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1 Introduction

In this chapter, we give a survey on secondary invariants calledMeyer functions
with emphasis on their application to the signatures of fibered 4-manifolds.
These secondary invariants are associated to the vanishing of the primary in-
variant called the first MMM class e1, the first in a series of characteristic
classes of surface bundles [31] [33] [36]. There have been known various repre-
sentatives of e1 coming from different geometric contexts, as group 2-cocycles
on the mapping class group or differential 2-forms on the moduli space of
curves (see [21], especially for the latter). The view point we take here is the
signature of surface bundles over surfaces, and we work with the signature
cocycle τg introduced by W. Meyer [30] (and by Turaev [40] independently) a
Z-valued 2-cocycle of the mapping class group Mg of a closed oriented surface
of genus g, whose cohomology class is proportional to e1.

As was shown by Meyer, if g = 1 or 2, the cocycle τg is the coboundary of a
unique Q-valued 1-cochain φg ofMg. The existence of such a 1-cochain implies
that over the rationals, e1 of a surface bundle with fiber a surface of genus 1
or 2 vanishes. The uniqueness of φg follows from the fact H1(Mg;Q) = 0.
These 1-cochains are called the Meyer functions of genus 1 or 2. Meyer [30]
extensively studied the case of genus 1 and gave an explicit formula for φ1 which
involves the Dedekind sums. In [6], Atiyah reproved Meyer’s formula by a
quite different method and also showed various number theoretic or differential
geometric aspects of φ1.

In §2, we recall basic results of Meyer and Atiyah with a sketch of proof
for several assertions. In §3, we mention an application of Meyer functions
to localization of the signature of fibered 4-manifolds. This topic has been
studied also from algebro-geometric point of view, which we shall mention in
§3.1. Recently, various higher genera or higher dimensional analogues of φ1

have been considered and a part of Atiyah’s result has been generalized to these
generalizations. In §4, we present three examples of these generalizations.

Some conventions about surface bundles follow. Throughout this chapter g
is an integer ≥ 1. Let Σg be a closed oriented C∞-surface of genus g. By a Σg-
bundle we mean a smooth fiber bundle π : E → B over a C∞-manifold B with
fiber Σg such that the fibers are coherently oriented: the tangent bundle along
the fibers Tπ := {v ∈ TE;π∗(v) = 0} is oriented. The transition functions
of such bundles take values in Diff+(Σg), the group of orientation preserving
diffeomorphisms of Σg endowed with C∞-topology. The mapping class group
Mg := π0(Diff+(Σg)) is the group of connected components of Diff+(Σg). In
other words, Mg is the quotient group Diff+(Σg)/Diff0(Σg), where Diff0(Σg)
is the group of diffeomorphisms isotopic to the identity.

For a Σg-bundle π : E → B over a path connectd space B, the associ-
ated is (the conjugacy class of) a homomorphism χ : π1(B) → Mg called the
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monodromy. This correspondence is defined as the composite

{Σg−bundles over B}/isom = [B,BDiff+(Σg)]

→ Hom(π1(B),Mg)/conj. (1.1)

Namely, if f : B → BDiff+(Σg) is a classifying map of π : E → B, then χ = f∗,
the induced map from π1(B) to π1(BDiff+(Σg)) = π0(Diff+(Σg)) = Mg. To
be more careful about the base points and to give a more direct description,
choose a base point b0 ∈ B and fix an orientation preserving diffeomorphism
ϕ : Σg → π−1(b0). Let ℓ : [0, 1] → B be a based loop. Since [0, 1] is contractible,
the pull back ℓ∗(E) → [0, 1] of π : E → B is a trivial Σg-bundle. Hence there
exist a trivialization Φ: Σg × [0, 1] → ℓ∗(E) such that Φ(x, 0) = ϕ(x). In this
setting, χ : π1(B, b0) → Mg is given by χ([ℓ]) = [Φ(x, 1)−1 ◦ ϕ]. Here our
convention is: 1) for any two mapping classes f1 and f2, their multiplication
f1 ◦ f2 means that f2 is applied first, 2) for any two homotopy classes of based
loops ℓ1 and ℓ2, their product ℓ1 · ℓ2 means that ℓ1 is traversed first.

By the result of Earle-Eells [13], if g ≥ 2 the space Diff0(Σg) is contractible,
so the classifying space BDiff+(Σg) is a K(Mg, 1)-space. Hence the map (1.1)
is a bijection. If g = 1, then Σ1 = T 2, the two torus. The embedding
T 2 →֒ Diff0(T

2) as parallel translations is a homotopy equivalence, and M1 is
isomorphic to SL(2;Z). Thus we have a fibration BDiff+(T 2) → BSL(2;Z) =
K(SL(2;Z), 1) with fiber BT 2 = CP∞ × CP∞. In particular, by elementary
obstruction theory, it follows that if the base space B has a homotopy type of
a 1-dimensional CW complex, then the isomorphism class of T 2-bundles over
B is also classified well by monodromies: (1.1) is bijective.

2 The signature cocycle and Meyer’s theorem

In this section we review the signature cocycle, its variants, and the original
version of Meyer functions, i.e., the Meyer function of genus 1 and 2.

2.1 Prehistory

In study of the topology of fiber bundles, a basic question is how the topological
invariants of the total space, the base space and the fiber are related. In 50’s
Chern, Hirzebruch and Serre studied the signature of the total space of a
fiber bundle, by an application of the Serre spectral sequence. Recall that
the signature of a compact oriented manifold M of dimension 4n (possibly
with boundary), denoted by Sign(M), is the signature of the intersection form
H2n(M ;R) × H2n(M ;R) → R, which is a symmetric bilinear form. If the
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dimension of M is not a multiple of 4, we understand that the signature of M
is zero.

Theorem 2.1 (Chern-Hirzebruch-Serre [11]). Let E and B be closed oriented
manifolds and E → B a fiber bundle with fiber a closed oriented manifold F .
We arrange that the orientation of F is compatible with those of E and B. If
π1(B) trivially acts on the homology H∗(F ;R), then the signature of E is the
product of the signatures of B and F : Sign(E) = Sign(B)Sign(F ).

The assumption that π1(B) trivially acts on the homology of the fiber is
crucial, and the conclusion of the theorem does not hold in general. Indeed,
Atiyah [5] and Kodaira [22] independently constructed an algebraic surface
with non-zero signature, which is the total space of a complex analytic family
of compact Riemann surfaces over a compact Riemann surface. Their method
uses branched covering of algebraic surfaces, and can be used to produce ex-
amples such that the genus of the fiber can be taken arbitrarily integers ≥ 4.

One important consequence is that there are non-trivial characteristic classes
of surface bundles. In fact, since the signature of a manifold which is the
boundary of some manifold is zero, the map

Sign: Ω2(BDiff+(Σg)) → Z, [f ] 7→ Sign(f∗ξ)

is well-defined. Here Ω2(X) is the second oriented bordism group of a space
X (hence its element is represented by some continuous map f from a closed
oriented surface to X) and ξ is a universal Σg-bundle over the classifying
space BDiff+(Σg). Since Ω2(X) is naturally isomorphic to H2(X ;Z), the
map Sign becomes an element in Hom(H2(BDiff+(Σg)),Z), and the exam-
ples by Atiyah and Kodaira shows that the map Sign is non-trivial. Hence
H2(BDiff+(Σg);Z) ∼= H2(Mg;Z) is non-trivial and contains an element of
infinite order, provided g ≥ 4. As we recall in the following, Meyer showed
that this non-triviality holds when g ≥ 3.

2.2 The signature cocycle

W. Meyer [29] [30] studied the signature of surface bundles over surfaces and
introduced the signature cocycle. The basic idea of Meyer is to decompose the
base space into simple pieces: pairs of pants.

Let Σ0,n be a compact surface obtained from the two sphere by removing n
open disks with embedded disjoint closures. Specifying an orientation of Σ0,n

and a base point ∗ ∈ Int(Σ0,n), we take n based loops ℓ1, . . . , ℓn ∈ π1(Σ0,n, ∗)
such that each ℓi is freely homotopic to one of the boundaries with the counter-
clockwise orientation, and the relation ℓ1 · · · ℓn = 1 ∈ π1(Σ0,n, ∗) holds. The
group π1(Σ0,n, ∗) is free of rank n − 1, generated by any n − 1 of ℓ1, . . . , ℓn.
The surface P = Σ0,3 is called a pair of pants.
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Given f1, . . . , fn−1 ∈ Mg, consider a Σg-bundle π : E(f1, . . . , fn−1) → Σ0,n

with π−1(∗) = Σg whose monodromy χ : π1(Σ0,n, ∗) → Mg sends ℓi to fi
(i = 1, . . . , n− 1). Since Σ0,n is homotopy equivalent to a 1-dimensional CW
complex, such a bundle exists and is unique up to isomorphism (see §1). The
total space E(f1, . . . , fn−1) is a compact oriented 4-manifold with boundary.

Definition 2.2. The signature cocycle τg : Mg ×Mg → Z is defined by

τg(f1, f2) := Sign(E(f1, f2)), f1, f2 ∈ Mg.

The map τg is actually a normalized two cocycle of Mg.

Lemma 2.3. For f1, f2, f3 ∈ Mg, we have

(1) τg(f1f2, f3) + τg(f1, f2) = τg(f1, f2f3) + τg(f2, f3);

(2) τg(f1, 1) = τg(1, f1) = τg(f1, f
−1
1 ) = 0;

(3) τg(f
−1
1 , f−1

2 ) = −τg(f1, f2);

(4) τg(f1, f2) = τg(f2, f1);

(5) τg(f3f1f
−1
3 , f3f2f

−1
3 ) = τg(f1, f2).

sketch of proof. Recall the Novikov additivity of the signature. Let M1 and
M2 be compact oriented manifolds of the same dimension, Y1 and Y2 closed
and open submanifolds of ∂M1 and ∂M2, respectively, and ϕ : Y1 → Y2 an ori-
entation reversing homeomorphism. Then the signature of the glued manifold
M1 ∪ϕ M2 is the sum of the signatures of M1 and M2.

We only give the proof of (1), the cocycle condition for τg. Consider a
Σg-bundle π : E(f1, f2, f3) → Σ0,4 and let C1, C2 ⊂ Σ0,4 be essential sim-
ple closed curves intersecting each other in two points, such that C1 cuts
Σ0,4 into two pairs of pants and the boundary of one of the two contains
the free homotopy class of ℓ1 and ℓ2. According to the decomposition of
the base space, the total space E(f1, f2, f3) can be written as a connected
sum of E(f1f2, f3) and E(f1, f2). By the Novikov additivity of the signa-
ture, we obtain Sign(E(f1, f2, f3)) = τg(f1f2, f3) + τg(f1, f2). On the other
hand cutting along C2 and arguing similarly, we obtain Sign(E(f1, f2, f3)) =
τg(f1, f2f3) + τg(f2, f3).

The signature cocycle has a purely algebraic description. We denote by In
the n×n identity matrix. The integral symplectic group Sp(2g;Z), also called
the Siegel modular group, is defined by

Sp(2g;Z) := {A ∈ GL(2g;Z); tAJA = J},

where J =

(

0 Ig
−Ig 0

)

and Ig is the g× g identity matrix. Fix a symplectic

basis of H1(Σg;Z), i.e., elements A1, . . . , Ag, B1, . . . , Bg ∈ H1(Σg;Z) whose
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algebraic itersection numbers satisfy

(Ai · Bj) = δij , (Ai ·Aj) = (Bi ·Bj) = 0.

In terms of a symplectic basis, the (left) action ofMg onH1(Σg;Z) is expressed
as matrices and we get a (surjective) group homomorphism

ρ : Mg → Sp(2g;Z). (2.1)

Given A,B ∈ Sp(2g;Z), consider a R-linear space

VA,B := {(x, y) ∈ R2g ⊕ R2g; (A−1 − I2g)x+ (B − I2g)y = 0}
and a bilinear form 〈 , 〉A,B : VA,B × VA,B → R defined by

〈(x, y), (x′, y′)〉A,B := t(x+ y)J(I2g −B)y′.

It turns out that 〈 , 〉A,B is symmetric hence its signature Sign(VA,B , 〈 , 〉A,B)
is defined. We denote by τ spg the map Sp(2g;Z) × Sp(2g;Z) → Z, (A,B) 7→
Sign(VA,B , 〈 , 〉A,B). Note that τ spg is naturally defined on the Lie group
Sp(2g;R).

Theorem 2.4 (Meyer [29]). The signature cocycle on Mg is the pull-back of
τ spg on Sp(2g;Z), i.e., for any f1, f2 ∈ Mg, we have

τg(f1, f2) := Sign(Vρ(f1),ρ(f2), 〈 , 〉ρ(f1),ρ(f2)).

sketch of proof. The proof proceeds following the proof of Theorem 2.1. Con-
sider the Serre cohomology spectral sequence of E(f1, f2) → P . The E2 page
is Ep,q

2 = Hp(P, ∂P ;Hq(Σg;R)), where Hq(Σg;R) denotes the local system
on P whose stalk at b ∈ P is the cohomology of π−1(b). On the other hand
each page Er is a Poincaré ring in the sense of [11], in particular its signa-
ture Sign(Er) is defined. The proof is done through three steps: (1) to show
that Sign(Er) = Sign(Er+1), (2) to show that Sign(E∞) = Sign(E(f1, f2)),
and (3) to show that Sign(E2) = Sign(Vρ(f1),ρ(f2)〈 , 〉ρ(f1),ρ(f2)). To prove the
last step, by taking a simplicial decomposition of P , Meyer [29] observed that
E1,1

2 = H1(P, ∂P ;H1(Σg;R)) is isomorphic to Vρ(f1),ρ(f2), and the cup product
on the former corresponds to 〈 , 〉ρ(f1),ρ(f2).

The signature cocycle is independently introduced by Turaev [40]. He gave
another algebraic description for τ spg and directly proved that τ spg is a nor-
malized two cocycle. He also discusses a relation with the Maslov index. For
coincidence of the definition of τ spg by Meyer and Turaev, see Endo-Nagami
[15] Appendix.

Remark 2.5. Let M be a closed oriented manifold of dimension 4n− 2 and
π : E → B an oriented M -bundle with B path connected. By mimicking
Definition 2.2, i.e., by constructing aM -bundle over P and taking the signature
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of the total space, we obtain a normalized 2-cocycle cM : π1(B)× π1(B) → Z.
In another direction, Atiyah [6] introduced the signature cocycle on the Lie
group U(p, q), the unitary group of the Hermitian form with signature (p, q).
The restriction to Sp(2g;R) ⊂ U(p, p) is τ spg .

2.3 Evaluation of the signature class

The cocycle τg ∈ Z2(Mg;Z) determines a cohomology class [τg] ∈ H2(Mg;Z),
which here we call the signature class. We give a combinatorial method to
compute the order of [τg]. Following Meyer [30], we consider the following
slightly general situation: let G be a group and k : G × G → Z a normalized
2-cocycle satisfying z(x, x−1) = 0 for any x ∈ G. Suppose a presentation of G
is given. Namely G fits into an exact sequence

1 → R → F
̟→ G → 1

where F is the free group generated by a set {ei}i∈I . Any x ∈ F can be
written as x = x1x2 · · ·xm, where xj ∈ {ei} ∪ {e−1

i }. Define c : F → Z by

c(x) :=

m
∑

j=1

z(̟(x1 · · ·xj−1), ̟(xj)).

It follows that c is well-defined and δc = −̟∗z, i.e., c(xy) = c(x) + c(y) +
z(̟(x), ̟(y)) for x, y ∈ F . Moreover, c is a class function: c(yxy−1) = c(x)
for x, y ∈ F . The 1-cochain c is involved in a commutative diagram

H2(G;Z)
ev([z])

// Z

R ∩ [F, F ]/[R,F ]

∼=

OO

c

88
q
q
q
q
q
q
q
q
q
q
q
q

where the vertical isomorphisms is due to Hopf’s formula (see [10]) and the
upper right arrow is the evaluation map ev([z]) : H2(G;Z) → Z by [z]. For
i ∈ I, let e∗i : F → Z be the map counting the total exponents of ei in elements
of F .

Proposition 2.6 (Meyer [30]). For m ∈ Z\{0}, the order of [z] ∈ H2(G;Z) di-
vides m if and only if there exists {mi}i∈I ⊂ Z such that mc|R =

∑

i∈I mie
∗
i |R.

In particular, if R is the normal closure of a set {rj}j∈J ⊂ F , then [z] = 0 ∈
H2(G;Q) if and only if the liner equation c(rj) =

∑

i∈I mie
∗
i (rj), j ∈ J , has a

solution {mi}i∈I ⊂ Q.

The proof is straightforward, but we briefly mention “if” part. Take {mi}i∈I

satisfying the condition. Consider the (1/n)Z-valued 1-cochain c1 := c −
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(1/n)
∑

i∈I nie
∗
i of F . Then it turns out that c1 descends to a 1-cochain

c1 : G = F/R → (1/n)Z. In fact, for x ∈ F and r ∈ R, we have

c1(xr) = c(x) + c(r) +̟∗z(x, r)− 1

n

∑

i∈I

ni(e
∗
i (x) + e∗i (r))

= c(x) − 1

n

∑

i∈I

nie
∗
i (x) = c1(x)

(we use ̟(r) = 1). Since ̟ is surjective, it follows that δc1 = −z.
In a special situation, this criterion becomes simpler. Let Art(G) be a

(small) Artin group associated to a connected graph G without loops. This
means that Art(G) is generated by the vertex set {ai}i∈I of G, subject to the
defining relations aiajai = ajaiaj if ai and aj are adjacent, and aiaj = ajai if
not. Further let {rj}j∈J be a set of words in {ai}i. We shall consider the case
G is the group obtained by adding relations rj = 1, j ∈ J to Art(G). Suppose
there exists {mi}i∈I ⊂ Q satisfying the condition of Proposition 2.6, and let ak
and aℓ be adjacent vertices of G. Now we have rk,ℓ := akaℓaka

−1
ℓ a−1

k a−1
ℓ ∈ R,

and

c(rk,ℓ) = c(ak) + c((aℓak)a
−1
ℓ (aℓak)

−1) + z(̟(ak), ̟(ak)
−1)

= c(ak) + c(a−1
ℓ ) = 0.

Here we use the condition z(x, x−1) = 0 and the fact that c is a class function.
On the other hand, we have

∑

i∈I mie
∗
i (rk,ℓ) = mk −mℓ. Therefore we obtain

mk = mℓ. Since G is connected, we conclude mk = mℓ for any k, ℓ ∈ I. In
summary, we have the following.

Proposition 2.7. Suppose G is the quotient of an Artin group as above, and
let z ∈ Z2(G;Z) be a normalized 2-cocycle with z(x, x−1) = 0 for any x ∈ G.

(1) For n ∈ N, n[z] = 0 ∈ H2(G;Z) if and only if there exist m ∈ Z such
that n · c(rj) = m · α(rj) for all j ∈ J .

(2) In the situation of (1), the 1-cochain φ : G → (1/n)Z defined by φ(̟(x)) =
−c(x) + (m/n)α(x), x ∈ F is well-defined. Moreover, δφ = z.

Here α : F → Z is a homomorhism given by α(ai) = 1 for i ∈ I.

For example, the mapping class group admits a presentation as the quotient
of an Artin group where the relation aiajai = ajaiaj corresponds to the braid
relation among two Dehn twists. Thus we can apply this proposition.

2.4 Meyer’s theorems

Using the combinatorial criterion in the previous section, Meyer determined
the order of the cohomology class [τg] ∈ H2(Mg;Z).
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Theorem 2.8 (Meyer [30], Satz 2). The order of [τ1] is 3, the order of [τ2] is
5, and the order of [τg] is infinite if g ≥ 3.

To settle the case g = 1 and 2, Meyer used a classical presentation of
M1

∼= SL(2;Z) and a presentation of M2 by Birman-Hilden [8]. For g ≥ 3,
no finite presentation of Mg was known at that time. Still, using some of the
known relations and showing that [τg] is divisible by 4, Meyer proved that the
image of ev([τg ]) is 4Z. We remark that by the Hirzebruch signature formula,
we have e1 = 3[τg] ∈ H2(Mg;Z).

Remark 2.9. Nowadays several finite presentations of Mg for g ≥ 3 are
known. Using one of them, say the one due to Wajnryb [41], one can directly
show that the image of ev([τg]) is 4Z.

The following is an immediate consequence of Theorem 2.8.

Theorem 2.10 (Meyer [30], Satz 3). (1) If g ≤ 2, the signature of the total
space of any Σg-bundle over a closed oriented surface is zero.

(2) If g ≥ 3, the signature of the total space of a Σg-bundle over a closed
oriented surface is a multiple of 4. Conversely, for any g ≥ 3 and n ∈
4Z, there exist a Σg-bundle E → B over a closed oriented surface with
Sign(E) = n.

As a consequence of Theorem 2.8, there exist 1-cochains φ1 : M1 → (1/3)Z
and φ2 : M2 → (1/5)Z such that δφ1 = τ1 and δφ2 = τ2. Here for a 1-cochain
φ : G → A with coefficient in an abelian group A, its coboundary δφ is a map
from G × G to A given by δφ(x, y) = φ(x) − φ(xy) + φ(y) (for terminologies
of cohomology of groups, see for example, [10]). Thus the condition δφg = τg
(g = 1 or 2) is equivalent to

τg(x, y) = φg(x) − φg(xy) + φg(y), x, y ∈ Mg. (2.2)

Moreover, since H1(M1;Q) = H1(M2;Q) = 0, such 1-cochains are unique
and characterized by (2.2). The 1-cochain φ1 (resp. φ2) is called the Meyer
function of genus 1 (resp. of genus 2).

The following lemma can be directly proved by Lemma 2.3 and (2.2).

Lemma 2.11. The Meyer functions φ1 and φ2 satisfy the following properties:
for x, y ∈ Mg (g = 1 or 2),

(1) φg(1) = 0;

(2) φg(x
−1) = −φg(x);

(3) φg(yxy
−1) = φg(x).
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Consider a surface bundle over a compact oriented surface. Then the values
of φg around a boundary circle (which is well-defined by Lemma 2.11 (3)) is
interpreted as signature defects.

Proposition 2.12. Suppose g = 1 or 2 and let π : E → B be a Σg-bundle over
a compact oriented surface B with boundary components ∂Bi, i ∈ I. Then

Sign(E) =
∑

i∈I

φg(xi),

where xi ∈ Mg is the monodromy along the boundary component ∂Bi with the
counter-clockwise orientation.

sketch of proof. Take a pants decomposition of B. By the Novikov additivity
of the signature, Sign(E) is the sum of the signatures of the components, which
is expressed in terms of τg. Using (2.2), we obtain the formula.

Meyer extensively studied the function φ1 and gave its explicit formula.
Note that the mapping class group M1 is isomorphic to SL(2;Z) = Sp(2;Z)
by the homomorphism (2.1). To state his result, let us prepare some notations.
The Rademacher function [37] is a map Ψ: SL(2;Z) → Q defined by

Ψ

((

a b
c d

))

=











a+ d

c
− 12sign(c)s(a, c)− 3sign(c(a+ d)) if c 6= 0,

b

d
if c = 0.

Here sign(x) ∈ {0,±1} is the sign of x if x 6= 0, 0 if x = 0, and s(a, c) is the
Dedekind sum

s(a, c) :=
∑

kmod |c|

((

ak

c

))((

k

c

))

where

((x)) =







x− [x]− 1

2
if x ∈ R \ Z,

0 if x ∈ Z

([x] denotes the integer part of x). Also, for α =

(

a b
c d

)

∈ SL(2;Z), set

σ(α) = τ1(α,−1), which by a direct computation turns out to be the signature

of the symmetric matrix

(

−2c a− d
a− d 2b

)

.
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Theorem 2.13 (Meyer [30], Satz 4). For any α =

(

a b
c d

)

∈ SL(2;Z), we

have

φ1(α) = −1

3
Ψ(α) + σ(α) · 1

2
(1 + sign(a+ d)).

In particular, if a+ d 6= 0, 1, 2, then φ1(α) = −(1/3)Ψ(α).

Meyer’s proof is based on a certain cocycle identity of Ψ, behind which
is the transformation law under SL(2;Z) of the logarithm of the Dedekind
η-function

η(τ) = eπiτ/12
∞
∏

n=1

(1 − e2πinτ ), τ ∈ {z ∈ C; Im(z) > 0}.

Atiyah [6] gave another proof of Theorem 2.13 of more topological nature.

2.5 Atiyah’s theorem

Atiyah [6] showed that the value of φ1 on hyperbolic elements coincides with
various invariants. Recall that α ∈ SL(2;Z) is called hyperbolic if |Tr(α)| > 2.

Theorem 2.14 (Atiyah [6]). For a hyperbolic element α ∈ SL(2;Z), the
following quantities coincide.

(1) φ1(α);

(2) Hirzebruch’s signature defect δ(α);

(3) the transformation low of the logarithm of the Dedekind η-function under
α;

(4) the logarithmic monodromy of Quillen’s determinant line bundle of the
mapping torus of α;

(5) the value Lα(0) of the Shimizu L-function;

(6) The Atiyah-Patodi-Singer invariant η(α) of the mapping torus of α;

(7) The adiabatic limit η0(α).

Since the invariants (6)(7) will appear again in §4, we give a brief expla-
nation of these invariants here. The Atiyah-Patodi-Singer invariant [7], also
called the η-invariant, is a spectral invariant of a closed oriented odd dimen-
sional Riemannian manifold (M, g) and is denoted by η(M, g) or η(M) shortly.
Further, let E and B be closed oriented C∞-manifolds and π : E → B a ori-
ented M -bundle with the dimension of E is divisible by 4. Once a metric gE/B

on the relative tangent bundle T (E/B), a metric gB on B, and a connection
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∇ on TE are given, the metric on E is given by gE := gE/B ⊕ π∗gE accord-
ing to the decomposition TE = T (E/B)⊕ π∗TB induced from ∇. Then the
one parameter family of metrics on E is defined by gEε := gE/B ⊕ ε−1π∗gB,
ε ∈ R>0. By Bismut-Cheeger [9], it is shown that the limit limε→0 η(E, gEε )
exists. The limit is called the adiabatic limit of the η-invariants and is denoted
by η0(E). In Theorem 2.14, a suitable metric is chosen for the mapping torus
of α.

In fact, Atiyah also showed the following result, giving an analytic expres-
sion of the value of φ1 on any element of SL(2;Z).

Theorem 2.15 (Atiyah [6]). For α ∈ SL(2;Z), we have φ1(α) = η0(α).

A generalization of this result to φ2 will be dealt in §4.2.

3 Local signatures

Consider a closed oriented 4-manifold M admitting a fibration f : M → B
onto a closed oriented surface B. Under some conditions, the signature of M
happens to localize to finitely many singular fibers of f . This phenomenon
is called the localization of the signature, and has been studied from several
point of view. In this section we review some of these treatments, and recall
an approach using Meyer functions.

3.1 Local signatures and Horikawa index

Let E and B be compact oriented C∞-manifolds of dimension 4 and 2 re-
spectively, f : E → B a proper surjective C∞-map having the structure of
Σg-bundle outside of finitely many points {bi}i∈I ⊂ Int(B). We call such a
triple (E, f,B) a fibered 4-manifold (of genus g). For b ∈ B, we denote by Fb

the fiber germ of f around b. If b ∈ B \ {bi}i∈I , Fb is called a general fiber. If
b = bi for some i ∈ I, Fb is called a singular fiber.

Typical examples of fibered 4-manifolds are elliptic surfaces and Lefschetz
fibrations. When we work with holomorphic category, then E is a complex
surface, B is a Riemann surface, and f is a holomorphic map. In this case if
we say, for example, that f : E → B is a hyperelliptic fibration, then general
fibers are hyperelliptic Riemann surfaces.

Among the topological invariants of such E, the topological Euler num-
ber χ(E) is easy to compute. For simplicity we assume that E and B are
closed, and let g(B) be the genus of B. Let ∆i ⊂ B be a small closed disk
with center bi and we denote Ei = f−1(∆i) and E0 = f−1(B \ ⋃

i Int(∆i)).
Since the topological Euler number is multiplicative in fiber bundles, we have



Meyer functions and the signatures of fibered 4-manifolds 13

χ(E0) = (2 − 2g)(2 − 2g(B) − |I|). Moreover, since f is proper we have
χ(Ei) = χ(f−1(bi)). Thus

χ(E) = (2 − 2g)(2− 2g(B)) +
∑

b∈B

ε(Fb),

where the number ε(Fb) := χ(f−1(bi))− (2−2g) is called the topological Euler
contribution. In short, we can compute χ(E) by the contributions ε(Fb).

On the other hand, the signature of E is not so easy to compute and in
general one cannot compute it from the data of singular fiber germs. Never-
theless, under some conditions on the general fibers, it happens that we can
assign a rational number σ(Fb) to each fiber Fb satisfying the following two
conditions:
(1) if Fb is a general fiber, then σ(Fb) = 0.

(2) if E is closed, then Sign(E) =
∑

b∈B σ(Fb).

The assignment σ is called a local signature, and when such phenomena hap-
pens, we say that the signature of E is localized.

The first example of a local signature is the one for fibered 4-manifolds of
genus 1 due to Y. Matsumoto [27]. He called such assignment a fractional
signature. Later he also gave a local signature for Lefschetz fibrations of genus
2 [28]. In both the examples, he used the Meyer functions φ1 and φ2 to
construct a local signature. See the next subsection for details.

In algebro-geometric setting, local signatures are closely related to an in-
variant of fiber germs which originates in the work of Horikawa [17] [18]. He
studied global family of curves of genus 2 f : E → B and defined an invariant
H(Fb) ≥ 0 to each fiber germ, and showed the equality

K2
E = 2χ(OE)− 6 + 6g(B) +

∑

b∈B

H(Fb). (3.1)

Here g(B) is the genus of B, K2
E is the self intersection number of the canon-

ical bundle of E, and χ(OE) is the Euler characteristic number of the struc-
ture sheaf of E. In the geography of complex surfaces of general type, one
often studies complex surfaces with the pair of specified numerical invari-
ants (K2

E , χ(OE)). Note that by the Hirzebruch signature formula Sign(E) =
(1/3)(K2

E − 2χ(E)) and the Noether formula χ(OE) = (1/12)(K2
E + χ(E)),

to fix (K2
E, χ(OE)) is equivalent to fix (Sign(E), χ(E)). The inequality K2

E ≥
2χ(OE) − 6 is called the Noether inequality, a lower bound for the numerical
invariants of complex surfaces of general type. Thus H(Fb) is regarded as a
local contribution of each fiber germ to the distance from the geographical
lower bound for (K2

E , χ(OE)). The invariant H(Fb) is called the Horikawa
index.

There are several situations in which the Horikawa index exists. M. Reid
[38] defined it for fiber germs of non-hyperelliptic fibrations of genus 3. This
is generalized by Konno [24] to Clifford general fibrations of odd genus.
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Arakawa and Ashikaga [1] introduced the Horikawa index for hyperelliptic
fibrations, which is regarded as a direct generalization of the work of Horikawa.
Let f : E → B be a hyperelliptic fibration of genus g with B closed. They
introduced an invariant H(Fb) ≥ 0 for each fiber germ satisfying

K2
E/B =

4(g − 1)

g
χf +

∑

b∈B

H(Fb), (3.2)

where K2
E/B = K2

S − 8(g− 1)(g(B)− 1) and χf = χ(OE)− (g− 1)(g(B)− 1).
Moreover, they defined a local signature for hyperelliptic fibrations of genus g
by

σalg
g (Fb) :=

1

2g + 1
(gH(Fb)− (g + 1)ε(Fb)). (3.3)

Here ε(Fb) is the topological Euler contribution as above. That σalg
g is a local

signature follows from (3.2). More generally, if we find a Horikawa index in a
class of fibrations (say non-hyperelliptic fibrations of genus 3), then a formula
of type (3.3) gives a local signature for such fibrations.

For more detail about local signatures, we refer to the survey articles
Ashikaga-Endo [2] and Ashikaga-Konno [3]. We also refer to recent works
by Ashikaga-Yoshikawa [4] and Sato [39].

3.2 Matsumoto’s formula

For a while we assume g is 1 or 2. Let (E, f,B) be a fibered 4-manifold of
genus g. For each b ∈ B, take a small closed disk neighborhood ∆ ⊂ B of b
and consider the restriction of f to ∆\{b}. Let xb ∈ Mg be the monodromy of
this Σg-bundle along the boundary ∂∆ with the counter-clockwise orientation,
and set

σg(Fb) := φg(xb) + Sign(f−1(∆)) ∈ Q. (3.4)

Here φg is the Meyer function of genus g. Note that although xb is only defined
up to conjugacy, φg(xb) is well defined by Lemma 2.11 (3).

Proposition 3.1 (Y. Matusmoto [27] [28]). Let g = 1 or 2. The assignment
σg(Fb) is a local signature for fibered 4-manifolds of genus g.

Proof. The property (1) is clear since xb is trivial if Fb is non-singular. To
prove (2), for each i let ∆i be a small closed disk neighborhood of bi. By



Meyer functions and the signatures of fibered 4-manifolds 15

Proposition 2.12, we have

Sign(E) = Sign(f−1(B0)) +
∑

i∈I

Sign(f−1(∆i))

=
∑

i∈I

φg(xbi ) +
∑

i∈I

Sign(f−1(∆i) =
∑

i∈I

σ(Fbi).

Matsumoto [27] [28] also gave some computations of his local signatures.
Using the Meyer function on the hyperelliptic mapping class group and apply-
ing the formula (3.4), Endo [14] introduced a local signature for hyperelliptic
fibrations (see §4.1). By Terasoma, it was shown that Endo’s local signature
and Arakawa-Ashikaga’s local signature (3.3) coincide. See [14] Appendix.

The formula (3.4) implies that the local signature is only determined by
topological data. But as Konno [23] observed, there exists a topologically
non-singular fiber germ of non-hyperelliptic fibrations of genus 3 which has
a non-zero Horikawa index. In fact, in the central fiber f−1(b) of Konno’s
example is a non-singular hyperelliptic curve of genus 3. From the view point
of local signatures, this fiber germ should be thought as a singular fiber. A
modification of the formula (3.4) for such situations will be explained in §4.3.

4 Variations

In this section we review higher genera analogues and higher dimensional ana-
logues of Meyer’s φ1 or φ2. First note that by Theorem 2.8, Meyer functions
does not exist on Mg for g > 2. But the signature cocycle happens to be a
coboundary when it is pulled back to some group, for example, a subgroup of
Mg. The examples in §4.1 and §4.3 are those of this kind. The example in
§4.2 is in a situation of Remark 2.5, and can be regard as a generalization of
Theorem 2.15.

4.1 Hyperelliptic mapping class group

Let ι ∈ Mg be a hyperelliptic involution, i.e., (the class of) an involution of
Σg acting on H1(Σg;Z) as −id. The hyperelliptic mapping class group Hg is
the centralizer of ι:

Hg := {f ∈ Mg; fι = ιf}.
Let τHg ∈ Z2(Hg;Z) be the restriction of τg to the subgroup Hg ⊂ Mg.

Using a finite presentation of Hg by Birman-Hilden [8] and Proposition 2.6,
Endo [14] proved the following theorem.
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Theorem 4.1 (Endo [14]). The order of [τHg ] ∈ H2(Hg;Z) is 2g + 1. Fur-

thermore, there uniquely exists a function φH
g : Hg → (1/2g + 1)Z such that

δφH
g = τHg .

The 1-cochain φH
g is called the Meyer function for the hyperelliptic mapping

class group of genus g.

Remark 4.2. The existence and uniqueness of φH
g also follow from the Q-

acyclicity of Hg which is independently proved by Cohen [12] and Kawazumi
[20].

Remark that Hg = Mg if g = 1 or 2. Thus the series φH
g , g ≥ 3 could

be a higher genus analogue of Meyer’s φ1 and φ2. The values of φH
g on Dehn

twists are given as follows ([14] [32]). Let C be an ι-invariant simple closed
curve on Σg. We denote by tC the right handed Dehn twist along C, which
is an element of Hg. If C is non-separating, then φH

g (tC) = (g + 1)/2g + 1;
if C is separating and separates Σg into surfaces of genus h and g − h, then
φH
g (tC) = −4h(g − h)/2g + 1.
A fibered 4-manifold (E, f,B) is called hyperelliptic if the monodromy of

the Σg-bundle over B\{bi}i can take value in Hg by a suitable identification of
a reference fiber with Σg. Replacing φg with φH

g in (3.4), Endo [14] introduced
a local signature for hyperelliptic fibered 4-manifold.

Morifuji [32] studied geometrical aspects of φH
g . He showed if f ∈ Hg is of

finite order, then φH
g (f) equals η(f), the η-invariant (see §2.5) of the mapping

torus Σg × [0, 1]/(x, 0) ∼ (f(x), 1). Further, he showed that φH
g (f) = d0(f) if

f belongs to the hyperelliptic Torelli group, where d0 is the so-called core of
the Casson invariant introduced by Morita [34] [35].

4.2 Family of smooth theta divisors

Iida [19] gave a higher dimensional analogue of Meyer’s φ2, which he called
the Meyer function for smooth theta divisors.

Let Sg := {τ ∈ M(g;C); tτ = τ, Im(τ) > 0} be the Siegel upper half
space of degree g and f : Ag → Sg the universal family of principally polarized
Abelian varieties. The fiber of f at τ ∈ Sg is the complex torus Aτ = Cg/Λg,
where Λg is the lattice spanned by the column vectors of the g × 2g matrix
(Ig τ). We denote e(t) = exp(2π

√
−1t). The Riemann theta function

θ(z, τ) :=
∑

n∈Zg

e

(

1

2
nτ tn+ n tz

)

, z ∈ Cg,
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defines a holomorphic section of a certain holomorphic vector bundle on Aτ

and its zero locus is called the theta divisor. Set

Θ := {(z, τ); τ ∈ Sg, z ∈ Aτ , θ(z, τ) = 0}
and let p : Θ → Sg be the natural projection. This is the universal family of
theta divisors. We denote by Θτ the fiber of p at τ . The group Sp(2g;Z), which
for simplicity we denote here by Γg, naturally acts on Sg. Iida introduced a
Γg-action on Θ so that p is Γg-equivariant.

The Zariski closed setNg := {τ ∈ Sg; Sing(Θτ ) 6= ∅} is called theAndreotti-
Mayer locus. The group Γg acts on the complement S◦

g := Sg \ Ng properly
discontinuously. Let Sg be the orbifold fundamental group of the quotient
orbifold Γg\S◦

g. In other words, Sg is the fundamental group of the Borel con-
struction (S◦

g)Γg
:= EΓg×Γg

S
◦
g, where EΓg is the total space of the classifying

space of Γg. The group Sg fits into an exact sequence

1 → π1(S
◦
g) → Sg → Γg → 1. (4.1)

If g = 1, Ng = ∅ and Γ1\S◦
1 is the moduli space of curves of genus 1, hence

S1 = M1. By the Torelli theorem, Γ2\S◦
2 is the moduli space of curves of

genus 2 and S2 = Mg.
The projection p induces a fiber bundle over (S◦

g)Γg
. The fiber is diffeo-

morphic to a smooth theta divisor. By the construction given in Remark 2.5,
we get the signature cocycle cg : Sg × Sg → Z. If g is odd, cg ≡ 0 since the
real dimension of a smooth theta divisor is 2g − 2. When g = 2, c2 is the pull
back of τ sp2 by (4.1). But if g ≥ 3, this is not the case.

Using adiabatic limits of η-invariants and a certain automorphic form, Iida
constructed a 1-cochain of Sg which cobounds cg. Suppose g is even. An
element σ ∈ Sg can be written as σ = (α, γ), where α : [0, 1] → S

◦
g is a

continuous map with α(0) a specified basepoint of S◦
g and γ ∈ Γg such that

α(1) = γ ·α(0). Consider the mapping torus Mσ := [0, 1]×αΘ/(0, x) ∼ (1, γx)
and the projection π : Mσ → S1 = [0, 1]/0 ∼ 1. He introduced a metric of
the relative tangent bundle T (Mσ/S

1) and a connection on Mσ. Then the
adiabatic limit η0(Mσ) is defined (see §2.5). Set

Φg(σ) := η0(Mσ) +
(−1)

g

2 2g+3(2g+2 − 1)

(g + 3)!
B g

2
+1

∫

S1

α∗dc log ||∆g(τ)||.

Here ∆g(τ) is a Siegel cusp form of weight (g + 3)g!/2 with zero divisor Ng

and Bk is the k-th Bernoulli number.

Theorem 4.3 (Iida [19]). The 1-cochain Φg cobounds cg, i.e.,

cg(σ1, σ2) = Φg(σ1)− Φg(σ1σ2) + Φg(σ2), σ1, σ2 ∈ Sg.

It should be remarked that the uniqueness of Φg does not hold. In fact,
Iida proved that H1(Sg;Z) = Z for g ≥ 4 ([19] Theorem 13). The 1-cochain cg
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actually takes values in Q ([19] Theorem 15 ). As a special case, Iida obtained
an analytic expression of the Meyer function of genus 2.

Corollary 4.4 (Iida [19]). For σ = (α, γ) ∈ S2 = M2, we have

φ2(σ) = η0(Mσ)−
2

15

∫

S1

α∗dc log ||χ2(τ)||2.

Here χ2(τ) is a Siegel modular form of weight 5 called the Igusa modular form.

4.3 The Meyer functions for projective varieties

We mention an approach by Kuno [25] [26] to extend Matsumoto’s formula
(3.4) for generic non-hyperelliptic fibrations of small genera.

Let X ( PN be a smooth projective variety of dimension n ≥ 2, embedded
in a complex projective space of dimension N . The intersection of X and a
generic plane in PN of codimension n− 1 is non-singular of dimension 1. Set
k := N −n+1 and let Gk(PN ) be the Grassmann manifold of k-planes of PN .
The set

DX := {W ∈ Gk(PN );W meets X not transversally }
is called the k-th associated subvariety of X [16]. Over the complement UX :=
Gk(PN ) \DX , there is a family of compact Riemann surfaces pX : CX → UX

whose fiber at W ∈ UX is X ∩ W . Let g be the genus of the fibers and let
ρX : π1(U

X) → Mg be the monodromy of this family.

Theorem 4.5 (Kuno [26]). There exists a unique Q-valued 1-cochain φX : π1(U
X) →

Q whose coboundary equals the pull-back ρ∗Xτg.

The 1-cochain φX is called the Meyer function associated to X ⊂ PN . The
fundamental group π1(U

X) is normally generated by a single element called
a lasso, which is represented by a loop “going once around DX”. By ρX , a
lasso is mapped to a Dehn twist. By a certain extension of theory of Lefschetz
pencils, the value of φX on a lasso is given in terms of invariants of X . Under
a mild condition on X , it follows that φX is an unbounded function. As a
consequence, we can show that the group π1(U

X) is non-amenable for such X .
As an application, we can define a local signature for generic non-hyperelliptic

fibrations of small genera. Let us illustrate this by an example. Let (E, f,B)
be a fibered 4-manifold of genus 3, such that the restriction of f to B \ {bi}i∈I

is a continuous family of Riemann surfaces with fiber non-hyperelliptic. We
call such (E, f,B) a non-hyperelliptic fibration of genus 3. Note that we as-
sume a fiberwise complex structure on the general fibers, but do not assume a
global complex structure. The idea is to construct a certain universal family
and to lift the monodromy to the fundamental group of the base space of it.
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Hereafter let X be the image of the Veronese embedding v4 : P2 → P14 of
degree 4. A generic hyperplane section of P14 corresponds to a smooth plane
curve of degree 4 in P2, which is non-hyperelliptic of genus 3. The group
G = PGL(3) naturally acts on P14 preserving DX . This induces G-actions on
CX and UX , making pX : CX → UX a G-equivariant map. Therefore we have
a continuous family of non-hyperelliptic Riemann surfaces of genus 3 over the
Borel construction UX

G := EG×GU
X , which we denote by pu : CX

G → UX
G . This

family has a certain universal property: if p : E → B is a continuous family of
non-hyperelliptic Riemann surfaces of genus 3, then there exist a continuous
map g : B → UX

G such that the fiber product CX ×g B and the original family
are isotopic. Moreover, such g is unique up to homotopy. The fundamental
group π1(U

X
G ) fits into an exact sequence

π1(PGL(3)) ∼= Z/3Z → π1(U
X) → π1(U

X
G ) → 1.

From this and the existence of φX on π1(U
X), we can deduce that there exists

a unique Q-valued 1-cochain φNH
3 : π1(U

X
G ) → Q which cobounds the pull-back

of τ3 by the monodromy ρu : π1(U
X
G ) → M3.

Now, let Fb be a fiber germ of non-hyperelliptic fibration of genus 3. Take a
small closed disk ∆ with center b, so that there is no singular fiber on ∆ \ {b}.
By the universality of pu, there is a continuous map gFb

: ∆ \ {b} → UX
G .

Set xFb
:= (gFb

)∗(∂∆) ∈ π1(U
X
G ), where we give ∂∆ the counterclockwise

orientation. Note that xFb
is uniquely determined up to conjugacy. Set

σNH
3 (Fb) := φNH

3 (xFb
) + Sign(f−1(∆)).

By applying the proof of Proposition 3.1, we have the following.

Theorem 4.6 ([25]). The assignment σNH
3 is a local signature for non-hyperelliptic

fibrations of genus 3.

The formulation of σNH
3 gives a topological interpretation of Konno’s ex-

ample in §3.2. While the monodromy around b is trivial, its lift xFb
∈ π1(U

X
G )

is non-trivial and contributes to σNH
3 . Similar constructions are possible for

generic non-hyperelliptic fibrations of genus 4 and 5. For details, see [26].
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