (section 1.3) that the spectrum

n~ IwS~n)CI is a n-spectruro beyond the first term.

'r~"
:1,
i,;r

,.,;~
:~;'
;~
:;
~,

"

,"
,:

~'C1;;,i'~'
~:
~

We digress to indicate in which way the twice de-looped K-theory wS.S.C is

used in defining products; or better, external paiPings (products are induced from

those). The ingredient that one needs is a bi-exact functor of categories with

cofibrations and weak equivalences. This is a functor AxB ~ C, (A,B) ~ AAB ,

having the property that for every A E A and BE B the partial functors A A ?

and? A B are exact, and where in addition the following more technical condition

must also be satisfied; namely for every pair of cofibrations A~ A' and B~ B'

in A and B, respectively, the induced square of cofibrations in C must be

admissible in the sense that the map A'AB UAAB AAB' ~ BAB' is a cofibration.

A hi-exact functor induces a map, of bisimplicial bicategories,

vS.A x wS.B --+ wwS.S.C

J.,0
;1;:1,..

which upon passage to geometric realization factors through the smash product

IwS.AI A IwS.BI ---+ IwwS.S.CI

and in turn induces

nlwS.AI A nlwS.81 ---+nnlwwS.S.CI .

This is the desired pairing in K-theory in view of the homotopy equivalence of

IwS.CI with alwS.S.CI , and a (much more innocent) homotopy equivalence of wS.S.C

with wwS.S.C which we will have occasion later on to consider in detail (the

'swallowing lemma' in section 1.6).
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Ig map in the Definition 1.5.4. Let f: A ~ B be an exact functor of categories with cofibra-

tions and weak equivalences. Then S.(f:A~B) is the pullback of the diagram

S.A --+ S.B +-- PS.B .,ally obtains an

Thus for every n we have a pullback diagram
~ory S.C in the

S (f:A..8) -(PS.8) -S +1 8

n n n

SA .SB.n n

that is, the map

~ a homotopy equi-

[J

generally there-
(n+l):lwS. CI for

: spectrum

The vertical map on the right has a section (it is not compatible with face maps).

so the pullback category is equivalent to the fibre product category and in any case

is not pathological. It results (sections 1.1 and 1.2) that S.(f:A~B) is a sim-

plicial category with cofibrations and weak equivalences in a natural way. and all

the maps in the defining diagram (definition 1.5.4) are exact.

Considering B as a simplicial category in a trivial way we have an inclusion

B ~ P(S.B) whose composition with the projection to S.B is trivial (cf. above).

Lifting the inclusion to the pullback. and combining with the other projection. we

then obtain a sequence

B --+ S. (f:A-+B) --+S.Aory wS.S.C is

are induced from

tegories with

(A,B) ..AAB ,

functors A A ?

c:hnical condition

A' and B... B'

11 C must be

=ofibration.

in which the composed map is trivial. The sequence is formally very similar to the

sequence describing the homotopy fibration associated to a map of spaces. The

following result says that in fact the sequence serves a similar purpose.

Proposition 1.5.5. The sequence

wS.B wS.S.(f:A-+B) -wS.S.A

is a fibration up to homotopy.

~oof. There is a fibration criterion which says that it is enough to show that for

every n the sequence wS.B~ wS.S (f:A+B) ~ wS.S A is a fibration up to homotopy
n n

(e.g. since the base term wS.S A is connected for every n. the criterion given
n

by lemma 5.2 of [13] will do). Using the additivity theorem we will show that, in

fact, the sequence is the same, up to homotopy, as the trivial fibration sequence

associated to the product wS.B x wS.S A .
n

Neglecting choices to simplify the notation, we can identify an object of

S (f:A+B) to a pair of filtered objects in A and B, respectively, say
nA ""... A and B ...B ) '" B , together with an isomorphism of fil-
0,1 o,n 0 n

tered objects,

Livalence 

of~valence 

of wS.S.C

detail (the
BI /B '" B IB

0 n 0f (A 1)"" f (A )
0, o,n

~
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Let C' denote the subcategory of the objects where all the maps Bo ~ Bt ~

are identities and all the A .are equal to the basepoint; then C' is
0,1

to B. Let C" denote the subcategory where B is equal to the basepoint; then
0

C" is isomorphic. to SA. There is an obvious cofibration sequence of endofunctors
n

j' -id -"*j"

I"

:~

where j' and j" take values in C' and C". respectively. Applying the addi-

tivity theorem (in formulation (4) of proposition 1.3.2) we obtain that the identity

map on wS.S (f:A-oB) is houx>topic to the sum of wS.j' and wS.j". It results
n

that the map, given by the split cofibration sequences.

wS.B x wS.S A -wS.S (f:A-+B)
n n

is a retraction. up to homotopy. On the other hand the map is obviously also a

coretraction. It is therefore a homotopy equivalence. We conclude with the remark

that the homotopy equivalence can be induced by a map from the product fibration

sequence to the sequence in question (i.e. the degree n part of the sequence of

the proposition). It follows that the two sequences are the same. up to houx>topy.

This completes the proof of the proposition. c

In a special situation we can modify the definition of S.(f:k+B) to obtain a

variant which is technically a little more convenient. Namely suppose that A is

a subcategory ~th cofibrations and ~eak equiva~nces of B as defined in sections

].1 and ].2. Then we define

F (B,A)n

as the category whose objects are the sequences of cofibrations in B,

B )--+ B \ >--+ B
0 n

subject to the condition that for every pair i ~ j the object B./B. is isomorphic
J J.

to some object of A. There is a forgetful map

S (A-+B) -F (B,A)
n n

(forget choices of quotients B./B. in A). It is an equivalence of categories
J J.

with cofibrations and weak equivalences. Further the F (B,A) may be assembled to
n

a simplicial category with cofibrations and weak equivalences F.(B,A) .By the

realization lemma then the forgetful map

wS.S.(~B) -wS.F.(B,A)

is a homotopy equivalence. Thus F.(B,A) may be used interchangeably with S.(~B)

if A is a subcategory with cofibrations and weak equivalences of 8.
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.-+ Corollary 1.5.6. If A ~ 8 ~ C are exact functors of categories with cofibrations

and weak equivalences then the square

1

B -+B-+ 0 I

C' is, 

e basepoint; then
nce of - wS.B -wS.S. (A-+B)

f APPlYing the addi-

that the identity

". It results

wS.C --+ wS.S. (A--c)

is homotopy cartesian Similarly the square

wS.B -wS.F.(B,A)

wS.C -wS.F. (C,A)
iously also a

with the remark

uct fibration

he sequence of

up to holOOtopy.

.
is homotopy cartesian if the terms on the right are defined.

Pzooof. There is a commutative diagram

wS.B + wS.S. (A+B) + wS.S.A
~B) to obtain a

lose that A is

:ined in sections ws.c -ws.s. (k..c) --wS.S.A

in which the vertical map on the right is an identity map and where the rows are

fibrations up to homotopy, by the preceding proposition. It results that the square

on the left is homotopy cartesian.
B

Concerning the second square, if that is defined, there is a natural transfor-

mation between the two squares in which all the maps are homotopy equivalences. The

second assertion is just a rewriting of the first. a

is isomorphic

Corollary 1.5.7. To an exact functor 8 ~ C there is associated a sequence of the

homotopy type of a fibration (with a preferred null-homotopy of the composed map)

wS.8 ~ wS.C + wS.S. (S+C) .

of categories

be assembled to

A) .By the
Indeed, this is the case A -B of corollary 1.5.6 since wS.S.(A~A)

contractible.

is

Corollary 1.5.8.1y with 5.(.&.-.8) If C is a retract of B (by exact functors) there is a splitting

wS.B ~ wS.C x wS.S.(C~B) .

Indeed, this is the case of corollary 1.5.6 where the composed map A ~ B ~ C

is an identity map (or more generally, an exact equivalence) since wS.S.(~) is

contractible in that case.
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ltlces 'of B. We

~ exists a A E A

ts 

as strictly

~egory of projec-

Proof of assertion I. Let BE S B. We think of it as a filtration B I -B 2 - n 0, 0,

...~ Bo ' plus a choice of subquotients B. ..By applying the cofinality
,n 1..J

hypothesis for A c B we can find objects A~. in A (not subquotients of a fil-
1.,J

tration) so that B. .v A! .i8 in A for every (i,j) .Let A' be the sum of

1.,J 1.,J

all the A! ..Then B. .v A' is in A for every (i,j) .We can define an
1.,J 1.,J

object A of SA .where, for every i < j , A.. involves at least one summand
n 1.,J

A' ; briefly, A .is the i-fQld sum of A' with itself. Then B v A is in
0,1.

SnB, and all the objects involved in it are in A; it is therefore in SnA in

view of the definition of what it means for A to be a subcategory with cofibra-

tions of B.

wS.B is a

f in the sense

ained in A .

ted in Band

assumption is

Proof of assertion 2. This is similar, but easier.

;,~
:'

omotopyequiva-

By the realization

We can rewrite

S A is
n

Froof of assertion 3. A n-simplex of 6.(B,A) is a sequence of cofibrations in B,

B B , subject to the condition that every subquotient B.tB. is isomor-
0 n J 1-

phic to some object of A (in fact, equal to an object of A, for any choice

whatsoever, in view of the assumed fact that A is saturated in B). We apply the

cofinality hypothesis to each of the Bi and then add all the objects of A ob-

tained. This gives an object A in A with the property that B. v A is in A
1-

for every i; the sequence B vA>-+ ...'" B vA is thus a sequence of cofibrations
0 n

in A (since A is a subcategory with cofibrations of B). We refer to this

situation by saying that the object A ~ves the simplex B '" B .
0 n

MOre generally, given finitely many simplices, not necessarily of the same di-

mension, we can find objects as before and add them all up to obtain a single object

A which moves everyone of these simplices.
that wF.(B,A)

:ion leoma again

"part of the nerve

B(m,w) denote

he arrows are

te the simplicial

A(m,w)

The simplicial set 6.(A,A) is contractible (it is the nerve of the category

of cofibrations in A, which ha$ an initial object). To show 6.(B,A) is con-

tractible it suffices therefore to show that the inclusion 6.(A,A) ~ 6.(B,A) is a

homotopy equivalence. This follows if we can show that for every finite pair of

simplicial subsets (L,K) C (6.(8,A),6.(A,A)) there is a homotopy, of pairs, from

the inclusion map to some map with image in 6.(A,A) .

The simplicial set L has only finitely many non-degenerate simplices. So

there is an object A E A which moves everyone of these simplices. But then A

moves every other simplex of L as well.

6.(B,A) is a simplicial subset of the nerve of the category of cofibrations in

B. The sum with A induces a natural transformation of that category, and in turn

a homotopy of the identity map on 6.(B,A) .The restriction of that homotopy to

L, resp. K, is entirely in 6.(B,A) , resp. 6.(A,A) , and the homotopy ter-

minates at a map which takes L into 6.(A,A) .This gives the required homotopy

of pairs. The proof is complete. D
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~ 

!heorem.

I. By a ayZindezo

rgrams in C

The object

jz. p as

~~ 

dl .Q;~-=.-

Definition.

The cone functor A ~ cA is defined by

cA .T(A.. *) .
and the suspension functop is defined as the quotient of the cone by the front

inclusion A ~ T(A ..*) .

LA a cA/A.

Propositio~ 1.6.2. If C has a cylinder functor and the weak equivalences satisfy

the cylinder axiom then the susp~nsion map

r: wS.C -wS.C

ArS C ~ S ArC S (diagrams in C) ~ (diagrams in S C) .
n n n n

The only non-trivial point to check is the exactness of the functor ArS C ~ F

I S C
n n

of axiom Cyl I. But this functor may be identified to the composite

ArS C ~ S ArC + S F
IC ~ F IS Cn n n n

and hence is exact since ArC ~ FIC is exact by axiom Cyl I in C.
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Proof. By the additivity theorem the cofibration sequence of functors id ~ c ...t

Unplies a homotopy of seLf-maps on wS.C, id v t ~ c. The natural transforma-

tion cA ~ * is a weak equivalence in view of the assumed cylinder axiom. By lemma

1.3.1 therefore c, and hence id v t, is null-homotopic. c

Define WC to be the subcategory of wC of those weak equivalences which are

also cofibrations. (This is not, in general, a category of weak equivalences in the

sense of section 1.2.)

~

~ 1.6.3. If C has a cylinder functor. and the weak equivalences in C satisfy

the cylinder axiom and s4turation axiom. then the inclusion WC ~ wC is a homotopy

equivalence.

Proof. Calling the inclusion i, it suffices to show by theorem A [8] that for

every BE wC the left fibre i/B is contractible. An object of i/B is a pair

(A,f) where f: A ~ B is a map in wC. Since the cylinder projection p: T(f) ~ B

is in wC (by the cylinder axiom) we can define a functor t: i/B ~ i/B by letting

t(A,f) = (T(f),p) .The front inclusion jl: A ~ Tff) and back inclusion j2: B ~

T(f) are weak equivalences as well as cofibrations (by the cylinder axiom and satu-

ration axiom), so they d~fine natural transformations to the functor t, one from

the identity functor (using that p j] -f) and one from the constant functor with

value (B,idB) (using that p j2 .idB)' It results that t is homotopic to both

the identity map on i/B and the trivial map (B,idB) .Hence the latter two are

homotopic, and i/B is contractible. c

To formulate the next result suppose that C is a category with cofibrations

and that C is equipped with two categories of weak equivalences. one finer than

the other. vC ~ wC. Let CW denote the subcategory with cofibrations of C given

by the objects A in C having the property that the map * ~ A is in wC. It

inherits categories of w~ak equivalences vCW -cwnvc and wCW -cwnwc .

Theore~ 1.6.4. (Fibration theorem). If C has a cylinder functor, and the coarse

category of weak equivalences wC satisfies the cylinder axiom, saturation axiom,

and extension axiom, then the square

w Wvs.c .ws.c (~*

1 1
vs.c .ws.c

is homotopy cartesian, and the upper right term is contractible. .
\,

~
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':ors 

id)o+ c r:ural 

transforma-

axiom. By lenuna

c

Proof, Define vwC to be the bicategory of the commutative squares

'-'
1'-'

Ilences which are

tuivalences in the

I in C satisfy

is a homotopy 'if'ii"

~1'
"...

;~

..'
..I

A [8] that for

i/B is a pair

ction p: T(f) -.B

..i/B by letting

~lusion j2: B-.

r axiom and satu-, 

t, one from:ant 

functor withlomotopic 

to both

latter two are

in C in which the vertical and horizontal arrows are in vC and wC, respec-

tively. Considering wC as a bicategory in a trivial way we have an inclusion

wC ~ vwC which is a homotopy equivalence (lemma 1.6.5 below). There is a map in

the other direction. The map exists only after passing to nerves, and diagonalizing

(briefly, the map takes each square to its diagonal arrow), but to simplify the

notation we will allow ourselve~ the abuse of writing the map as vwC ~ wC. The

map is left inverse to the forme~ map, hence is a homotopy equivalence itself.

We can similarly define a simplicial bicategory vwS.C. By the realization

lemma it results from the above that the maps wS.C ~ vwS.C and vwS.C ~ wS.C are

homotopy equivalences as well (again the second map exists only after passing to

nerves and diagonalizing the v- and w-directions).

Let vWC denote the sub-bicategory of vwC of the squares in which the hori-

zontal arrows are in WC rather than just wC. Then the inclusion vWC ~ vwC is

a homotopy equivalence by lemma 1.6.3, which applies in view of the assumed cylinder

axiom and saturation axiom. (In detail, by the realization lemma we can reduce to

passing to nerves in the v-direction and showing that vnWC ~ vnwC is a homotopy

equivalence for every n. The map may be rewritten, in a way we have used before,

as WC(v,n) ~ wC(v,n) , and lemma 1.6.3 now applies to the latter). Similarly there

is a simplicial bicategory vwS.C, and the inclusion vwS.C ~ vwS.C is a homotopy

equivalence. (For by the realization lemma we can reduce to showing that vwSnC ~

vwS C is a homotopy equivalence for every n. As S C inherits a cylinder functor
n n

from C (lemma 1.6.1) the above considerations apply to it.)

c

h cofibrationsne 

finer than

ions of C given

s in wC. It
The square of the theorem may be identified to the large square in the following

diagram

and the coarse

Ilration axiom.

S w -w w w
v .c -vws.c -vws.c .ws.c

vs.c .ws.c .vws.c , ws.c

As the preceding discussion shows, the horizontal maps in the middle and on the right

are homotopy equivalences. So the square will be homotopy cartesian if and only if

the square on the left is. After passing to nerves in the ~direction we can iden-

tify the square on the left to one of the squares of corollary 1.5.6 associated to

the categories at hand, namely
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~ 2. Given any object A in A and any map x: F(A) ~ B in B there exist

a cofibration a: A~ A' in A and a weak equivalence x': F(A') ~ B in B

so that the following triangle commutes,

F(A)

I'(a) ~F(AI)4 B

In 

in C whose

!the extension

in each degree
Lemma 1.6.6. If F: A ~ B has the approximation property then so does S A ~ S B .

n na

] for some PPoof. The non-trivial thing to verify is the condition App 2 for the map SnF.

We think of an object of S A as a filtration A ) ...A 2 "'...'" A , plus an 0, 0, o,n
choice of subquotients. Proceeding by induction on n we suppose we have found

already a sequence At ) H...'" At - ) together with maps as required. From these

0, o,n

data we obtain an object in A ,

and AS the:rows 

in A and

A

and a map in B,L the A-direction

ceo For fixed

to A .
n 0
y we obtain

entity maps

ty map; it is

F( A U A' ) -B
o,n A I o,n-1 o,n ,

",n-

to which the hypothesis App 2 for F may be applied. This gives a cofibration

A U A' ~ A'
O , n A I o,n-1 o,n

o,n-

and a weak equivalence F(A' ) ~ B so that the following diagram commutes
o,n o,n

(where the broken arrow A "'-"A' is defined as the composite)
o,n o,n

B
o,n-1

1

F(Ao n-I)~ )

1 F(A~.n-1

I F(Ao,n UA

.., "
F(A )-o,n ~- -

[]

'c,n
Ice the fo110-,fibrations 

and

isfies the

-
cWe are done.

its image



, .

354

Theore~ 1.6.7. (Approximation theorem). Let A and B be categories with

cofibrations and weak equivalences. Suppose the weak equivalences in A and B

satisfy the saturation axiom. Suppose further that A has a cylinder functor

and the weak equivalences in A satisfy the cylinder axiom. Let F: A ~ B be

an exact functor. Suppose F has the approximation property. Then the induced

maps wA ~ wB and wS.A ~ wS.B are homotopy equivalences.

\.,
i

FToof. It will suffice to show that wA ~ w8 is a homotopy equivalence. For this

implies, in view of the preceding lemma, that wS A ~ wS 8 is a homotopy equiva-
n n

lence for every n, and hence, by the ~ealization lemma, that wS.A ~ wS.8 is a

homotopy equivalence.

The proof that wA ~ w8 i. a homotopy equivalence, is quite long. It occupies

the rest of this section. Calling the map f, it suffices to show, by theorem A

[8], that for every BE w8 the left fibre fiB is contractible, and this is

what we shall prove.

The idea for the proof of contractibility of fiB is in the following observa-

tion which says that certain diagrams V in fiB admit extensions to their cones

and are thus contractible in fiB; by the aone on V is meant here the diagram V

together with an added terminal vertex.

Observation. Let V be a diagram in fiB. Suppose that as a diagram in FIB

it extends to the cone (for example, this is the case if the colimit of V exists

in FIB). Then V ~ fiB also extends to the cone.

Indeed, suppose that V ~ fiB c FIB extends to the cone. Let the cone point

be represented by (A',F(A')~B) in FIB. Applying the approximation property of

F we find a cofibration A'... A" in A and a weak equivalence F(A") ~ B in 8

so that the triangle

commutes. Then (A",F(A")-+B) may be regarded as a terminal vertex to V in fIB

rather than just FIB as we see by checking that certain maps are weak equivalences.

Namely let (A,F(A)-+B) represent any vertex of V. Then there is a triangle

F(A) ~1 B
F (A") ...c

in which both of the maps going to B are weak equivalences. Applying the satura-

tion axiom we obtain that F(A) -+ F(A") is a weak equivalence in B. From this we

deduce in turn, using property App I of F, that A -+ A" is a weak equivalence,

as required.
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X -0 N(f/B) a

..a. : T(A~.. .~A.~.. .~A ) T(A ~.. .~A )
J. 0 J. non

is defined inductively as T(a!) where a! is the (vertical) map of diagrams

J. J.

n

we can obtain a functor

From the particular sequence A ~ ...~ A

0 n

simpn.d. (~n)-A

.mplicial 

subsets

taking each face of dn to the iterated cylinder of the subsequence indexed by that

face. On morphisms the functor is given by the maps 3. and their composites. To

J.justify this we must check that the maps 3. satisfy the identities for iterated

J.face maps. But for the identitie$ not involving 3 this follows inductively from

nthe case n-j .and for the identities which do involve 3 it follows from the

n
fact that the front inclusion is a natural transformation.

the partially

sublellDDa implies

iew of the ob-.thus 

T is
q~. 

It results

'1'ated mapping

A
n11 

owing data
be

where

\ ) ..A) ,n

T
simpn.d'CX)-i f/B C FIB

then the map

we will insist on the following two properties of t

(1) t takes maps in s(X) to cofibrations (as maps in A. after neglect of the

13i 1.
T(A A

) --.A 0 n-

A (X) -." -A (x) .
0 n

Assuming now that x is a non-degenerate n-simplex of X we define T (x) to be

q
the iterated cylinder of that sequence, making it an object of fIB by means of the

composite map F(T(A (x)~..,~A (x») ~ F(A (x» ~ B (the first map here is induced
0 n n

from the projection p by the functor F, it is a weak equivalence in view of the

assumed cylinder axiom). On morphisms T is defined by the maps 3. and their

q 1iterates (the morphisms are in fIB rather than just FIB in view of the assumed

cylinder axiom and saturation axiom), It was checked above that the rule for mor-

phisms is compatible with the identities for iterated face maps. There are no other

identities in simpn,d.(X) , so T is a functor on it.

q
The desired natural transformation from T to q. is given by the projection

q
p: T(A (X)~.,,~A (x» -::::- A (x) .

0 n n
This completes the argument for part (I) of the sub lemma.
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It remains to say a few words, as promised, about the map Nsimp(Y) ~ Y. In

view of the natural isomorphisms Nsimp(Y) ~ colimsimp(y) «[n] ,y) ~ Nsimp(~n» and

Y ~ colimsimp(y) «[ n] ,y) ~ ~n), the map is fully described once one knows the

special case of simplices ~n. A m-simplex of Nsimp(~n) is a sequence of maps

in ~,

t is

uming 

in theur 

aim is toe 

thing thatis 

an-simplex

t(3x) and t(x)

oblem now is if

a a) a
'[no] -E... [n.] [nm]-!!..[n] ,

and one associates to it the m-simplex b: [m] ~ [n] in dn given by the last

vertices, i.e.

b(i) -a a ] ..a.(n.) .m m- ].].

~

Nsimp(~n) is contractible since simp (6n) has a terminal object. Therefore the

map Nsimp(~n) ~ 6n is a homotopy equivalence. In view of the gluing lemma it

results from this that Nsimp(Y) ~ Y is a homotopy equivalence in general (cf. the

appendix A to [II]).

faces except

Suppose now that Y is the nerve of a category C. Then simp (NC) is the

category of pairs ([m],x), x: [m] ~ C, and we can define a natural transforma-

tion simp(NC) ~ C by ([m],x) ~ x(m) .On passing to nerves this induces the

above natural transformation in the case when C = [n] , and consequently also in

general.

faces of x.

)f its exactness,

We conclude with

,here, for ease

.Applying con-.fied 

to the map

Lemma. If X is non-sinsular there is a functor simp(X) ~ simpn.d.(X) which is

left adjoint, and left inverse, to the inclusion functor.

Proof. The functor associates to each simplex of X the unique non-degenerate

simplex of which the simplex is a degenerate. It is clear that this works in the

special case where X is An. The general case reduces to this special case

in view of the non-singularity of X.

brat 

ion by con-ling 

that a

he axiom Cyl I .npletes 

the

c
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1.7. Spherical object! and cell filtrations

By a homology theory on a cal:egory with cofibrations C, with values in an

abelian category A, will be meant a sequence of functors H.: C ~ A, i -0,1,..,
.1-

together with connecting maps (At+ B) ~ (Hi+I(BfA) ~ Hi(A» such that the long

sequence resulting from a cofibration sequence At+ B -BfA is exact and terminates

in a surjection H (B) ...H (B/A) .
0 0

Given such a homology theory, C may be regarded as a category with cofibra~

tions and weak equivalences where the latter are defined as the maps inducing iso-

morphisms in homology. The category of weak equivalences will be denoted wC. It

satisfies the saturation axiom and extension axiom.

Suppose given a full subcategory E of the abelian category A which is closed

under the formation of extensions and kernels; that is, if E'... E -E" is short

exact then E', E" E E implies E E E, and E, E" E E implies E' E E. For

example A itself will do.

Definition. An object A E C is (H.,E)-spheriaat of dimension n if

H. (A) ~ 0 if i ~ n , and H (A) E E .
1. n

With H* and E being understood, such an A will also be simply referred to as

n-sphericat.

We denote the category of the n-spherical objects by Cn

with cofibrations and weak equivalences of C (section 1.1).

.It is a subcategory

ExampLe. On the category R(X) of the spaces having X as a retract there is a

homology theory with values in the category of Z[WtX]-modules, Hi(Y,r,s) -

Hi(Y,s(x),r*(z[WtX]» .For E one can take the category of projective Z[wlxJ-mo-

dules, or even the subcategory of the stably free ones. The n-spherical objects in-

clude the objects (Y,r,s) where Y is obtainable, up to homotopy, by attaching

n-cells to X.

We assume that C has a cylinder functor and that the weak equivalences satisfy

the cylinder axiom. Any map f: A ~ B then gives rise to a long exact sequence

...~ H. (A) ~ H. (B) ~ H. (f) ~ H. I (A) ~ ...where
J. J. J. J.-

Hi(f) -Hi(T(f)/A).

We say the map f is k-connected if H.(f) -0 for i, k .
].

The following hypothesis will be needed in the theorem below.



361

Hypothesis. 

For every m-connected map Xm ~ Y in C there is a factorization

.-y ~

values in anA, 

i -0,1,..,

that the long

and terminates

n

\
x Ix I E Cn

n n-

Recall (proposition 1.6.2) that the suspension induces an exact functor

r: C ~ C and a homotopy equivalence w.g.C ~ wS.C. As a consequence if we denote

by l£m(r) wS.C the dir~ct limit of the system n ~ wS.C in which the maps are

given by suspension then

~

with cofibra-'

inducing iso-oted 

wC. It wS.C -l.?m(L) wS.C

is a homotopy equivalence.

which is closed~.. 

is short

E E. For

so we can formThe suspension also induces an exact functor Cn ~ Cn+1

lim cn .
~n

Theorem 1.7.1. The map

l.im wS.Cn -l.im(I;) wS.C
n

is a homotopy equivalence, provided that the hypothesis is satisfied.

The proof of the theorem occupies all of this section. The strategy of the

proof is to replace C by a category of cett fittrations, and to study two notions

of weak equivalence, as well as their interplay, on that category.

: 

there is a,r,s) 

-lve 

Z['If\X]-DK>-:al 

objects in->yattaching

Definition. A aell filtPation in C is an eventually stationary sequence of cofi-

brat ions

*. A \ >--+A >--+...~A ~...
-0 n

such that

~alences 

satisfyI:t 

sequence

A fA I E Cnn n-
for every n. The object to which the sequence stabilizes is denoted A_.

For example, given any object A E C one can find a cell filtration {Ai} to-

gether with a weak equivalence A ~ A. This results from the hypothesis of the
'0

theorem applied to the map * ~ A in C.

The category of cell filtrations will be denoted C. It is a category with

cofibrations where, by definition, a map {A.} ~ {A!} is a cofibration if, and only
1. 1.

if, for all n the map

A' U A -A'n-) A ) n nn-

us ~~ -r-rr-T- -~

x) .X I ) ) .X
m m+



t.-" 

".'~.. 
OJ. ".; 

:'," r

Ii;' 
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~

.'..

A' -A" -A U
m-) m-) m A

A" -A'.
m-) mm-

The associated cofibration sequence

A /A ---A'/A' ~A'/(A U A")
m m-1 m m-1 m m A 1 m-I m-

has both its 'subobject' and quotient in Cm. Since Cm is extension closed in C

we conclude that A'/A' ] E cm. The lemma is proved. a
m m-

:hat 

the maps

Ie same

..A' is a
I n

The suspension Let the fine category of weak equivalences in C be defined as the category

vC of the maps {A.} ~ {A~} having the property that A. ~ A~ is in wC for
1. 1. 1. 1.

every i.

Let C denote the category of the cell filtrations in dimensions ~ m. i.e.
m A A

the full subcategory of the {A.} in C with A ~ A .We consider C as a
1. m m m A

subcategory-with-cofibrations-and-weak-equivalences (sections 1.1 and 1.2) of (C,
A

vC) .

red, 

the coarse

ty that A ...A'
~ ~tension 

axiom,

~ 1.7.3. The map
CA 0

S I mvS. ~ wS.C x W.C x ...x wS.C
m

(A ...A I A ) 1 + A , Al IA, ..., A fA I0 moo m m-

is a homotopy equivalence.

.'"

~ '~"
;..

ify 

that the

he non-trivial.we 

can find

A' ..B in C
~ P1ooof.

'.,'
and {A!} can

].

we can

, 

is

By another
Let, as usual, CW denote the subcategory of the {A.} in C where *... {Ai}

A A A A L

is in wC. Let Cwa CW n c ; it is the category of the cell filtrations
m m A

(A ~..~ A 1 -A) having the property that A is acyclic. We consider CW as
0 m- m m AA m

a subcategory-with-cofibrations-and-weak-equivalences of (C,vC) .

Lemma 1.7.4. nthen A E C for all n.n.
., Proof.

~ate 

dimensions.Ilreadyexcept

Using suitable long exact sequences we obtain

if k > n then ~ (AJ ~ ~ (An-I) ~ ...? ~ (A-I) = 0, and

if k < n then ~(AJ ~~(An+l) ~ ...~~(Am) -0 ,

,.
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thus ~(An) -0 if k ~ n. There is a short exact sequence

H (A ) -H (A fA \ ) -H \ (A \ ) .
n n n n n- n- n-

By induction we may assume H \ (A \ ) E E. and b y definition of a cell filtration
n- n-

we have H (A fA \ ) E E. It follows that H (A) E E in view of the assumed fact

n n n- n n

that the category' E is closed under taking kernels. C

~ 1.7.5. The map
0) m-)~ wS.C x wS.C x ...x wS.C

1--+ A, AI ' ...A
)0 m-

~wvS.C -
m

III'

~

Proof. The map exists by the preceding lemma. To show it is a homotopy equivalence

it suffices, by induction, to show that the map p ,

AW AW m-1
vS.C I vS.C I x wS.C

m m-

(A "" A ) (A A 2 -A) , A I '0 m 0 m- m m-

is a homotopy equivalence (p exists by the preceding lemma since H.(A fA 2) ~
1. m m-

Hi-](Am-2))' We show that the map s in the other direction,

(B "".."" B I ) , B ~ (B -.."" B 2 ...B I VB... B I vcB) ,0 m- 0 m- m- m-

is homotopy inverse to p where, as usual, cB denotes the cone on B.

The composite sp is given by

(B "'."" B I ) , B .--(B "'..- B 2...B I vcB) ,B IVB.0 m- 0 m- m- m-

There is a natural transformation from the identity map to sp. It is a weak equi-

valence since both B 1 ~ B I vcB and B ~ B I VB are weak equivalences. Hence
m- m- m-

it induces a homotopy (lemma 1.3.1), showing that s is left inverse to p .

To show that s is right inverse to p we construct a homotopy by applying

the additivity theorem to a cofibration sequence of maps on CW. We can write
.m

Ps -f'vf" where f' and f" are the self-ma p s of CW takin g (A "' A) to
mom

(* -0..-0 * >+ A 1 ...cA 1) and (A"'""" A 2 ,... A ~ A ) , respectively. If we
m- m- 0 m- m m

could find a cofibration sequence f' -f _f", where f denotes the identity map

on CW, it would follow by the additivity theorem that there is a homotopy between
m

f and f'vf", and we would be done.

The desired cofibration a~quence does not exist directly, but it exists after

the maps f and fit have been modified a little. The IOOdified maps are related to

the original maps by chains of weak equivalences.

In a first step we replace the identity map f by a map f\ taking (Ao-..'"

A) to (A -..~ A I ~ c(A UA cA \ » .There is a weak equivalence f ~ f
)mom- m m-1 m-

~

(Ao -AI -..'" A

is a homotopy equivalence.







367

We deduce 1.8. ~ cofibration!. ~ K-~.!!.! ~ completion.

lim Cm+1
-+

ps, 

I/I)Vl/lo1: ~ e ,De 

up to sign.

larly it follows

c

)1IIOtopy cartesian

Passing to

It is the

Let A be a category with Bum (categorical coproduct), and let A be pointed

by an initial object *. There is an associated simplicial category

N.A: t.°P -(cat)

[n] --N A ,
n

the nerve with reBpeat to the aompoBition Zaw. By definition N A is the category

n
equivalent to An in which an object consists of a tuple AI,...,An together with

appropriate sum diagrams, one for each subset of {I,...,n} ; these choices are to

be compatible, and for the subsets of cardinality ~I they are to be given by the

objects AI,...,An themselves and by the initial object *, respectively.

By a aategoPy of weak equivaZenceB in A will be meant any subcategory wA

which contains the isomorphisms and is closed under sum formation; that is, if

AI ~ Al and Az ~ Ai are in wA then so is AIVAZ ~ AjVAi .

If A is a aategoPy with sum and weak equivaZenceB let wN A be defined as
n

the subcategory of N A whose w)rphisms are the natural transformations with values

n

in wA. It is a category of we ILk equivalences in N A , and it is equivalent to
n

wAn by the forgetful map. N.A may be regarded as a BimpZiciaZ aategoPy with BUm

and weak equivaZenceB, and the simplicial category of weak equivalences is

wN.A: t.°P --+ (cat)

[n] --wN A .
n

The construction is a special case of Segal's construction of r-aategorieB [II].

The present notation has been chosen to conform to that of section 1.3.

Let C be a category with cofibrations and weak equivalences. By neglect of

structure C is a category with sum and weak equivalences, AvB a AU*B. There is

a map of simplicial categories

! 

in the diagram

is homotopy

19ht hand square

) is a homotopy

In the map

wN.C -wS.C ,

it takes

( AI"" .An' choices)

to

( A) ~ A1V~ ~ ...~ A)V...VAn' (fewer) choices) .

The theorem to be formuleted below seys that the map is a homotopy equivalence in

certain cases.
a
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Suppose that C, a category with cofibrations and weak equivalences, has a

cylinder functor and that the weak equivalences in C satisfy the cylinder axiom,

saturation axiom, and extension axiom.

Suppose given a sequence of subcategories-with-cofibrations-and-weak-equivalen-
Cn. C '. d ,' h . k Cn. Cn+1 fces ~n subJect to the con ~t~on t at suspens~on ta es ~nto or

all n. The example to be kept in mind is that of a sequence of categories of

spherical objects in the sense of the preceding section.

Let us say that a cofibration A ~ B in Cn is spLittabLe up to ~eak equiva-

Lence if there is a chain of weak equivalences, relative to A, relating A~ B

to A ~ B' where B' ~ A vB' / A .

Theorem 1.8.1. The map

lim wN.Cn -lim wS.Cn
n n

is a homotopy equivalence, provided that, for every- n , all cofibrations in cn

are splittable up to weak equivalence.

The proof of the theorem occupies the present section. The argument will be

summarized at the end of the section. The splittability condition actually used is

slightly weaker than the one formulated here.

For any X E C let Cx denote the aategory of the aofibrant objeats under X;

the objects of Cx are the cofibrations X>+ A in C, and the morphisms are the

maps A ~ A' restricting to the identity map on X. Cx is a category with sum,

( X... A ) V ( X... A') z (X'" AUxA' ) ,

and it comes equipped with a category of weak equivalences wCX' the pre-image of

wC under the projection Cx ~ C, (X'" A) ~ A .

Let as usual c denote the cone functor derived from the cylinder functor

( cA = T(A~» and E the suspension functor, EA = cA/A = cA UA * .

Lemma. 1.8.2. To X ~ A in Cx there is naturally associated a chain of weak

equivalences in CEX'

( EX ,.. EA U* EA/EX( LX ...LA UEX LA

Proof. The chain consists of two maps. These are given by the two diagonal arrows

in the following diagram

~
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lences, 

has a

cylinder axiom, 1:A U1:X 1:A U.

'"

.d_eak-equ 

ivaI en-
. Cn+1J.nto foritegories 

of 1
1:A U 1:A/1:X*

to lAIeak equiva-

.ating A""B
By definition, the horizontal arrow is given by pushout with the map A/X ~ * ,

and the downward vertical arrow is induced by the folding map ~A U ~A ~ ~A .
~XThe upper diagonal arrow is a w~.k equivalence since it is given by pushout with

the weak equivalence cA/cX ~ *, The lower diagonal arrow is a weak equivalence

in view of the assumed extension axiom. For by cobase change with the map ~A ~ *

one obtains from it the weak equivalence cA(cx UA/X cA/cX ~ ~A/~X .

~

DI
Remark. If C happens to be an additive category the lemma is true without suspen-

sion, one can define a weak equivalence A Ux A -+ A U. A/X as a map whose restric-

tion to the second A is the sum of the identity A -+ AU. and the projection.
A -+. U. A/X. In the additive case the argument leading to the theorem, and the

theorem itself, can thus be simplified. c

ument 

will be

ctually used is

If X E Cm

equivalences,

we can form c';.~ject8 under X;)hisms 

are the

!gory with sum,

There are maps, of categories with sum and weak

111 111q: CX-C
X... A -A/X

j: cDI-C;
B X... X U. B

pre-image of and q is left inverse to j , up to natural isomorphism of q j to the identity
m

on C .

er functor Proposition 1.8.3. The map

. N Cm+n 1. N "m+nl~m Ii .-~m W .l;j;nX
n n

(limits by suspension) is a homotopy equivalence.of weak

FPoof. It will suffice to know that for each n the composite j q becomes homo-

topic to the identity upon suspension. The next lemma provides this; upon re-indexing

it will suffice to formulate the lemma for the case n = 0 .c

Lemma 1.8.4. The geometric reali~ation8 of the two maps

.m m+\~ .~ J q : wN.Cx + wN.C~x

are hODJtopic

Pzooof. The natural transformations of lemma ].8.1 provide a homotopy between the two

~A U~x ( cAlx UA/X cA/cx ) ., ~A U~X ~A U. ~A/~x
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so we can form S.N.(f:A+B) .Alternatively we could apply the definition 1.8.5 to

the map S.f: S.A ~ S.B to obtain N.(S.f:S.k+S.B) , and the two bisimplicial cate-

gories are naturally isomorphic. There is a sequence, of bisimplicial categories

with cofibrations and weak equivalences,

S.B -+ S.N. (f:k+B) -S.N.A ;
is connected andred 

homotopy. c
alternatively we could rewrite it, up to isomorphism, as

S.B --.~.(S.f:S.A+S.B) --+ ~.S.A .

constructionrs 

to the simpZ:i-

recalled in the

~

'it

~.
;!:,~
~

ld weak equiva-

!ak equivalences

In general we can apply the N. construction to the simplicial category with sum

and weak equivalences N.(f:A+B) to obtain N.N.(f:~8) .Alternatively we could

apply the definition 1.8.5 to th~ map N.f: N.A ~ N.8 to obtain N.(N.f:N.ArlN.8) ,

and the two bisimplicial categori~s are naturally iso~rphic (the iso~rphism invol-

ves a switch of the two N. directions). There is a sequence, of bisimplicial cate-

gories with sum and weak equival~nces,

N.8 --+ N.N. (f:A+B) ---+ N.N.A ;

alternatively we could rewrite it, up to isomorphism, as

N.S ---+ N. (N.f:N.A.N.S) ---+ N.N.A .

: 

on B by the

is a pullback ~ 1.8.6. The sequence

wN.B ~ wN.N. (f:~) --.wN.N.A

is a fibration up to homotopy. Similarly so is the sequence

wS.8 wS.N. (f:A+B) --+ wS.N.A

if that is defined. In either case, if f is an identity map then the middle term

wN.N.(f:A+B) ,resp. wS.N.(f:A+B) , is contractible.of N B with
mojection 

awaycategory 

BxAn.

ve 

a sequence

FToof. This is a special case of a result of Segal [I]]. Essentially the same proof

results if the argument of proposition 1.5.5 is adapted to the present situation.

That is, one observes that (in the second case, say) for every n one has a fibration

wS.B --.wN (S.f:S.A+S.B) ---+ wN S.A
n n

namely a product fibration, and one draws the desired conclusion from this, using a

suitable fibration criterion for simplicial objects. c.of the associ-

t this to be

l7ent the diffi-S. 

or the N. con-

Let V be a category with cofibrations and weak equivalences. The example to

be kept in mind is that of the category lim Cn of the theorem. Our next result is
-+

of a formal nature. It gives a sufficient condition for the conclusion of the theo-

rem to be valid.
equivalences

equivalences,
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N.(j:V...VX) is

ion de-loops to

a homotopy equi-

e map

~of. There is a variant of theorem A [ 8] for simplicial categories. A special

case, sufficient for the present application, has been described in [13, prop. 6.5]

in great detail. A neater. and more general, version may be found in [IS, section 4]

with a sketch proof. In any case, the criterion says that for the map p to be a

homotopy equivalence ,it suffices that for every object

B .(B I "". B I ' choices) E wS Iv
n- n-

the left fibre (p/B). is contractible.

Capitalizing on the special feature that wSn-IB, the target of p , is only

a simplicial category in a trivial way, we can re-express (p/B). in terms of left

fibres of maps of categories, namely

ct (wN.V)n, somotopyequivalentask 

is to estab-r 

than the S. con-
(p/B)m

An object of p /B consists of a diagram
m

a p IB .
m

-A n

An/An-1 )

AI

l~
B}

gram 

of homotopy

plus a m-tuple of objects in V .plus certain sum diagrams formed from this m-tuple

and A (plus, as usual, certain other choices).
n

There is a natural transformation of the identity map on p IB , it is given by
m

pushout with the vertical map(s) in the diagram. For varying m the natural trans-

formations are compatible, so they combine to give a homotopy of the identity map

of (p/B). ; namely a deformation retraction into the simplicial subcategory defined

by the condition that the vertical map(s) be the identity.

That subcategory is isomorphic to wN.(j:V ~ Vx) where X -Bn-1 ' it is thus

contractible by assumption. We are done. a

opyequivalence,idle 

is one. By Let V be a category with cofibrations and weak equivalences, and X E V. It

turns out that the contractibility of wN.(V -+ VX) may be re-expressed in terms of

two other conditions which appear to be rather independent of each other.

Proposition 1.8.9. wN.(V ~ Vx) is contractible if and only if the following two

conditions are satisfied:

(I) wN.(V ~ Vx) is connected,

(2) the map wN.V ~ wN.VX is a homotopy equivalence.

~of. If wN.(V ~ VX) is conne~ted it has wN.N.(V ~ Vx) as a de-loop (by [11]

or a variant of lemma 1.8.6). Therefore, provided it is connected, it is contractible

...Vx) is con-equivalence.

-.-.

.-

.-
An-l

l~
Bn-l
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if and only if wN.N. (0.. OX:

of homotopy fibrations

FPoof of theo~em 1.8.1. The nerve of the simplicial category wN.(O ~ OX) is a bi-

simplicial set whose vertices are the objects X- A in o .There are two kinds

X
of I-simplices, corresponding to the morphisms of wOX on the one hand, and to the

'operation' of the objects of o on those of Ox on the other. It results that

the set of connected components is the set of equivalence classes of the X~ A

under the equivalence relation generated by

(i) (X~ A) -(X A') if there is a map (X~ A) ~ (X~ A') in wOx

(ii) (X~ A) -(X,.. AU A") if A" EO.
*

The condition referred to in the theorem, that aofi~tion8 in o are spZittabZe up

to ~ak equivaZenae, implies that every object of Ox can be related (in a special

way. in fact) to the trivial object X~ X , thus wN.(O ~ OX) is connected.

Let O. l£m Cn now. Then, as just observed, wN.(O ~ OX) is connected for

every X, and, by proposition 1.8.3, the map wN.O ~ wN.OX is a homotopy equiva-

lence. By proposition 1.8.9 these two properties imply that wN.(O ~ OX) is con-

tractible for every X which in turn, by proposition 1.8.7, implies that

wN.O -wS.O
is a homotopy equivalence, as desired.

c
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have a diagr8IQ 1.9. Appendix: Relatio!!.!!!!!..!:.!!!. Q construction.

IN.N.(V 

-.Vx) is

:opy equivalence. c

Let A be an exact ~ategory in the sense of Quillen [ 8]. One can make Ai

into a category with cofibrations and weak equivalences by choosing a zero object

and by defining the cofibrations and the weak equivalences to be the admissible

monomorphisms and the isumorphisms, respectively. So a simplicial category is.A

is defined. It turns out that is.A is naturally homotopy equivalent to the cate-

gory QA of Quillen.

To see this we first replace QA by a homotopy equivalent simplicial category

iQ.A. Namely let iQA be the bicategory of the commutative squares in QA in

which the vertical arrows are the isomorphisms (in either A or QA -those are

the same). Then QA and iQA are homotopy equivalent (lemma 1.6.5), and we let

iQ.A be a partial nerve of iQA. namely the nerve in the Q direction.

:V... 

Vx) is a bi-

Next we replace is.A by a homotopy equivalent simplicial category iS~A.

We use the edgewise subdivision functor [12] which to any simplicial object X. ,

say X. : 6oP ~ K , associates another X~: 6oP ~ K , namely the composite

X~ -X. doP

are spUttabte up

ed {in a specialc:onnected.
where d: d ~ d is the doubling map whi~h takes [n] to [2n+l] and whose behavi-

our on maps may be described by saying that it takes

( 0 < 1 < ...< n ) to ( n' < ...< I' < 0' < 0 < 1 < ...< n) .

If X. is a simplicial space then the geometric realizations Ix.! and IX~I are

naturally homeomorphic [12, prop. (A.])]. Applying this fact to the simplicial

space [n] ~ liS AI we obtain that is.A and its edgewise subdivision iS~A, or
n

rather their geometric realizations, are homotopy equivalent.

s 

connected for)DIOtopyequiva-

..Vx) is con-

~ that

c
There is a map of simplicial categories

iS~A -iQ.A

which is an equivalence of categories in each degree. and therefore a homotopy

equivalence. The map is best explained by drawing a diagram to illustrate the

situation for n = 3 .

An object of is;A (~iSlA) is a sequence of cofibrations

A(3'.2')'" A(3'.1')'" A(3'.O')'" A(3'.O)'" A(3'.I)'" A(3'.2)'" A(3'.3)

together with a choice of quotients

A(i.j) -A(3' .j)/A(3'.i) .

!re are two kinds

hand, and to the

t results that

,f the X... A
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:iate 

to the 2. THE FUNCTOR A(X) .

~.

Let X be a space. A(X) is defined as the K-theory, in the sense of the

preceding chapter, of an equivariant homotopy theory associated to X.

QA as well asi. 

In particular

s not identicalns; 

two diagrams

which restricts

There are several ways of making this precise. The main purpose of this

section is to describe a few of those ways in detail and to show that they all

lead to the same result, up to homotopy.

The various cases arise from the fact that we want to keep the option of inter-

preting each of the terms space, equivariant, and finite type in two different ways.

Namely we will want to work either with topological spaces or with simplicial sets.

We want to use spaces over X on the one hand or spaces with an action of G(X) ,

the loop group of X, on the other. And finally we want to be free to impose a

condition of strict finiteness on the objects of the category or to be content with

a condition of finiteness up to homotopy.
!t ~.A denoteIplicial 

category:opyequivalence

Above we have

We begin with a construction that combines the two equivariant points of view.

We will be mainly interested, eventually, in the two special cases where one of G

and W below is trivial and the other one is X, resp. a loop group of X.

Let G be a simplicial monoid and W a simplicial set on which G acts

(by a monoid is meant an associative semigroup with 1). We define

R(W,G)
to be the category of the G-simplicial sets having W as a retract. In detail, the

objects of R(W,G) are the triples (Y,r,s) where Y is a simplicial set with

G-action and s: W ~ Y and r: Y ~ Ware G-maps so that rs ~ IdW ' and the mor-

phisms from (Y,r,s) to (Y',r',s') are the G-maps f: Y ~ Y' so that r'f = r

and fs ~ S' .

If G is the trivial monoid we omit it from the notation. In other words, we

let R(X) denote the category of the simplicial sets having X as a retract.

There are similar constructions in the topological case, and geometric realiza-

tion induces a functor R(W,G) ~ R(IWI,IGI) .
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We define our finite type conditions now. We proceed in the following order:

I. finiteness in the simplicial case,

2. finiteness in the topological case,

3. homotopy finiteness in the topological case,

4. qomotopy finiteness in the simplicial case.

'I, .:. i
.I

.,
~:'1

1. Finiteness in the simpliciaL aase. An object (Y,r,s) of R(X) is called

finite if the simplicial set Y is generated by the simplices of s(X) together

with finitely many other simplices. An equivalent condition is that the geometric

realization IYI is a finite CW complex relative to the subspace Is(X)I. The

full subcategory of the finite objects is denoted Rf(X) .,

In the general case of R(W,G) we must combine the finite generation condition

with a freeness condition. Finite generation of (Y,r,s) means that Y is gene-

rated, as a G-simplicial set, by the simplices of s(W) together with finitely many

other simplices. Freeness means that, for every k, the action of Gk on Yk is

free away from Wk ; precisely, the condition is that Y may be obtained from W by

attaahing of free G-aeLLs, that is, by direct limit and the formation of pushouts of

diagrams of the kind Y'+- 3AnxG ~ AnxG where An denotes the simplicial set

n-simplex, and 3An the simplicial subset boundary. We denote Rf(W,G) the full

subcategory of R(W,G) given by the objects which are both finitely generated and

free; the objects (Y,r,s) , in other words, where Y can be obtained from W by

attaching of finitely many free G-cells. Rf(W,G) is a category with cofibrations

and weak equivalences in the sense of sections 1.1 and 1.2, the cofibrations are the

injective maps, and the weak (homotopy) equivalences are the maps (Y,r,s) ~ (Z,t,u)

whose underlying maps Y ~ Z are weak homotopy equivalences in the usual sense

(that is, induce isomorphisms of homotopy groups upon geometric realization). We

denote the category of the weak homotopy equivalences by hRf(W,G) .

2.. Finiteness in the topological oose

necessarily the geometric realization of a

of R(IXI) is called finite if Y is equ

complex relative to the subspa~e s(IXI) .

these objects and their ceZZular maps (it

of R(IXI». We consider Rf(IXI) as a

topy) equivalences; by definition, a map i

isomorphic to a cellular inclusion.

More generally, in the ca$e of R(IWI,IGI) , we define Rf(IWI,IGI) to be the

category of the finite IGI-free CW complexes, relative to Iwi , and their cellular

maps.

.Let Ixi be a topological space, not

simplicial set X. An object (Y,r,s)

ipped with the structure of a finite CW

We let Rf(IXI) denote the category of

is not, of course, a full subcategorycategory 

with cofibrations and weak (homo-n 

Rf(IXI) is a cofibration if it is
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following order:

E R(X) is called

s(X) together

1at the geometric

Is (X) I .The

.~
~,

,'Y

3. Homotopy finiteness in the topological case. We define Rhf(IWI,IGI) as

the full subcategory of R(IWI,IGI) given by the (Y,r,s) where (Y,s) has the

IGI-homotopy type, in the strong sense, of a finite IGI~free CW complex relative

to IWI. This is a category with cofibrations and weak (homotopy) equivalences,

where cofibration has its usual meaning as a map having the IGI-homotopy extension

property (after neglect of struct:ural retractions, that is). To see that cobase

change by cofibrations does not take one out of the category, i.e. preserves homo-

topy finiteness, it suffices to note that weak homotopy equivalences have homotopy

inverses, after neglect of structural retractions (the Whitehead theorem for

IGI-free CW complexes).

Remark. On the face of it there are set theoretical difficulties in the construc-

tion of K-theory from ~f(IXI) .For hS.Rhf(IXI) is not a 'small' simplicial

category, nor even equivalent to one (in the sense of category theory). Here are

a few ways of dealing with this matter, each with its own virtues and drawbacks:

(a) one can pick an explicit small category Rhf(IXI) with which to work (for

example, have all one's spaces embedded in IXlxR~), (b) one may postulate the

existence of a universe, in the sense of Grothendieck, work in a fixed one, and

check that an enlargement of the Imiverse does not alter the homotopy type, (c) one

may regard the notion of a 'large' space as just as legitimate as that of a 'large'

category, provided only that certain constructions are avoided (this is the naive

version of the preceding). Which one of these or other alternatives to adopt seems

a matter of taste. We will not pursue the matter further.

4. Homotopy finiteness in the simpZiaiaZ aase. We reduce to the topological

case. That is, we define Rhf(w,G) as the full subcategory of R(W,G) given by

the (Y,r,s) whose geometric realizations are homotopy finite in the sense of the

preceding case.

!neration 

condition:hat 

Y is gene-

with finitely many

,f Gk on Yk is

btained from W by

ion of pushouts of

mplicial set

£(W,G) the full
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ined from W by

ith cofibrations

fibrations are the

(Y,r,s) -+ (Z,t,u)

e usual sense

ilization). We

~ical 

space, not

object (Y,r,s)

of a finite CW

! the category of

.subcategory

lS and weak (homo-

ion if it is

;/ Recall that the approximation theorem 1.6.7 describes sufficient conditions

for an exact functor C ~ C' to induce a homotopy equivalence hS.C ~ hS.C' .

Proposition 2.1. The approximation theorem applies to the map

Rf(W,G) _Rhf(W,G) ,

resp. its topological analogue.

PPoof. The non-trivial thing to verify is the following assertion (the part App 2

of the approximation prope~ty).,IGI) to be the

d their cellular
Assertion. Let (Y,r,s) E Rf(W,G) , and let (Y,r,s) ~ (Y',r',s') be any map in

~f(W,G) .Then the map can be fac:tored as (Y,r,s) ~ (Y\,r\,s\) ~ (Y',r',s')

where (Y\,r\,s\) E Rf(W,G) , the first map is a cofibration in Rf(w,G) , and the

second map is a weak equivalence in Rhf(W,G) .
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To prove the asfiertion it will' suffice ,~o find a factorization

(Y,s) --+ (Yt's\) ~(Y',s') .

For it is then possible to define the structural retraction r\ as the composite

of y\ ~ Y' with r': y' ~ W .

We treat the topological case first. The Whitehead theorem for IGI-free

CW complexes relative to 'WI is available here, so we can find a finite (Y ,s) .
0 0

together with homotopy equivalences (Y ,s ) ~ (Y',s') and (Y',s') ~ (Y ,s ) .
0 0 0 0

homotopy inverse to aach other. Choose a cellular map (Y,s) ~ (Y ,s) homotopic
0 0

to the composition (Y,s) ~ (Y',s') ~ (Yo , so) , and define (Y\'S\) as its mapping

cylinder. Then there exists a map (y\,Sj) ~ (Y',s') extending the given maps on

(Y,s) and (Y ,s ) .This has the required properties.
0 0

":f'

..
i

In the simplicial case we know, by the topological case, that there exists

some factorization

(IYI,lel) --'(YI,sl) --+(IY'I,ls'I).

We show that, by perturbing (':I,sl) a little, we may lift it back to the simpli-

cial framework.

~

Proceeding by induction on the cells of y\ not in IYI we suppose that we

have found a subcomplex III of Yl which does arise by geometric realization,

and so that the map III ~ IV'I is a geometric realization, too. To add another

one of the cells of Y\ to Izl, means that we form the pushout of a diagram of

the kind

it;::,.
;i~

III .--13dn, x IGI Idnl x IGI .

~~

We use simplicial approximation to rigidify this. Namely let Sd denote the

subdivision functor for simplicial sets [4 ], and Sdk its k-fold iteration. Then

if k is large enough one knows [4 ] that there is a map of simplicial sets,

nSdk 3A --+ Z ,

whose geometric realization is homotopic to the map

ISdk 3Anl ~ 13Anl x 1 --+lzl, 1 E IGI ,

and, again if k is large enough, the composite map Sdk3An -+ Z -+ y' extends

to SdkAn , in the p~eferred homotopy class. We now define

z' -Z U Sdk3An x G SdkAn x G .

Then Z ~ y' extends to a map Z' ~ Y' in the preferred homotopy class. By the

IGI-homotopy extension theorem Iz'l in turn may be extended, by induction on the

remaining cells, to a IGI-CW complex Yj mapping to YI by homotopy equivalence.

This completes the inductive step, and hence the proof of the proposition. a
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Proposition 2

map

2 The qpproximation theorem applies to the geometric realization

the composite Rf(W,G) ---+ Rf(IWI,IGI)

Proof. The non-trivial thing t~ verify is the following assertion.Assertion. 

Let CY,r,s) E RfCw,G) , and let CIYI, Irl, Isl) ~ CY',r',s') be any map

in RfCIWI.IGI) .Then the map can be factored as

I

l

or ICI-free

finite (Y ,s )
0 0

') ..(Y ,s ) ,
0 0

f ,s) homotopic
0 0
) ..as J.ts mappJ.ng

he given maps on

I~IIII(IYI,lrl,lsl)_(IY' .Ir"l.ls"'} -(Y'.r'.s')

here exists

where the first map is the geometric realization of a cofibration in Rf(w,G) , and

the second map is a weak equivalence in Rf(IWI,IGI) .

As before (the preceding proof) it suffices to find a factorization

(IYI,ls/) --+ (IY"I,ls"') -(Y',s') . I'Define (YI,sl) as the mapping cylinder of (IYI,lsl).. (Y',s') .Then (Y",s")

is obtained from (YI,sl) by rigidifying, one after the other, the cells of YI

not in IYI .The argument is the same as that in the second part of the preceding

proof.

Ik to the simpli-

Suppose that we

c realization,

To add another

of a diagram of

Let G be a simplicial group now, not just monoid, and X a simplicial set.

By a principal G-bundZe with base X is meant a free G-simplicial set P together

with an isomorphism of X with pxG* .the simplicial set of orbits.

~2 There is an equivalence of categories R(X) -R(P.G) .

denot

iteraLcial

&oof. 

We can define functors between these categories by pullback with P -+ X and

by the orbit map, respectively. If (Y,r.s) E R(X) then (yxxP)xG* ~ Y. And if

(Y',r',s') E R(p,G) then the diagram
Then

Y' I P

y,)(G. 

-p)(G.

is a pullback, thanks to the freeness of the G-action on P and the fact that G

is a simplicial group, not just monoid. Hence Y' ~ (y'xG.>xxP , and the two

functors are inverse to each other, up to isomorphism.

extends

D

By a universaZ G-bundZe with base X will be meant a principal bundle whose

total space P is contractible (in the weak sense). In this situation it is

necessarily the case that G repre3ents the loop space of X, but apart from

this restriction one knows that universal bundles exist in great profusion. Speci-

fically there is a functor, due to Kan, which to connected pointed X associates

a universal G(X)-bundle where G(X) is a certain free simplicial group, the Zoop

class. 

By the

.nduction on the'pyequivalence.,sition.

~

11""

e thetion.sets,
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now is simply that

Tl.im BH~(G)
n

provides a classifying space for the H-space GLk(O~S~IGI+). Indeed, there is a

homotopy equivalence of H-spaces

n ,,~~
l.im Hk(G) ~ ~(O S IGI+) .
n

It is given, in the limit, by the (n-I)-connected map

MaPIGI(VkSnAIGI+,VkSnAIGI+) ~ Map(VkSn,VkSnAIGI+)

-., Map(VkSn,nkSnAIGI+) ~ Map(Sn,SnAIGI+)kXk

f

1

F

~

(

(

}
Proof of theorem. Define ~(.,G) to be the full subcategory of Rf(.,G) given

by the objects which are n-sphsriaaZ of rank k. By definition, these are the

objects weakly equivalent to

k nok U.u. k a6nxG .u. 6 xG

that is, the objects which are in the same connected component, in hR~(*,G) , as

Define Rn(*,G) to be the subcategory of Rf(*,G) of the objects which are

n-spherical of unspecified rank; that is, the union of the categories ~(*,G) .

This is a category with sum and weak equivalences (section 1.8), so the group com-

pletion in the sense of Segal is defined; in the language of section 1.8 this is the

simplicial category hN.Rn(*,G). By a theorem of Segal [II] there is a homotopy

equivalence, well defined up to weak homotopy (homotopy on compacta),

GlhN.Rn(*,G) I ~ Z x lim Ih~(*,G) 1+ .

k

Combining with the homotopy equivalence above, and passing to the limit with respect

to n, we obtain now a homotopy equivalence

lim GlhN.Rn(*,C) I ~ Z x lim BHnk (G)+ .
n n,k

This reduces the proof of the theorem to the following proposition.

Proposition 2.2.2. There is a natural chain of homotopy equivalences

l~m hN.Rn<*.G) ~ hS.Rf<*.G).
n

~that particular object.

It is plausible, and will be shown below (proposition 2.2.5), that there is

a natural chain of homotopy equivalences

BH~(G) ~ Ih~(*,G) I .
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1deed, there is a

The proof of the proposition is an application of theorems 1.7.1 and 1.8.1.

To make these theorems applicable we have to check some things first. Let us define

-G
h.(Y) .H.(Yx 1roG)

for Y E Rf(.,G) , where H. denotes the reduced integral homology of pointed

spaces.

,."
!: Lemma 2.2.3 If H.(y) -0 for

1 i < m then H (Y) ~ h (Y)
m m is an isomorphism

RfC.,G) given
these are the

II11

In the general case one notices that the lemma is really a special case of one

in the next section (lemma 2.3.4) which concerns simplicial modules over a simpli-

cial ring and whose proof depend$ on a spectral sequence of Quillen's on (derived)

tensor products.
hRf<*,G) , as

that there is

IIILemma 2.2.4.
is a homotopy equivalence.

)jects 

which are~ies 
~(*,G) .

10 the group com-

lon 1.8 this is the

:e is a homotopy

Proof. Double suspension defines an endomorphism of each of these which is homoto-

pic to the identity map (proposition 1.6.2). On the other hand, double suspension

takes hS.Rf(*,G) into hS.Ri2)(*,G) , so it gives a deformation retraction.
c

Proof of proposition 2.2.2. The functor y~ h*(Y) defines a homology theory on

Rf(*,G) , in the sense of section 1.7, with values in the category of Z[woG]-modules.

Restricting attention to I-connected objects, as we may by lemma 2.2.4, we

obtain from lemma 2.2.3 together with the Hurewicz theorem that the weak equivalen-

ces are homo~ogica~~y defined: a map is .~ weak equivalence if and only if it induces

an isomorphism on h*.

limit with respect

The objects of Rn(*,G) have the property that h.(Y) is 0 for i + n , and
J.

free over Z[w G) for i -n. Conversely they are characterized by this property.
0

To see this it suffices to construct a map from a standard object inducing an iso-

morphism on h*. Such a map is obtained by mapping each generating cell 6nxl ,

suitably subdivided, so as to represent an appropriate generating element of the

module w IYI ~ H (Y) ~ h (Y) .
n n n

~1

Ill~)"~~
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We show next that the hypothesis of section 1.7 is satisfied: if Y ~ Y is
p

any p-connected map then it is possible to construct a factorization

y -y \ ~ p p+ q

where each Yn+1 is obtained from Yn by attaching (n+\)-cells and where the map

Y ~ Y is a weak homotopy equivalence. First, the inductive construction of Y
q n+\

from Y is done as follows. The module h I (Y ~Y) ~ w
\ (IY I~IYI) is finitel yn n+ n n+ n

generated over Z[woG] , and each element may be represented by mapping a (suitably
bd " " d d) " ( n+\ n+\ ) "" "su J.vJ. e paJ.r A ,aA "PJ.ckJ.ng a generatJ.ng set, we can use these maps

to attach (n+\)-cells to Y and to extend the map to Y to the cells. Next, the
n

construction can terminate. Fo~ suppose that q is at least as large as the

dimension of Y. Then hq(Yq-I~Y) is computed from a finitely generated free

chain complex which is both (q-I)-connected and q-dimensional. It follows that

hq is the only non-vanishing homology, and that it is stably free. After attaching

some more (q-\)-cells to Yq-\ .if necessary, we may suppose the homology is actu-

ally free, so that in a last st~p, finally, we can attach q-cells to kill the homo-

logy without introducing new homology in the next dimension.

-y -y

I

We have verified most of the hypotheses of theorem 1..7.1 now. The one excep-

tion is the condition that t~ ~ategory E, in the definition of spherical objects

in section 1.7, should be closed under the operation of taking kernels of surjec-

tions. Our E so far is the category of finitely generated free modules over

z[~ G] .This does not satisfy the condition, in general, so we must enlarge it.
0

We therefore replace Rn(*,G) by Rn(.,G) which we define as follows. It is the

subcategory of Rf(*,G) of the objects which are n-spherical in the following

sense: h.(Y) is 0 for i ~ n , and it is stably free for i = n .
1-

Theorem 1.7.1 now applies to give homotopy equivalences

lim bS.~(.,G) --lim(E) hS.Rf<*,G) -hS.Rf(*,G)
n

(we have used lemma 2.2.4 to suppress the superscript (2) on Rf again).

It is plain from the preceding discussion, on the other hand, that Rn(*,G)

is 8triat~y aofina~ in ~(.,G) in the sense of proposition 1.5.9, so the inclusion

hS.Rn(*,G) -hS.~(*,G)

is a homotopy equivalence

Finally it is also plain that the cofibrations in Rn(*,G) are 8pZittabZe up

to ~eak equivaZenae in the sense of theorem 1.8.1, so the map

lim hN.Rn(*,G)
-+
n

lim hS.Rn<*.G)-+ -
n

is a homotopy equivalence.

The proof of the proposition is now complete. []

~
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~
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is a homotopy
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nsion condition,quivariant 
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I~iLemma. 

2.2.7. Let C. be a special simplicial category in which all objects are

strictly homotopy equivalent to each other. Then for every object Y the inclu-

sion C.(Y) ~ C. is a homotopy equivalence.
1.111

identity on

given by restric-

C. We will

I~II

We deduce the lemma from a version of Quillen's theorem A for simplicial cate-

gories. In the case of special simplic:ial categories it takes the following form,

cf. [IS].,hich on II

Criterion. 

Let F: V. ~ C. be a map of special simplicial categories. A suffici-

ent condition for F to be a homotopy equivalence is that for every object Z of

C. the simplicial category F./Z : [m] ~ F /Z is contractible.
m

that is, the

identity map on

By definition Proof of ~emma. By the criterion applied to the inclusion F: C.(Y) ~ C. it

suffices to show that for every Z the simplicial category F./z is contractible

Suppose that f E,C (Z,Z'). It induces a map f*: F./z ~ F./z' ,
0

) )
Yxt\mxt\1 ...t\ (u E C (Y,Z) ) ~ ( d*(f) u E C (Y,Z'

m m

where d* denotes the (degeneracy) map induced by d: [m] ~ [0]

~

Suppose next that f] E C](Z.Z') , and let f and f' be its faces in

Co(Z.Z') .Then we claim that f* and f~ are homotopic. Indeed. a simplicial
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.I

j
homotopy from f* to f~ is given (cf. the proof of lemma 1.4.1 for a discussion

of simplicial homotopias) by the natural transformation which takes a: [m] ~ [I]

to the map F fz ~ F fZ' ,
m m

(u E C (Y,Z) ) ( a*(f \ u E C (Y,Z') ,
m m

By induction we conclude that if f and f" are in the same connected compo-

nent of C.(Z,Z') then they induce homotopic maps F./Z ~ F./Z' .

In turn we conclude that if Zo and Zl are strictly homotopy equivalent to

each other, then F./Zo and F./ZI are homotopy equivalent.

Applying the hypothesis of the lemma now we obtain that, for every Z, F./z

is homotopy equivalent to F./!.

But F./Y is the same as IdC./Y: [m] ~ IdCm/Y. This is a simplicial object

of contractible categories (each has a terminal object). Hence it is contractible.

We are done. '
[J

:.~
~

~
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The theme of this section i3 that much of the material of the preceding two

sections can be redone in a 'linearized' setting. This leads to considering a

K-theoryof simplicial rings, and specifically, to comparing several definitions

of it. In the case of discrete rings the K-theory is the same as Quillen's.

There is a natural transformation, Linearization, from the 'non-linear' to the

'linear' setting. We record the plausible fact that, up to homotopy, the induced

map in K-theory does not depend on which particular definition of K-theory is used.F./z

Let R be a simplicial ring (with I). By a moduZe over R is meant a

simplicial abelian group A together with a (unital and associative) action of R,

that is, a map AeR ~ A (degreewise tensor product). We let M(R) denote the

category of these modules and their R-linear maps.

simplicial object

is contractible.

a

IIIII~

A simplicial set Y gives rise to a module R[Y] where (R[Y]) a R [Y ] .

n n n
the free R -module generated by Y .By the attaching of a n-ceZZ to a module A

n n

is meant the formation of a pushout of the kind

A --R[a6n] -R[6n] .

I~III

We say that B is obtainable from A by attaching of aeZZs if it can be built up

by this process together with. perhaps, direct limit; we will also refer to this

situation by saying that A ~ B is a free map (the notion is the same as that of

a free map in [ 6]).

We define Mf(R) to be the full subcategory of the modules which are obtainable

from the zero module by attaching of finitely many cells. This is a category with

cofibrations (free maps) and weak (homotopy) equivalences.

More generally, we define Mhf(R) as the category given by the modules obtain-

able from 0 by attaching of perhaps infinitely many cells, but homotopy equivalent

to some module in Mf(R) .Again this is a category with cofibrations and weak

equivalences, in the same way.

Mf(R) and Mhf(R) give rise to the same K-theory, that is, the map

GlhS.Mf(R) I + GlhS.Mhf(R)

This results from

1~ii

Ili~'

The approximation theorem applies to the map Mf(R) ~ Mhf(R)
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Proof. The argument is the same as that in the first part of the proof of proposi-

tion 2.1.1. The point is that the Whitehead theorem is available for objects in

Mf(R) or Mhf(R) (one just ~onstructs any desired map by induction on the genera-

ting simplices 6n'l, 1 E R ; it is not even necessary to subdivide 6n in the

process since si~licial abelian groups satisfy the Kan extension condition). c

Let Mkxk(R) denote the simplicial ring of the kxk matrices in R. We de-
"

fine GLk(R) to be the multiplicative simplicial monoid given by the matrices in

MkXk(R) which are invertible up to homotopy. Let B~(R) denote the classifying

space.

Theorem 2.3.2. There is a natural chain of homotopy equivalences

OlhS.Mf (R) I ~ K'(w R) x lim BGJ.k (R)+ .0 0 k

Here K'(w R) denotes the subgroup of the class group of the ring w R given
0 0 0

by the free modules (it is cyclic, and in cases of interest it is usually Z).

RemaPk. There is a variant of the theorem where the category Mf(R) is replaced

by the larger category Mdf(R) of the objects dominated by finite ones; that is,

the objects which are retracts of such in Mhf(R) .In that case the restricted

class group K'(w R) in the theorem has to be replaced by the full class group
0 0

K (w R) .
0 0

~,
fc:C

~r
!';

Proof of theorem. Define M~(R) to be the full subcategory of Mf(R) given by

the objects which are n-spheri"aZ of rank k; that is, the objects weakly equiva-
[ k n ] k n

lent to R Ll ~ /R[Ll a~ ] .

It will be shown below (proposition 2.3.5) that there is a natural homotopy

equivalence

Bak(R) ~ I~(R) I

compatible with suspension (the passage from n to n+1 on the right hand side).

Define Mn(R) as the union of the categories ~(R) .According to Segal [II]

we have a homotopy equivalence

nlhN.Mn(R) I ~ K'(lI R) x lim IhMn(R) 1+ .
0 0 ~ --K

Combining with the former homotopy equivalence we obtain one

nlhN.Mn(R) I ~ K'(lI R) x lim BGI.k (R)+ ,0 0 ~

The proof of the theorem has thus been reduced to thecompatible with suspension.

following proposition.
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is a homotopy equivalence. By combining the homotopy equivalences we obtain the

proposition. a

IhM~(R)
To complete the proof of the theorem we are now left to compare"B~ (R) .

and

Let us write C instead of hMf(R) .for short. We blow up C to a simpli-

cial category C. .[m]... C .The objects of C are the same as those of C.
m m

and the morphisms in C are the m-parameter families of morphisms in C. That.
m

is. a morphism in C from A to B is a map A[Am] ~ A8Z[Am] ~ B. Considering
m

C as a simplicial category in a trivial way we have a map C ~ C. .

If A E C we let CA' resp. C'A' denote the connected component of C.

resp. C. .containing A. and C.(A) the simplicial category of self-maps of A

in C

Proposition 2.3.5. For every A E hMf(R) there are homotopy equivalences

C A -C. A --C. (A) .

Proof. The argument is similar to that of proposition 2.2.5

BG'~(R) ~ I~(R) I .Corollary. There is a natural chain of homotopy equivalences,

compatible with suspension.

Proof. Let A z ~ denote the module obtained by attaching k n-cells to zero,

~ .R[~k~n]/R[~ka~n] .

We claim that the simplicial ring of self-maps of ~ is homotopy equivalent to

~k(R) , independently of It. To see this we can reduce, by a direct sum argument,

to the special case k -I .Restricting to the generating simplex we then obtain

an isomorphism

MdPR(A~,A~) ~ Mdp(6n!a6n,R[6n]!R[a6n]).

But it is well known, and eaay to prove, that the n-fold loop space of the simplicial

abelian group R[6n]!R[a6n] is R again, up to homotopy. For example consider the
1.- n. n n n
rWL7' A ,the un~on of all the faces of 6 except the last. Then R[6] !R[A ]

is contractible. Hence the ahort exact sequence

R[6n-I]!R[a6n-l] -R[6n]!R[An] , :J,

-R[6n]/Rl36n.

c

gives a looping fibration. It follows from the claim that the simplicial monoid of

self-equivalences of ~ is homotopy equivalent, as monoid, to ~(R) .Hence

B~Lk (R) ~ I C. (~) I .Applying the proposition now we obtain that the latter is

homotopy equivalent to ICA'. IhM~(R)1 .The corollary results.
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we obtain the

IIIIII

Rsmark. The theorem includes a description of the Quillen K-theory of a discrete

ring in terms of chain complexes over that ring. For if R is discrete then a

'module' in the sense used above is really the same thing as a s£mpZiaiaZ rnoduZa

OVa~ R. In view of the Dold-Kan theorem there is therefore an equivalence (it is

given by the normalized chain complex functor) of the category MfCR) with a cate-

gory of chain complexes over R.

c

IhM~(R) I and

I~I~

.to 

a simpli-

those of C.

in C. ThatI. 

Considering

Below, in the context of linearization, it will be convenient to know that the

foregoing material can be redone topologically rather than simplicially. We record

this now.

As a technical point, we will want to know that the geometric realization

functor commutes with finite products. Therefore products should be formed in the

category of compactly generated spaces. As a result we will restrict ourselves to

working in that category. For example, if we mention a topological abelian group

it will be tacitly understood that the underlying topological space is compactly

generated.

ponent of C,

self-maps of A

Let IAI be a topological abelian group, not necessarily the geometric reali-

zation of a simplicial abelian group A, and IXI a topological space, not neces-

sarily the geometric realization of a simplicial set X either. In this situation

we can form IAI[IXI] , the topological abelian group freely generated by IXI over

IAI .The underlying space is the space of linear combinations of the kind

1111

K(R) ~ I~(R) I .

alxl + ...+ ~xk '

3ubject to a suitable equivalence relation, and topologized accordingly.

one forms

zero,

In detail,

equivalent to

.rect sum argument,

~ we then obtain

~ IAlk .1-

where the equivalence relation is generated by the rule that for every map of finite

sets, 8: ~ ~ ~ , the two maps
IAln)( IXln .~.)( Id -,

x IXlk

III11
'Aim x IXln Id x e* ~ IAlm x IX,m

of the simpliciallmple 

consider the

m R[An]!R[/,.n]

are to be equalized

If, in particular, IRI is a topological ring, and Ixi a topological space,

we can in this way obtain IRI[IXI] , the free IRl-module generated by Ixi .The

construction is compatible with geometric realization in the sense that if R is a

simplicial ring, and X a simplicial set, then IRI[lxl] ~ IR[X] I .

Ilicial 

monoid of

'k(R) .Hence:he 

latter is

We have the means now of defining the notion of the attaahing of a n-aeZZ to a

IRl-module M. Namely this is the formation of a pushout of the kind

IRI[ laAnlJ + IRI[ IAnl] .M

Starting from this notion we can proceed as in section 2.1 to carryover the defini-

III:
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tions of Mf(R) and ~f(R)

Mf<IRI) and ~f<IRI) .
to the topological context to obtain definitions of

Proposition 2.3.6. Let R be a simplicial ring.

to the geomet~ic realization map Mf(R) ~ Mf(IRI)

The approximation theorem applies

Plooof. The argument is similar to that of proposition 2 2

Define ~(IRI) as in the simplicial case; that is, it is the simplicial

monoid of the homotopy-invertible matrices over IRI .

Let R be a simplicial ring There is a natural chain of homo-Corollary 2.3.7.

topyequivalences
'" +

alhS.Mf (IRI) I ~ K'(w R) x lim BGL (IRI) ,
0 0 k K

and the chain is compatible. via geometric realization, to that of theorem 2.3.2

Proof. We consider the chain of maps in theorem 2.3.2 as consisting of three parts.

The first part is the chain of maps between lim hN.Mn(R) and hS.Mf(R) in propo-

sition 2.3.3. The preceding proposition applies to each map in the transformation

from this chain to its topological analogue, so these maps are homotopy equivalences.

As a result, since the maps in the former chain are homotopy equivalences, it fol-

lows that so are those in the latter.

The second part of the ~hain is Segal's homotopy equivalence of alhN.Mn(R) I

with K'(~ R) x lim 'nUn(R) 1+. This is certainly compatible with its topological
0 0 ..'-K

analogue.

The third part of the chain, finally, is given by the maps in proposition 2.3.5,

resp. its corollary. There is a compatible chain of maps in the topological case,

and the maps are homotopy equivalen~es by the version of proposition 2.3.5 in the

topological case. C

Let Z be the ring of integersSuppose now that G is a simplicial monoid,

There is an exact functor

R(*,G) .M(z[G])
y I .icy] ~ z[y]/z[*]

induces, by

and hence an induced map in K-theory, the Linearization map

alhS.Rf(*,G) I ~ alhS.Mf(Z[G]) I .

On the other hand, the map of rings up to homotopy a~S~IGI+ ~ Z[ IGI

matrix multiplication, a map of H-spaces
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lefinitions of

1111

theorem applies

a

:ial

" ..'"
GLCO S IGI ) + GL(Z[IGIJ) .+

" .."This is de-loopable to a map of classifying spaces BGL(O S IGI+) -+ BGL(Z[IGIJ) ,

well defined up to homotopy. Namely the latter is obtained by composing, in the

limit with respect to nand k, the map
, k n ...

[ k n JB AutIGI(Y S AIGI+) + B Autz[IGIJ(Z V S AIGI+ )

with a homotopy inverse to the homotopy equivalence

A ...ko ...kn
B~(Z[IGIJ) ~ B Autz[IGIJ(Z[Y S AIGI+J) B Autz[IGIJ(Z[Y S AIGI+J) .

We can further compose with an inverse to the homotopy equivalence

A .-
B~(Z[GJ) + BGLk(Z[IGIJ) .chain of homo-

t.heorem 2.3.2

Corollary 2.3.8. The linearization map corresponds, under the homotopy equivalences

of theorems 2.2.1 and 2.3.2, to the map

Z x BGl(I1~S~IGI+)+ -Z x BGL(Z[G])+ .

g of three parts.

Mf(R) in propo-

transformation

topyequivalences

lences, it fol-

As indicated in [14]. this result can be used to obtain numerical information.

For example. as a consaquence of the fact that the map Q~S~IGI+ ~ z[IGI] is a

rational homotopy equivalence as wall as an isomorphism on w .it follows that
0

the map of the corollary is a rational homotopy equivalence.

Proof of aorot~. This is a matter of checking, similar to the preceding corol-

lary. We regard the chain of homotopy equivalences in theorem 2.2.\ as consisting

of three parts. The first part is the chain of maps between lim hN.RnC*,G) and
-+

hS.RfC*,G) in proposition 2.2.2. This is compatible, by linearization, to the

corresponding chain of maps between l~m hN.MnCZ[G]) and hS.MfCZ[G]) in proposi-

tion 2.3.3.

f OlhN.Mn(R) (

its topological

proposition 2.3.5,

pological case,

n 2.3.5 in the

i
c

II~
ing of integers.

The second part of the chain is Segal's homotopy equivalence of OlhN.Rn(*,G) 1

with Z x l!m Ih~(*,G)I+. This is compatible to its linear analogue, the homotopy

equivalence between OlhN.Mn(z[c]) I and Z x l!m IhM~(Z[G]) 1+ .

The third part, finally, is the commutative diagram of homotopy equivalences,

with the notation as in proposition 2.2.5, and Y the simplicial version of
k nV s AIGI+ '

Cy .C'Y +

I
I
I

~
-,,- C.(IYI)C'YI-CO'YI

induces, by

The notation of the broken arrows here simply means that these arrows are missing
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For we have not tried to put anything into the upper right corner. Such a Y would

have to satisfy the Kan extension condition (proposition 2.2.5) and it would also

have to fit into a sequence of Y's related to each other by some kind of suspen-

sion.

At any rate, the diagram is compatible, by linearization, to one

CA .CoA f Co~A)

c --
IAI-C'IAI-C.(IAI)

~

where the upper row is that of proposition 2.3.5, with A -Z[y] , and the lower row

is the topological analogue of it. C

To conclude the topic of linearization let us briefly mention that, in the case

of A(X) , there is a description of the linearization map which uses only spaces

over X, not the loop group of X. The map is defined in terms of an exact func-

tor R(X) ~ Rab(X) where Rab(X) denotes the category of abelian group objects in

R(x) .

In particular this means that, for connected X, there is a description of

K(Z[G(X)]) in terms of Rab(X) .To obtain that description, one defines a notion

of weak equivalence in Rab(x) so that the map Rab(X) ~ Rab(*,G) ~ M(z[G]) corre-

sponding to that of proposition 2.1.4, respects and deteats weak equivalences. The

argument of proposition 2.1.4 may then be adapted.
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Such a Y would

it would also

kind of suspen-

3. THE WHITEHEAD SPACE WhPL(X) , AND ITS RELATION TO A(X) .

3.1. ~~and the Whitehe.ad~.

and the lower row

a

that, in the case

les only spaces

If an exact func-

group objects in

..1.[1.1

lescription of

defines a notion

~ M(Z[G]) corre-[uivalences. 

The

A map of simplicial sets is called simpLe if its geometric realization has

contractible point inverses. We will admit here that simple maps form a category,

that is, that a composite of simple maps is simple again, and that the gluing lemma

is valid for simple maps. Proof~ of these facts may be found e.g. in [16] where

also a few other characterizations of simple maps are given.

If X is a simplicial set we denote by C(X) the category of the cofibrant

objects under X; the objects are the pairs (Y,s) , s: X ~ Y , and the morphisms

from (Y,s) to (Y',s') are the maps f: Y ~ Y' with fs a s' .

As before we let R(X) denote the category of the triples (Y,r,s) , rs 2 IdX .

In either case, the subscript 'f' will denote the subcategory of the finite

objects (where Y is generated, as simplicial set, by the simplices of s(X) to-

gether with finitely many other simplices) and the superscript 'h' will denote the

subcategory of the homotopioatty ftriviat obj ects (where s: X ~ Y is a weak homo-

topyequivalence). Finally the prefix's' will denote the subcategory of the

simpLe ImPs.

111

The category sC~(X) is of interest because of its role in the classification

of PL manifolds and their automorphisms [ 2] [3] [16]; cf. also [15] and especially

the proof of proposition 5.5 in that paper.

By the Whitehead space (the PL Whitehead space, to be precise) is meant a space

whose fundamental group turns out to be the Whitehead group (the Whitehead group of

w]X, that is, if X is connected) and which can be obtained from the (classifying

space of the) category sC~(X) by de-looping, as follows.

In the language of section 1.8, the category C~(X) may be regarded as a cate-

gory with sum (gluing at X) and weak equivalences (simple maps). Hence the group

completion in the sense of Segal, the simplicial category sN.C~(X) , is defined.

Proposition 3.1.1. There is a natural homotopy equivalence

h hIsCf(X) I ~ G}sN,Cf(X) I .
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Proof. Thanks to Segal [II] one knows that the canonical ma~ from JsC~(X) I to

nlsN.C~(X)1 is a homotopy equivalence if the H-space IsC~(X) I is group-Zike 9r,

what amounts to the same thing, if the monoid wolsC~(X)1 is a group. But it is

well known that this is the case, cf. e.g. [16] for a proof. a

The main goal of this suction is to prove the result (theorem 3.1.7 below) that

the sum aonstruction in sN.C~(X) can be traded for the aofibration aonstruation;

that is, that 'N.' can be replaced by'S.' .In order for this replacement to

make sense it is necessary to trade 'C' for 'R' first, that is, to impose struc-

tural retractions throughout. We also need an auxiliary construction; its purpose

is to prevent the homotopy property of the functor X ~ sN.C~(X) from being lost

upon transition from 'c' to 'R' .

~
f
,~

Let F be a functor defined on the category of simplicial sets, with values in

a category B, say. We associate to it another functor F, with values in the

category of simplicial objects in B,

v An
F(X) .([n]... F(X ) )

where XAn denotes the simplicial set of maps An ~ X .

Remark. In cases where the name of the functor is not F but something lengthy,

such as for example sN.C~, the notation F(X) would be awkward. We will there-

fore use instead the notation F(X6.) on such occasions. a

Using the identification of F(X) with F(xf°) , and considering objects of 8

as simplicial objects in a trivial way, we can define a natural transformation from
v

F to F.

Supposing now thet in the receiving category B it makes sense to speak of

weak homotopy equivalences, we will say that the functor F respects weak homotopy

equivaLences if X ~ X' always implies F(X) ~ F(X') .

~ 3.1.2. If F respects weak homotopy equivalences then the natural transfor-

mation F ~ F is a weak homotopy equivalence.

-A° AnFToof. The (degeneracy) map X- ~ X is a weak homotopy equivalence and there-

fore so is F(X60) ~ p(~n) .by assumption about F. We conclude with the reali-

zation lemma. a

~ 3.1.3. Por any P. the functor F preserves simplicial homotopies.

1
Proof. Let X ~ yA be a simplicial homotopy. The claim is that one can naturally

associate to it a simplicial humotopy of maps F(X) ~ F(Y) .Such a simplicial ho-

motopy may be identified to a natural transformation of functors on the category

A/[I] .
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JsC~(X)1 to ( a: [nJ ..[IJ ) -..('f(x) ..F(Y)
, n n

The desired map on the right is defined as the composite map

n Inn
F(xd ) + F(yd xd ) F(yd )c

Iwhere the first and second map are induced, respectively, by the homotopy X ~ y~

and by the map
3.1.7 below) that1 

aonstruction;:eplacement 

to

to impose struc-m; 

its purpose

:om being lost

~

(a.,Id) I
~n .~ x ~n

h y~ 3.1.4. Let F(X) -sRf(X) .Then the functor F respects weak homotopy

equivalences. Similarly with the functors sN.R~(X) and sS.R~(X) .

:, 

with values in

alues in the

tl

Proof. By a well known argument (which e.g. may be found in [16]) it suffices to

show that ~(X) -+ F(X') is a weak homotopy equivalence if X' is obtained from X

by fiZZing a horn, that is, if it is the pushout of a diagram X... A~ -+ /In where
J.

A~ is the i-th horn in /In, the union of all the faces except the i-tho The idea
J.

of the following argument is to construct, in this situation, a deformation retrac-

tion of F(X') to F(X) by using the preceding lemma. Since it is not true, in

general, that X is a deformation retract of X' by a simplicial homotopy, we must

subdivide first.

hing 

lengthy,We 

will there-

tl
l1g objects of 8

sformation from

to speak of

!.leak ho".,topy

Let Sd denote the subdivision functor for simplicial sets, and Sdk its

k-fold iteration. One knows that the subdivision of a simple map is simple again,

cf. [16], so we can use Sdl' say, to define a map

t: 'R~(X') + sR~(Sd2X') .

We compose with the map f.: sR~(Sd2X') ~ sR~(X') induced by pushout with

f: Sd2X' ~ X' (the composite of the 'last vertex map' Sd(X") ~ X" with itself).

The composite map on sR~(X') then is homotopic to the identity. For, it takes

(Y,r,s) to

II

tl111'

:ural 

transfor-

Ice and there-,ith 

the reali-

I1III
Ie can naturally

simplicial ba-

be category

,', " Sd2Y USd x' x' ,

2

with the appropriate structure maps, and the desired homotopy is given by the natu-

ral transformation to the identity functor induced from Sd2Y ~ Y , which is a

simple map, cf. [16].

As shown below, f: Sd2X' ~ X' is simplicially homotopic, relative to Sd2X'

to a map into X. Applying the preceding lemma we thus obtain a simplicial homo-

topyof the map f.. W@ conclude that there is a map homotopic to the identity

on sR~(x,d') ,namely I.I, which is also homotopic to a map into sR~(xd') .The

latter homotopy is relative to the 'identity' on sR~(xd') ; more precisely, the

homotopy is constant on the analogue of the map i.1 constructed from X instead

h d' h d'of X' .So we can draw the desired conclusion that the map sRf(X ) ~ sRf(X' )

.~

group-Zike <?r,Lp. 

But it is
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is a weak homotopy equivalence.

:I

We are left to show that SdZX' ~ X' is simplicially homotopic, relative to

SdZX, to a map into X. Since the subdivision functor commutes with pushouts,

this reduces to the following spe(:ial case.Assertion. 

The map SdZan ~ an is simplicially homotopic, relative to SdZA~, to
. An

a map 1nto ..
1

To see this we note that there is a homotopy of maps ISd)an, ~ lanl which has

all the asserted properties except that it is not quite the geometric realization of

a simplicial homotopy; it is only a linear homotopy of uno~ered simplicial comple-

xes. We can get the ordering right by subdividing once more. This gives a simpli-

cial homotopy of maps Sdzan ~ Sd)an. Composing with the map Sd)an ~ an we ob-

tain the desired homotopy from it.

The other cases of the lemma are handled similarly, c

~ 3.1.5. If X satisfies the Kan condition, the map sR~(X~.),~ sC~(X~.)

a homotopy equivalence.

Proof. We define a simplicial category [m] ~ sR~(X)m in which an object is one

of sC~(X) , say (Y,y) , together with a map yx~m ~ X extending the projection

Xx~m ~ X. Since y is a weak homotopy equivalence, and X satisfies the exten-

sion condition, the simplicial set of those objects of sR~(X). which arise from

any particular (Y,y) , is contractible. In other words, the simplicial set of

objects of sR~(X). maps by homotopy equivalence to the set of objects of sC~(X) .

Similarly, the simplicial set of morphisms of sR~(X). maps by homotopy equivalence

to the set of morphisms of sC~(X) ; and so on. It follows (the realization lemma)

that the forgetful map sR~(X). ~ sC~(X) is a homotopy equivalence.

Next we define a bisimplicial category [m], [n] ~ sRhf (X) -sRh f (X~n) .In

m,n m

view of the homotopy equivalence just established it follows, by the realization

lemma, that the map sR~(X).. ~ sC~(X~.) is a homotopy equivalence. Passing to the

diagonal simplicial category of the bisimplicial category on the left (it has the

same geometric realization, up to isomorphism) we obtain

h h ~.
diag 8Rf(X).. -sCf(X ) .

The lemma now results by checking that diag sR~(X).. contains sR~(X~') as a

deformation retract, and that the map of the lemma is the restriction of the latter

homotopy equivalence.

An object of sRhf (X) consists of an injective map xAn ~ Y (with a finite-
n,n n n

ness condition) together with a map YxAn ~ XA which on xA xAn restricts to the

projection. The object is in the subcategory sR~(XAn) if the map on YxAn itself

factors through the projection.
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n n
Passing to the edjoint, we can rewrite the map as Y ~ X6 x6 .The desired

simplicial homotopy now is induced by a simplicial deformation retraction of
6nx6n 6n[n] ~ X to [n] ~ X .Cf. e.g. [16] for a description of the homotopy.

ic, relative to

with pushouts,

Lemma 3

6.

nve to Sd2Ai' to I~ X satisfies the Kan condition, the forgetful map

h ~. h~' h~'
sSnRf(X }. .sSn-IRf(X } x sRf(X }

(y ] ~...~y I Y I ~"'~Y I ,Y/Y n- n- I'"-

is a homotopy equivalence.

..16n, which hasric 

realization ofimplicial 

comple-

s gives a simpli-
n n

6 ..6 we ob-
I

y.

Proof. Define a category sSnR~(X) just as sSnR~(X) except that there is no

structural retraction on the ',b

J 'ect Y in the filtration Y '" Y

1 ...Y n 0 n-

There is a forgetful map

n

a

h A'-+ SCf(X )

1 object is one

the projection.fies 

the exten-

lich arise fromlicial 

set ofjects 
of sC~(X) .notopyequivalence!alization 

lemma)

.SnR~(X6') + sSnR~(X6')

which forgets the structural retraction in question, This forgetful map is a homo-

topy equivalence as one sees by a straightforward adaption of the argument of the

preceding lemma, Consequently (and in view of the preceding lemma) the assertion

of the lemma is equivalent to the assertion that the map

-h 6' h 6' h 6'sSnRf(X ) .sSn-iRf(X ) x sCf(X )

is a homotopy equivalence, By the realization lemma this follows if we can show it

degreewise, for fixed m, Writing X instead of X~m now, we are reduced to

showing that the map

Rh hn-) f(X) x sCf(X)-h
sSnRf (X) --+ sS

is a homotopy equivalence,

Let us denote the components of this map by p and q, respectively, and the

section of the map q by i. In order to show that (p,q) is a homotopy equiva-

lence, it will suffice to show that the sequence

h i -h P h
sC f (X) -sSnRf (X) sSn-1 Rf (X)

i.! a fibration, up to homotopy. We use Quillen's theorem B [8~] to prove this. We

proceed to show that the theorem applies, in its version for left fibres, to the

map p.

~~(xlI.) 

as a
Let (YI~"~Yn-l) be an object of sSn-IR~(X) .An object of the category

p/(Y 1~' .~Y I ) consists of an object (Y'~. .~Y' I ~Y') of sS Rhf (X) to gether withn- 0 n- n n
a map g, say, in sSn-1R~(X) , the (vertical) transformation

(with a finite-

stricts to the

u YX!ln itself

y' ...
0

1
y- ...

-.y' n-

1
-.y n-

.-"".

Ie realization,. 

Passing to the,it 

(it has the
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Let P /(y ~..~y I )' denot~ the subcategory of the objects for which the structural

0 n-

map g is the identity map. It is a deformation retract of p/(Y ~..~Y I ) ; in0 n-
fact, a deformation retraction is given by pushout with g.

On the other hand, P / (Y ~. .~y I )' is isomorphic to schf (Y I ) .As shown0 n- n-
in [16], the fUnctor X.. sC~(X) respects weak homotopy equivalences. Hence the

structural inclusion X ~ Yn-1 induces a homotopy equivalence sC~(X) ~ sC~(Yn-l) .

It results that the maps in sSn-lR~(X) induce homotopy equivalences of the left

fibres. Thus theorem B applies, showing that for every (Y ~..~Y I ) the square0 n-

-h
P /(Y ~. .~Y I ) I sS Rf (X) 0 n- n

hId/(Y ~. .~Y ] ) .5S IRf (X) 0 n- n-

is homotopy cartesian. In particular this is so for the distinguished object

(X~..~X) .We saw above that p/(X~..~X) contains as a deformation retract a sub-

category isomorphic to sC~(X) .Under the horizontal map in the square this subca-

tegory projects to the image of the inclusion map i, and under the vertical map

it projects trivially into the contractible category Id/(X~..~X) .We obtain that

the maps i and p form a homotopy fibration, as claimed. a

Theorem 3.1.7. Let X be a simplicial set. There are homotopy equivalences

h h f,. h A. h ~~A.
sN.Cf(X) + sN.Cf(X ) ~ sN.Rf(X- ) + sS.Rf(X- ) .

Proof. It is shown in [16] that the functor X~ sC~(X) respects weak homotopy

equivalences. By lemma 3.1.2 therefore the map from sC~(X) to sC~(X~.) is a

homotopy equivalence, and consequently also sN.C~(X) ~ sN.C~(X~.) , in view of the

realization lemma. To proceed we choose a weak equivalence X ~ X' where X' is a

simplicial set satisfying the Kan condition. Then all maps in the transformation of

the chain of the theorem to the corresponding chain with X replaced by X' are

weak equivalences by lemma 3.1.4. Thus we can reduce to proving the theorem for

simplicial sets which actually satisfy the Kan condition. Applying lemmas 3.1.5

and 3.1.6 now to the second and third map, respectively, we obtain that these maps

are homotopy equivalences degreewise in the N. ,resp. S. ,directions. We con-

clude with the realization lemma. c
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Proposition 3.2.4. Let F be an excisive functor, and suppose that F(X) is
v

connected for every X. Then the associated functor F is a homology theory,

alences can be

is an isomor-

There does not

valence, but an

.he fact that

The proof will be given at the end of this section.

tory material, it occupies the rest of the section.

Together with the prepara-

Remark. The artificial looking connectivity assumption comes from the fact that our

proof of the proposition uses the following lemma 3.2.5. Some auxiliary condition,

such as connectivity, is d~finitely needed in that lemma.
lowing two pro-

LellUDa 3.2.5. Let

lmit (up to iso-
w..-x..
I 1y..-z..

Lth it defines alduced 

map Rf(Xo)

:e obtain a sub-

I hence a cofibra-

I as the quotient

!cts (Y,r,s) in

, that the pullback

be a commutative diagram of bisimplicial sets. Suppose that for every m the

diagram of simplicial sets

to.-x.
m m

y - zm" m'

is homotopy cartesian. Suppose further that for every m the simplicial sets Y.
m

and Zm. are connected. Then the diagram of bisimplicial sets is also homotopy

cartesian.
.1d it restricts to

>rem to the cofi-

~e of sS.Rf(XI)fore, 

the sequence

Remark. There are easy examples to show that the connectivity assumption cannot be

dropped without replacing it by something else. Here is a particularly bad case.

Take any pullback diagram of simplicial sets. and consider it as a diagram of bisim-

p1icia1 sets in a trivial way. Then in each degree m we have a pullback diagram

of sets. and certainly therefore a homotopy cartesian square (of sets I). But it

rarely happens. on the other hand. that a pullback diagram of simplicial sets is

also homotopy cartesian.

ixiom, 

we obtain

Proof of lemma. We deduce the lemma from a corresponding result for homotopy fibra-

tions which we refer to as the fibre realization lemma. A proof may be found in

[13]; for convenience we rl!(:all the statement here. By a fibration up to homotopy

is meant here a sequence of maps of 'spaces' of some sort, X ~ Y ~ Z , having the

property that, firstly, thl! composite map X ~ Z is a trivial map, with image *

say, and, secondly, the map from X to the homotopy fibre of Y ~ Z at * is a

weak homotopy equivalence. The fibre realization lemma says the following. Let

X.. ~ Y.. ~ Z.. be a sequence of maps of bisimplicial sets so that the composite

.iced 

by pullback).sserted 

by the
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map X.. ~ Z.. is a trivial map. Suppose that, for every m, the sequence of maps

of simplicial sets Xm. ~ Ym. ~ Zm' is a fibration up to homotopy. Suppose furthe~

that for every m the simplicial set Z. is connected. Then the sequence of bi-
m

simplicial sets, X,. ~ Y.. ~ Z.. , is itself a fibration up to homotopy.

The idea for p~oving the present lemma comes from the fact that a homotopy car-'

tesian square with connected bases can be characterized as a commutative square in

which the homotopy fibres of the vertical maps are mapped to each other by homotopy

equivalence. Using this one hopes to obtain a translation of the assertion which'

follows from the fibre realization lemma.

To get the details right, it is convenient to replace homotopy fibres by actuai

fibres in a systematic way. We need to know that there is a functorial way of turn-

ing a map of simplicial sets into a Kan fibration; e.g., the process of fiZZing

horns [ I] will do. Using it we replace, for every m, the square of the lemma by

a square

w' -X'o
mO m

1 1
y' -z'o

mO m

in which the vertical maps are Kan fibrations. In view of the naturality of theconstruction. 

these squares still assemble to a square of bisimplicial sets

w: .--+ x:

1 1
Y:.--z:

There is a natural transformation from the old square to the new, and the mapsw.. 

~ W:. , etc., are homotopy equivalences by the realization lemma. To prove the

lemma it will therefore suffice to show that the new square is homotopy cartesian. '

Choose any point of Y:. (i.e., a compatible family of points in the Y~. ) as

a basepoint; denote it *. Let fibre(W'.~Y'.)
( ) denote the actual fibre at *.

m m *

Since W'. ~ Y'. is a Kan fibration, it is certainly true that the sequence
m m

fibre(W~.~Y~.) (*) -W~. -Y~.
is a fibration up to homotopy, for every m. In view of the fibre realization

lemma we deduce from this that the sequence

fibre(W: Y:.) (*) -W:. -Y:.

is also a fibration up to homotopy, where the term on the left denotes the actual

fibre again; the point is that fibre(W!~...y:.)(*) ~ ([m] ~ fibre(W~."'Y~,)(*) ) .

There are similar fibrations ].f W' and Y' are replaced by X' and z' .

.,
~,
ii!'
f
~"
r:
~:,.!:.\;

~"
;,;;
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sequence of maps

Suppose further

sequence of bi-

We can now complete the proof of the lemma as follows. In view of the assump-

tion of homotopy cartesianness we have, for every m, a homotopy equivalence

fibre(W~ y~.)(*) -fibre(X~""Z~')(Im(*» .

By the'realization lelmDa this implies a homotopy equivalenceIt a homotopy car-'

ative square in

ther by homotopy

ssertion which
-."

fibre(W!.-+y!.)(*) -fibre(X!.-+Z!.) (Im(*» ,

and therefore, in view of the preceding, a homotopy equivalence of the vertical

homotopy fibres in the W!,-X!.-Y!.-z!. square. Thus that square is homotopy

cartesian, as was to be shown.
c

fibres by actualrial 

way of turn-

s of fiZZing

of the lemma by

The lemma enters into the proof of proposition 3.2.4 through the following

consequence.

Proposition 3.2.6. Let [ml ~ Fm be a simplicial object of functors. Suppose that

F (X) is connected for every m and every X. Then if the Fare excisive.
m m

it follows that so is F. where F(X) -( [m] ~ F (X) ) .
m

~of. The validity of the limit axiom for F is automatic. The validity of the

excision axiom for F follows from its validity for the F by application of the
m

preceding lemDa.
~ality of theLal 

sets c

For later use we record the following here.

Lemma 3.2.7. Let FI and F2 be excisive functors so that FI(X) and F2(x) are

conne"cted for every X. Let FI ~ F2 be a natural transformation. If the natural

transformation is a weak equivalence in the cases X -6n, n -0, 1,2, ..., then

it is a weak equivalence in general.
ld the mapsI. 

To prove the:opy 

cartesian. '
Proof. By the limit axiom we can reduce to showing that FI(X)" F2(X) is a weak

equivalence for finite X. Let X be obtained by attaching a 'last' simplex 6n

to a simplicial set Y. In other words, choose an isomorphism of X to the push-

out in a diagram

in the Y'. ) as
mla1 

fibre at *.

3l1n olin

realization

ny -Y Uat.n t. .

Applying F] to the diagram we obtain a homotopy cartesian square, in view of exci-

sion, and applying F2 we obtain another. The map FI... F2 gives a map of the

first homotopy cartesian square to the second. Since FI(X) and F2(X) are con-

nected we con~lude that, in order for FI(X)'" F2(X) to be a homotopy equivalence,

:es 

the actual

'W' -+Y' ) )'m' m' (*)

X' and Z' ,
"'J
iC:~
1;:
,;';t

~~'
II
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it suffices that the map i. a homotopy equivalence in the other three cases. But

in the case of 6n this i. true by hypothesis, and in the cases of 36n and Y

it may be assumed true by induction.

.:

;~

a

The cruci~l step in th. proof of proposition 3.2.4 is the construction given

in the following two definitions.

to be theDefinition 3.2.8. Let X be a simplicial set. Define [k] ~ COV(X)k

simplicial object, in the cAtegory of simplicial sets, given by

mCoV(X)k -.LL to x Nk (m,n) x X
m,n n

where Nk(m,n) denotes the set of sequences in to,

[m] ~ [m]] ~ ...~ [~-1] ~ [n] ( k arrows) .

To describe the simplicial structure one rewrites COV(X) as the bisimplicial

set where a bisimplex in bidegree (q,k) consists of a sequence

[q] ...[mo] ...[mt] [~-t] ...[~]

together with an element x E X[~] .By definition now the i-th face map with

respect to the k-direction is given by omitting [m.] from the sequence; except
1-

if i ~ k in which case, in addition, the element x E X[~] must be taken to the

appropriate element of X[~-I]. The degeneracy maps are given by the insertion

of identity maps in the sequence.

ThenDefinition 3.2.9. Let F be a functor on the category of simplicial sets.

MF (X) -([k]... F(COV(X)k) ) .

Considering the simplicial set X as a simplicial object in a trivial way, we

can define a natural transformation

is the composite map

Cov(X). -x ;

by definition, its restriction to (6m, [m]~.. .~[n], x)

6m ([m]~[n])*. 6n x .x .

~ 3.2.10. If X is a simplex ~p or, more generally, a disjoint union of

simplices, then this map is the retraction in a simplicial deformation retraction

from the simplicial object [k] ~ COV(X)k to the trivial simplicial object [k] ~ X .

FToof. In the case X -AP .the simplicial homotopy is defined as the natural

transformation on the category A![I] taking a: [k] ~ [1] to the map of COV(AP)k

to AP defined in the following way. The map a. takes the sequence
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cases. But

n
at. and Y

[q] ..[mo] ..[m1 [~] ..[p]-+

to the sequence

[q] ..[m ] ..,.. ..[m, ( ) ] ..[p] ~ ...: [p]0 ]. a

where i(a) is the largest of the i E [k] which are in the pre-image of 0 E [I] ;

if a takes [k] entirely into 1 E [1] then the image sequence is

[q] ..[p] ~ .'. : [p] .to be the

The homotopy is similarly defined in the more general case where X is

disjoint union of aimplices. D

fie bisimplicial

Considering the objects of the receiving category of the functor F as sim-

plicial objects in a trivial way, we can define a natural transformation

x
F (X) -F(X)

as the map which in degree k takes F(COV(X)k)

from COV(X)k -+ X .
into F(X) by the map induced

:e 

map with~nce; 

except)e 

taken to the:he 

insertion

Le~ 3.2.]]. In the case where X is a simplex, or a disjoint union of such,

the map Fx(X) ~ F(X) is a (simplicial) homotopy equivalence.

Proof. The functor Fx has been defined by means of degreewise extension in the

k-variable, so it preserves simplicial homotopies in the k-variable. The present

lemma thus results from the preceding lemma. D

sets. 

Then
Remark. It is not difficult to show that Cov(X). ~ X is a weak homotopy equiva-

lence for all X. On the other hand there seems little reason to suppose, in

general, that the natural transformation FX(X) ~ F(X) is a weak equivalence for

X which are not just disjoint unions of simplices.

:rivial 

way, we

Proposition 3.2.12. Suppose that F(X) is connected for all X. and that F is

excisive. Then Fx(x) ~ F(X) is a weak homotopy equivalence for all X.

Plooof. The functor

mX ,. COV(X) k = Ll ~ x Nk (m,n) x X
m,n I

preserves monomorphisms and pushouts. As a result, the functorIt union of

m retraction

object [k]... X .

:he 

natural

lap of COV(AP)k
X I .

x F(Cov(X)k)

is excisive since F is. Applying proposition 3.2.6 now we obtain that

( [k) t+ F(COV(X)k) )

is an excisive functor, too.

k~i





":f

is a (simplicial) 'homotopy equivslence by lemma 3.2.11. Applying the realization

lemma with respect to the j-variable now we conclude that the map

H(X) -( [j]... ( [kJ.. G(X.) ) )
J

is a (weak) homotopy equivalence. The target of this map is the simplicial object

[jJ ~ G(X.) ~onsidered as a bisimplicial object in a trivial way. We are done.
J

2.11 

the map is.7, 

it is a weak

c

connected 

forakes 

finite dis-

excisive. Then
a

~I

.sive 

by hypo-

[j]... G(X.) )
J Yxlivalent 

to G .: 

it to both.

\;1r;;

F(X6j) )

Proof of proposition 3.2.4. Recall, the claim is that if F is an excisive functor

such that F(X) is connected for every X, then the functor F is a homology

theory.

The main problem is to show that F is excisive again. To see this we intro-

duce the functor px (definition 3.2.9). The natural transformation FX ~ F is a

weak homotopy equivalence in the situation at hand (proposition 3.2.12). By the

realization lemma it follows that the natural transformation FX ~ F is a weak

h .Vxomotopy equ1valence as well. Thus we can reduce to showing that the functor F

is excisive. This was shown in proposition 3.2.13.

v .We are left to show now that the functor F respects weak homotopy equ1valen-

ces. By a well known argumllnt (which e.g. may be found in [ I]) it suffices to show
I v v

that F(X) ~ F(X') is a homotopy equivalence if X' is obtained from X by fill-

ing a horn, that is, if there is a pushout diagram

:he 

latter 1:erm,
Az:t _~n

1.

1 1
x-x' .

lap 

of H(X) to

~t homotopylimplicial 

homo-

v
F applied to this diagram gives a homotopy cartesian square, by excision, so we can

reduce further to showing that F(A~) ~ F(6n) is a homotopy equivalence.
J.

Now 6n is contractible to its i-th vertex by simplicial homotopy (if i -0

or n, a single homOtopy will do; otherwise one needs a chain of two) and the con-
I v

traction restricts to one of A~. Since F preserves simplicial homotopies (lemma
J.

3.1.3) we conclude that indeed F(A~) ~ F(6n) is a homotopy equivalence. The proof
J.

is now complete. a

~on lemma with:weak) 

homotopy

,~-;
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3.3. ~ fibratio!}; relati!!g WhPL(X) ~ A(X) .

The fibration arises from the interplay of two notions of weak equivalence on

the category Rf(X) , where X is a simplicial set. The two notions are given by

the simpte maPs on the one hand and by the weak homotopy equivatences on the other.

Let the super$cript 'h' denote the subcategory of the objects which are homo-

topically trivial; that is, the (Y,r,s) where s is a weak homotopy equivalenc~.

As before (the preceding two sections) let Rf(X6') denote the simplicial category
n

[n] ...Rf(x6 ) .

Theorem 3.3.1. The square

h ~.
sS.RfCX ) h A"

hS.Rf(X- )

.p.° ..p.°
sSoRf(X) I hSoRf(X )

is homotopy cartesian, and the term on the upper right is contractible. The other

terms are as follows,

OlhS.Rf(~.) I ~ A(X) ,

A.X ~ sS.Rf(X) is a homology theory,

h A. PLsS.Rf(X ) ~ Wh (X) ,

and each of the homotopy equivalences can be described by a natural chain of maps

Proof. In order to show that the square is homotopy cartesian it will suffice to

.nshow, by lemma 3.2.5, that for each n the square with X6 replaced by X6 is

homotopy cartesian. Writing X instead of X6n now we have reduced to showing

that the square

sS.Rf(X) thS.Rf(X)

is homotopy cartesian. The clesired fact is essentially a special case of theorem

].6.4. There is a little te~hnical point. Namely the category of weak homotopy

B'I.ij
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equivalences on Rf(X) does not satisfy the extension axiom as required for a

direct application of theorem 1.6.4. For this reason we compare with the square

h h
sS.Rf(X) 'hS.Rf(X)equivalence on

IS are given by

'8 on the other.
sS.R~2) (X) -hS.R~2) (X)

:s 

which are hODk)-

opyequivalence.iplicial 

category

The other

(2)where Rf (X) denotes the subcategory of Rf(X) of the (Y,r,s) where s: X ~.Y

is a I-connected map. The weak homotopy equivalences in R~2)(x) may alternatively

be characterized a8 the maps inducing isomorphisms in homology (the Whitehead theo-

rem), consequently they do satisfy the extension axiom. Hence theorem 1.6.4 applies

to show the latter square is homotopy cartesian. We conclude by noting that the map

to the former squa~e is a homotopy equivalence on each of the four corners. In

fact, double suspension induces an endomorphism of each of the terms, the endomo~-

phism is homotopic to the identity map (proposition 1,6.2), and it takes Rf(X)

into R~2)(x) .

The uppe~ rigpt term hS.R~(XA') is contractible since it is a bisimplicial

object of categories with initial objects.

The term hS.Rf(XA') is a de-loop of A(X) since hS.Rf(X) ~ hS.Rf(XA') is a

homotopy equivalence (by lemma 3,1.2) in view of the fact that X~ hS.Rf(X)

respects weak homotopy equivalences (proposition 2.1,7).

The homotopy equivalence sS.R~(xA') ~ WhPL(X) is given in theorem 3.1.7.

The fact that X~ sS.Rf(XA') is a homology theory, finally, is provided by

theorem 3.2.1. cchain of maps.

11 

suffice to

~d by xl:.n is

i to showing

The theorem may be reformulated a little by defining the auxiliary simplicial

structure in a slightly different way. Namely define a simplicial category Rf(X).

as follows. Rf(X)n is the subcategory of Rf(Xx6n) given by the objects (Y,r,s)

which have the property that the composite map

r pr2
Y -X x 6n .n A

is locally fibre homotopy trivial

There is a homotopy cartesian square

h h
sS.Rf(X), .hS.Rf(X),

Proposition 3.3.2.

e of theorem

ak homotopy

sS.Rf(X). .hS.Rf(X).

and it is homotopy equivalent to the square of the theorem by a natural map.
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Froot. The homotopy cartesianne88 of the square is established in the same way as

in the theorem. There is a map from the square of the theorem to that of the propo-

sition. It is induced from the map of simplicial categories Rf(xA.) ~ Rf(X). de-

fined as follows. The map in degree n is the composite map

n n
Rf(XA ) + Rf(XA XAn) + Rf(XXAn)

where the first map is given by product with An, and the second map is induced

from a map

n
Xd Xdn -Xxdn ,

namely the map whose second and first components are the projection map prZ and

the evaluation map

n
XA xAn -x ,

respectively.

In order to show that the transformation of squares is a homotopy equivalence

it suffices, in view of the homotopy cartesianness of the two squares, to show that

the map is a homotopy equivalence on three of the four corners.

This is automatic in the case of the upper right corner as both terms are con-tractible.

It is still easy in the case <If the lower right corner. Namely in view of the

homotopy equivalence hS.Rf(X) ~ h-~.Rf(XA') (the theorem) it suffices to know that

the map hS.Rf(X) ~ hS.Rf(X), is a homotopy equivalence. This follows from the

fact (by the argument of lemma 2.2.6) that for every n the map hS.Rf(X) ~ hS.Rf(X)n

is a homotopy equivalence.

As our third case we take that of the upper left corner.

We consider the diagram
That case is less easy.

where the upper row is the chain of maps of theorem 3.1.7, and the lower row is an

analogue of that chain for the other auxiliary simplicial structure. The maps in

the upper row are homotopy equivalences (theorem 3.1.7), so it will suffice to know

that the maps in the lower row are homotopy equivalences, too. The second and third

maps in the chain now are handled as before (lemmas 3.1.5 and 3.1.6). I~ the case

of the first map one can reduce (by the realization lemma) to showing that the map

sC:(X) ~ sC:(X). is a homotopy equivalence; or in fact, that sC:(X) ~ sC:(X)n is,

for every n. But this has been proved in [16]. c

1"-- 
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