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ANNALS OF MATHEMATICS
Vol. 59, No. 3. May 1954
Printed in U.S.A.

BRANCHED COVERING SPACES AND THE QUADRATIC FORMS
OF LINKS

By R. H. KyLEt

(Received December 11, 1953)

Following the untimely death in October 1952 of Roger H. Kyle, I have undertaken to
publish his mathematical results. These are principally contained in his Princeton Ph.D.
thesis [1], an investigation into the imbedding types of Mébius strips and circular rings, and
joint work with me on some applications of the free calculus. Following a plan, on which
we had agreed, the results of the thesis will be published in two papers. The present paper
contains the principal results of Chapters I and IV. Chapters I, III and IV, which will be
published in a subsequent paper, are concerned with the cohomology ring of a branched
covering, especially of a knot or link.

One of the main results of the thesis was that the Minkowski units of the quadratic form
of a knot are completely determined by the linking invariants of the 2-sheeted cyclic
branched covering of the knot. This result was obtained independently by D. Puppe [2].
More recently M. Kneser and D. Puppe [3] have established that these linking invariants
determine not o.ly the Minkowski units but what is called below the family of the quadratic
form. In view of these developments it seemed advisable to delete that part of the thesis
that has to do with the Minkowski units; it is now clear that the role of these units in knot
theory will always be subservient to the role of the form itself.

The beautiful and fundamental result of Kneser and Puppe has brought to completion
one aspect of the study of the quadratic form of a knot. Consequently I have rewritten
Kyle’s work, making use of the Kneser-Puppe result and concentrating on the quadratic
form of a link. As will be seen below the passage from knots to links is not trivial for two
reasons: (1) the forms may become degenerate, and (2) the local behavior at the prime 2
makes its entrance. No satisfactory complete set of local invariants of a quadratic form at
the prime 2 was in existence, and Kyle was studying this problem in the summer of 1952.
Although such a set has been given very recently by T. O’Meara [4], I have not attempted
to extract from it a complete set of family invariants. In fact the problem is implicitly
solved by a result of E. Burger [12], who found a complete set of invariants (of quite a differ-
ent nature) for a group with linking.

R. H. Fox

1. The quadratic form of a knot

A (polygonal) knot of multiplicity u is the union of u disjoint simple closed poly-
gons in the finite part of spherical 3-space IN. A normed regular projection of such
a knot consists of a finite number of crossings and arcs (or simple closed curves)
and it divides up the plane of projection into a finite number of bounded regions
and an unbounded region. Following Reidemeister [5] alternate regions, counting
from the unbounded region X,, are shaded, and each crossing D is thereby
assigned an incidence number 7(D). Let the shaded bounded regions be denoted

by X1, ---, X.. The quadratic form of the diagram is then defined [5, 6] to be
f(xl y T xn) = j.(O’ Ti, =, xﬂ) Wheref(xo y L1, = )xn) = Zi<feif(xi - xi)z’
and e¢;; = Zn(D), summed over the crossings incident to the two regions X;
and X;. Clearly f(zo, x1, -+, z,) = > rioaizix;, where a;; = —ei; for

? 5 j,and @i = Qe = o.n(D), summed over the crossings incident to
539



540 R. H. KYLE

X, . Thus to j is associated the symmetric integral matrix A = (a:;):,jm0
similarly the matrix associated with f is the principal minor A = (@:j)s,jm1,.000m
of A.

It is known [5, 3] that the elementary deformations Qf (7 = 1, 2, 3) of a projec-
tion of a single knot (u = 1) produce changes in the associated matrix that can
be expressed by finite sequences of certain operations QF (7 = 1, 2) defined as
follows:

Qi: A - T'AT, with T integral and unimodular;

4 0
Qz.A—)(O :|:1>

If we consider the elementary deformations of a projection of a multiple knot
(u > 1), the same statement may be made, provided we allow a third operation
Q7 defined as follows:

A 0
Qa.A""(O 0/

In fact the discussion on p. 27 of [5] of the case there denoted by (€. 28.) assumes
that the regions there denoted by T, and Tp4; be distinct, and this condition
may not obtain if the knot is multiple. It is, however, easy to verify that (2. 28.)
leads to the operation Q; if Ty, = Tmys .

Furthermore the matrix A may be obtained from the matrix 4 by applica-
tion of the operations Q; and Qs ; this follows easily from the fact that Y7 a;; =
0Z=0,1,---,n).

The above discussion suggests the following definitions: Two (symmetric,
integral) matrices A and B will be said to be related, or to belong to the same
family, if one can be obtained from the other by a finite sequence of the opera-
tions Qf (¢ = 1, 2, 3). They are closely related, or belong to the same tmmediate
famaly if one can be obtained from the other by a finite sequence of the operations

Two quadratic forms belong to the same family (immediate family) if their
associated coefficient matrices belong to the same family (immediate family).

The forms of a given family do not all have the same number of variables;
those which do have the same number of variables need not belong to the same
genus (for (81 (1)> and <64 _(1)> may not have the same determinant). How-
ever forms that belong to the same genus apparently belong to the same family.

LemmA 1. Any non-zero symmelric integral matriz may be transformed by Q.
into a matrix of the form <g g) where B 1is non-singular. (Thus every family
contains non-singular matrices.)

Proor. Let A be any symmetric integral matrix. It is well-known that there
exist unimodular integral matrices P and Q such that PAQ is diagonal Thus

PAQ = (g g) where C is non-singular. Write QP'=R= ( : gz . Then
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Q'AQ = RPAQ = (gug g> . Since Q’AQ is symmetric, R»C = 0; furthermore
21
Ry C is non-singular because the order or Ry,C is equal to the rank of 4.
LeMMA 2. Non-singular matrices are related if and only if they are closely
related.
Proor. Consider related matrices 4 and B, not necessarily non-singular, and

suppose that A &—-)B (i = 1,2, 3). By the preceding lemma there exist unimod-

ular matrices P and Q and non-singular matrices C and D such that P’AP =
cC o0 , D 0
(0 ()> and Q'BQ = (0 0> .

i = 1:B = R'AR with R unimodular. Then <f)) g) Y (g g)g where S =
Sia

P'RQ.Since rank B = rank 4, order D = order C. Let S = (g: Sn> , so that
D = S3CSuand 0 = S;CSy: . Since D and C are non-singular, Sy is non-singu-
lar, hence there exists a rational matrix Sttt . Therefore C(S11)- 0 = 0 = Sus.
Since S is unimodular, it now follows that Sy is unimodular.

. (4 0
1=2:B = (0 il).Then
D 0 P (C (')) P 0 TCT 0 O
(o 0>=Q' 0 0 Q= 0 =1 0},
0 +1 0 0 O

where T is unimodular. Since rank B = 1 + rank A, order D = 1 + order C,
hence D = (T’CT 0
0 +1/°

A 0> . As before

’
D 0 TCT 0 0
0 0= 0 0 0],
0 00
with 7' unimodular. Since rank B = rank A, order D = order C, hence D =
T'CT.
In each of the three cases 7 = 1, 2, 3 it has been shown that C and D are closely
related. If now A and B are related non-singular matrices there is a sequence of
matrices A = A;, As, -+, A, = B such that

+
A; = A

z=3:B=<O 0

Writing PjA ;P; = <%’ 8) , where C; is non-singular, P, = E, P, = E, it follows
that A = Cj is closely related to C, = B.

By a group with linking or V-group is meant [3] a finite abelian group G
together with a primitive, bilinear symmetric mapping V of G into the group of
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rationals mod 1. To a non-singular symmetric integral matrix 4 there is associ-
ated [3] a V-group G(A™") defined as follows: G(47") is generated by elements
g1, ", gn; a set of defining relations is D _}iai9; = 0G = 1, ---, n); the
linking matrix (V(g., g;)) is congruent mod 1 to the rational matrix A7 de.
V(gi, g;) = Ai;j/det A (mod 1).

LeEmMA 3. In order that non-singular matrices A and B be related it is necessary
and sufficient that the associated V-groups G(A™) and G(B™) be V-isomorphic.

Proor. According to Kneser and Puppe [3], G(A™") and G(B™") are V-isomor-
phic if and only if A and B are closely related. But Lemma 2 says that A and
B are closely related if and only if they are related.

Consider the group IT of a knot K of multiplicity u, and the subgroup II,
defined as follows: an element of II belongs to II; if and only if it can be repre-
sented by a path the sum of whose linking numbers with the components K; R
-+, Ku of K is an even number. Denote by 9, the branched covering of M
associated with the unbranched covering of M — K that belongs to the subgroup
I, of II. It is known [7] that 9, is a closed manifold and that it is invariantly
associated with the isotopy type of K.

THEOREM. The torsion group of M is the V-group defined by the relation matriz
B and the linking matriz B~ (mod 1), where B is a non-singular matrix thal s
related to the coefficient matrix of the quadratic form of an arbitrary given projection
of the knot.

Proor. The argument in Seifert [8] pp. 94-99 apply without change to the
case up > 1 to show that if A4 is the coefficient matrix of the quadratic form of a
projection of K then the homology group of M. is generated by elements ¢y , - - - ,
. satisfying defining relations D a.;q; ~ 0, and that there exist 2-chains

@1, -+, Q. and l-cycles ¢f , ---, ¢% such that ¢f ~ q;, Q: ﬁ) > aiq; and
S8Qi,qF) = b5 . By Lemma 1 there exists a unimodular matrix 7' and a non-

singular matrix B such that TVAT = (5 g) Definey = T '¢and Y = T'Q.

Then Y = 7'Q % 174q = T7ATYy = <f g) y,and S(Y,y') = S(T'Q, (T™q)") =

T'8Q,q¢') (T = T'(T")™" = E. It follows that B is a relation matrix for
the torsion group of I%; and that a linking matrix is B™- S(Y, y') = B™" (mod 1).

Two knots belong to the same ¢sotopy type if some isotopy of M carries the one
into the other; they belong to the same s-type [9] if the one can be carried into
the other by a semi-linear isotopy. Knots belonging to the same s-type are neces-
sarily in the same isotopy type; thus every isotopy invariant is automatically
also an s-invariant. The group of a knot, and hence all the invariants deducible
from the group, are obviously isotopy invariants; furthermore the linking in-
variants of the branched coverings have been shown to be isotopy invariants
18]. Thus lemma 3 and the theorem above show that the family of the quadratic
Jorm of a knot vs an isotopy invariant of the knot. Originally it was known only that
the quadratic form of a knot diagram is unaltered by the elementary deformation
Q@ =1,2,3). Recently it has been shown [9] that the normed regular projections
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of the knots that belong to a given s-type may be obtained from one another by
finite sequences of the elementary deformations (and of course, conversely, knots
whose normed regular projections are so related must belong to the same s-type).
Furthermore there exists a proof that knots belonging to the same s-type belong
to the same isotopy type [10]. Thus it was known independently that the family
of quadratic forms of a knot is an isotopy invariant. However these proofs are
very complicated, and it is therefore worth while to establish directly, as has
been done here, that particular given s-invariants, such as the quadratic form
family, are indeed isotopy invariants.

2. Invariants of a family

Consider a group G with linking V and denote by =1, : -+, 7. the torsion
coefficients of G written in the order in which 7., divides 7. (thus =, =
s 2 -+ = 7, > 1). Let p be any prime and write 7, = p’’r}, where

d, = 0 and 77 isprime to p. Thusdy = dp = --- = d,, > 0; it is convenient to
define 7,1 = 1 and d,ny1 = 0. It is known [11] that, for any r elements g, , - - -,
g. of G, the number D(gy, ---, g,) = 71 --- 7, - det (V(g:, ¢;))i,j=1,....» IS an
integer, and that this integer is prime to p if d, > d,;1and ¢1, - - - , ¢, are prop-
erly chosen. Invariants of the V-group G are defined at the prime p as follows
[11]:

x:(p) = (D(gs, - -+, ¢)/P) ifp>2andd- > dria,
XT(4) = (_I/D(gl y Ty gr)) if p = 2 and dr > d,+1 + 1,
Xr(s) = (2/D(gl y Ty gr)) if p = 2 a,nd dr > dr+1 + 2.

Here (N/p), (—1/N), (2/N) are Jacobi symbols; in particular (—1/N) =
(—=D® P and (2/N) = (1) 7"
It is convenient to modify slightly this definition in the following way: Let

D*(gl) ) gr) = pd1+~~~+d,. det (V(gn gi))i.isl,m,n

= ﬁl)(gl; et }gr)’
and define
xr (p) = (D*(gr, -, g)/P) if p> 2andd > dyy,
xr(4) = (=1/D*@gi, -+ ,9))  ifp=2andd, > dra +1,
xr(8) = (2/D*(g1, -+, 9.)) fp=2andd, > drps + 2
where ((M/N)/p), for integral M and N, means the same as (MN/p). Thus
X = (11 - 7 /Pxs

If G is the V-group G(A™") associated with a non-singular integral quadratic
form ) a;jz; the calculations of [11] §8 may be applied with F = 4 and S =
E. Denoted by ¢ the sign of the determinant of 4, the result of the calculation is
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3
D(gnys =+ 5 gn,) = S det (AYE)hy, - - , h, (mod 7,)

= —8— Ahla"'h’r:hl""vhr (mod Tr).
TrHl " Tm
Hence
* * * —dr+1—--—d 1
X(@) = (el - /D) "B./p) if p > 2and d > doys,
XF(@) = (=l/erf - m)(=1/27%" 7By it p = 2and d, > da + 1,
X5 (8) = (@fert -+ a)(2/2 TR, if p=2andd, > dpnt+2,

where B, is a properly chosen (n — r)tr-order principal minor of 4 if r < n, and
B, = 1. Let 6.(p) = (p **'"""B,/p) for odd prime p, and let 6,(4) =
(—1/27%*H7 "B and 6,(8) = (2/2 %+ ""'"B,). The result obtained may
be stated as follows:

TuEOREM. The quantities

6o(p)0.(p) for p an odd prime and d. > d,41,
00(4)6.(4) for p = 2 and d, > d, 1 + 1,
6:(8)6,(8) for p = 2 and d, > d,41 + 2,

are family invariants of the quadratic form Zaijxix .

The residues 6,(p), r = Oor d, > dr11, 6.(4),r = O or d, > dr41 + 1, and
6.(8), r = 0 or d. > d,41 + 2, may be shown to be invariants of the genus of
the form D a;zz;. (They are not invariants of the family; in fact 6,(p), 60(4)
and 6,(8) may be altered by the operation @, .) They do not depend on a prelimi-
nary reduction to canonical form. To find the relation between these invariants
and the invariants that are usually associated to a genus of quadratic forms
through its canonical forms we proceed as follows:

Since the ring J of integers is imbedded naturally in the ring J, of p-adic
integers (p = 2), our integral quadratic form Y a;;x:x; may be considered also as
a form with p-adic coefficients. It is known that there is a unimodular matrix T
of p-adic integers such that

T'AT = p'Ci 4 p"*Co + -+ + p"C1 + Cria .

where C; is a unimodular matrix over J, of order r; — r,_, (where 7, = 0 and
Tigm =n — 1, — --+ — r;). The indices 1, < 7 < .-+ < r; are just those in-
dices r for which d, > d,;; . It is easy to see that

bo(p) = (det Cy-det C; - -- det Cr4a/p)
8.,(p) = (det Ciya/P)0r; 1 (D) for i = 1,2, ---, 1
0-,(p) = (det Ci1a/p)

with similar results for 6,(4) and 6,(8).
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Fig. 1

Fig. b

3. Examples

The first two examples (Figs. 1 and 2) show why it is necessary to consider
the prime 2. In fact the quadratic forms of (a) and (b) are indistinguishable
at any other prime. Furthermore they can not be distinguished by any of the
other known methods of knot theory. The third example (Fig. 3) shows why it
is necessary to consider degenerate quadratic forms. The fourth example (Fig.
4) shows that the invariants discussed in §2 are insufficient so that the complete
system of invariants defined by Burger [12, 13] may be used instead.
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(1a) (1b)
f =24 (@ -y + 2/ f=-22—@—y)' -2
3 -1 -3 1
A=<—1 3) A=(1—3>

= 8§, s =1

xi(4) = —1 xF(4) = +1
x1(8) = —1 xi@8) = —1
The link is therefore not amphicheiral.
(2a) (2b)
f=224+ (@ —y’+2/ f=2"4+ (@ -y’ + 2/
+ 20" + (u — 0)* + 20° — 20" — (u—v)* — 20
t t
4 = ‘ 3 —1 4= |—3 1
-1 3 1 -3
=38, T2 = 8§, 3 = 1
x:(4) = +1 x:(4) = —1
x2(8) = +1 x:(8) = +1.

These two links are therefore inequivalent.
(3a) (3b)
f=2"+2" - @-w' - @—-0) [f=2"+@-y +2
—=w =y =0 = (=)

P s 10 8 10

A= a=(-1 3 o
1 1 -3 1 PR
01 1 0

~ (=8) N<—31 31>
n=8 m=1

xXi@4) = -1 xi(4) = —1

Xi(8) = +1 xi8) = —1.

These two links are therefore inequivalent. In this example (a) and (b) can be
distinguished by their elementary ideals [14]. For (a) we have & = & = 0,
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G =0—-u0—29.{1 —u1l—2}andfor (b) wehave & = G, =0, E, =
1 =9){1 —u,1—w}{l—09v1—uwl
(4a) (4b)
f =4+ 4 f o= —4a’ — 4

) (4

1 = 4, T2 = 4, T3 = 1
x:(4) = +1 x:(4) = +1.
Thus these two forms cannot be distinguished by the invariants discussed in

§2. Nevertheless they do not belong to the same family. This can be seen by
applying the method of [12, 13] as follows:

S _ (30 _1=(—% 0
= 3) =0

G(A™) is the direct sum of two cyclic groups of order 4. The distribution of
V(g, g), g ranging over G(47") is

{0} =4 {0} =4
{3} =0 {1} =8
{3} =4 {3} =4
{3} =8 {21 =0

Thus the link is not amphicheiral. It is possible to distinguish (a) and (b) by
their Alexander polynomials [14]. Orienting these links in such a way that each
has linking numbers 2, 0, 2 we find for (a) the polynomial A(u, v, w) =
(1 —v) (u+ v) (v + w) and for (b) the polynomial A(u, v, w) = (1 — v)
1 4+ w) (1 + vw).

PRINCETON UNIVERSITY
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