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Product and Sum Theorems for

Whitehead Torsion

By KYUNG WHAN KWUN and R. H. SZCZARBA*

Introduction

The purpose of this paper is to study the behavior of the Whitehead torsion
under the operations of taking products and sums. The product referred to here
is the tensor product, and our main theorem on products expresses the torsion
of the tensor product C @ C’ of an acyclic complex C, with a not necessarily
acyclic complex C’, in terms of the torsion of C and the Euler characteristic
of C'. As an application of this result, we obtain an expression for the torsion
of the cartesian product of two maps in terms of the torsion of the factors and
the Euler characteristic of the spaces involved. In particular, the product of
any h-cobordism of dimension =5 with a circle is a trivial k-cobordism. We
also make application to the Reidemeister-Franz-de Rham torsion and to the
torsion of special complexes.

The sum theorem is entirely geometric. If f: X, U X,— Y, U Y, is a homo-
topy equivalence such that each f; = f| X;: X; — Y;, 7 = 1,2, is also a homotopy
equivalence, we determine, under suitable circumstances, the torsion of f in
terms of the torsion of f; and f,. As a consequence, we prove that the simple
homotopy type of the connected sum of two manifolds depends only on the
simple homotopy type of the two summands. This result was proved in dimen-
sion 3 by Cockeroft [2].

The paper is divided into three sections. The first contains the statements
of the results and the last two the proofs of the main theorems.

We would like to express our thanks to the referee for the version of the
proof of the product theorem that appears in § 2.

1. Statement of results

In this section, we state the results of the paper, deferring most of the
proofs to the last two sections. For details on the notions of Whitehead group
and torsion, we refer the reader to Whitehead [9] and Milnor [7]. Our point
of view will be that of Milnor as expressed in his excellent set of notes on
Whithehead torsion [7].

Let A be an associative ring with the a unit and with the property that any
two bases for a free A-module have the same number of elements. (All rings con-

* R. H. Szczarba was supported in part by a National Science Foundation Postdoctoral
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sidered in this paper will be associative rings with unit satisfying this prop-
erty.) This will be true, for example, if there is a homomorphism of A into
a division ring D which takes the unit of A into the unit of D. Let GL(n, A)
be the group of invertible n x n A-matrices and GL(A) = |J GL(n,A). Define
the reduced Whitehead group of A, K,(A) to be the quotient GL(A)/U where
U is the subgroup generated by the 1 x 1 matrix (—1) together with those
matrices in GL(A) which are the identity except for a single non-zero off diagonal
entry. It is easily checked that K, is a covariant functor from the category of
rings to the category of abelian groups.

Let C be a finitely generated A-complex. (All complexes which we consider
will be finitely generated.) We will say C is based if each C, is a free A-module
with a preferred basis. If C is based and acyclic (H,C = 0, all q), there is as-
sociated to C an element 7(C) in K, A called the torsion of C.

Now, suppose R and R’ are rings which are also algebras over the com-
mutative ring A, and let C be a based R-complex, and C’ a based R’-complex.
Then C ®Q, C’ is a based R Q, R’ complex.

PRODUCT THEOREM. Let C be a based R-complex, and C' a based R'-com-

plex. Then, if C is acyclie, so is C Q,C' and

(C Q4 C") = x(C")j4z(C)
where Y(C’) is the Euler characteristic of C' as an R'-complex and j,: K,(R)—
K(R®,R') is induced by the map r — r Q@ 1.

Note that if C and C’ are both acyclie, 7(C ®, C’) = 0 since ¥(C") = 0.

The proof of the product theorem is given in § 2.

Let X be a finite cell complex with fundamental group x, and universal
covering space X. Then C(X) becomes a based complex over the integral group
ring Z[r] of 7 by choosing cells in X covering the cells in X. If a: 7 — O(n)
is a real representation, we obtain a homomorphism a: Z[7] — R"*", the ring
of n X n real matrices, and can form R"*" ), c(X ) which is a based R"*"-com-
plex. If R™* ®, C(X) is acyclic, we can define the R-torsion of X associated
with a to be A(X) = t(R™" ®, C(X)) in the group K,(R™") ~ R*, the mul-
tiplicative group of positive reals. It is not difficult to show that A,(X) does
not depend on the choice of cells in X which cover the cells in X.

A special case of the following corollary was proved by Milnor [11, Th. B].

COROLLARY 1.1. Let X and Y be finite cell complexes, a: 7,X— O(n) and
B: Y — O(m) representations. Suppose A(X) is defined and

a@®@pB: X X 1Y —> O(nm)

18 the tensor product representation, Then A.ge(X X Y) is defined and
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Agp(X X Y) = Ay (X)) |

In particular, if A(Y) is also defined, Aee(X X Y) = 1.
Proor. Let

D = (R ®.0(X)) ® (R ®. C(T))
and E = B Q... (C(X) Q@ C(Y)) (where 7 = 7, X and ' = 7, Y). It is easily
seen that E is obtained from D by a change of rings using the homomorphism
t: Rnxn ® Rmxm R anxnm .
Thus E is acyclic and 7(E) = t,z(D), t,: K(R™" ® R™*™) — K,(R*™*"™). Ap-
plying the product theorem, we have (D) = y(Y)J (R ®,C(X )) so
T(E) = YY)t d (R . C(X)) .

Now, for x € K,(R"*"), | det t,j.(x)| = | det (z)|™ so, passing to multiplicative
notation, the corollary is proved.

For our next application, we need the notion of a special complex. A finite
cell complex X is special if its fundamental group is finite abelian and acts
trivially on the rational homology of its universal covering space. If N is the
kernel of the natural map Q[7] — @, Q the rational numbers, then NC(X) (ra-
tional coefficients throughout) is acyelic (for X special) and we define the tor-
sion A(X) of X to be 7(NG(X )) the group K,(N) ~ N*, the group of units in
N. (This isomorphism is induced by the map (a;;) — | det (@,;)|.) This element
is determined up to multiplication by +g, g € .

COoROLLARY 1.2. If X and Y are special complexes, so is X x Y and
AX x Y)=1.

Proor. The fact that X x Y is special is trivial.

Let N, = ker Q[m,X]— Q, N, = ker Q[7,Y]— Q, and

N = ker Q[ﬂ'l(X X Y)] ~ Q[Tch] X Q[ﬂ:lY] > Q.
Then N is the direct sum of ideals

N=N,Q® Q[TEIY] @21 Q N,
where %, is the ideal generated by =g, g € 7, X. Thus

NCX x 7) = [(M, ® QImY]) B (5, @ N)IC(X x T)

~ NCX)RC(V)D3.C(X) R NL(Y) .
Under these circumstances, it is easily checked that the matrix representing
the torsion of X X Y can be obtained by adding matrices representing the tor-
sions of the two summands. Now, the Euler characteristics of C(¥) and 3.C(X)
are zero since X and Y are special; so by the product theorem, each of the sum-
mands has zero torsion and we can choose the identity in each of the groups
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GL(N,® Q[r,Y]), GL(Z; ® N,) to represent these torsions. However, the iden-
tity in GL(N) is the sum of these, so the corollary is proved.

Suppose 7 is a discrete group, Z|[x] its integral group ring. The Whitehead
group of =, Wh(), is defined to be the quotient K’l(Z [7])/H where H is the sub-
group generated by the elements of K,(Z[r]) represented by the 1 x 1 matrices
(9), g€ w. This is a covariant functor from the category of discrete groups to
the category of abelian groups.

Let f: X — Y be a homotopy equivalence between the finite simplicial com-
plexes X and Y. Let M, denote the mapping cylinder of f, and M + its universal
covering space. Then C(J,, X ) is a free acyclic Z[7,X]-complex, and we ob-
tain a basis by choosing cells in M, covering the cells in M,;. We define the
torsion of f, t(f), to be the element of Wh(w,Y) determined by

fet(C(My, X)) e R(Z[m.Y]) .
This torsion does not depend on the choice of cells in M + covering cells in M;.

COROLLARY 1.3. Let f: X— Y and g: X' — Y’ be homotopy equivalences.
Then f x g: X x X' — Y x Y’ is also a homotopy equivalence and

o(f X g9) = 1Y")j(f) + 2Y)5%7(9) ,
where j.: Wh(m,Y) — Wh(z,Y X 7,Y"), j%: Wh(m,Y') —» Wh(m,Y x 7, Y’) are
induced by g —g X Land ¢ —1 X ¢'.
This result is already known in the case that X’ is simply connected and
g is the identity map. (See [7, p. 35].)
PROOF. Since f X g can be written as the composite

xxx Xy x X% yxy,

we have 7(f X ¢) = (1 X ¢)«7(f x 1) + z(1 x g). Thus, it is enough to prove
that z(f X 1) = x(Y")i.z(f), where ©,: Wh(7,Y) — Wh(z,Y x 7, X’). But that
is an immediate consequence of the product theorem.

Remark. It is easily shown that the maps j, and 7, define an isomorphism
of Wh(z,Y') @ Wh(,Y’) onto a direct summand of Wh(z,Y x m,Y’).

COROLLARY 1.4. If f: X— Y s a homotopy equivalence, and g: S*— S*
any homotopy equivalence of the circle, then f X g: X x S*—Y x S* is a
simple homotopy equivalence. (That is ©(f X g) = 0.)

This follows from Corollary 1.3 and the facts that (S*) = 0 and Wh(Z) = 0.
(See Higman [4].) In fact, since W(G) = 0 for any finitely generated free abe-
lian G (see [10]), we can replace S* in this corollary by any torus S* x --- x S

The following corollary holds for either differentiable or piecewise linear
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manifolds. (Here = denotes either diffeomorphism or piecewise linear homeo-
morphism.)

COROLLARY 1.5. Let (W, M, M’) be an h-cobordism with dim W =5. Then
WxS'=Mx S x[0,1]. In particular M x S'= M' x S'.

This corollary is an immediate consequence of Corollary 1.4 and the s-
cobordism theorem of Mazur [6], Barden [1], and Stallings [8]. The s-cobordism
theorem states that, if (W, M, M’) is an h-cobordism, dim W = 6, such that the
inclusion map M C W has torsion zero, then W = M x [0, 1].

We now consider the torsion of the sum of two maps.

Let X and Y be finite cell complexes which are the union of subcomplexes
X=X UX,Y=Y,UY, Letfi:X,—Y,%=1,2, be maps such that

fllenXZZleXlan
and let f: X — Y be the resulting map. We say that f is the sum of f, and f,.

SUM THEOREM. Let f: X—Y be the sum of mapsfi: X,—Y,and f,: X,—Y,.
Suppose X,N X, 1s connected and simply connected, and that f.,f, and
f11 X,N X, are homotopy equivalences. Then f is a homotopy equivalence and

T(f) - jl*T(fl) + jz*T(fz) ’
where j,;: Y, CY,1=1, 2.
We will give the proof of this theorem in § 3.

Remark. Under the hypotheses of the sum theorem, ,Y is the free product
7,Y,*m,Y, and the maps 7, j» define an isomorphism of Wh(z,Y,) @ Wh(z,Y)
onto Wh(z,Y,*7,Y,). This result is due to Stallings (unpublished).

The following corollary holds for either differentiable or piecewise linear
manifolds and was proved in dimension 3 by Cockeroft [2].

COROLLARY 1.6. Let M;, N, be manijfolds of dimension n = 3 such that
M, has the same oriented stmple homotopy type as N,;,© = 1,2. Then the con-
nected sum M, ¥ N, has the simple homotopy type as M, ¥ N,.

ProOF. It clearly suffices to prove the corollary for the case N, = N, = N.

Let f: M,— M, be an oriented simple homotopy equivalence so that z(f)=0.
By Hopf [5, Satz XIVa] (see also Epstein [3]), we can find a map f, homotopic
to f with the property that fiA, = A,, and f,| A;: A, — A, is a homeomorphism
for some pair of n-simplices A, C M,, A, C M,.

Let A be an n-simplex of N so that M, # N = (M, — int A)) U (N — int A)
and M, N = (M, — int A,) U (N — int A). Applying the sum theorem, we have

o(fi$id) = J+7(f]) + Jpr(d) = Juc(f)) ,
where f! =f,| (M, — int A)). (Note that (M, —int A))N(N —int A)isan (n —1)-
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sphere which is simply connected since n=3.) Applying the sum theorem again,
we see that z(f/) = 7(f,) = 0, so f, #1d is a simple homotopy equivalence.
2. Proof of the product theorem

We need the following lemma. (See Whitehead [9, p. 22], or Milnor [11,
p. 10].) '

LEMMA. Let 0— C"— C — C" —0 be an exact sequence of based, acyclic
complexes (with the usual compatibity condition on the bases). Then

(C) = =(C") + =(C") .

Now fix a based acyclic R-complex C, and define functions f, and f, which
assign to each based R’-complex C’ an element of K,(R ®, R') by

f(C) =(CR.C)
Fi(C) = 2C)3r(C) .

Supposing C’ has the form 0 - C,—C,_,— --- — C,— 0, we proceed by in-
duction on p — q to show f, = f,.

For p — q = 0, the result is trivial. Suppose p — ¢ = 1, and define com-
plexes B and B’ by

B:.0—C,—>0

B':0 C, C,, cee Cota 0.
Applying C ®, to the exact sequence

0 B (0 B 0,

we get an exact sequence

0—CRB—CR,C—CRB —0.
By the lemma above,
(CR4C) =7(CR4B) + =(C R, B)
which, by induction,
= (X(B) + A(B")ixz(C)
= x(C")37(C) .
This completes the proof of the product theorem.

3. Proof of the sum theorem
The fact that f is a homotopy equivalence is not difficult, and the proof is
left to the reader. We now compute the torsion of f.
Let X, N X, = X,, and let f, = f| X,. Then, if M, is the mapping cylinder
Off, we have Mf = ]‘lf1 U ]‘lf2 with M_f1 N Mfz = Mfo’
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Let p: M s — M; be the universal covering for M;, and consider the short
exact sequence of free Z[7, X ] modules

0 — C(p~(M;,), p™(Xy))
o C(p™(My), p(X) @ C(p(M,,), (X)) —2 C(M,, 1) — 0,

where @(c) = (¢, ¢), and +(c,, ¢,) = ¢, — ¢,. It is easy to check that the maps in
this se yuence are compatible with the natural bases so the torsion of the middle
term is the sum of the torsions of the two extreme terms. However, the tor-
sion of C(p~(M;,), p~'X,) is easily seen to be zero since 7, X, = 0. (Simply
choose cells in p~%(M s,) from a single component so that only integers are in-
volved in the boundary operator.) Thus

(COM), C(X)) = <[C(p~(My), p~(X)) ® C(pX(M,,), p(X)]
= t[C(p~(M), ™(X)] + [C(p~(M), p7(X))] -
We compute z[C(p~(My,), p~(X))].
Let p,: M; — M, be the universal covering. Now p;(M. 7,) 18 a disjoint
union of copies of M;, and we form a new space V by attaching to each of

these copies of M;, a copy of M s,» Clearly V covers M, and, since M + is uni-
versal, we can factor p: M, — M,

Mf ﬁ—’ V— Mf ’
and p~(M;) = pr(M 7)) is the disjoint union of copies of M 7, Thus, if we
choose cells in p~(M;,) from a single component, we see that the matrices in-
volved in the computation of vC(p~(M, ), p~(X,)) are exactly the matrices
involved in computing z-C(llZf 7 X1).  The analogous argument for
C(p~(M 1), P~(X,)) completes the proof of the theorem.
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