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THE “FUNDAMENTAL THEOREM”
FOR THE ALGEBRAIC K-THEORY OF SPACES.

III. THE NIL-TERM

JOHN R. KLEIN AND E. BRUCE WILLIAMS

(Communicated by Paul Goerss)

Abstract. In this paper we identify the “nil-terms” for Waldhausen’s alge-
braic K-theory of spaces functor as the reduced K-theory of a category of
equivariant spaces equipped with a homotopically nilpotent endomorphism.

1. Introduction

This is the third in a series of papers which concerns the decomposition

Afd(X × S1) � Afd(X) × BAfd(X) × N−Afd(X) × N+Afd(X) .

Here, Afd(X) is Waldhausen’s algebraic K-theory of the space X and BAfd(X) is
a certain nonconnective delooping of it. The remaining factors on the right, called
“nil-terms”, are homotopy equivalent [H+], [H+2]. They have not been given a
K-theoretic description thus far.

In this installment, we will identify the nil-terms as a shifted copy of the re-
duced K-theory of a category whose objects are equivariant spaces equipped with
a homotopically nilpotent endomorphism.

Let X be a connected based space. Let G· denote the Kan loop group of the
total singular complex of X, and let G denote the geometric realization of G·. Then
the classifying space BG has the weak homotopy type of X.

Define a category nil(X) in which an object consists of a pair

(Y, f)

such that Y is a based space with G-action and f : Y → Y is an equivariant map
which is homotopically nilpotent under composition. Additionally, we assume that
Y admits the structure of a based G-cell complex in which the action of G is free
away from the basepoint. A morphism (Y, f) → (Z, g) is a based G-map e : Y → Z
such that g ◦ e = e ◦ f .

There is a full subcategory nilfd(X) of nil(X) whose objects are those Y which are
finitely dominated in the sense that Y is a retract up to homotopy of an object which
is built up from a point by attaching a finite number of free G-cells. A morphism
of nilfd(X) is a weak equivalence if and only if its underlying map of topological
spaces is a weak homotopy equivalence. It is a cofibration if its underlying map of
spaces is obtained up to isomorphism by attaching free G-cells.
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With the above structure, it turns out that nilfd(X) is a category with cofi-
brations and weak equivalences. It therefore has a K-theory, which is denoted
Kfd(nil(X)).

The forgetful functor (Y, f) �→ Y gives rise to a map on K-theories

Kfd(nil(X)) → Afd(X) .

Here we are using the model for Afd(X) given by the algebraic K-theory of the
category of finitely dominated based G-spaces ([W, §2.1], [H+, 1.5]). Let

˜Kfd(nil(X))

denote the homotopy fiber of the map Kfd(nil(X)) → Afd(X).
Our main result establishes the other half of the “fundamental theorem” for

Afd(X):

Main Theorem. There is a homotopy equivalence of functors
˜Kfd(nil(X)) � ΩN+Afd(X) .

Remark. The above result is used in the paper [GKM], where it is shown that the
homotopy groups of N+Afd(X) are either trivial or infinitely generated. Another
result of that paper determines the p-complete homotopy type of N+Afd(∗) in
degrees ≤ 4p − 7, for p an odd prime.

2. Preliminaries

In what follows, we assume that the reader is familiar with the material of [H+].
The spaces in this paper are to be given the compactly generated topology. Prod-

ucts are taken in the compactly generated sense. Let M· be a simplicial monoid,
and let M = |M·| denote its geometric realization. Let T(M) denote the category of
based (left) M -spaces and based M -maps. We say that a based morphism Y → Z
of T(M) is weak equivalence if (and only if) it is a weak homotopy equivalence of
underlying topological spaces. Similarly, we say that is a fibration if it is a Serre
fibration after forgetting actions. A morphism is a cofibration if and only if it
satisfies the left lifting property with respect to the acyclic fibrations (i.e., those
fibrations which are weak equivalences). Then T(M) is a Quillen model category
(see, e.g., [VS]).

Then every object of T(M) is fibrant, and the cofibrant objects are precisely the
retracts of those objects which are built up from a point by cell attachments, where
the cell of dimension n is given by

Dn×M

with action defined by left translation.
Recall from [H+] that C(M) denotes the full subcategory of T(M) consisting of

the cofibrant objects. Then C(M) is a category with cofibrations and weak equiva-
lences in the sense of Waldhausen [W]. For objects Y and Z of C(M), we let

[Y, Z]

denote the homotopy classes of morphisms in Cfd(G), i.e., the based equivariant
homotopy classes.

We next recall the various finiteness notions. An object of C(M) is finite if it is
built up from a point by finitely many cell attachments (up to isomorphism). An
object of C(M) is said to be homotopy finite if there exists a weak equivalence to a



THE “FUNDAMENTAL THEOREM”. III 3027

finite object. An object of C(M) is said to be finitely dominated if it is a retract of
a homotopy finite object. Let Cfd(M) denote the full subcategory of C(M) whose
objects are finitely dominated.

We let hCfd(M) denote the subcategory of Cfd(M) defined by the weak equiva-
lences. Then the associated K-theory space is given by

Afd(∗; M) := Ω|hS·Cfd(M)| ,

where the right side is the based loop space of the geometric realization of Wald-
hausen’s S·-construction of Cfd(M) ([W, p. 330]). If M is the realization of a sim-
plicial group, then Afd(∗; M) is one of the definitions of Afd(BM) (cf. [W, p. 379],
[H+, 1.6]).

The category nilfd(X) has objects specified by pairs (Y, f) with Y ∈ Cfd(G) and
object f : Y → Y a morphism which is homotopically nilpotent under composition,
i.e., the associated homotopy class

[f ] ∈ [Y, Y ]

is nilpotent in the sense that some iterate [f◦k] = [f ]◦k is trivial.
A morphism (Y, f) → (Z, g) of nilfd(X) is a map e : Y → Z such that g◦e = e◦f .

A cofibration of nilfd(X) is a morphism (Y, f) → (Z, g) such that Y → Z is a
cofibration of Cfd(G). A weak equivalence is a morphism whose underlying map of
spaces is a weak homotopy equivalence.

Lemma 2.1. With respect to the above conventions, nilfd(X) is a category with
cofibrations and weak equivalences.

Proof. The nontrivial thing to be verified is that the cobase change axiom holds.
Given a diagram

(B, f1) ← (A, f0) � (C, f2)

we define the pushout to be (B ∪A C, f), where f denotes f1 ∪f0 f2. Choose a
positive integer k such that [fi]◦k is trivial, for i = 0, 1, 2. It will be sufficient to
check that [f ] is nilpotent. Let us rename gi = f◦k

i and g = f◦k. Then, using the
model structure, one has a Barratt-Puppe cofiber sequence

B ∨ C
j−−−−→ B ∪A C

δ→ ΣA

in T(M), where ∨ means wedge and Σ is suspension. Consequently, there is an
exact sequence of pointed sets

[ΣA, B ∪A C] δ∗
−−−−→ [B ∪A C, B ∪A C]

j∗

−−−−→ [B ∨ C, B ∪A C] .

Then
j∗([g]) = [g ◦ j] = [g1 ∨ g2] = 0 ,

so there is a homotopy class

γ ∈ [ΣA, B ∪A C]

such that [g] = δ∗(γ) = γ ◦ [δ]. Then

[g]◦2 = γ ◦ [δ] ◦ γ ◦ [δ]

is trivial because [δ]◦γ◦[δ] = [δ]◦[g] coincides with [Σg0]◦[δ], and [Σg0] is trivial. �
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3. Another look at the projective line

Let N− denote the monoid of negative integers with generator t−1 and N+ denote
the monoid of positive integers with generator t. Let G be the realization of a
simplicial group G·.

Recall that the mapping telescope of an object Y+ ∈ Cfd(G × N+) is the object
Y+(t−1) ∈ Cfd(G × Z) defined by taking the categorical colimit of the sequence

· · · t−−−−→ Y+
t−−−−→ Y+

t−−−−→ · · · .

Similarly, if Y− ∈ Cfd(G × N−) is an object, we have a mapping telescope Y−(t)
given by the colimit of

· · · t−1

−−−−→ Y+
t−1

−−−−→ Y+
t−1

−−−−→ · · · .

Define Dfd(G × Z) to be the category whose objects are diagrams

Y− → Y ← Y+

in which Y− ∈ Cfd(G×N−), Y ∈ Cfd(G×Z) and Y+ ∈ Cfd(G×N+), and where the
maps Y− → Y and Y+ → Y are required to be based and equivariant. Moreover,
the induced morphisms

Y−(t) → Y (t) ∼= Y and Y+(t−1) → Y (t−1) ∼= Y

are required to be cofibrations of Cfd(G×Z). We take the liberty of specifying the
object as a diagram or as a triple (Y−, Y, Y+).

A morphism (Y−, Y, Y+) → (Z−, Z, Z+) of Dfd(G×Z) is a morphism Y− → Z−,
a morphism Y → Z and a morphism Y+ → Z+ so that the evident diagram
commutes. A cofibration is a morphism (Y−, Y, Y+) → (Z−, Z, Z+) in which

• each of the maps

Y− → Z−, Y+ → Z+ and Y → Z

is a cofibration (of Cfd(G × N−), Cfd(G × N+) resp. Cfd(G × Z)), and
• the induced maps

Y ∪Y−(t) Z−(t) → Z and Y ∪Y+(t−1) Z+(t−1) → Z

are cofibrations of Cfd(G × Z).
The projective line Pfd(G) of [H+] is given by the full subcategory of Dfd(G×Z)

whose objects (Y−, Y, Y+) satisfy an auxiliary condition, viz., that the induced maps
Y−(t) → Y and Y+(t−1) → Y are weak homotopy equivalences. A cofibration is a
morphism which is a cofibration of Dfd(G × Z). A weak equivalence is a morphism
in which Y− → Z−, Y → Z and Y+ → Z+ are weak homotopy equivalences of
spaces.

Let Dfd(G × N−) ⊂ Dfd(G × Z) denote the full subcategory whose objects
(Y−, Y, Y+) satisfy the condition that Y−(t) → Y is a weak equivalence. Similarly,
define Dfd(G×N+) to be the full subcategory whose objects (Y−, Y, Y+) satisfy the
condition that Y+(t−1) → Y is a weak equivalence.

A morphism (Y−, Y, Y+) → (Z−, Z, Z+) of Dfd(G × N+) is a weak equivalence if
the map Y+ → Z+ is a weak homotopy equivalence. It is a cofibration if it is so
when considered in Dfd(G × Z).

Let P
hN+
fd (G) ⊂ Pfd(G) denote the full subcategory with objects (Y−, Y, Y+) such

that Y+ is acyclic.



THE “FUNDAMENTAL THEOREM”. III 3029

Proposition 3.1. There is a homotopy fiber sequence

Ω|hS·P
hN+
fd (G)| → Ω|hS·Pfd(G)| → Ω|hS·Dfd(G × N+)| .

Proof. Define a coarser notion of weak equivalence on the projective line by speci-
fying a morphism (Y−, Y, Y+) → (Z−, Z, Z+) to be an hN+-equivalence if (and only
if) the map Y+ → Z+ is a weak equivalence. Application of the fibration theorem
[W, 1.6.5] shows that the sequence

Ω|hS·P
hN+
fd (G)| → Ω|hS·Pfd(G)| → Ω|hN+S·Pfd(G)|

is a fibration up to homotopy.
Let Pfd(G) → Dfd(G × N+) denote the inclusion functor. By [H+, §4] we have

that the induced map

|hN+S·Pfd(G)| → |hS·Dfd(G × N+)|
induces an isomorphism on homotopy groups in degrees > 1. Hence, the homotopy
fiber of the induced map of loop spaces

Ω|hN+S·Pfd(G)| → Ω|hS·Dfd(G × N+)|
is homotopically trivial.

It follows that the homotopy fiber of the map

Ω|hS·Pfd(G)| → Ω|hS·Dfd(G × N+)|
is identified with the homotopy fiber of the map

Ω|hS·Pfd(G)| → Ω|hN+S·Pfd(G)| .
The result follows. �

4. The “characteristic sequence”

Let (Y, f) ∈ nilfd(X) be an object, and let Y ⊗N− ∈ Cfd(G) be the object given
by

(Y × N−)/(∗ × N−) .

Then f induces a self-map of Y ⊗ N− which is given by (y, r) �→ (f(y), r). We will
denote this self-map also by f .

Let Yf be the homotopy coequalizer of the pair of maps

Y ⊗ N−
f

��

t−1
�� Y ⊗ N− ,

where t−1 denotes the map (y, r) �→ (y, r−1). (Recall that the homotopy coequalizer
of a pair of morphisms α, β : U → V is defined to be the quotient of the disjoint
union V �(U × [0, 1]) which is given by identifying (u, 0) with α(u), (u, 1) with β(u)
and ∗ × [0, 1] with the basepoint of V .)

If we give Y the structure of a based (G×N−)-space by letting N− act by means
of f , then we also have a (G×N−)-equivariant map

πf : Y ⊗ N− → Y

which is given by (y, r) �→ f−r(y). Then πf coequalizes f and t−1, so by the
universal property of the homotopy coequalizer, there is an induced map

Yf → Y ,

which is (G×N−)-equivariant.
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Lemma 4.1. The map Yf → Y induces an isomorphism in reduced singular ho-
mology.

Proof. Let p :S1 → S1 ∨S1 be the pinch map, and let ρ : S1 → S1 be the reflection
map. Then the composite

S1 p−−−−→ S1 ∨ S1 id∨ρ−−−−→ S1 ∨ S1

will be denoted by (1,−1).
The homotopy coequalizer induces a homotopy cofiber sequence

Σ(Y ⊗ N−)
t−1−f−−−−→ Σ(Y ⊗ N−) → ΣYf

where the first map is defined to be the composite

Σ(Y ⊗ N−)
(1,−1)∧id−−−−−−→ Σ(Y ⊗ N−) ∨ Σ(Y ⊗ N−)

t−1∨f−−−−→ Σ(Y ⊗ N−) .

Taking reduced singular chains, we get an induced homotopy cofiber sequence of
chain complexes

(1) C∗(Y ) ⊗ Z[t−1]
t−1
∗ −f∗−−−−−→ C∗(Y ) ⊗ Z[t−1] −−−−→ C∗(Yf ) .

(Recall that a sequence A
i→ B

j→ C of chain complexes is a homotopy cofiber
sequence when the composite j ◦ i : A → C is equipped with a null homotopy such
that the induced map from the mapping cone Ti◦j to C is a quasi-isomorphism.)

Now, for any Z-module M equipped with a self-map f : M → M , we have an
exact sequence of Z[t−1]-modules

(2) 0 −−−−→ M ⊗ Z[t−1]
t−1−f−−−−→ M ⊗ Z[t−1] −−−−→ Mf −−−−→ 0

in which Mf denotes M considered as a Z[t−1]-module where t−1 acts via f (see
[B, p. 630]). This implies that the sequence (1) becomes exact when C∗(Yf ) is
replaced by C∗(Y ) by means of the chain map C∗(Yf ) → C∗(Y ) which is induced
by the map Yf → Y . Consequently, the five lemma implies that the chain map
C∗(Yf ) → C∗(Y ) is a quasi-isomorphism. �

Remark 4.2. The sequence (1) is a chain complex version of the so-called, “char-
acteristic sequence” (2) of the module M . Consequently, it is not inappropriate to
think of the homotopy coequalizer diagram

Y ⊗ N−
f

��

t−1
�� Y ⊗ N− �� Yf

as a kind of nonlinear version of the characteristic sequence (of the object Y ).

Preliminary identification of K(nilfd(X)). Define an exact functor

nilfd(X) Φ−−−−→ P
hN+
fd (G)

by
(Y, f) �→ (Yf , Yf (t), ∗) ,

where Yf is defined above.
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In the other direction, define an exact functor

P
hN+
fd (G) Ψ−−−−→ nilfd(X)

by
(Y−, Y, Y+) �→ (Y−, t−1) .

To see that Ψ is well-defined, let (Y−, Y, Y+) be an object of P
hN+
fd (G). Then

Y+ and Y are acyclic. Hence Y− has an acyclic mapping telescope. This implies
that there exists a k ∈ N− such that tk : Y− → Y− is (equivariantly) null homo-
topic (this follows for finite objects by the “small object” argument, and hence for
finitely dominated ones since a retract of a null homotopic morphism is again null
homotopic; compare [H+, p. 40 bottom]).

Let Z denote the quotient
Y−/tk(Y−)

considered as an object of C(G). Then Z is finitely dominated. This is a conse-
quence of a cell-by-cell induction when Y− is a finite object of C(G × N−). It is
true for homotopy finite objects because the functor Y+ �→ Y+/tk(Y−) preserves
weak equivalences. It is therefore also true when Y− is finitely dominated since this
functor also preserves retracts (cf. [H+, p. 41 top]).

Since tk is G-equivariantly null homotopic, the identity map Y− → Y− factors
through Z up to homotopy. It follows that Y− is also finitely dominated when
considered as an object of C(G). This shows that (Y−, t−1) is an object of nilfd(X).

Lemma 4.3. The functors Ψ and Φ induce mutually inverse homotopy equivalences
on K-theory.

Proof. The composite Ψ ◦ Φ is given by

(Y, f) �→ (Yf , t−1)

and Lemma 4.1 implies that there is a morphism (Yf , t−1) → (Y, f) which is a weak
equivalence after taking a suitable number of suspensions. Since suspension induces
a homotopy equivalence on the level of K-theory [W, 1.6.2], it follows that Ψ ◦ Φ
induces a homotopy equivalence.

The composite Φ ◦ Ψ is given by

(Y−, Y, Y+) �→ (Y−, Y−(t), ∗) .

This admits an evident equivalence to the identity functor. Consequently Φ ◦ Ψ
induces a map which is homotopic to the identity on the level of K-theory. �

5. Proof of the main theorem

By Lemma 4.3, we have a homotopy equivalence,

Ω|hS·nilfd(X)| � Ω|hS·P
hN+
fd (G)| .

Plugging this into Proposition 3.1, we obtain a homotopy fiber sequence

Ω|hS·nilfd(X)| → Ω|hS·Pfd(G)| → Ω|hS·Dfd(G × N+)| .
Let ε : Ω|hS·Dfd(G × N+)| → Ω|hS·Cfd(G)| denote the augmentation map of
[H+, 7.1], which is induced by

(Y−, Y, Y+) �→ Y/Z ,
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where Y/Z denotes the orbit space under the Z-action. Recall that the nil-term
N+Afd(X) was defined to be the homotopy fiber of ε. Similarly, ε restricts to a map
on Ω|hS·Pfd(G)|. Denote the homotopy fiber of this restriction by Ω|hS·Pfd(G)|ε.
Consequently, we have an induced homotopy fiber sequence

Ω|hS·nilfd(X)| → Ω|hS·Pfd(G)|ε → N+Afd(X) .

In was shown in [H+, 7.6] that the second of these maps,

Ω|hS·Pfd(G)|ε → N+Afd(X),

is null homotopic. Moreover, it was shown in [H+, 7.5] that there is a homotopy
equivalence

Ω|hS·Pfd(G)|ε � Ω|hS·Cfd(G)|
induced by the global sections functor Γ: Pfd(G) → Cfd(G) defined by

(Y−, Y, Y+) �→ CY− ∪ Y ∪ CY+ ,

where CY− denotes the cone on Y−.
Assembling this information, we have a homotopy fiber sequence

(3) Ω|hS·nilfd(X)| α−−−−→ Ω|hS·Cfd(G)| β−−−−→ N+Afd(X)

where α is induced by the functor (Z, f) �→ ΣZ. Since the suspension functor
Σ: Cfd(G) → Cfd(G) induces a homotopy equivalence (by [W, 1.6.2]), we see that
the homotopy fiber of α is homotopy equivalent to the homotopy fiber of the map
α′ which is induced by the forgetful map (Z, f) �→ Z.

On the one hand, the homotopy fiber of α′ is ˜Kfd(nil(X)), by definition. On the
other hand, the homotopy fiber sequence (3) implies that the homotopy fiber of
α is homotopy equivalent to ΩN+Afd(X). We conclude that there is a homotopy
equivalence

˜Kfd(nil(X)) � ΩN+Afd(X) .

This completes the proof of the theorem.
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