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The Meyer functions for projective varieties and their

application to local signatures for fibered 4-manifolds

Yusuke Kuno

Abstract

We study a secondary invariant, called the Meyer function, on the fundamental

group of the complement of the dual variety of a smooth projective variety. This

invariant have played an important role when studying the local signatures of fibered

4-manifolds from topological point of view. As an application of our study, we define

a local signature for generic non-hyperelliptic fibrations of genus 4 and 5 and compute

some examples.

1 Introduction

Let Σg be a closed oriented C∞-surface of genus g ≥ 0. The mapping class group of Σg,
which we denote by Γg, is the group of orientation preserving diffeomorphisms of Σg modulo
isotopy. The group cohomology of Γg attracts attentions because: 1) its element plays a
characteristic class of oriented Σg-bundles, 2) over the rational coefficients, it is isomorphic
to the cohomology of the moduli space of compact Riemann surfaces of genus g.

As for the degree two part, the cohomology group itself has been determined. Harer
[12] proved that H2(Γg;Z) ∼= Z for g ≥ 3; H2(Γ1;Z) ∼= Z/12Z and H2(Γ2;Z) ∼= Z/10Z
are classically known. However, as a reflection of the fact that Γg is related to various
mathematical objects, there have been known various 2-cocycles of Γg arising from different
contexts.

One of these is Meyer’s signature cocycle τg, introduced by W. Meyer [20] and redis-
covered later by Turaev [27]. The definition involves the signature of 4-manifolds and will
be recalled in this section.

The main object we study here is the Meyer function, a secondary invariant associated
to τg. The work of Meyer [20] is considered as the origin of it. He showed that: for g = 1
or 2, there exists a unique Q-valued 1-cochain φg : Γg → Q whose coboundary equals to τg.
He also gave an explicit formula for φ1. Note that Γ1 is isomorphic to SL(2;Z). Atiyah
[1] showed interesting aspects of φ1 as a function: he showed that the value of φ1 for a
hyperbolic element α ∈ SL(2;Z) coincides with various values associated to α such as the
special value of a Shimizu L-function determined by α, an arithmetic invariant, or the
η-invariant of the mapping torus of α, a differential geometric invariant.

Recently there are several works that give higher genera or higher dimensional analogues
of φ1 or φ2. In [8, 22] the Meyer function on the hyperelliptic mapping class group is studied.
In [8], application to the local signature for hyperelliptic fibrations is dealt and in [22], a
relation to the η-invariant of mapping tori is studied. In [14], as a higher dimensional
generalization of φ2, the Meyer function for the family of smooth theta divisors is studied.
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The Meyer function for a projective variety. In this paper we give other analogues
of Meyer’s φ1 or φ2 and discuss their applications. We consider the family of Riemann
surfaces constructed as follows.

Let X ⊂ PN be a smooth complex projective variety of dimension n, embedded in the
complex projective space of dimension N . Throughout the paper, we assume that

N > n ≥ 2.

Let k := N −n+1. We denote by Gk(PN) the set of all k-planes of PN . Let DX be the set
of k-planes meeting X not transversally. When n = 2, DX is the classical dual variety of
X . In [10], DX is called the k-th associated subvariety of X . Let UX = Gk(PN) \DX . For
W ∈ UX , W and X meet transversally so their intersection X ∩W has a natural structure
of a compact Riemann surface. Thus setting

CX :=
{
(x,W ) ∈ PN × UX ; x ∈ X ∩W

}
,

the second projection
pX := p2|CX : CX → UX (1.0.1)

is a complex analytic family of compact Riemann surfaces. Let g be the genus of the fibers
and

ρX : π1(U
X) → Γg

the topological monodromy (see the conventions below) of (1.0.1). Let ρ∗
Xτg be the pull

back of τg by ρX .

Theorem 1.0.1 (= Theorem 3.1.1). There exists a unique Q-valued 1-cochain φX : π1(U
X) →

Q whose coboundary equals to ρ∗
Xτg. In particular, we have ρ∗

X [τg] = 0 ∈ H2(π1(U
X);Q).

We remark here that if ρ : G → Γg is a homomorphism from a group G to Γg and
φ : G → Q is an 1-cochain whose coboundary equals to ρ∗τg, then φ is always a class
function: φ(xyx−1) = φ(y) for x, y ∈ G. This is easily derived from properties of τg (see
[16], Appendix). In particular the above φX is a class function. We call φX the Meyer
function associated to X ⊂ PN . In fact this theorem is regarded as a further generalization
of [16], where the case of X being the d-th Veronese image of P2 is studied. Our proof
is based on a geometric feature of τg, and applications of the Novikov additivity of the
signature are essential.

There are several studies on the fundamental group of the complement of the dual
variety (or more generally the associated subvariety in a Grassmannian), for example, see
[6, 7] and a recent work of I. Shimada [26]. However, it is still a mysterious object and lots
of the properties are unknown. The function φX tells us some information as to π1(U

X)
under a mild condition, see Proposition 3.6.1.
An application to local signatures. One reason to seek a generalization of Meyer’s φ1

or φ2 comes from the motivation to treat localization of the signature for the case of the
genus of the fibers greater than two via Meyer functions.

Let us go back to the case of g = 1 or 2 for explanation. The coboundary condition
δφg = τg leads to an immediate consequence: for an oriented surface bundle of genus ≤ 2
over a closed oriented surface, the signature of the total space is zero. Proceeding further,
letM (resp. B) be a closed oriented C∞-manifold of dimension 4 (resp. 2) and f : M → B
a proper surjective C∞-map having a structure of surface bundle of genus g, over the
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outside of finitely many points b1, . . . , bm ∈ B. We call such a triple (M, f,B) a fibered
4-manifold. The fiber germ Fi over bi is called a singular fiber germ. Typical examples are
elliptic surfaces or Lefschetz fibrations.

In the above situation, the advantage of φ1 or φ2 is that we can associate each singular
fiber germ with its local invariant σ(Fi) ∈ Q, called the local signature. The adjective
”local” comes from the equality

Sign(M) =
m∑

i=1

σ(Fi).

The definition of σ(Fi) is given by

σ(Fi) = φg(xi) + Sign(N(f−1(bi))), (1.0.2)

where xi ∈ Γg is the local monodromy around bi and Sign(N(f−1(bi))) is the signature of a
fiber neighborhood of f−1(bi). This formulation first appeared in Y. Matsumoto’s papers
[18, 19]. For generalizations of this story for higher genera, there is an obstruction: the
class [τg] is a generator of H2(Γg;Q) ∼= Q for g ≥ 3.

Local signatures are also studied from complex geometric or algebro geometric point
of view, see [3, 4]. In these setting, a local signature is defined by another way and can
be defined even if g ≥ 3, by assigning some algebro geometric conditions on the general
fibers. There is an important point to note here: when g ≥ 3, there is a fiber germ with
a non-trivial local signature but topologically being a trivial Σg-bundle. To capture such
phenomena, it is insufficient just looking at the shape of f−1(bi) or the local monodromy
xi, hence we need to modify (1.0.2).

As for higher genera analogues of Y. Matsumoto’s approach, Endo [8] studied the local
signature for hyperelliptic fibrations. In [16] non-hyperelliptic fibrations of genus 3 are
discussed. In this paper using the Meyer functions φX for particular choices of X , we will
discuss non-hyperelliptic fibrations of genus 4 or 5. The modification of (1.0.2) is achieved
by introducing a group with some universal property and the Meyer function on that group.
xi in (1.0.2) is replaced by the lifted monodromy, see Definition 4.1.8. One advantage of
our local signature is that we only need the complex structures on the general fibers so
it is not necessary f itself should be holomorphic. Although we don’t know whether our
local signature is the same as the others [3, 4], we will observe the coincidence on some
examples of singular fiber germs.
Organization of the paper. Section 2 is a preparation for section 3. We describe
the tangent space of DX and study the situation when a holomorphic disk intersects DX

transversally. These considerations will be used in Proposition 3.2.1. In section 3 we prove
Theorem 1.0.1 by a purely topological argument. Using the method of Lefschetz pencils,
we give a formula for the value of φX on a special element, called lasso. We also study
the second bounded cohomology of π1(U

X). In section 4 applications to non-hyperelliptic
fibrations of genus 4 or 5 are discussed. First we explain our approach to local signatures
via Meyer functions (see Proposition 4.1.7), then proceed to the particular cases. When
the genus is 4, we assign the general fibers to be ”of rank 4”. When the genus is 5, we
assign the general fibers to be non-trigonal. In the case of genus 4, we compute the value
of our local signature for some fiber germs.

In the rest of this introduction we fix conventions and recall Meyer’s signature cocycle.
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Topological monodromy. We adopt the following: 1) for any two mapping classes f1
and f2, the multiplication f1 ◦ f2 means that f2 is applied first, 2) for any two homotopy
classes of based loops ℓ1 and ℓ2, their product ℓ1 · ℓ2 means that ℓ1 is traversed first.

Let p : C → B be an oriented Σg-bundle. Choose a base point b0 ∈ B and fix an

identification φ : Σg
∼=→ p−1(b0). For each based loop ℓ : [0, 1] → B the pull back ℓ∗C → [0, 1]

by ℓ is a trivial Σg-bundle. Hence there exists a trivialization Φ: Σg × [0, 1] → ℓ∗C such
that Φ(x, 0) = φ(x), x ∈ Σg. By assigning the isotopy class of Φ(·, 1)−1◦φ to the homotopy
class of ℓ, we obtain a map ρ, called the topological monodromy of p : C → B, from π1(B, b0)
to Γg. Under the conventions above, ρ is a homomorphism.
Meyer’s signature cocycle. Let P denote the pair of pants, i.e., P = S2 \ ⋃3

i=1 IntDi

where Di, 1 ≤ i ≤ 3, are the three disjoint closed disks in the 2-sphere S2. Choose a base
point p0 ∈ IntP and fix based loops ℓi, 1 ≤ i ≤ 3 such that each ℓi is homotopic to the loop
traveling once the boundary ∂Di by counter clockwise manner, and the product ℓ1 · ℓ2 · ℓ3
is null homotopic. For (f1, f2) ∈ Γg×Γg, we can construct an oriented Σg-bundle E(f1, f2)
over P such that the topological monodromy π1(P, p0) → Γg sends [ℓi] to fi for i = 1, 2.
E(f1, f2) is a compact C∞-manifold of dimension 4 endowed with the natural orientation.
Thus the signature of E(f1, f2) is defined and we set

τg(f1, f2) := Sign(E(f1, f2)).

By the Novikov additivity of the signature τg turns out to be a 2-cocycle of Γg. The class
[τg] ∈ H2(Γg;Z) equals to 1/3 times the first MMM class [21, 23, 24].

There is a linear algebraic description of τg given in [20]. Let Γg → Sp(2g;Z) be the
homomorphism obtained by the action of Γg on the first homology of Σg, and let A1 and
A2 be the image of f1 and f2 by this homomorphism, respectively. Let

J =

(
0 Ig

−Ig 0

)

where Ig is the g × g identity matrix, and consider the linear space

VA1,A2
:= {(x, y) ∈ R2g ⊕ R2g; (A−1

1 − I2g)x+ (A2 − I2g)y = 0},

where I2g is the 2g × 2g identity matrix. Then

〈(x, y), (x′, y′)〉A1,A2
= t(x+ y)J(I2g − A2)y

′

turns out to be a symmetric bilinear form on VA1,A2
hence its signature is defined. As

proved in [20], we have
τg(f1, f2) = Sign(VA1,A2

, 〈 , 〉A1,A2
). (1.0.3)

Here we correct some errors about signs in [16]. In Appendix of [16], we have adopted the
same notations about topological monodromies as this paper and have defined τg(f1, f2) =
−Sign(E(f1, f2)). Then Definition 7.1(p. 943) should be corrected as

loc.sigQ(F) := −φ4(θ(F0)∗(γ)) + Sign(E).

The equation Sign(π−1(B0)) =
∑n

i=1 φ
4(θ(F0

i )∗(γ)) in the proof of Theorem 7.2(p. 944)
should be corrected by multiplying the right hand side by −1. The proof of Proposition
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5.1(p. 936) should be corrected similarly and all the values of the Meyer function in [16]
should be multiplied by −1.
Notations. For an 1-cochain φ : G→ A of a group G with coefficient in an abelian group
A, its coboundary is meant the map δφ : G×G→ A defined by

δφ(x, y) = φ(x)− φ(xy) + φ(y).

For a complex manifold M , we denote by KM the canonical divisor of M . More gener-
ally, for a possibly singular variety Y , we denote by ωY the dualizing sheaf of Y . We use
this notion only when Y is given as a hypersurface in a complex manifold M . In this case
ωY is an invertible sheaf on Y given by the adjunction formula:

ωY = (KM + Y )|Y .

For integers p, q with 0 < p < q, we denote by Gp,q the Grassmannian of all p-planes of
Cq. Note that Gk(PN) is naturally isomorphic to Gk+1,N+1.

2 Preliminaries from complex algebraic geometry

In this section we describe some properties of DX . When n = 2, DX is an irreducible
variety in GN−1(PN) = P∨

N , the dual projective space of PN , and DX is classically known
as the dual variety of X . In fact, the treatment here is a generalization of the treatments
in sections 1 and 2 of K. Lamotke’s paper [17] to the case of general n. Corollary 2.2.3,
Proposition 2.3.3, and Theorem 2.3.4 will be used in later sections. Let

W := {(x,W ) ∈ PN ×Gk(PN); x ∈ X ∩W} .

Then there are two projections p1 : W → X , and

p2 : W → Gk(PN).

2.1 Coordinate description of p2

In the following we give an explicit coordinate description of p2.
Let (x0,W0) ∈ W. By choosing appropriate homogeneous coordinates [x0 : x1 : · · · : xN ]

of PN , we may assume that x0 = [1 : 0 : · · · : 0] and W0 is given by xk+1 = · · · = xN = 0.
We first introduce local coordinates of W near (x0,W0). For x ∈ X , p−1

1 (x) is the set
of k-planes of PN through x, which is isomorphic to Gk,N . The open set {x0 6= 0} of PN is
identified with CN by

[x0 : x1 : · · · : xN ] 7→ (x1/x0, . . . , xN/x0) . (2.1.1)

Thus for (x,
◦
W ) ∈ (X ∩ {x0 6= 0})× Gk,N , considering the affine subspace x+

◦
W⊂ CN ∼=

{x0 6= 0} and taking its closure in PN , we have a trivialization of p1 over X ∩ {x0 6= 0}:

(X ∩ {x0 6= 0})×Gk,N

∼=−→ p−1
1 (X ∩ {x0 6= 0}). (2.1.2)

Let ei := (0, . . . ,
i
1, . . . , 0)t ∈ CN for 1 ≤ i ≤ N . In view of (2.1.1),

◦
W 0:= W0 ∩ {x0 6= 0}

is the k-plane of CN spanned by e1, . . . , ek. Let W1 be the subspace of CN spanned
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by ek+1, . . . , eN . For F ∈ Hom(
◦
W 0,W1) let

◦
W (F ) := Span(f1, . . . , fk) ∈ Gk,N , where

fi := ei + F (ei), 1 ≤ i ≤ k. By this mapping F 7→
◦
W (F ), U := {

◦
W∈ Gk,N ;

◦
W ∩W1 = 0}

is identified with Hom(
◦
W 0,W1). Introducing {F j

i } by

F (ei) =

N∑

j=k+1

F j
i ej , 1 ≤ i ≤ k

for F ∈ Hom(
◦
W 0,W1), the set of functions {F j

i } serves as local coordinates of U .
Choose a sufficiently small local coordinate neighborhood (U ; t1, . . . , tn) of X centered

at x0 (i.e., x0 corresponds to the origin (0, . . . , 0)) so that U ⊂ X ∩ {x0 6= 0} ⊂ CN .
Then points in U can be expressed as x(t1, . . . , tn) = (x1, . . . , xN) where xi = xi(t1, . . . , tn),
1 ≤ i ≤ N are holomorphic in t1, . . . , tn.

In view of (2.1.2), (
U × U ; t1, . . . , tn, {F j

i }
)

(2.1.3)

can be used as a local coordinate neighborhood of W centered at (x0,W0).

Next we introduce local coordinates of Gk(PN) near W0. Let êi = (0, . . . ,
i+1

1 , . . . , 0)t ∈
CN+1, 0 ≤ i ≤ N and Ŵ0 = Span(ê0, ê1, . . . , êk), Ŵ1 = Span(êk+1, . . . , êN). Then by the
natural isomorphism Gk(PN) ∼= Gk+1,N+1, W0 corresponds to Ŵ0 (recall that W0 is given

by xk+1 = · · ·xN = 0). For G ∈ Hom(Ŵ0, Ŵ1) let W (G) := Span(g0, g1, . . . , gk), where
gi := êi+G(êi), 0 ≤ i ≤ k. By this mapping G 7→W (G), V := {W ∈ Gk+1,N+1;W ∩ Ŵ1 =

0} is identified with Hom(Ŵ0, Ŵ1). Introducing {Gj
i} by

G(êi) =
N∑

j=k+1

Gj
i êj, 0 ≤ i ≤ k.

for G ∈ Hom(Ŵ0, Ŵ1), then (
V, {Gj

i}
)

(2.1.4)

is a local coordinate neighborhood of Gk+1,N+1
∼= Gk(PN) near W0.

Now for (t1, . . . , tn, {F j
i }) ∈ U×U , using the local coordinates (2.1.3) and (2.1.4), write

p2(t1, . . . , tn, {F j
i }) = G(t1, . . . , tn, {F j

i }) ∈ Hom(Ŵ0, Ŵ1). The closure of the affine space

x(t1, . . . , tn)+
◦
W (F ) ⊂ CN in PN must be equal to W (G(t1, . . . , tn, {F j

i })). On the other
hand, at the level of Gk+1,N+1, the closure is a (k + 1)-plane spanned by (1, x1, . . . , xn)

t

and f̂1, . . . , f̂k, where for 1 ≤ i ≤ k, f̂i ∈ CN+1 is the image of fi under the inclusion
CN →֒ CN+1, (y1, . . . , yN) 7→ (0, y1, . . . , yN). From these we establish the following:

Lemma 2.1.1 (local description of p2). Let (U × U ; t1, . . . , tn, {F j
i }) and (V, {Gj

i}) be
the local coordinate neighborhoods of W and Gk(PN) respectively, as above. Let Gj

i =
Gj
i (t1, . . . , tn, {F j

i }) be the local coordinates of the point W (G(t1, . . . , tn, {F j
i })). Then we

have
Gj
i = F j

i for 1 ≤ i ≤ k, k + 1 ≤ j ≤ N, and

Gj
0 = xj −

k∑

i=1

xiF
j
i , for k + 1 ≤ j ≤ N. (2.1.5)
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2.2 Irreducibility of DX

The k-th associated subvariety DX is irreducible. Although this might be well known, here
we include the proof of it together with the irreducibility of some loci related to DX .

Definition 2.2.1. Define the subsets of W as follows:

D := {(x,W ) ∈ W;TxX + TxW 6= TxPN} ,

and for integers i ≥ 1,

Yi := {(x,W ) ∈ W; dim(TxX + TxW ) = N + 1− i}
= {(x,W ) ∈ W; dim(TxX ∩ TxW ) = i} .

Finally, for i ≥ 1, Di :=
⋃
j≥i Yj.

Note that Yi is empty for i > max(n, k) and Yi = Di \Di+1. Also we have p2(D) = DX .
All Di are closed analytic subsets of W and we have a filtration

D1 = W ⊃ D2 = D ⊃ D3 ⊃ D4 ⊃ · · · ⊃ Dmax(n,k).

Using Lemma 2.1.1, we can verify that D is the set of critical points of p2 : W → Gk(PN)
and Yi (resp.Di) is the set of points (x,W ) ∈ W such that the differential (p2)∗ : T(x,W )W →
TWGk(PN) has corank i− 1 (resp. corank≥ i− 1).

Theorem 2.2.2. 1. For each i, Yi is a connected submanifold of W with codimension
i2 − i and is open and dense in Di.

2. For each i, Di is an irreducible analytic subset of W with codimension i2 − i.

Since dimW = dimGk(PN)+1 and p2 is a proper holomorphic map, we get the following
which we will use later.

Corollary 2.2.3. The set DX is an irreducible analytic subset of Gk(PN) with codimension
≥ 1. If the codimension of DX is 1, p2(D3) is a proper analytic subset of DX .

Proof of Theorem 2.2.2. Let us introduce some notations. Let V be a fixed n-dimensional
subspace of CN and for i = 1, 2, . . ., let

Yi := {W ∈ Gk,N ; dim(V +W ) = N + 1− i} ,

andDi =
⋃
j≥i Yj. By trivializations of the pair of holomorphic vector bundles (TPN |X , TX)

on X , we see that p1|Di
and p1|Yi

are holomorphic fiber bundle with fiber isomorphic to Di

and Yi, respectively. Since Yi is open and dense in Di, Yi is also open and dense in Di. We
see that Yi has a structure of a connected complex manifold of dimension kn− k + i− i2.
This can be seen by considering the projection Yi → Gi(V ), W 7→ W ∩ V (Gi(V ) is the
Grassmannian of all i-planes of V ). This shows Yi is a connected complex manifold with
the desired codimension.

We next prove the second part. Since Yi is contained in Di, the first part shows
that the set of smooth points of Di is connected, hence Di is irreducible. Also we have
dimDi = dimYi. This completes the proof.
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2.3 The tangent space of DX for the case DX is a hypersurface

In this subsection we describe the tangent space of DX at a generic point of DX under
the assumption that the codimension of DX is 1, i.e., DX is a hypersurface of Gk(PN).
Then p2|D : D → DX is a dominant regular map between projective varieties of the same
dimension. By Sard’s lemma for varieties (see Chapter 3 of [25] for instance), there exists
a proper analytic subset E ′ ⊂ DX such that

1. E ′ contains S(DX), the set of singular points of DX ,

2. the differential (p2|D)∗ : T(x,W )D → TWDX is an isomorphism for (x,W ) ∈ (p2|D)−1(DX\
E ′) \ S(D), where S(D) denotes the set of singular points of D.

By Theorem 2.2.2, Y2 is contained in D \ S(D) so S(D) ⊂ D3. Setting E := E ′ ∪ p2(D3)
then this is a proper analytic subset of DX by Corollary 2.2.3. Now we have

Lemma 2.3.1. Suppose that the codimension of DX is 1. Then there exists a proper
analytic subset E of DX such that

1. E contains S(DX),

2. (p2|D)−1(DX \ E) ⊂ Y2, in particular (p2|D)−1(DX \ E) is contained in D \ S(D),

3. the differential (p2|D)∗is an isomorphism at (x,W ) ∈ (p2|D)−1(DX \ E).

Suppose (x0,W0) ∈ D and W0 = p2(x
0,W0) ∈ DX \E. By Lemma 2.3.1, (x0,W0) ∈ Y2.

Then the following relations among the subspaces of TW0
Gk(PN) hold:

(p2)∗(T(x0,W0)W) ⊃ (p2)∗(T(x0,W0)Y2) = (p2|D)∗(T(x0,W0)D) = TW0
DX .

Since (x0,W0) ∈ Y2, (p2)∗(T(x0,W0)W) has codimension 1 in TW0
Gk(PN) (see subsection

2.2). Therefore, we have
TW0

DX = (p2)∗(T(x0,W0)W). (2.3.1)

Recall the local coordinates of W and Gk(PN) in subsection 2.1. By Lemma 2.1.1, we see
that (p2)∗(T(x0,W0)W) is generated by the n vectors

∂xk+1

∂ti
(0)

∂

∂Gk+1
0

+ . . .+
∂xN
∂ti

(0)
∂

∂GN
0

, (2.3.2)

1 ≤ i ≤ n, and the k(n− 1) vectors
∂

∂Gj
i

, (2.3.3)

1 ≤ i ≤ k, k + 1 ≤ j ≤ N . Let

∂x

∂ti
=

(
∂xk+1

∂ti
, . . . ,

∂xN
∂ti

)t
∈ Cn−1, 1 ≤ i ≤ n.

Since (x0,W0) ∈ Y2 the rank of the matrix

(
∂x

∂t1
(0), . . . ,

∂x

∂tn
(0)

)
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is (n− 2). By an arrangement of indices we may assume that

∂x

∂ti
(0), 1 ≤ i ≤ n− 2, are linearly independent, (2.3.4)

then the other two column vectors are in the linear span of these.

Proposition 2.3.2. Suppose that the codimension of DX is 1 and let E be as in Lemma
2.3.1. Let (x0,W0) ∈ D and suppose W0 ∈ DX \ E. Then under the assumption (2.3.4),
the tangent space TW0

DX is given by

TW0
DX =

{
∑

i,j

uji
∂

∂Gj
i

; det

(
u,
∂x

∂t1
(0), . . . ,

∂x

∂tn−2
(0)

)
= 0

}
. (2.3.5)

Here, u = (uk+1
0 , . . . , uN0 )

t ∈ Cn−1.

Proof. By the assumption (2.3.4), the right hand side of (2.3.5) is a hyperplane of TW0
Gk(PN).

Also, the vectors (2.3.2) and (2.3.3) are clearly contained in the right hand side of (2.3.5).
This completes the proof.

Regarding p2 : W → Gk(PN) as a family of algebraic curves, we investigate its pull back
by a mapping into Gk(PN) which does not meet E and is transverse to DX . We first show
that the total space of the pull back has the structure of a manifold.

Proposition 2.3.3. Suppose that the codimension of DX is 1 and let E be as in Lemma
2.3.1. Let B be a C∞-manifold of dimension ≥ 2 and let ι : B → Gk(PN) be a C∞-map
satisfying ι−1(E) = ∅ and transverse to DX . Then, the pull back

ι∗W := {(b, (x,W )) ∈ B ×W; ι(b) = W}
∼= {(b, x) ∈ B ×X ; x ∈ ι(b)}

of p2 by ι has the natural structure of a C∞-manifold as a C∞-submanifold of B × X.
Moreover, if B is a complex manifold and ι is a holomorphic map, ι∗W has the natural
structure of a complex manifold as a complex submanifold of B ×X.

Proof. We only treat the case B is the small disk ∆ := {z ∈ C; |z| < ε}, ε > 0 and ι is a
holomorphic map such that ι−1(DX) = {0}. A similar argument proves the general case
(see also Lemma 2.4 in [16]).

By the assumption, we have ι(0) ∈ DX \ E and the transversality

ι∗(T0∆) + Tι(0)DX = Tι(0)Gk(PN). (2.3.6)

Let (z0, x
0) ∈ ι∗W and writeW0 := ι(z0). Choosing the local coordinates of W and Gk(PN)

as in subsection 2.1 we denote by ιji the coordinate expression of ι with respect to the local
coordinates {Gj

i}. In particular, we have ιji (z0) = 0. By Lemma 2.1.1, the local equation
of ι∗W near (z0, x

0) is given by

−ιj0(z) + xj(t1, . . . , tn)−
k∑

i=1

xi(t1, . . . , tn)ι
j
i (z) = 0
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for k + 1 ≤ j ≤ N . Let ψj(z, t1, . . . , tn) be the left hand side of the above equation. The
Jacobian matrix of (ψk+1, . . . , ψN) at (z0, 0, . . . , 0) is the (n− 1)× (n + 1) matrix

(
−ι

′(z0),
∂x

∂t1
(0), . . . ,

∂x

∂tn
(0)

)
, (2.3.7)

where ι
′ = (dιk+1

0 /dz, . . . , dιN0 /dz). We claim that this matrix is of full rank. Suppose
(x0,W0) /∈ D, namely (x0,W0) ∈ Y1. Then the (n−1)×n matrix obtained by deleting the
first column of (2.3.7) is already of full rank so is (2.3.7).

Suppose (x0,W0) ∈ D. Then by the assumption, z0 = 0 and W0 ∈ DX \E. Proposition
2.3.2 and (2.3.6) shows that

det

(
ι
′(0),

∂x

∂t1
(0), . . . ,

∂x

∂tn−2
(0)

)
6= 0, (2.3.8)

therefore (2.3.7) is of full rank also in this case. By the implicit function theorem the
assertion follows.

Let ∆ and ι be as in the proof of Proposition 2.3.3. The pull back ι∗W = {(z, x) ∈
∆ × X ; x ∈ ι(z)} has the natural projection fι : ι

∗W → ∆. Explicitly, fι is given by
fι(z, x) = z.

Theorem 2.3.4. Notations are as above. Then, (z0, x
0) ∈ ι∗W is a critical point of fι if

and only if z0 = 0 and (x0, ι(0)) ∈ D. All the critical points are non-degenerate.

In fact, we will see in Corollary 3.4.4 that there is only one critical point. By an
argument like the Morse lemma, we see that near each critical point fι looks like (z1, z2) 7→
z21 + z22 . The next subsection is devoted to the proof of this theorem.

2.4 Proof of Theorem 2.3.4

We will use the notations in the proof of Proposition 2.3.3.
Let (z0, x

0) ∈ ι∗W and write W0 := ι(z0). Suppose (x
0,W0) /∈ D. Then we may assume

that in the column vectors of (2.3.7)

∂x

∂t1
(0), . . . ,

∂x

∂tn−1

(0)

are linearly independent. By the implicit function theorem, there exist local coordinates
(s1, s2) of ι∗W centered at (z0, x

0) such that the points near (z0, x
0) can be expressed as

(z, t1, . . . , tn−1, tn) where

z = s1, t1 = t1(s1, s2), . . . , tn−1 = tn−1(s1, s2), tn = s2,

and ti(s1, s2) are holomorphic in s1, s2. Since fι(z, x) = z = s1, (z0, x
0) is not a critical

point of fι.
Suppose (x0,W0) ∈ D. Then as we have seen in the proof of Proposition 2.3.3, z0 = 0,

W0 ∈ DX \ E, and (x0,W0) ∈ Y2. We may assume (2.3.4). Then we have the inequality
(2.3.8) hence there exist local coordinates (s1, s2) of ι

∗W centered at (z0, x
0) such that

z = z(s1, s2), t1 = t1(s1, s2), . . . , tn−2 = tn−2(s1, s2), tn−1 = s1, tn = s2. (2.4.1)
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For k + 1 ≤ j ≤ N , differentiating the identity

ψj(z(s1, s2), t1(s1, s2), . . . , tn−2(s1, s2), s1, s2) = 0

with respect to s1 and setting (s1, s2) = (0, 0), we have

− ∂z

∂s1
(0)ι′(0) +

n−2∑

i=1

∂ti
∂s1

(0)
∂x

∂ti
(0) +

∂x

∂tn−1
(0) = 0.

But by the transversality, ι′(0) is not contained in Span (∂x/∂ti(0))1≤i≤n. Thus we have
∂z/∂s1(0) = 0 and the identity

n−2∑

i=1

∂ti
∂s1

(0)
∂x

∂ti
(0) +

∂x

∂tn−1
(0) = 0. (2.4.2)

Similarly, we have ∂z/∂s2(0) = 0 and the identity

n−2∑

i=1

∂ti
∂s2

(0)
∂x

∂ti
(0) +

∂x

∂tn
(0) = 0. (2.4.3)

This shows that (0, x0) is a critical point of fι. We have proved the first part.
To accomplish the proof, we must show that all the critical points are non-degenerate.

We need to compute the Hessian of z(s1, s2) at (s1, s2) = (0, 0) where z(s1, s2) is as in
(2.4.1). For this purpose we give a system of local equations for the submanifold Y2, and
we rephrase the fact that the differential (p2|D)∗ : T(x0,W0)D = T(x0,W0)Y2 → TW0

DX is an
isomorphism.

Now take the local coordinates (2.1.3) of W. Then for (x,W ) in this coordinate neigh-
borhood, TxX = Tx(X ∩ U0) ⊂ CN is spanned by the n vectors

αi =

(
∂x1
∂ti

, . . . ,
∂xN
∂ti

)t
, 1 ≤ i ≤ n,

and TxW = Tx(W ∩ U0) is spanned by the k vectors

βi = (0, . . . ,
i

1, . . . , 0, F k+1
i , . . . , FN

i )t, 1 ≤ i ≤ k.

(x,W ) ∈ Y2 if and only if the linear span of these n + k = N + 1 vectors is (N − 1)-
dimensional. On the other hand, the origin (x0,W0) is in Y2 and by the assumption (2.3.4)
α1, . . . , αn−2, β1, . . . , βk are linearly independent at (x

0,W0). Therefore, the vanishing of the
two determinants det(α1, . . . , αn−2, αn−1, β1, . . . , βk) and det(α1, . . . , αn−2, αn, β1, . . . , βk)
gives a system of local equations for Y2 near (x0,W0). By elementary transformations
of matrices, we see that these determinants are equal up to sign to Φn−1 and Φn respec-
tively, where

Φν = det

(
∂x

∂t1
−

k∑

i=1

∂xi
∂t1

F i, · · · ,
∂x

∂tn−2
−

k∑

i=1

∂xi
∂tn−2

F i,
∂x

∂tν
−

k∑

i=1

∂xi
∂tν

F i

)
.

Here, F i = (F k+1
i , . . . , FN

i )t. Hence Y2 is locally given by Φn−1 = Φn = 0.
Now the fact that (p2|D)∗ : T(x0,W0)Y2 → TW0

DX is an isomorphism can be rephrased
as: the rank of the Jacobian matrix of (Φn−1,Φn, p2) at (x

0,W0) is equal to dimDX + 2 =
(k+1)(n−1)+1. Again by elementary transformations, this is equivalent to the following
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Lemma 2.4.1. Let (x0,W0) and let Φn−1 and Φn be as in the above. Then the rank of the
(n+ 1)× n matrix 



∂Φn−1

∂t1
(0) · · · ∂Φn−1

∂tn
(0)

∂Φn
∂t1

(0) · · · ∂Φn
∂tn

(0)

∂x

∂t1
(0) · · · ∂x

∂tn
(0)




(2.4.4)

is equal to (k + 1)(n− 1) + 1− k(n− 1) = n.

We perform the following two elementary transformation to (2.4.4): let Ci be the i-th
column of (2.4.4), then 1) add

∑n−2
i=1 ∂ti/∂s1(0)Ci to the (n−1)-th column, and 2) add∑n−2

i=1 ∂ti/∂s2(0)Ci to the n-th column. Then by (2.4.2) and (2.4.3), (2.4.4) is transformed
into 



∂Φn−1

∂t1
(0) · · · ∂Φn−1

∂tn−2

(0) A11 A12

∂Φn
∂t1

(0) · · · ∂Φn
∂tn−2

(0) A21 A22

∂x

∂t1
(0) · · · ∂x

∂tn−2
(0) 0 0



,

where

Aλµ =

n−2∑

i=1

∂ti
∂sµ

(0)
∂Φn+λ−2

∂ti
(0) +

∂Φn+λ−2

∂tn+µ−2
(0). (2.4.5)

Now combining Lemma 2.4.1 and (2.3.4), we see that

det

(
A11 A12

A21 A22

)
6= 0. (2.4.6)

Lemma 2.4.2. We have the equality

(
A11 A12

A21 A22

)
= A0




∂2z

∂s1
2 (0)

∂2z

∂s2∂s1
(0)

∂2z

∂s1∂s2
(0)

∂2z

∂s2
2 (0)


 ,

where A0 = det (∂x/∂t1(0), . . . , ∂x/∂tn−2(0), ι
′(0)).

By (2.3.8), (2.4.6), and Lemma 2.4.2, it follows that the Hessian of z(s1, s2) at (s1, s2) =
(0, 0) is non-zero. Thus, (0, x0) is a non-degenerate critical point of fι. This completes the
proof of Theorem 2.3.4, modulo Lemma 2.4.2.

Lemma 2.4.2 can be proved by a straightforward computation. We only give an outline
of the proof of A11 = A0∂

2z/∂s1
2(0). The first claim is that

∂Φn−1

∂ti
(0) = det

(
∂x

∂t1
(0), . . . ,

∂x

∂tn−2
(0),

n−2∑

ℓ=1

∂tℓ
∂s1

(0)
∂2x

∂ti∂tℓ
(0) +

∂2x

∂ti∂tn−1
(0)

)
, (2.4.7)

which can be proved by using (2.4.2).
For k + 1 ≤ j ≤ N , differentiating twice the identity

ψj(z(s1, s2), t1(s1, s2), . . . , tn−2(s1, s2), s1, s2) = 0
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with respect to s1 and setting (s1, s2) = (0, 0), we have

− dιj0
dz

(0)
∂2z

∂s1
2 (0) +

n∑

i=1

((
n∑

h=1

∂2xj
∂th∂ti

(0)
∂th
∂s1

(0)

)
∂ti
∂s1

(0) +
∂xj
∂ti

(0)
∂2ti

∂s1
2 (0)

)
= 0 (2.4.8)

(note that ∂z/∂s1(0) = ∂z/∂s2(0) = 0, ∂tn−1/∂s1(0) = 1, and ∂tn/∂s1(0) = 0).
Using (2.4.5), (2.4.7), and (2.4.8), we can get the desired formula.

3 The Meyer function for a projective variety

3.1 Main theorem

Recall the situation arising from X ⊂ PN as described in section 1. We focus on the
topological monodromy

ρX : π1(U
X) → Γg

of (1.0.1).

Theorem 3.1.1. There exists a uniquely determined Q-valued 1-cochain φX : π1(U
X) → Q

whose coboundary equals to ρ∗
Xτg. In particular, we have ρ∗

X [τg] = 0 ∈ H2(π1(U
X);Q).

Here we comment about the group π1(U
X). If the codimension of DX is ≥ 2, π1(U

X)
is trivial since Gk(PN) is simply connected. Suppose the codimension of DX is 1. Then
π1(U

X) is finitely presentable since UX is an affine algebraic variety, and the first Betti
number b1(π1(U

X)) is zero (see Lemma 3.3.1). Moreover, π1(U
X) is normally generated by

a single element, called a lasso. Roughly speaking, a lasso is an element of π1(U
X) going

once around DX . The precise definition is as follows. We fix some base point in UX . Let
W0 be a smooth point of DX and (z1, . . . , zm) be local coordinates of Gk(PN) centered at
W0, such that DX is locally given by z1 = 0. For a sufficiently small ε > 0, consider the
loop

[0, 1] → UX , t 7→ (εe2π
√−1t, 0, . . . , 0)

defined in this coordinate neighborhood. Joining this loop with a path in UX from the
base point of UX to (ε, 0, . . . , 0), we get an element of π1(U

X), which is called a lasso
around DX . The irreducibility of DX implies that all lassos are conjugate to each other
and π1(Gk(PN)) = 1 implies that π1(U

X) is normally generated by a lasso. Since φX is a
class function (see section 1), the value of φX on any lasso is constant. This value can be
computed from various invariants of X . For details, see subsection 3.5. Nevertheless, the
values of φX on an element other than lasso seems difficult to know.

The proof of Theorem 3.1.1 will be given in the next two subsections. The following
argument is a generalization of sections 3 and 4 of [16].

3.2 Proof of the existence

It suffices to consider the case when the codimension of DX is 1. The existence of φX is
equivalent to ρ∗

X [τg] = 0 ∈ H2(π1(U
X);Q).

We first embedH2(π1(U
X);Q) into another space. Let Vk+1,N+1 be the (complex) Stiefel

manifold of all (k + 1)-frames of CN+1. Regarding PN as the projectivization of CN+1 we
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have the natural projection q : Vk+1,N+1 → Gk(PN), which is a principal GL(k + 1;C)
bundle. Let D̃X = q−1(DX), Ũ

X = Vk+1,N+1 \ D̃X , and Ẽ = q−1(E). For simplicity we use

the same letter q for the restriction q|ŨX : ŨX → UX .
We have the following short exact sequence with rational coefficients:

H0(UX)
∪c1−→ H2(UX)

q∗−→ H2(ŨX).

This is derived from the 5-term exact sequence of the principal bundle q : ŨX → UX . Here,
c1 is the first Chern class, which is the restriction of a generator of H2(Gk(PN)) to H2(UX).
But since DX is of codimension 1, the first Chern class c1([DX ]) ∈ H2(Gk(PN)) is defined
and is also a generator of H2(Gk(PN)). The point here is that H2(Gk(PN)) is of rank 1.
Clearly the restriction of c1([DX ]) to U

X = Gk(PN) \DX is zero, therefore c1 is also zero.
Thus, we have the injective homomorphism

q∗ : H2(UX ;Q) →֒ H2(ŨX ;Q). (3.2.1)

Let χ : π1(Ũ
X) → π1(U

X) be the homomorphism between fundamental groups induced
by q. Since for any space X there is the natural injection H2(π1(X)) → H2(X) of the
second cohomology with arbitrary coefficients, (3.2.1) implies that we have the injective
homomorphism

χ∗ : H2(π1(U
X);Q) →֒ H2(π1(Ũ

X);Q) (3.2.2)

induced by χ.
Next we show χ∗ρ∗

X [τg] = 0 ∈ H2(π1(Ũ
X);Z). Let

W̃ :=
{
(x, W̃ ) ∈ PN × Vk+1,N+1; x ∈ X ∩ q(W̃ )

}

and p̃2 : W̃ → Vk+1,N+1 be the second projection, and

C̃X :=
{
(x, W̃ ) ∈ PN × ŨX ; x ∈ X ∩ q(W̃ )

}
.

The second projection p̃X : C̃X → ŨX is a family of Riemann surfaces, which is the pull
back of pX : CX → UX by q. The associated topological monodromy is ρ̃X := ρX ◦ χ.

We construct a 1-cochain c : π1(Ũ
X) → Z whose coboundary δc coincides with ρ̃∗

Xτg.

The point here is Vk+1,N+1 \ Ẽ is 2-connected. This follows from the two facts: 1) the
Stiefel manifold Vk+1,N+1 is 2(N − k)-connected and 2(N − k) = 2n − 2 ≥ 2, and 2) the

complex codimension of Ẽ ⊂ Vk+1,N+1 is ≥ 2 (see Lemma 2.3.1). All of the spaces that
we consider in the rest of this subsection as well as all of the maps are based, otherwise
stated.
Construction of c. Let ℓ : S1 → ŨX be a C∞-loop, i.e., a C∞-map from S1 to ŨX . Since
Vk+1,N+1 \ Ẽ is simply connected we can extend ℓ to a C∞-map ℓ̃ : D2 → Vk+1,N+1 \ Ẽ
which is transverse to D̃X . Here we make the identifications S1 = {z ∈ C; |z| = 1} and
D2 = {z ∈ C; |z| ≤ 1}, and endow them the usual orientation: the orientation of D2 is
induced by that of C and S1 goes around D2 by counter clockwise manner.

By Proposition 2.3.3 the pull back ℓ̃∗W̃ := (q ◦ ℓ̃)∗W has the natural structure of a
compact oriented 4-dimensional C∞-manifold with boundary. The orientation is induced
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by the orientation of D2 and that of the general fibers of ℓ̃∗W̃ , which have the natural
orientations as compact Riemann surfaces. Set

c([ℓ]) := Sign(ℓ̃∗W̃) ∈ Z.

Here [ℓ] ∈ π1(Ũ
X) is the element represented by ℓ, and the right hand side is the signature

of ℓ̃∗W̃ .

Proposition 3.2.1. The above definition of c is well defined. The 1-cochain c is a class
function on π1(Ũ

X) and c(x−1) = −c(x) for x ∈ π1(Ũ
X). We have δc = −ρ̃∗

Xτg.

Proof. Let ℓ0 and ℓ1 be C
∞-loops in ŨX . Suppose that the elements of π1(Ũ

X) represented
by them are conjugate to each other. Then there exists a C∞-homotopy H : S1 × [0, 1] →
ŨX such that H(·, 0) = ℓ0 and H(·, 1) = ℓ1 (caution: we do not require that H(·, t) is a
base preserving map for every t ∈ [0, 1]). Identify the 2-sphere S2 as

S2 ∼= (S1 × [0, 1]) ∪ (D2 × {0}) ∪ (D2 × {1})
and take some extensions ℓ̃i : D

2 × {i} → Vk+1,N+1 \ Ẽ of ℓi for i = 0, 1. Then piecing H ,

ℓ̃0, and ℓ̃1 together, we can construct a C∞-map H̃ : S2 → Vk+1,N+1 \ Ẽ which is transverse

to D̃X . Introduce the orientation of S2 such that D2×{0} →֒ S2 is orientation preserving.

Then D2×{1} →֒ S2 is orientation reversing and the pull back H̃∗W̃ is a closed oriented 4-

dimensional C∞-manifold. Moreover, since π2(Vk+1,N+1 \ Ẽ) = 0, H̃ extends to a C∞-map

from the 3-ball to Vk+1,N+1\Ẽ which is transverse to D̃X . Hence H̃
∗W̃ is the boundary of a

5-dimensional manifold and the signature of H̃∗W̃ is zero. Now by the Novikov additivity
of the signature we have

0 = Sign(H̃∗W̃) = Sign(ℓ̃∗
0W̃)− Sign(ℓ̃∗

1W̃).

This proves that c is well defined and c is a class function, i.e., c(xyx−1) = c(y) for x, y ∈
π1(Ũ

X). Since changing the orientation of a manifold changes the sign of its signature, the
property c(x−1) = −c(x) is clear.

We next prove that δc = −ρ̃∗
Xτg, i.e.,

c([ℓ0]) + c([ℓ1])− c([ℓ0][ℓ1]) = −ρ̃∗
Xτg([ℓ0], [ℓ1]) (3.2.3)

for any based C∞-loops ℓ0 and ℓ1. Let Di, 0 ≤ i ≤ 2, be embedded three disjoint closed 2-
disks in S2 and we denote its boundary circle by S1

i . Let P := S2\∐2
i=0 Int(Di). Since P has

the homotopy type of the bouquet S1 ∨ S1, we can construct a C∞-map L : P → ŨX such
that the restriction of L to S1

i
∼= S1 is equal to ℓi for i = 0, 1. Then the restriction of L to S1

2

is homotopic to the inverse of the composition loop ℓ0 · ℓ1. Notice that Sign(L∗W̃) is equal

to ρ̃∗
Xτg([ℓ0], [ℓ1]). Take some extensions ℓ̃0, ℓ̃1, and ℓ̃0 · ℓ1 of ℓ0, ℓ1, and ℓ0 · ℓ1, respectively.

Then by piecing them and L together we have a C∞-map L̃ : S2 → Vk+1,N+1 \ Ẽ which is

transverse to DX . Again, the vanishing of π2(Vk+1,N+1 \ Ẽ) implies that the signature of

L̃∗W̃ is zero. Finally, by the Novikov additivity we have

0 = Sign(L̃∗W̃) = Sign(ℓ̃∗
0W̃) + Sign(ℓ̃∗

0W̃)− Sign(ℓ̃0 · ℓ1
∗
W̃) + Sign(L∗W̃),

but this equation is equivalent to (3.2.3). This completes the proof.

By Proposition 3.2.1, we have χ∗ρ∗
X [τg] = 0 ∈ H2(π1(Ũ

X);Z). Combining this with the
injection (3.2.2) we have ρ∗

X [τg] = 0 ∈ H2(π1(U
X);Q). This completes the proof of the

existence of φX .
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3.3 Proof of the uniqueness

The uniqueness of φX follows from the following

Lemma 3.3.1. The first cohomology group of π1(U
X) is trivial over rationals:

H1(π1(U
X);Q) = Hom(π1(U

X),Q) = 0.

Proof. It suffices to consider the case when the codimension of DX is 1. Consider the
following commutative diagram among (co)homology groups with integer coefficients:

Z ∼= H2(Gk(PN))

∼=
��

// H2(Gk(PN), UX)

∼=
��

// H1(U
X) // 0

H2dimGk(PN )−2(Gk(PN))
j∗ // H2dimGk(PN )−2(DX) ∼= Z.

The vertical isomorphisms are Poincaré duality. Note that H2dimGk(PN )−2(DX) ∼= Z since
DX is irreducible. The first horizontal sequence is exact and is a part of the homology
sequence of the pair (Gk(PN), UX) and j∗ is induced by the inclusion DX →֒ Gk(PN).
Then the generator of H2(Gk(PN)) is mapped to a positive integer times the generator
of H2dimGk(PN )−2(DX), the fundamental class of DX (this positive integer is denoted by
degDX and will be studied in the next subsection). Thus H1(U

X), which is isomorphic to
the abelianization of π1(U

X), is a cyclic group of finite order. This completes the proof.

Now Theorem 3.1.1 is established.

3.4 Theory of Lefschetz pencils

In this subsection we recall the definition of the degree of an analytic subset in a Grass-
mannian and describe a method to compute the degree of DX ⊂ Gk(PN). This will be
used to compute the value of φX on a lasso.

First we treat the case of classical dual varieties, namely when n = 2. Let X ⊂ PN be
a smooth projective surface. Then Gk(PN) = GN−1(PN) is nothing but the dual projective
space P∨

N and DX is the dual variety of X . Let L be a line of P∨
N avoiding the singular

points of DX and meeting DX transversally. Note that generic lines of P∨
N satisfy this

condition. We denote by iL the inclusion L →֒ P∨
N . Then as explained in [15] or [17],

especially (1.6.3) of [17], the projection i∗LW → L is a holomorphic Lefschetz fibration with
the set of critical values being L ∩DX , in the following sense.

Definition 3.4.1. Let Y be a complex surface and C a compact Riemann surface. A
proper surjective holomorphic map f : Y → C is called a holomorphic Lefschetz fibration
if the number of critical values of f is finite and over each critical value, there exists only
one critical point near which f locally looks like (z1, z2) 7→ z21 + z22 .

In particular degDX , which is equal to the number ♯(L∩DX) by definition, is equal to
the number of critical points of i∗LW → L.

More generally for a projective variety X ⊂ PN , we can take a generic line L of P∨
N and

consider the family of hyperplane sections {H ∩ X}H∈L of X , parametrized by L. This
construction is called Lefschetz pencils and very useful to study the topology of X .
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We slightly generalize the above construction to the case of general n. We shall start
by giving the definition of the degree of an analytic subset in a Grassmannian following
[10] Chapter 3, section 2-A.

Recall that Gp,q is the Grassmannian of p-planes of Cq. By a line of Gp,q is meant a
curve embedded in Gp,q which can be written as

PNM := {W ∈ Gp,q;N ⊂W ⊂M} (3.4.1)

for some (p− 1)-plane N and (p+ 1)-plane M satisfying N ⊂M .
Let Z be an analytic subset of Gp,q. Take a line PMN of Gp,q such that

1. PMN ∩ S(Z) = ∅, where S(Z) denotes the set of singular points of Z,

2. PMN and Z meet transversally.

Then the intersection PMN ∩ Z consists of finitely many points. We define degZ ∈ Z by

degZ := ♯(PMN ∩ Z)

where PMN satisfies the above two conditions. When Z is a hypersurface this number
is positive (see [9] p.64), and has the following topological interpretation. Let c1([Z]) ∈
H2(Gp,q;Z) be the first Chern class of the line bundle over Gp,q determined by Z and
[PNM ] ∈ H2(Gp,q;Z) the homology class represented by the embedded 1-dimensional pro-
jective space PNM . Note that [PNM ] is a generator of H2(Gp,q;Z) ∼= Z. Then degZ is equal
to the result of the Kronecker pairing 〈c1([Z]), [PNM ]〉. If n = 2, this degree coincides with
the usual definition of the degree of a projective hypersurface in GN−1(PN) = P∨

N . When
the codimension of Z is ≥ 2, degZ = 0.

We remark that generic lines of Gp,q satisfy the above two conditions in the following
sense. Let us consider the space parametrizing all lines of Gp,q; namely, let

Lp,q := {(N,M) ∈ Gp−1,q ×Gp+1,q;N ⊂ M} .

Then the set of (N,M) ∈ Lp,q such that PNM satisfying the above two conditions is non-
empty and Zariski open in Lp,q. This is proved by an application of Sard’s lemma for
varieties to the second projection {(z, (N,M)) ∈ Z × Lp,q; z ∈ PNM} → Lp,q.

Let us return to our setting: X ⊂ PN is a n-dimensional smooth projective variety,
DX is the k-th associated variety. Let EX = E ⊂ DX be as in Lemma 2.3.1 when the
codimension of DX is 1, EX = ∅ when the codimension of DX is ≥ 2. Here we put the
subscript X to E to indicate its dependence on X . Let

Lk(PN) := {(N,M) ∈ Gk−1(PN)×Gk+1(PN);N ⊂M} ;

this is clearly isomorphic to Lk+1,N+1. For (N,M) ∈ Lk(PN), the corresponding line
PNM ⊂ Gk(PN) is defined by the same way as (3.4.1).

The existence of Lefschetz pencils for the case of general n is stated as follows.

Theorem 3.4.2 (Existence of Lefschetz pencils). Let PNM be a line of Gk(PN) not meeting
EX and meetingDX transversally. Then the projection i∗NMW → PNM , where iNM : PNM →֒
Gk(PN) denotes the inclusion, is a holomorphic Lefschetz fibration in the sense of Defini-
tion 3.4.1. Moreover degDX is equal to the number of critical points of i∗NMW → PNM .
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By Theorem 2.3.4, the remaining to show is the number of critical points over each
critical value is just one. If n = 2, there is nothing to prove as remarked before Definition
3.4.1. We only remark that in the proof of (1.6.3) of [17], the bi-duality theorem plays a
key role.

To reduce the case of general n to the case of n = 2, we will cut X with a generic
(k + 1)-plane. The result will be a smooth projective surface in the (k + 1)-plane. We
prepare some notations. PNM can be considered as a line of M∨, the dual projective space
of M . Then we write it by LN . For M ∈ Gk(PN ), let X ′ := M ∩X ⊂ M . If M meets X
transversally, X ′ is a smooth surface in M . Then we can consider DX′ and EX′ in M∨.

Lemma 3.4.3. There exists a point (N,M) ∈ Lk(PN) such that:

1. the (k+1)-plane M meets X transversally (hence X ′ is a smooth projective surface).

2. the line PNM does not meet EX and meets DX transversally.

3. the line LN does not meet EX′ and meets DX′ transversally.

Proof. The set of points in Lk(PN) satisfying the conditions 1 and 2 is non-empty and
Zariski open in Lk(PN). Let (N ′,M) be a point in this set. Since the set of lines ofM∨ not
meeting EX′ and meeting DX′ transversally is non-empty and Zariski open in the space
of all lines of M∨, there exists a line LN near LN ′ such that (N,M) satisfies all the three
conditions.

Implications of the Lemma. Let (N,M) be as in Lemma 3.4.3. We have the natural
inclusion ιM : M∨ →֒ Gk(PN). Since M meets X transversally, for H ∈M∨ the conditions
H ∈ DX′ and ιM (H) ∈ DX are equivalent. Therefore we have the injection

ιM |UX′ : UX′ →֒ UX , (3.4.2)

where UX′

=M∨\DX′

, and the bijection ιM |LN∩DX′
: LN∩DX′

∼=→ PNM∩DX . In particular,
DX is a hypersurface if and only if DX′ is a hypersurface and we have degDX = degDX′ .

For simplicity we identify LN ∩DX′ with PNM ∩DX and write it by DNM . Let UNM =
PNM \DNM . By the inclusion UNM →֒ UX (resp. UNM →֒ UX′

), any loop in UNM going
once around a point of DNM is mapped to a lasso around DX (resp. DX′), hence a lasso
around DX′ is mapped to a lasso around DX by the map (3.4.2). Consider the group
homomorphism jM : π1(U

X′

) → π1(U
X) induced by (3.4.2). The uniqueness of φX′ shows

that j∗
MφX coincides with φX′ . Thus the value of φX on a lasso around DX coincides with

the value of φX′ on a lasso around DX′.
In this way we can reduce the computation of degDX or the value of φX on a lasso

around DX to the case of n = 2.

Proof of Theorem 3.4.2. Let (N,M) be as in Lemma 3.4.3. Let i′N : LN → M∨ be the
inclusion and W ′ := {(x,W ) ∈ M ×M∨; x ∈ X ′ ∩W}. We can consider the pull back
(i′N)

∗W ′. Since dimX ′ = 2 the remark right after the statement of Theorem 3.4.2 applies,
so (i′N)

∗W ′ → LN is a holomorphic Lefschetz fibration. Therefore, i∗NMW → PNM is also
a holomorphic Lefschetz fibration because ιM induces the isomorphism

(i′N )
∗W ′ ∼=→ i∗NMW
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between the families of algebraic curves over LN = PNM . Thus we have proved that: there
exists a line P0 = PNM of Gk(PN) not meeting EX and meeting DX transversally such that
the projection i∗NMW → PNM is a holomorphic Lefschetz fibration.

Let P1 be a line not meeting EX and meeting DX transversally. For j = 0, 1, we denote
the inclusion map Pj →֒ Gk(PN) by ij . Let V be the space of lines of Gk(PN) not meeting
EX and meeting DX transversally. This is non-empty and Zariski open, hence connected.
Thus there exists a differentiable path in V joining P0 and P1, inducing a deformation
equivalence of class C∞ between i∗0W and



Proof. First remark that for any choice of H ′ and ℓ, σ ∈ π1(UL) is mapped to a lasso
around DX by the homomorphism π1(UL) → π1(U

X) induced by the inclusion. Thus for
any two vanishing cycles the Dehn twists along them are conjugate to each other in the
mapping class group of XH0

.
Suppose there exists a reducible fiber. This means that there exists a vanishing cycle

which is a separating simple closed curve. Then all the vanishing cycles are separating by
the remark above. Since any separating simple closed curve is zero as a homology class,
this implies V = 0. But by the assumption and (3.5.1) we also have V = H1(XH0

) 6= 0, a
contradiction. This completes the proof.

Proposition 3.5.2. Let X ⊂ PN be a smooth projective surface and g the genus of a
generic hyperplane section H ∩X, H ∈ UX . Assume that g > 0 and the rank of H1(X ;R)
is less than 2g for some principal ideal domain R. Suppose DX is a hypersurface and let
σX ∈ π1(U

X) be a lasso around DX . Then we have

φX(σX) =
SignX − degX

χ(X) + degX − 2(2− 2g)
.

Here, SignX is the signature of X as a closed oriented 4-manifold and χ(X) is the Euler-
Poincaré characteristic of X, and degX is the usual degree of X (i.e., the number of
intersecting points with a generic complementary dimensional plane to X).

Proof. Let L be a generic line of P∨
N as in the beginning of this subsection. As in [17]

(1.6.1) the axis A = ∩H∈LH of the pencil meets X transversally, and i∗LW is the blow up
of X at the degX points A∩X hence diffeomorphic to the connected sum X#(degX)P2.
Therefore we have

Sign(i∗LW) = SignX − degX (3.5.2)

and χ(i∗LW) = χ(X) + degX .
Let DL = {H1, . . . , Hd}, where d = degDX and for 1 ≤ i ≤ d, let σi ∈ π1(UL) be the

element obtained by substituting Hi for H
′ in the definition of σ, see the beginning of this

subsection. As elements of π1(U
X), all σi are lassos around DX .

Let Di ⊂ L be a small closed 2-disk aroundHi. We write by fL the projection i∗LW → L
and write Xi = f−1

L (Di). Let X0 = X \∐i IntXi. By Lemma 3.5.1, f−1
L (Hi) is irreducible

hence the signature of Xi is zero. Using the Novikov additivity, we have Sign(i∗LW) =
SignX0. By Meyer’s signature formula ([20] Satz 1) and ρ∗

Xτg = δφX , we have

Sign(i∗LW) = SignX0 =
d∑

i=1

φX(σi) = dφX(σX). (3.5.3)

On the other hand since all the singular fibers have one nodal singularity, there are d
singular fibers with Euler contribution +1 (see [5], (11.4) Proposition), thus

d = χ(i∗LW)− 2(2− 2g) = χ(X) + degX − 2(2− 2g). (3.5.4)

The proposition follows from (3.5.2), (3.5.3), and (3.5.4).

Note that by (3.5.4) we can express degDX in terms of χ(X), degX , and g. The genus
g is expressed as follows. For H ∈ UX , let C = H ∩X . By the adjunction formula we have
c1(C) = c1(X)|C − h, where h is the hyperplane class, thus

2− 2g = χ(C) = 〈c1(C), [C]〉 = 〈c1(X)h− h2, [X ]〉 = 〈c1(X)h, [X ]〉 − degX.
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Example 3.5.3. Let m ≥ 1 and n1, . . . , nm ≥ 2 be integers and let X ⊂ Pm+2 be a
smooth complete intersection of type (n1, . . . , nm). Namely X is given as the zero set of
some homogeneous polynomials f1, . . . , fm where fi is of degree ni.

Proposition 3.5.4. Let X be as above and assume that (m,n1, . . . , nm) 6= (1, 2). Then
DX is a hypersurface. Let σX ∈ π1(U

X) be a lasso around DX . We have

φX(σX) =

m−
m∑

i=1

n2
i

3

(
m2 +m

2
+

m∑

i=1

n2
i − (m+ 1)

m∑

i=1

ni +
∑

i<j

ninj

) .

Proof. We have degX = n1 · · ·nm and using the adjunction formula we can compute

χ(X) = c2(X) = n1 · · ·nm
((

m+ 3
2

)
+

m∑

i=1

n2
i − (m+ 3)

m∑

i=1

ni +
∑

i<j

ninj

)
, (3.5.5)

SignX =
n1 · · ·nm

3

(
m+ 3−

m∑

i=1

n2
i

)
. (3.5.6)

For H ∈ UX , C = H ∩X is a smooth complete intersection of type (n1, . . . , nm, 1). Using
the adjunction formula we have

2− 2g = χ(C) = n1 · · ·nm
(
m+ 2−

m∑

i=1

ni

)
,

and following the argument in the proof of Proposition 3.5.2, degDX is given by

degDX = n1 · · ·nm
(
m2 +m

2
+

m∑

i=1

n2
i − (m+ 1)

m∑

i=1

ni +
∑

i<j

ninj

)
.

We claim that degDX is positive. If m = 1, degDX = n1(n1 − 1)2 > 0. If m ≥ 2, Using
the inequality

m∑

i=1

n2
i ≥

2

m− 1

∑

i<j

ninj (3.5.7)

for ni ≥ 0 (this is easily derived from the geometric-arithmetic mean inequality), we have

degDX ≥ n1 · · ·nm
(
m2 +m

2
+
m+ 1

m− 1

∑

i<j

ninj − (m+ 1)

m∑

i=1

ni

)

= n1 · · ·nm
m+ 1

m− 1

∑

i<j

(ni − 1)(nj − 1)

Thus in any case degDX > 0, i.e., DX is a hypersurface. Also we can show χ(C) ≤ 0 hence
g > 0 except for the case m = 1 and n1 = 2. Finally, X is simply connected. This follows
from the Zariski theorem of Lefschetz type, see [17], (8.1.1). Now Proposition 3.5.2 can be
applied, and combining the above computations all together we have the result.
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The next example is a generalization of the above, but it will illustrate that for a fixed
variety, how the value of the Meyer function on a lasso depends on a choice of its projective
embedding.

Example 3.5.5. Let m ≥ 0, n1, . . . , nm ≥ 2, n ≥ 2, and d ≥ 1 be integers. When m = 0,
we assume that d ≥ 2. Let vd : Pm+n →֒ PN be the Veronese embedding of degree d. Here,

N =

(
n +m+ d

d

)
− 1.

Let X be the vd-image of a smooth complete intersection in Pm+n of type (n1, . . . , nm).
When m = 0, X is by definition the vd-image of Pn.

Proposition 3.5.6. Let X be as above and assume that (d,m, n1, . . . , nm) 6= (1, 1, 2) and
(n, d,m) 6= (2, 2, 0). Then the k-th associated variety DX is a hypersurface. Let σX ∈
π1(U

X) be a lasso around DX . We have

φX(σX) =
αX
βX

,

where

αX =
m+ n+ 1−∑m

i=1 n
2
i − (n+ 1)d2

3
,

and

βX =

(
m+ n + 1

2

)
+

m∑

i=1

n2
i +

∑

i<j

ninj − (m+ n+ 1)

(
m∑

i=1

ni + nd

)

+nd

m∑

i=1

ni +
(n2 + n)d2

2
.

Proof. Let (N,M) ∈ Lk(PN) be as in Lemma 3.4.3 and X ′ = M ∩ X . We may focus on
X ′ ⊂M . We will show that DX′ is a hypersurface and compute the value φX′(σX′), which
must coincide with φX(σX), where σX′ ∈ π1(U

X′

) is a lasso around DX′.
First of all, the pull back v−1

d (X ′) is a smooth complete intersection in Pm+n of type
(n1, . . . , nm, d, . . . , d︸ ︷︷ ︸

n−2

). Thus X ′ is simply connected, and the invariants χ(X ′) and SignX ′

can be computed from (3.5.5), (3.5.6). Also, we have degX ′ = degX = n1 . . . nmd
n. From

these we can see that SignX ′ − degX ′ = n1 . . . nmd
n−2αX . For W ∈ UX′ ⊂ UX , C :=

W ∩X =W ∩X ′ is a smooth complete intersection in Pm+n of type (n1, . . . , nm, d, . . . , d︸ ︷︷ ︸
n−1

).

Thus the genus g of C is seen by

2− 2g = χ(C) = n1 . . . nmd
n−1

(
m+ n+ 1−

m∑

i=1

ni − (n− 1)d

)
.

It is easy to see that under the assumption, we have χ(C) ≤ 0 hence g > 0. Using (3.5.4)
and our knowledge of χ(X ′), degX ′, and χ(C) gives

degDX′ = n1 . . . nmd
n−2βX .
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We claim that degDX′ is positive. Now we have the inequality

nd2 +

m∑

i=1

n2
i ≥

2

m+ n− 1

(
∑

i<j

ninj + nd

m∑

i=1

ni +

(
n
2

)
d2

)
,

the same kind of (3.5.7). Using this, we have

degDX′ ≥ n1 . . . nmd
n−2m+ n + 1

m+ n− 1

(
∑

i<j

(ni − 1)(nj − 1) + n

m∑

i=1

(ni − 1)(d− 1)

+

(
n
2

)
(d− 1)2

)
.

This shows degDX′ > 0 except for the case d = 1 and m = 1. In this case, we have
degDX′ = n1(n1 − 1)2 > 0. Thus DX′ is a hypersurface, so is DX . Applying Proposition
3.5.2, we have φX(σX) = φX′(σX′) = (SignX ′ −degX ′)/ degDX′ = αX/βX , as desired.

3.6 Bounded cohomology of π1(U
X)

For a group G, we denote by H∗
b (G;R) the bounded cohomology group of G. Namely,

H∗
b (G;R) is the cohomology of the cochain complex of R-valued bounded cochains of G.

In this subsection we show that the second bounded cohomology of π1(U
X) is non-trivial

under a certain mild condition.

Proposition 3.6.1. Let X ⊂ PN be a smooth projective variety of dimension ≥ 2 such
that DX is a hypersurface. Suppose the value of φX on a lasso around DX is neither equal
to 0 nor −1. Then the bounded cohomology H2

b (π1(U
X);R) is non-trivial and the natural

comparison map H2
b (π1(U

X);R) → H2(π1(U
X);R) is not injective.

We need a lemma.

Lemma 3.6.2. Let T ∈ Γg be the right hand Dehn twist along a non-separating simple
closed curve on Σg. Then for any integer n ≥ 1, we have

τg(T
−1, T−n) = −1.

Proof. We use the description (1.0.3) of τg. By the formulas (12) and (13) of [20], it suffices
to prove Sign(VA,An, 〈 , 〉A,An) = −1 where

A =

(
1 −1
0 1

)

(A corresponds to the inverse of the right Dehn twist along a non-separating simple closed
curve on the torus). We have

VA,An =

{
(x, y) ∈ R2 ⊕ R2;

(
0 1
0 0

)
x+

(
0 −n
0 0

)
y = 0

}
,
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thus the vectors ((1, 0)t, (0, 0)t), ((0, 0)t, (1, 0)t), and ((0, n)t, (0, 1)t) form a basis for VA,An.
The presentation matrix of 〈 , 〉A,An with respect to this basis is




0 0 0
0 0 0
0 0 −n(n + 1)


 .

This completes the proof.

Proof of Proposition 3.6.1. Note that τg is a bounded 2-cocycle of Γg. More precisely, for
f1, f2 ∈ Γg we have |τg(f1, f2)| ≤ 4g . Thus ρ∗

Xτg is also a bounded 2-cocycle. Since φX is
a unique 1-cochain cobounding ρ∗

Xτg, it suffices to show that φX is unbounded.
Let σX be a lasso around DX . By the Picard-Lefschetz formula, ρX(σX) is the inverse

of the right hand Dehn twist along a simple closed curve. We claim that this curve is
non-separating. For, if this is separating, ρX(σX) ∈ Γg does act trivially on the homology
of Σg. Combining this with the fact that π1(U

X) is normally generated by σX , we deduce
that the image ρX(π1(U

X)) acts trivially on the homology of Σg. Hence ρ∗
Xτg is zero as

a cocycle. Since δφX = ρ∗
Xτg = 0 and φX(σX) 6= 0 it follows that φX is a non-trivial

homomorphism from π1(U
X) to Q, contradicting to Lemma 3.3.1.

Now by δφX = ρ∗
Xτg and Lemma 3.6.2, we have

φX(σ
n
X) = nφX(σX)−

n−1∑

i=1

τg(ρX(σX), ρX(σ
i
X)) = nφX(σX) + n− 1

for n ≥ 1. Since φX(σX) 6= −1, this shows the unboundedness of φX .

It is known that if a discrete group is amenable, then its bounded cohomology vanishes
in positive degrees (see [11]). Thus:

Corollary 3.6.3. Let X ⊂ PN be a smooth projective variety satisfying the hypothesis of
Proposition 3.6.1. Then the fundamental group π1(U

X) is not amenable.

As an example, when X is the one of those in Proposition 3.5.6, we can check that
αX < 0 and αX + βX > 0. Therefore Proposition 3.6.1 can be applied to this situation.

4 Applications to local signatures

4.1 An approach to local signatures via Meyer functions

Let Mg be the moduli space of compact Riemann surfaces of genus g and A a subset of
Mg. We introduce the notion of an A-fibration and a local signature with respect to A.

Definition 4.1.1. Let B be a topological space.

1. A triple ξ = (C, p, B) is called an A-family (on B) if p : C → B is a continuous family
of compact Riemann surfaces with each fiber being an element of A.

2. Let ξ0, ξ1 be A-families on B. They are called isotopic if there exists an A-family ξ
on B × [0, 1] such that for i = 0, 1, the restriction of ξ to B × {i} is isomorphic to ξi
as continuous family of Riemann surfaces on B, where B × {i} is identified with B
by (b, i) 7→ b.
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3. We denote by A(B) the set of isotopy classes of A-families over B.

Let ξ = (C, p, B) be an A-family and ψ : B′ → B a continuous map. By taking the
fiber product of ψ and p, the pull back ψ∗ξ by ψ is naturally defined as an A-family on
B′. In this way we get a category of A-families, which we denote by A′. Moreover this
association induces the map ηξ,B′ : [B′, B] → A(B′), where [B′, B] is the set of homotopy
classes of continuous maps from B′ to B.

Definition 4.1.2. An A-family ξu = (Cu, pu, Bu) over a path connected space Bu having
the homotopy type of a CW-complex is called universal if ηξu,B is bijective for any topolog-
ical space B having the homotopy type of a CW-complex. We denote by ρu : π1(Bu) → Γg
the topological monodromy of pu : Cu → Bu.

A universal A-family is uniquely determined up to isotopy if it exists: if ξ′
u = (C′

u, p
′
u, B

′
u)

is another universal A-family then there exist continuous maps ψ : Bu → B′
u and ψ

′ : B′
u →

Bu such that ψ∗ξ′
u and ξu (resp. ψ′∗ξu and ξ′

u) are isotopic. In particular Bu and B′
u are

homotopy equivalent.
In some situations as we will see, we can construct a universal A-family from a certain

A-family with group action. The following proposition is used to verify the universality of
such a family. To state the proposition we prepare a terminology. Let ξ0 = (C0, p0, B0)
be a A-family on a connected C∞-manifold B0, and let G be a Lie group acting on C0

and B0 from the left such that p0 is G-equivariant. Let G ′ be the category defined as
follows: the objects consist of (P, π, B,E) such that π : P → B is a principal G-bundle
on B (the G-action on P being from the left) and E : P → B0 is a G-equivariant map,
and the morphisms from (P, π, B,E) and (P ′, π′, B′, E ′) are the bundle maps from P to P ′

compatible with E and E ′.

Proposition 4.1.3 (A criterion for universality). Let A be a subset of Mg and ξ0 =
(C0, p0, B0) an A-family as above. Suppose there is a covariant functor from A′ to G ′

associating an A-family ξ = (C, p, B) with (P (ξ), π, B, Eξ), and satisfying the following
conditions:

1. Eξ
∗ξ0 and π∗ξ are isomorphic as continuous families of Riemann surfaces on P (ξ).

2. As for the object associated to ξ0, we can take a trivial G-bundle P (ξ0) = G × B0

and a G-equivariant map Eξ0 such that Eξ0(g, b) = g · b. Moreover, for any g ∈ G the
bundle map ḡ : P (ξ0) → P (ξ0) induced by the maps B0 → B0, b 7→ g · b and C0 → C0,
c 7→ g · c is given by ḡ(g′, b) = (g′g−1, g · b).

Let EG → BG be a universal principal G-bundle (the G-action on EG being from the
right). Taking the Borel constructions B0

G = EG ×G B0 and C0
G we obtain an A-family

ξ0G = (C0
G , p

0
G , B

0
G). Then, ξ0G is a universal A-family.

Proof. Let B be a space having the homotopy type of a CW-complex. For simplicity we
write η = ηξ0

G
,B. We construct a candidate for the inverse of η. Let ξ = (C, p, B) be an

A-family on B. Take a principal G-bundle P = P (ξ) and a G-equivariant map E = Eξ
associated to ξ. Considering the Borel construction PG = EG ×G P , let T : PG → B be
the map induced from the projection π : P → B. This is an EG-bundle, thus by Dold’s
theorem it has a section: a map ζ : B → PG such that T ◦ ζ = idB. Let EG : PG → B0

G
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be the map induced from E. Now the isomorphism E∗ξ0 ∼= π∗ξ induces the isomorphism
EG

∗ξ0G
∼= T ∗ξ and EG ◦ ζ is a continuous map from B to B0

G such that

(EG ◦ ζ)∗ξ0G = ζ∗EG
∗ξ0G

∼= ζ∗T ∗ξ = (T ◦ ζ)∗ξ = ξ.

This shows η is surjective. In fact, using the functoriality we can show that the homotopy
class of EG ◦ ζ depends only on the isotopy class of ξ. In this way we have the map
θ : A(B) → [B,B0

G ] satisfying η ◦ θ = idA(B).
Here we consider the above construction applied to ξ0G. We have P (ξ0) = G × B0 with

the projection π0 : P (ξ0) → B0, (g, b) 7→ b and the G-equivariant map Eξ0 : P (ξ
0) → B0,

(g, b) 7→ g · b. By the functoriality, the G-bundle πu : P u → B0
G and the G-equivariant map

Eu : P u → B0 associated to ξ0G is described as follows.
Take the Borel construction P u := EG ×G P (ξ

0) where the G-action on P (ξ0) is given
by g · (g′, b) = (g′g−1, g · b). Define πu : P

u → B0
G and Eu : P u → B0 by

πu([e, (g, b)]) = [e, b], and Eu([e, (g, b)]) = g · b,
where [e, b] denotes the element of B0

G represented by (e, b) ∈ EG × B0, etc. Given the
G-action on P u by g · [e, (g′, b)] = [e, (gg′, b)], πu is a principal G-bundle and Eu is G-
equivariant. Also the isomorphism Eξ0

∗ξ0 ∼= π0∗
ξ0 induces Eu∗ξ0 ∼= πu

∗ξ0G. Notice that
Tu : P

u
G → B0

G has a section ζu given by ζu([e, b]) = [e, [e, (idG , b)]].
Now we show θ ◦ η = id[B,B0

G
], which will complete the proof. Let ψ : B → B0

G be a
continuous map. By the functoriality, we can use the fiber product ψ∗P u as the G-bundle
associated to ψ∗ξ0G. Pulling back ζu, we have a section ψ∗ζu of T : (ψ∗P u)G → B which
makes the following diagram commutative.

(ψ∗P u)G
ψ̄G // P u

G
Eu

G // B0
G

B
ψ

//

ψ∗ζu

OO

B0
G

ζu

OO

Notice that Eu
G ◦ ζu = idB0

G
. Following the construction of θ we have

θ([ψ∗ξ0G ]) = [Eu
G ◦ ψ̄G ◦ ψ∗ζu] = [Eu

G ◦ ζu ◦ ψ] = [ψ],

which shows θ ◦ η = id[B,B0

G
].

Definition 4.1.4. 1. Let ∆ be a closed oriented 2-disk with the center b. A 4-tuple
F = (S, f,∆, b) is called an A-degeneration if S is a C∞-manifold of dimension 4
and f : S → ∆ is a proper surjectice C∞-map, and the restriction of f to ∆ \ {b} is
given a structure of A-family. We denote by ξF this A-family.

2. Let F = (S, f,∆, b) and F ′ = (S ′, f ′,∆′, b′) be A-degenerations. We say F and F ′

are equivalent if taking suitably smaller disks ∆0 ⊂ ∆ with b ∈ ∆0 and ∆′
0 ⊂ ∆′ with

b′ ∈ ∆′
0, there exist an orientation preserving homeomorphism ψ : (∆0, b) → (∆′

0, b
′)

such that ψ∗ξF ′ is isotopic to the restriction of ξF to ∆0 \ {b}.

3. We denote by Aloc the set of all equivalence classes of A-degenerations. We often
identify an element of Aloc with its representative. Each element of Aloc is called
a fiber germ. A smooth fiber germ is an element of Aloc obtained by an A-family
ξ = (C, p,∆).
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Definition 4.1.5. Let M be a closed oriented 4-manifold and B a closed oriented 2-
manifold. A proper surjective C∞-map f : M → B is called an A-fibration if there exist
finitely many points b1, . . . , bm ∈ B such that the restriction of f to B \ {b1, . . . , bm} is
given a structure of A-faimly.

The triple (M, f,B) is a fibered 4-manifold in the sense of section 1. For an A-fibration
f : M → B, let Fi be the element of Aloc obtained by restricting f to a small closed disk
neighborhood ∆i of bi. We formulate the notion of a local signature in our setting.

Definition 4.1.6. Let A be a subset of Mg. A function σA : Aloc → Q is called a local
signature with respect to A if

1. for a smooth fiber germ F , σA(F) = 0, and

2. for any A-fibration f : M → B, we have the global signature formula:

Sign(M) =
m∑

i=1

σA(Fi). (4.1.1)

Proposition 4.1.7. Let A be a subset of Mg. Suppose there exist a universal A-family
ξu = (Cu, pu, Bu) and a Q-valued 1-cochain φA : π1(Bu) → Q such that δφA = ρ∗

uτg. Then
there exists a local signature with respect to A.

Proof. Let F = (S, f,∆, b) ∈ Aloc. Since η = ηξu,∆\{b} is bijective, there exists uniquely up
to homotopy a continuous map gF : ∆ \ {b} → Bu such that η([gF ]) = [ξF ]. We denote by
∂∆ the element of π1(∆ \ {b}) represented by the loop going once around the boundary
of ∆ by counter clockwise manner. Then we obtain an element xF = gF ∗(∂∆) ∈ π1(Bu),
which is uniquely determined up to conjugacy. Since the equality δφA = ρ∗

uτg implies that
φA is a class function (see section 1), the value φA(xF ) is well defined.

Now define σA : Aloc → Q by

σA(F) = φA(xF ) + Sign(S). (4.1.2)

If F is a smooth fiber germ, gF extends to a continuous map from ∆. So xF ∈ π1(Bu) is
trivial, hence φA(xF) = 0. Also we have Sign(S) = 0 since topologically f : S → ∆ is just
a trivial Σg-bundle. The first condition in Definition 4.1.6 is verified. The second condition
is verified by an argument similar to the proof of Proposition 3.5.2, so we omit the detail
(see also [16], Theorem 7.2).

Definition 4.1.8. For F ∈ Aloc, we call xF ∈ π1(Bu) appeared in the proof of Proposition
4.1.7 the lifted monodromy. This is uniquely determined up to conjugacy.

4.2 Fibrations of rank 4 non-hyperelliptic curves of genus 4

Let C be a non-hyperelliptic Riemann surface of genus 4. Its canonical image is a (2, 3)
complete intersection in P3 hence is contained in a uniquely determined quadric. We say C
is of rank 4 if this quadric is of rank 4. Let R4 ⊂ M4 be the set of rank 4 non-hyperelliptic
Riemann surfaces of genus 4. R4 is Zariski open in M4.

Let s : P1 × P1 → P3 be the Segre embedding. Explicitly, s is given by

s([a0 : a1], [b0 : b1]) = [a0b0 : a0b1 : a1b0 : a1b1],
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using the homogeneous coordinates. Let V3,3 = C[a0, a1]3 ⊗C[b0, b1]3 be the space of (3, 3)
homogeneous polynomials, and let

s3,3 : P1 × P1 → P(V3,3
∨) ∼= P(V3,3)

∨ ∼= P15

be the embedding induced from the evaluation map C2 × C2 → V3,3
∨ = Hom(V3,3,C). Set

X = Im(s3,3).

Consider the group G = Aut(P1 × P1). Of course G acts on P1 × P1 (from the left),
inducing an action of G on P15 so that s3,3 is G-equivariant. Moreover G naturally acts on
P(V3,3) from the left.

Let DX ⊂ P∨
15 = P(V3,3) be the dual variety of X and UX = P(V3,3) \ DX . DX is

preserved by the G-action. Also G acts on CX ⊂ P15 × UX diagonally, and the projection
pX : CX → UX is G-equivariant. Note that for W ∈ UX , the fiber p−1

X (W ) is isomorphic
to the smooth curve in P1 × P1 determined by a (3, 3) homogeneous polynomial, which is
an element of R4 since the restriction of s to the curve gives its canonical embedding and
the image is contained in s(P1 × P1), which is a smooth quadric x0x3 − x1x2 = 0. Thus,
ξX = (CX , pX , UX) is a R4-family.

Now we will show that ξX and the G-action on it satisfies the conditions in Proposition
4.1.3. We need to consrtuct a principal G-bundle from a R4-family.

First we consider the case of a single element C ∈ R4. We denote by Ω1(C) the space
of holomorphic 1-forms on C. The unique quadric containing the canonical image of C
corresponds to the 1-dimensional kernel of the natural map t2 : Sym

2Ω1(C) → H0(C;K⊗2
C ).

Here, KC is the canonical bundle of C. Note that t2 is surjective by Max Noether’s theorem
(see [9], p. 253).

If we take a basis ω = (ω0, ω1, ω2, ω3) of Ω
1(C), an explicit form of Ker(t2) is obtained as

follows. Let ϕ0, ϕ1, ϕ2, ϕ3 ∈ Ω1(C)∗ be the dual basis of ω. Then Sym2Ω1(C) is identified
with the space S4 of 4 × 4 symmetric matrices by assigning B ∈ S4 with the quadratic
function

Ω1(C)∗ → C, x0ϕ0 + x1ϕ1 + x2ϕ2 + x3ϕ3 7→ (x0, x1, x2, x3)B(x0, x1, x2, x3)
t.

Hence a choice of a basis ω of Ω1(C) determines the element B(ω) ∈ P(S4) corresponding to
Ker(t2), and the image of the canonical map ιω : C →֒ P3, c 7→ [ω0(c) : ω1(c) : ω2(c) : ω3(c)]
is contained in the quadric determined by B(ω).

Let P (C) be the set of ω modulo C∗ such that the quadric determined by B(ω) is equal
to {x0x3 − x1x2 = 0}. Namely,

P (C) = {ω modC∗;ω is a basis of Ω1(C) and B(ω) = H},

where H ∈ P(S4) is represented by




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 .

Now consider the group POH
4 (C) = {A ∈ PGL(4);AtHA = H}, which acts on P (C) from

the left freely and transitively by A · (ω0, ω1, ω2, ω3) modC∗ = (ω0, ω1, ω2, ω3)A
t modC∗.
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In fact, this group is isomorphic to G and the isomorphism is induced by the action of
POH

4 (C) on P3 (as a subgroup of PGL(4)) preserving s(P1 × P1). Therefore, G acts on
P (C) freely and transitively. Finally, define the map

EC : P (C) → UX

as follows. Again by Max Noether’s theorem, the natural map t3 : Sym
3Ω1(C) → H0(C;K⊗3

C )
is surjective. Choose h ∈ Ker(t3) which is not divided by elements of Ker(t2). Let
ω ∈ P (C). Then h is identified with a homogeneous polynomial of degree 3 in de-
terminates x0, x1, x2, x3. We denote it by hω. The canonical image ιω(C) is given by
x0x3 − x1x2 = hω(x0, x1, x2, x3) = 0. Set

EC(ω) = hω(a0b0, a0b1, a1b0, a1b1) ∈ P(V3,3).

Since the zero set of hω(a0b0, a0b1, a1b0, a1b1) is isomorphic to C, we have EC(ω) ∈ UX .
EC(ω) does not depend on the choice of h, and we can verify that EC is G-equivariant.

Now let ξ = (C, p, B) be a R4-family. Applying the above construction to all the fibers,
we get a principal G-bundle

P (ξ) =
⋃

b∈B
P (p−1(b))

and by piecing together Ep−1(b), b ∈ B, we get a G-equivariant map

Eξ : P (ξ) → UX .

The first condition in Proposition 4.1.3 is clear from the construction. So far we have only
used the objects arising from holomorphic 1-forms on Riemann surfaces, which behave
naturally under pull back by biholomorphic maps. Thus the functoriality is also true.
As to the second condition, we can describe P (ξX) as follows. For W ∈ UX , W ∩ X is
isomorphic to v−1

3 (W ∩X) ⊂ P3. Let ωW be the basis of Ω1(W ∩X) corresponding to the
homogeneous coordinates [x0 : x1 : x2 : x3] of P3. Then the isomorphism

P (ξX) ∼= G × UX

is given by assigning (A,W ) ∈ G × UX with A · ωW . We can check that for A ∈ G and
W ∈ UX , ωW corresponds to A−1 · ωA·W by the isomorphism W ∩ X → (A · W ) ∩ X
induced by A. The second condition follows from this. Applying Proposition 4.1.3, we
have a universal R4-family ξXG = (CXG , pu, UX

G ). Here, pu = (pX)G .

Theorem 4.2.1. Let R4 be the set of rank 4 non-hyperelliptic Riemann surfaces of genus
4 and X, G as above. Then ξXG = (CXG , pu, UX

G ) is a universal R4-family. We denote by
ρu : π1(U

X
G ) → Γ4 the topological monodromy of pu : CXG → UX

G . Then there exists a unique
Q-valued 1-cochain φR4 : π1(U

X
G ) → Q whose coboundary equals to ρ∗

uτ4.

Proof. We only have to prove the latter part. Consider the map UX
G → BG induced from

the projection EG → BG. This is a UX -bundle. By the homotopy exact sequence, we have
the exact sequence

π1(G) → π1(U
X)

i→ π1(U
X
G ) → π0(G) → ∗, (4.2.1)

where i is induced from the inclusion. But π1(G) ∼= Z/2Z ⊕ Z/2Z and π0(G) consists
of two points. This follows from the fact G is isomorphic to the semi direct product
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(PGL(2)× PGL(2))⋉ Z/2Z. So (4.2.1) shows that i∗ : H2(π1(U
X
G );Q) → H2(π1(U

X);Q)
is injective. By Theorem 3.1.1, we have i∗ρ∗

u[τ4] = 0 ∈ H2(π1(U
X);Q). Therefore we also

have ρ∗
u[τ4] = 0 ∈ H2(π1(U

X
G );Q). This shows the existence of φR4 .

On the other hand, in the proof of Lemma 3.3.1 we have seen that the abelianization of
π1(U

X) is a cyclic group of finite order. Combining this fact with (4.2.1), we see that the
abelianization of π1(U

X
G ) is a finite abelian group. This shows the uniqueness of φR4.

Combining this with Proposition 4.1.7, we have

Corollary 4.2.2. Let R4 be the set of rank 4 non-hyperelliptic Riemann surfaces of genus
4. Then the formula

σR4(F) = φR4(xF ) + Sign(S) (4.2.2)

for F = (S, π,∆, b) ∈ R4
loc (see (4.1.2)) gives a local signature with respect to R4.

4.3 Some computations of σR4 and φR4

In this subsection we compute the value of our σR4 or φR4 for some examples.

Lemma 4.3.1. Let X = s3,3(P1 × P1) be as defined in 4.2. Then DX is a hypersurface
and degDX = 34. For a lasso σX around DX , we have φX(σX) = −9/17.

Proof. Since X ∼= P1×P1, X is simply connected and we have SignX = 0, χ(X) = 4. Also
we have degX = 18. By Proposition 3.5.2 and (3.5.4), the assertion follows.

Let ι : ∆ → P(V3,3) be as in Proposition 2.3.3. Then we get aR4-degeneration ι∗W → ∆
(see Theorem 2.3.4), which we denote by FI and call a singular fiber germ of type I. In this
case we can choose xFI

in (4.2.2) to be the image of a lasso around DX . By Lemma 3.5.1
the signature of the fiber neighborhood is 0. Thus we have

Proposition 4.3.2.

σR4(FI) = φR4(xFI
) = −9/17.

In the following let ∆ = {z ∈ C; |z| ≤ ε} for a sufficiently small real number ε > 0.

Example 4.3.3. Let

Φ(z, a0, a1, b0, b1) = ϕ0(a0, a1)b0
3 + (a0

3 + z6a1
3)b0b1

2 + z9ϕ3(a0, a1)b1
3

and SΦ ⊂ ∆×P1×P1 the zero locus of Φ. Here ϕ
0, ϕ3 are generic homogeneous polynomials

of degree 3. Let f ′ : SΦ → ∆ be the first projection.
SΦ has an isolated singularity at (0, [0 : 1], [0 : 1]). Applying the resolution process

given by Ashikaga [2], we will obtain a resolution ̟ : S̃Φ → SΦ of the singularity. By
successive blow down of (−1)-curves contained in the fiber at 0, we finally get the fiber
germ what we want.

In the below we describe the resolution process. We shall introduce the inhomogeneous
coordinates a = a0/a1 and b = b0/b1.

First we recall a terminology from [2]. Let W be a complex manifold of dimension
two and L a holomorphic line bundle on W . Let L̄ = P(OW ⊕ OW (L)) the associated P1

bundle. This is the P1 bundle on W whose fiber at w ∈ W is the projectivization of the
dual space of C ⊕ Lw. Here Lw is the fiber of L → W at w. Let T = OL̄(1). This is the
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line bundle on L̄ whose fiber at ℓ̄ (which is a line of (C ⊕ Lw)
∗ for some w ∈ W ) is the

dual space of ℓ̄. Let S be an irreducible reduced divisor on L̄ which is linearly equivalent
to 3T . In [2], the triple (S,W,L) is called a triple section surface.

Let W = ∆ × P1 with (z, [a0 : a1]) the global coordinates, and L a trivial line bundle
on W . We can introduce the homogeneous fiber coordinates [b0 : b1] for L̄ by assigning the
linear functional on C⊕ Lw = C⊕ C, given by (c0, c1) 7→ b0c0 + b1c1, to (b0, b1). Our SΦ,
which is the zero locus of Φ, is naturally identified with an irreducible reduced divisor on
L̄. Then (SΦ,W, L) is a triple section surface in the above sense.

Let τ1 : W1 → W be the blow up at the origin p1 = (0, [0 : 1]) ∈ W and let τ̂1 =
(τ̄1, τ1) : (S1,W1, L1) → (SΦ,W, L) be the triplet blow-up at p1 with ℓ1 = 1, in the sense
of [2], p.181. W1 is covered by the two coordinate neighborhoods Uz = {(z, ã)} and
Ua = {(z̃, a)}, and τ1 is given by τ1(z, ã) = (z, ãz) on Uz, and τ1(z̃, a) = (az̃, a) on Ua.
Note that L1 = τ ∗

1L−E1 where E1 is the exceptional curve of τ1.
Next, let p2 = (0, 0) ∈ Uz and τ2 : W2 →W1 the blow up at p2. Let τ̂2 = (τ̄2, τ2) : (S2,W2, L2) →

(S1,W1, L1) the triplet blow-up at p2 with ℓ2 = 2. (S2,W2, L2) is also a triple section sur-
face. Note that L2 = τ ∗

2L1 − 2E2 where E2 is the exceptional curve of τ2.
There is a natural map W2 →W → ∆, whose fiber at 0 ∈ ∆ looks like Figure 1.

C

N

E2

Figure 1

Here, N is the proper transform of E1 ⊂ W1, and C is the proper transform of {z = 0} ⊂
W . All the irreducible components are curves of genus 0. We denote by π̂2 the natural
projection S2 → W2 and let N∗ = π̂−1

2 (N). N∗ ⊂ L̄2 is a curve of genus 0.

Let σ̄ : M → L̄2 be the blow up with center N∗ and let S̃Φ be the proper transform of
S2 by σ̄ (see [2], p.187). Then S̃Φ turns out to be non-singular. Setting ̟ to be the natural

map from S̃Φ to SΦ, we get a resolution ̟ : S̃Φ → SΦ.
The fiber (f ′ ◦̟)−1(0) ⊂ S̃Φ looks like Figure 2.

N1

N2

Ẽ2C1

C2

Figure 2

Here C1, N1, N2 are curves of genus 0, C2 is a curve of genus 1, and Ẽ2 is a curve of genus
3. The self intersection numbers are: C1

2 = N2
2 = −1, N1

2 = C2
2 = −2, and Ẽ2

2 = −3.
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The inverse images of C, N , and E2 by the natural map S̃Φ → W2 are C1 ∐ C2, N1 ∐N2,
and Ẽ2, respectively.

Note that we have a triple covering S̃Φ →W2. The restrictions of this map to C2 or Ẽ2

gives a double covering C2 → C with 4 simple branch points or a triple covering Ẽ2 → E2

with 10 simple branch points. As a divisor, (f ′ ◦̟)−1(0) = C1 +N1 + Ẽ2 + 2N2 + C2.

Finally let S̃Φ → S̄Φ be the contraction obtained by repeating blow down of (−1) curves
in the fiber at 0 ∈ ∆ until the resulting surface contains no more such curves (we need to

blow down three times). Let C̄2 (resp. Ē2



and SΦ ⊂ ∆× P1 × P1 the zero locus of Φ. Here ϕ0, ϕ1, and ϕ3 are generic homogeneous
polynomials of degree 3.

SΦ has an isolated singularity at (0, [0 : 1], [0 : 1]). If we write ϕi(a) or Φ(z, a, b) instead
of ϕi(a, 1) or Φ(z, a, 1, b, 1) respectively, then

Φ(z, a, b) = (ϕ0(a)b+ ϕ1(a))(b2 + A3b+ Z6),

where A = a(ϕ0(a)b+ ϕ1(a))−1/3 and Z = z{ϕ3(a)/(ϕ0(a)b+ ϕ1(a))}1/6. Note that

b2 + a3b+ z6 =

(
b+

a3

2

)2

− a6

4
+ Z6.

Set h(b, z, a) = b2 + z6 − a6 and let Sh ⊂ C3 be the zero locus of h. Define f ′ : Sh → ∆
by f ′(b, z, a) = z. Then the singularity of SΦ is analytically equivalent to the hypersurface
singularity (Sh, 0). In this case Horikawa’s canonical resolution for double coverings (see
[13], section 2) can be used for a resolution of (Sh, 0).

The process is as follows. Let W be an open neighborhood of 0 in C2 with global
coordinates (z, a) and let τ : W̃ → W be the blow up at the origin. W̃ is covered by the
two coordinate neighborhoods Uz and Ua as in Example 4.3.3, and τ is given by the same
formula as τ1. The picture of W̃ is like Figure 3.

z

ã

a

z̃
C

E

Figure 3

Here E is the exceptional curve of τ and C is the proper transform of {z = 0} ⊂W .

Let S̃h be the double covering on W̃ defined by the following: on Uz, let S̃
z
h be the

hypersurface in C3 given by x2 + 1 − ã6 = 0 and on Ua, let S̃
a
h be given by x2 + z̃6 − 1 =

0. Identifying S̃zh with S̃ah over Uz ∩ Ua by the map (x, z, ã) 7→ (x/ã3, z̃, a), we get the

resulting non-singular surface S̃h. Define ̟ : S̃h → Sh by ̟(x, z, ã) = (xz3, z, ã) on S̃zh,

and ̟(x, z̃, a) = (xa3, az̃, a) on S̃ah. Then this is a resolution of singularity. (f ′ ◦ ̟)−1(0)
looks like:

Ẽ

C1 C2

Figure 4

Here Ẽ (resp. C1 ∐ C2) is the proper transform of E (resp. C). Ẽ is a curve of genus 2.

Note that the restriction of S̃h → W̃ to Ẽ gives a double covering Ẽ → E ∼= P1 with 6
simple branch points.

Now applying the above process, we can resolve the singularity of SΦ. Let ̟ : S̃Φ → SΦ

be such a resolution. Then (f ′ ◦̟)−1(0) consists of the three components, Ẽ, C1, and C2,
like Figure 4 (using the same letter). Note that

Φ(0, a, b) = b(ϕ0(a)b2 + ϕ1(a)b+ a3).
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We assume that C1 (resp. C2) is the component corresponding to b = 0 (resp. ϕ0(a)b2 +
ϕ1(a)b+a3 = 0). C1 is a curve of genus 0 and C2 is a curve of genus 2. The self intersection

numbers are: Ẽ2 = −2, C1
2 = −1, C2

2 = −1.
Let S̃Φ → S̄Φ be the blow down of C̄1 and fΦ : S̄Φ → ∆ the map induced from f ′ ◦̟.

Then F2,2 := (S̄Φ, fΦ,∆, 0) is a R4-degeneration with f−1
Φ (0) being homeomorphic to the

one points union of two curves of genus 2.

Proposition 4.3.6.

σR4(F2,2) = 19/17;φR4(xF2,2
) = 36/17.

Proof. The idea of proof is the same as Proposition 4.3.4. Let α, ϕ, Φ′, and SΦ′ be the
same as in the proof of Proposition 4.3.4. We construct S̃Φ′ and fΦ′ : S̄Φ′ → P1 by a similar
manner to Proposition 4.3.4 except for using the resolution of (Sh, 0) described as above.

We have χ(OS
Φ′ ) = 4α − 3, and ωS

Φ′

2 = 14α − 24. Using Lemma 6 of [13], we
have χ(OS̃

Φ′
) = 4α − 6, and ωS̃

Φ′

2 = 14α − 32. Thus we have χ(OS̄
Φ′
) = 4α − 6 and

ωS̄
Φ′

2 = 14α − 31, therefore χ(S̄Φ′) = 34α − 41 and Sign(S̄Φ′) = −18α + 17. Now the
number of singular fiber germs of fΦ′ is

34α− 41− 2 · (2− 2 · 4) = 34α− 29,

hence the number of singular fiber germs of type I is 34α − 30. By the global signature
formula we have

−18α + 17 = (34α− 30) · (−9/17) + σR4(F2,2).

Finally the signature of S̄Φ is −1. This completes the proof.

Example 4.3.7. Let

Φ(z, a0, a1, b0, b1) = (a0b1 − a1b0)
3 + z3ϕ0(a0, a1, b0, b1).

We write Y = ∆ × P1 × P1 and let SΦ ⊂ Y be the zero locus of Φ. Here ϕ0 ∈ V3,3 is a
generic (3, 3) homogeneous polynomial.

Let Γ = {z = 0} ⊂ Y and we denote by D the fiber at 0 of the first projection SΦ → ∆.
D is the diagonal locus in Γ ∼= P1 × P1. Let τ1 : Y1 → Y be the blow up along D. Let
E0 ⊂ Y1 be the proper transform of Γ, E1 the exceptional set of τ1, and S̃Φ ⊂ Y1 the proper
transform of SΦ. Note that E1 is isomorphic to the Hirzebruch surface F2 of degree 2.

Then we see that S̃Φ is non-singular and S̃Φ ∩ E0 = ∅. We write fΦ : S̃Φ → ∆ the
natural projection. Then we have a R4-degeneration F ′

R := (S̃Φ, fΦ,∆, 0). We see that
f−1
Φ (0) = E1 ∩ S1 is a smooth curve of genus 4. This curve is non-hyperelliptic, but not a
curve of rank 4. This can be seen as follows. First we can contract E0. Let τ̄ : Y1 → Ȳ be
the contraction of E0. The projection Y1 → ∆ induces the projection f̃ : Ȳ → ∆, whose
central fiber f̃−1(0) = τ̄ (E1) is F2 and the other fibers are isomorphic to P1 × P1. Thus,
we can think f−1

Φ (0) is contained in F2. Contracting the negative section of F2, we get a
quadric Q3 of rank 3 in P3. If we map f−1

Φ (0) into P3 by this contraction, then f−1
Φ (0) can

be realized as a (2, 3)-complete intersection: the intersection of Q3 and some cubic surface.

Thus f−1
Φ (0) is non-hyperelliptic but not of rank 4. Topologically fΦ : S̃Φ → ∆ is a trivial

Σ4-bundle.

Proposition 4.3.8. Let F ′
R = (S̃Φ, f,∆, 0) be the fiber germ as above. Then we have

σR4(F ′
R) = φR4(xF ′

R
) = 4/17.
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Proof. The proof proceeds as the same before. Let α, ϕ, Φ′, SΦ′, and S̃Φ′ be the same as
in the proof of Proposition 4.3.4. We use the same notation Y and Y1 for P1×P1×P1 and
the blow up along D, respectively.

First we have χ(OS
Φ′ ) = 4α − 3 and ωS

Φ′

2 = 14α − 24. We need to compute χ(OS̃
Φ′
)

and ωS̃
Φ′

2. By KY1 ∼ τ ∗
1KY + E1 (linear equivalence) and S1 ∼ τ ∗

1S − 3E1, we have

KY1 + S1 ∼ τ ∗
1 (KY + S)− 2E1. By restricting to S1, we have τ ∗

1ωS = ωS1
+2E1|S1

. We get

ωS
2 = (τ ∗

1ωS)
2 = (ωS1

+ 2E1|S1
)2

= ωS1

2 + 4ωS1
· E1|S1

+ 4(E1|S1
)2 = ωS1

2 + 24,

since ωS1
· E1|S1

= 2g(E1 ∩ S1) − 2 − (E1|S1
)2 = 6 − (E1|S1

)2 by the adjunction formula.
Therefore, ωS̃

Φ′

2 = 14α− 48. We next compute

χ(OS1
) = χ(OY1)− χ(OY1(−S1))

= χ(OY1)− χ(OY1(−S1 −E1))− χ(OE1
(−S1|E1

))

= · · ·

= χ(OY1)− χ(OY1(−S1 − 3E1))−
2∑

i=0

χ(OE1
(−S1|E1

− iE1|E1
)).

We have χ(OY1)−χ(OY1(−S1−3E1)) = χ(OY1)−χ(OY1(−τ ∗
1S)) = χ(OY )−χ(OY (−S)) =

χ(OS). To compute the remaining term, we use

χ(OE1
(−S1|E1

− iE1|E1
)) = χ(OE1

(−iE1|E1
))− χ(OE1∩S1

(−iE1|E1∩S1
)).

Note that the divisor (E0 +E1)|E1
is trivial on E1, since E0 +E1 is a fiber of Y1 → ∆;

C∞ = E0 ∩ E1 is the negative section of E1
∼= F2, so C∞

2 = −2; E0 ∩ E1 ∩ S1 = ∅. From
these we have OE1

(−E1|E1
) ∼= OE1

(C∞) and OE1∩S1
(−E1) ∼= OE1∩S1

. Using the Riemann-
Roch formula and χ(OE1

) = 1, we get χ(OE1
(−S1|E1)) = 4; χ(OE1

(−S1|E1
− E1|E1

)) = 3;
χ(OE1

(−S1|E1
− 2E1|E1

)) = 0.
In summary, we have χ(OS1

) = χ(OS)− 7. Therefore, χ(OS̃
Φ′
) = 4α− 10.

Now χ(S̃Φ′) = 34α − 72, and Sign(S̃Φ′) = −18α + 32. The number of topologically
singular fibers is

34α− 72− 2 · (2− 2 · 4) = 34α− 60.

By the global signature formula we have

−18α + 32 = (34α− 60) · (−9/17) + σR4(R3).

Finally, the signature of S̃Φ is zero. This completes the proof.

Example 4.3.9. In this last example we do not use the global signature formula (4.1.1)
directly. Let q1 = x0

2 + x1
2 + x3

2 and q2 = x1
2 + x2

2 − x3
2, and h(x0, x1, x2, x3) a generic

cubic polynomial. Let

Sh = {(x, z) ∈ P3 ×∆; h(x) = (q1 + zq2)(x) = 0},

and let f : Sh → ∆ be the second projection. Note that q1+ zq2 defines a smooth quardric
except for z = 0 and f−1(0) is contained in the singular quadric {q1 = 0}. Thus FR :=
(Sh, f,∆, 0) is a R4-degeneration. Topologically f : Sh → ∆ is a trivial Σ4-bundle.
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Proposition 4.3.10.

σR4(FR) = φR4(xFR
) = 2/17.

Proof. We start from describing the associated principal G-bundle P (ξFR
).

Let ωz be the basis of Ω1(f−1(z)) ⊂ P3 corresponding to the homogeneous coordinates
of P3 (see the paragraph before Theorem 4.2.1). Any frame of Ω1(f−1(z)) (modulo C∗) is
written as the form A · ωz, A ∈ PGL(4). Then

P (ξFR
) ∼=

{
(z, A) ∈ (∆ \ {0})× PGL(4); (A−1)tB(z)A−1 = H

}
,

where

B(z) =




1 0 0 0
0 1 + z 0 0
0 0 z 0
0 0 0 1− z


 .

Let κ : ∆ \ {0} → ∆ \ {0} be the map defined by w 7→ z2 and consider the pull back
κ∗P (ξFR

). Then the principal G-bundle κ∗P (ξFR
) → ∆ \ {0} has a section given by

w 7→ (w,A(w)) where

A(w) =
1√
2




1
√
−1r1(w) 0 0

0 0 w
√
−1r2(w)

0 0 −w
√
−1r2(w)

1 −
√
−1r1(w) 0 0


 .

Here, r1(w) =
√
1 + w2 and r2(w) =

√
1− w2. Thus, as a candidate for gκ∗FR

(see the proof
of Proposition 4.1.7), we can take the map given by w 7→ [e, A(w) ·f(a0b0, a0b1, a1b0, a1b1)].
Since the diagram

π1(U
X
G )

π1(∆ \ {0}) ×2 //

gκ∗FR

77
n

n
n

n
n

n
n

n
n

n
n

n

π1(∆ \ {0})

gFR

OO

is commutative up to conjugacy, xFR

2 is conjugate to xκ∗FR
= gκ∗FR

(∂∆).
But now A(w) · f(a0b0, a0b1, a1b0, a1b1) is equal to

f

(
a0b0 + a1b1√

2
,
a0b0 − a1b1√
−1r1(w)

,
a0b1 − a1b0

w
,
a0b1 + a1b0√
−1r2(w)

)
.

Modulo C∗ this can be written as

(a0b1 − a1b0)
3 + w3(ϕ0 + wϕ1 + higher term with respect to w)

where ϕi is some (3, 3) homogeneous polynomial. This shows that xκ∗FR
is homotopic to

xF ′
R
in Proposition 4.3.8. Since f : Sh → ∆ is topologically trivial,

4/17 = φR4(xF ′
R
) = φR4(xκ∗FR

) = φR4(xFR

2) = 2φR4(xFR
).

This completes the proof.

Compare the above proof with [4], Example 7.5, where the same fiber germ is considered.
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4.4 Fibrations of non-trigonal curves of genus 5

Let C be a non-hyperelliptic Riemann surface of genus 5. By the Enriques-Petri theorem
([9], p.535), the canonical image of C is a (2, 2, 2) complete intersection iff C is non-
trigonal, i.e., there is no holomorphic map C → P1 of degree 3. Let NT 5 ⊂ M5 be the set
of non-hyperelliptic and non-trigonal Riemann surface of genus 5. NT 5 is Zariski open in
M5.

We denote by [α0 : α1 : α2 : α3 : α4] the homogeneous coordinates of P4 and let S5 be
the space of 5× 5 symmetric matrices. The Veronese map v2 : P4 → P(S5) is given by

v2([α0 : α1 : α2 : α3 : α4]) := [(α0, α1, α2, α3, α4)
t · (α0, α1, α2, α3, α4)].

This map is equivariant with respect to the action of G = PGL(5), where the action of G
on P4 is induced by

A · (α0, α1, α2, α3, α4) = (α0, α1, α2, α3, α4)A
t

for A ∈ GL5(C) and αi ∈ C, and the action of G on P(S5) is induced by A ·B = ABAt for
A ∈ GL5(C) and B ∈ S5. Set

X := v2(P4).

The action of G on G11(P(S5)) induced from the G-action on P(S5) preserves DX and
UX = G11(P(S5)) \DX , and the projection pX : CX → UX is G-equivariant. Note that for
W ∈ UX , the fiber p−1

X (W ) is isomorphic to a smooth complete intersection in P4 of type
(2, 2, 2). Thus ξX = (CX , pX , UX) is a NT 5-family.

We claim that ξX and the G-action on it satisfies the conditions in Proposition 4.1.3.
The proof is similar to the case ofR4, so we only describe the way of constructing G-bundles
and G-equivariant maps.

Let C ∈ NT 5. By Max Noether’s theorem, the natural map t2 : Sym
2Ω1(C) →

H0(C;K⊗2
C ) is surjective hence the kernel is 3-dimensional. By taking the dual, we get the

codimension 3 subspace Ker(t2)
∗ ⊂ Sym2Ω1(C)∗. If we take a basis ω = (ω0, ω1, ω2, ω3, ω4)

of Ω1(C), Sym2Ω1(C)∗ is identified with S5 by assigning B ∈ S5 with the quadratic function

Ω1(C) → C, x0ω0 + · · ·+ x4ω4 7→ (x0, . . . , x4)B(x0, . . . , x4)
t,

and we have the plane B(ω) ⊂ P(S5) of codimension 3 corresponding to Ker(t2)
∗. Note

that the image v2 ◦ ιω(C), where ιω : C → P4 is the canonical map given by c 7→ [ω0(c) :
. . . : ω4(c)], is the smooth intersection of X and B(ω).

Let P (C) be the set of all frames of Ω1(C) modulo C∗. By assigning ω ∈ P (C) with
B(ω), we have the map EC : P (C) → UX . Moreover, given the left action of G on P (C)
by the same formula as the action of POH

4 (C) on P (C) in subsection 4.2, we see that EC
is G-equivariant.

Let ξ = (C, p, B) be a NT 5-family. Applying the above construction to all the fibers,
we get a principal G-bundle P (ξ) and a G-equivariant map Eξ : P (ξ) → UX what we want.

Theorem 4.4.1. Let NT 5 be the set of non-hyperelliptic and non-trigonal Riemann sur-
faces of genus 5 and X, G as above. Then ξXG = (CXG , pu, UX

G ) is a universal NT 5-family.
We denote by ρu : π1(U

X
G ) → Γ5 the topological monodromy of pu : CXG → UX

G . Then there
exists a unique Q-valued 1-cochain φN T 5 : π1(U

X
G ) → Q whose coboundary equals to ρ∗

uτ5.
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Proof. The proof is the same as the proof of Theorem 4.2.1 except that (4.2.1) is replaced
with the exact sequence

π1(G) ∼= Z/5Z → π1(U
X) → π1(U

X
G ) → ∗.

Corollary 4.4.2. Let NT 5 be the set of non-hyperelliptic and non-trigonal Riemann sur-
faces of genus 5. Then the formula

σN T 5(F) = φN T 5(xF) + Sign(S)

for F = (S, π,∆, b) ∈ NT 5
loc (see (4.1.2)) gives a local signature with respect to NT 5.

Lemma 4.4.3. Let X = v2(P4) be as above. Then DX is a hypersurface and degDX = 40.
For a lasso σX around DX , we have φX(σX) = −1/2.

Proof. This follows from Proposition 3.5.6.

Let ι : ∆ → G11(P(S5)) be as in Proposition 2.3.3. Then we get a NT 5-degeneration
ι∗W → ∆, which we denote by FI and call a singular fiber germ of type I.

Proposition 4.4.4. Let FI ∈ NT 5
loc be as above. Then

σN T 5(FI) = φN T 5(xFI
) = −1/2.

Proof. The proof is similar to the proof of Proposition 4.3.2.

This fiber germ is expected to play an important role when computing examples as
FI ∈ R4

loc behaves like an ”atomic” germ in subsection 4.3, but at the present moment we
don’t have any example of element of NT 5 other than FI whose local signature has been
computed.

Final remarks. Although the construction of our local signature is purely topological,
we have used some algebraic geometry to compute examples. It is an interesting problem
to find and compute examples of fiber germs beyond the reach of algebraic geometry, or to
give a formula for the Meyer functions φX as Meyer and Atiyah did. To do this we need a
greater understanding of ρX or the topological monodromy ρu of a universal A-family.

In the case of A = R4 or NT 5, A is Zariski open in the moduli space. Using this,
we can prove that ρu is surjective. The proof is similar to the proof of [16], Proposition
6.3. Here is an outline. Let Tg be the Teichmüller space of genus g, and let Ã ⊂ Tg be
the inverse image of A by the quotient map Tg → Mg. Then Ã is Zariski open hence path
connected, and is preserved by the action of Γg on Tg. By a natural way we get an A-family
on the Borel construction ÃΓg

, which is easily seen to be universal. The homotopy exact
sequence

π1(ÃΓg
) → π1(BΓg) = Γg → π0(Ã) = ∗

of the Ã-bundle ÃΓg
→ BΓg shows the desired surjectivity.
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