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Abstract For each d ≥ 2, the mapping class group for plane curves of degree d
will be defined and it is proved that there exists uniquely the Meyer function on this
group. In the case of d = 4, using our Meyer function, we can define the local sig-
nature for four-dimensional fiber spaces whose general fibers are non-hyperelliptic
compact Riemann surfaces of genus 3. Some computations of our local signature will
be given.

Mathematics Subject Classification (2000) 57N13 · 14D05

0 Introduction

Let �g be a closed oriented C∞-surface of genus g ≥ 0 and let �g be the mapping
class group of �g , namely the group of all isotopy classes of orientation preserving
diffeomorphisms of �g .

In [12] Meyer discovered and studied a cocycle τg : �g × �g → Z. For the sake
of the reader a brief definition of τg will be given in Appendix. This cocycle is called
Meyer’s signature cocycle. In his paper Meyer showed that the cohomology class
[τg] ∈ H2(�g; Z) is torsion for g = 1, 2 and has infinite order for g ≥ 3, and gave
an explicit formula for the unique Q-valued 1-cochain of �1 cobounding τ1 using
the Rademacher function ([12], p. 259 Satz 4). Since the hyperelliptic mapping class
group �H

g , a subgroup of �g , was shown to be Q-acyclic by Cohen [5] and Kawazumi
[9] independently, it was known to specialists that there exists the unique 1-cochain
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924 Y. Kuno

of �H
g cobounding τg restricted to �H

g . In [7] Endo directly showed the existence and

the uniqueness of such a 1-cochain φH
g : �H

g → 1
2g+1Z using a finite presentation of

�H
g by Birman and Hilden [3]. He also defined the local signature for hyperelliptic

fibrations using φH
g , and studied the geometry of hyperelliptic fibrations; for example,

he derived a signature formula for such fibrations over a closed surface. His formula
originates from Matsumoto [11,Theorem 3.3] where genus 2 fibrations are discussed.
For the study of the function φH

g , see also Morifuji’s paper [13].
The purpose of the present paper is to give another interesting example of these

phenomena; the Meyer function on the mapping class group for plane curves.
For d ≥ 2 a group �(d) and a homomorphism ρ : �(d) → �g ,where g = 1

2
(d − 1)(d − 2), will be constructed. The group �(d) can be considered as the fun-
damental group of the classifying space for isotopy classes of continuous families of
non-singular plane curves of degree d; the precise meaning of this statement will be
given in Theorem 6.1 later.

The main results of this paper are Theorems 4.1 and 4.2. As a consequence of them
it follows that the pull back ρ∗[τg] vanishes in the rational cohomology H2(�(d); Q)

and there exists the unique 1-cochain φd : �(d) → Q such that δφd = ρ∗τg . φd will
be called the Meyer function for plane curves of degree d .

This is similar to the case of�1, �2, and�H
g , but we remark that the homomorphism

ρ seems no more injective nor surjective. In fact, for d = 4 we will see in Proposition
6.3 that ρ is surjective but has non-trivial kernels. In this sense our result is different
from the works of Meyer and Endo where subgroups of �g are considered.

While they did explicit computations of τg for certain relators of the mapping class
groups to prove the vanishing of [τg], our method depends on the vanishing of [τg]
pulled back to the cohomology of a fundamental group of the complement of a hyper-
surface in a complex vector space, which will be stated in Proposition 3.1 and proved
using the definition of Meyer’s signature cocycle and the standard argument in dif-
ferential topology; the way from Proposition 3.1 to the vanishing of [τg] pulled back
to H2(�(d); Q) are elementary. Since this needs no explicit computations of τg , we
believe that our method has its own meaning to grasp the conceptual reason of the
vanishing of [τg] and can be applied to other cases in the future.

Our study of the vanishing of ρ∗[τg] ∈ H2(�(d); Q) has a connection with local-
ization of the signature of four-dimensional fiber spaces, that is a recent hot topic
studied in various fields such as topology, algebraic geometry, and complex analysis
(see [1,2]).

As an application of our study, especially d = 4, we define the local signature for
the set of all fiber germs of four-dimensional fiber spaces whose general fibers are
non-hyperelliptic compact Riemann surfaces of genus 3 by using our 1-cochain φ4 of
�(4). The fact that any non-hyperelliptic compact Riemann surface of genus 3 can be
realized as a smooth quartic curve in P

2 by the canonical embedding, is crucial.
In this case of non-hyperelliptic family of genus 3, Ashikaga and Konno [2] and

Yoshikawa [15] have already defined local signature independently. The definition
of [2] is algebro geometric and that of [15] is complex analytic. We compute some
examples of values of our local signature, defined by topological way, and observe
that they coincide with those computed in [2,15].
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The mapping class group and the Meyer function for plane curves 925

1 Definitions

Throughout this paper, d denotes a fixed integer ≥2. Let V d be the complex vector
space of homogeneous polynomials of degree d in the determinates x ,y, and z, and
let P(d) = P(V d) be the projectivization of V d . By taking the set of monomials
{x�(k)ym(k)zn(k)}N

k=0 of degree d, where N = 1
2 (d + 2)(d + 1) − 1, each element of

V d can be uniquely written as the form

	 =
N∑

k=0

ak x�(k)ym(k)zn(k),

where ak ∈ C. We denote the corresponding homogeneous coordinates of P(d) by
[a0 : a1 : · · · : aN ]. Each element a ∈ P(d) determines an algebraic curve Ca ⊂ P

2

of degree d. Later we also denote by CF the algebraic curve defined by F ∈ V d\{0}.
We believe this use of notation does not confuse the reader. Let D be the set of points
a ∈ P(d) such that the corresponding curve Ca is singular. D is called the discriminant
locus and is well-known to be irreducible and of codimension 1. For a proof, see also
the remark after the proof of Proposition 2.1 in this paper.

There is an action of GL(3; C) on V d given by

(A · F)(x, y, z) = F
(
(x, y, z) · t A−1

)
,

where A ∈ GL(3; C) and F ∈ V d . Here t A is the transpose of the matrix A. This
action induces the action of PGL(3) on P(d), D, and P(d)\D.

Let E PGL(3) → B PGL(3) be the universal principal PGL(3) bundle. We de-
note by �(d) the fundamental group of the Borel construction (P(d)\D)PGL(3) =
E PGL(3)×PGL(3) (P(d)\D) and call this group the mapping class group for plane
curves of degree d.

For (e, a) ∈ E PGL(3) × (P(d)\D), we denote by [e, a] the element of (P(d)\
D)PGL(3) represented by (e, a). This notation concerning Borel construction will be
used several times.

Let F̄ (respectively, F) be the hypersurface in P(d)×P
2 (respectively, (P(d)\D)×

P
2) defined as the zero set of 	 considered as a bi-homogeneous polynomial in

a0, . . . , aN and x, y, z. Then the restriction of the first projection p : F → P(d)\D is
a family of non-singular plane curves of degree d whose fiber over a ∈ P(d)\D is Ca .
Since the diagonal action of PGL(3) on P(d)×P

2 preserves F and p is PGL(3)-equi-
variant, we have a family of Riemann surfaces pu : FPGL(3) → (P(d)\D)PGL(3). We
denote the topological monodromy (see Appendix) of this family by ρ : �(d) → �g ,
where g = 1

2 (d − 1)(d − 2). Note that the genus of a non-singular plane curve of
degree d is given by 1

2 (d − 1)(d − 2).
In Sect. 4 we will prove that the rational cohomology class ρ∗[τg] ∈ H2(�(d); Q)

vanishes and compute the abelianization of �(d). In Sect. 6 we will prove that the
space (P(d)\D)PGL(3) is the classifying space of the set of all isotopy classes of
continuous families of non-singular plane curves of degree d.
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926 Y. Kuno

2 The discriminant locus

In this section we investigate the discriminant locus D, which also can be described
in terms of dual variety as follows. For generality of dual variety, see [8] or [10]. Let
P(d)∨ be the dual projective space of P(d), i.e., the space of all hyperplanes of P(d). We
denote by [α0 : α1 : · · · : αN ] the homogeneous coordinates of P(d)∨ corresponding
to the homogeneous coordinates [a0 : a1 : · · · : aN ] of P(d); α = [α0 : α1 : · · · : αN ]
is the hypersurface of P(d) defined by

α0a0 + α1a1 + · · · + αN aN = 0.

The Veronese embedding v : P
2 → P(d)∨ is defined by

v([x : y : z]) =
[
x�(0)ym(0)zn(0) : · · · : x�(N )ym(N )zn(N )

]
.

Since the dual of P(d)∨ is canonically isomorphic to P(d), each element a ∈ P(d)
determines the hypersurface of P(d)∨ which we denote by Ha . We set

X ′ :=
{
(a, α) ∈ P(d)× P(d)∨ ; α ∈ v(P2) and Ha is tangent to v(P2) at α

}
.

Then the image of X ′ by the first projection is just D, i.e., D is the dual variety of
v(P2).

Let X be the analytic subset of P(d)× P
2 defined by the equations

	 = 	x = 	y = 	z = 0,

where 	x is the partial derivative of 	 with respect to x , etc. Thus if (a, p) is a
point of X , then a is a point of D and p is a singular point of Ca . Then we see that
X → X ′, (a, p) 	→ (a, v(p)) is an isomorphism. X ′ has the structure of fiber bundle
over v(P2) whose fiber over α ∈ v(P2) is the set of all hyperplanes in X ′ tangent
to v(P2) at α, which is isomorphic to a (N − 3)-dimensional projective space. From
this point of view it is clear that X is non-singular (see also [8], p. 30), but for later
consideration we give here an alternative proof using coordinate description.

Proposition 2.1 X is non-singular.

Proof Let (a0, [x0 : y0 : z0]) be a point of X . We will show X is non-singular at this
point. Since the action of PGL(3) on P(d) × P

2 preserves X , we may assume that
[x0 : y0 : z0] = [0 : 0 : 1]. Take a polynomial representative F ∈ V d of a0, then the
coefficient of zd of F is zero because [0 : 0 : 1] ∈ Ca0 . Moreover, F cannot be written
as the form

F = (αx + βy)zd−1,

where (α, β) 
= (0, 0) because [0 : 0 : 1] is a singular point of Ca0 . Therefore there is
a monomial x�(k)ym(k)zn(k) which is different from zd , xzd−1, and yzd−1 such that the
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The mapping class group and the Meyer function for plane curves 927

coefficient of x�(k)ym(k)zn(k) of F is not zero. By a rearrangement of indices we may
assume that k = 0 and a1, a2 , and a3 correspond to monomials zd , xzd−1, and yzd−1,
respectively. Then setting a0 = 1 and z = 1, we have an inhomogeneous coordinates
(a1, . . . , aN , x, y) of P(d) × P

2 near (a0, [0 : 0 : 1]). In this local coordinate system
X is defined by the equations

� = �x = �y = 0,

where � = 	(1, a1, . . . , aN , x, y, 1).
Now the Jacobian matrix of (�,�x , �y) at (a0, [0 : 0 : 1]) is

J =
⎛

⎜⎝
�a1 �a2 �a3 · · · �x �y

�x,a1 �x,a2 �x,a3 · · · �xx �xy

�y,a1 �y,a2 �y,a3 · · · �yx �yy

⎞

⎟⎠

=
⎛

⎜⎝
1 0 0 · · · 0 0 0

0 1 0 · · · 0 �xx �xy

0 0 1 · · · 0 �yx �yy

⎞

⎟⎠ ,

we see that the rank of J is 3. This shows that X is non-singular at (a0, [0 : 0 : 1]).
��

Let π : X → D ⊂ P(d) be the first projection. The above proof shows that
(a0, [0 : 0 : 1]) is a regular point of π if and only if

det

(
�xx �xy

�yx �yy

)

= 0

at (a0, [0 : 0 : 1]). By an argument like the Morse lemma, we can take a coordinate
system (X,Y ) of P

2 centered at [0 : 0 : 1] such that Ca0 is locally given by the equation
X2 + Y 2 = 0. Thus [0 : 0 : 1] is a nodal singularity. This holds for other points of X ;
(a, p) ∈ X is a regular point of π if and only if p is a nodal singularity of Ca .

Let E be the union of singular points of D and the π -image of critical points of π .
E is a proper analytic subset of D by Sard’s theorem.

Here we give a short proof that D is irreducible and of codimension 1. At first,
X ∼= X ′ is non-singular and connected hence irreducible. Therefore, D = π(X ) is
also irreducible. On the other hand D is at most N − 1-dimensional because D is a
proper analytic subset of P(d). Let a be a point of D\E and take a point (a, p) in
the fiber π−1(a). Then D is smooth around a and the differential of π at (a, p) is of
maximal rank N − 1. This shows D is indeed N − 1-dimensional. Note that E is at
most N − 2-dimensional.

In the next lemma we shall describe the hyperplane of P(d) tangent to D at a point
in D\E .

Lemma 2.2 Let (a0, [x0 : y0 : z0]) be a point of X and suppose that a0 ∈ D\E. Then
the hyperplane Ta0 tangent to D at a0 is given by
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928 Y. Kuno

Ta0 =
{

[ξ0 : ξ1 : · · · : ξN ] ∈ P(d) ;
N∑

k=0

ξk x�(k)0 ym(k)
0 zn(k)

0 = 0

}
.

Moreover, [x0 : y0 : z0] is the unique singular point of Ca0 .

Proof To prove the first part, we may assume a0
0 = z0 = 1 and take an inhomo-

geneous coordinate system (a1, . . . , aN , x, y) of P(d) × P
2 near (a0, [x0 : y0 : 1]).

Since a0 is a non-singular point of D and (a0, [x0 : y0 : 1]) is a regular point of π ,
we have Ta0 D = π̃∗(T(a0,[x0 : y0 : 1])X ), where π̃∗ : T(a0,[x0 : y0 : 1])(P(d) × P

2) →
Ta0P(d) is the differential of the first projection π̃ : P(d)×P

2 → P(d) and we regard
T(a0,[x0 : y0 : 1])X (respectively, Ta0 D) as the subspace of T(a0,[x0 : y0 : 1])(P(d) × P

2)

(respectively, Ta0P(d)).
Now the Jacobian matrix J appeared in the proof of Proposition 2.1 has the form

J =
⎛

⎜⎝
x�(1)0 ym(1)

0 · · · x�(N )0 ym(N )
0 0 0

∗ · · · ∗ �xx �xy

∗ · · · ∗ �yx �yy

⎞

⎟⎠

at (a0, [x0 : y0 : 1]). The rank of this matrix is 3, because det

(
�xx �xy

�yx �yy

)

= 0 at

(a0, [x0 : y0 : 1]) by a0 /∈ E and there is an index i such that x�(i)0 ym(i)
0 
= 0.

Therefore

T(a0,[x0 : y0 : 1])X =

⎧
⎪⎨

⎪⎩

N∑

k=1

ξk
∂

∂ak
+ ξN+1

∂

∂x
+ ξN+2

∂

∂y
; J

⎛

⎜⎝
ξ1
...

ξN+2

⎞

⎟⎠ = 0

⎫
⎪⎬

⎪⎭

and

Ta0 D = π̃∗(T(a0,[x0 : y0 : 1])X ) =
{

N∑

k=1

ξk
∂

∂ak
;

N∑

k=1

ξk x�(k)0 ym(k)
0 = 0

}
.

Interpreting this equation in terms of homogeneous coordinates of P(d), we obtain the
desired description of Ta0 . The latter statement of the lemma follows from the form
of Ta0 just proved and the injectivity of the Veronese embedding. ��

Combining the remark after the proof of Proposition 2.1, we can say more about
the curve Ca0 :

Lemma 2.3 Let a0 ∈ D\E and [x0 : y0 : z0] be as in Lemma 2.2. Then [x0 : y0 : z0]
is a nodal singularity of Ca0 , and Ca0 is irreducible except for d = 2. Thus if d ≥ 3
the topological type of Ca0 is Lefschetz singular fiber of type I, that is obtained by
pinching a non-separating simple closed curve on �g into a point.
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The mapping class group and the Meyer function for plane curves 929

Proof We only have to show the irreducibility of Ca0 for d ≥ 3. If Ca0 is reducible it
has two irreducible components C1 and C2 with degrees d1 and d2, and they intersect
transversely at one point. We have d1d2 = 1 by Bézout’s theorem, but this contradicts
to d1 + d2 = d ≥ 3. ��

The projective space P(d) can be regarded as the set of all complex lines through
the origin in V d . Let D̃ (respectively, Ẽ) be the union of all lines in D (respectively,
E). In the coordinate system (a0, . . . , aN ) of V d , the tangent space of D̃ at F ∈ D̃\Ẽ
is given by

TF D̃ =
{

N∑

k=0

ξk
∂

∂ak
;

N∑

k=0

ξk x�(k)0 ym(k)
0 zn(k)

0 = 0

}
,

where [x0 : y0 : z0] is the singular point of CF . This follows from Lemma 2.2.
We shall prove a useful lemma which will be used in the next two sections. Let F̃

be the family of algebraic curves over V d\{0} defined as in the case of F̄ over P(d).

Lemma 2.4 Let B be a C∞-manifold of dimension s ≥ 2 and j : B → V d a C∞-map
such that j (B) ⊂ V d\Ẽ and j is transverse to D̃. Then the total space j∗F̃ of the
pull back of the family F̃ by j is a C∞-manifold.

Proof j∗F̃ is given by

j∗F̃ =
{
(b, p) ∈ B × P

2 ; 	( j (b), p) = 0
}

and it is easy to see that if (b0, p0) ∈ j∗F̃ and p0 is a smooth point of C j (b0) then
j∗F̃ is smooth at (b0, p0).

Suppose (b0, p0) ∈ j∗F̃ and p0 = [x0 : y0 : z0] is the singular point of C j (b0).
Note that we have j (b0) ∈ D̃\Ẽ . Let ( j0, j1, . . . , jN ) denote the N + 1-tuples of
smooth functions on B determined by j and the coordinate system (a0, a1, . . . , aN )

of V d . By the assumption of transversality and the description of Tj (b0) D̃ given above,
we can choose a suitable local coordinate system (b1, . . . , bs) of B around b0 such
that complex numbers

N∑

k=0

∂ jk
∂b1

(b0)x�(k)0 ym(k)
0 zn(k)

0 and
N∑

k=0

∂ jk
∂b2

(b0)x�(k)0 ym(k)
0 zn(k)

0

are linearly independent over the real numbers. From this we can conclude that j∗F̃
is smooth at (b0, p0). This completes the proof. ��

We remark that in holomorphic category one can say more; if B is a complex man-
ifold of complex dimension ≥ 1 and j is holomorphic, j∗F̃ has a complex structure
as a hypersurface in B × P

2.
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930 Y. Kuno

3 The 1-cochain of π1(V d\˜D)

Let χ1 : π1(V d\D̃) → π1(P(d)\D) be the homomorphism induced by the projec-
tion map V d\D̃ → P(d)\D and let χ2 : π1(P(d)\D) → �(d) be the homomor-
phism induced by the inclusion map P(d)\D → (P(d)\D)PGL(3), a 	→ [e0, a] where
e0 is the base point of E PGL(3). We set χ := χ2 ◦ χ1 and ρ̃ := ρ ◦ χ . Then
ρ̃ : π1(V d\D̃) → �g is the topological monodromy of the family over V d\D̃ defined
as in the case of F → P(d)\D.

In this section, we shall construct a 1-cochain c : π1(V d\D̃) → Z and prove that
δc = ρ̃∗τg . The key is that V d\Ẽ is 2-connected, which follows from the fact that the
complex codimension of Ẽ in V d is ≥ 2. All of the spaces that we consider in this
section as well as all of the maps are based.

We regard the circle S1 as the boundary of the unit disk D2 in R
2. D2 has the

natural orientation induced by that of R
2 and this induces the orientation of S1 by

counter clockwise manner. Let � : S1 → V d\D̃ be a C∞-map. Since V d\Ẽ is simply
connected we can extend � to a C∞-map �̃ : D2 → V d\Ẽ . We may assume that �̃
is transverse to D̃. By Lemma 2.4 �̃∗F̃ is a compact four-dimensional C∞-manifold
with boundary and has the natural orientation induced by the orientation of D2 and
that of the fibers, which have the natural orientations as compact Riemann surfaces.
Set

c([�]) := Sign(�̃∗F̃),

where [�] denotes the element of π1(V d\D̃) represented by � and the right hand side
is the signature of �̃∗F̃ .

Proposition 3.1 The above definition of c is well defined and δc = ρ̃∗τg, i.e., c is a
cobounding cochain for ρ̃∗τg.

Proof We first show that c is well defined. Let �0 and �1 are C∞-maps from S1

to V d\D̃, and suppose that they represent the same element of π1(V d\D̃). Then
there exists a C∞-homotopy H : S1 × [0, 1] → V d\D̃ such that H(·, 0) = �0 and
H(·, 1) = �1.

Regard the 2-sphere S2 as the annulus S1 × [0, 1] with two copies of D2 attached
along its two boundary circles S1 × {0} and S1 × {1}. We denote by D2

0 one of copies
of D2 attached to S1 ×{0} and D2

1 the other. Using some extensions �̃i : D2
i → V d\Ẽ

of �i for i = 0 and 1, H extends to a C∞-map H̃ : S2 → V d\Ẽ . We introduce the
orientation of S2 so that the inclusion D2

0 ↪→ S2 is orientation preserving. Thus the
other inclusion D2

1 ↪→ S2 is orientation reversing.

Since π2(V d\Ẽ) = 0, we can extend H̃ to a C∞-map H̄ : D3 → V d\Ẽ transverse
to D̃\Ẽ . Then H̄∗F̃ is a C∞-manifold with boundary H̃∗F̃ . Since the signature of
the boundary of a manifold is zero, we have by the Novikov additivity of the signature

Sign(�̃0
∗F̃)− Sign(�̃1

∗F̃) = 0,

so c is well defined.
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The mapping class group and the Meyer function for plane curves 931

We next show the latter part. Let �0 and �1 be C∞-maps from S1 to V d\D̃. We will
show

c([�0])+ c([�1])− c([�0][�1]) = ρ̃∗τg([�0], [�1]). (1)

Let P denote the pair of pants; this is the 2-sphere S2 with the interior of the three
disjoint closed disks removed. We also choose two of three boundary components of
P and denote them by S1

0 and S1
1 , respectively. S1

0 and S1
1 have the natural orientations

induced by that of P and can be naturally identified with S1. Since P has the homotopy
type of the bouquet S1 ∨ S1, we can construct a C∞-map L : P → V d\D̃ such that
the restriction of L to S1

0 (respectively, S1
1 ) are exactly same as �0 (respectively, �1).

We notice that the restriction of L to the remaining boundary component of P with
the natural orientation is homotopic to the inverse of the composition loop �0 · �1.
We also have Sign(L∗F̃) = −ρ̃∗τg([�0], [�1]) by the definition of Meyer’s signature

cocycle τg . Using some extensions �̃i of �i for i = 0 and 1, and an extension �̃0 · �1
of �0 · �1, L extends to a C∞-map L̃ : S2 → V d\Ẽ . Moreover L̃ extends to a map
L̄ : D3 → V d\Ẽ transverse to D̃. We have Sign(L̃∗F̃) = 0 since L̃∗F is the boundary
of L̄∗F hence we obtain by the Novikov additivity

0=Sign
(
L̃∗F̃

)=Sign
(
�̃0

∗F̃
)

+ Sign
(
�̃1

∗F̃
)

− Sign
(
�̃0 · �1

∗
F̃
)

+ Sign
(
L∗F̃

)
,

that is just the Eq. (1). ��

4 Main theorems

In this section we shall state and prove the main results of this paper. In Sect. 1 we
defined the group �(d) and the homomorphism ρ : �(d) → �g .

Theorem 4.1 ρ∗[τg] = 0 ∈ H2(�(d); Q).

Theorem 4.2 The first homology group of �(d) is given as follows:

H1(�(d); Z) =
{

Z/3(d − 1)2Z if d ≡ 0 mod 3,

Z/(d − 1)2Z if d ≡ 1 or 2 mod 3.

In particular, we have H1(�(d); Q) = 0.

As an immediate consequence of these theorems, it follows that there exists the
unique 1-cochain φd : �(d) → Q such that δφd = ρ∗τg . We will call φd the Meyer
function for plane curves of degree d .

The rest of this section will be devoted to the proof of these theorems. In Proposi-
tion 3.1 we have showed that ρ̃∗[τg] = 0 ∈ H2(π1(V d\D̃); Z). Thus Theorem 4.1
follows from the following:
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Lemma 4.3 The homomorphism

χ∗ : H2(�(d); Q) → H2(π1(V
d\D̃); Q)

induced by χ , introduced in Sect. 3, is injective.

Proof Recall that χ is the composition of χ1 and χ2. We first consider χ1. Let ξ ∈
H2(P(d); Q) denote the first Chern class of the principal C

∗ bundle V d\{0} → P(d).
Then the restriction of ξ to P(d)\D is zero, for the first Chern class c1([D]) ∈
H2(P(d); Q) of the line bundle [D] determined by the divisor D of P(d) is a multiple
of ξ and of course the restriction of c1([D]) to P(d)\D is zero.

By the Gysin sequence

H0(P(d)\D; Q)
∪ξ→ H2(P(d)\D; Q) → H2(V d\D̃; Q)

of the principal C
∗ bundle V d\D̃ → P(d)\D we see that H2(P(d)\D; Q) →

H2(V d\D̃; Q) is injective. Therefore

χ∗
1 : H2(π1(P(d)\D); Q) → H2(π1(V

d\D̃); Q)

is also injective.
We next consider χ2. By the homotopy exact sequence of the P(d)\D bundle

(P(d)\D)PGL(3) → B PGL(3), [e, a] 	→ �(e)where� denotes the projection map
E PGL(3) → B PGL(3), we have an exact sequence

Z/3Z ∼= π2(B PGL(3)) → π1(P(d)\D)
χ2→ �(d) → 1. (2)

This implies that

χ∗
2 : H2(�(d); Q) → H2(π1(P(d)\D); Q)

is isomorphic. Since χ∗ = χ∗
1 ◦ χ∗

2 , the lemma follows. ��
We next proceed to Theorem 4.2. In the following we consider (co)homology with

coefficients in Z. We need the following two lemmas:

Lemma 4.4 Let a0 ∈ P(d)\D and denote by P the set of all projective lines in P(d)
through a0. Then there exist a non-empty Zariski open subset U ⊂ P such that each
element of U does not meet E and is transverse to D.

Proof Consider the projection with center a0

f : D → P, f (a) = the line through a0 and a.

Note that for a ∈ D\E , f is critical at a if and only if f (a) is contained in the
hyperplane Ta appeared in Lemma 2.2, namely f (a) is not transverse to D at a.
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P is a (N − 1)-dimensional projective space and f (E) is a proper algebraic set in
P since dimE ≤ N − 2. Let K denote the set of all critical values of f ◦ π : X → P.
K contains all critical values of f |D\E since π |π−1(D\E) : π−1(D\E) → D\E is bi-
holomorphic by Lemma 2.2, and is algebraic and proper because K is nowhere dense
in P by Sard’s theorem. Therefore if we set

U := P\( f (E) ∪ K ),

U has the desired property. ��

Lemma 4.5 Let a0 and U be as in Lemma 4.4. For each Q ∈ U the invariants of the
complex surface M = {(a, p) ∈ Q × P

2 ; p ∈ Ca} is given as follows:

c2
1(M) = −d2 + 9, c2(M) = d2 + 3, Sign(M) = 1 − d2.

Proof Since Q ∼= P
1 we can regard M as a smooth hypersurface in P

1×P
2 determined

by a (1, d) homogeneous polynomial. For i = 1 and 2, respectively, we denote by
ξi ∈ H2(P1 × P

2; Z) the pull back of the first Chern class of O(1) by H2(Pi ; Z) →
H2(P1 × P

2; Z) induced by the projection P
1 × P

2 → P
i . Here O(1) denotes the

dual of the tautological line bundle over P
i . The first Chern class of the line bundle

[M] determined by the divisor M of P
1 × P

2 is c1([M]) = ξ1 + dξ2. Therefore by the
adjunction formula, the first Chern class of M is

c1(M) =
(

c1(P
1 × P

2)− c1([M])
)

|M

= (2ξ1 + 3ξ2 − (ξ1 + dξ2)) |M

= (ξ1 + (3 − d)ξ2) |M .

Then the Chern number c2
1(M) is computed as follows:

c2
1(M) =

〈
c1(M)

2, µM

〉

=
〈
(ξ1 + (3 − d)ξ2)

2c1([M]), µP1×P2

〉

=
〈
(ξ1 + (3 − d)ξ2)

2(ξ1 + dξ2), µP1×P2

〉

=
〈
(−d2 + 9)ξ1ξ

2
2 , µP1×P2

〉

= −d2 + 9.

HereµM (respectively,µP1×P2 ) denotes the fundamental homology class of M (respec-
tively, P

1 × P
2) and 〈−,−〉 denotes the Kronecker pairing between cohomology and

homology. We next compute c2(M). Again by the adjunction formula, the second
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Chern class of M is

c2(M) = c2(P
1 × P

2)|M − c1(M) · c1([M])|M

=
(

3ξ2
2 + 6ξ1ξ2 − (ξ1 + (3 − d)ξ2)(ξ1 + dξ2)

)
|M

=
(

3ξ1ξ2 + (d2 − 3d + 3)ξ2
2

)
|M ,

and the Chern number which will also be denoted by c2(M) is

c2(M) = 〈c2(M), µM 〉
=
〈
(3ξ1ξ2 + (d2 − 3d + 3)ξ2

2 )c1([M]), µP1×P2

〉

=
〈
(3ξ1ξ2 + (d2 − 3d + 3)ξ2

2 )(ξ1 + dξ2), µP1×P2

〉

=
〈
(d2 + 3)ξ1ξ

2
2 , µP1×P2

〉

= d2 + 3.

Finally by the Hirzebruch signature theorem we have Sign(M) = 1
3 (c

2
1(M) −

2c2(M)) = 1 − d2. ��
Let a0 and Q ∈ U be as in Lemma 4.5. Using the above two lemmas we can

compute the first homology group of π1(P(d)\D):

Proposition 4.6 H1(π1(P(d)\D); Z) = Z/3(d − 1)2Z.

Proof The first projection g : M → Q is a family of algebraic curves, whose all sin-
gular fibers are of type I by Lemma 2.3. Since the Euler contribution (see [4], p. 118,
(11.4) Proposition) of a singular fiber of type I is +1, the number of singular fibers of
g : M → Q ∼= P

1 is

c2(M)− 2(2 − 2g) = d2 + 3 − 2

(
2 − 2 · 1

2
(d − 1)(d − 2)

)
= 3(d − 1)2. (3)

Now consider the following commutative diagram:

Z ∼= H2(P(d))

∼=
��

�� H2(P(d),P(d)\D)

∼=
��

�� H1(P(d)\D) �� 0

H2N−2(P(d))
ι∗ �� H2N−2(D) ∼= Z.

Here the vertical isomorphisms are Poincaré duality and the first horizontal sequence
is a part of the homology exact sequence of the pair (P(d),P(d)\D), and ι∗ is induced
by the inclusion D ↪→ P(d). For a generator of H2(P(d)) we can choose [Q]. We can
conclude this generator is mapped to 3(d − 1)2 times a generator of H2N−2(D) in the
above diagram, because (3) shows that Q and D intersect transversally in 3(d − 1)2
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points. This completes the proof, since H1(P(d)\D) ∼= H1(π1(P(d)\D); Z) is iso-
morphic to the cokernel of H2(P(d)) → H2(P(d),P(d)\D). ��

Now we start the proof of Theorem 4.2. Let F0 ∈ V d\D̃ be a base point and a0 the
image of F0 under the map V d\D̃ → P(d)\D. We consider the maps λ : GL(3; C) →
V d\D̃, A 	→ A · F0 and λ̄ : PGL(3) → P(d)\D, Ā 	→ Ā · a0. Since the isomor-
phism π2(B PGL(3)) ∼= π1(PGL(3)) induced by the homotopy exact sequence of
the universal PGL(3) bundle E PGL(3) → B PGL(3) is compatible with (2) and
λ̄∗ : π1(PGL(3)) → π1(P(d)\D), we have an exact sequence of group homology

Z/3Z∼=H1(π1(PGL(3)))
λ̄∗→ H1(π1(P(d)\D))∼=Z/3(d − 1)2Z

χ2∗→ H1(�(d))→0.

Therefore we must compute the map λ̄∗ to determine H1(�(d)).
For this purpose, we consider the following exact sequence

Z ∼= H1(C
∗) → H1(V

d\D̃) → H1(P(d)\D) → 0

induced by a part of the homotopy exact sequence of the principal C
∗ bundle V d\D̃ →

P(d)\D. We have H1(V d\D̃) ∼= Z (see [6], chap. 4, Corollary (1.4)). Let γ be the
generator of H1(C

∗) represented by the loop γ (t) = e2π
√−1t , 0 ≤ t ≤ 1. By Proposi-

tion 4.6 we see that the image of γ , which is represented by the loop t 	→ e2π
√−1t · F0,

is 3(d − 1)2 times a generator of H1(V d\D̃). On the other hand the loop

t 	→

⎛

⎜⎜⎝

e2π
√−1t 0 0

0 e2π
√−1t 0

0 0 e2π
√−1t

⎞

⎟⎟⎠ , 0 ≤ t ≤ 1

in GL(3; C), representing three times a generator of H1(GL(3; C)) ∼= Z, is mapped
to the loop t 	→ (e2π

√−1t )−d · F0 by λ. Hence in the commutative diagram

Z ∼= H1(GL(3; C))
λ∗ ��

��

H1(V d\D̃)

��
Z/3Z ∼= H1(PGL(3))

λ̄∗ �� H1(P(d)\D)

we have λ∗(1) = ±d(d − 1)2 ∈ Z ∼= H1(V d\D̃) so we can conclude λ̄∗(1 mod 3) =
±d(d − 1)2 mod 3(d − 1)2. This completes the proof of Theorem 4.2.

5 The value of the Meyer function

By Proposition 4.6, we have H1(π1(P(d)\D); Q) = 0. Therefore φ̄d := φd ◦ χ2 is
the unique 1-cochain of π1(P(d)\D) satisfying (ρ ◦χ2)

∗τg = δφ̄d . In this section we
will compute the value of φ̄d on a special element in π1(P(d)\D) so called lasso.
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We first explain what a lasso is. Let M be a connected complex manifold of dimen-
sion m and N an irreducible hypersurface of M . Then the inclusion M\N ↪→ M
induces the following exact sequence:

1 → 〈σ 〉 → π1(M\N ) → π1(M) → 1.

Here 〈σ 〉 denotes the normal closure of an element σ of π1(M\N ), which is described
in the following. Let p be a non-singular point of N and (z1, . . . , zm) a local coordi-
nate system of M around p such that N is defined by z1 = 0. For a sufficiently small
ε > 0, consider a loop defined in this coordinate system by

[0, 1] → M\N , t 	→ (εe2π
√−1t , 0, . . . , 0)

based at q = (ε, 0, . . . , 0). Joining this loop with a path from the base point of M\N
to q, we get an element σ of π1(M\N ). Since N is irreducible, the conjugacy class
of σ in π1(M\N ) is independent of choices of p and a local coordinate system. Each
element of this conjugacy class is called a lasso around N .

Returning to π1(P(d)\D), D is an irreducible hypersurface of P(d). Let σ d ∈
π1(P(d)\D) be a lasso around D. Since φ̄d is a class function (see Lemma 8.2 in
Appendix), the values of φ̄d on the conjugacy class of σ d is constant.

Proposition 5.1 For d ≥ 3,

φ̄d(σ d) = − d + 1

3(d − 1)
.

Proof Choose a0 and Q ∈ U as in Lemma 4.5. In the proof of Proposition 4.6 we
see that Q meets D transversely in 3(d − 1)2 points. Let Q ∩ D = {q1, . . . , q3(d−1)2}
and let Di (i = 1, . . . , 3(d − 1)2) be a small closed 2-disk in Q such that qi ∈ IntDi

and Di ∩ D j = ∅ for i 
= j . We fix a base point of Q0 := Q\⋃3(d−1)2

i=1 IntDi and
for each i = 1, . . . , 3(d − 1)2, choose a based loop σi in Q0 such that σi is free
homotopic to the loop traveling once the boundary ∂Di by counter clockwise manner.
Note that regarded as an element in π1(P(d)\D), σi is a lasso around D hence we
have φ̄d(σi ) = φ̄d(σ d).

Let g : M → Q be as in the proof of Proposition 4.6 and set M0 := g−1(Q0) and
Mi := g−1(Di ), i = 1, . . . , 3(d − 1)2. By Meyer’s signature formula ([12] Satz 1)
and the equation (ρ ◦ χ2)

∗τg = δφ̄d , we obtain

Sign(M0) =
3(d−1)2∑

i=1

φ̄d(σi ) = 3(d − 1)2φ̄d(σ d).

Since the topological type of g−1(qi ) is Lefschetz singular fiber of type I, we have
Sign(Mi ) = 0. We compute by the Novikov additivity and Lemma 4.5
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1 − d2 = Sign(M) = Sign(M0)+
3(d−1)2∑

i=1

Sign(Mi ) = 3(d − 1)2φ̄d(σ d).

This completes the proof. ��
In the rest of this section we consider the remaining case d = 2. Since V 2 is the set

of quadratic forms each element of V 2 can be expressed by a 3 × 3 symmetric matrix
S. In this view point V 2\D̃ is the space of non-singular symmetric matrices and the
action of GL(3; C) on V 2\D̃ is given by

A · S = t A−1 · S · A−1, A ∈ GL(3; C).

Since this action is transitive and the isotropy group of the unit matrix is the complex
orthogonal group O3(C) = {A ∈ GL(3; C) ; t A · A = I }, we have

V 2\D̃ ∼= GL(3; C)/O3(C).

Also we have

P(2)\D ∼= PGL(3)/SO3(C),

where SO3(C) = {A ∈ O3(C) ; det A = 1} is regarded as a subgroup of PGL(3) by
the injection SO3(C) ↪→ PGL(3) induced by the projection GL(3; C) → PGL(3).
Therefore, we obtain

(P(2)\D)PGL(3) = E PGL(3)×PGL(3) (P(2)\D)
∼= E PGL(3)/SO3(C) = BSO3(C) � BSO3.

The last homotopy equivalence holds because the natural inclusion SO3 ↪→ SO3(C)

is homotopy equivalence. In particular, we have

�(2) ∼= π1(BSO3) = 1.

6 The universal property of (P(d)\D)P GL(3)

In this section we will show the universal property of the space (P(d)\D)PGL(3). In
the latter part of the section, we consider the case d = 4 more detail; in particular, we
prove that ρ : �(4) → �3 is surjective.

We first make some definitions. Let ι : X → P be a continuous map and h : P → B
a P

2 bundle whose structure group is PGL(3). We call ξ = (X, ι, P, h, B) a family
of non-singular plane curves of degree d if

1. p := h ◦ ι : X → B is a continuous family of compact Riemann surfaces of genus
g = 1

2 (d − 1)(d − 2), and
2. for each b ∈ B, the restriction ι|Xb : Xb → Pb is a holomorphic embedding where

Xb = p−1(b) and Pb = h−1(b).
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For each b ∈ B, the image ι(Xb) ⊂ Pb ∼= P
2 is a non-singular plane curve of

degree d. Two such families ξi = (Xi , ιi , Pi , hi , B), i = 0, 1, are called isotopic if
there exists a family of non-singular curves of degree d over B × [0, 1], denoted by
ξ̃ = (X̃ , ι̃, P̃, h̃, B × [0, 1]), such that for i = 0, 1, the restriction of ξ̃ to B × {i} is
isomorphic to ξi , i.e., for i = 0, 1, there exists a homeomorphism �i : Pi → P̃|B×{i}
and ψi : Xi → X̃ |B×{i} such that the diagram

Xi

ιi

��

ψi �� X̃ |B×{i}

ι̃

��
Pi

hi

��

�i �� P̃|B×{i}

h̃
��

B �� B × {i},

where the last horizontal arrow is the homeomorphism B → B × {i} given by b 	→
(b, i), commutes and�i (respectively, ψi ) maps each fiber Pi

b (respectively, Xi
b) onto

h̃−1(b, i) (respectively, (h̃ ◦ ι̃)−1(b, i)) biholomorphically.
For a given space B, we denote by PCd(B) the set of all isotopy classes of families

of non-singular plane curves of degree d over B. PCd(•) is contravariant; for a given
continuous map f : B ′ → B we have a natural map PCd(B) → PCd(B ′) which
assigns the isotopy class of ξ the isotopy class of the pull back of ξ by f , which will
be denoted by f ∗ξ . In fact, the isotopy class of f ∗ξ is uniquely determined by the
homotopy class [ f ] ∈ [B ′, B].

Among such families of non-singular plane curves of degree d, there is a univer-
sal one. Consider the inclusion map F ↪→ (P(d)\D) × P

2 and the first projection
(P(d)\D) × P

2 → P(d)\D. For simplicity, we write Y instead of (P(d)\D) × P
2.

Since these maps are PGL(3)-equivariant, we obtain

ιu : FPGL(3) → YPGL(3)

and

hu : YPGL(3) → (P(d)\D)PGL(3).

The map pu := hu ◦ ιu is the same as the map defined in Sect. 1 and

ξu := (FPGL(3), ιu,YPGL(3), hu, (P(d)\D)PGL(3)
)

is a family of non-singular plane curves of degree d. The next theorem says that
(P(d)\D)PGL(3) is the classifying space for the functor PCd(•) and ξu is the universal
family.
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Theorem 6.1 For any space B, the map

η : [B, (P(d)\D)PGL(3)] → PCd(B)

which assigns the homotopy class of f : B → (P(d)\D)PGL(3) the isotopy class of
the pull back f ∗ξu, is bijective.

In the following we shall construct the inverse of η.
Let ξ = (X, ι, P, h, B) be given. We divide the argument in three steps.

Step 1 We first consider the case when P is trivial: suppose that P = B × P
2. Then

for each b ∈ B, ι(Xb) ⊂ {b} × P
2 ∼= P

2 is a non-singular plane curve of degree d, so
the defining equation of ι(Xb) in P

2 is uniquely determined as an element of P(d)\D.
Denoting it by Eq(b), we obtain a map

Eq : B → P(d)\D.

Lemma 6.2 The map Eq is continuous.

Proof Regard P
2 as the set of all complex lines through the origin in C

3. Then the
holomorphic line bundle O(d) over P

2 is given by

O(d) = O(1)⊗d =
⋃

�∈P2

Hom(�,C)⊗d .

Let p2 : B × P
2 → P

2 be the second projection and consider the pull back L :=
(p2 ◦ ι)∗O(d). L → X is a continuous family over B of holomorphic vector bundles.
Now H0(P2;O(d)) is canonically isomorphic to V d and for each b ∈ B there is the
natural homomorphism

σb : V d ∼= H0(P2;O(d)) → H0 (ι(Xb);O(d)|ι(Xb)

) ∼= H0(Xb; Lb),

where Lb is the restriction of L to Xb. Combining all σb, b ∈ B together, we obtain a
homomorphism of vector bundles

σ : B × V d →
⋃

b∈B

H0(Xb; Lb).

We see that for each b ∈ B, σb is surjective and its kernel is one-dimensional gen-
erated by the defining equation of ι(Xb), i.e., Eq(b) = kerσb. This shows that Eq is
continuous. ��

We also define a PGL(3)-equivariant continuous map� : B×PGL(3) → P(d)\D
by

�(b, g) = g · Eq(b).

Here we regard B× PGL(3) as the trivial principal PGL(3) bundle with left PGL(3)
action.
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Step 2 We next consider the general case ξ = (X, ι, P, h, B). Let {Ui }i∈I be an open
covering of B trivializing h : P → B: There is an isomorphism ϕi : h−1(Ui ) →
Ui × P

2 for each i and a system of transition functions gi j : Ui ∩ U j → PGL(3) for
each (i, j) satisfying Ui ∩ U j 
= ∅, such that

(ϕi ◦ ϕ−1
j )(b, p) = (b, gi j (b) · p), b ∈ Ui ∩ U j , p ∈ P

2.

As in Step 1, we have a continuous map Eqi : Ui → P(d)\D and a PGL(3)-equi-
variant map � i : Ui × PGL(3) → P(d)\D for each i . Let Q(ξ) be a principal
PGL(3) bundle over B associated to h : P → B: namely Q(ξ) is constructed from
the disjoint union

∐
i∈I Ui × PGL(3) by identifying (b, g) ∈ Ui × PGL(3) with

(b, g · gi j (b)) ∈ U j × PGL(3)where b ∈ Ui ∩U j . We have gi j (b) ·Eq j (b) = Eqi (b)
for b ∈ Ui ∩U j because g ·Ca = Cg·a for g ∈ PGL(3), a ∈ P(d)\D. Therefore piec-
ing all� i , i ∈ I together, we obtain a PGL(3) equivariant map� : Q(ξ) → P(d)\D
and a continuous map

�PGL(3) : Q(ξ)PGL(3) → (P(d)\D)PGL(3).

Note that Q(ξ) and � are determined up to isomorphism over B.

Step 3 The natural map

T : Q(ξ)PGL(3) = E PGL(3)×PGL(3) Q(ξ) → PGL(3)\Q(ξ) ∼= B

is a homotopy equivalence because this is an E PGL(3) bundle. Taking a homotopy
inverse map ζ : B → Q(ξ)PGL(3) of T , we set

θ([ξ ]) := [�PGL(3) ◦ ζ ].

Here [ξ ] denotes the element of PCd(B) represented by ξ and [�PGL(3) ◦ ζ ] denotes
the element of [B, (P(d)\D)PGL(3)] represented by�PGL(3) ◦ ζ . It is easy to see that

θ : PCd(B) → [B, (P(d)\D)PGL(3)]

is well defined.

Before starting the proof of Theorem 6.1, we describe the above construction applied
to the family ξu . In the below, e ∈ E PGL(3), g, h ∈ PGL(3) and a ∈ P(d)\D. We
can write

Q(ξu) ∼= ((P(d)\D)× PGL(3))PGL(3) (4)

where the action of PGL(3) on (P(d)\D)× PGL(3) is diagonal, i.e.,

g · (a, h) = (g · a, g · h),
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and the left action of PGL(3) on the right hand side of (4) is given by

g · [e, (a, h)] = [e, (a, h · g−1)].

The PGL(3)-equivariant map �u : Q(ξu) → P(d)\D defined as in Step 2 is given
by

�u([e, (a, g)]) = g−1 · a,

and moreover, the induced map Q(ξu)PGL(3) → (P(d)\D)PGL(3) has a section su

given by

su([e, a]) = [e, [e, (a, 1)]].

Proof of Theorem 6.1 We first prove η ◦ θ = idPCd (B). Let ξ = (X, ι, P, h, B) be
given. By construction, there is the canonical isomorphism T ∗ξ → �∗

PGL(3)ξu as
families of non-singular plane curves of degree d over Q(ξ)PGL(3). Thus we have

(�PGL(3) ◦ ζ )∗ξu = ζ ∗�∗
PGL(3)ξu = ζ ∗T ∗ξ = (T ◦ ζ )∗ξ.

Since T ◦ ζ is homotopic to the identity map of E , this shows η ◦ θ = idPCd (B).
We next show θ ◦ η = id[B,(P(d)\D)PGL(3)]. Let f : B → (P(d)\D)PGL(3) be a

continuous map.
Starting from the family f ∗ξ and tracing the construction of θ , we construct the

map

�PGL(3) : Q( f ∗ξu)PGL(3) → (P(d)\D)PGL(3).

Q( f ∗ξu)PGL(3) is naturally isomorphic to the pull back of Q(ξu)PGL(3) → (P(d)\
D)PGL(3) by f . Thus pulling back the section su , we obtain a map ζ ′ := f ∗su : B →
Q( f ∗ξu)PGL(3) such that T ◦ ζ ′ = idB and �PGL(3) ◦ ζ ′ = f . Then ζ ′ is a homot-
opy inverse of T and θ ◦ η([ f ]) = [�PGL(3) ◦ ζ ′] = [ f ], so we obtain θ ◦ η =
id[B,(P(d)\D)PGL(3)]. ��

We call any representative of θ([ξ ]) the classifying map for the family ξ .
For d = 4, we do not have to consider P

2 bundles. Recall that a non-hyperelliptic
Riemann surface C of genus 3 can be realized as a non-singular plane curve of degree
4 (=plane quartic) by the canonical embedding. This means that the canonical map

ιC : C → P

(
H0(C; KC )

∨)

where H0(C; KC ) is the space of holomorphic 1-forms on C , is an embedding and if
we identify P(H0(C; KC )

∨) with P
2 by a choice of a basis of H0(C; KC ), the image

of C is a non-singular plane curve of degree 4. The defining equation of the image is
uniquely determined as an element of P(4)\D.
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942 Y. Kuno

Let p : X → B be a continuous family of compact Riemann surfaces of genus 3.
We call it a non-hyperelliptic family of genus 3 if the complex structure of each fiber
p−1(b), b ∈ B is non-hyperelliptic. Two such families pi : Xi → B (i = 0, 1) are
called isotopic if there exists a non-hyperelliptic family of genus 3 over B ×[0, 1] such
that for i = 0, 1, its restriction to B ×{i} is isomorphic to pi : Xi → B as continuous
family of Riemann surfaces over B ∼= B × {i}.

For a given space B, we denote by NH3(B) the set of all isotopy classes of non-
hyperelliptic families of genus 3 over B. Then the forgetful functor

PC4(•) → NH3(•) (5)

defined by an obvious manner, is bijective. For, let p : X → B be a given non-hyperel-
liptic family of genus 3. Set �X := ⋃b∈B H0(p−1(b); Kb), where H0(p−1(b); Kb)

denotes the space of holomorphic 1-forms on p−1(b). This has the structure of complex
vector bundle over B. Projectivising the dual of �X , we obtain a P

2 bundle

h′ : P ′ =
⋃

b∈B

P

(
H0(p−1(b); Kb)

∨)→ B,

and piecing the fiberwise canonical maps ιXb , b ∈ B together, we get a map ι : X →
P ′. Then we obtain an element ξ = (X, ι, P ′, h′, B) ∈ PC4(•). This correspondence
gives the inverse of (5).

We continue the consideration of the case d = 4. We next prove that:

Proposition 6.3 The homomorphism ρ : �(4) → �3 is surjective.

Combining this with Theorem 4.1, which implies that ρ∗ : H2(�3; Q) → H2

(�(4); Q) is not injective, we see that the order of the kernel of ρ is infinite.

Proof of Proposition 6.3 Let T3 be the Teichmüller space of compact Riemann surfaces
of genus 3 and H3 the hyperelliptic locus of T3; namely the set of marked Riemann
surfaces whose complex structure is hyperelliptic. H3 is a complex analytic closed sub-
manifold of codimension 1 with infinitely many components (see [14], pp. 259–260).
In particular, T3\H3 is path connected.

We recall; there is a holomorphic familyπ : V3 → T3 called the universal Teichmül-
ler curve, whose fiber over the marked Riemann surface [ f,C] is isomorphic to C ;
the mapping class group �3 acts on T3 and V3, and π is equivariant with respect to
these actions; it is well known that the quotient space �3\T3 is the Riemann moduli
space. Since the action of�3 on T3 preserves H3, �3 also acts on T3\H3 and its inverse
image by π . Restricting π to T3\H3 and taking the Borel construction, we obtain a
non-hyperelliptic family of genus 3 over (T3\H3)�3 .

It is not difficult to see that this family also have the universal property which the
family pu over (P(4)\D)PGL(3) has. Therefore, (T3\H3)�3 is homotopy equivalent to
(P(4)\D)PGL(3) hence its fundamental group is isomorphic to �(4).

By the homotopy exact sequence of the T3\H3 bundle (T3\H3)�3 → B�3 =
K (�3, 1) we obtain an exact sequence

�(4) ∼= π1((T3\H3)�3)
ρ′
→ π1(B�3) = �3 → π0(T3\H3).
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We notice that the homomorphism ρ′ just coincides with the topological monodr-
omy over (T3\H3)�3 , and π0(T3\H3) is one point. This shows ρ′ is surjective, so ρ
is. ��

7 Local signature for four-dimensional non-hyperelliptic fibration of genus 3

As an application, we will define the local signature for the set of all fiber germs
of four-dimensional fiber spaces whose general fibers are non-hyperelliptic Riemann
surfaces of genus 3, using the Meyer function φ4. This local signature is used to derive
a signature formula for a class of four-dimensional fiber spaces, whose general fibers
are non-hyperelliptic Riemann surfaces of genus 3.

Let � be a closed oriented 2-disk and p its center. A 4-tuple F = (E, π,�, p) is
called a fiber germ of non-hyperelliptic family of genus 3 if

1. E is a C∞ manifold of dimension 4 and π : E → � is a C∞ map,
2. the restriction of π to �\{p} is a non-hyperelliptic family of genus 3.

Note that E has the natural orientation and compact, hence its signature Sign(E) is
defined. Two such germs (E, π,�, p) and (E ′, π ′,�′, p′) are called equivalent if
there exist a smaller disk�0 ⊂ � (respectively,�′

0 ⊂ �′) whose center is p (respec-
tively, p′), and there exist orientation preserving diffeomorphisms ϕ : (�0, p) →
(�′

0, p′) and ϕ̃ : π−1(�0) → π ′−1(�′
0) such that ϕ ◦ π = π ′ ◦ ϕ̃ and

ϕ̃|π−1(�0\{p}) : π−1(�0\{p}) → π ′−1(�′
0\{p′})

maps each fiber biholomorphically.
Let NH3 denote the set of all equivalence classes of such 4-tuples. We denote the

element of NH3 also by F = (E, π,�, p). For F = (E, π,�, p) ∈ NH3, γ denotes
the element of π1(�\{p}) traveling once the boundary ∂� by counter clockwise man-
ner. We denote by F0 the restriction ofπ : E → � to�\{p}. F0 is a non-hyperelliptic
family of genus 3 and can be considered as an element of PC4(�\{p}) in view of (5).

Definition 7.1 Define loc.sigQ : NH3 → Q by

loc.sigQ(F) := φ4(θ(F0)∗(γ ))+ Sign(E).

Here, θ(F0)∗ is the homomorphism from π1(�\{p}) to �(4) induced by the clas-
sifying map θ(F0) for F0. It is assumed that suitable base points of �\{p} and
(P(4)\D)PGL(3) are chosen. Since φ4 is a class function, we don’t have to care about
base point so we omit it.

We call a triple (E, π, B) a four-dimensional non-hyperelliptic fibration of genus
3 if

1. E (respectively, B) is a closed oriented C∞-manifold of dimension 4 (respec-
tively, 2) and π : E → B is a C∞-map,

2. there exist finitely many points b1, . . . , bn ∈ B such that the restriction of π to
B\{b1, . . . , bn} is a non-hyperelliptic family of genus 3.
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For i = 1, . . . , n, we obtain an element of NH3 by restricting π to a small closed
disk neighborhood of bi . we denote it by Fi . Then, we obtain

Theorem 7.2 (The signature formula) Let (E, π, B) be a four-dimensional non-hy-
perelliptic fibration of genus 3. Then

Sign(E) =
n∑

i=1

loc.sigQ(Fi ).

Proof For i = 1, . . . , n, take a small closed 2-disk Di around bi so that they do not
intersect each other. Then Fi = (π−1(Di ), π, Di , bi ). We denote by F0

i the restriction
of π to Di\{bi } and set B0 := B\⋃n

i=1 IntDi . By Meyer’s signature formula, we get

Sign(π−1(B0)) =
n∑

i=1

φ4
(
θ(F0

i )∗(γ )
)
.

Using the Novikov additivity, we compute

Sign(E) = Sign(π−1(B0))+
n∑

i=1

Sign(π−1(Di ))

=
n∑

i=1

φ4(θ(F0
i )∗(γ ))+

n∑

i=1

Sign(π−1(Di ))

=
n∑

i=1

loc.sigQ(Fi ).

��
Corollary 7.3 Let g : E → B be a non-hyperelliptic family of genus 3 over a closed
oriented surface B. Then Sign(E) = 0.

We compute some examples. Comparing the following computations with those in
[2,15], we see that their values coincide.
Singular fiber of type I Let � ⊂ P(4) be a closed 2-disk intersecting with D only
in its center p ∈ � transversely. Let πI : EI → � be the restriction of F̄ → P(4)
to �. Then EI is smooth by Lemma 2.4 and FI = (EI , πI ,�, p) is a fiber germ of
non-hyperelliptic family of genus 3. By Lemma 2.3 the topological type of π−1

I (p)
is Lefschetz singular fiber of type I, therefore we also call FI ∈ NH3 a singu-
lar fiber germ of type I. The signature of EI is 0 and by definition, the inclusion
�\{p} ↪→ P(4)\D ↪→ (P(4)\D)PGL(3) is the classifying map for F0

I and the bound-
ary of � is a lasso about D. Therefore, by Proposition 5.1, we have

Proposition 7.4

loc.sigQ(FI ) = −5

9
.
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Hyperelliptic fiber Let F ∈ V 4\{0} be a polynomial such that CF intersects with the
non-singular conic C : yz − x2 = 0 in eight points, and let� be a small closed 2-disk
around 0 ∈ C with the complex coordinate s. Let SF be the hypersurface in � × P

2

defined by the equation

(yz − x2)2 + s2 F(x, y, z) = 0.

SF is singular along C ′ = {0} × C . Blowing up�× P
2 along C , let S̃F be the proper

transform of SF and π : S̃F → � the composition of S̃F → SF and the first pro-
jection SF → �. Then S̃F is non-singular and the exceptional divisor π−1(0) is a
non-singular hyperelliptic curve of genus 3 with a natural projection onto C ′ ∼= P

1,
which is a double cover.

Choose � small enough so that the singular fiber of π is π−1(0) only. Set Fh =
(S̃F , π,�, 0) and call this fiber germ a hyperelliptic germ. Let �h be the corresponding
loop in P(4)\D defined by

�h(t) = (yz − x2)2 +
(
εe2π

√−1t
)2

F(x, y, z), 0 ≤ t ≤ 1,

where ε is the radius of �.

Proposition 7.5

loc.sigQ(Fh) = φ̄4([�h]) = 4

9
.

Proof We first note that loc.sigQ(Fh) = φ̄4([�h]) since a hyperelliptic germ is topo-
logically trivial.

The set W of all polynomials in V 4 such that the corresponding curve intersects
with C in eight points is a non-empty Zariski open subset of V 4. Since [�h] and
Sign(S̃F ) does not change under any small perturbation of F in V 4, it suffices to show
the proposition for a particular element of W . But by the same reason as in Lemma
4.4, there is actually an element F ∈ W such that the map

P
1 → P(4), [w0 : w1] 	→ w2

0(yz − x2)2 + w2
1 F(x, y, z),

does not meet E and is transverse to D, except at [w0 : w1] = [1 : 0]. Then for this
choice of F , the complex surface S in P

1 × P
2 defined by the equation

w2
0(yz − x2)2 + w2

1 F(x, y, z) = 0,

has singularities only along the conic {[1 : 0]}×C . After blowing up P
1×P

2 along this
conic, we obtain the proper transform S̃ of S. By the choice of F , S̃ is non-singular.
The composition of S̃ → S and the first projection S → P

1 is a family of algebraic
curves whose all singular fiber germs are singular fiber germ of type I except the fiber
germ around [1 : 0], and the fiber germ around [1 : 0] is a hyperelliptic germ. The
invariants of S̃ are computed as: c2

1(S̃) = −6, c2(S̃) = 18, and Sign(S̃) = −14.
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Now the number of singular fiber germs of type I is equal to the total Euler contri-
bution

18 − 2(2 − 2 · 3) = 26.

Note that a hyperelliptic germ, which is topologically trivial, does not contribute to
the Euler number. By Theorem 7.2 and Proposition 7.4, we have

−14 = −5

9
× 26 + loc.sigQ(Fh),

hence loc.sigQ(Fh) = 4
9 . ��

Singular fiber of type II Let� be as in the previous example, and let S be the surface
in �× P

2 defined by

z3x + y2x2 + y4 + s6x4 = 0.

S has an isolated singularity at p0 = (0, [1 : 0 : 0]) so called a singularity of type
Ẽ8. The inverse image C2 of 0 ∈ � by the first projection p1 : S → � is a curve of
geometric genus 2 with one cusp singularity.

Let � : S̃ → S be the minimal resolution of the singularity of S at p0. Then the
exceptional curve is a non-singular elliptic curve C1 with self intersection number −1.
If � is small enough, FI I = (S̃, p1 ◦ �,�, 0) is a fiber germ of non-hyperelliptic
family of genus 3. The topological type of the singular fiber (p1 ◦�)−1(0) is obtained
by the disjoint union of C1 and C2 by identifying a point of C1 with the cusp singularity
of C2, that is, Lefschetz singular fiber of type II. We call FI I a singular fiber germ of
type II.

Let �I I be the corresponding loop in P(4)\D defined by

�I I (t) = z3x + y2x2 + y4 + (εe2π
√−1t )6x4, 0 ≤ t ≤ 1.

Proposition 7.6

loc.sigQ(FI I ) = 1

3
, φ̄4([�I I ]) = 4

3
.

Proof In this case φ̄4([�I I ]) = loc.sigQ(FI I )+ 1 because the intersection form of S̃

is given by

(
0 1
1 0

)
hence Sign(S̃) = −1.

We perturb S slightly by adding a higher term about s; consider the surface in
�× P

2 defined by

z3x + y2x2 + y4 + s6x4 + sm F(x, y, z) = 0,

where m is an integer ≥ 7 and F is a polynomial in V 4. The singularity of this surface
remains at the origin and is still of type Ẽ8. Taking the minimal resolution of this
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singularity and taking � to be smaller if needed, we obtain a new fiber germ F ′
I I and

a new loop �′I I in P(4)\D. This perturbation does not influence the value of φ̄4 and
the topology of the fiber neighborhood of the singular fiber. So it suffices to compute
loc.sigQ(F ′

I I ).
Let S′ be the complex surface in P

1 × P
2 defined by the equation

wm
0 (z

3x + y2x2 + y4)+ wm−6
0 w6

1x4 + wm
1 F(x, y, z) = 0,

and let S̃′ → S′ be the minimal resolution of the singularity of S′ at p0 = ([1 : 0],
[1 : 0 : 0]). If a generic F is chosen, then S̃′ is non-singular and the singular fiber
germs of the family of algebraic curves S̃′ → S′ → P

1 are all of type I except the
fiber germ around [1 : 0], and the fiber germ around [1 : 0] is F ′

I I . The invariants of S̃′
are computed as: c2

1(S̃
′) = 9m − 17, c2(S̃′) = 27m − 19, and Sign(S̃′) = −15m + 7.

Now the number of singular fiber germs of type I is equal to

27m − 19 − 2(2 − 2 · 3)− 1 = 27m − 12.

This time, the fiber over [1 : 0] do contribute to the Euler number.
By the signature formula,

−15m + 7 = −5

9
× (27m − 12)+ loc.sigQ(F ′

I I ).

Thus we obtain loc.sigQ(FI I ) = loc.sigQ(F ′
I I ) = 1

3 . ��

Appendix

In this appendix we give a definition of Meyer’s signature cocycle in the form used
in the present paper and review its properties. For details, see Meyer’s original paper
[12].

We first explain the topological monodromy of surface bundles. Let π : E → B
be an oriented �g bundle whose structure group is the group of all orientation pre-
serving diffeomorphisms of �g . Choose a base point b0 ∈ B and fix an identification

φ : �g
∼=→ π−1(b0). For each based loop � : [0, 1] → B the pull back �∗(E) → [0, 1]

ofπ : E → B by � is trivial. Hence there exist a trivialization	 : �g ×[0, 1] → �∗(E)
such that 	(x, 0) = φ(x). By assigning the isotopy class of 	(x, 1)−1 ◦ φ to the ho-
motopy class of �, we obtain a map χ : π1(B, b0) = π1(B) → �g . This map becomes
a homomorphism under the conventions; (1) for any two mapping classes f1 and f2,
the multiplication f1 ◦ f2 means that f2 is applied first, (2) for any two homotopy
classes of based loops �1 and �2, their product �1 · �2 means that �1 is traversed first.
χ is called the topological monodromy of π : E → B and determined up to inner
automorphisms of �g .

Let P denote the pair of pants, i.e., P = S2\⋃3
i=1 IntDi where Di , i = 1, 2, and 3

are the three disjoint closed disks in the 2-sphere S2. Choose a base point p0 ∈ IntP
and fix a based loop �1 and �2 such that �i is free homotopic to the loop traveling once
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the boundary ∂Di by counter clockwise manner (i = 1, 2). For ( f1, f2) ∈ �g × �g ,
we can construct an oriented �g bundle E( f1, f2) over P such that the topological
monodromy χ : π1(P) → �g sends [�i ] to fi for i = 1, 2. (If g ≥ 2, the isomorphism
class of this bundle is unique.) E( f1, f2) is a compact C∞-manifold of dimension 4
and has the natural orientation induced by the orientation of P and that of the fibers.
Then the signature of E( f1, f2) is defined and we set

τg( f1, f2) := −Sign(E( f1, f2)).

This turns out to be well defined even when g = 1, and τg : �g × �g → Z is called
Meyer’s signature cocycle. The basic properties of τg are

(1) τg( f1 f2, f3)+ τg( f1, f2) = τg( f1, f2 f3)+ τg( f2, f3);
(2) τg( f1, 1) = τg(1, f1) = τg( f1, f −1

1 ) = 0;
(3) τg( f −1

1 , f −1
2 ) = −τg( f1, f2);

(4) τg( f1, f2) = τg( f2, f1);
(5) τg( f3 f1 f −1

3 , f3 f2 f −1
3 ) = τg( f1, f2),

where f1, f2, and f3 are elements of �g .
For an oriented �g bundle π : E → B and a choice of base point b0 of B, we

obtain a 2-cocycle χ∗τg of π1(B) = π1(B, b0) by pulling back τg by the topological
monodromyχ : π1(B) → �g . Althoughχ is determined only up to conjugacy,χ∗τg is
uniquely determined by the property (5) of τg above. Moreover, χ∗τg does not depend
on the choice of base point of B in the following sense: suppose b′

0 ∈ B and b0 are in
the same path component of B then under any isomorphism π1(B, b0) ∼= π1(B, b′

0)

using a path from b0 to b′
0, two cocycles of π1(B, b0) and π1(B, b′

0) defined as the
pull back of τg by topological monodromies, correspond to each other.

Let G be a group and ϕ : G → �g a homomorphism.

Definition 8.1 A Q-valued 1-cochain φ : G → Q is called a Meyer function with
respect to the pull back ϕ∗τg of τg by ϕ if it satisfies δφ = ϕ∗τg , i.e., φ cobounds the
2-cocycle ϕ∗τg .

If a Meyer function exists on G, the cohomology class ϕ∗[τg] ∈ H2(G; Z) is tor-
sion. The following properties of φ are easily derived by the above properties of τg

(see also [7, Proposition 3.1]).

Lemma 8.2 If φ is a Meyer function with respect to ϕ∗τg, we have

(1) φ(xy) = φ(x)+ φ(y)− ϕ∗τg(x, y);
(2) φ(1) = 0;
(3) φ(x−1) = −φ(x);
(4) φ(yxy−1) = φ(x),

where x, y ∈ G.
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