ALGEBRAIC K-THEORY OF SPACES.

Friedhelm Waldhausen

This i8 an account of foundational macerial on the algebraic K-theory of spaces
Funetor X &= A(X) .

The paper is in three parts which are entitled "Abstract E-theory", "A(X)",
and "Relation of A(X) to thL{x}“. tespectivaly.

The main result of the paper is in the second part. It says that several defi-
pitions of A(X} are in faet equivalent to each other, up to homotopy. The proof
uses most of the results of the firsc part. An introduccion to this cirele of ideas
can be obtained from looking at the sectioms entitled "Review of A(X)" and "Review
of algebraic E-theory" in the papers [17] and [18] (these two sections were written
wvith that purpose in mind).

The third part of the paper im devoted to an abstract version of the relation
of the A=functor to concordance theory. The content of the porametrized h-cobordiem
theorem in the sense of Hatcher is that PL concordance theory, stabilized with re—
spect to dimensiom, can be re-expressged in terms of non-manifold dacta, A detailed
account of the translation is given elsewhere [16], in particular the relevant re-
sults of Hateher's are (re-jproved there. The result of the tramslation (after a
dimepsion shift) is a functor X H'hPL

ACK) = WhE(

that, as & functor of X% , the homotopy fibre satisfies the excision property).

{(¥) . Ir is shown here thac chere is a map
X) and that che homocopy fibre of that map is & homology theory (i.e.,

The first part of the paper, on which everythinog else depends, may perhaps look
a litrle frightening hocause of the abstract language that it uses chroughout. This
iz unfortunate, but there is no way out. It is not the purpope of the abetract lan—
guage to strive for great gensralicy, The purpose is rather to simplify proofs, and
indeed to make some proofs understamdable at all. The reader is invited to tun the
following tesc: take theorem 2.2.1 (this is about the verst case), translate the
complete proof into net using the abatract language, and then try to commnicatae it

to somebody else.
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1. ABSTRACT E-THEORY.

b.1. Catepories wich cofibrations, and the language of filtared objects.

A category C is called podnted if it is equipped with a distinguished zero

ohject #* , if.a. an abject which is both initial and terminal.

A gatepory with cofibrations shall mean a poinced category C  rogether with a
suboategery col sacisfying the axioms Cof 1 = Cof 3 below. The feathered arcows
“'3—s+ ' will be used to denote the morphisms in cof . Informally the morphisms

in col will qimply be referred to am the coftbrations in C .

Cof 1. The igsomorphisms in € are cofibrations {in particular ecofl contains all
the aobjects of (3.

Cof 2, For every A € C , che arrow * = & i8 a cofibration.

Cof 3. Cofibrations admit cobose changes#. This means the following two things.
If A» B is a cofibration, and A = € any arrow, then firzcly the pushout C!.I_,lH

exists in C ; and secondly the canonical arrow C — CU&E is a cofibration again.,

Here 15 some more language., If Aw+B is a cofibration chen B/4 will denote
any representative of tUﬁB + MWe think of it as the quotient of B by A . The
canonical map B - B/A will be rteferred to as a guotient map. The double headed

arcows | o—a '

ara regserved to dencbe guotient maps. {(Move chat it ia neither
agked, ner agserted, that the quorient maps form a category, i.e. that the composite

of two guotient maps i always a guotient map again.)

Qur usage of the term cofibratimi sequence conforms to the usage in homotopy
theory. Ib refers to a sequence A—+ 3 —sE/A where B—=f/4 is che gquocient

mop associated to Ar—i

Beware that we will also be wsiog the term seguence of coftbraticme which of

course vefers to a sequence of tha cype A]H&.,-—' ’_""..,

The most important example of a category with cofibrations, for our purposes,
ia that of che spacea having a givan apace X a5 a8 retract. We will denote this

category by R(¥) . As a technical point, there will be several cases to consider

depending on whether space means simplicial set, or sell somplex, or whatever, and
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perhaps with a finiteness condition imposed. In any case the term cofibration has
esgentially its usual meaning here. (As o cechnical point again, note that the
axiom Cof 2 may force us to put A condition on one of the structural maps of an
ohject of R{X) - the section should be a cofibration).

?“ Another important example, though of less concernm to us here, is that of an
axaot category in the sense of (Quillen. Any exact category can be considered as a
category with cofibrations by choosing a zero object, and declaring che admissible
monomorphisms to be the cofibrations. The re-interprecation involwes a less of
structure: one igneres that pullbacks used to play a rola, too (the base change by

admissible epimorphismal.,

Since pur axioms are 8o primitive it will not be surprising that they admic
examples which are not important at all, and perhaps even embarrassing. Here is a
particularly bad case. Consider a category having a zero object and finite colimits.

It can be made into o category with cofibrations by declaring all morphisme to be

cofibrations.

Here is some more language. A functor between categories with cofibrations is
enlled emxaet if it presscves all the relevant scructure: it cakes = Eo Co—

fibrarions to cofibracions, and it preserves the pushout diagrams of axiom Cof 3

For exsmple, a map X = X' ipduces an exact functor R{X) - R(X') . On total

gpaces it is given by pushout of X = X' ith the scructural sections,

Another example of an exact functor is the linearization Functer (or Hurewics
map) which takes an objeet of R{X) to the abelian-group-object in R{¥) which it

generates.

There is a concept slightly stronger tham that of an erdct tnelysion fumetor
which we will have to consider. We say that €' is a subcatagory with cofibrations
of € if in addicion to che exactness of the inclusion functer the [ollewing condi-
cion is patisfied: an arrow inm C' is a cofibravionm im (' 4if it is a cofibration

in € &and the guotient is in €' (up te isomorphism).

An example of 8 subeategory—with-cofibrations arises if we consider a subcate-

gory of R(X) defined by a £initeness condicion.

. . . B
Here i% a more interesting example., For mz 2 let RV(X) denote the full
subcategory of R(X)} whose objects are obtainable from ¥ by attaching of n-cells

{up to homotopy). It can be considered as a subcategory with cofibrations of R(X)

In the remainder of the ssction we will check thar certain elemencary construcs
tiesna with categories do not lesad one out of the framework of categories wich cofi-
brations. In particular we will be interested in filtered objects; that is, sequen=
ces of cofibrations. (Despite the Enct, exemplified above, that cofibrations need

not be monomorphic at all, we shall let ourselves be guided by the more relevant
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examples to justify using this terminology). The arguments below will not go heyead
trivial manipulation with eolimits. There ig, however, one idea invalved. The idea
is that the notioon of bifilterad objfect (or latiioe) can be Formulated without pull-
backs. WNamely if the diagram

£ —
0 a—

|

is to be a "lattice' we are ineclined to ask thia' in the Form of two conditions:

firatly, that all che arrows be cofibrations, and. secondly, that che 'images' in D
satisfy Im(A) = Im{B) N Im(C) . The latter does not make sense in our context, in
general, but we can subscituce it with the candition that the arcow EU‘_\E =0 hea

cofibration,

For any category [ wo ler Ar( denote che category whose objects are the

arrows of [ and whose morphisoe are che commucacive squares

in €. If [ 1is a category with cofibrations then ao iz Ar(C 1in an obvicus way:

A map is in codrl 1if and onlv if che two associated maps in C are im ool .

Dafinttion. FHE ig the full asubcategory of Ar( whose objects are the cofibra=
tions in £ , -and :uf‘l'[' is the class of the maps (A= B) = (A== B'} in FIC
having the property that both A —= A' and ﬁ."-.lh!l = &' ‘are ecofibrations in C .

Lemma 1.1.1. EDF[E mekas FIC a cotegory with cofibrations.

Prosf. There are two points that require proof: thet e¢oF/0 is a category, and
chat the axiom Cof 3 is satisfied.
As to the First, let (Are B} ows (A" B') and (A"= B'}) s (A" = BE") bDe in

coFIC . Then A= A" wmince col 1y a category. By assumption about the second

map A”UA,E'=4 B"' ; and by sssumption about the [irst map and by axioms Cof | and
Cof 3 for ecof , all the following terms are defined and the composed map
i el i L] i 1 " i 131 1
— A0 AL BY B — AV B
.h'l.FaE — A U.P;'A UAH A At A i-’l'U&B'J A
ias alse in eof . Taking the composition of the two maps we obtain that h"UhB -+ g
iz in col , as was to be shown.

As to the second, let (Aie BY = (A" = 8"} and (A% B) = (€ D) be maps in
r_-nFIC , TESD. F[{,' . Thelr pushour exists im ArC by €of 3 for O (because

Ar A" and A'UB— B' implies B B' 3 where it is represenced by

b i
!L';Jﬁl.'.‘—-BL.IEIJ.
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We snow below chat this is an object of (and consequently alse a pushout im) FIE‘ .

We must in addition show that the canonical map {Cx= D) — fa‘u&{: - B'Llﬂtllj in in

c:}F1C . This amounta to the two assertions that © o A'Uhﬂ s which is clear, and

i that t""”ac}”c”" (S‘UHD} . The latter map is isomorphic to a'uhﬂ - BlUBD which

im turn is igomorphic to the compased map

] S i i il )
(A UhE‘JUED + B u[h'UﬁE} (A LiAB‘.IUED — UBD

and this is a cofibration since .ﬁ."i.lh]]. =+ 3' is one. Finally ﬁ’LIA[: =+ (A'W,CHUD
is a cofibration aince © —+ D ia one. Composing it with the cofibration
(;’L'UnC}UCD -+ E‘UED [above) we obtain the map A'UAE - E'LIEP? . This proves the post-

poned claim chat the latter map is a cofibration. o

o +a . , . 2 . p
Definition. FIC is che category equivalent to F!C in which an object consists
of on object A= B of F1E togéther with the choice of a quotiemt B/A ; in other
+ - = . a s
words, F]I'.‘ iz the category of cofibration sequences A+ B -=8B/A in O . It is

made into a categery with cofilwations by means of che equivalence FT{,’ - Fi[,' .

Lemma 1.1.2. The thres Funetors &, &, q2 FIC + C sending A= B = B/A o A, B,

and BfA , respectively, are exack.

Progf. For -8 this holds by definition, and for t almost so. The case of q
. +

requires proof. We must show that q takes caFIC tao cof , and that q pre-

serves the pushout diagrame of axiom Cof 3

f a i " + 4 omica
As to the Figst, if (A~ R) = (A'~= B') is in coF]C then, by definicion,

.*.'I.J&]] -~ B' is in eol . Hence so in
BfA —s sU, A'U B — %0, AU BU B — B /A"
A" T A TR {n’uﬂn}
as claimed.
! . . + . x
A3 to the second, let suclh a pushout diagram in FEC be given by the diagram
(A== B - BfA) ——+ (L= D =D0/C)

(A" = B" wB"JA"Y ———t {,.«.,'uﬁua- I'.'LIEJZII - {E’UBD'.I.I'I:A’LIAE}}

Then the assertion means that
¥ L] L]
{,E‘LIBEI))’{!L UgBh and B'fa ”:-;m““"

are canonically isemorphic. PBut thia is clear from the fact that an iterated colimit
may be computed in any way desived provided only that all the colimits fovolved exist.
In particular the two objects at hand are canonically isomorphic because both repre-—

sent the colimit of the diagram

&
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I
|

o —s
— P —
—iF— W

P! — =
when this colimit is computed in the two abvious WEYE.

Dafiniiion, Fmﬂ is the category in which an objeet is a sequence of cofibrations

.An'-—nlt '—-—h...r—--Am

1
in €, and where a morphism is a natural transformation of diagrams. F';';C ig Ehe
category equivalent to FmC in which an object consists of ene of FmC togecher

with a choice, for every 0 g i < j £m , of a quotient Ai. F = ﬁjﬂ.i .
¥

Lemma 1,01.3. Let & = A' he a map in ch « Teap. F;{.‘ + Suppose that the maps

. H : i i 2
AJ S "‘_f ' !L:F'I.l.i‘jﬂ'],'_i .‘Lj+1 :
are cofibrations in C . Then "

for every pair j < k che map n;uhj.xk - A{ is a eofibration, and i

for every triple i < § <k tha map Al

. . : .
1.5”4&1 jhi.k - A':‘.,k is a cofibration.

Proof. The first results induetively by considering che compositions
AU u — AU — 4
i Aj“k A Mo A A e a1

and the second follows from the first by the preceding lemma applied to the cofibra-

e T rﬁ;}[..ﬁ-;_;tr-\.-_ﬁq_ = oy

tion in F]C z

L] L] 1 1 (1.9

“‘iuhi‘q‘i - A.i} ——— {aiUAjAkH .&k) . o &

o

i

Proposition 1.1.5. ch and F;f.‘ are catepgories with eofibrations in a natural }"-I
way. The forgecful map F;f - Fmi' ig an exact eguivalence. The '"subquocient' maps &
=

+ y

q: Fe—C , 9 ;1 Pt —C jé

Ab—sa, A—+h, fA, ¥

] 1 1 .F

are exact. :T-
:

In facc, a map in ch y. ERHP. F;i: ; is defined to be a cofibration if it -

satisfies the hypothesis of lemma 1.1.3, and cthe assercionsg of the proposition just

summarize the preceding lemmas. g

A

Iterating tha construction one can obtain categories with cofibracions FuFmE
and FF C .,
nm
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Lemma 1.1,5. Thers are natural ipamorphisme of cacegories with cofibrations
FFC ~ FFC FIFe e FOFC
i m m n nm m o

Fraof. It suffices to remark thac an cbhject of FuFmC can be more symmetrically
defined as a rectangular array of squares each of which consists of cofibracions
only and satisfies the condition in the defipition of 4 cofibration in FIC . the
point is that the condition is symmecrric with respect ta horfzomntal and vertisal.
Similarly, a cofibration in FnFmC v ar aequence of such, may be identified to a
J~dimensional diagram satisfying conditions with respect to which none of the three

directions is preferced. o

We will want to know that categories wich cofibrations reproduce under certain
ather simple constructiona. By the fibre proeduct of a pair of functors £: A = Ol

gi B+ C is meant the eategory ME,g} whose objects are the triples

(h,c,B) , AEA, BEB, ci FlA)—»a(h)

and where a morphism from (A,e,B) to (A',e',B'] is g pair of morphisms (a,b)
compatible wich the isomorphisms & and c' . In some special cases the fibre pro-
duct category is equivalent to the pullback categary ANCH i motably this is so if
either f or g 4is & retraction. (If Ehe bwa are not the same, up to equivalence,
the pullback ahauld be regarded as patholagical.)

Lemmd 1.1.6. 1E £: A='C and g: 8 - C are exact Functors of categories wich co=-

Eibrations then TI(f,g) econ be made into a cacegory with cofibrations by lecting
co(ll{f,g)) = Mico(E),ealg)) ,

and the profection funccors from M(f,g) to A and B are exacr,

Similarly, if j - Cj » FEJT, is adirect system of categories with cofibra=

tions and exsct functors chen 1im Cj 1% a category with cofibrations, with
=

cof lim C, ) = 1lim eol. ,
- ] -+ i]

and the functors Cj -+ lim Cj aru exact. a
-+

Definition and corollary. Let A, B, C be categories with cofibrariens asd let A
and B be subcacegories of € in sueh a way that the inclusion Functors are exact,
Define E(A,C,B) as the category of the eofibrationo sequenced in [,

Awe 0 =0 AEA, BER,

Then E(A,C,B} is a category with cofibrations, and the projections to A, C, B

are exact.

Indead, E(A,C,B) is the pullback of a diagram F:C —= 0 = A %8 ; the

pullback is not pathological since the Firsc arrow has a sectiom. o
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1.2. Cacegories with cofibrations and weak equivalences,

Ler 0 be a category with coflbrations in che sense of section 1.1 (we will
from now on drop explicit mentioning of the cacegory of cofibrations col from the
notacion). A egtegory of wdak equivalenses in C shall mean a subcategory ol

of C satisfying the following Fwo axioms,

Hcg 1. The isomorphisms in T are contained in wC {and in particular therefore

the category «{ containa all the objeccs of C 3.

Weq 2. (Glutng lemmz). If in the commutative diagram

Be— A — O

| 1 |

gy p— L

the horizontal arrows on the lefr are cofibrations, and all three vertical arrows

are in w( , chen the induced map

B, G —:B 'Y, C!

ig alsoc in wi.

Here are some etamples. Any category with cofibrations can be equipped with &
catagory of weak equivalences in &t least two ways: che minimal choiece is to let
wC be the category of isomorphisms in C , while the meximal choice is to let O

be equal to C 1itself.

To obtain an example of @ category of weésk equivalences on che cacegory  R(X)
{the preceding seccion) choose a homalogy theory and define wR(X) to be the cate-

gory of those maps which induce fsomorphisms of chat homology theory.

To obtain anather exampie define hR(YX) to be the category of che weak hometopy

equivalences,

To obtain yet asnother example define 8R{X) ce be the cacegory of che stmple
mapg, i.o. the maps whose point inverses have the ahape {or Cech homotopy type) of a
peint. (We shall consider simple maps in the simplieial setcing only in which caso
the definicion simplifies to asking that the point inverses in the geometrie realiza-
tion of the map are contractible.) Weicher che faet thae sR{X) is a category nor

the gluing lemma are trivial to prove.

The following twe Further axicms may, or may mot, be satisfied by a given cate-

gory of weak equivalences.
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Saturation actom. If &, b are compossble maps in € and if two of a, b, ab are

in wi then so is the third.

For example the simple maps do not satisfy the saturacion exiom. E.g. eonsider
the two maps a, b in Ri=) given by the inclusion of the basepoint in a l—SiIIIF].EJL
and by the projection of that l-simplex te che basepoint, respectively.

Extenaionm artom. Let

Ar—sli —s BfA

O -

Al —eB'— B' /4’

be a map of cofibration sequences. If the arrows A -+ A' and B/A = B'/A' are
in wC then it follows that B -+ &' dis imn wl , too.

For example the weak homotopy equivalences do net satisfy the extension axiom.

E.g. consider the diagram in R(*)

BE r—s B —4 =

O

BZ ¥—+ QG —= BG/BL

where BZ is the classifyipg space of the infinite eyelic group and BG the classi-
Eying space of a suitable non—abelisn group which is normally generated by & sub-
group Z , for example a classical knet group.

Af the examples show there may be a great profusion of categories of weak egqui-
valences on a given category with cofibrations. also, we will have pcccasion [o con=
gider a category with cofilbrations equipped wich fuw categories of weak equivalences
at the same time, one finer than the other, and atudy their interplay. We must
therafore exercise some care with the notacion, and in general the category of weak

squivalences will be explicitly mencioned.

8ri1l there are some situations whers there is no danger of confusion. On
those occasions we will allow ourselvas the abuse of referring to the maps in wC

as the weak equivalances in C , and denote them by the decorated arcows F— 5

By a category with cofibrations and waak egquivalences will be meant 4 category
with cofibraciens equipped with one (and only one} category of weak equivalences. A&

functor between such is called emct if it preserves all the relevant structure.

As in the preceding sectiom, the notien of an exact inglusion functor may he

sharpened to that of a subsategory with cofilrations ad weak equivalences.

Finally we note that categories of weak equivalences are inherited by diagram
categories. There are lemmas similar to, but pagier than, those of che preceding

pection. We omit their formilation.
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1.3. The E-cheory of a category with cofibrations and weak equivalences.

Consider the partially ordered set of pairs (i,j) , 0% 1i € j<n, where
Cipj) £ (4',3') .if ond only if [ £ 1i' and j £ 3' . Regarded as a category it
may be identified to the arrow cacegory Arln] where as usual [n] denotes the
ordered set (0 <1 < ... € n} (considered as a category).

Let £ be a eacegory with cofibrations. We consider the functocs

A: Ar[n] ——C
(1,3) ——s A,
L:+]
having the property that for every | ,
As & - -

1.1
and that for every tripla 14 j £ k , the map

is a. cofibracion, and the diagram

ig a pughouc; in other words,

Ao o ov—a A, — A
1,] L,k 1.k

is a cofibration sequence. Wo denote the category of these functors and their

natural tranaformations by SHF H

To give an object A E S" is really the same thing a3 to give a sequence of

cofibrations

— — L, b
Id"r.-:,l hq.l hﬂ.n

together with a choice of subguotients

It results that the cartegory ﬁnF can be identified with one of the categories of

+ - :
filtered objects considered in section 1.1 (namely Fn-l } and in particular there-

fore S5 C ecan be regarded as & catepgory wich cofibrations in a natural way.
n =
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The definition of Suf given here has the advantage of making it clear that
fn] + Ar(n] = 5 C is contravariasntly funcrorial on the categary & of the ordered

secs [0], [1], ... . We therefors have a simplicial category
5.+ 4" — (car)
fa] ——=38 ¢
n

In fact, we have a aimplicial category with cofibratiome; that is, a simplicial ob-
ject in the cacegory whose objects are the categories with cofibracions and whose
morphisms dre the exact functors between theose. This results from the lemmas of
section |.1 upen inspection of what the face and degensracy maps are. For example

the face map d.: 50 = 3oL ecorresponds, for i >0, to the forgecful map which
drops 'ﬁa,i from the sequence ﬁﬂ,] [ e ﬂ-.’:,n 7 and for 1 =0 it corresponds

which replaces that sequence by Al gmr cen by
» *

to the map "quotienc by Ao "
]

If € is equipped with a cacegory of weak equivalences, w , rchen SnE COmES

naturally equipped with a catepory of weak equivalences, uSnC . By definition here

an arrow A - A" of S“C is in uﬁnf if and only if the arrow Ay i - Ai i ig in
L} L]

wl for every pair i £ | § or what amounts to the same in view of the mssumed glu-

ing lemma, if this is so for i = 0 . It resules that 2.0 is a simplieial dategory
with cofilrations and ueak equivalences in this case,

Let we take a look at the simplicial category of weak egquivalences
15 S S ol L— {cat}
[n] '—i‘w.':T“C +
The category SDE . and therefore also its subcategory wSDC , 15 the trivial

category with one object and one morphiem. Hence the geometric realizatiom IwﬁuEI

is the one-point space.

The category S]l.'.' is the cacegory of diapgrams

- —_—— — =k
> IF"\',J,n- Au.] A‘.I..l
and is thus isomorphic te € . Hence the category of weak equivalences mav be iden—
tified to wi
Consider IwS.Cl , the geometric realizdtion of the simplicial category wS.0 .

The 'l-skeleton' im the S.=direction is obtained from the *D=gkeleton' (which is

lw5 CI ) by atcaching of |u8,C] = 181 (where 1&'l denotes rthe topological space
1=gimplex). It results that the 'i-skeleten' is naturally isemarphis co the suspen—
sion Sl.ﬂlwﬂf . As i consequence we ohtain an inclusion Eh.ﬁluﬂl + |w8.C1 , and by

adjointness cherefore an inclusion of |wl| into the loop space of [wS.0| ,
[will —— nlus.C|

The passage from [wl| £o RIwS.Cl is reminiscent of the "group completion'
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process of Segal [1!] (by which it vas originally motivated, te pome exrent). We
will have occasion to make an acetual comparison later (in section 1.8).
Definition. The glgebrrie K-theory of the category with cofibracions € , with

respect to the category of weak equivalences o , ia given by che pointed space

Hws.Cl

To pursue the analogy with Segnl'n version of group completion a lictle further,
one can actually describe K-theory as a4 spectrum rather than juse a space. MHamely
the S.-construction extends, hy nacurnlicy, to simplicial categories with cofibra-

tions and weak equivalences. In particular therefore it applies to 5.0 to produce

b
i~
3
4
]
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2 bisimplicial category with cofibrations and weak equivalences, 5.5.C . Again the
constfuction excends to bisimplicial eategories with cofibrations and weak aquiva—

lences; and so on. There tesules a spoctrum

nbk—s w8, ... 5.0
-— —

whose structural maps are defined just as the map |wCl = 0lwS.C| above.

It turns out that the spectrum f= a fi-spectrum beyond the first térm {the addi-
tivity theorem is needed to prove this, below). As the spectrum is connective (the

n-th term is (n-1)-connected} an equivalent aseertion is that in the sequence
il — 0 w8, 0| —= gnius. 8.0 —s ..,

all maps except the first are homotopy equivalemces, It results that the E-theory
of  (C,wC)} could equivalently he defined as the space
a”les™el = vmatws™er 0 wsfMe - s, Ll s
;1' d— Ty —

There is another way of making F-theory into a spectrum. Namely the pushout of
the cofibrations » - & induces 2 sum in C apd therefore a composition law inm the
sense of Segal on wC , wi.0 , uSEE}E , and so on, As flwS.0| is 'growp=like'
Segal's machine produces & conneetive O=spectrum from it. To ses thar the spectrum
is equivalent to the former it suffices to note chat the tuo spectra can be combined

into a conncctive bi-spectrum. (A mwore direct telationship can alsa be established.)

The definition of E-theory is natural for categories with cofibrations and weak

equivalences: an exact functor F: (' - C induces maps wS5.F: wS.0" = w8.0 , ete.

Let a weak aguivalenss of exdct [unctors F, F'ty ' = { mean a matural trans-
formation F = F' having the propecty that for every A E C' the map F(A) = F'{A)

is & weak equivalence in C .

Proposition 1.3.1. A weak equivalence from F to F' induces a homotopy between
wS.F and wS.FT




h
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Progf. The weak equivalence from F to F' restricts Lo 8 natural transformation

of the restricced functors P, F': wl' = wl and thereby induces a homotopy between
these by a well known remark due to Segal [10]. Similarly there is whac may be
called a simplicial natural transformation from wS.F to wi.F' « It gives rise

to a hematopy in the same way.

Let o eofibration saquence of exact functors C' = C mesn a sequence of natu-

ral transformaticns F' - F - P having the following two properties: (i) Far

every A € C' the sequance F'(A) - F{A) = F"{A) is a cofibracion saguence, and

{1i} for every cofibraticomn A' = A in C' cthe squars of cofibrations

PYLAYY — F' (4}

! |

FIA") — F(A)

is admiesthle in the sense that FLA") ”;'m*) F'(&) — F(A) is also a cofibration,

Recall the category E{A,C,B)  (mecrion 1.1}, end lat E(C) = E{C,C,0) .

Proposition 1.3.2. (Equivalent formulationa of the additivity theorem). Each of
the following four assertions implies all the three others.

{1} The following projection is a homotopy squivalence,

w3 E(A,C,B) —— wS.A = wS.B

Abr O =# B — B,
(2} The following projection is a howotopy equivalence,

WSLE(Q) ——p 8.0 % us.0
Ax & B b—— A, B,

(3} The following two maps are homotopic {resp. weakly homotopic),

WS.E([) —————— wS.C

A= C =8+ € , resp. AvE .

{4y If F' =+ F - PF" {g a cofibracion sequence of exact functors €' =+ [ then

there exists a2 homabopy

lWS.Fl = [WE.F'| v [uS.F"] (= [WS.(B'VE™ )
Proof. (2) is a apecial case of (1), and (3) is a special case of (6). So it will
suffiece to show the implicaciena (2) = (3} = (4) anmd (4) = {13 .

Ad (3)=(4). To give a cofibraction sequence of Eunctors F'= F = F" from [' to

iz equivalent to giving an exact funceor G: C' = E(0) , with F' =aB , F = tG ,

and F" = g6, where 8, t, q a&are the maps A» C =B+ 4, C, B, respectively



(which are exact by propesicien 1.01.4), Thus (4) Eollows from (3) hy natucality.

Ad {2)={3). The desired homatopy [wS.t| = |wS.(avg)| ia cercninly valid uvpon re-

striccion along the map

w30l = |w8.0] — w8, E(C) |

A, B > A AyE =1

'
sa it will suffice to know that this map is a howotopy equivalenmce, Bur the map is
a seéction to the map in (2) and cherefore is a homovopy equivalence 1f that is one,

Ad {4)={1}. The map p: 5. E(A,0,8) = wS.A = w5 B {s a retraction, with sectian
given by A, D+ 4w AVE =R . To show p

o
i3 & homocopy equivalence it thereforas
suffices to show chat the identity map on «S.E(A,C,B) ia hemotopic te the mep op .
{In fact, it would auffice to know that the twe maps are weakly homotopts, that is,
homotopic upon restriction Co any compactum, for that would scill imply chat che
map ¢ is surjective, and hence bijective, on homotopy zroups.) The desired homa-
topy results from (4) applied to a suitable cofibration sequence of endofunctors

on E(A,C,B) . The cofibracion sequence 1s showm by the following diagram which

depicts the functors: (the rows) applied to an object A O =3
{4 = b - =
I
{Are O -» )
{(* + B2 E)

Thia completes the proof. o

1il The actual proof of the additivity theorem is rather long and it will be given
later {it peccupies the next section). We will now convince ourselves that a congi-
derable short cut to the proof is peossible if the definition of X-theory is adjusted

|
| somewhat., We begin with the

Ohearpation 1.3.3. Let n, £, g denote the maps from E{CY to C given by

A C=HF+— A O, B, respectively, and let svq denote the sum of & and g

¥ Then the following two cowposite maps are homotopic,
=
WE{DY ] & el ——» gius.Cl .,
| !. a¥g

l This results from ab inspection of Is-.-S.IZ‘I{:J_~J , the "2-skeléton’ of |w5.C|

in the S.-direction. Let us identify wC to w5,C, a8 before, and let us identif]

wE{C} to wS.0 whose ohjeccs sre the cofibration sequences A ] Au -+ A
2

5 ¥
a,l 2 12
The face maps from uSZC ta wE]C then correspond to che three maps 8, [, g .

respectively, and which is which can be seen from the diagram




2
*a,z
A
0 s
nu.l
Let us consider the cannnical map IHS?CT ® Iﬁzl - I's.-'S.E'Icz:I . Regarding the 2-gim—

plex l&zl as a homotopy from the edge (0,2) to che edge path (0,1301,2) we

obtain a homotopy From the compoaies mip  jc

1

T i
[WELD) | ——— il ] —I— ﬂ!wﬂ.ﬂl{z.ll "

to the fcop produst of the twe composite mape s  and jg « But in [luw8.Cl the
Loop product is homotopic to the composition Law, by a well known fact shout loap

spaces of H-spaces, whence the ohdervation as Stated.

The same consideration showe, more generally,

Observation 1.3.4. For every n a3 0 the two composite maps

E
1ws{ ey | =2 1us (o) —— qrusE*De
svq
are homotopic, where HSFnjE = yh, L 8.0
— ] —
Corollary 1.3.5. The additivity theorem (proposition 1.3.2) is valid if the defini-

tion of K-theory as R|w5.C| is substituted with n"iuﬂ?“jﬂ[ = lim nnIHSFH}CI .

froof. First, proposition 1.3.2 is formal in the sense that it applies to the pre-

sent definition of K-theory just as well. Second, by che preceding ohservation the
two composite maps
t
a”lws e = a"es ™ol — s a1 ey
8vq

are weakly hemotopic. Since the arrow on the right is an isomorphism this is ene of

the equivalent formulations of the addicivity theorem (propositiean §.3.2). o

Remzrk. As a conseguence of the carollary we could sdd yet another reformulation of
the additivity theorem co the list of proposition 1.3.2. Hamely che additivity theo-
rem 85 stated there implies {section 1.3) that the maps lwsi™er o alwst™ o) are
homocopy equivalences for n = 1 ., Conversely if these maps are homocopy equivalen=
cas then so is QIwS.C| - n“lquﬁ]CI y and chus the additivity theorem is provided

by the carollary.
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To conelude this section we describe a modification of Ehe simplicial cetegory
wi.l which was suggested by Thomason. It is & simplicial category wi.C . By de-

finicion "Tnc is a subcategery of rhe functor category C[“T + The objecta of
uTnC are the sequences of cofibrations

C +—+ 00— ,,, =30
o ! n

and the morphisms are the natural transformations € — O aatisfying the condition
that for every i £ | the induced mip

Gl U, €. —ap!

< ]

(¥
i 1

is a map in w7 .

wl.l dis '"better' than w5.0 inssfar as it may be regarded as the horizontal
nerve of a blsategory.

In order to compare the two we have to modify wT.C a lictle, by ineluding
choices. Mamely let UT;E be defined just as uTnf except that in the dara of an
object we include a choice of quotienca -:;‘Li - {:j.-fci for every 1 g j ; the choice
Ls to be arbitrary except if i = § where we insist that C;; = * . the basepoint.
The forgecful map wTiC =+ wT.C is an equivalence of categories in each degree, and
therefore a homotopy equivalence. The comparison is pow made by means of a map of
simplicial categories wT.C + wS.C which we show to be a hamotopy equivalence. The
map ia defined as the forgetful map which forgets the C; and remembers enly the
subguotients ci;’r A

To abow the map iz a homotopy equivalence it suffices to show wT;C -+ anC is
a homotopy equivalence for every n . For fixed n now wS € may be regarded as a
retract of HT;C ; the seéction is the map which defines C, as cu.i (the section
is not induced by a simplicial map). We show the retraction is a deformacion retrac-
tion by exhibiting a homotopy explicitly. Thers iz a natuwral transformation from
the identicy functor te the composed map "T;C ~wS D~ wT;E' , it is given on an
abject L T Gy by the quotient map to Ea,u" e En,n which is a map in
'H'Tnf in wview of the definition of what rhis mesnz. The natural transformation

gives the desired homotopy.

g

s




l.4. The additivicy Etheorem.

The proof of che additivity theorem involwves only the cofibration BETUEture,

not the weak equivalences. It will thersfore he convenient to explicitly concenrrate

on the cofibrations, a kind of 'separation of variables',

If C is a (small) category with cofibrations we lat Anﬂ = 0b{5 C) , the set
: f
of ohjects of Snﬂ « and 4.0 cthe simplicial ser [n] = s.C .
Lemma t.&.1. An exact functor of categories with cofibrations f: € =+ ' jinduces
amap 4.f: 8.0+ 4.0 ., An isomorphism becween two such functors F and £

inducea a homotopy between 4.F and 4.f"
Before proving this we note the folloving conscquence,

Corollary. {1} An exact equivalence of categories with cofibrations C - O induces
a homotopy equivalence 4.0 - 4.0' .

(2} Let € be made into a category with cofibrations and weak equivalences by means

of the cacegory IC of isomworphisms in C . Then there is a homotepy equivalence
4.0~ i8.C ,

Indeed, (1) is clear, and (2) results by considering the simplicial object
[@m] =~ i 5.C, the nerve of i5.0 in the i-direction, and noting that i 8.C = a.C

and that the face and degeneracy maps are homotopy cquivalences by (1),

Proof of lemmaz. The first parc is clear. To prove the second part we will explicit-
ly write down a simplicial homotepy. This is best done in categorical language, It
is gquite well known that simplicial ebjects in a category [ can be regarded as
functors X: A°F =0, [n]~ %ln] ; and maps of simplicial objects as nacueal
transformations af such functors. It seems to be less well known that simplicial
homotopies can be described in aimilar Fashion. MHamely let Af[1] denote the cate-
gory of chjects over [1] in A ; che objects are the mapa [n] = [1] . For any

%: a"P « D ler ¥* denote the composed functor

(/L1 — 2% X, p

([n] = 111} =—— [n] —>xin] .

Then a simpltcial homotopy of mape from % fo0 ¥ may be identified with a matural

transformation X% = ¥% .

I che case at hand suppose thac a functor isoworphism from £ to £' is given



i s

|
{i
il S
i end write it as a funetor F: O % [1] = €' . The required simplicial homotopy then
%_ ig che map from ([al-[1]} = 4C te ([n]+[11) = ﬁnC' given by
fa: [n] = [11) ——— { (A: Aeln] = ©) — (A': aclal = C") ) i
| K.
'1: where A' is defined as the compesition l
'!i (&, a,) id = g F
i arfn] ———— Cx Ael1] ———— € » [1] —— [
!
[ 4 and  p: Ac[1] = [1] in given by (0,00 = 0 , (1,17 ] y and (0,1} -1, o
|

| Recall che equivalent formulations of the additivity theorem given in proposi-
1 | tion 1.3.2. We will now prove one of them.

Theorem 1.4.2. (Addidfvidy thesrem). Let  be a category with cofibrations and

)
| )
&
|44
| 1
IR
[ weak equivalences. Then the folloving map is & homatopy equivalence,
i WELE(C) —— wE.C = wiI.0
F
5

Ave 0wl b—r A ; B .

i We deduce this from
i Lemma 1.4.3. The map 4.E(C) -+ 4.0 » 4.C is g homotopy squivalence.

| The lemms may be regarded 48 a special case of the theorem, namely the case of
I

i the map i3.E(C) —+ i5.C = i8.C , in view of lemma 1.4.1, Conversely,

1. i Ppoof of theorem from lesmma 1.4.3. Define Clm,w) to he the £ull subcategory of

ik [m]

the functor category O of those functors which take wvalues in wC . Then

Cim,w) is a subcategory-with-cofibrations of C[m] y and [m] e~ C{m,«) defines a

simplicial category with cofibrations. Applying the lemma we abtain that each of

E
i
5:- the maps &.E(C{m,»)) = 4.0(m,w) = &.0(m,w)} is & homotopy squivalence, It follows,
:ﬁ by the realization lemma, that the map of simplicial objects

|

|q (Im] = 8ECCImw)) ) —— ( Iml = &.Clmw) 3 % [ml e 4.00m,w) )

;‘: is a homotopy equivalence, But this is equivalent to the sssertion of the theorem
|

i in view of the natural isomorphism of [m],[n] dnf-'(m..trfl with the bisimplicial set

In the proof of lemma [.4.] we will meed a version of the Cibratiom eriterion,
il theorem B of Quillen [ AB], in the framework of simplicial secs. We proceed o for-
| | | mulate this.

|

Let 4" denote the simplicial set atandand n—atmpler, [m] » Humﬁ({m]dn]'} )
If Y ig any simplicisl sec chen its set of n-simplices may be identified with the

set of maps A" « ¥ (a case of the Yoneda lemma). Let f: ¥ -+ % be a map of sim—

plicial sets and let ¥ be a n-simplex of ¥ . Define a simplicisl sat §£/{n,¥)

fH
|
B
Ijl
{ A
J

i
‘ It [m],[n] » wmsn{! s the perve of the simplicial category wS.C . o
|
§

A A R el e S A BB il
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a8 the pullback
£/ {n,y) — X

[

A — ¥

Lemma 1.4.A. If £/(n,y) is contractible for every (n,¥) them £

equivalence,

is a homotopy

Lemma [.4.B. If for every a: [ml = [0] , and every ¢ € ¥ , the induced map

from E£/(m,a*y) to £/(n,¥) ias a homotopy equivalence then for every (n,¥) the
pullback diagram above is homotopy cartesian.

These two lemmas follaw at once from theorems & and B of Quillen [ 8], For ler
simp(Y} denoce che category whose objects are the (n,y) and where a morphism from
ta'y¥'} rto (n,¥) is & morphism a: [a'] = [0l in & such char a*y = y' . By
applying simp(-) to everything in sight we ohtain = translacion of lemmas A and B
into cases of theorems A and B, respectively. This uses ther simp(E/(n,v)} is na-
turally ‘isemorphic with simp{£)/(n,y) , the left fibre over (n,¥}) of the map of
categories simp(f) . And it uses further that, if ¥ denctes the nerve functor,

there is a natural transformation Neimp(¥) = ¥ which is a homotopy equivalence
{zf. the end of section 1.6).

Proof of lemma 1.4.3. We defer till later the proof of the Eallowing

Sublemmn. The map £: 4.E{C) = 4.0, A= C—=Bpr——4A , satisfies the hypothesis
of lemma B above.

Applying lemma B we obtain a certain homotopy cartesism square for each simplex
(n,¥) of &.C . In particular we ohtain such a square for the unique O=-simplex =
of 4.0 in which case che homocopy cartesian square may be rewritcen as a fibracion
up to homotopy E£/(0,#) = &.E(C) - 4.C . The term £/(0,%) can be idencified with
4,E"(CY) where E'(C) denotes the subcategory with ecofibrations of E(C) whogse
objects are the cofibration sequonces =2++ C - % . As the guotient map in those
cofibration sequences is necessarily an isomorphism, E'(C) is equivaleat ca C ,
and by lemma |.4.] cherefore 4.£'(0) is homotopy equivalent to 4.C . We conclude

chat the segquence
4.0 —2 4 . E(C) —=4.C
Avw C=8 — A
B bt b+ 0 -+B8

is a fibration up to homotopy. There is a map to this Fibration sequence from the

product Eibration sequence, The map is the idencity on the fibre and on the base,
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and on total spaces it is given by the split cofilration saquences, i.e. it is the
map 4.0 = &.C = 4.E(C) , (A,B) » (Are AVB = 38) . It follows that this map is a
homotopy equivalence. The map i# a section to the map of lemma 1.4.3, so that map
must be a homotopy equivalence, too. a i

Prgof of sublemmi. Tha assertion is that for every y € 4 C and w: [m] = [n]

in & , the map wy: f/(m,v*y) = £/(n,y) is a homotopy equivalence.

It will suffice to consider the special case of maps [0] = [n] . For any map

" H [n:] - En] can be embedded in some commitative triangle
[a] ——*[n]
!o]

and if we kmow that u, and v, are both homotopy aquivalences then it follows

that w, is a homotopy equivalence, too.

We are thus reduced to proving this: Jet A' be a a-aimplex of 4.C , for
some n , and = the unique O-simplex of &.C . Let I;-].I: [0] = [n] denote the
map which takes O to i . Then for every 1 the map

Via } E/(0,8) —— £/(n,A")
is a homotopy equivalence.

A msimplex of 4.E(C) may be identified to an object of E(Smﬂ'} , that is,

a cofibration sequence A» C-=H in the categoery Sm{' .

A m-simplex of £/(n.,A') now consiscs of such a m—simplex A= C =8 cogether
with a map ut [m] = [n] , and these dats are subject to the condition that A is

équal to the composite
Uy &
Arlml + Arin] C

The gquotient projection A= C =B +—8 induces amap p: £/(n,A') = 4.C .
It will suffice to show that p 1s a homotopy equivalence, Indeed, p 1is left
inverse to each of the composed maps

e "i.
BB Ef (00} ——* 2/ {n;A")

therafore if p 1is a homotopy equivalence then so is "i*j' , and hence also Vie o
since j, certainly is a homotopy equivalence, being induced by the equivalence

C=£/(0,=) , B (!Hﬂ.-:-a‘ =)

Finally, in order to show p is a homotopy equivalence, it suffices to show
that the particular map \rn.,j_p: Efin,A") = £f(n,A") is homotopic to the identity

map on f£/(n,A") . We will construct such & homotopy explicitly.
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The homotopy te be constructed will be a lifring of the aimplicial homotopy
that concraces A" to its last vertex, In categorical language, this simplicial
hemotopy is given by a map of the composed functor

1 81 ) h L —
(lm] = [1]) —= [m] — Hom([n],[a])

to itself, namely by
(e [md = (1]} ——s ¢ fu: [m] - [n]} =—k (T: [m] = [al) )

where U is defined as the composite

{u,v) W
(9] —— [al = [1] — [n]

and where w(j,0) = j , wij, i) =na .
A lifting of this hemotopy to one on  £/{n,A') will be a map taking

fvi [m] - [173
to

A= Cwl , u:fm]=+[n]) —— (AT =T, 1 lnl = [ah

where u is obtained from {v,u) as before and where certain compatibilicy condi-

tions must be satisfied. In particular A must be equal to the compoaite

AI

Ug
Arfm] ——+ Ar[n] ——
and ig thus entirely Forced.

Te see that the rest of the data cen be found in cha required way we note thac
for every j € [g] we have

ulj) = E{j} J
This may he expressed by saying that there iz a map of functors
(u: [m] = [n]) — (@ [m] =+ (o]
Consequently there is also a map of functors
(ug: Arlml = Acln]l) —— Gi,: Acln] = Aclal)

and the latter induces a map of the composed functors

Atlm] — Arln] — C
that is, a map frem A to A in Smf 1

For later reference we record that 2 map A -+ %4 eobtained in this faghion ia
necessarily unique. Indeed, A =+ A is imduced by & map of functors Ar(m] -+ Arlnl
and the latter map, if it exiscs at all, is unique because arfn] is a partially

ordered set,
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We now define a cofibrarion sequence Lo+ 0 =0 af being obtained Erom

A+ O =« B by cobase change, in SmC , with the map A + & ., Thus

The definitian invelves a choice of pushouts; that is, given B Abe © we must
complece iE to.a pughout diagram, with pushout T, in some definice way. Wi
ingist at chis point that those choices shall be made in O rtather than in Sm{.' y
Because of the way pushouts inm SDC are computed {propositian F.1.4) this gives

the required choices in Smﬂ ng well.

We are left to werify that the construction of A+ O =B 1is compacible with
the grructure maps of the categary Af[1] ; chat is, iF ip our data we Teplace [m]
by [m'l chroughout, by means of some map [m'] = [m] , chen the stTucture map

in 4.E(0)  induced by [m'] = [ml rakes the cne cofibration sequence to the other,

To sea this we review che sceps of tha construction. The Eirst step was the
definition of the map A - % . The definition is compiatible with structure maps

because of the unigqueness Property poinced out above.

The gecond step was the choice af actual pushour diagrams. But this cholce was
pade in O, and an element of Em{: is a cercain kind of diageam im C on which
the simplicial structure mapsi operate by omission and/or reduplication of data. Se

again there is the tequired eompatibility.

With a little extTa care we Can Arrange the ehoices so that the homotopy SLATES
from the identity map (namely if A-—A is an identicy map we insist that © -T
ig aslso an identity map}; and that the image of vn*j,, ig fixed under the homotopy
(namely 1f A = * we imgist that & -+ B is the identity map om B 1. We have now
copatTuctad the desired homatopd. this completes the proaf af the sublemma and

hence that of the addicivicy theorem. o
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1.5. Applicacions of the additivity theorem to relative K-theory, de-looping,
and eofinalicy.

Let %: &P =0 boea simplicial object in a category 0 . The associared path
object PFX is defined ss the compasition of X with the shift functor & = 4
which takes [n] to [ne1] (by "sending i ce i+! ' — this fixes che behaviour
oo morphisms), The fact that a path space deforms inmto the subspace of conatant
paths has the following well known analogue here, e.g. [11], which we record in de-
tail because we need to know the homatapy .,

Lemea 1.5.1. PX is simplicially homotapy equivalent to the constant aimplicial
abject [n] ~ X

Praof. We show there ia a simplicial homotopy between the idencicy on PX and che
composite map PY - xu =+ PX  induced from

[a] — { La+t] = [0] = [a+1] 3

O+——0
The homotopy 15 given by the natural transformatien

{a: [n] = 1]} 1—s {u‘.r;: xnﬂ}l

induced from (a: [p] = [1]) ~ (u‘nﬂ: [n#1] = [p+11} where RFIH{D} = 0 and

i+t if al§) =1
9 (§+1) = [
0if af{ip) =0 o

PX comes equipped with a projection PX—X (it is induced by the O-face map
of X which is not otherwise used in PX ) and there is an inelusicn of 11 con—
sidered aa a constant simplicial shiect (because [rx}ﬂ = 11 Y. There results a

segquence xl - PX =X,

In particular if C is a category with cofibracions and weak aquivalences we
obtsin a sequénce WS‘{' + P(wS.C0) = wS.C which in view of the isomorphism of USII:
with wl we may rewrite ag

Wl — P{wS.0) — wS.0 .

The composite map is constant, and |P(wS.C)| 1is contractible {(for by the preceding

lepma it ig homotopy eégquivalent to the one-point space 1HEDC1 1y, so we abtain a

map, well defined up to howotopy,
|wl] — flwE.C
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Lemma |.5.2. The map can be chosen to agree with the corresponding map in the

preceding section.

Frogf. From the explicit homotopy of the preceding lemma one actually obtains an
explicit choice of the map. This t& the map in question. =]

By naturality we can substitute C with the sSimplicial category S5.C in the
above sequence. We obtain o sequence

uS.C — P(wS5.5.0) —» wS.5.C

{where the ' P ' refers to the firsc S.-direction, say).

Proposicion |.5.3. The sequence is a fibration up to hemotopy. That is, the map
from [wS5.C| to the homeocopy fibre of |P(wS.5.0)| - |w§.5.C] is & homotopy equi-
valenca.

Preof. This is a special case of propositionm 1.5.5 below. o

Thus [wS.Cl =+ iwS.5.C] is a homotopy equivalence and more generally there-
fore, in view of the realization lemma, also the map IHSEn]m - ﬂleEnH]l:'I for
every n a» | , proving the poscponed claim (seetion 1.3) thac the spectrum

n e |1.r5fn}ﬂl ig a Q-spectrum heyond the first term.

We digress to indicate in which way the twice de-looped E-theory =5.5.C is
used in defining produsts; or better, erternal pairings (products are induced from
those). The ingredient that one needs {8 8 Bf—ezgor funetor of categories with
cofibrations and weak equivalences. Thia is a functor AxB -+ C , (A,B) F AAB ,
having thes property that for every A€ A and B € B the partial functors & A 7
and ? A B are exact, and whare in addicien che following mere techpical condition
must alse be satisfied; nemely for every pair of cofibrations As+ A' and B A'
in A and B , respectively, the induced square of cofibrations in C must be
admisaible in the sense that the map A'aB U AAB' = BaR' is B cofibration.

ArB
4 bi-sxact functor induces a map, of hiaimplicial bicategories,

wi. A = w85 — w5.5.0
which upon passage to geometric realization factors through the smash product
Iu5. Al & |wS.B| — |we5.5.01
and in turn induces
lwl. Al A 0SBl —00lwes.5.01 .

This is the desired pairimg in K-theory in vievw of the homotopy equivalence of
[w8.01 with @lw$.5.01 , aml a (much more innocent) homotopy equivalence of wS.5.0
with wwS.5.0 which we will have occasion later on to consider in detail (che

‘swallowing lemma' in section 1.6).
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pafinition 1.5.4. Let £: A= B be an exact Eunctor of categories with eofibra-
tions and weak equivalences. Then S.(£:A+B)} is the pullback of the diagram

8A — 8. B+ P8.B .
Thus for every n we have a pullback diagram

S_(£1heB) ——s (PS.B) = S .8

L]

SA — 5B .
n n

n+l

The wertical map on the right has a seccion (it is not compatible with faee maps),
so the pullback category is equivalent to the {ibre product category and in any case
is not pathelegicsl. It rasults (sections 1.1 and 1.2) thac S.(£:A+B) is a sim-
plicial category with cofibrations and wesk equivalences in a narural way, and all

the maps in the defining disgram (definition 1.5.4) are exact.

Considering E as & simplicial category in a trivial way we have an inclusion
B -+ P(S.B) whose composition with the projection te S.E is crivial {ef. above).
Lifring the inclusion to the pullback, and combining with the other projection, we

then abtain a sequenca
B —+ 5.(f:A=B) —= 5.4

in which the composed map fs trivial. The sequence is formally very gimilar to the
sequence describing the homotopy fibration associated to a map of spaces. The

following result says that in fact the sequence serves a similar purpose,

Proposition 1.5.5. The sequence
w3.B— wl.5, (E:4-+8) —= uvB.5.A

iz a fibration up to hometapy.

Progf, There is a fibration eriterion which says chat it is epough to show that for
avery n the sequence w5.B - uﬁ.ﬂn[E:AﬂEj - uS.SnA ig a fibration up to homoCopy
(¢.g. since the base Cterm uS.SnA is connected for every n , the eriterion given
by lemma 5.2 of [13] will da). Using che additivity thecrem we will show that, in
fact, the sequence is the same, up to homotopy, as the trivial fibratiom seguence

associated to the product wS.B x wS.5A .

Heglecting choicen to simplify the notatiom, We can identify an object of
SHEE:#*EE to a pair of Filtered abjects in A and B , rtespectively, say
hu,i
tered abjects,

- A and B + B, w ... B, together with an isomorphism of £il=
o 0,0 o 1 n

£(A, BT 1O B E1f'anw...=-nn.-’ﬂu .
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Let €' dencte the subcategory of the objects where all the maps B,+B = ..+8
are idantities and all the Au.i are equal to the basepoinc: them ' s isumurph?c ]
te 8. Ler C" dencte the subcategory where Ea ig equal to the basepoint; then

C" is isomorphic ta SyA - There is an obvious cofibration sequence of endofunctors

j' —sid _»jrr

where j and take values in C' and C" , respectively. Applying the addi-
tivity theorem {in formulation (4) of proposition 1.3.2) we obrain that the identiew
map on V3~5u(f1ﬂ*E] is homotopic to the sum of w5.7' and wS.j" . It results

that the map, given by the aplit cofibration sequences,
WS, B = HS.‘:TH.J\ — uE.Ean:A-»S]

is a retraction, up to homotopy. On the other hand the map is obviously alse a
coratraction. It is therefore a homotopy equivalence. We econclude with the remark
that the homotopy equivalence can be induced by a map from the produce fibration
sequence o Che sequence in question (i.e. the degree n part of the sequence of
the propositien). It follows that the two sequences mre the same, up to homotopy.

This completes the proof of the propasition. -]

In a special situyation we can modify the definition of S.(£:4+8) to obtain =
variant which is technieally & little more comvenient. WNamely suppose that A  is
a subcategory with cofibrations and weak eqinivalences of B as defined in sections
Fol and 1.2, Then we define

F (B,A
L(B,A)
as the cacegory whose objeccs are the sequences of cofibrations im 8
B =B >3 ...>=—+1
o 1 n

subject to the condition that for every pair 1 £ j the object Eifﬁi is isomorphic

to some object of A ., There is a forgetful map

Sn{AqH} — Fn{H,A}

(forget choices of gquotients Eifﬁi in A ). It is an equivalence of categories
with cofibrations and weak equivalences. Further the anH,h1 may be assembled to
a simplicial category with cofibrations and weak equivalences F.(B,A) . By the

realization lemma then the forgecful map
w55, (A=B) —+ w5.F.(B,A}

is a homotopy equivalence. Thus F.(B,A) may be used interchangesbly with S5.(A+8H)

if A ig a subcategory with cofibrations and wesk equivalences of B .
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Corellary I.5.6. If A - B-({ are exact functors of categories with cofibrations
and weak equivalences then the squara

WL B ——s wl. 5. (A=)

L

wEL D —— wB. 5. (AT
is homotopy cartesian. Similarly the sguare

w8, B —— wS.F (B, A)

|

wS.0 —— w8 F. (0,4
is homotopy cartesian if the terms on the right are defined.
Froof, There is a commutative disngram

wi. B — wS.5. (A+B) — w8.5.4

]

wE, 0 —— wS.5. (AL} — w5.5.4

in which the vertical map on the vight is an identity map and where the rows are
fibrations up to homotopy, by the preceding proposition. It resules that the square
on the left is homotopy cartesian.

Concerning the second square, if that is defined, there is a natural transfor—

macion between the two squares in which all the maps are homotopy equivalences. The

second agsertion is just a rewriting of the firsc. o
Corollary 1.5.7. To an exact functor B -+ C there is associated a sequence of the

homotopy type of a Eibration (with a preferred null-homotopy of the compased map)
wi.B + w5, 0 + wS. 5. (B0)

Indeed, this is the cane A = B ¢of corollary 1.5.6 since wuS.5.(A=A) i=s

contraccible,

Corollary 1.5.8., If C is a vetract of B (by exact functors) there is a splitting
wE. B = wE.C = wS.5. (0B .
Indeed, this is the case of corollary 1.5.6 where the composed map A = B = C

is an identicy map (or more generally, an exact equivalence) since w5.5.(A=0) is

eontractible in that case.
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Let A be a subcategory with cofibrations and weak equivalences of B . We
gay thet A is gtrictly eofinal in B if for avery B € B there exists a A E A
such that BvA is iscmorphie to an object af A .

For example the category of free modules over a ring qualifies as scrictly
cofinal in the category of stably free modules, but not in the category of projec—
tive modules.

Proposition 1.5.9. If A is scrictly cofinal in B then wS.A = wS.B is a
homotopy aquivalanca,

Pragf. It will be convenient to assume that A is satwrated in B in the sense
that every object of B isomorphic to one of A is actually contained in A .
Since A can be enlarged to an equivalent category which is saturaced in 8 and
since such an enlargement dees not affect any homotopy types, this assumpcion is

not a loss of generality.

By cerollary 1.5.7 or 1.5.6 the map wS.A + wS.8 will be a homoropy equiva-
lence if the bisimplicial category wS.F.(B,A) is contractible. By the realization
lemma this follows il uSnF.{E.ﬁj la contractible for every n . We can rewrite

vSnF, (B,A) m  wF. {Snﬂ.snﬂn}

Agaartion 1. If A is atrictly cofinal in B then, for every o , SnA is

strietly eofinal in Suﬂ .

The assertion will be proved lacer. It reduces us to showing that wF,(B,A)
is contrsctible if A is strictly cofinal im B . By the realizacion lemma again
this follows if che sisplicial set umf.tﬂ,hl s 1l.2. che degree—m—part of the nerve
in the wdirection, ia contractible for every m . Let, as before, B{m,w) denote
the category of the diagrams Bﬂ By ... Bn in B in which the arrows are
weak equivalences; and similarly with A(m,») . Let §.(B,A) denote the simplicial

sot of objects of F.(B,A) . We can rewrite

wF.(B,A4) = §.(B(@w,Alm,v)

Aggertion 2. If A is strictly cofimal im B then, for every m , Alm,w) is

strictly cofinal im B(m,w) .
The assertion reduces us to proving
Assartion 3. If A is scrictly cofinal in B then {.(B,A) is contractible.

It remains to prove the assertions.

-
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Proof of assartion |. Let B E Enﬂ « We think of it as a filrration A
L] »

eia Eﬂ'“ + Plus a choice of subguotiencs Hi,j « By applying the cofinality

hypothesis for A= B we can find ohjects ﬁi j in A (not subquorients of a £il-

tration} so that o, i v Ai j ia In A for every (i,i) . Let A' be the sum of
L] L]

all the A} j - Then B, i A' is in A for every (i,j} . We can define an

¥
object A of Sﬂ* -where, for every i < j , A g involves at least one summand
L]

¥ :
A' ; briefly, hh,i

5B, and all the objects involved in it are in A ; it is therefore in Snﬁ in

ig the i-fold sum of A' with itself, Then B v A 1is in

view of the definicion of what it means for A to he a subcategory with cofibra-
tions of B ,

Proof of assartion 2. This is similar, but easier.

Proof of agsartion 3. A n-simplex of §.(B,A) i a sequence of cofibrations in B

Bna- B Bn + subject to the condicion that every subguotienc ijﬁi is isomor—

phic to some objeet of A (in fact, equal to an object of A , for any choiee
whatsoever, in view of the assumed fact that A is saturated in B }. We apply the
cofinality hypothesis to each of che B, and then add all the objects of A ob=-
tained. This gives an ohject A& in A with the property that Hi v A ia in A
for every i ; the sequence BvArs ...>+ B vA is thus a sequence of cofibrations
in A (since A in a subcategory with cofibrations of B ). We refer to this
situation by saying that the object A moves the simplex Bux* cee= B

More generally, given Finitely many simplices, not necessarily of the same di-
mension, we can find objects as before snd add them all up to ohrain a aingle abject
A which moves every one of these simplices.

The simplicial sec f.(A,A) is contractible (it im the nerve of the category
of cofibracions in A , which has an inicial object). To show §.({B,A) is con-
tractible it suffices therefore to show that the inclusfon £.(A,A) = {.(B,A) in a
homotopy equivalence. This follows if wa can show that for every finfte pair of
simplicial subsecs (L,E) = (§.(B,A)},{.{A,A)) there is a homocopy, of pairs, from
the inclusion map to some map with image in 4.(A,A) .

The simplicial set L has only Finitely many non-degenerate simplices. Se
there is an object A € A which moven every one of these simplices. But them A

moves every other simplex of L as well.

§.(B,A} is a simplicial subset of the nerve of the eategory of cofibrations in
B . The sum with A induces a natural cransformation of that category, and in turn
a homotopy of the identicy map on 4.(B,A) . The restriction of that homotopy to
L, resp. K, is encirely in #.(B,A) , resp. £.(A,A} , anod the homotopy ter-
minates at a map which takes L inte §.(A,A} . This gives the required homotopy
of pairs. The proof is complete. o
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1.6. Cylinder fumctors, the geéneric fibration, and the approximation theorem.

Let C be a category with cofibrations and vesk equivalences. By a oylinder
fumstor on C is meant a functor from ArC to the category of diagrams in C
taking f: A= 8 to a diagram

iy iq
A —l vy —2—

gl

B

The functor is required to sacisfy the axioms Cyl | - Cyl 3 below. The objact
T{f) will be referred to as the oylindap af £, and the maps j' n j2 v P aB
the front {nclusiom, back fnolusicn, and profection, respectively,

Eyl 1. The front and back inclusions assemble to an exact functor
ArC + F]C
[A—=8 )b ( A v Br—————— T{E} )i
£ _11 Vg

Cyl 2. T{# = A) = A, for every AE C, and the projection and back inclusion

are the identity map on A .

eyl 3,

N

. ;
; n dte—ad Ll—

(fool's morning song [9], the rune replaces an unnecessary axiom)
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Consider, for exampla, the category B(X} of rhe dpaces having X as retrace.,

T L]
It has & eylinder functor whars T(Y-¥") = ¥ wa[u,lj ¥={o,1] qu] ¥,

The Following axiom WiY, or may not, he datiafiad by a particular category of
weak equivalences i

Cylinder ariom. "The Projection p: T(f) = g is in w for every f: A= B in ¢,

Hota. IF ip addition ro ehe cylinder axiom wC also satisfies tha jaturation
axiom (secrion 1.2} it follews thar the back inclusion j2 iz always in wl
the front inclusion jr ig in whenever £ 5.

» and

For example in (X)) the weak liomatopy equivalences and the simple maps satisfy
the ocylinder axiom while Ehae inomorphisms do nac. Howaver the simple maps do not
satiafy the satwratian fxiom, and in Face jI and j2 are mot, in ganeral, simple
mepg,

Lemma |.6.], Cylinder funcrors ars inherited by filtered abjects. Thae is, a eylin-
der functor pn induses ane an SEC v for every o . 1f the weak eguivalencas
in £ gatisfy the cylinder axiom then so de these in SnC .
Proof.  The required functor o ArSuF iz defined as the induged map
AISnC = Sns:ﬂ —_— Sn{diagrams in 0% s (diagrams in SnC)

The only non~trivial Point to check is the exactness of the Functor ArS € = FlﬁﬂE

af axiom C¥l I , But this functor may be identified to the compasice
&rSCH.ﬁ'Ar{"——tEFCFﬂFSC
n o nl "
and hence is exact sinee Arl - FIC is exact by axiam Cyl 1 in C . o
Definition. The pone functor Aw e is defined by
A o= T{A - w) |

and the ausperoton funetor is defined us the quotient of the cone by the Frane
inclusion A s T(A & «)

LA = gpfa

Froposition 1.6.2. If  has 4 eylinder functor and the weak equivalences satisfy

the ecylinder axiom then the Suspension map
Ly wil —s ws.r

represents & homotopy inverse with respect to the H-space structure on w80 gmiven

by the sum.
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Proof. By the additivicy theorem the cofibracion sequence of functors ides o - %

implies a homotopy of delf-maps an w5.C , idv I = & , The natucal transforma- i
tion cA—+ % is a weak equivalence in view of the assumed cylinder axiom, By leema i

b.3.1 therefore & , and hence id v I , is null-homatopic, o

Define wC co be the subcategory of wl of those weak equivalences which are
also cofibrations. (This is nod¢, in general, a catepory of weak equivalences in the

sense of section [.2.)

Lemms 1.6.3, If C has a cylinder functor, and the weak equivalences im satiafy
the eylinder axiom and sacuraticn axiom, then the inclusion wi — wi' is a homatopy

equivalenca.

froof’,  Calling the inclusion 1 , it suffices to show by theorem A [ 8] thac for

every B Ewl the lefr fibre i/B is contractible. An object of 1i/B is a pair

(A, £} where £: A= B is a map in w . Since the cylinder projection p: T{E) - B [
isg in U (by the cylinder axiom) we can define a functor t: i/B = i/B by letting

i, E) = (T(£),p) . The fromt inclusion iy3 A= T{f) and back inclusion j,: B =

T(£) are weak equivalences as well as cofibraciens (by the ecylinder axiom and satu—

ration axiom), so they define natural transformations to the fumecor t , one from

the identicy functor (using that p Jy =% } and one from the constant functor with

value {H,idnj (uaing that p g = idy ). It results that t is homotopie to both

the identity map on ifB and the trivial map (B,idﬂ} + Hence the latter two are

homotopic, and i/B is contractible, o

To formulate the next result suppose that C is a catepory with cofibrations
and that € is equipped with twe cetegories of weak equivalences, one finer than
the other, wC=wl . Let € denote che subcategory with cofibracions of C given
by the objecrs A din C having the property that the map = - A4 is in wl . Tt
inherits categories of weak equivalences Qo = C"Mel  and w0 = e

Theorem 1.6.4. (Fibration theoram). 1f C has a cylinder functor, and the coarse
category of weak equivalencesa w asacisfies the cylinder axiom, saturation axiom,

and axcension axiom, then the square

uS. 0  —— WS ™ ()

J

v5.0 ——s g5,

ia hamotopy cartesian, and the upper right term ia contraccibla,
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Proof. Define wwl to be the bicacegary of the commutativa squares

i —

I

" —a

in € inr which the vertieal and horizental arrows are im +© and w , respec—
tively, Considering w( as a bicategory im a trivial way we have an inclusion
wCl =+ vul  which is a homotopy equivaletce (lemma 1.6.5 below). There ig a map in
the other direction. The map exists only afcer passing to nerves, and diagonalizing
(briefly, the map takes each square to ics diagonal arrow), but to gimplify che
motation we will allow cursalves the abuse of writing the map as wwl + wll . The

map iz lefr {nverse to che former map, hence iz a homotopy equivalence {tsalf,

We can similarly define a simplieial bicacegory wwS.C . fy the realization
lémma it results from che above rhat Che mapd w30 <+ vwB.0 and wwi.C -+ wS.0 are
homotopy equivalences as well {again the second map exists anly after passing ta
nerves and diagonalizing che v— and w—directions),

Let wwil denote the sub-bicategory of wwl of the dquares in which the hori-
zontal arrows are in wi racher than just w . Then the inclusion vl - wwl ig
a homotopy equivalanee hy lemma 1.6.3, which applies in view of the assumed cylindaer
axiom and saturatiom axiom. (In detail, by the realizarion lemma we can reduce to
pagsing te nerves in the v=direetrion and showing that s W -y wﬂ is a homotopy
equivalence for avery n ., Tha map may be rewritten, in a wav we have used bafore,
a8 wC{v,n) » wC(v,n) , and lemma !.6.3 now applies to the latrer). Similarly there
is a simplicial bicategory wws.C , and the inclusion wwd.C = vwS.C is a homotopy
equivalence. (For by the reslization lerms we can reduce to showing that wus C -
vwﬂnﬂ is a hometopy equivalence for BYErYy n . AS Snﬂ inherits a eylinder Eunttur

from € (lemma 1.6.1) the above zonsiderations apply to it.)

The square of the theorem may be identified to the large sguare in the folleowing
diagram

50 ol I, S — 1| BU———

WD ———— S0 ——— uS. 0 ——— u5.C

Az the preceding discussion showvs, the horizontal maps in the middle and on the right
are homotopy equivalences. So the square will be homotopy cartesian if and only if
the square on the lefr is, After passing to nerves in the w—direction we can iden-
tify the square on the left to one of the sguares of corollary 1.5.5 asscciated ta

the categories at hand, namely
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75.0" —— P Y Y

[

¥8.0 ——— wS.F.(C.CY) ;

the point is that a map in wC can be characterized as a cofibration in C whose
. e w 3

quotient is in £ (thie uses the assumed fact that wl satisfies the extension

axiom}. The square is thus homotopy cartesian by corollary 1.5.6,

Finally the simplicial category wS.C" is contractible because in each degres
it has an initial object. o

The following lemma was used in the preceding argument; cf. [13] for some
generalities on bicategories.

Lemma 1.6.5. (Suallowing lemmz). Let A be s subcategory of B , and AE the
bicategory of che commutative squares with verrical and horizontal arrows in A and

B , respectively. The inclusion B = AB is a homotopy equivalence.

Propf., By the realization lemma it will suffice to take the nerve in the A-directiom
and -show that for every n the map B - Auﬁ is a homotopy equivalence. For fixed
n we can define a map AnE = B by caking the sequence Ay = woa+ &, To A .

This is lefr inverse to the inclusion of B . Cowposing the other way we obtain

the map which takes A - .., = A, to the appropriate sequence of identicy maps

on An . There is a natural transformation of this map to the identicy map; it is
given by the diagram

- & = & = &
ﬁ.n + En LR * ﬁu
l ln: 8 ... 8,8,
A + A . + A
o at 1 ni Eu n
This shows that B is a deformation retract of ﬁnﬁ ¥ o

In order to formulate the next result it is convenient to introduce tha follo—
wing notign. Let F: A+ B be an exact functor of categories with cofibratioms and
weak esquivalences. We say it has the gpprozimation property if it satiafies the

conditions App | and App 2 below.

App |. An arrow inm A is a weak equivalence in A if (and only iE) its image

in B is a wesk equivalence in B .



353

App 2. Civen any object A in A and any map x: F(A) = B in B there exist
a cofibration a: A= A' in A and 5 weak equivalence x": F(A'}) =B {n B

g0 that the following triangle commtes,

FiA)
‘\x.
I-‘(u']l B
A"

Lemma 1.6.6, If F: A+ 8 has the approximacion property than so does Snﬁ. - EnB &

Proof, The nom-trivial thing to verify iz che condition App 2 for the map 5r.

We think of an object of Su-ﬁ. ag n filtration Ag 1™ A L s plus a
i

0,2 0,0
choiee of suhquotienta, Proceeding by (nduction on n  we suppose we have Found

dlready a sequence A} = ... Al | together with maps as required. From these
* L

data we obrain an objeet im A |

A f] A'

o,n AL oy eam-l
and a map in B ,

F( au ] 4 "‘l:lr.n—l ) Eo.n ¥
. a,m=1

to which the hypothesis App 2 Ffor F may be applied. This gives a cofibrarion

] [ & i
tdhr|:|,r|. Y J'Lf:l.l'l.—l “n.n
(L T |

and a8 weak equivalence F{h; n} - EIE| g0 that the following diagram commutes
' '

{whera the broken arrow . h---h; " ig defined as the composite)

i

F[‘hu,n*l]J\\’ //i—‘+ Bu‘n-1
FiA' )

=" 1

HWe are dons.
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Theorem 1.6.7. (Approztmation Shaoram)., Let A and B be categories with
cafibrations and weak equivalences. Suppose the weak equivalences in A and B
satisfy the saturacion axiom. Huppose further that A4 has a cylinder Functor
and the weak equivalences in A satisfy the cylinder axiom. Let F: A = B he
an exact functor. Suppose F has the approximation property. Then the induced

maps wA =+ wB and wS.A - wi.H  are hemotopy equivalences.

Proof. TIc will suffice to show that wA = w8 is a homotopy equivalence. Fer this
implies, in view of the preceding lemms, that uEnA - 1-15“3 i a homotopy eguiva-—
lence for every n , and hence, by the reslizacion lesma, that wS.A = wS.B is a
hemotopy equivalence.

The proof that wh = wB {n a homotopy equivalence, is quits Icng. It occupies
the rest of this section. Calling the map £ , it suffices co show, by theorem &
[ 8], chat for every B E wB the left fibre £/B 1&g contractible, and this is

what we shall prova,.

The idea for che proof of contraccibilicy of £/8 is in the follewing obeerva-
tion which says that cercain disgrams @ in £/B admit extensions to their cones
apd are thus contraccible in /B ; by the 2omg on T is meant here the diagram T

togecher with an added terminal vertex.

Obmervation. Let T be a diagram in E/B , Suppose that as o dfagram in F/E
it extends to the cone (for example, rhis is the case if rhe colimic of 0 exists

in F/B). Then T = £/8 also extends to the cone.

Indead, suppose that U -+ F/B = F/B extends to the cone. Let the sone point
be represented by (A7, F{A")=B) in F/B . Applying the approximation property of
F we find a cofibration A's» A" in A and a weak equivalence F(A") =B in B

g0 that che triangle

Fia")
| o
T
-r“(-llll"}

commtes, Then (A",F(A'"}=B) may be regarded as a terminal vertex to T imn £/8
rather than juac F/B a8 we ses by checking that certain maps ere wesk equivalences,

Hamely let (A,F{A)=H} represont any vertex of [ . Then there is a triangle

=" FA) . oo
FAYTs || B
FOA™} o

in which both of che maps geing to B are weak equivalences. Applving the satura-
tion axiom we obtain that F{&) = F(A"} is a weak equivalence in B , From this we
deduce in turn, using property App 1 of F , that A —+ A" 1is & weak equivalence,

a8 required,




For example the empty diagram in g/ has a colimir in F/E provided by the

initial ebject of A + In wiew of the observation we conclude that £/8 {5 nop-
empty,

Similarly any discroce twospoint-diagram in £/p has a ealimic in 7/p provi=
ded by che sum in A « In view of tha observation this shows that £/B i3 connpc-
ted, 1

To show that E/E {4 eontractible it remains ro fing sufficiently many dia-
Brams to which the observation applies, The asublemme balow elaims that this can ba
done. But we muse first explain what ’nufficien:ly many' means in thig context,

Let a non=gingu Lar simplicinl set mean one whera far SVEry n and avery nonp-
deganerate n-simplex, the representing map from AR is an embedding. For eéxample
ordered simplicial corplares may le regarded as simplicial saps and as such are nop—

In order to show the gimplicial aet NIE/B) , the nerve of £fB , i3 conerze-
tible it will sufficm to show that for EVery non-singular X apg EVETY map from ¥
to N(E/B) , chis map is null-homaropic, {E.g. think of ¥ as running through
iterated subdivigions of #pheres. There are sufficiently many maps from such X eq
rEpresnﬁt all the elements of the homotapy groups of WN{f/B) . Tf they are all rri-
vial WN(E/B) 1is thus contractible by the Whitehead theorem) .

To any simplicial set Y we “an asgociate its category of simplices simp(y) |,
and there is a natural transformat ion N{simp(¥)) = ¥ (the last vertor map) which
is a homotopy equivalence (this will he recalled at the end of thisg section). If ¥
happens to he the nerve of a categary then the natural transformation ig the nerve
of A map of categories. In particular we have a map simp(N(E/B}) = £/ .

If Y .ig non-singular then the category simp(¥) has a subeategory which is

given by the non-degenerate simplices (it is a partially ordered ser really). The
P | . 8

inclusion simp (Y) = sdmp(¥) i a homotepy equivalence (ef. the and of the sec-
tion).
The map X = N{E/B) pow Bives rise to a sequence of mapa
21mp™ () s piup (%) —— simp(n(E/E)) — s £/5
as well as a diagram
H simp(X) — N simp(N{£/R))
b I
X—————— u(f/m) .

This shows thac the map X - N(E/B) will he null-hometopic as soon =8 the induced
map ximpn'd'th = £/8 is. The proof of the theorem has thus been reduced to the
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Agpertion. Let X be a pon-singular finite simplicial set amd g: X = N{£/B)

a
= £ od. -
map. Then the induced map r,: u'.nrr;;|ﬂ (X} = £/B is null-homotopic.

We prove below

Sublemmz. In this situation there exists a Functor

T, ! i S (X —e £7/3

with the Following two properties.
(1) There is a natural transformation from T to gq, .
{2) The composite functor

simpn'd'{xli‘ﬂffﬂ = F/B

extends to a functor on 8(¥)
of. X.

» the partially ordered set of the simplicial subsets

The gublemma implies the assertion and hence the theorem. For the partially
ordered set (X} has a mamimal element, therefore pacrt (2) of the sublemma implies
that ﬂim?“'diixl -+ ¥/B extends to the cone on simp“'d‘(X] « In view of the oh-
servation therefore Tq: simp"‘d'{x} -+ £/ extends to the cone, too, thus Tq is
null-homotopic. By part (1) of the sublemma T is homotopic to gq, . It results

that q, is null-howotopic.

Froof of sublemma. In order to define T, we need the notion of fferated mapping

q
aylinder, a notion derived from the ecylinder functor em A . Let A =+ ...+A the
a sequence of maps in A . We will associate to this sequence the following data

{1} the {iterated) cylinder ohject Tf.ﬁn-r...-a'hn} o

(2) a map Bi= T{!LD-'...-*E],_-'-,..-'!&“] - T{!Lﬂ-'-,..—'hu) for every 0 £ 1 £n , where

the hat ipdicates the omission of A; FErom the sequence,

(3) amap pi: T{A oot} = Ay

Proceeding inductively we define T{Anﬂ---ﬂhh} ag T(T{A -+..=A ) =43,

tha eylinder of the composed map

P

}—sd

TOA »o0umth _ oG

n=1

and p: T[Ad+...4ﬁu} + A as the eylinder projectiom.

—_—h
n

The definition of 3, requires a case distinction. The map

3, ¢ T(.P..n-t...-ﬂ.n__1} —i-T{Ao-...-ﬂn:I
ig defined as the front inclusion of the cylinder. If n = 1 the map
‘}n x :’\.I —*T(ﬁu-'ﬁ1}

is the back inclusicn. And in general, f£inally, if i <n and n > 1 then the map
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o
ai ! T(Au*"‘*ai4"'ﬂ&nj-h—* T{AD+...4ﬁh)
ig definagd induntively an T{Hi} whers Ei is the (uer:icull map of diagrama

T(ﬂn*. e T .-l.ﬁ.n_i }—— A

Tl:.lill"'. i .-'.A“__J 1 ——————_...A.n
From che Particular faguence &u ot

A ﬁn W& can obtain g funceer

simp“‘d'm“} —i

taking each faca of A" o the itaraped cylinder of the subsequence indoxed by chat
fage, qn morphisms the funcrer is Biven by tha mips Ei

and theip Compasitaes, Ta
justify this wa musC check that tha maps 3.

gatiafy the identities fop iterated
fice maps, But for the identities not invnlving En this follews inﬁuc:iuuly from
the case p-| v and for the identitieg which do invelve EB it follows from the

fact that the front inclusion i8 a natural transformation,

The desired functor Tq is obtained by a slight mﬂdificﬂtinn, dnd generaliza—
tion, of thig ConsEruction, Hamely lae ¥ Bo a non=singular gimplicial get, and gq
2 map from X tg the Nerve of £/8 . Then tha image of 9 o1 a p~simplex x of

X is given by & sequence of weak uquivalences in A, over B g,

ﬂ.ﬂl[x'.l — L —s -I'Ln{}r.)

Assuming now thar o« i# a hon-degencrare n=simplex of X we defipe T (%) td be
the iterarad c¥linder of thar Sfequence, making it ag objece of f£/p by means of the
composice map FtT{hu(xj*+.-4ﬁn(xJ}} - FfA“(x}} * B (che Firat map have is induced
from the Projection P by the functor F v 1t is a weak equivalence ip view of the
assumed cylinder axiom), Op sorphigms T is defined by the maps ai and theiy
iteratas (the marphisms are in £/% rather than just F/p in view of the &saUMmad
c¥linder axiom and saturation axiom). Te wad chescked abayve that che rule for mop-

Phisms 15 comparible with the ideaticies for itersced face mEps.  There are ne other
n.d.

identities ig simp (XY , =0 Tﬁ is & functor on i,
The desired narural transformation from 'I.'q te qp is given by the projection
po: F(Aufx}-t. : -—-.hnl{x]]l —_— ﬁnEx:l .

This completes tha argument for part (1) of tha sublemmna,
In defining the proposed extansion t of the composed funceor

n.d T:[
simp ™ (R —e5pp = F/B
we will insist on the following two properties of

(1) t rtakes maps in (XY g cefibracions (as MEPS in A , aftar neglect of the




structure maps to B , that ia),

@) el Uy Xp) = 0 Upey ) uCXy) R

n.d.

Given its restrietion to asimp (X) provided by Tq , the Funeror t ie

uniguely determined by these conditions, up te isomorphism.

To establish the existence of t we proceed by induction, assuming in tha
indictive step that t does exist on the (n=1)-skeleton of X . Our aim is to
establish the existence of t on the n—skeleton. There is only one thing chat
could conceivably go wrong with the inductive step. Mamely if x is a n-simplex
of X and 3x its boundary (the union of the proper faces) cthen ct(3x) and c(x)
are both defined, and a map t(3x) = t(x) is also defined. The problem now is if
this map is a cofibracion.

Lec A"x be the n~th horn of x y the union of all the proper faces except
dx 3 =0
n

n

;. x = Ax Uad - dux .
} n
*Z
ﬁ: Condition (2) above expresses t{ﬁnx} in termas of values of £ on Eaces of x .
':i Since a similar formula is walid for the eylinder functor, in view of its exactness,
: we conclude chat
i;ai EATR) a0 T(e(3d x) = A )
" whare An denotes the value nf t on the n-th vertex of x (and where, for ease
'q of notation, we are ignoring the scructure meps of objects im F/B ). Applying con=
T dition (2) again we obtain theat the map E(3x) -+ t(x) can be identified co the map
t{dnxﬁ ut{ﬂdn:} T{t{adnx}ﬂﬁn} ————+-T{t(dnx}4hn} A
That the lacter map ls a cofibration, is one of the conditions that must be satis-
fied for the following map in FI* to be a cofibeation in FIA .
|. ( e(3d x) = T(e(ad x)=a ) ) — ( £ld x) + T(eld x)=A ) ) ,
;i so it will suffice to know that. The map is the image, with respect to
! j
| (+) (A" = A" ) — (A'>—La T(A™A™) ) ,
|
il
] k: of the following map in Ard ,
n.
i = -
-i' Ce(ad x) = A ) —= (£ x) =4 )
I which is a cofibracion in ArA tbecause t{adnx} +t{dx) isa cofibration by con=
IQ dition (17 above and the inductive hypothesis. We conclude by recalling that a

cylinder functor has certain exsctness properties, as specified in the axiom Cyl 1 .

*

In particular therefore the map (4) preserves cofibrations. This completes Ethe

s

proof of the sublemma and hence also that of the theorem. o

T

kL
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It remaing to say a few words, as promised, about the map Heimp{¥) = ¥ . In
view of the natural isomcrphisms Heimp(¥) = colimaimF{Y}({[n],y}i+ Waimp(A™)) and
Y = colim . ((lnl,y) = 8™ . the map is fully deseribed once one knows the

g imp (Y) -

special case of simplices & A maimplax of Hsimpfﬁﬂ} i8 a saquence of maps

in &,
a, H a
[n] — [nll —_— . — [nm]‘;ll""[n] ,

and one associactes to it the m-aimplex b: [m] -+ [n] i A" given by the lasc

Vear tl‘CEBi i...-E-
1 :., K i
m om=1 " 1{ I

Hsimp(4®) is contracrible since siop(a”™) has a terminal object. Therefare the
map Neimp(a™ —+ 4% g a homotopy equivalence. In view of the gluing lemma it
results from this that Hoimp(¥) - ¥ is a homotopy equivalense in general (cf. the
appendix A ta [111}.

Suppose new that ¥ iz the nerve of a category € . Then simp(N0) is che
cacegory of pairs ([ml,x) , =: [m] +C , and we can define & natural cransforma-
tion simp(NC) = C by ([al,x) ™ xfm) . On passing to nerves this induces the
above natural transformation in the caose when O = [a]l , and consequently algo io
Eeneral.

We conclude with

Lemma, If X is non—-singular there is a funetor simp(X) — aimpn‘d'txj which is

lefr adjoint, and left inverse, to the inclusion Funotor.

Frocf. The functor associates to sach gimplex ef X the unique non-degenerate
simplex of which the simplex is a degenerate. It is clear that this works im the
special case where ¥ is A" . The general case reduces to this special casa

in view of the mon-singularity of X . o
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l.7. Spherical aobjects and cell filtrations.

By a homology theory on a cavegory with cofibratiens €, with values in an
abelian category A, will be meant a sequence af functors Hi: C=+4Ad 6 i= A
together with connecting maps (A=~ B) b—s in*lﬂﬂfA} - Hiﬁh}} such that the long
gequence resulting from a cofibracion sequence Aw T = BfA ia exact and cerminetes

in a surjection HD{B} arHD{EIA]

Given such & homelegy theory, (@ may be regarded a2z a category wich cofibra-
tions and weak equivalences where the latter are defined as the maps inducing iso—
morphisms in homology. The cacegory of weak equivalences will be densted wf . It

gatisfies the saturation axiom and extensiaon axiom.

Suppose given a full subcategory £ of the abelian category A which is closad
under the [ormation of extensions and kermels; that is, if E' = E =E" is short
exact then E', E" E £ implies E € E, and E, E" € E implies E' € £ . For
example A ieself will do.

Dafinition. An ebject A €L is (H,,E)-spherieal of dimensiom n  if
Hi{h} =0 {f fi#m, and Hn(A] EE .

With E, amd E beipng underscood, such an A will also be simply referrad to as

n=gpharitoal.

We denote the category of the n-spherical aobjects by ", It isa subcategory

with gofibrations and weak eguivalenves of C (section 1.1).

Example. 0On the category R{¥) of the spaces having X as a retract there is a
homolegy cheary with values in the category of Z[H]KI“mﬂdulas, Hi{Y,r,sl =
Hi{Y.an?,r‘(Z[w]X])] . For £ one can take the category of projective Z[E]E]—ﬂn—
dules, or even the subcategory of the stably free ones. The o=spherical objects in-
clude the ohjescs (¥,r,s5) whersa Y is obtainable, up to homocopy, by atcaching

n-cells to X .

We assume thar € has a evlinder Functor and thac the weak equivalences satisfy
the cylinder axiom. Any map F: A= B cthen gives rise to a long exact sequence

. Hi(A) - HiES) - Ei(f} = By (Al + ... whore

|
o (8] = M ATUEM/A) .
We say the mep £ 1is k—comected if Hiff} =7 for ig£k:

The folleowing hypothesis will be needed in the theorem below.
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Hypothesis. For every m-connected map £, ¥ in € there is o facrorization

-

W

X
m xr|'|:+| . .

4]

\ \

mk] n
m+[fxm &k e xnfxn—t ec

Recall (propositieon 1.6.2) that the suspensian induces an exact functor
L: 0= C and & homotopy equivalence wS.C = wS.0 . Aa a consequence if we dencte
by 1£m{z} w2.C che direce limit of the system o w5.0 1in which tha mips are
given by suspension then

wE 0 — Lim

(xy Wt

is 4 homotopy equivalence,

The suspension also induces an exact fupctor COF — g0t . 40 we can form
lim € |
n
Theorem |.7.1. The map
ws.C

2 .0 R
lim Wi L —— “_:I;_u:ll:]:j

i a homotopy equivalence, provided that the hypothesis is sarisfied.

The proof of the theorem occupies all of this section. The scrategy of the
proof is to replace C by a category of eell filtrotions, and to study tws pations

of weak equivalence, as well as their interplay, on that category.

Dafinition. A sell filtratfon in C is an eventually stationsry sequeonce of cofi-

brationsg

- fL_ HAD"——F...J—b.A“}——F.,.

such that

for every n . The ohjecc to which the segquence stabilizes is denoted A

For example, given any object 4 € O ane can find a cell filtration [a.} to-
gether with a weak equivalenco A_— A . This results from the hypothesis of the

theorem applied to the map * <+ 4 in [

The category of eell filtrations will be dempted € . It is 4 category with

cofibrations where, by definition, a map [Ai} - {Ei} i n cofibration if, and only

if, for all = the map




1 I Ry
"lm—l 'ﬁbn-l Am UA Am-l i Am
o= |
The agsociaced cofibration sequence

i 1 1 "
JII'111"|l"’l'|11—E = ﬁ'm”'m‘l = Am”&muﬁm_lﬁm—!}
has both its "subohject’ and quorlent in €7 . Since {7 is excension closed in C

we conclude that ﬁ;fnéhl EC0", The lemma is proved. o

Let the fine gategory of weak equivalences in O he defined as the category
vl of the maps {a,} = {ﬁE] having che property that A, = Ai ig in wl for
every 1 .

Lec Cm denoce the category of the cell filtrations in dimensions £ m , i.e.
the full subcatezory of rhe {AI} in C with A = A_ . We consider Cn as a

subcategory-with=-cofibrations—and-wesk-equivalences (sections 1.1 and 1.2} of (C,
vC) .

Lemma 1.7.3. The map

vs.Em —_— 5 uh? wutie! w o % st

H-DT-* -I'I-1 -, .ﬁ.m} o .'\D = ﬁl.-"a\n‘ R &ufﬂm_1

iz a homotopy egquivalence.

i !
Froof. By induction it suffices to show that the map

vE.E‘ —— -.rS.IE o b
m o=

1
Yoo A SA

¥ Uy e oe A) e (Ao, & o -

o1
ig a homotopy equivalence. The map is & reteaction. We show chat it is alse a
coretraction, up to hemotopy. The desired homotopy is given by the sdditivicy

theorem applied to the cofibration sequence of functors £'s— id—=f" on Cﬂl where

" [ " i : -
£' and " take ':"‘a"‘" Am‘j to {A.DH..HAm_] Am_l}

reapectivaly, o

and (w2 ow s hmfrhm_l}

i -

Let, ss usual, % denote the subcategory of the {Ai} in € where = - fa\i]‘

ig in wl . Let C: ac'n Em 3 it is the category of the cell filtrations

i . , . , w _
uu- --"'Am,_.l"'ﬁm} haviang the property that 4 is acyclic. We consider f_'m as

a gubcategory—with-ecofibrations=and=wveak-eguivalences of {E,u{z‘]
Lemma 1.7.4. If (A;} € CY then A €C" for all n.

- Ppoaf. Using suitable long exact sequences we abtain
" e e e
if k>n then u.k{gn} - — kahn_1:l H— . f— H.k{ﬁ._l} =0 , and

if k<n them B (A)-—H (A )—.. —H(4) =0,
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thus Hk(ﬁn] «0 if k¥ n . There is a short exact sequence

Hn{‘iﬁ.\'l N HnI:"‘rt'lr'fH:L"I}I Hn—!{&n-l}
By induction we may assuma Hn-—lmn-[} £ E , and by dafinition of a c¢ell filtration
we have Hn{ﬁnfan_lj E £, It follows that Hn(An] € £ in view of the assumed face
that the category E is closed under taking kermels. o
Lemma 1.7.5. The map

w507 ——— u8.0® % uS.C! w . x ST
ULG"* !~1‘-¥,.'-¢ ﬂ.mj — J\n ' &! P ﬁm—]

is a homotopy equivalence.

Progf. The map exists by the preceding lemma. To show it 1% a hosotopy equivalence

it guffices, by induccion, to show that the map p
ve.l¥ ——— vs.CY % wS.C
m m=1

(ADH..H J\m}r—- {.’LGH..--AE_EH.AE} . Am—l

m=1

£

is a homotopy equivalence ( p exists by the preceding lemma since H (A /A _.) =

H (A __,) Y. We zhow that the map ® in the other direction,

(- ' -
(Bom.oe B ) B —s (B se.se B o= B VB~ B veB) ,

ig homotopy inverse te p where, #s usual, eB denoctes the cone on B
Tha composite &p ia given by
(B rroos Hm_]} e B B B B ¥eB) , B VB .

Thers is a natural cransformation from the idencity map te s8p . It is a weak sgqui=
valence since both qu] - B _ vcB and B =B _ vB are weak equivalences. Hence

it ipduces a homotopy (lemma 1.3.17, showing that s is left ioverse to P

To show that s i3 right inverse to p we condtruct 8 homotopy by applying

the edditivity theorem to a cofibration sequence of maps on C: . We can write

ps = E'vE" where f£' and £" are the self-maps of CZ taking {nUH..H A to

[ =, = &= Am_ s g4 7 and U‘;; — . AmuiH .hm b A.m} , rTespactively., If we

1 m=1
could find a cofibration sequence f'=—f —ef" , where f denotes the identicy mep
on E: , ir would Eollow by the additivity theorem that chere is a homotopy between

f snd F'vf" , and we would he done.

The desired cofibration segquence does not exist direetly, but it exists after
the maps [ and £ have been modified a littla. The modified maps are related to

the original maps by chains of weak equivalences.

In a first step we replace the identicy map £ by a map £1 caking (ﬂq**~9*

- clh | I i ig @ iv £
A} to (h v & e oAUy ) e 1) There is a wesk equivalence f - £,

1
m=1
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and we can definm a map E!' -+ f] now. In a second step we blow up f] to a weakly

equivalent E, 5o that the map £' - Fy can be replaced by a cofibration £'ws By

By definition, f2 takes {Aﬂ =5, b ﬁm}l te

{ L Aa™ mm_l - ch"‘muhm_ldwﬂ} )

where TA 1is defined as T(idg}l » the ecylinder of the identity map ca & ,

Let f; be defined as the quotient £,/E' . There is a weak aquivalence to it
from £5 ,

CA » ..mp seTh /&

m—2 m=1""m—p T'J‘m-l""a" =1 )

the latter maps by weak equivalence to E‘l‘ .
-
CAS voame B, TAfA_ S TA /A ),

and, to conclude, we have a weak equivalence f£" - f'l‘ . We-are done. o

Lemma 1.7.6. Tha map
US.E,'” ¥ wS. 0" —— .0
1+ ] m

is a homotapy equivalence,

Progf. The map

T g R > ws.C¥
Al v ves Aoy F— A CAMA = c"‘n"""”"""‘m-z""q‘m-1 > A V..veA

is 8 homotopy equivalence. For by composing it with the homotopy equivalence of tha
preceding lemms we obtain a map induced hy a self-map of C%x..,x0™ ! weakly equiva-
lent to the identity map., As o resule i will suffice to show that the compogite map

{[‘ux...xﬂm-l}sf_‘m-—-iCm!Cm-—rrEm——iCDx...xﬂm.

where the right hand map is5 that of lesma 1.7.3, induces a homotepy equivalence of
w50, xuS. 0" o itself. The composice map 18 given by

(ha et "‘m:' —_— {AD i I:.lva.m\--.a;1 7 m]vaz P ta.m_1vam} .

This is clearly a homotopy equivalonce. o

Lepma 1.7.7. The map
: . W : -
lim w8 0™ % ’-’."’{r} v8.00 ——y 1_1‘1:1{.3} v5.C

(limits by suspension) iz q homotopy equivalence,

Prgof. The desired homotopy equivalence results by direet limit once it is known

thar the maps g, : lim L et Lim v,E.E‘:_'_k —*lin "S'Emﬂ: are homotopy equivalen—
m [ ]
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ces. The case k = 0 follows from the preceding lemma by direct limit. We deducs

the case k = | from the case k = 0 . Hamely the two maps

E & L] - ] -
Lin O —— T 0™ R e lim ™ ——s 1im C
- =9 . — m+ | - -
m m -] m m

are telated by a cofibration sequence of functors W =8 —=$ I where 8 is the
composite map

Rt ———s Iim
- = “m+l

————* dim €0
Ab—s (.. = %o hre ch > ..)

By the additivity theorem there results a homotopy of the induced mapE, W

showing that, medule lim "
- m+]

We conelede that 7 i a homotopy eguivalence since 9, is. Similarly it Eollows

(Ve E=a
y the mips *I and ¢ﬂ11 are the same up to sign.

that L7 is n homotopy equivalence since ¢, is. And so on. o

Proof’ of thaorem 1.7.1. By the fibration theorem 1.6.4 there is a homotopy cartesian

Square
¥ -
¥5, 00 —— wS.C

&

uﬁ,&“ —_—

Suspension induces a self-map of the square, and hence a direet system. Passing to
the direct limit we obtain a square which is homotopy cartesian again. It is the

large sguare in the following disgram

lim e lim ( ?Sjw T iy (P RE Lim vﬁ.E‘

| |

lim w8.0% ——— Llim ( wS5.C% x wS.C® ) —— 1imwS.C .

By comparing the vertical homotopy fibres we see that the left sguare in the diagram
is also homotopy cartesian. It follows that che square on the right is homotopy

cartesian. By the preceding lemms che upper horizontal map in the right hand square
is a homocopy equivalence, We conclude that the lower horizontal map is a homotopy

equivalence. Discarding che contractible factor 1im -..-:-‘.‘_t“_" ve obtain the map
lim us.(® —— lim uS,E

which is therefore a homotopy equivalence. In wiew of the homotopy equivalence
lim wS.0 —— lim wS.C

of lemma 1.7.2 this completes the proof of the theorem. a
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1.8. Split cofibracions, and E-theory wvia group completion.

Let A be a category with sum {categorical coproduct), and ler A be pointed
by an imitial object # . There is an associated simplicial category

NA s AP {eat)

[n] /—m—— Hn.ﬂ.

the narve with respact to the compogition law. By definition NnA is the category
equivalent ta A" in which an object consists of a tuple A!,...,An together with
dppropriate sum diagrams, one for each subset of {1s.2.i0} ; rhese chofcas are to
be compatible, dnd for the subsers of cardinalicy €1 chey are to be given by the
ahjects Al""'ﬁn themselves and by the initial object # reapectively.

By a catagory of weak sguivalemess in A will he meant any subcategory wA
which contains the isomorphisms and is closed under sum formatien; that is, if

Ay &i and AQ - Az' are in wd cthen so ia .ﬁ]w’sz - A;v.ﬂi F

If A is a egtegory with oum and veak equivalences let w.h'ﬂﬁ. be defined as
the subcategory of HnA whose morphisms are the natural transformations with values
in wA . It is a category of woak equivalences inm Hn.r*. v and it is equivalent eo
wA" by the forgecful map. N.A may be regarded as a aimpitotal category with aum
and weak equivalences, and the almplicial category of weak equivalences ig

. A 2 APP — o fear)

[n] p——ernA

The construccion is a special case of Segal's construction of IP-eategorian [11]1.
The present notation has been chosen to conform to that of section 1.3.

Let { be 8 category with cofibracions and weak equivalences. By neglect of
structure ( is a category with sum and weak equivalences, AVE = AUB ., There is
a map of simplicial eategories

WO —— w0,

it takes

{.Al,“.,hn y choices }

ca
1 A]-* ﬁivhz-4 e e ﬁiv...vhn v (fewer) choices ) .

The theorem to be formlated below says chat the map is a homotopy equivalence in

certain cases,
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Suppose that [ , a category with cofibrations and weak equivalences, has a

cylinder functor and thac the weak equivalences in © satiafy the evlinder axiom,

paturation axiom, 4nd extension axiom.

Suppose given a sequence of subecstegories—wich-cofihrations-and—weak—equivalen—

Tl

oo 3 . : : +
cag in [ aubject to the comdition that suspension takes O intg 0 |

for
41l @ . The example to be kepec in mind is that of a seguence of categerics of

spherical objects in the sanae of the preceding section,

, ; y 0o 5 . :
Let us say that a cofibratlon A= B in O if gplittaeble wp to weak squita=-
fence 1f there i8 a chain of weak equivalences, relative o A , relacing A— B

to. A+ B" where B" s A v B'JA .

Theorem i1.8.1. The map
Lim wN. 07— lim wg.C"
n n
is a homotopy eguivalence, provided that, for every n , all cefibrations in 2

are splittable wp to wezk aguivalence,

The proof of the theorem cccupies the present section. The argument will hbe
summarized at the end of the gestion, The splitcability condition actually used is

glightly weaker than the one formulated here.

Far any X € T let {:X denote the cotegery of the coflbrant objecta under X ;
the ohiects of CK are the cofibrations X= A& in C , and the morphisme are the
maps A - A" restricting o the idencity map on X . Cx it a category with sum,

(K= A)v {X=A"'") = {:-:--Auxh' ¥iia

and it comes equipped with a category of weak equivalences w(, , the pre-image of

b
wl  under che projection I:": - O, [N o= A = &
Let as wsual ¢ denate the cone functor derived from che cylinder functor
{ ch = TiA+) ) and T cthe sugpession functor, LA = cAfA = cA Ual w
Legma |.B8.2., To X+ A in (. there i3 naterally associated a chain of weak

egquivalences in E?ﬁ 3

{ 1% = EAU. EA) '~ (IX = TAU, TAJEX) .

Proaf. The chain consists of twe mapn. These sre given by the two diagonal arrows

in the fallewing diagram
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LR & S

— ]

LA UIX { cAfY UAIK chfel ) —— FA UEx LA U* LASTX

ey |

LA U rAfIx

By definition, the horizontal arvew is given by pushout with the map ASK = &

and the downward verticsl arrow is induced by the folding map L& Upy EA = ZA .
The upper diagomal arrev is a weak equivialence since it is given by pushour with
the weak equivalence caA/eX —= & . Tha lower diagonal arrow is a weak equivalence
in view of the assumed extension axiom. For by cobase change with the mAp IA -+ =

one obtaine from it the weak equivalence cA/eX UA!E ch/oX = FAJEX . o

Remark., If C happens to be an addftdue category the lemma is true without suspen-

| sion, one can define a weak equivalence & Ux A=A U, AE as a map whose restric-
tion to the second A is the sum of Ehe idencicy A = 4 U, * and the prajection
A=sl a/% . In the additive case the drgument leading to the theorem, and the
| thecrem itself, can thus be simplifiad. o
If X€C® wecan form C: + There are maps, of categoriea wirh sem and weak
equivalences,
q: O — (™ jr £F—ety
v & — 4/% Br— X XU B

and q is left inverse to j , up to naturdl isomorphism of q i to the idemtity

on Cm .

I Proposition |.8.3. The map
Lim wN 0™, Tim wH.Cm;n
- gt oy
n n
{limits by suspension) is a homotapy egquivalence.
Proof. It will suffice to kmow thae for each n  the composicte j g becomes homo-
topic to the identity upon suspension. The next lerma provides this; upon re-indexing
it will suffice to formulate the lemma for the case n = 0 . o
Leémma 1.8.4. The geometric realizations of the two mApPS

T, biaor Oy —s D!

are homotopic.

Frgof. The natural cransformations of lemma 1,8.1 provida a homotopy between the two
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maps wN.C; - HH.C§;1 which take X= A& to

EX = EA U_., EA and IX = EA U LASIX
K *

respectively; that is, the maps

EwlL and £ov . Lig

The geometric realization of uN.C?;1 is an H-space (by v ) which is connected and

hence group-like. So we can cancel the left I to obtain the degired homotopy. O ¢

The following is the analegue of definicion 1.5.4 with the 8. construetion
replaced by the N. construction. In particular the letrer P refers to the stmpli—
ofal path object construction whose elementary properties have been recalled in the
beginning of sectien 1.3.

Dafinition 1.8.5. Let £:r A= B be a map of categories with sum and weak eguiva—
lences. Then N.{E:A+B) is the simplicial category with sum and wesk equivalemces
given by the pullback of the diagram

H.A —= N.E — PN.B

M,{f:A+B) represents a one-gided bar somatruction of A acting on B by the
e wiz £ . In fact, motice that in particular for every =n there is a pullback

diagram

. = .'
'-{'“{E.A-*lij —_— {P'J,E}n hu-l-tE

| |

N4 — N B
il n

and the vertical map on the tight corresponds, undet the equivalence of HmE with
n+l

the product category E® , to the projection map B + B" , the projection away

from the first factor; and Hn{E:A4E} ig eguivalent to the product category BxA™ .

Considering B as a simplicial category in a trivial way we have a sequence

of simplicial categories with sum and weak equivalences
B — N.(£:4+8) —* N.A .

We would like this sequence to represent a fibration, up te homotopy, of the associ=
ated simplicial catepories of weak equivalences, but we cannot expect this to he

true in general since A need not act invercibly on B . We sircumvent the difEi-
culty by introducing snother simplicial direction, using either the 2, or the M. con-

gtruction (we need both cases), as follows.

If £: A= B ia a map of categories with cofibrations and weak equivalences

then N.(f:A=B) is a simplicial category with cofibraticns and weak equivalences,
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so we can form SN, (f:A+8) ., Alternatively we could apply the definition 1.8.5 ra
the map 5.f: 5.4 = 5.B to obrain M.(8.E:8.A+5.8) , and the rwo bisimplicial cate-
geries are naturally isomorphic. Thers is a sequence, of bisimplicial categories

with cofibrations and weak equivalences,

S.B s SN (FrhaB) —s S N.A

H
alcernatively we could rewrite ir, up te isomorphism, as

S.B — NL(5.£:8, A8, B) — M.5.4

In generzl we can apply the N, conatruction to the eimplicial category with sum
and wesk equivalences N.(f:A-8) to obtain NN (£:A-B) . Alternatively we could
apply the definicion 1.8.5 to the map N.f: N.A =+ 4.8 ro obtain N. {(N.F:N.A=N.B)

.
and the two bisimplicial categories are naturally isomorphic (the isomorphism inwal-
ves a swicch of the two N, directisns}. There is a sequence, of bisimplicial cace—

gories with aum and weak equivalencas,
M. B —= N N (Erd=B) —= N.N. A H
alternacively we could rewrite ic, up to igomorphism, as

NUB =k N (NLE SN AL BY —— N A

Lemma 1.8.6. The sequence
WNLB — wl N, (Eida8) — wl NA
ieg a fibration up to homotopy. Similarly so is the sequence
NS E — UGN (EAB) i wEL N A

if chat is defined. In either cose, if £ {8 an identity map then the middle term
wNONL(E:A-B) |, resp. wS.N.(f:A+B) , is contraccible.

Proof. Thia is a special case of a result of Segal [11]. Essentially the sams proaf
results if the argument of proposicion 1.5.5 is adapted to the present situation.

That is, one obsetves thar {in the sacond case, aay) for every n one has a fibration
Wi B —s anES.f:S.A—-S.E} —_— wH'nS.A

namely a product fibration, and ocne draws the desired conclusion from this, uaing a

suitable fibration criterion for simplicial ahjects. o

Lat ¥ be a cacegory with eafibrations and weak equivalences. The example to
be kept in mind ias that of the caregory lim €™ of the theorem, Our next regult is
af a formal nature. It gives a sufficient conditionm for che conclusion of the theo—

rem to be wvalid.
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Proposition 1.8.7. If for every X € P cthe simplicial cacegory wh.(j:0 - ﬂx} ia
contractible them the map wi.0[' = 8.0 is a homotopy eguivalence.

Progf. Applying lemma !.8.6 we obtain that the map of the proposition de-loops to

wh.N.D = wl.5.0 , 5o ic will suffice to show that the latter map is a homatopy equi-

valenee. By the realization lemma chis follows if for every n the map
W N 0 — uN.5 T
o n
is a homotopy equivalence, amd this is what we shall show.

The simplicial category on the lefr is equivalent to the product (wN.D)" | so
our task is to show that the simplicial category on the right is homotopy equivalent
to that same product by the subguotisnt map. In other words, our task is to estab-
lish & case of the addicivicy theorem For the N. construction rather than the 5. con-

struction.

By induction it will suffice to show chat the map

HH.SnP * uJ'-'iﬂn_][-F x w0

4 !'Ll L An , cholces ) —— ( ke I Aﬂ—l , choices; ﬁn,-"_ﬂ; 3

n-l
ig a homotopy equivalence. To reduce further we consider the map
¥ 5 Pl————h 5
R I R L I

By combining these two maps, and using lemma 1.8.6, we obtain a diagram of homotopy

fibrations

wN,."inEJ —_— Wl N (jn:T.'-' -+ Sn!.."',‘l wN.N.T

HH.{SH_IF % 1 — N (D> En_l'ﬂ 2 Py —— wh.N.D

So our task of showing that the vertical map on the left is a homotopy equivalenca,
translates imto the task of showing that the wertical map in the middle is ome. By

the realization lemma this will follow if we can show that
HN’.(jn:l' - Enﬁ'] —s wlN. (D = Sn_1'ﬂ = T
is a homocopy equivalence. How
D=8 DxD) = wS_ Dxul.(0=D)
[ had | a1

and the Eactor wW.(D = D) is concractible. So the proof of the proposition has

been reduced to proving the following lemma:

Lemms 1.8.8. If for every % €7 the simplicial category wlN.(j:T =17,) is con-
tractible then the mip p: uh',{jnzﬂ - SnU'j - uSn_l!? is a homotopy equivalence.
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Frgof. ‘There is a variant of theorem A [ B8] for simplicial catepories. A special
case, sufficient for the present application, has heen described in [13, prop. 6.5]
in great detail. A neater, and more general, version may be found in [15, seecion &)
wich a sketch proof. 1In any case, the criterion says that for the map p to be a
homotopy equivalence it suffices that for evary object

Bow (B, = By o choices } € "Sn—lﬂ

the left fibre (p/B). im contractible,

Capitalizing on the special feature that uEn_FB . the target of p , is only
a simplicial category in a trivial way, we can re-express (p/B). in torms of left

fibres af mAps of GBfEED'EiES, namai:.r
fP B = P B .
Ilr }Ill I:I!lI|l

An ohject of meﬁ eongists of a diagram

E] —_— . — ﬁn_! —_— .ﬁ.n
B] — . —— En—l

plus a mtuple of objeccs in TP , plus certain sum diagrams formed from this m-tuple

and Au {plus, as usual, certain other choices).

There is a natural transformscion of the idencicy map on pmﬁﬁ , it is given by
pushout with the vertical map(s) in the diszgram. PFor warying m the patural trans—
formacions are compatible, so they combine to give a homotopy of the identity map
of (p/fB). : namely a deformation retraction into the simplicial subcategory defined
by the condition that the vertical map(s) he the identicy.

That subcategory is fsomorphic to  wh, (j:T ﬂ-ﬂx} where X = Bn—l , it ia thus

contractible by assumption. We are done. o

Let ' he a category with cofibrations and weak agquivalences, and X E D . It
turns out that the contracribiliey of wi. (D - ﬂx} may be re-expressed in terms of

twa other conditions which appear (o be rather independent of efach other.

PraEnaitinn 1.8.9, wN. (P = ﬂxj is contractible if and only if che following two

conditions are satisfied:
{1y wh. (0 - ﬂﬁ} is connacted,

{2} the map wN.I = UN,D“ i & homotopy equivalence.

Proof. If wh.(D = ﬂx} is connected it has wN. N.(D -+ Dx] as a de-leop (hy [11]

of a variant of lemma 1.3.6). Therefore, provided it is connected, it is contractible
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if and only Lf wN N.(D - Ux} is conrractibhla, By lemma 1.8.6 we have a diz
of hamotapy fibrationg

WD —— L N S — WLNLD
]

! J' -

#M,Dx T wWWLNL (D DRJ oGNLNLD

and the middle tarm in this Upper rew ig contractibla. Therafore W N, (T - Fv

contractible if gnd anly if the v¥ertical map on the leafc iz 5 homotopy equivai

Froof of theopem 1.8.1.  The nerve of the simplicial category wh, (D - U J iy
simplicinl par whedie vertices are fhe objecta Te p iy Dﬁ + There are rwg |
f I-Eimp][ues, Correaponding to the morphliama of “Fv on che ane hand, and ¢,

'operation' af Ehe abjects of § 4y those of ﬂ? oo the other. Tp résules th
the ser af tonnected components is the gep of tquivalence ¢lassas of the T y

under the equivalens "2 relation generated by

(S8 (Ko A) (K ee at ) if there is 3 mEp (X - A (K= 4" i up

(ii) (X a) = (X e AU*A"] if A" €p,

The conditiay reforred ro in tha thearem, thar cofibratione {n are spititab]

2 weak squituglengs, implies thar every object of [3',,"r can be related [in 4 gpec

-
WayY, in fdet) ta che trivial object ¥ o I, thus wh, (0 = D ; is connected,

Let 0 = 1ig o" RoW. Then, as juge chsapryad Wi (T == ﬂf} is eonneceed
BVETY X, and, by Proposition | .4, 3, the map wi,. 0 - :N.Hy i a homotopy agquiv
lence, By Rroposition 1.8.9 these two Properties imply thar wNL (D = ﬂtJ is cop

Eractible for every X whiech in turn, by proposirion /8.7, implies that
WD — wg.p

te g hemotapy equivalence, aa dedired,
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1.9. Appendix: Relation with the Q constructian.

Let A be an exact category in the sense of Quillen [ 8). One can make 4
inte a eategory with cofibrations and weak equivalences by choesing a zero ahject
and by defining che cofilirations and the weak equivalences to be the admisaibla
monomerphisms and cha istmorphisms, respectively, Eo a simplicial categary 15,4
is defined. It turss our thar I naturally homotopy equivalene to che Ccate=
gery QA of Ouillen,

Ta see this we first replace 04 Ly a homotopy equivalent simplicial cacegory
i0.A . Hamely let i0A be the bizategory of the commtative aquares in QA in
which the vertical arrows ars the isomorphisma (in either A or 0A — those are
the same). Then QA4 and 104 ave homotepy equivalant (lemma 1.6.5), and we let
iQ.A be a partial nerve of i0A | namely the nerve in the Q direction.

Next we replace i5.A by a fiomotopy equivalent simplicial category 1554

We use the edgewias mddivision functor [12] which co any simplicial object X,

aay K. @ A"F 4 v associates another X5 @ a%P 4 » hamely the composice

¥ = @, 4°P

where d: A + 4 is the doubling map which takes [a] te [20+1] and whose behavi-
our on maps may be describied by saying that it rakes

{0<l<.,,<n) to fal scovs 1’20 c0<cl<e,,, <9 1
If X. is a simplicial space chen the gerometric realizations 1X.| and [%%| are
naturally homeomorphic [17, prop. (4131, Applying this fact to the simplicial

space [n] =~ !iSnkJ we abitain thar i5.A and its edgewise subdivisian i8%4 |, or

rather their geomstric realizacions, are hometopy equivalant,
There is a map of simplicial catégories
1874 — i0.4

which is an equivalence of categories in each degree, and therefore a homotopy
equivalence. The map is best explained by draving & diagram te illustrate the

aitvation for n = 3

An object of iS;ﬁ ( wa iﬂ?A } ia a sequence of cofibrationg

Maran ™ A 2 Aar o A gy = Ay a0 7 Aa
together with & choice of quotients
iy " i - il F i
5(1.13 ‘!"1{3‘.33'|r (3';4)
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By dropping some of the choices whila retaining others we can assoeiate to tha
object the following diagram

Aato) T A T A 0y T Ay

L o

Azt o) A, n ™ 4arn

L

o T

l

Ator,0)

(1751)

The diagram describes a sequence of three composabla morphisme in QA a8 well as
the different wayd in which the actual composicion can be performed. In particular
the diagram defines an object of iQIA . The object in question ig not identical
to the disgram icself, rather it is an equivalence class of diagrams; two diagrams
are considered squivalent if they sre isomorphic by an isomorphism which rastriccs
to the identity on each of the diagonal objects hfj',j}
To conclude we note a variant of the homotopy equivalence. Let 4.4 denote

the simplicial set of objects of S.A . Considering 4.4 as a simplicial category
in a trivial way we have an inclusion &.A + iS.A which is a homotopy equivalence

by lemma [.4.). Let Q.A denote the nerve of the category @4 . Above we have

described a map
aTA —r A

This map is & homotopy equivalence. For it fics into a diagram
a4 — LA
i55A —iQ.A

and we know already that the three other maps in the diagram are homotopy equiva-

lences.
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2. THE FUNCTOR A(R) .

Z.1. Equivariant homotopy theory, and the definition of A(x) .

Let X be a space. AfX) is defined as the K—theory, in rhe sense of the
proceding chapter, of an equivariant homotapy theory associated ta ¥ .

There are several ways aof moking this precise, The main purpose of this
section is to deseribe a few of thase ways in detail and to shew that they all
lead to the same result, up te homatopy .

The various cases arise from the Fact that we wanr to keep the option of intar—
preting each of the terme fpaca, equivariant, and findts type in two different ways.
Hamely we will want o work either with topological gpaces or with simplicial sers.
We want to use spaces over X on the one hand or spaces with an actien of G(x) ,
the loop group of X v an the ather. And finally we want ta be free co impose a
condition of strict finiteness on the abjects of the CALERory or to be comtent with

a4 condition of finiteness up to homotopy,

He begin with a construction cthat combines the rwo equivariant points of view,
He will he mainly interested, eventually, in the two special capes whare one of &

amd W below is trivial nnd the other one i X , resp, a loop group of ¥ .

Let G be a simplicial momoid and W a simplicial set om which G accs
(by & monoid ia meant an associative femigroup with 1), We define

R(W,G)

to be the category of the G-simplicial secs having W as a retract. In detail, the
cbjects of R{W,E) are tha triples (Y,r,s) where Y iga simplicial set with
G-action and s8: W =¥ and i ¥+ W dre G-maps so thar rg = IdH » ond the mor—
phisms from (¥,r,5) o (¥',r',8") are the G-maps F: ¥ =+ ¥' g0 that r'f = ¢
and fg = g’

If G is the trivial monoid ve amit it From the notation. In other words, we

lat R(X) denote the category of the simplicial sers having ¥ as 8 retrace,

There are similar construetions in the topological case, and peometric realiza-
tion induces a fumerar RIW,B) = ROIW|, 161} .
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We define our finice type conditions mow. We praceed in the following order:

I. Einiteness in the simplicial case,
Einiceness in the topological case,

homotopy finiteness in the topological case,

L b e

homotopy finituness in the simplicial case.

L. Findteness in the simpiictal 2agse. An object (¥,r,8) of R(X) is called
Finite if the simplicial sec Y is generated by the aimplices of a{¥} rogether
with finitely many other simplices. An equivalent condicion is that the geometric
realization 1Yl dis a finite OW complex relacive o che subspace |a{x)| . The

full subeategary of the finice ohjects is denoted R (%)

In the general case of R{W,8) we must combine the finice generatlion condition
with a freeness condition. Finite gemeration of (¥,r,s) means that ¥ 1is gene—
rated, as a G-simplicial set, by the simplices of a(W} rtagether with finicely many
other simplices. Freeness mesns that, for every k , the sction of G, on Y, is
free away from W, + precisely, the condition is that Y may be obrained from W by
attaehing of fres G-ealls, that is, by direct limit and the formation of pushoucs of
diagrame of the kind %'+ 3A"+¢ = 4"<6 where A" dencces the simplicial set
n-simplex, and 34" the simplicial subset boundary. We denote R (W,8) the Full
subcaregory of R{W,G} given by the ohjects which are hoth finitely generated and
free; the objects (Y,r,s} , in other words, where Y can be ohtained from W by
attaching of finitely wany frews G-cells. Rf{W,E} is ‘a vategory with cofibrations
and weak equivalences in the sense of sections 1,0 amd |.?, the cofibrations are the
injective maps, and the weak (homotopy) equivalences are the maps (Y,r,8) = {Z,t,u)
whose underlying maps ¥ = £ are weak homotopy equivalences in the usual sense
(that is, induce isomorphisms of homotopy groups upon geometric realization). We

denote the category of the weak homotopy eguivalences by hRf{H,G} i

1, Finiteneae in the topological cgee. Let  |X] he a topelogical space, not
necessarily the geometric realization of a simplicial set X . An objeet (Y,r,5)
of R{IXl) is called finite if Y is equipped with the scructure of a finfte CW
complex relacive to the subspoce s(|X|) . We lec Ef(IKI} denoce the category of
thase abjecta and their ogllulor meps (it is not, of course, & full subcategory
of R{IX|} Y. We consider R!rlxr} ns a category with cofibrations and weak (homo=
topy) equivalences; by definition, a map in RE(IXI} is a cofibration if it is
igomorphic to 8 cellular inclusion.

More genmerally, in cthe cade of R{IWI, 1G]} , we define RE(INl,IG1} to be the
category of the finite [G|-free OW complexes, relacive to |W| , and their cellular

mAPE .,
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3. Homotopy Fintieness in the topological ecase. We define RhE{lWI.IGI] aa
the full subcategory of R(|Wl,|GI) given by the (Y¥,r,s) where (Y;5) has the
IGI-homatopy type, in the strong sense, of a finire IG|~Eree CW complex relativa
to IWl . This is a category with cofibrations and weak (homotopy) equivalences,
where eofibmation has its usnal weaning as a map having the 6| -homocopy extension
property {after neglect of strunfur;l retractions, that is). To see that cobase
change by cofibrations does not take one out of the categary, i.a. preserves homo-
topy finitenmess, it suffices to note chat weak homotopy equivalences have homotopy
inverses, after neglect of structural retractiona (the Whitehead thoorem for
IG|-free CW complexes).

Ramgrk, On the face of it there sre ser theorerical difficulties in the construe—
tion of ¥-theory from Ehf{fxl} . Far hS.EhE(IxI} is et a 'small' simplicial
category, not even equivalent to one {in the sense of category theory). Here are

a fev ways of dealing with this matrer, ssch with its own vircues and drawbacks:
fal ene can pick an explicic small category Rﬁfflil} with which to work (for
example, have all one's spaces embedded in [XIxR” ), (b) one may postulats the
existence of a universe, in the sense of Grothendieck, work in a fixed one, and
check that an enlargement of the universe does not alter the homotopy type, (o)} one
may regard che notion of a "large' space aw just as legitimate ms that of a "large’
category, provided only that certain constructions are avoided (this is the naive
version of the preceding). Which one of these or other alternatives to adopt seems
a matter of taste, We will not pursce the matter Further,

h. Bomotopy finttenens tn the aimpiiocial cose. We reduce to the tapological
ecage, That is, we define Rhf(H.G} as the full subeategory of R(W,6) given by
the (¥,r,s) whose geometric realizations are homotopy finite in the senze of che

preceding case,

Becall that the approzimotion theorem 1.6.7 describes sufficient conditions

for an exact functor C = ' to induce a homoropy equivalence hS.C = hS,0!

Proposicion 2.1.1. The approximation theorsm applies te the map
Rr{uuﬁj T Rhf (wtl::} "

Tesp., its tepological analogue,

Proof. The non-trivial thing te verify is the following assertion (che part App 2
of the approzimotion proparty).

Aggeriion. Lec {(Y,r,s) E Ef{H.G] « and let (Y,r,8) = (Y',r'.5'} be any map in
Rhf(w,ﬂj « Then the map can be facrored as (Y,r,s) — {It,rl,al} = (¥',r',8")
whers (?I,r1.51] £ Rfrw.c} « Che first map is a cofibration in EEEH,Gj . and che

second map I8 a weak equivalence in Rh[{u,c} .
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To prove the aasertion it will suffice to find a factorization
(Y,8) —= {‘F] ,,st‘J —(r", 8"y ,

For it is then possibile to defime the structural refraction r, as the composite

of ?I = ¥' wich 'z ¥ =W 5

We treat the topological case firgt. The Whitehead theorem For |Gf-free
CW complexes relative to Wl is available here, so we can find a Finite {Yu’sn}
toguther with homotopy equivaloences qu.suj = (¥'.8") and (¥',s") = f?g,ﬂﬂ} ,
hemotopy inverse to each other. Choose a cellular map (¥,s) = {YD.sD] homotopic
to the composicion (Y,s) — (¥',a') = (¥ 8,0 , and define fYI,aIJ a8 irs mapping
eylinder. Then there exisca a map {‘ft.si} =+ (Y',a') extending the given maps on

{T,s) and (?D,sj) + This has the required propecties.

In the simplicial case we know, by the topolopical case, that Chere exists

some factorization
ClYl, lal) — {Y[.sl} —_ (1Y, ey .

We show that, by perturbing fT,.Hlﬁ & licrle, wa may 1ift it back to the simpli-

cial framework.

Proceeding by induccion on the cells of YE not in  |¥| we suppose chat we
have found a subcomplex [Z] of ¥  which does arise by geometric realizatiom,
and o that the map [Z1 + [¥'| i3 & geometric vealization, too. To add another
one of the cella af ?I to. |#] , means that we Eorm the pushaut of a diagram of
the kind
2

(2] e— 8" = @) — 1™ = gl .

We use simplicial approximaticn to tigidify chis. Hamely let 5d denote the
gubdivieton functor for simplicisl sets {4 1, apnd &4, its k-feld iteration. Then
|4

if &k iz large enough one knows [4 ] that there is a map of simplicial sers,

ed, FAT — T,

k

whase geometric realization 14 homotopic to the map

My

lsd, 38" = 19671 « 1 —121 , 1€ ],
and, again if k is large encugh, the composite map Sdkﬁén = 2= 71" extends
ta Sdkin y in the preferred homotopy class. “We pow defi
. n
' = A ',
Z u Sdk'ﬁﬂ.n _— S:lk" L ¢

Then Z =+ ¥' oextends to a map %' = ¥' in the preferred homotopy class. By the
|G| -homotopy extension theorem |Z° in turn may be extended, by induction on the
remeining cells, co a |G|=-CW comples Y; mapping to ?I by homotopy equivalence.

This compleces the inductive step, and hence the proof of the proposition.
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Proposition 2. 2

The approximation theorem applies to the geometric realization
map

Rf(,w’c) — Rf(lwl, iGl)

v
Proof. The non-trivial thine ra warife ie cn- =1
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group of X . Conversely it {as aleo possible, in any of several functorial ways,

to associate to a simplicial group G a universal bundle over g elasoifying opaecs.
Given a universal G-bundle over % we can define a functor

R{X) —— R(=,0}

(Yyry8) — ( (¥, P)/(Xn,P),T,5 )

The functor respects the notfon of finiteness, redp. homotopy finiteness, and it ig
ezgot (sections 1.1 and 1.2), so it induces a map in E-theory. In a similar way

we can aldo use P to define a map R(IXI) = R{=,lGI)
Propositien 2.1.4. The map nS.F.’m_.f}:',l - i'LS.H'hf{hGJ iz a homotopy eguivalence,

Froof. 1In view of ite definition, the map arises as the composite of the eguiva-
lance Rhf(?".‘,l - R’hf{]'.ﬂ} of Llemms %.1.3 with the map RI:EI‘:P.G) - Rhlf {#,6) given by
pushoot with P = e . It therefore suffices to show that the latter map induces a
hemotopy equivalence., We show this by providing a homotopy inverse. Consider the
map R{=,6) = R(P,G) given by product with P , using the diasgonal sction of G .
The map respects the notion of homotopy finiteness, in view of the contractibilicy
of P, and it is exact, so it induces a map in F-theory. The composite map on

Ri*,G) admits a natural transformatisn to the identity,

Y= U W — Y

wxp ¥

and the composite map on R(P,G) admits a notural transformacion from the identity,

T ——+ =P qu? P

In view of the contractibility of P gaeh of these two natural transformstions is

a wesk equivalence, Using proposition 1.3.} now we are done. o

Theorem 2.1.5, IfF ¥ is a simplicial sec {(resp. if € 1is a simplicial monoid)
there is a 2= diagram of homotopy equivalences, namely che left one (reap. right

one) of the following two sguares

hS.Rp(X) ——— hS.R, . (X) hS.Rg(=,6) —— hS.R, .(+,6)
hS R (1X1) ——— hS.R, . (1xD) hS.R.(*,1G1) —— nS.R, (s, [EI)

If G is a loop group of X , and if a wniversal G-bundle with base X is given,
thers is a natural transformation from the left square to the one on the right, and

all the arrows in the resulting 2x2x2 diagram are homotopy equivalences,

Froof, Thia results from propositioms 2.1.1, 2.1.2, aod 2.1.4. o
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Picking one of the eholces offered by the theorem we now make the definicion
ACH) - nIhS.EerH
if X is a simplicial mer.
Amap x: X+ X' dinduces w,: R(X) - R(X') by pushout with = . and hence a

map in K=~theory. In this way Af(X) becones a covariant functor. Below we give an

argument to show that this functor {s a homotopy functor (proposition 2.1.7).

We have to consider functorial behaviour in a slightly more general situation,
Hamely let g: G-+ G' be o group map, and w: W= W' a map under g . These
induce a map (g,w),¢ R{W,B) = R{W'.6") as the composite

R(H,6) —= R(N="G",6") — R(W',G")

where the first map is given by produet with €' under o i @nd the second map by
pushout wich wrGG' - Y

Let a map of wniversal bundles mean a triple of maps
(x:pag) ¢ (X,P,6) — (X", P',E")

where p is s map under ‘g , =nd over x . We nots Chat xtx.P' = P“GG' in. this
sitvation.

Lemms 2.1.6. To such a map there is asscciated a commtative diagram

¥a
RK) ———— R(x")

R(*,6) —r—=—tR{»,G')

(%.8)

Progf. This results from the definition of the maps. -and the commtativity of the
dizgram

R{X) ————— R{X) ——————— R(XY)

] i ?

G",6Y) —= R{P.&")

R{*,6) ——— R{#,8') ——— R(»,G")

where the arrows —— denore equivalences of categories (lemma 2.1,3). o
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Proposition 2.1.7. If x: X = X' is a weak homotopy equivalence then so is the
induced map wx.: A(X) = A{X")

Froof, The functor X hS.EFEK] commmutes with direct limit, and it takes Finite

disjoint unions to products. As a result it suffices to prove the proposition in

the case where X and X' are connected. We may further replace 'h' hy 'hf'

Our task is then to show that x,: hS.RHEtKJ - hS.Rhf[K‘] is a homotopy equivalenca
in that special case.
Choose a universal bundle over X" , savy a universal G'-bundle P' ., Since
xt X= X' {8 a weak homotopy equivalence, pullback with it defines a universal
G'-tundle P = NHK.F' ovar ¥ ., There is a map of universal bundles now,
(x,pr,,Td ) (X,P,6') — (X',P",6")

Hence (the preceding lemma) there is a commutative diagram

x

L]
hS.R, (%) ————— hS.R !
1S nfiiﬁ hs h[fK )
S. 3y — % Rl e
h& Rhf{ﬁ,[‘ ] hs h.[f G"')
dnd the vertical arrows are homotopy equivalences by propositiom Z.1.4. It follows
that x, 1i8 a homotopy equivalence. a

Hemark. For simplicial monoids in general, as opposed to simpliciaml groups, it
does not follow im the same wav that G- ulhﬂ.ﬂfft.ﬂﬁl is 2 homotopy functor.
The result is still true, however, For example it Follows from theorem 2.2.1

below.
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2.2, AMX) wia spaces of matrices.

Let ¢ be a simplicial monoid. We consider the free pointed

I1G1-CW complex
with &k |Gl-cells in dimension n

and no other cells; or what is the name thimg,

4]
il LI 61,

the half-smash product of 6] with & wedge of k spheres of dimension Bl

Let

He(® = . (vVsPalcl )

denote the simplicial menoid of polnted |Gl-equivariant {weak) homotopy equivalences,

and lat EH:(G} denote its classifying space. There are stabilization maps

0 +1 n ]
B (©) —eml" (0) By (6) — B\ ()
given by suspension and by the addition of an identiey map, respectively.

The purpose of this seccion is to show that the E=theory of the preceding
section can be re-expressed in terms of Ehe * construction of Quillen, as Follows,

Theorem 2.2.1. There is a natoral chain of homotopy equivalences

QISR (#,6)| = Z x lim B (6) T .
n:l

By combining with theorem 2.1.5 we obtain that, in particular, A(X) mav be
8o re-expressed for connected X .

A =z Lm BHGCRH " .
n,k

Thig may be regarded am o descriprion of A(X) in terms of spacee of matrioes,
analogous to the definition of the algebraic K-cheory of a ring in terms of matrices
and the + construction, as follows.

In the case at hand, the 'ring' in question is che ring up to homotopy
= . fn
a7ETIGH, = 1im Map(s”,s%alcl)) .
n

Let Hkxkfﬂ-S*ICI*} denote the product of ksxk copies of this space, considersd
as a mltiplicative H-space by means of macrix multiplication. We denote

N L I
GL (as (el
the sub-H-space of the homotopy-invertible matrices; it is che union of those conmac=

ted components which are invertible in the monoid of connected components. The point
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now ig simply that

, n
i

lim aHk(E]

n

provides 4 classifying apace far e H=gpace éik{ﬂwaIGlr] » Ibdeed, there is a

homortopy equivalence of B-spaces

4, =
lim H(6) = &L, (a5 18] )
2 k K +

It is given, in the limit, by the (n-1})-connected M

kon k.o K s
Map, o (¢7s"ale] v STAIEL) e Abpfu*s“,u‘s“ﬂiu|+~

kg

=i unpf¥‘5",nk5“a|n|v} - lhp[s“,ﬂ“n|G|+}

E i 0 e ;
Proof of theorem, Define ri-,u} to be the full subcategory of Rf{t,G] given
by the abjects which are n-gpherioal of pank % By definition, these are the

objecrs weakly equivalent ta

u® st

as"sg .

that is, the phjects which are in the same connected component, in HEErfiﬂ} . 48

that particular abjact,

It is pleuaible, and will be ahown below (propoeicion 2.2.5), that there is

a matural chain of homotopy equivalences

i':'|'Ln!'|":f| o= ||‘|.ET|I:I,G:I| i
I ®

Define Kn[-,ﬂﬁ to be ghe subcategory of Qf{-,ﬂ] of che objects which are
' s Lt . : e . . n .
Rospherical of ungpecifiad rank; that is, che udnion of tha cataegaries Ekft,h} '
This is a category with sum and wenk equivalences (seccion 1.8), sa the ETOUp com=
Tetion in the gense of Segal is defined: in the language of section |.8 chis is the
4y ioce ST : .
gimplicial category hN.E'(%,0} . By a cheorem of Segal [11] there is a homotopy
equivalence, well defined up ro weak homocopy (homotopy on compacta),
H . " =, ]
QRN EM (e, 51 @ L% Tlim Ihr{kr-,t.‘al+ ;
L
B
Combining with the homitopy equivalenve above, and passing to the Timit with respect

to m , we ohtain now o homotopy equivalsnce

malhNE 0| =z

11
k-,

o
BH_
AT M

= a

L
n

i
3
.
This reduces the praof of the theorem to the following proposition.

Praposicion 2.2.2. There i3 a natural chain of homotopy eguivalencas

Tim WM. R (%, G}

[

KSR (%,




Proof. We give two proofs. The first applies to the special case where @ is a
simplicial group, not just monoid. 1In this case YXGWOG ~ YxTx where F is the
connected component of | € G ., Choose a universal F-bundle E and form the asso-
ciated bundle over Eth , 1.e. (YxE)xF* . Then YXF* may be identified, up to
homotopy, to the quotient (YXE)XF*/EXF* > and the lemma results from the Serre
spectral sequence of the fibration.

Let Réz)(*,c) denote the subcategory of Rf(*,G) of the objects which are
|-connected.

The inclusion hS.Réz)(*,G) - hS.Rf(*,G)



We show mext that che hypochesis of section 1.7 is satiafied: if Yp -7

amy p-conneccad map then it i3 possible o construct a factorization

iy =t T — Y

§ o, —
where aach ?1+] ia gltained from ?1 by attaching {n+i)-cells and where the map

Y -+ % is a weak homotopy equivalence. First, the inductive conatruction of ¥

b n+l
from ¥ is dome az follows. The module h (Y =¥} & q Iy I=1¥1Y  is finitely
n n+| n n+l 111 g
generated over Z[w 0] , and each alement may be represented by mapping a (suicably
ECr 4 w+l - n+l o . =
subdivided) pair (4 P ¥ . Picking a generating setb, we can use these maps

ta actach (n+ly-eells Eo Yn abd Eo extend the map to Y Co cthe cells. HNexe, the
construction can termisace, For suppoge that q 1s at least as large as che
dimension of ¥ . Then hq[?qmlﬂY} is computed from a fimicely generated free
chain complex which {9 both {§-1}-canpected and q—dimensional. It Follows thac

hq is the only non-vanishing homology, and thac it is stably free. After actaching
some mare (g-|}-cells to Yq_l i if nocessary, we may suppose the homology is actu-

ally free, so that in a last step; finally, we can attach g=cells to kill the homo-

logy without introducing new honology in the next dimenzian.

We have werified most of the hypotheses of theorem 1.7.1 now. The one excep—
tion ig the condition that bt catepory £ , io the dafinition of spherical abjeécts
in section §.7, should heé closed under the operation of taking kernels of surjec—
tions. Our £ so Far s the category of finitely generated free modules pwer
ZrnﬂGJ ~ This does not satisfy the condition, in gemeral, sa we must enlacge it

o = . . ) :
We cherefore replace R (=0} bLw Qn!t1G} which we define as Eollows. Tt is che

subcategory of H_(*,G) of the objects which are n-spherical in the following
f

senser h.{¥} is © for 1 #n , ond it is scably free far i =n .
i
Thearem 1.7.1 now applies ta give homotopy equivalences

Lim K R g —ee Lim
n

i hﬂ.E[f-,Gj +————-hS.Rff4,G1

(we have used lemma 2.2.4 to suppress the superseripc (2} on R, again).

. - . B . o g
It is plain from che preceding discussion, on the other hand, chat R (= 0}

is atristly cofinal in Eﬂf*,G? in the aense of propo

1:5.%, so the inclusion
hS.FP (8, 0) ——k 1S, R (e, 0}
iz a homotopy aquivalence,

el H . . ; n : 2 :
Finally it is also plain that the cofibracions im B (#,0) are oplittable up

to weak equivalensce in the sénse of theorem |.8.1, 5o the map

lim BN F% (%, 00 —— Lim hS.R%(+.0)
=7 -+
n T

4 o homotopy equivalance.

Tho proof of the proposicion i now complete, o




Homark. The preceding argument can be varied a licele, Hamely instead of replacing
?Ei.ﬂ] by E"{-.G} as we have just done, we could also argus direcely that

Lim W0 (0,6) ——s 1in 18. B, 0)

o n
iz a homotopy equivalence, Segal's theorem used elsewhere in the proof of the
theorem then applies in cha form of giving a homotopy equivalence

AL (0,0)) = 20D x Lim 1082 (s,0)|

whers K‘;(Z[ruﬂl} denotes the subgroup of the clasa gEroup given by the stably frae
modules (that subgroup is of course 2 again) .

The theorem itself can also be varied, Hamely the category Er{-,l:} may be
enlarged to the category R‘df(-.m of the ahjects dominated by finite ones (these
are the objects which are retracts, up to homotopy, of finite ones). The theorem
then goes through unchanged excapt thar the restricted class group K{;{Zhn;ﬂ]} has
to be replaced by the full elass group xﬁr;hﬂs}: 4 o

To complete the proof of the theorem we are srill leftr to compare BHE(G}
vith bR (e,0) .

Let C denote any of the categories hl‘-lhftl,ﬂ) ! hﬁt.(-.lﬂl:l : thfft.FGJ} .
We blow it up to a simplicial category C. , [m] » Cn + where {‘u is defined as
the cacegory whose objects are the game as those of C and whose morphisms are the
moparameter families of morphisms in € . That is, a morphism in Em from Y to
Z is & map

ﬁ'ﬂ
Y—Z

in C (resp. similarly with a™ replaced by 4" in tha topological case) or,
what is the same, a map Y= ews™ 4 2 . Considering C as a simplicial category
in a trivial way, we have & map C =, ,

If YEC we lec Cy + remp. €.y « denote the connected component of C ,
resp. C. , containing ¥ , and C.(¥) the simplicial subcategory of self-maps
of ¥ in C. .

Proposition 2.2.5. In the topological case, the maps

g —=C. —— L.

4
are homotopy equivalences. The same is crue in the simplicial case provided that

Y satisfies the Ean extension condition.

Coroliary. There is & natural chain of homotopy equivalences
BHO(G) = IBRI(e,001 .
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Proof. lLet C = hRfi-.Iﬁfi in the proposition, and Y = vksnnlﬁf+ « Then [C.(¥Y]

18 the same as EH;fﬂ} ¢ by definition of the latter, and it is homotopy equivalent
Lol - 2 5 5

to hﬁkf:,lhlj +» by application of the Broposition. On the other hand, the geoma-

5 : ; n .
tric realization map thf-.U} - hﬁ:f-.lG!] is a homotopy equivalence by propogi-
tion 2.1.2.

Proof af proposition. By lemma 2.2.6 below, each of tha (degensracy) maps C =+ O
-]
18 a homotopy equivalence. It follows {the realization lemmn) that C =@, iz a

homotopy equivalence. Consequently, FY i ig one, tao.

In the topological case, the inclesion C.T'— C.{Y¥) is a homotopy equivalence

h}" lesma 2.2:7 below.

In the simplicial cage, that 1smma does not apply to (. directly, it only
applies to the aimplicial subcategory C! of the objects which gatisfy the Kan ex-
tension condition. It remains to e that the inclusion C! =€, {s a homotopy
equivalence. By the Ffirst part of the proposition we can reduce to showing that
C' = € is a homotopy equivalence. This Follows if we can Eind a Functor O — (O
together with a natural transformacion from the identity functor. The desired
functor is given by oneé of che standard devices of forcing the extension condition,

A

namely the process of fillimg horma (which may be arranged in a G-equivariant wey). o

Lemma 2.2.6. The map - Cm is a homotopy equivalence.
Proof. Call this mep j . We define & map pi ﬂm - C . It is the idancity on

: . " W :
objects, and it takées a merphism YA e a™ = L to the map ¥ = I given by restric-

tion to the lase vertex of A" . Then pi iz the idencity map on C . We will
r

show that jp is homotopic to the identity map on CW 5

1
To construct the homotopy we: use an awxiliary functor F: Cm - Hr which an
n
abjects is given by

T — ":'N.'_".rf"*-'u]

To define F on morphisms we use the standard contraction of AT . that ig, thae
map E: ﬁm'ﬁ1 - a" whose restrictions to Amxu and  A™x) are the identity map on
& | and the projection of A" into ite last vertex, respectively., By definition
'+ 2 to the map given by

| £ -
——

m i
now F cakes a map YxA fe=p

Teal® w paaTa

£ " " " m
(or rather the induced map of quotients) where b is the projection Y=AT=A —= 4

and & is the composite map

T e st SONE S, S gl

The point of considering F is that there are natural transformations Id — F



and jp - F . They are induced by the inclusions Y - YXAI/*xAl taking Y to
Yx0 and ¥YxI , respectively. In view of these natural transformations, each of

the functors Id and ip is homotopic to F . Hence they are homotopic to each
other.

In order to formulate the next lemma we need a little Preparation. Lét C.
be a simplicial category. We say it is special if all the categories Cm have the
same objects, and the face and degeneracy maps are the identity on objects. By
abuse we can then speak of the objects of C. » rather than objects in some fixed
degree, and for any two objects Y and Z we have a simplicial set of morphisms,
which we denote C.(y,2) .

As before we let C.(Y) denote the simplicial category of endomorphisms of Y
We must carefully distinguish between C.(Y) and C.(Y,Y) . For they have diffe-
rent geometric realizations (the geometric realization of the former takes the com-

position law into account, whereas that of the latter does not).

We will say that two objects Y and Z are strictly homotopy equivalent if
there exist f € CO(Y,Z) and g € CO(Z,Y) so that the composite gf is homotopic,
in the simplicial set C.(Y,Y) , to the identity map on Y > and so that similarly
the composite fg is homotopic in C.(Z,Z) to the identity map on 2z .
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homotopy from £, to £ iz given {cf. the proof of lemms |.4.! For a discussion

of simplicial homotopies) by the natural transformecion which takes a: [m] = [1]
£ Z FuofE
to tha map me - If

(u £ CD{Y,Z] Jor—— { a*(f,) u E ED{Y,Z'} !

By induction we conclude that if F and E" are in the same eonnected compa=
gent of C.(Z,2')  then they induce hemotopic maps Fuf2 = F./2°

In turn we conclude thae |f 2” and ZI are strictly homotopy equivalest to

sach other, then F-fzc and ?.IEI are homotopy equivalent.

Applying che hypothesis of che leoma now we ohbain that, for eswvery 2 , F,/Z
L3 homotopy equivalent ta  F. /%
But F./Y¥Y is che same as [d, /¥ 3 [m] = Idp ¥ . This iz a simplicial sbject
L m

aof contractible categories (each has o terminal object). Henee it is contrectible,

We are done. o
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Progf, The argument is the same as that in the Eirst part of the proof of proposi-

tion 2.1.1, The point is that the Whitehead Ctheorem is available for objects in

HE(R] or II-"hffl“.] {one just conastructs any desired map by induction on Ehe genera-
ting simplices a1 , 1 en i it is net even pecessary to subhdivide AT in che

process since simplicial abelian groups sacisfy che Kan extonsion condition). o
Let kakrﬂj denate the simplicial ring of the kvk matrices in B . We de-
i
Eine GL (R} to be the multiplicative simplicial monoid given by the matrices in
Hkxk{R} which are invercible up to jomotopy, Lec Eétk[ﬁﬁ denate the classifying
SpACE,

Theorem 2.3.2. There is a narural chiain of homocopy equivalences

f " . a +
!iTIhS'.l’-l:_-ﬂ} | e an?rl>3} ® 'JI_1.rr', ‘.LGI.k{R} T
5

Here HéfﬂuRJ denotes the subgroup of the class group of the ring L givan

by the free wadules (it is cyclic, and in cases of intersst it ig usuaily 2 ),
Aemark. There is a variant of cthe theorem whers the catepory ME{RE ig replaced

by the larger category *Eff31 of the objects dominated By findte omes; chac is

the objects which are recracts of such in thfRJ . In that case the restricted
class group K;(noﬂj in the theorem has to be replaced by the full class Broup
KD[WDH}

Proof of theorem. Define ME(“? ca be the full subrategery of H[{R} givan hy

the objects which are n-gpherical of raik & § that is, che obiects weakly equiva=-

lent to RILLA™1/RIL%34™

It will he shuwn below {proposition 2.3.5) that there is a natural homotopy

équivalence
BCL, (F) = [RMT(R} |
k k
compatible with suspension (the passage from n te n+l on the right hand side).

Define M(R} as the union of the categories H:{R) . According to Segal [11]

we have a homotopy eguivalence
AINNRY | = R (r R) lim LTS TR
k
Combining with the former homovopy eguivalence we obeain one
AN R = R (7 R) lim séh, ()",

compatible with suspension. The proof of the thaorem has thus been reduced to the

following proposition.




Proposition 2.3.3. There is a natural chain of homotopy equivalences

. n
lém WM (R) hS.Mf(R) .

different applications).

The proof is an application of theorems 1.7.1 and 1.8.1. To make these theo-

rems applicable we have to check some things first. Let usg define

hM = Te( M QR woR ) .

Lemma 2.3.4, Let M€ th(R) . If m™M=0 for i<n then the map W M- hnM
is an isomorphism.

Proof. If M and ™' are right and left R-modules, respectively, there is a
derived temsgor product M &R M' , well defined up to homotopy [ 6,p.6.8]. If the
module "M happens to be 'free' (in the sense that 0+ M is a free map — the ob-
jects of th(R) have that property, by definition) then the derived tensor product
is represented by the actual tensor product M & M' , by the corollary [ 6,p.6.10].
Therefore the spectral sequence (b) of theorem 6 [ 6,p.6.8] gives, in the case at
hand, a first quadrant spectral $equence

2
Psq

where Torp(..)q denotes the degree q part of the graded abelian group Torp(..) .

- TR
E Torp (w*M,woR)q = np+q(Mon°R)

Now wiM =0 for i<n, so Ep q =0 for q <n, and we obtain an isomorphism

2 . ?
o
nn(MoRﬂoR) S Eo,n > Proving the lemma.

Proof of proposition. The argument is precisely the same as that of the proof of

Proposition 2.2.2. Here is a brief account.
The objects of Mn(R) may be characterized by the property that hiM is 0
. n
for i # n, and free of finite rank over WOR for i =n, Let M (R) be the
corresponding category with free replaced by stably free. Then all the hypotheses

of section 1.7 are satisfied, so by theorem 1.7.1 we have homotopy equivalences

lim bS.WPR) ——\ Lim gy BS.Mc(R) e—— nS.M (R) .
n

On the other hand, Mn(R) is strictly cofinal in ﬁn(R) » 80 the inclusion
hS.M(R) —— BS.W(R)

is a homotopy equivalence by proposition 1.5.9. And finally the cofibrations in
MY(R) are splittable up to weak equivalence, so theorem 1.8.1 applies to show that

lim bN.MP(R) — lim hS.M"(R)
n n




ig a homatopy equivalence. By combining the homotopy esquivalences we obtain the

propasition.

=]
To complete the proof of the theorem we are new left to compare IhM:f&}i and
~

'EGLk{'R )

Ler us write C inscead of th[Rﬁ ¢+ for short. We blow up O to a aimpli-
cial category C. |, [m] = :m The objacts of fﬁ are the same s8 those of O
and the morphisms in are the m—parasmeter families of morphisms in € . That
is, a morphism in Cm from & to B isa map ALA"] m asz[a™] - & Considering
C es a simplicial caregory in a trivial way we have a map C - C.

If AEC we let Ci , TEAD, E.‘ , denote the connected component of £

4
tesp. C. , containing A ; and C.(4&} cthe simplicial cavegory of self-maps of A
in C.
Praposition 2.3.5. For every A € hM.(R) there are homotopy equivslences
_ f
C,— L, +¥— C.{A)
A A
Proof, The argument i similar to char of proposition Z.2.5. =
; : i . o kg

Corollary. There ia & matural chain of homotopy equivalences, BGL, (R} = [h kr“]| .

compatible with suspension.

- o, : En i 1 -f .
Broof, Ler A= A& denote the module obtained by actaching %k n-cells to zero,
- 4

AL R{L1 A mll 5™

. = = r n
We claim that the simplicial ring of self-maps of hk

is homoropy eguivalent to

M k(H} , independently of n . To see this we ecan reduce, by a direct sum argument,
T . .

to thae apecial case k = | Restricting to the generating simplex we then obtain

an isomorphism
vap, (A7,AT) = Map(a®/aa® wUa"1/RI22™])

But it is well known, and &nsy to prove, that the a—fold loop space of the gimplicial
abelian group R[a™/R(3a™1 is ® again, up to homotopy. For example consider the
horm AT , the union of all the fages of st except the last. Then ﬂ[iﬁ]H“[ﬁ“]

is copcractible. Hence the short exact sequence

ala® ! 1/taa™ Y] —— a[a™1/RIA%] — '(2"1/R1247]

gives 4 leoping fibratien. [t follows from the claim that the simplicial momoid of
gelf-equivalences of h; is homoropy equivalent, as monoid, to élk(R? + Hence
86L (R) = IC.{AE)I . Applyipg the proposition new we obtain that che latCer 15

" ¥

3 % = ] =
homotopy eguivalent to Ith a IhML Ry| . The esorollary resulca:







tians of H{{R1 and th{Rj to the topological context to ohtain definitiona of

Hfflﬂlﬁ and thflﬂlﬁ i

Proposicion 2.3.. Let R be u simplicial ring. The approximation theorem applies

to the geomatrie realization map Mo (R) = M. CIRID .

£ £

Progf. The argument i8 similar ta that of propoaicion 2

Define ﬁlki|ﬂ|? as in the simplicial case; that is, it i{s che simplicial

monoid of the homotopy=invertible matrices over |R|

Corollary 2.3.7. Lat ®

# a sioplicial ring. There is a nacural chain of homo-

tapy equivalences

-5 -
.'.IhE.'H:-IHI‘;I . K;{ng]-I%mEGLk{'RH .

and the chain is compacible, via zeomettic realization, to that of theorem 2.3.2.

Proof. We consider che chain of maps in theorem 2.3.2 as consifting of three parts.
The firsc part is the chaip of maps between lim hM.MPER)Y  and BS.M_(R)  in prope-
sition 2.3.3. The preceding proposition @pplies to each map in the transformacion
from this chain to its copological analague, so these maps are homotapy equivalences.
As a result, since the mape ln che former chain are homotepy equivalences, it fol-
lows that so are those in the latter.

The second part of the rchain is Segal's homocopy equivalence of ol nN MR (R |
with K'(r R) * lim ING(R}1" . This is certainly compatible with its ropological

analogue,

R _— W e i , i T e

The third part of the chain, finally, 15 given by the maps in Proposibion &.d.d.
tesp. its corollary. There is a compatible chain of maps in che ropological case,
and the maps are homoropy equivelences by the version of proposition 2.3.5 in the

: f
topolagical case.

Suppose now Chat G is & simplicial monoid. Let £ be ths ring of intégers.
There is an exact functor

R{w ) —s M{Z[G])
¥ Z[¥] = 2[¥]/2]n]

limgartaction map

and hemce an indvced map in ¥-theory, the

nltt_".RfH.ﬁ]I _— ;-|1._~.".ME(ZI-:1)I .

CoNE

; igl] daduses
On che orher hand, cthe map of =tnge up to hometopy @ 5 1G] - 201611 induces, by

£ +

matrix mulriplication, a map wf H-spaces
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For we have not tried to put anything into the upper right carmer, Such a ¥ would
have to satisfy the Han extension coodition {proposition 2.2.3) and it would alsao
have to Fit into a sequence of Y's related to aach other by some kind of suspen-

Slon.

Af any raté, the diagram i8 compatible, by linearizacion, teo one

B, ———F L, A}
L% A

C T

+—— C.(lal}

| &1 *lal

where the upper tow is that of propositiom 2.3.5, with & = Z[Y] , and the lower Tow

is the topological apalogue of it. 5]

To conclude the topic of linearization let us briefly mention that, io the case
of A{¥X} , there is s description of che linesviZation map which wses only spaces
over ¥ , not the loop group of X . The map is defined in terms of an exact func-—
cor R{X) = Eah(K] vhere RubiK) denotes the category of abelian group objects in

R{XY
In particular this means that, for connected X |, chere is a descriprion of

) :  pabo,

RZ[GCRI D) in terms of RE°(0)

of weak equivalence in Rah{H} 5o that the map Rnh{ﬂj -+ RSh{-,G} = MiZle]) corre-

, To obtain that description, one dafines a notion

sponding te that of propositlom 2,.1.4, respects md deteofs wesk equivalences. The

argument of proposition 2.1.4 may then be adapted.
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Ppgaf. Thanks to Segal [11] one knows thac the canonical map from ]5C2{x}| to
HlaN;C?{K)i is a homotopy equivalence if the H-space IRC?{K}I is group—iike or,
what amounts to the same thing, if the monoid ?°|EE?EK]I is a group. But it is

well known that this is the =ase, cf. e.g. [18] for a proof. <]

The main goal of this section is to prove che reselt (theorem 3.1.7 below) thar
the sum songtrustion in sN.f?{x} can be traded for the coftbration cometruction;
that is, that 'W.' ecan be replaced by 'S.' . In order for this replacoment to
make sense it iy necessary to trade 'C' for 'RE' First, that is, to impose strue—
tural recractions chroughout, We also need an avuxiliary construction; its purpose
is to prevent the homotopy propercy of the functor X~ 5H,CE(K] from being losc

upon transition from 'C' to 'R’

Let F be a functor defined on the category of simplicial sets, with values in
a category B , say. We associate to it aoother funetor F , with values in the
category of simplicial objeccs in B
. 40
B{x) = ('[a]l—=F(x" )2
LT
where X denotes the simplicial ser of maps L
flemzrk. In cases where the name of the functor is not F  but someching lengthy,
such as for example 5H.C? ., the notacion EEXJ would he owkward., We will there-—

} - . 4 3
fore use inatead the pnotation F{X ) on such occasions. =]

Al ; G ; A° e . -
Using the identificacion of F(X}) with F(X" )} , and considering objects of B8
a8 simplicial objects in a trivial way, we can define a natural transformacion from

F ' ta ;

Supposing mow that in the receiving category 8 it makes sense to speak of
weak homotopy equivalances, we will say that the functor F  respects weak homotopy

aquivalenses if X 5 X' always implies F{X) 5 F(X"}

Lecma 3.1,2. If F respects weak homotopy equivalences then the natural cransfor—

mation F = ¥ is a weak hamotopy equivalence.

o n
Proof., The (degeneracy) map 2 < ¥ is a veak homotopy equivalence and there=

o n . )
fore ao ia F{Ka Y ?{Iﬁ ) , by assumption about F . We conclude with the reali-

zation lemma. )

Lemma - 3:.1.3. For anmy F ., the functor F presecves simplicial homotoples.

1
Progf. Let X - ‘f’:' be a simplicial homotepy. The claim is that one ¢an naturally

hd ¥ & & +
associate to it a simplicial homocopy of maps F(X) = F{¥) . Such a simplicial ho-
motopy may be identified to a natural transformatiom of functors on the category

afl1l ,
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is & weak homotopy equivalence.

We are left to shew that &d.,X' -+ X' is simpliciall¥ homotopic, relative to
5d,% , to a map into X . Sfinee the subdivision functor commucas wich pushouta,
2
thig reduces to the following npecial casa,

. st n ; i . .
feaegrcion. The map Sd 48 - A is-aimplicially homotopic, relative co- Sd_A

2 z

3]
i,EU

. n
4 map Lnto hi ¥

To see this wé note that there is a homotopy of maps Ideanl = |a™  which has
all the asserted properties except that it is not quite the geomacric reslizarion of
2 simplicial homotopy: it ts only a linear homotopy of unordered simplicial comple-
#es5. We can get che ordering right by subdividing once more. This gives a simpli-
cial homotopy of mapsa Ed__,.‘\”' - .‘::(I.I.‘.n + Domposing with the map Sd_l-_‘-,n -+ .:n' we ab=

tain the desired homotopry from it

The ocher cases of the lemms are handled similariv. o

Lemma 3.1.5. If ¥ secisfies che Kan condicion, che map sﬁh(xﬁ Vo= al

a homécopy equivalence.

Proof. Wa define a simplicial caregary [m] e RREfXJM in which an object is one

of BC?{K1 . Ba¥  {¥,y¥) , together with a map Y«4™ = ¥ axcending the projection
¥4™ -+ X, Since ¥ id a weak hvmotopy equivalence, and X sacisfies che excen-—
sion condition, the simplicial set of those abjectcs of 5R2{x]. which arise From
any parcicular (¥,y) , is contractible., In other words, ;he sippiicial aec of
ohjects of uﬂ¥{x}. maps by homotopy eguivalence to the set of ohjeccs of sﬂ?(x] .
Bimilarly, the aimplicial set of morphisms of 522{3]. maps by homotopy equivalance

13
to the set of morphisms of sf?fXI : aod 80 on. [t follows {the realization lemma)
k
f
o
Hext we define a hisimplicial category [m].ln; —- SE]E{K]EI,D - ER?(:'EEF }"I ‘ In

N1 ; .
that the forgetful map sE?i‘.-.".u. - sLFﬂ:‘.- is a homortopy equivalence.

view of the homotopy equivalence just established it follows, by the realizacion

| ERES At ; i :
lemma, that the map sREfxl.. - aI;(Kj by 15 4 homotopy egquivalence. Passing te the
diagonal simplicial category of the bigimplicial category on the left (it has the

same geometric realizatioan, up to isomorphism) we ohoain
e
diag WREK).. — sCo(xt) |

R + J ; h 5 h 0"
Thae lemma paw results by checking that diag ::Ef{:{] ce  Sancains .'_:Rj.fxu I 4% &
deformation retract, and that the map af the lemma is the restriction of the latcer

homotopy equivalence.
- - h ) . el o AR . oz

An ohject of 5EF[RJ i romniisca of an injective map X -~ % [(with a finite-

My Il

A G

all
i . d n o Lk F} 4 -
ness condition) topecher with a map Y=& - % which on X~ =4 restricts to the

’ : . . S o a0 L T -
projection.  The object is in the subcdategory er(x ¥} if the map on ¥x4& ilcself

factors throwgh the projection,
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Lec p/(¥ =..=¥ )" deoote the subeacegory of the objects For which the structural
mip g is the idemticy map. It is o deformation retract of ;_-.,.fn'n-”-.'{n_lj soin
facec, a deformation retraction ias given by pushout with g

On the othetr hand, pfﬁYu—.,4fn"l}‘ i isomorphic to uC;{?n_l} + As ghown
in [16], che functor X« nf?[x} respects weak homotopy equivalences. Hence che

¥ . - : h
grructural inclusion X - Tn—l induces a homotopy equivalence ani}L} - ngfYn_rj
Q
4

It results chat the maps in 4n11RF(x] induce homotopy equivelences of the left

fibres. Thus theorem B applies, showing that for every I_“&’”—-. el ) the sguare

~ b
pi ['!'u“r. .-'!l“_I,I —— EISI:Rf[."'-.I

— B yiiE = b,
-.rl.l"l:’\_I . o=t 1 HSH_IREH?

n=]
is homotopy cartesian. In particular this is so for the distinguished object
B, =%} . We saw above that p/(¥%>..~X)} containg as a deformaciom recract a sub=-

cntegory isomorphic to uﬂrixl . Under the horizontal map in the square this subca=
tegory projects to the image of the inclusion map i , and under the vertical map
it projects trivially into che contractible category Id/(¥+..~X) ., We obtain that

the maps 1 and p form a homotopy fibration, as claimed, o

Theorem 3,1.7. Let X be n simplicial set. There are homotopy equivalences

su.c?m —— W0 (" ) —— aM.RE(XY ) —-;S.R]t.‘:x"" 3

Proaf. 1t is showm in [16] chat che funcror X - El:'?l:."'.:l respects weak homotopy
aquivalences, By lemma 3.1.2 therefore the map from uEE{K} ta aE?fKErj i8s a
homotopy equivalence, and conseguentiv also EH.C?{}i} -+ SN.C}_}{}I“.'I , in wview of the
realization leémma. To proceed we choose a weak equivalence X = X' where X' is a
simplicial set satiafying the Kan condition. Then all maps im the transfoarmacion of
the chain of the theorem to the corresponding chain with X replaced by X' ‘are
wenk equivalences by lemma J.).4. Thus we can reduce to proving the theorem for
simplicial sets which gsetually sacisfy che Kan condicion. Applying lemmas 3.1.5

and 3.1.6 now to the second and chivrd map, respectively, we obtain that these maps
are homotopy eguivalences degreewise in che N, , resp. 5. , directions. We con-

clude with the cealization lemma. o
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3.2. The homology theory associated to A=) .

Let F be & functor defined on the category of simplicial sets, with values

in some category of spaces. We say F is exoiadve if it satisfies the following
two axioms.

(Limie)., F commutes with direct limic,

{Excision). If X =X, isa cofibration, and X = X, any map, then the square

F(X) —F(X,)

| !

F(X)) — F(XUy X,)
1]

is homotopy cartesian.

We say F is a homological fumotor {or a hemology theory) if, in addition to
being excisive, it also satisfien

(Homotopy). 1IEf X -+ X' is a weak homotapy equivalence then so is F(X) - BF(X') .

- i
Becall (the preceding section) thar F(X) = F(X‘ﬂ' ) denotes the functor

X —s ( [n] » 2CAT) )

The purpose of this section is to prove the following rasult.
fheorem 3.2.1. The functor X sS.R.(x" ) is a homology theory.

Addendum-3.2.2. The functor X& ﬂllS.Ef(f’ }| may be identified, up to'a natural
chain of maps, to the homology thecry asscciated to Alw) .

In fset, the chain is given by the maps (of loop. spaces of)
C ol e s8R0 ) e ( [n] 1o SR, (X)) —— ( [n] w BS.RL(X) )

whera %X = ( [n] =~ X ) and where the first map is induced by the identification
X" {R"'“}u . ‘Bach of the three terms is a homology theory. In the first case this
is so by the theorem, and in the sacond and third cases, the terms are the homology
theories asgociated to the T-spaces with underlying spaces sS.R (%) and hE.R (%) ,
respectively (cf. e.g. [13] for a detailed description of the homolegy theory asso=
ciated to a (special) T-space). Given the fact that the three terms are homology



theories, and connected, the proof that the maps are homotopy equivalences can be

reduced to checking the case X = » . 1In that case, the first map is an isomor-

phism, while the second map is the inclusion sS.Rf(*) - hS.Rf(*) . There does not
seem to exist a direct proof that the latter map is a homotopy equivalence, but an
indirect proof.is provided by theorem 3.3.1, below, together with the fact that
sS.R?(*) is contractible (which, e.g., follows from proposition 1.3.1).

In order to prove the theorem it will suffice to prove the following two pro-
positions 3.2.3 and 3.2.4.

Proposition 3.2.3. The functor X = sS.Rf(X) is excisive.

Proof., First, it ia clear that the functor commutes with direct limit (up to iso-
morphism).

Next, suppose that Xo - X1 is an injective map. Pullback with it defines a
map Rf(xl) - Rf(xo) vhich respects simple maps. The inclusion-induced map Rf(Xo)
- Rf(xl) also respacts simple maps. Composing the two we therefore obtain a sub-
functor f of the identity functor on Rf(xl) which is exact, and hence a cofibra-
tion sequence of exact functors f - Id » f' where f' is defined as the quotient .
f' = Id/f . Let Rf(X,,Xo) be defined as the category of the objects (Y,r,s) in
Rf(X]) having support away from Xo ; that is, having the property that the pullback

is not bigger than X, - Then f' takes values in Rf(xl,xo) » and it restricts to

the identity map on that subcategory. Applying the additivity theorem to the cofi-

bration sequence f - Id + f' now, we obtain a homotopy equivalence of sS.Rf(XI)

with the product sS.Rf(Xo) x sS.Rf(X],XO) . In particular, therefore, the sequence
sS.Rf(Xo) —— sS.Rf(X]) —_— sS.Rf(Xl,Xb)

is a fibration, up to homotopy.

Applying this consideration in the situation of the excision axiom, we obtain

a diagram of homotopy fibrations

sS.Rf(Xo) —— sS.Rf(X]) —— sS.Rf(X],Xo)

| | ]

SS.Rf(XZ) — sS.Rf(XIUXOXZ) —_— sS.Rf(X]Uxoxz,Xz) .

The vertical map on the right is an isomorphism (an inverse is induced by pullback).
It follows that the square on the left is homotopy cartesian, as asserted by the

excision axiom. This completes the proof.
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Proposition 3.2.4. Let F be an excisive functor, and suppose that F(X) is

v
connected for every X . Then the associated functor F is a homology theory.

The proof will be given at the end of this section. Together with the prepara-

tory material, it occupies the rest of the section.

Remark. The artificial looking connectivity assumption comes from the fact that our
proof of the proposition uses the following lemma 3.2.5. Some auxiliary condition,
such as connectivity, is definitely needed in that lemma. '

Lemma 3,2.5. Let

W.. —X..

!

Y..—2Z..
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map X.. = Z.. is a trivial map. Suppose that, for overy m ; tha sequence of maps
af simplicial secs Ep- =Yy =&, isa fibration up to homotopy, Suppose further
that for every m the simplicial sat Z]. is connected. Then the sequence of hi—

dimplicial sets, X.. = Y., = Z,, , is icself a fibratian up to homotopy.

The idea for proving the present lemms comes from the Fact chat a homotopy car—
tesian sguare with connected baaes cam be characterized ag a commutative agquare in
which the homocopy Eibres of the yartieal maps are mapped to each other by hometopy
equivalence. Using cthis one hopes to obtain a crasslation of the aseertion which

follows from the fibre realization 1eoma.

Te gat the decnils rvight, it is convenient to replace homotopy fibres by accual
fibres in a systemitic wav. We nesd to know that there is a funcrorial vay of turn—
ing a map of simplicial sets into a Kan fibracion: e.g., the process of Filling
horng [ 1] will do. Using ic we taplace, for every m , the square of the lemma by

B dquara

T gt
o m

in which the verctical maps are Fan [ibrations. In wiew of the neturalicy of the

conacruction, these aquares still psaemble Lo a square of hi 5implicial secs

W! . — 5.

||

Y., — 2!,

There s & natural transformation {rom the old square to the new, and the maps
W.. = W!. , etc., are homotopy equivalences by the realization lemma. To prove the

lemma it will cherefore suffice co show that the new square is homotopy cartesian.

Choose any point of ¥!. (i.e¢., 4 compatible family of pointa in the ‘i'I;. } as
4 hasepoint; denote it » ., Lat 1ibrefw;,*Yé.}{*} denote the actual fibre at = |
i

Since '-\‘u']. - 'I!'I"u. if & Kan fibration, it ig certainly true that the sequence

Eibrt(k‘%.—‘ﬂ%.} o HT‘n.—&'fn'1,

()
ig a fibration up to homotopy, for every m . In view of the fibre realization
lemma we deduce from this that the segquence

fibra(Wi.—~Y1.) () Wl Xl
ig alse a Tibratiom up to homotopy, where the term on the left denctes the actual
fibre again; cthe point is chat Eibre(W! .—-‘f:.}(*] o [m] = fihra{'ﬁé,-ﬁ‘fi:l.llfﬂ ¥

There are similar fibrations if W' amd Y' are replaced by X' and Z' .
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We can now complete the proof of the lemma as follows.

In view of the assump-
tion of homotopy cartesianness we have,

for every m , a homotopy equivalence
. v ' . ' 'y
flbre(wm.-»‘lm,)(*) —_— f1bre(Xm.-OZm.) (Im(x)) *

By the realization lemma this implies a homotopy equivalence

fibre(W! .-»Y!.)(*) —— fibre(X!.»2! ) (Im(*)) *

a homotopy equivalence of the vertical
homotopy fibres in the Wl ~X!.-Y!.-2!. square.

and therefore, in view of the preceding,

Thus that square is homotopy

cartasian Qe tras +a L~ L.
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it suffices that the map is a homocopy equivalence in the other chree cases. But

. e \ ' - n

in the case of ﬁn chig Ls crue by hypothesis, and in the cases of 34 and Y

it may be assumed crue by induccion. o

The crucial step in thé proof of proposition 3.2.4 is the construction given

in the following two definitcions.

Dafinition 3.2.8. Let X be a pimplicial set. Define [k] Cov (X}, to be the
gimplicial abjecc, in the cacegory of simplicial sets, given by

=
s ¥ - 1 o )
Cov (X)y LA W, (mn} * X

where Hk[n,u] denotes the set of sequences im A ,

(o] = [m] = ..o [m .1 = [n] [ k arrows) .

1

To describe the simplicial structure one rewrites Cov(X) as the bisimplicial

gat where a bisimplex in bidegrae (q,k) consists of a sequence

e By by E Cve a3
[q] .uul [r1] [nk—l] [‘k'
together with an element = € K[uml . By definition now the i-th face map with
respoct to the k-direction is given by omitting ?mi] from che sequence; except

if i = k in which case, in addition, the element x E Kfﬂk] must ba taken to the

appropriate element of K[mhﬁ 1 . The degeneracy mape are given by the insertion

|
of identity maps in the sequence,
Definition 3.2.9. Let F he a functor on the cacegory of simplicial seéts. Then

U9 = o (k] e F{Cow{X)},) ) .

Considering the simpliclal ser 2% ‘as a simplicial ohject in a trivial way, we

can define a natural transformacion
Cotr(X) . —e X 3
5 1 - 1 1 e 1 -'h -~ . 4 & e
by definirion, ira resgriecion =o (&, [ml=...=[n], =) 1is che composicte map
¥ 4

L {[ml=+[al), L x

Lemmn 3.2,10. If X is a simplex 4" ar, more genernlly, a disjoint union of

simplices, then this map is the rerraction in a simplicial deformation retraction

from che simplicial object [K] = J:vLK)k to the trivial simplicisl object [k] » X

Progf. In the case X = aF , the simplicial heomocopy is defined as the natural
1 P
transformation on the category Af[1] caking a:r [k] = [1] te the map of C {4 hk

to 4 defined in the following way. The map =, takes the sequence



S

413

[q) = [mol - [m] = oo = [m ] Ip]
to the sequence
[q] » [mol > - [mi(a)] = [pl > ... 53 [p}

where i(a) 1is the largest of the i € [k] which are in the pre-image of 0 € [1] ;

if a takes [k] entirely into 1 € [1] then the image sequence is

[q] - [p]1 5 ... 3 [p] .

The homotopy is similarly defined in the more general case where X is
disjoint union of simplices. a

Considering the objects of the receiving category of the functor F as sim—

plicial objects in a trivial way, we can define a natural transformation
F'(X) — F(X)

as the map which in degree k takes F(va(x)k) into F(X) by the map induced
from Cov(x)k - X .

Lemma 3.2.11. 1In the case where X 1is a simplex, or a disjoint union of such,

the map F (X) - F(X) 1is a (simplicial) homotopy equivalence.

Proof. The functor F° has been defined by means of degreewise extensiom in the
k-variable, so it preserves simplicial homotopies in the k-variable. The present

lemma thus results from the preceding lemma. a

Remark. It is not difficult to show that Cov(X). = X 1is a weak homotopy equiva=-
lence for all X . On the other hand there seems little reason to suppose, in
general, that the natural transformation FX(X) -+ F(X) 1is a weak equivalence for

X which are not just disjoint unions of simplices.

Provogition 3.2.12 Qunnmaa +thae TIVN  2n mme o 3 £ _aa == i e e
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Thus F“{x] = F{Z) i a map of excisive functors. By lemma 3,2.11 the map is
4 weak equivalepnce in the case ¥ = g% | Consequencly, by lemma 3.2.7, it is a wealk
equivalence in gensral, a

Propesition 3.2.13., Let o be a functor satisfying that G(%) is connected for
all X . Suppose that @ comiutes with direce limit, and that ie takes finite dig-

joint unions to products {up to homotopy); o.g., suPane that © is ewxcisive. Then
the funetor o ig excigive.

Pragf, lat X = (L[] = ﬂj )} . Then the functar ¥ = F(X } is excisive by hypo=
thesis about G . By proposition 3.2.6 therefore the Eunctnr v ( [§1=6(x.3)

a - a ¥ X
L3 exeisive, too. We will show that the latter functor is weakly equivalent ra £

We show this by constructing sn inrermediata functor H and relating it to both.
Recalling the definirions
v i
F X)) = ((kdw F(Cou(X),) ) and F() = ([ilerid))
we unravel the definition of €° s
i
G0 = (i1 ( (i) Gloow(xd B
i
W CLS T DRl Gur, ™ (m,n)x(x2) ) ) )
4 m AR
R [k]le ¢ [5] e G(LLm'n 47N, (m,n)=(X }jJ ) ).
a1
We define the intermediate funcror o by replacing X~ by ¥ in the latcer berm,
BOX) = € Iklw ( [5]w Gl o ﬁ’"xﬂk{m.n}ﬂjj 3 )
n
The projection 4" = 4% induces an inclusion % -+ ¥ and hence a map of H(X) to
EK{I} + We claim this map {8 a homatopy equivalence.

In face, the map ¢ [j] w~ X, P+ [§]— (" ] is a atmplicfal homotapy
equivalence. The process of applylng functors degrecwtse preserves simplicial hemo-

topies. Hence the map
u ' m AT
CLTe GO, 8%, (n,n)xK) ) —— ( [§] 0 GULLy o 47 () x(x™) ) )

is a (simplicial) homotopy equivalence still. Applying the realization lemma with
Wy |
respect Co the k-varfable now, we conclude that H(X) —= 0 (X) is a (weak) homotopy

equivalence.
To proceed, we rewrite H{X) ns
CLidee COd b GOin, a0 tmyn)xg) ) )
The map

m i 4 »
( [k] n{um.n & rﬂkm.njxxj} Y —— K] G(xJ} )
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i o is a (simplicial) "homotopy equivalence by lemma 3.2.11. Applying the realization
: " lemma with respect to the j-variable now we conclude that the map

o ‘ H(X)—*——»([j]H([k]»G(Xj)))

| is a (weak) homotopy equivalence. The target of this map is the simplicial object

' [j] - G(Xj) considered as a bisimplicial object in a trivial way. We are done.

=]
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3.3. The fibrarion relating Wh'l(X) and A(Y)

The fibracion arises from the interplay of two notions of wedk equivalence on
the category B.(X) , whers X it a simplicial set. The cwo netiens are given hy

the eimple maps on the ane hand and by the weal homotopy ssufvalerces an the othet,

Lec the superncript 'W' denate the gubcaregory of che objeces which are hamo=-
topically trivial: chac is, the (Y,r,s) vhers = is a weak homctopy equivalence.
As befare (the preceding tws sections) let REEKa‘} denate the pimplicial category
[a] = R_(x* )

Theorem 3.3.1, The EUaATE

65 @yt

) hE

sS.R(x% ) — v neir b

is homatopy cartesian, and Lhe term an che upper right iz contractible. The other

Lerms are as follaws,

RIRS.R () Y1 & Aty |

i
A 3S.EEfK“ ;| is a hemology theorw,

gs.nprx“ Y s WRIC(K) .

and each of the homotopy equivalences can he described by a natural chain of maps.

Froof, In order ta show thic the square is Homotopy eartesian ic will suffice to
7 s
show, by lemma 3.2.5, that far ecach n  che square with §° replaced by X% is
. o.am ;
homotopy cartesian., Weiting ¥ instead of 3° now we have reduced to showing

that the sguare

88.R} (X) —— b$.RN(x)

| |

ES.EF [(X) ————s :".S.RE{X}

id homatopy cartesian. The desired fact is essentially n special case of thesrem

I.6.4. There is a lircle technical point. HNamely the category of weak homotapy
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aquivalences on RE{K} doun not satisfy the ertenaton griom as required for a
direct application of theorem |.6.4. For this reason we compare with the square

b h
iS.RffXJ hS.EEfx}

l |

sLRE”{x} ——ns.R P

where EEI}(H} denotes the subcatagory of F{f{!ﬂ of tha (¥,r,s) vhere s: XY
is a |-coonected map. The wenk homotopy equivalences in EE}{K} may alcernatively
be characterized as the maps inducing isomorphisme in homology (the Whitshead theo-—
rem), consequencly they do satisfy the extension sxiom. Hence theorem ).6.4 applies
to show the latter square i4 homotopy cartesian. We conclude by noting that the map
to che former square is a homotapy equivalence on each of the four cormers. In
fact, dooble suspension induces am endomorphism of each of the terms, the endomor-
phism is homotopic to the {dentity map (proposition 1.6.2%, and it takes R (D)

inceo Eéz}{:{! ;

The upper right term hS.H:{xﬁ ) is contractible sinece it is a bisimplicial

object of categories with initial objects.

The tern hS.K (x}) is a de-loop of A(X) simce HS.R,(X) = 2 ) s a
homotopy equivalence (by lemma 3.1.2) in wview of che fact chat X e hS.RE['xi

respects weak homotopy equivalences {(proposition Z.1.7).
The homotopy equivalence ES.R?{Iﬁ ) o= uhPL{K} is given in cheorem 3.1.7.

The face that X v sﬁ.ﬂffxa.} is & homology theory, fimally, is provided by

theorem 3.2.1. =]

The theorem may be reforsulated a liccle by defining the auxiliary simplicial
gtructure in-a slightly different way, MNamely define a simplicial category Rf(x).
as follows. Rf{:{}n is the subcategory of Rf{}tw&n] given by the objects (Y,r,s)
which have the property that the composite map

PF2

¥ e X ow AT —— s 47

iz lecally Eibre homotopy trivial.

Proposition 3.3,2. There is a homotopy carcesian square
58 RI0X) . — nS.RE(K) .
ES.EEH}. — h8.Ry(X).

gnd it ie homotopy eguivalent to the square of the theorem by & natural map.
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Frogf. The homotopy cartesiammesy of the square is established in the same way as
in the theorem, There iy a map from the square of the theorem ra that of the propo-
sition. It is induced from the map of aimplicial categaries E ft 1= R (%), de=
fined as follows. The map in degree n is che coamposite map

n

il N o o
tha }—— EH(x A —— RE(xXﬂ ¥

where the firsc map is given by product wich 4" | and the second map is induced
from a map

n
In

%" =

namely the map whese seécond and Firse components are the projection map PE, and

the evaluation map

4% n
e

respectively.

In order to show that the transformation aof aquares is a homocopy equivalenca
it suffices, in view of the nomocopy cartesianness of the two squares, to show thac

the map is a homotopy equivalence on three of che four corners.

This is automacic in the case of the upper right corner as both terms are con—
tractible.

It iz p£ill easy in the case of the lower right carmer, MNamely in view of rhe
homotopy egquivalence hS‘REKR} -+ hﬂ.ﬂf(xﬂ-} (the theorem} it suffices to knew that
che map hi,E {x} = hi.E (x]. i=s a homotopy equivalence., This follews from the
faet (by the argument of lemma 2.2.6) rhat for every mn the map hS, R (X) - hi. E (K]
is a homotopy equivalence,

As our chird case we take that of the upper left cormer. That case is less easy.

We consider cthe diagram

sucm-_.guc.:x jm—q”ﬁ(x‘!‘}—-psSE(x

' | l J

W-CE0D) s LB s o sl R, —— s8Ry,

where cthe upper row is the chain of maps of theorem 3.1.7, and the lower row is an
analogue of chat chain for the ather auxiliary simplicial structure, The mEps in
the upper row are homotopy equivalences (rheorem 3.1.7), 8o it will suffice o know
that the maps in the lower row are howstopy equivalences, too. The second and third
maps in the chain tow are handled as hefore {lecmas 3.1.5 and 3,1.56). TIn the cass
of the E:rst m2p one can reduce (by the realization lemma) to EBnuxqg that the map
EC {1} - BC A%}, is a homoetopy equivalence; or in fact, chac aCE{xi - sCE{x}u ig,

for every n . But chis has been proved in [1&]. o

R e
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