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ON PERIODICITY IN TOPOLOGICAL SURGERY 

SLAWOMIR KWASIK 

One of the distinguishing features of the topological category is the 
following periodicity in the set of homotopy TOP structures on X. 

THEOREM (Siebenmann). Let Xm, m ^ 5, be a connected compact 
topological manifold with non-empty boundary. Then 

S T O P ( A ) ^ ^TOP(^ ^ ^0-

It was conjectured by Siebenmann (see [3], p. 283) that the analogous 
periodicity should also exist for noncompact manifolds. 

The purpose of this paper is to prove that this is indeed the case, 
namely: 

THEOREM 1. Let Xn\ m ^ 6, be a connected noncompact topological 
manifold with non-empty boundary. Then 

STQp(X) ^ SjQp(I X X). 

The proof of Theorem 1 is an application of the proper surgery theory of 
S. Maumary [4], [5], L. Taylor [13] and F. Quinn's semi-simplicial 
formulation of Wall's surgery (see [7], [6] ). Especially the algebraic 
determination of the proper surgery groups given in [4] is used 
essentially. 

To make this note somewhat more self-contained we recall in the 
Preliminaries the basic notions from the proper surgery theory. 

I am indebted to P. Vogel for useful conversations. 

1. Preliminaries. In this section we recall the basic facts about proper 
surgery theory. For more information on this subject we refer to [13]. 

A continuous map / :X —> Y between topological spaces X, Y is called 
proper if f~l(C) is compact whenever C is a compact subset of Y. 
By proper category we mean a category of topological spaces and proper 
maps. It is not difficult to observe that the ordinary homology and 
homotopy are not satisfactory tools in the proper category. The 
appropriate substitutions are so called A-homology and A-homotopy 
(see [2], [13] ). As in the ordinary homology and homotopy there are 
functors from the proper category to the category of groups and 
homomorphisms. 
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A lot of general properties and constructions which hold in the ordinary 
homology and homotopy (a long exact sequence, a cup product, Hurewicz 
Theorem, etc.) one can carry over to the A-case (see [2] ). 

Now a proper Poincarè complex of formal dimension m is defined to 
be a locally finite, finite dimensional CW complex X with an orientation 
class w, G HX(X\ Z2) and a class [X] G HXJ(X\ Z') such that the 
cup product 

n[X]:Am-\X)-+^(X) 

is an isomorphism. 
An obvious modification gives the notion of a proper Poincarè n-a.d. 
The basic example of a proper Poincarè complex of formal dimension m 

is an open ( = noncompact without boundary) w-dimensional CAT 
manifold (CAT = TOP, PL or DIFF). 

Suppose we have the following data (a proper normal map): 

1. An m-dimensional open CAT manifold M. 
2. A proper Poincarè complex X of formal dimension m with a CAT 

bundle £ over X, where CAT bundle means a TOP-microbundle, a 
PL-microbundle, or a vector bundle respectively, and an orientation class 
w G H\X\ Z2). 

3. A proper degree 1 map / :M —> X i.e., 

MM] = [X] G H]„{(X; Z<). 

4. A stable trivialization F of r(M) © /*(£), where T ( M ) is the CAT 
tangent bundle of M. 

Now the task of a proper surgery theory is to decide whether there 
exists a CAT cobordism W with boundary bW = M U N, a proper map 
g: W —> X with g\ W = / , a stable trivialization ¥' of T( W) ® g*(£) naturally 
extending F, such that g\N is a proper homotopy equivalence. 

It turns out that there is a well-defined obstruction to solving this 
problem if the dimension of M is at least five. This obstruction lies in 
a group Lm(X\ w). The group Lm(X\ w) is defined as a certain bordism 
group strictly analogous to [14], chapter 9. 

If one wants to obtain a proper simple homotopy equivalence 
g\N:N —> X (simple in the sense of [1], [12] ) then the obstruction to solving 
this modified problem lies in a similarly defined group Ls

m{X\ w). 
Now if K is an arbitrary locally finite, finite dimensional CW complex 

with an orientation class w G Hl(K; Z2) then the groups Lq
m(K\ w), 

q = h or 5, are defined analogously to [14] by considering normal maps 
over (K; w). 

Suppose X is a proper Poincarè complex of formal dimension m. The set 
of homotopy CAT structures on X, Sq

CAT(X), where CAT = TOP, PL or 
DIFF and q — h or s is defined as follows. 

An element of Sq
CjKj(X) is represented by a proper (simple when q = s) 
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homotopy equivalence f\M —> X defined on an m-dimensional CAT 
manifold M. Another such equivalence / ' :M' —> X represents the same 
element [/'] = [/] in Sq

CAT(X) if and only if there is a proper CAT 
/z-cobordism (s-cobordism) ( W, M, M') rel boundary and a proper (simple) 
homotopy equivalence F: W -> X X / that is product with / near / X bX 
while F(x) = ( /(JC), 0) for je <= M, and F(x) = (/ ' (*) , 1) for x e M after 
the identification 

Z?Ĥ  - F~\l X bX) ^ M U Mf 

is made. When m ^ 5, and Wh(X) = 0 then every proper /z-cobordism is 
a product cobordism (see [12] ), so [f] = [/] then simply means that 
there exists a CAT isomorphism h:M -^ M' with/'/z properly homotopic 
with f. 

If we do not wish to distinguish between SçAT(X) and ^ C A T ( ^ ) ^ e n 
we write simply SCAT(X). 

A similar definition holds for X a proper Poincarè n-ad. 
Analogously as in the compact case one gets the long Sullivan-Wall 

exact sequence (see [13] ) 

[2*, G/CAT] -> Lq
t+x{X\ w) -* Sq

CAJ(X) 

-> [X, G/CAT] -̂ > Lq
t{X\ w) 

where [,] denotes the set of homotopy classes of maps and EX denotes the 
suspension of X. 

It is well known that in the compact case the surgery groups of a space 
depend only on its fundamental group. In the proper case the groups 
LC\(X\ w) depend only on the system of fundamental groups of X (i.e., a 
proper 1-equivalence of spaces induces an isomorphism between their 
surgery groups)(see [13] ). 

Remark 1.1. We will follow the notational convention of Appendix C 
of [3]. Hence we will write simply Lq

t(X\ Sq
CAT(X) for Lq(X, bX\ w), 

^ C A T ( ^ bx) respectively. 

The proper surgery groups were defined in a purely geometrical manner, 
which makes their computability extremely complicated. Fortunately 
there exists an exact sequence due to S. Maumary (see [4], [5] ) which 
relates the proper surgery groups to the Wall-Novikov groups, namely: 

Let X be a locally finite, finite dimensional connected CW complex and 
let X, D l 2

D ^ 3 D - - - b e a sequence of neighborhoods of oo, formed by 
a sequence of subcomplexes Xt with only noncompact components (in 
finite number). Denote by X — Xt any finite subcomplex of X such that 
X - Xt U Xt = X and let 

Xt = X - Xt n Xn 

which is a finite subcomplex of X containing the frontier of Xt. 
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Let 

oo 

and let 

oo 

n,(*) = UL^X)) 
7 = 1 

where Lp
t(irx{Xj) ) are the [/-groups and Lt{wx(X) ) are the K-groups from 

[8]. We define homomorphisms 

(1 - 5): n , W "> MM*) ) © ILW 

(i - s): n?w - m^(X) ) © n ? w 
by 

(1 - s)(a}, a2, « 3 , . . . ) = (- /*(«,) , a, - J*(Û2)>
 fl2 ~~ <*(a?,)< • • -X 

where /* denotes the map induced by the inclusions 

THEOREM (Maumary). Tfte proper surgery groups Ll(X) fit into an 
exact sequence 

(*) HW^—LL^^X) ) © U,(X) -» Lh
t(X) 

-> nr.w—^L",_xdtx(x)) © n?-iw-
2. Periodicity. In this section we give a proof of Theorem 1. First we 

prove the STOP-version and we next show how to obtain the Sy0p-case. 
The analysis of L. Siebenmann's proof of 

^ T O P ( ^ ) ~ ^TOP(^ -* X) 

in the compact case clearly shows that the basis for this periodicity is the 
periodicity in the surgery groups. 

The geometric approach to proper surgery groups gives no sign that 
these groups are periodic. Fortunately it turns out that they are periodic 
with the periodicity (like in the compact case) given by the multiplication 
by CP . A proof of this is in fact our main task. To obtain the periodicity 
in the set of homotopy TOP structures from the surgerical periodicity we 
proceed analogously to [3], [6]. 

We start from the following 
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THEOREM 2.1. Let X be a locally finite, finite dimensional connected CW 
complex. Then 

U,(X) ~ L"t+4(X), t i= 6, 

and this isomorphism is given by multiplying by CP . 

Proof. Consider the exact sequence (*) of Maumary 

1 - s 
Yl,(X) £ L > , ( X ) ) 0 H,(X) ±> Lh,(X) 

All groups in this sequence, except Lt (X), are periodic with the period 
equal to [4] (see [8] ) so we can write 

U,(X) 1 - s ^Lt(irx(X)) 0 Ylt{X)-L^Lh
t(X) 

(1) 

1 -n,+ 4w—S+L ! + 4(^(X)) © n 

° n?-,w. 

nf+3W-

l - * 

(2) 

1 

.£?_,(*,(*-)) e n?- iW 

.L?+3(WI(A-)) e n?+ 3W 
where the diagrams (1), (2) are commutative by definition. 

Now we define a homomorphism 

XCP2:Lp
t(X) -» L?+4(X X CP2) 

as follows: 
Let [/] e L, (X) be represented by a proper normal map (/, F, g) over 

X, i.e., let / : M —> Y be a proper degree 1 map between a connected 
/-dimensional CAT manifold M and a proper Poincarè complex Y of 
formal dimension /, where F i s a stable trivialization of ir(M) ©/*(£), and 
g:Y —> X satisfies the following condition: if w e HX(X\ Z2) is the 
orientation class of X then 

g*(w) e H\Y; Z2) 

is the orientation class of Y. Then 

XCP 2 ( / ) G F , + 4 ( * X cp2) 

is represented by the proper normal map ( / X id, F X id, g X id), 
where 
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/ X id:M X CP2 -» Y X CP2 

and F X id, g X id are the obvious terms. 
It is easy to see that XCP2 is a homomorphism and if we are able to 

show that the following diagram is commutative, then by the five-lemma 
we will conclude that 

XCP2:Lh
t(X) 

is an isomorphism. 

1 -
IL(*) 

Lh
t+4(X X CP2) 

+Lt(*x(X)) e n ,W •Lh
t(X) 

(**) (1) (3) 

n , + 4 W - U ( + 4 f r ,W) © Ut+4(X)-^Lh
l+4{X X CP2) 

1 - s 

f^n?-iw-—u?-i(^.w) © n r .w 
(4) (2) 

_ ^ n ? + 3 w - — ^ + 3 ( * i ( * ) ) © n ? + 3 ( * ) • 
All new terms in (**) will be defined later in the proof. At the beginning 
we describe the homomorphism 

o:Lh
t(X) -> IK- iW = I I L^faiXj)). 

Roughly speaking, a is defined as follows (see [4] ). Let [/] e Lt (X) be 
given by a proper normal map over X say (/, 7% g) with/:M —» Y of degree 
1. Assume that / is an odd number of the form 2q 4- 1. Let us take a 
fundamental system of neighborhoods of oo in Y, Y1 D Y2 3 Y3 3 . . . 
such that 

V Y Y 

is compact. By transversality we can assume that / (7.) = M is a 
submanifold in M and 

bMj = / ~ ' ( ' A 

Doing a sequence of surgeries we get a sequence of finitely generated 
projective Z(TT1(Y/-) )-modules [K (bMj) } (see [4] ). 

Every such module K (bM.) is equipped with a special Hermitian form 
coming from the intersection numbers on bM. Hence we get a sequence of 
elements c, with 
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cye £?_,(*,(*,.) ), y = 1,2, 

and a is defined as 

°([f)) = {cj}^ im.faiXjn 
Now let us choose the fundamental system of neighborhoods of oo in 
X X CP2 as 

Xx X CP2 D I 2 X C P 2 D . . . 

and define ô in the same manner as a was defined. Then the periodicity for 
the surgery groups (see Proposition 8.2 in [9], p. 259) shows that the 
diagram (4) in (**) is commutative. 

Now we show the commutativity of (3). As before t is assumed to be an 
odd number of the form 2q + 1. Let {Û-} - = 0 A 2 ^ e a n element in 

Lt(«x(X) ) e Ut(X) = H Lt{«x{Xj) ), 

where X0 = X. 
We choose an open connected 2^-dimensional CAT manifold N such 

that the inverse system {TTX(N/) }/^o,i,2, *s conjugate equivalent to 
{77!(X) };=o,i 2 • Let us recall that the conjugate equivalence of inverse 
systems means that the commutativity of a diagram which is required in 
the ordinary equivalence is replaced by the commutativity up to action of 
ir](Xj) on itself (comp. [5] ). Next we do (see [4] ) a series of surgeries on 
id:7V —> TV (these surgeries depend on {#-}-=0 l2 ) to get a new manifold 
Nx properly homotopy equivalent to TV under a proper homotopy 
equivalence/! :N} —> N. Because fx :NX —» N was obtained by a sequence of 
surgeries we then have a cobordism say 

f:M2q+x ->7V X / 

between id:7V —> N Sindfl:N] —> N. It turns out that 

f:(M, bM) -> (TV, bN) 

provides the surgery data we are looking for in L2q+\(X) (see [4] ). 
Now we define 

* {ây}y=o,!,2,...) = 1/X id] G L?+4(Z X CP2), 

where 

( / X id):(M, bM) X CP2 -> (TV, 67V) X CP2 

and Â- comes from a- by periodicity. As a consequence we obtain the 
commutativity of (3) in (**). 

The exactness of 
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I — s T o \ — s 

is also evident so we get the isomorphism 

u X C p 2 u i 

Lh
t{X)—^Lh

t^(X X CP2) 

in the case t odd. 
When t is an even number then in fact nothing is changed. The 

homomorphisms a, r are defined in the same manner (see [4] ) and we can 
proceed as in the case / odd. Therefore we can take XCP to be the 
isomorphism for all / â 6. 

Remark. The condition t è 6 which occurs in Theorem 2.1 is a 
consequence of assumptions in [4]. 

Now to obtain the isomorphism 

XCP 2 :L? (X)^L* + 4 (X) 

postulated in Theorem 2.1 it is enough to prove the following: 

PROPOSITION 2.2 Choose x0 G CP . Then the inclusion 

i:X-> X X CP2 

given by i(x) = (x, x0) induces the isomorphism 

i*:Lh
t(X)^Lh

t(XX CP2). 

Proof. As mentioned in the Preliminaries, to prove Proposition 2.2 it 
suffices to show that the map 

/ : * - > X X CP2 

is a proper 1-equivalence. To see this let J f denote the family of all 
compact subsets of X. It is clear that the family 

JT = {K X CP } K Œ j r 

of compact subsets in X X CP is a cofinal collection of compacta in 
X X CP (i.e., given a compact set A c X X CP , then there is some 
A' e j f containing A ). 

It is not difficult to prove that this implies that 

*'*:A(Jf, {/?}; irl9 no cov) -> A(X X CP2, { (p, x0) }, n-,, no cov) 

is an isomorphism (the A-objects above are defined in [2] ). Hence by 
Theorem 2.19 in [2] 

i:X-* X X CP2 

is a proper 1-equivalence and consequently we get the isomorphism 
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W.Lh
t(X)^Lh

t{XX CP2). 

This finishes the proof of Theorem 2.1. 

The periodicity 

u X C p 2 u 

Lh
t(X)—+Lh

t+A(X) 

is the crucial point in the proof of Theorem 1. To deduce Theorem 1 from 
Theorem 2.1 we can proceed analogously as L. Siebenmann in [3], but 
some care is needed. This is because of the following: 

Remark 2.3. As was observed by A. Nicas (see [6] ) Theorem C.5 of [3], 
p. 283 is incorrectly stated. Namely, in the case when X is a closed 
manifold STOp(X) ^ STOp(/4 X X) in general, contradicting Sieben-
mann's claim for the periodicity in this case also. 

For example for n ^ 5 

SJQP(S ) = 0 

by the generalized Poincarè Conjecture. On the other hand 

STOP(/4 XST) = L4(0) « Z 

by the surgery exact sequence. 
It was also observed by A. Nicas (see [6] ) that the corresponding 

periodicity for a closed manifold X is the following exact sequence: 

0 -> STOP(X) -> STOP(/4 X X) -> L0(0). 

Because of this discrepancy we in fact should follow [6], where the 
rigorous proof of the periodicity is given. We will not give all the details 
here, mainly because we ought to repeat (after a small modification) about 
forty pages of consideration from [6]. Therefore we assume familiarity 
with [7], [6] and give only a short sketch how to obtain Theorem 1 from 
Theorem 2.1. 

For information concerning A-sets we refer to [10]. 
First a few words about notation. By Lm(G) we denote the surgery space 

for the group G (see [7], [6] ). Lm(G)0 stands for the 0-component of Lm(G) 
and S(X) denotes the singular complex of a space X. 

If AT is a locally finite, finite dimensional CW complex, then the proper 
surgery space for K is denoted by \Jm (K), q = h or s. The definition 
of Lq

m(K) is the obvious modification of the definition of Lm(G). Now let X 
be a connected noncompact CAT manifold. Then analogously as in the 
compact case we have the pointed A-sets N^AT(X) and S^AT (X), q = h or 
s, of proper normal maps and proper homotopy CAT structures 
respectively.-By the obvious modification of the definition from [6] one 
also gets the notion of a proper surgery mock bundle. 

Now we go back to the proof of Theorem 1. Let 
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a(0, r):S(G/TOP) -> L4r(0)0 r â 2 

a(k,r):S(iï(G/TO?)) ^4r + k] (0) 4r + k ^ 5, fc â 1 

be the homotopy equivalences defined in [3] p. 279. 
Suppose X is an m-dimensional connected noncompact topological 

manifold with a non-empty boundary bM. Then the following diagram, 
corresponding to the diagram (7) in [3], p. 280 is homotopy (not proper 
homotopy) commutative. 

e, 
A(X+; S(GVTOP))-

0,2 
. A ( * + ; L8(0)0). •liri-sW 

n 
A(X+; S(fi4(G/TOP) ) )-

0 4,2 

XCP2 

.A(Jf+ ;L1 2(0))-

XCPZ 

-C12W 
Two points here are worth noting. First, observe that the map a really 

goes to L^ + 8 (X) and not to Lm+8(7r1 (X) ). The reason for this is the fact 
that X is noncompact. Namely, the map o is obtained as a composition of 
the glue map (see [6], p. 42) and the assembly map. As our manifold X is 
noncompact we glue infinitely many compact manifolds, hence the 
manifolds M, X in Theorem 3.3.2 in [6], p. 47 are now noncompact. It is 
also not difficult to see that the assembly procedure gives us the proper 
surgery problem, i.e., we get a proper normal map, therefore an element 

inlt+gW. 
Second, in the case where X is not triangulable we take X+ to be the 

triangulated stable normal disc bundle to X in a euclidean space R" (see 
[3], p. 281). We should note that the considerations in step 7, p. 281 in [3] 
remain valid in the case of noncompact manifolds (i.e., the TOP 
transversality for proper maps). 

Now we assume dim X = 6, bM ¥* 0. Then we proceed in a way strictly 
analogous to [6] (with the obvious modifications of course). 

As a final result we will obtain the homotopy commutative diagram. 

STOP(Ar). 

n 
^TOpC^ X X). 

-to 
XCP2 

- • I ^ z + 4 ( ^ r ) 

Hence on the TT0 level we get the periodicity 

^ T O P ( ^ ) ^ ^TOP(^ x ^0-

It is also clear that in the case bM = 0 we get the exact sequence 

0 - Sh
roP(X) -» 4 0 p ( / 4 X X) -> L0(0). 
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To obtain a somewhat stronger result, namely the periodicity 

Sj0p(X) ^ STOF(I X X), 

and thus completing the proof of Theorem 1, we clearly only need to prove 
that there exists the periodicity 

XCP2 

L ; ( Z ) _ W ^ 4 ( X ) . 

Because of the lack of a Maumary-type exact sequence for L](X) we 
proceed as follows: 

Let us consider the Rothenberg's exact sequence for proper surgery 
groups (see [13], compare also [11] ) 

. . . -> At + x(X) -> Ls
t(X) -> Lh

t(X) -> At(X) -* . . . 

where 

At(X) = {o e Wh(X)\o = (-l)'o*} 

/ { T + ( - 1 ) V * | T GE Pf7z(X) }, 

Wh(X) is the proper Whitehead group of X (see [1], [12] ) and 

*:Wh(X) -> »%(*) 

is the canonical involution on Wh(X). 
It is not difficult to observe that the required periodicity 

CP2 

Ls
t(X)-+»L5

t+A(X), t ^ 6, 

can be deduced from Rothenberg's exact sequence by the five-lemma 
argument. This implies the periodicity 

STOP(J0 ^ STOF(I X X) 

in the case when X is a connected noncompact manifold with dim X ^ 6 
and Z?M ^ 0. When 6M = 0 then analogously to our previous argument 
we get the exact sequence 

0 -> Ss
TOV(X) -> ^ T O P ( / 4 X X) -> L0(0). 

This completes the proof of Theorem 1. 

Remark 2.4. The results in [6] are formulated and proved only for 
orientable manifolds. But all ideas in [6] which we need work in the 
nonorientable case as well. Hence there is no restriction concerning 
the orientability of X in Theorem 1. 

Remark 2.5. To see that in the open case there in no periodicity 

S'TQp(X) « Sj0p(I X X) 
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in general let us take X = Sn X R, n i? 3. Then (Siebenmann) 

STOP(S" X R) = 0 

compare [M. Freedman, The topology of four-dimensional manifolds, J. 
Diff. Geom. 7 7(1982), 357-453]. On the other hand one can use the 
projective surgery theory of Pedersen and Ranicki (see Topology 79(1980), 
239-254) to show that 

STO?(S
n X R X I4) « Z for n ^ 3. 
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