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BRANCHED COVERING SPACES AND THE QUADRATIC
FORMS OF LINKS, II

By R. H. KYLE

(Received May 7, 1958)

This paper consists of Chapters II, III and IV of the Princeton Ph. D. thesis
[6] of the late Roger H. Kyle. (The principal results of the other chapters, I
and V, were published in [7].) In making this revision I was fortunate in having
the invaluable assistance of Dr. Hale Trotter.

R. H. Fox

1. Introduction

Self-linking in the homology groups of an oriented manifold was intro-
duced by Seifert [12] and applied to the cyclic coverings of knots [13].
More or less complete systems of invariants of self-linking were defined
by Seifert [12], Burger [2] and Blanchfield and Fox [1]. It was shown by
Puppe [9], Kneser and Puppe [8], and Kyle [6] that the so-called quadratic
form of a knot or link is determined by the self-linking in the homology
groups of the second cyclic covering.

It is the object of this paper to dualize this theory. The dualization of
self-linking is carried out in § 2; homology groups are replaced by coho-
mology groups and self-linking in the homology groups by a product
operation —; in the cohomology groups. More precisely self-linking in
the torsion subgroups of the homology groups is replaced by a dual opera-
tion in the torsion subgroups of the ecohomology groups.

The dualized theory is, of course, more general, in the sense that it
applies to arbitrary complexes and not just to oriented manifolds. It is
also more algebraic in nature. The calculations can be made from the
incidence matrices of a regular cell-complex, and do not require the geo-
metric determination of intersections.

Calculation of —,; makes use of a chain approximation to the diagonal
map and is indicated in more detail for the case of special interest here,
the case of a 3-dimensional manifold.

The topological theory of branched covering spaces has been put on a
solid foundation in [5], and in § 8 results of [5] are put into a form suit-
able for the calculations to follow.

In §4 a method for the calculation of —; in the cyclic branched cover-
ings of a tame knot or link is given. In §5 it is shown that Seifert’s

results on the second cyclic branched covering can be deduced from this.
686
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2. Cohomological generalization of self-linking

The exact sequence of coefficient groups,
0—s IR RI—>0,

gives rise to an exact sequence of cohomology groups of a space X

"% *
(1) —— HY(X; I)— HY(X; R) 2 HY(X; RII) -2 H™"(X; I) —
where ¢* and »* are the maps induced by 7 and 7 respectively and 8* is

the Bockstein coboundary operator [4, exercise 3, p. 158]. There is a
natural pairing of I and R/I to R/I, which induces a cup-product

— 'HX;RII)Q H(X;I) — H*YX;R|I).
We define a new product
s H(X; B[I) ®Q HY(X ; RBI) — H***"*Y(X ; R[I)

by setting 4 —, v = u~—d0*v.

Any element of H?(X; R/I) can be represented by an element of
Z*(X,, X,), the group of rational cochains of X whose coboundaries are
integral cochains. If % € Z7(X,, X,), v € Z%(X,, X,) are representatives
for u e H*(X ; R[I) and ve HY(X ; R/I) then u~38v is a representative for
U —; v, where %— v is the ordinary cup-product of rational cochains.
We have

o(u~7) = du~v + (—1)’u~4v
so that

T 85 ~ (— 1P T — B ~ (—1)P*(— 1) DG §F = (—1)P+DG+DF _ 87,

Returning to cohomology classes we obtain the commutation rule. If

u € H(X; R[I), ve H(X ; R/I) then u —,v = (—1)®+D@+Dy ;9. Simi-

larly, supposing w to be a representative of w € H'(X ; R/I), we have
U~ (v —0w) = U~ (6v—dw) ~ (U~ 6v)—dw

since the ordinary cup-product is associative modulo coboundaries. Hence,

the operation —s is associative.

Since u —;v = 0 if either u or v belongs to the kernel of 6*, there is
induced a pairing of §*(H*(X ; R/I)) and 8*(HY X ; R[I)) to H****(X ; R[I).
Since the sequence (1) is exact, the image of &* is the kernel of ¢*, which
is precisely the torsion subgroup T'**(X;I) Cc H?*(X;I). Thus we obtain
a pairing

T (X; I)QT"(X; I)— H™**(X; R[I),

which may be calculated as follows. If %, v are integral cocycles repre-
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senting w € T?*/(X; I), v € T™(X ; I) respectively, and #’ € C?(X; I) is
such that 6u’ = mu, then m~'(&' — ) represents u - v.

The product —; forms a generalization of the linking of ¢ycles in mani-
folds. Let X be an oriented n-dimensional manifold, with fundamental
cycle M. Then if p+q+ 1 = n, —; defines a pairing of H?(X ; R/I) and
HYX; R[I) to R/I, given by L(u, v) = (4 —;v)(M)(mod 1). The pairing
induced between 7T'7*'(X;I) and T**(X;I) is given by L(u,v) =
m~(u' —v)(M) where u, v, u', m are as in the preceding paragraph.
Passing to a dual subdivision gives a pairing of the groups of torsion cycles
TopoX;I)=Ty(X;I) and T, ,(X;I)=T,X;I) to R/I. In this
pairing L{u*, v*) = m~'S(w’, v*), where u*, v* are torsion cycles, %' is a
chain with 6w’ = mu* and S(»’, v*) is the Kronecker index of the inter-
section of the chains %' and v*. This, however, is precisely the pairing
defined by the self-linking in a manifold [14, p. 278].

The pairing can be computed in terms of the incidence matrices of the
manifold and a chain approximation to the diagonal map. In the applica-
tion to covering spaces of links treated in Section 3, the space X is an
orientable 3-dimensional manifold and —; defines a symmetric pairing of
HY(X ; R/I) with itself to R/I. We shall describe the computation of the
induced pairing of T'*( X ; 1) with itself to R/I. First obtain bases a;, b;,
¢; and f3, g,, e, for the chain-groups C,(X) and C(X) so that the matrix
of the boundary operator 0 : C(X) — C(X) takes the form

fi 90 e
a; | E 0 0
b, 0 4 O
¢ |0 0 0

where E is an identity matrix and A is a non-singular n x n matrix. The
transpose of this matrix describes the coboundary operator ¢ : C(X) —
C?*(X) with respect to the dual basis for the cochain groups. Let x,---, 2,
be the basis elements of C*%X) dual to the basis elements g¢,, -+, g, of
Cy(X) and let y;, -+-, 9, in CYX) be dual to b, --- ,b,. Then T*(X; I)
has a presentation as an abelian group with generators z,, --- , x, and
relations 8y, = Y, a;&; = 0 where || a,, || is the matrix A. With rational
coefficients, 87z, = Y, (47Y),,.

Now let M be the fundamental 3-cycle of X. Its image under a chain
approximation to the diagonal is some element of

Cy(X)® CyX) + Ci(X) Q CX) + CAX) ® C(X) + C(X) ® C(X) .
Let the » x n matrix D be defined by taking d;, equal to the coefficient of
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b, ® g, in the expression for the image of M in terms of the chosen
basis. Then the value of y,~—x, on M is d,;, and we have

Lo 2) = (70— )M)  (mod 1)
= 3 (A i diy (mod1).

This result may be summarized as :
THEOREM. The group T* X ; I) with self-pairing to R[I is given by

@, E; aux; =0}, || Lz, z)ll=A"D (modl).

3. Branched coverings of a regular cell-complex

Let Z be a connected, locally finite, regular cell-complex [10] and let L
be any subcomplex of Z which is such that, for every (open) cell 7 of Z,
the intersection S(z) of Z — L with the star of 7 is non-vacuous and con-
nected. This condition is satisfied, for example, if Z is an n-dimensional
combinatorial manifold and L is a subcomplex of dimensoin < n — 2,
hence, in particular, if Z is the 3-sphere and L is a knot or link. Select
a point ¢ of Z — L for base point.

To each subgroup H of G = n(Z — L) there belongs an unbranched
covering X of Z — L, and to this is uniquely associated by completion a
covering Y of Z. Every covering space of Z that is non-singular over
Z — L is obtained in this way and hence belongs to a subgroup of G. The
argument on pp. 251-2 of [5] shows' that Y is a locally finite regular cell-
complex and e : Y — Z is a cell covering if the index of branching j(y) is
finite for each point of y, i.e., if the following condition is satisfied :

(*) for each path B in Z — L from q to S(t), the number of right

cosets of H represented by loops of the form BvB~' where v is any
loop in S(7) based at B(1), is finite.

In order to put the incidence relations of [5, p. 252] into a more useful
form, we select, corresponding to each cell 7 of Z, a path 3,in Z—L from
.0) = ¢q to a point 3,(1) of S(z). Furthermore if ¢ < 7%, so that S(z) D
S(z*), we select a path 8., in S(r) from 3,.(1) to 5,(1), and denote by g...
the element of G represented by the loop 8,.8,..5;*.

For any cell 7 of Z, denote by F', the subgroup of G that consists of the
elements represented by loops of the form 3,75, where v is a loop in S(7)
based at 5.(1). Note that if 7 ¢ L F, is trivial, and the choice of 3.., is
immaterial, for in that case every S is contractible in S(7).

1 The hypothesis of the theorem p. 251 that Z be barycentrically subdivided is only used
to deduce that Y is a simplicial complex. (Cf. the parenthetical remark in the fifth para-
graph of p. 252.) If Z is not barycentrically subdivided Y will still be a regular cell-
complex.
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If o, is any cell of Y that lies over 7, join the base point p e e (@) by a
path a,, in X to the point of ¢, that lies over 3,(1). The loop e(a, ) Bt
determlnes an element 9o, of G. A different choice of the path «, o deter-
mines a possibly different element g,, but always one that belongs to the
same double coset of (H, F,). Furthermore if o; and o, are different cells
of Y lying over 7, the elements 9, and 9o, belong to different double
cosets of (H, F',). Since every double coset of (H, F,) is determined by
some cell of ¢7'(r) we may index the cells of ¢-'(z) by these double cosets.
(If = ¢ L this reduces to the well-known indexing by the right cosets of
H.) If now paths a,, are selected for each g,, the elements 9o, constitute
a set of representatlves of the double cosets of (H, F,).

The incidence relations given on p. 252 of [5] amount to this : If 7 < 7*,
then o, < a¥ iff S(a,) D S(a}).

But S(a,) o S(c¥) iff 9o, and 901 Grer belong to the same double coset of
(H, F,). Thus we get the followmg incidence criterion :

(¢) Ift < 7* then 0, < o¥ zﬁ'Hg,F Hg, o

Finally we remark that the condltlon *) that we lmposed on H can be
reformulated as follows :

(*) Each double coset HgF', contains only a finite number of the right

cosets of H.

4. Branched coverings of a link

We suppose the given link L to lie between two horizontal planes in
such a way that when it is projected orthogonally on the planes, the re-
sulting diagram is regular [11]. (For purposes of geometrical description,
we consider S° as euclidean 3-spaces plus a point at infinity.) We also
assume that this projection of the link is connected, and that at every
double-point the four regions coming together are distinet. (The first of
these conditions is necessary in order for our construction to yield a cell-
decomposition ; the second is necessary to make the resulting cell-complex
regular.) It is always possible to modify the link so that these conditions
are satisfied, without changing its type.

Let C be the (self-intersecting) cylindrical surface consisting of all the
vertical line-segments contained between the two planes and passing
through L. The top of C is clearly the vertical projection of L on the
upper plane, while the bottom of C is the projection of L on the lower
plane. Both of these projections have the same diagram. We label the
vertices of the diagram 7,, the edges ¢,, and the regions X,. Correspond-
ing to p, there is a line of self-intersection of C which cuts L in two
points. We label the upper point p, and the lower one ¢,. Let v be a
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point above the upper plane, and w a point below the lower plane. These
two points, together with the points p, and ¢, will be the vertices of our
cell-decomposition. With the %™ double point we also associate three
1-cells, ay, by, and ¢,. The segment a, consists of the vertical line joining
p, to its projection on the upper plane plus the line joining this projection
to ». Similarly, b, consists of the vertical line segment joining ¢, to its
projection on the lower plane plus the join of the latter to w, while ¢, is
the vertical segment joining p, and ¢,. The points p, and g, divide L into
segments ¢,, which correspond to the edges ¢, of the diagram, and these
are also taken as 1-cells of the decomposition. Corresponding to each
edge @, of the diagram there are two 2-cells of the decomposition. The
2-cell A, consists of the part of C lying over ¢, plus the join of the projec-
tion of e, on the upper plane with the vertex ». Similarly, B, consists
of the part of C lying below ¢, plus the join of the lower projection of ¢,
with w. The cells so far described form a two-dimensional complex which
separates S° into a number of 3-cells X;, corresponding to the regions
X, of the diagram, and these complete the cell-decomposition. (Figure 1
shows a part of C near a self-intersection.)

We color the infinite region of the dia-
gram black, and color the remaining re-
gions alternately black and white in the
4, Ay usual way [11]. Each 3-cell of the decom-
A |_{e. Dposition is to be given the same color as
T its corresponding region. We call the
e / 4 infinite region X,. The corresponding 3-

Tl cell is the one containing the point at
W~ be infinity in S°.
4 5, P The cells are oriented as follows. All
B, 3-cells have the orientation of a right-
S -+ handed screw. The 2-cells are oriented
RIS PP coherently with the black 3-cells (and
/5‘\ hence anti-coherently with the white 3-
Fig. 1 cells). The 1-cells ¢, are oriented so that
e, is coherent with A, and anti-coherent
with B,. The other 1-cells are oriented from top to bottom, so that
o(ay, + by + ¢;) = w — v. In the diagram we orient the regions with an
anti-clockwise indicatrix (as seen from above) and orient the edges e, to
agree with the orientations of the ¢, under projection. Thus the edges
e, are oriented coherently with the black regions of the diagram.
We introduce the following notations and conventions. For each vertex
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of the diagram we select one of the two black regions adjacent to it and
say that the vertex in question belongs to the selected region. (This selec-
tion is arbitrary, although we will find it convenient in Section 4 to
suppose that all the vertices adjacent to the infinite region belong to it.)
Then X, , denotes the black region to which o, belongs, while X, ,, X; ;.
and )—(4,,6 denote the other regions adjacent to p, as shown in Figure 2.

XTIk < LYA —
N~ = ~ —
A — —
g
~
\<
- - — -
Xax =X Xk Xak P m
NG
)\ S
— X\?"\ .
Xy n N g \
(@) (b)
Fig. 2

We define ¢, = +1 or —1 according as p, is of type (a) or (b) (see
Figure 2). For convenience we also define §, = 1(1 + ¢).

Let X', be the black region having e, on its boundary, and let X be
the white region having ¢, on its boundary. Let j+ and j— be the labels
of the double-points at the ends of ¢, so that ¢, = p,, — p,_. We extend
this notation in the obvious way so that, for example, a,,, b,., ¢, are the
one-cells associated with p,,, and X, ,, is the black region to which 7,,
belongs. (In the situation shown in Figure 1, @, = a,, = @3, = @, = a,_,
Do = Dir = Dsx = Dy = D,—, €te.) It should also be understood that X',
X, ., etc., denote the 3-cells corresponding to the regions X', X, ,, etc.
Finally, let J(¢) be the set of values of j for which ¢, is on the boundary
of X,.

With these notations, the boundary relations in the cell-complex we
have construected are :

0X, = E;e.r(z) (4, + B)) if X, is black.
= —E,em) (A, + B)) if X, is white.
0A, = e — ay + a5 — 8¢5 + (1 — 85 )c,-
0B, = —e; — by, +b; — (1 — 8;0)c5 + 85-¢5-
0a, =Py — v, 0by =W — qx, 00 = qu — Dy
0e; = (1 — 8;4)p5s + 854055 — 8;-p5- — (1 — 8,.)q,- -

We now apply the procedures of Section 2 to obtain a cell-decomposition
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of the branched covering space Y corresponding to a subgroup H of the
fundamental group of S® — L.

We shall use the Dehn presentation [3, p. 154] to describe 7, (S® — L).
We take the vertex v as base-point. Corresponding to each region of the
projection there is a generator , which is represented by a path running
from v to w through the interior of X; and returning to v through the
interior of X,. It is clear that z, is trivial, but we retain it among the
generators for the sake of symmetry, and adjoin the relation x, = 1.
There is also a relation for each vertex of the diagram. The relation at
the k™ vertex is @, a5 @; ik = 1.

For each cell - we now select a path from v to a point in S(¢). For each
X, let the selected path run directly from » to an interior point of X;.
For A,, B,, ¢;,, we take the path already selected in X’ ; for ay, by, ¢, D,
¢x, we take the path selected in X, ., and for w we take the path selected
in X,,

The subgroups F', are now determined. As remarked in Section 2, F’, is
trivial for the cells which are not in L. For every r € L, F, is infinite
cyclic; F., is generated by @ 7", F,, by @, @5k = @, %5k, and Fy by
w;:}cxl,k = @7 s e

In writing the boundary relations in the covering space we shall use the
following notation. For any group element g we write og for the cell
over g corresponding to the coset H,F),, and in case g = 1, simply write
o. Then if ¢ is not in the singular set it suffices to give the formulas for
90, since 8(og) is then given by (80)g. If ¢ isin the singular set, the fact
that F', is in general not a normal subgroup causes this formalism to
break down. The boundary operator can of course be calculated in any
particular case from the rules laid down in Section 2, but we shall not
give a general explicit formula. For the two-sheeted covering discussed
in detail in Section 5 there is only one cell over each singular cell and
there is no difficulty. The other boundary relations are :

aXi - EJGJ @ (AJ + BJ) if Xi iS black
_E;em) (A, + Ba/z,™") if X, is white
04; = e, — @y + ;- — 8,605 + (1 — 8,-)c,-g7

0B, = —e, — buaiar), + b, @l — (1 — 8,.)c,.95 + 8,-¢,-97
where
9,=1 if Xj=X,,.
—zani, it X)= X
and
gy =1 if Xj =X, ,-

= ) if Xj=X;,-
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oy = o, — v, 0c;, = Q — Dy » 0b, = wxx — Gy -

We now define a map D of the chain complex of M into its tensor
product with itself such that for each cell ¢, D(s) is in the subcomplex
generated by o @ o. Since M is a regular cell-complex, D is a chain
approximation to the diagonal map [10] of M into M x M. We shall
explicitly describe such a map for the complex Y, rather than for the
covering complex M. For o € Y, D(¢) is a sum of products of cells in
. Then for ¢’ € M lying over g € Y, D(d’) is defined as the corresponding
sum of products of the cells of ¢’ Iying over the cells of 7.

For any vertex u, we define D(u) = u Q) u, and for any 1l-cell g, with
09 = u — u', we define D(g) = u® g + g ®u'. For each 2-cell F, pick a
vertex » and let ¢g,, ¢,, - -+, 9, be the edges of F, starting from » and
going around the boundary of F'in the direction coherent with the orienta-
tion of F. Let %, be the incidence number of g, with F" and define v, =
251795 — 3(1 — 7,)g;. Then we define

D(F") :u®F+F®u+E?.177¢TA®g¢ .

This definition of course depends on the choice of . We take u = v for
every A, and w = w for every B,.
The definition of D(X,) depends upon whether X, is black or white. In

either case, choose one vertex of X, to be p;, and number the vertices
and edges around in anti-clockwise order Dy, €:, Di1, *** , €iny Din = Dso-

Define
Cpn=2¢n> (A +B,)+ 6u(Bps—A,) if X;isblack, m=1,2,---,n
=&, (A, + B,)+ 8,(Ans: — B,) if X, is white, m=1,2,---,n

Tl

E,=—-2" (A +B)+A, if X is black,

= » . (A, +B,)—B, if X, is white.
Then if X, is black, we take
DX)=v@X+XQw+ (a4 ¢ +b) R, Bn
+3m {4, Qtn + Bpi1 Qb + C, Q® cp + En @ e}

- :L-l (An + Bn) & (b, + d4c0)
and if X, is white

DX)=vQ@X,+ X Q@w— (& + &+ b) ® 2., Bn
+ Y0 {41 ® @y — B @by + C @ — En R en}
+ 3o (A + Br) Q@ (B + (1 — d)e) -
In the foregoing formulas, A,,, @., etc. are to be understood to stand



BRANCHED COVERING SPACES, II 695

for A ,,, @,,, ete. Strictly speaking, we should also write », rather than
n, since the number of terms in the sum depends upon ¢. It is a matter
of straightforward, though tedious, computation to check that these
definitions actually yield a chain map (that is, one which commutes with
the boundary operator).

We are interested in the terms of the form (1-cell) ) (2-cell) occurring
in D(M) where M is the fundamental cycle of ¥ (which we now assume
to be compact). Denoting these by D'(M) we have

D'(M) = Et,g + (@9 + bugr; + €4098:) ® EJGJ(,;) Byt

where ¢ runs through the regions of the projection of the link and g runs
through a set of representatives for the right cosets of H, the group of
the covering space. The sign is to be taken as plus or minus according as
X, is black or white. The group elements r,, s, and ¢, are determined as
follows. If X. is black ¢, =1, while », =s =1 if p;, belongs to X,.
Otherwise r, = .7, ;, and s, = x,%, 4. If X; is white ¢, = ;& and r, =
%y 40, While s, = 2@, if X, = X, pand s, = 1if X, = X, .

5. The two-sheeted branched covering

We consider the branched covering of S® — L whose corresponding sub-
group H consists of those elements of 7,(S*® — L) represented by loops
whose total linking number with L is even (cf. [7]). Then «;, € H if and
only if X, is black. Of course, H has only two right cosets. Furthermore,
for every r € L, F'. is generated by an element of g which links L once,
so that there is only one double coset HgF',. Hence, each cell of S® — L
has two cells over it in the covering and to each cell of L there corre-
sponds a single cell in the covering. We shall denote the cells v, v*, w,
w*, a,, af, etc. The boundary relations are

0X, = Y., +B) 0Xf= 3 (Af+ B if Xiis black
0X, = =33 0 A+ BY), 0XF =~ (Af + B)) if X, is white
04; = e — a5 + ;- — 8, (95ucsn + (1 — 954)c)

+ (1 — 8,-)(0;-¢;- + (1 — 7,-)ei)
0AT = ¢, —af, +af. — 8,(nscli + (1 — 9y5)e54)

+ (1 — 8, )(-ci= + (1 — ,-)e;-)
0B, = —e; — by + b, — (1 — 8,.)0suc50 + (1 — 7954)e1s)

+ 8;-(m;-¢;- + (1 — 71,-)ei)
0B} = —e; — bfy + bj_ — (1 — 8,.)(1e05s + (1 — 954)e50)

+ 8;-(7;-ci- + (1 — 9;-)e;-)
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where 7,, is 1if p,, belongs to X7, and 0 if it does not, and 7,-is 1 if p,-
belongs to X and 0 if it does not.

0e; = (1 — 8,.)p;+ + 854q5s — 8y_pyo — (1 — 8;-)q;-

oa, =p, — v, b, =w —q,, 0c, = qp — D
Oa; = p, —v*, 0bf=w*—gq,, Ocf=gq,— -

We now proceed to find bases for the one and two dimensional chains
which reduce the matrix of the boundary operator to a simpler form. We
choose a vertex p,, adjacent to X,, and then take a maximal tree consist-
ing of the 1-cells a,, b,, ¢, a and b*. In conjunction with the maximal
tree, every l-cell determines a unique cycle, which we denote by the
same letter as the cell. If the cell is in the tree it determines the zero
cycle ; the non-zero cycles together with the cells of the tree form a basis
for the 1-chains. Let C be the subgroup of chains generated by all the
¢, ¢i. We write f = g(mod C) if f and g are 1-chains such that f — g e C.

The chains A;, A, + B, + A} + B}, A} + B, and 4, + B, form a basis
for the chains. For each j, 94, = e¢,(mod C) and hence the replacement
of ¢, by 94, is an allowable change of basis.

Let T be a maximal tree in the projection of L. Then for each vertex
p. # Py there is a unique 1-chain D, lying in T such that D, = 7, — B,
and for every region X; there is a 1-chain Z, = 8X,. It is easy to see that

the chains D, Z, (s + 0) form a basis for the 1-chains of the projection.
Define

D = 3 1A, + B, + A} + BY), ¥ =2 0(AT + By)

where the sum is taken over those j for which ¢, e D, and n; = +1is the
coefficient with which ¢, appears in D,. Similarly let

Zg:EUJ(AJ + B, + A} + BY)

and Z! = }_7,(A} + B,) where the sum is taken over those j for which
e, € Z, and 7, is the coefficient of &, in Z,. Then the replacement of the
(4; + B, + AT + BY) and (Af + B,) by the D, D/, Z, and Z" is an
allowable change of basis for the 2-chains. Now 0D, = a} + b} (mod C)
and 0Dy = af (mod C), so we may change the basis for the 1-chains by
replacing the af, b by 0D}, and 6D}. For any i, 8Z, = 08(X, + X}) = 0,
while if X; is white Z}’ = 90X} = 0. On the other hand, if X, is black,
077 will not be zero in general (although 3Z}' = 0 (mod C)). We shall con-
sider it in more detail below.
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The 2-chains (4, + B;) are still to be considered. We group them ac-
cording to the black region with which ¢, is incident. For each region
X, a vertex p,;, was picked out in the course of defining the chain ap-
proximation to the diagonal map. As before, we suppose the edges and
vertices to be numbered p,, €1, Di1, *** , € n, Din = Di- For each ¢ define
En,=Y",(4,+B,),m=1,2,---,n, Define y,, to be ¢, if p;, be-
longs to X, and ¢k if it does not. We write y, in place of y,. Note that
choices have been made so that y, =¢, = 0. Then 0E,, = y; — ¥ for
m=1,2,---,m — 1, and 0E,, = 0. The y, (¢ # 0) and the 9E,,, (m <n,)
then form a basis for C. L

In terms of the new basis,

04y = E €uwl¥i — Yn) + OEY
where the sum is over those k for which P, is on the boundary of X,.
Here A(k) is the label of the other black region adjacent to p,, and E} is
a linear combination of the basis elements E,,. Thus if we make a final
change of basis and replace Z; by Y, =2 — E;, we have 90Y, =
> &% — Yny)- If we now write the bases in an appropriate order, be-

ginning with the y;, and the Y,, the matrix of the boundary operator
assumes the form

A 0 0
0 E 0
0 0 O
where E is an identity matrix and A is a square matrix with a row and
column for each black region in the link projection except X,. Each
diagonal element a,; is equal to ) ¢, where the sum is over all vertices

of X, while, when ¢ # j, a;, = —Y & with the sum taken over the ver-

tices which X, and X, have in common. Thus A is the matrix of the
quadratic form of the link [11].

We must now express D'(M) in terms of the new basis and pick out the

terms ¥; ® Y,. Let Y be the sub-group of 2-chains spanned by all the
basis elements except the Y,. Then since

BT=(AJ+A;<+BJ+B7)—A3K_(AJ‘l‘BJ)y

Bf =0 (modY). Also, if X is white }_,.,, B, =0 (mod Y) and conse-
quently

Dl(M) = Ei (aio+bi0+vicio+(1_vi)cq?r)_ao_bu—cl)) ® EJGJ(-[) Bj (mOd ?)

where 7, = 1 or 0 according to whether 7,, belongs to X, or not, and the
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sum is taken over the black regions only. Hence

D\(M) =3,y ® Y, (mod ?)
and the matrix D has the form

where E is a unit matrix of the same size as A.
If A is singular, then by Lemma 1 of [6] there exists an integral uni-

modular matrix T such that T"AT = [g 8] where B is non-singular. In

the terminology of [6], B is related to A. If we define new bases v, Y
for the chain groups by the equations y, = Ei t,y; and Y = E} tuY,
then the matrices for 8 and D become

B0 EO

oo 0 O 0E * *
0: 0 E 0 and D: . . x

0 0 0 * *  ox

Applying the theorem of Section 1 we have

THEOREM. The torsion sub-group of the two-dimensional cohomology
group of the two-sheeted cyclic branched covering of a link has a presenta-
tion {z, : 37 byw; = 0} with pairing || I(x,, «,) || = B~ (mod 1), where B =
1 b:5 1| 38 @ non-singular matriz related to the matriz of the quadratic form
of the link.
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