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HOMOLOGICAL PROPERTIES OF PERIODIC
HOMEOMORPHISMS OF 4-MANIFOLDS

SLAWOMIR KWASIK AND REINHARD SCHULTZ

Given a mapping f from a space X into itself, it is often possible to obtain
significant information about f from the algebraic endomorphisms induced by f
on the homology and cohomology of X. For example, ifX is a compact polyhedron
or topological manifold, then the Lefschetz fixed-point theorem relates the existence
of fixed points for f to a function of the eigenvalues of the rational homology or
cohomology self-maps defined by f (i.e., the Lefschetz number; compare [G-H]).
Frequently, some natural assumptions on f and X allow one to retrieve much more
information about f than in the general case. In particular, if X is a compact
differentiable manifold and f is a diffeomorphism such that fN lx for some X (in
other words, if f is periodic), then the Lefschetz number of f equals the Euler
characteristic z(F) or the set of points F left fixed by f (compare [Kob]). Further-
more, if f 4:1 but fP for some prime p, then the action off on the homology
groups Hk(X; Z) makes the latter into Z[Zp]-modules, and results of R. Swan
[Sw1] imply strong restrictions on these modules. For example, if X is an (n 1)-
connected 2n-manifold (n > 2) and e C is a primitive pth root of 1, then the
Z[]-module

H.(X; Z) (R)A z[]

(where A Z[Zp]) is projective and determines the zero element of the projective
class group/o(Z[]) -/o(Z[Zp]).

In [E2] A. Edmonds considers the extent to which such relationships hold for
periodic homeomorphisms that are not necessarily smooth. The results in [E2]
lead naturally to several basic conjectures and problems that are formulated
throughout the article. In this paper we answer three of these questions.
Our first result is a Lefschetz formula for periodic homeomorphisms of 4-

manifolds:

THEOREM 1. Let M be a closed 4-manifold, and let f: M4 M4 be a periodic
homeomorphism. Then the fixed set F of f has finitely #enerated (ech cohomolo#y,
and the Lefschetz number of f is equal to the ((ech) Euler characteristic z(F).

This result does not generalize to periodic homeomorphisms on n-manifolds for
n > 4 if the period of f is divisible by distinct primes. Classes of examples are
discussed at the end of section 1.
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Our other results deal with Zp-actions on closed simply connected 4-manifolds
(p is an odd prime). In this case the cohomology group H2(M; Z) is isomorphic as
a Z[Zp]-module to a direct sum of

(i) copies of Z with trivial Zp-action,
(ii) ideals in the domain Z[] with the Z[Zp]-module structure defined by sending

the generator Zp to , and
(iii) inverse images of the ideals in (ii) under the surjection Zp - Z[].

As noted in [E2], section 1, this decomposition follows from purely algebraic
considerations. This decomposition is not unique, but each summand of type (ii) or
(iii) defines an element of the projective class group/o(Z []) /oZ[Zp]), and the
sum of these elements depends only on the Z[Z]-module H2(M; Z). This sum is
called the ideal class invariant ofthe action in [E2]; we shall denote this class a(M, f).
The previously mentioned results of Swan [Swl] (see also Weintraub [Wtb] and
Illman [Ill]) state that a(M, f) 0 if f is smooth.
Examples of continuous periodic maps with a(M, f) - 0 have been described by

D. Ruberman and S. Weinberger; the actions in question have isolated fixed points,
and at one of these points the action is not locally equivalent to a linear representa-
tion. In [E2] Edmonds asks if a(M, f) can be nonzero for a locally linear action
(i.e., locally smooth in the sense of [Brel]), and he further asks for a description of
which classes in /o(Z[]) are realizable as (M, f) for suitable M and f. The
answers to both questions are as good as one can expect.

THEOREM 2. If M is a closed simply connected 4-manifold and f: M4 - M4 is a
locally linear homeomorphism with (odd) prime period, then a(M, f) O.

THEOREM 3. A class u /o(Z[]) is the ideal class invariant for some a(M, f)/f
and only if u is invariant under the automorphism of/o(Z[]) induced by a canonical
conjugation involution.

Note. The conjugation involution on/o(Z[]) is defined as follows: Given a
finitely generated projective module P, let P* Homz(P, Z) with left multiplication
by equal to Homz(L(-1, P), Z), where L(v, P) is left multiplication by v Z[].
Elementary arguments show that this map passes to an involution of the group
go(ZEal).

In many respects four-dimensional topology is a curious mixture of influences
from lower and higher dimensions, and the proofs of Theorems 1-3 all reflect this
principle. Cohomological fixed-point theory and the geometrization principle for
generalized manifolds of dimension < 2 yield very strong conclusions on the fixed-
point sets of group actions on 4-manifolds. Theorem 1 follows from these restric-
tions and results of K. S. Brown [Brol, Bro2]; the details are presented in section
1. In contrast, Theorem 2 follows from the existence of closed tubular neighbor-
hoods for locally flat embeddings of surfaces in 4-manifolds, and the homotopy
finiteness of compact bounded topological manifolds, both of which are analogs of
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corresponding results in higher dimensions. Finally, Theorem 3 follows from four-
dimensional topological surgery theory.

1. The Lefsehetz formula. Results of K. S. Brown [Brol, Bro2] state that a
periodic homeomorphism f of a compact manifold M will satisfy a Lefschetz-type
formula if for each positive integer m less than the period of f, the fixed-point set of
fm has finitely generated integral Qech cohomology (see I-Bro2], page 104; also see
the footnote in [Brol], page 233). We claim this condition automatically holds for
periodic homeomorphisms on closed 4-manifolds.

First of all, M’ has the homotopy type of a finite complex by the results of Kirby
and Siebenmann [K-S]. Let N denote the period of f, and view f as the generator
of a continuous ZN-action on M’. For each prime divisor p of N, let Fp be the
fixed-point set of Zp. By Smith theory Fp is a finite disjoint union of mod p
cohomology manifolds Fp, L3""L)Fp, k. Furthermore, the cohomological dimen-
sions of the F,, are at most 3, and codim F,. 3 only if p 2 and Z2 acts locally
orientation-reversingly near points of Fp,. Since cohomology manifolds are the
same as (topological or smooth) manifolds in dimension < 2 (compare {-Wi], chapter
9), it follows that each Fp.i is a manifold unless p 2 and the action of Z2 is locally
orientation-reversing.
Now let r be an arbitrary proper divisor of N, and consider the fixed-point set Fr

of Zr_ ZN. Suppose first that r is not a power of 2, and let p be an odd prime
dividing r. It is immediate that F, is contained in Fp; furthermore, if some component
Fp.j contains a point of F, then F,,j is Z-invariant. By the geometrization principle
for group actions on low-dimensional manifolds ([E ], section 1), the action of Z/p
on F, obtained in this manner is equivalent to a smooth action; and therefore if

Fr F, is nonempty, it is a finite union of closed manifolds. Therefore F, is also a
finite union of closed manifolds if r is not a power of 2. Suppose now that r > 4 is
a power of 2. Then the fixed-point set ofZ, is a finite union ofcohomology manifolds
by Smith theory. If Fr denotes the fixed-point set of Z and F2 F2, (as in the
case p > 2), then F, is contained in F2. Furthermore, ifsome component FE,j contains
a point of Fr, then Z maps F2. into itself, and the action of Z2 is locally orientation-
preserving at FE,j (look at some point x F, F2, and notice that Z4 acts on
H*(M, M {x})). Thus F is contained in a union of components F2, with coho-
mological dimension at most 2. The preceding argument now implies that F, is a
finite union of closed manifolds.
To summarize the preceding paragraphs, we have verified that each subset F, has

finitely tenerated (ech cohomololy except perhaps if p 2. Furthermore, F2
F Fz’, where F is a finite disjoint union of closed manifolds and F’ is a mod 2
cohomolo#y 3-manifold. By Brown’s results the Lefschetz formula will hold if F(’ has
finitely generated integral (ech cohomology. However, this is a consequence of the
compactness of F’ and the following two facts:

(i) If V is an unbounded (not necessarily compact) manifold with an involution
T and the fixed-point set of T is a mod 2 cohomology (n 1)-manifold, then
the fixed-point set is an integral cohomology manifold.
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(ii) If X is a compact integral cohomology manifold, then the (2ech homology
*(X; Z) is finitely generated in each dimension and zero above codim,.(X).

The first assertion is proved in [Brel], Theorem 7.8, and [Ya], Lemma 1.6. The
second assertion is essentially proved in [F1], section 3; the analogous result for
field coefficients is given by [Wi], Corollary 3.2, page 181. Strictly speaking, IF1]
deals with compact (2ech homology .(X; R/Z), but the results on cohomology
follow from IF1] and the Pontryagin duality relationship:

/k(x; Z) Homc(/-k(X; R/Z), R/Z)

(here "Homc" denotes continuous homomorphisms). Note that the clc conditions
of [F1] are contained in the definition of cohomology manifold (see [Bor]) and the
equivalence of (ech and sheaf cohomology for the paracompact spaces under
consideration (compare [Sw2], page 108, lines 3-7; the terminology is explained on
pages 33 and 34 of ([Sw2]).
As noted previously, this completes the proofofthe Lefschetz formula for periodic

homeomorphisms on closed 4-manifolds.

Remarks. 1. As noted in the introduction, Theorem does not generalize to
higher dimensions if the period N of f is divisible by two distinct primes. If
N 4k + 2, specific examples of this sort are constructed in [Bre2-1, pages 276-279;
for these examples the fixed-point set is a countably infinite union ofcircles. Variants
of this construction and subsequent results give many additional examples. For
example, it is possible to construct actions for which the fixed-point set is a count-
ably infinite union of circles and a finite or countably infinite set of points. Also, the
method of construction extends to all periods N that are not prime powers, because
the examples of [Bre2] are built from smooth Z,k+2-actions on S5 with fixed-point
set equal to two circles, and subsequent results of E. V. Stein [St] and R. Fintushel
and P. Pao IF-P] show that such actions exist whenever N is not a prime power.
By suspending the initial smooth actions of ZN on S5 and by substituting these into
the construction, one can obtain even wilder topological actions of ZN on S6.

2. If N is not a prime power, it is also possible to construct Zs-actions such that
the fixed-point set is a finite complex but the Lefschetz number of a generator is not
equal to the Euler characteristic of the fixed-point set. For example if n > 8 one
can take a periodic self-map of S given by the one-point compactification of a
diffeomorphism of R with period N and no fixed points (compare [Bre2], chapter
1, and the comments in [E2-1). It would be very enlightening to know the minimum
dimension for which there are examples of Zs-actions such that the fixed-point sets
have finitely generated integral (2ech cohomology but the topological Lefschetz
formula fails.

2. Ideal class invariants. Throughout this section p will denote an odd prime;
all the results admit formal generalizations to the prime 2, but the ideal class group
vanishes in this case, and consequently the conclusions are meaningless.
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We begin with the proof of Theorem 2. Let M be a closed, 1-connected, locally
linear Zp-manifold of dimension 4. The object is to prove that the ideal class
invariant

(M; Z,)e

is trivial. The first step is to formulate a simple generalization of Swan’s results:

(2.1) If M has the Zp-homotopy type of a finite Z-CW complex, then O.

The proof in [Swl] and [Wtb] extends almost verbatim from finite simplicial
complexes with Z-actions to finite Z-CW complexes.
Thus Theorem 2 will follow from (2.1) and the next assertion.

PROPOSITION 2.2. If M4 is a closed, connected 4-manifold with a locally linear
Zp-action, then (M, Zp) has the Zp-homotopy type of a finite Zp-CW complex.

Proof. The fixed-point set F splits as a disjoint union Fo w F2, where Fo is a finite
isolated set and F2 is a (not necessarily connected) 2-manifold. Since Zp acts locally
linearly, there are closed linear disks about each point of Fo; these can be chosen
to be pairwise disjoint and also disjoint from F2. Set Ro equal to a union of such
disks, and let M1 M- Int(Ro). If X1 M1/Zp, then X is a 4-manifold with
boundary ORo/Z, and by local linearity F2 is a locally flat two-dimensional sub-
manifold ofInt(X). Therefore the four-dimensional version ofthe thin h-cobordism
theorem (see [Frl], [Fr2], [Q]) implies that F2 has a linear tubular neighborhood
in Int X (compare [K-V]). Let R2 - Int Xx be a closed linear tubular neighbor-
hood of F2, and let R2 -Int M1 be the inverse image of R2 in M. Set M2
Mx Int(R2). Then M2 is a bounded compact Z-manifold with a free Z-action,
and both Ro and R2 are compact smooth Zp-manifolds. But Ro w R2 is Z,-
homotopy equivalent to Fo w F2, and by [K-S] the free Z-manifolds O(R0 w R2)
OM2 and M2 have the Zp-homotopy types of finite Zp-CW complexes. Since M is
equivalent to the pushout of

c3(Ro w R2) 63M2 - M2

RoR2

and all the objects under consideration have finite Z-homotopy type, the Zp-
manifold M’ must also have this property. E!

Finally, we determine which elements of go(Z[]) can be realized as ideal class
invariants. Theorem 3 claims that a class is realizable if and only if it is self-conju#ate.
The following lemma proves half of Theorem 3.

PROPOSITION 2.3. Let p be an odd prime, and suppose that Z acts on the closed
simply connected 4-manifold M’. Then HE(M; Z) (R)A ZI-] and Hom,.(H2(M; Z) (R)A
Z[], Z) are isomorphic Z [ ]-modules.
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Notation. As usual, A denotes the group ring Z[Zp], and the Z[]-module
structure on Hom,.(B; Z) is defined by taking left multiplication by to be
Hom,(-1, Z).

The cup product pairing

2: H2(M; Z)(R) H2(M; Z) H’(M; Z) Z

defines an isomorphism of abelian groups

2’" H2(M; Z) Hom.(H2(M; Z), Z),

and the identity 2(ta (R) b) 2(a (R) -lb) for Zp implies that 2’ is an isomorphism
of Z[Zp]-modules. If we tensor 2’ with Z[] over Z[Zp], then we obtain an
isomorphism 2" from HZ(M; Z) (R)A Z[] to Homz(HZ(M; Z), Z) (R)A Z[].
Given the module A HE(M; Z), define hA --fAgA to be the following composite:

Homz(A (R)A Z[], Z) Homz(A, Z)

- Hom,(A, Z) (R)A A - Hom,(A, Z) (R)A Z[].

This definition is of course valid for an arbitrary A-module A and is functorial in
A. We claim that ha is an isomorphism/f A HZ(M; Z). This will imply that h2"
defines an isomorphism from A H2(M; Z) (R)A Z[] to Hom,(A; Z).

Since H2(M; Z) is a direct sum ofindecomposables isomorphic to (i) Z with trivial
Zp-action, (ii) fl an ideal in Z[], or (iii) P a finitely generated projective
A-module, it suffices to prove that ha is bijective for modules of these three types.
Each case can be verified by a direct elementary argument.

The proof of the other half ofTheorem 3 has two steps. The following result yields
the required examples.

PROPOSITION 2:4. Let G be a finite group that acts freely and linearly on S3, and
let

_
g0(Z[G]) be the set of all stable classes of projective modules P that

represent elements of the projective Wall group L(Z[G], 1). Let 0 u be given.
Then there is an orientation-preserving topological G-action on some simply connected
manifold M4 with the following properties:

(i) G has exactly two fixed points.
(ii) G acts freely on the complement of the fixed-point set.
(iii) G acts locally linearly at exactly one of the fixed points.
(iv) The cohomology group HE(M; Z) is a projective Z[G]-module representing u.

Results of this type have been known for some time (for example, this sort of
construction was used by Ruberman and Weinberger; compare also [K-Sch]).
By construction the set is a subgroup of the set S of self-conjugate elements in

Ko(Z[G]); a Hermitian form on a projective module P defines an isomorphism
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P - P*. Furthermore, contains all classes represented by elements of the type
Q ) Q* (take the standard kernel form), and therefore S/I has exponent at most
2. Ofcourse, ifS/ 0, then every self-conjugate class can be realized. In particular,
Theorem 3 will follow from 2.4 if S ’ for G Zp. This is the second step in the
proof.

PROPOSITION 2.5. In the notation of 2.4,/f G is a finite cyclic group, then is
the set of all self-conjugate elements.

Proof. The Ranicki sequence relating Lh and Lp contains a segment of the
following form:

L(Z[G]) S/S’ L(Z[G]) L(Z[G-]) ...
Here S’ all classes determined by modules of type Q @ Q* and Z is given by the
projective class group invariant of a representative for an element of Lg. Therefore

S if Z is surjective. By exactness this holds if and only if the forgetful homomor-
phism L(Z[G]) Lg(Z[G]) is a monomorphism. But the latter is true by a result
of A. Bak (see [Ba], Theorem 8). El

Proof of 2.4. Let Vo S3/G be the orbit space of a free linear action of G on S3,
let f be the corresponding four-dimensional G-module, and let D(f) denote the unit
disk in f. Given an element Lg(Z[G-I), view as an element of Lh (ZIG x Z-I)
by the Ranicki splitting

L(ZIG x Z]) L(Z[G])ff Lg(Z[G])

(compare [P-R]), and construct a topological normal cobordism W from the
identity on S x Vo to some homotopy equivalence fl"N S x Vo with surgery
obstruction a. Let F: W S x Vo x [0, 1-1 be the associated normal map. Make
F transverse to { 1} x Vo x [0, 1] without changing F lt3o W identity. The trans-
verse inverse image of { 1 } x Vo x [0, 1] will then define a cobordism Wo from Vo
to some manifold No; by construction, Wo is bicollared in W and No is bicollared
in N. Define N N Int(No x [- 1, 1-1); it is immediate that t3N1 No II -No.
The usual techniques of surgery can be applied inside W and N to yield a

transverse map homotopic to F such that (K(G, 1), Wo) and (K(G, 1), No) are 2- and
1-connected, respectively.
The infinite cyclic covering of N is homeomorphic to a union of submanifolds

N1, indexed over all j e Z, with each NI, homeomorphic to N and N1,j N1, k

O+Nx,j O-N,k ifk j + 1, but NI,j c N,k iflj k[ > 2. Let U+ be the union
of all N,j’s for j > 0 and U_ the union of all N,’s for j < 0; by construction
U+ c U No is the boundary of both U+ and U_. Form the open 4-manifold

X Wovo V+.
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As in [P-R], pages 246-248, there is a proper degree-1 normal map

q,: (x, Vo) (Vo [0, ), Vo {0})

that is a homeomorphism on the boundary and has proper surgery obstruction
equal to a 6 L(Z[G]).

Ifwe choose Wo and No so that (Wo, Vo) is 2-connected and (No, Vo) is 1-connected,
then the map q becomes 2-connected. If denotes the universal covering of X, this
means that H2(.,, S()) is isomorphic to a representative for a as a Z[G]-module.
The results of [Frl] imply that the one-point compactification of) is a manifold;

the free G-action on . by covering transformations extends uniquely to a semifree
G-action on the one-point compactification )’. Let

M D(f) sn)’,

and take the G-action on M given by the preceding action on )" and the linear
action on D(fl). It is immediate that M is free on the complement of the fixed set.
By excision HZ(M- {},D(f)) is isomorphic to H2(., S()), and this is

in fact an isomorphism of Z[G]-modules. Since D(f) is contractible and
Hi(M, M }) 0 if - 4, it follows that HE(M) is isomorphic to H2(, S())
as a Z[G]-module. Therefore H2(M) is a projective Z[G]-module, and the results
of [P-R], pages 246-248, imply that the projective class of HE(M) represents the
image of in /S’ (notation as in the proof of 2.5). Thus we see that for every
fl /S’ there is an action of the desired type such that HE(M) is projective and
represents ft.
We now claim that every element in can be realized. By the preceding para-

graph, every element in ’ may be written as a sum flo + 7, where fl0 can be realized
by the preceding construction and 7 S’. If 7 S’, then y has the form 6 + 6"
for some 6 go(ZIG]). Let B: Wh(G Z) - go(ZIG]) be the canonical splitting
map (see [R-] for a thorough discussion of splittings of Wh(G x Z)). Choose A e
Wh(G x Z). Choose A Wh(G x Z) so that B(A)= 6. Since fl is realized by the
preceding question, let Vo, N, Wo, No, etc., be as before. By [Frl] and [Fr2] there
is an h-cobordism (W’; N, N’) with Whitehead torsion equal to A. Furthermore,
the transverse homotopy equivalence f:N- S x Vo extends to an equivalence
F’: W’ - S x Vo that may again be assumed transverse along {1} x Vo. Let Wd

_
WandN

_
N’ denote the transverse inverse images, and split N’ (N [- 1, 1]) w

N as before; we may assume (K(G, 1), W) and (K(G, 1), N) are 2- and 1-connected
for the same reasons as before.

If we write the infinite cyclic covering of N as before, we once again have a
splitting of this covering space as U w U’. Suppose that we form the open manifold
X’ Wo w W w U. The geometric interpretation of the splitting map B implies
that the Siebenmann invariants tr(X’), tr(X) go(ZIG]) for the ends of X’ and X
are related by the formula

a(X’) a(X) B(T,(N N’)),
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where z denotes Whitehead torsion (compare [R], section 3). But the duality
formula for the Whitehead torsion of the h-cobordism (W’; N, N’) implies that the
torsion of N N’ is simply A + A’. Thus tr(X’)= tr(X)+ (6 + ’). If we form
M’ from X’ as we formed M from X, we then see that if H2(M; Z) represents
/30 /o(Z[G]), then H2(M’; Z) represents/30 + 6 + 6".

Therefore we know that every coset of S’ in zg/S’ contains a realizable projective
class and that every element in a coset is representable if one element is. Together
these imply that every element of is representable. This proves all of 2.4 except
for the assertion that Zp is not locally linear at the second fixed point if HE(M; Z)
determines a nonzero element of/o(Z[G]). But by construction the class of
HE(M; Z) in the projective class group is the Siebenmann invariant for the end of
X’, and if the action were locally linear, then the end would be collared and the
Siebenmann invariant would vanish [Sieb]. E!
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