ALGEBRAIC L-THEORY

IIl. TWISTED LAURENT EXTENSIOHNS

by A.A.Ranicki

Introduction

The algebraic definition of the surgery obstruction groups

Lﬁ(n) open —
Lg(ﬁ) , for surgery on ¢ compact manifolds, over { finite Poincaré
Li(x) proper compact simple
complexes up to - homotopy, depends on n{mod 4) and a group
simple

ring Z{x], together with the involution

T z[r] —> 2(®] ; 2:fn g %—~—+Zij w{g)n g'1 {n _€2)
gEn € gExn & €

given by a group morphism
Wi 2, = {1,-1}
{ef.[10]). For finitely presented groups % it is possible to obtain

geometrically direct sum decompositions

Lﬁ(n x2) = Lﬁ(?t)ﬁ7L£_1 (n) (13D

L(xx2) = I(m)@Ll_, (n) ((6])

The hamiltonian formalism of [4] allowed a unified
approach to the three L-theories, and a purely algebraic description
of these decompositions. This was done in parts I. and II. of this
paper ([5]), which will be denoted I.,II, . In I. there were defined

i Un(A) f.g.projective
abelian groups Vn(A) ,» using quadratic forms on < f.g.free

) wn(A) based
A-modules, for any associative ring A with 1 and involution and
n{mod 4). It was then shown in II. that there are direct sum

decompositions
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where A, = A[z,z”] is the Laurent extension of A, with involution by

1

zv»z ', and WQ(AZ) differs from wn(Az) in at most one element, of

order 2.
Here, we shall generalize I. by considering the intermediate

Uﬁ(&) f.g.projective

L~theories defined using quadratic forms on

Vﬁ(A) based

projective classes
A-modules such that all the

T QKG(A)

lie in a prescribed
Whitehead torsions

subgroup The direct sum decompositions of II. generalize to

RC X, (A)

exact sequences

N -1
oo () £ uET(a ) —Beul1me) T T €T (a)—s .. (Theorem 5.1)

. -1
..-—9Vi(A)—3i9 VZR(AQ)——Eié Vél?“) R(A)~—§—9V§~1(A}—+ .. {Theorem 5.2)

coov R S v ) Bl ()L VR (4)—>..  (Theorem 5.3)

where Aa is the a~twisted Laurent extension of A4 (assumed to be such
that f.g.free Aa~modules have a well-defined rank) for some automorphism
a of A,Ejﬂ the inclusion of A in Aa’ and C is induced by 1-a .
For A = Z|®] it is possible to identify
P _ , _ Kolalx])
Ln(u) = Un(é[n]) = Un (4)

Lg(ﬁ) v (2[=]) = V§1(ZL“})(A)

Lz(n) vé“}(z[n]) (= Wn(ZLn]), up to 2-torsion ).

The special case R = {x} of Theorem 5.2, with « given by an automorphism

a : &% 2% such that wa = w ¢ = -*Zz, is the exact sequence

s s s
P —)Ln(n) —-)Ln(uxaz) — L;l_1(1z) — Ln__m(x) —— au.



of the case H = H' = X of Theorem 10 of [1], where a geometric
derivation is announced, following on from some earlier work of
F.T.Farrell and W.C.Hsiang. The groups Lé(n) are defined as Li(ﬁ),
except that torsions are measured in Whn/ker(i-a:Whx ——>Whn) rather
than in the Whitehead group Whx = f1(z[n])/{n}. (Thus, if « = 1
torsions are not measured at all, and Lﬂ(n) = Lﬁ(n)). It is Cappell
(in [1]) who first used the intermediate L-theories,

I am grateful to Professor C.T.C.Wall for sending a
preprint to [10] (which contains an earlier account of the
intermediate L-theories), and for suggesting that I generalize II.
to the twisted case.

I wish to thank the Arhus Mathematical Institute and the
Battelle Seattle Research Center for their hospitality, and also

Trinity College, Cambridge, for partial support of my stays there.

This part of the paper is divided as follows:
81, L-theory
82, Intermediate U-theories
83, Intermediate V-theories
84, K-theory of twisted Laurent extensions
45, L-theory of twisted Laurent extensions
86, Proof of theorems in &5

&7, Lower L~theories .

This part can be read independently of the previous parts, taking

for granted the proofs of the results quoted from I. and II. .
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§1, L-theory

The purpose of this section is to introduce some
notation, and to recall those definitions and results from 1. which
will be needed in this part.

Let A be an associative ring with 1, and with an

involution, that is a function

guch that

for 21l a,b € A,

Let @(A) be the category of finitely generated (f.g.)
projective left A-modules. Denote the class of objects of B(a) by [P(a)]
by [P (A)|. Given P,Q € |® (4)], write Hom,(P,q) for the additive
group of morphisms (f:P— Q) € P(4).

There is defined a contravariant duality functor, by

Q* = HomA(Q,A), left A-action by
QE [P+

AXQ*Y —> Q*;(a,f ) (x+TF(x).3)
* P(4) —>3(4) ;
£ € Hom,(P,Q) > (£*:Q* — P*;g — (x1—gf(x))).

The natural A-module isomorphisms

Q—>Q** ; x

> (£ —>(x)) (Qe @@

allow an identification

#e =1 : P (4)—P(4) .
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Let
f:@ A —a4
be a morphism of rings with involution (such that £(1) =1 € 4'),

Give A' an (4',A)-bimodule structure by
A'@ A'X A —> 4' 3 (a',x,a) —— a'.x.f(a) .

The induced functor
§P F—fP = A'® P

£ Pa) — ()
zgeliomﬂ(P,Q) —— 1 ®gEHon, , (£P,1Q)

is such that
fla) = A' € | P (a")]
and
*f = % P (4) —> BP(a")
(up to natural equivalence).
Given Q € [P (4)|, and © € HomA(Q,Q*) such that
6% = +6 € HomA(Q,Q*)
{for one of the signs indicated), there is defined a +hermitian
sesquilinear product
< >3 QXQ A () <x,y> = 6(x)(y)
with
K,y = <y, > € A (x,y € Q) .
A tform (over 4) is a pair
(Qe |, 9 € HomA(Q,Q*))-
We shall be interested only in the thermitian products
O =g xog*:Q—Iq
associated with tforms (Q,9).

An equivalence of +forms

£ (Qe)——(Q,0")

{over the same ground ring A) is an isomorphism f € HomA(Q,Q')
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such that
f*¢'f -~ ¢ = Y % Y* € Hom,(Q,Q*)
for some +form (Q,Y). Then
£*(p' + 9'*)f = ¢ + ¢* € HomA(Q,Q*) y
so that equivalences preserve the +hermitian products associated
with +forms.
The direct sum ® in ?(A) generalizes to a sum operation
on +forms : the gum of +forms is defined by
(GLe) ®(Q',9") = (QDQ,0@¢').
A +form is itrivial if it is equivalent to the hamiltonian

+form

H(P) = (POP*, (z ;) :P@P* —> P*@P = (P@P*)*;
(x,£) = ((x',£") —£(x")) )
on some P € | ®(4a)].

L-theory considers +forms up to equivalence because that
is how they arise in even-dimensional surgery obstruction theory.
Surgery corresponds to the addition of a trivial +form (or the
inverse operation ).

A sublagrangian L of a +form (Q,p) is a direct summand L
of Q such that

i) j*(gx9*) € Homy(Q,L*) is onto,
i1) j*ej = 6+6* € HomA(L,L*) for some Fform (L,8),
writing j € HomA(L,Q) for the inclusion. The annihilator of I in (Q,9),

1Y = ker( j*(gep*) : @ —I* )

is then a direct summand of Q (by 1)) containing L as a direct summand

(by ii)). Restriction of ¢ € HomA(Q,Q*) $0 a direct complement to L in

L™ defines a #form (LY /L ,§ ) uniquely up to equivalence.
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For example, L € |¥ (A)| is a sublagrangian of

for any i+form (P,0), with

(tt /1,8) = (2,0).
The converse holds up to equivalence, by the following version of
Witt's theorem in the classical theory of quadratic forms.

Theorem 1,1 Let L be a sublagrangian of the +form (Q,p). The inclusion

j:1eat/m—> Q

extends to an equivalence of +forms

£ : Hy(L) ®(LYL,%) — (Q,9)

uniquely up to composition with the self-equivalences

1 e+o* Lo
o 4 D1 BOMSET G —> L(L)@(TT /L)

given by Fforms (I1*,6).

(]

A sublagrangian L of a +form (Q,p) such that

L-LzL

is a lagrangian of (Q,¢).

Corollary 1,2 A + form is trivial if and only if it admits a lagrangian,

L]

A +formation (over A) , (Q,p;F,G), is a +form (Q,p) over A,

together with a lagrangian F and a sublagrangian G. An gquivalence of

+formations

f: (quf‘;FyG) - (Q"‘P';FlyG')
is an equivalence of +forms

£ (Q,9) — (Q',9")
such that £(F} = F' , £(6) = @' .
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The gsum of +formations is defined by
(Q9;F,3) ®(Q',9";F',G') = (QBQ',9D9";F &F',6EGR").
A stable eguivalence of #formations
(£] = (Q,9;F,6) —> (Q',9';F',6')
is an equivalence of +formations
f: (Q,Q;P.G)Q(Hi(P);P,P*) —> (Q',9"F", 6" )@ (HL(P');P',P'¥)
defined for some P,P' € |® (4)].
A +formation is elementary if it is equivalent to
(5, (2);2, U'(2,0))

for some ¥form (P,8), where

r = {(x,(6¥6*)x)€EP DP*|xEP}
(p,0)

is the graph of (P,0).

L-theory considers +formations up to stable equivalence
because that 1s how they arise in odd-dimensional surgery obstruction
theory. Surgery corresponds to the addition of an elementary +formation
(or the inverse operation).

A hamiltonian complement to a lagrangian L in a +form (Q,9)
is a lagrangian L' which is a direct complement to L on Q. It follows
from Theorem 1.1 that every lagrangian has hamiltonian complements,

and that the hamiltonian complements to P* in H,_(P) are just the graphs

r (,6) of Fforms (P,0), for any P € |B(4)].

Corollary 1.3 A4 +formation (Q,9;F,G) is elementary if and only if @
is a lagrangian sharing a hamiltonian complement with F.
[ ]

Given a lagrangian L in a xform (Q,9),and a hamiltonian
complement L', the A-module isomorphism
L' —> L* ; x> (y v (p+9*)(x)(¥))
will be used to identify L' with L* (in general). This is an abuse of

language, as hamiltonian complements are not unique.
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§ 2. Intermediate U-theories

Let I be an abelian monoid. Given a submonoid J of I,

define an equivalence relation ~«J on I by
i~j i' if there exist j,j'€J such that i®j = i'teit €l
Denote the guotient monoid I/fvJ by I/J , because it depends only on

the stabilization of J in I, the submonoid

J = {i€I|i~ 0}
J
Note that 1/3 is an abelian group if and only if for every i€l there
exists 1'€l such that 1&@i'€Jd.

Define the abelian group

Ky(4) = K(P (4))

a8 usual. The reduced group

i{‘om = coker(K,(2) —> Ky(4))

can be regarded as the quotient monoid

{isomorphism classes in @?(A)}/
{isomorphism classes of

f.g.free A-modules},

Duality in ® (A) defines an involution of Ku(A)
* t Ko(a) —> Kg(A); [P] v—> [P*]
and similarly for ﬁb(A).
Theorem 3.2 of I.( the case T = Kb(A) ) generalizes to
Theorem 2.1 For n(mod 4) let Xp(A) be the abelian monoid of

equivalence +forms 2i
clasges of

gver A, if n =

gtable equivalence +formations 2i+1

with * = (=),

The monoid morphisms
(4,9)— (Hz(Q);0,T(g,0)) §2s;

9 Xn(A)-—)&_1 (A);i n =

(0,93F,G) ¥ (6%/6,3) 2i+1

2
are such that 9 =0,
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The monoid morphisms

¢ ¢ Xy(a) —> Fo(a) ;g(q’@) o n =~$Zi
(Q,@;F,G)E~—>LG]~LF*] 2i+1
define a chain map
o s (X)) —> (Bo(a), 1+ (0™ %)

of chain complexes of abelian monoids.

Given a *-invariant gubgroup TfEﬁb(A) (that is,«(T) = T)

define a chain complex of abelian monoids

(xg(m,aT) g (T, 1+ ()P (n(mod 4)) .

The subguotient monoids

T T T
7 ker{ 97: X, (a)—»X,_1(4)) = P
Un(A) = " i /lm( 'al: X§+1 (ﬁ) _—*X;(A) )

are abelian groups.

A 1-preserving morphism of rings with involution

fi:A-——4
induces morphisms of abelian groups
T iy (Qyg) > (A'® ,1Q,1® ) 21
f Un(A) "'—"‘)Un(ﬂ’); n=
(g3 F,0) (4" ® 0, 1@ g !B F,4'® G)
for any ¥-invariant subgroups TS Kg(4), T'Q,ﬁb(n') such that £(T)& T'.

L]
. Zo(4) : ‘
Following I., IL. the groups Un A) will be denoted by

2i+1

Un(A) .

+ form (Q,p)
A is non-singular if
+formation (Q,9;F,G)

g+p* € Hom,(Q,Q*) is an isomorphism
. Then

G is a lagrangian of (Q,¢) "
P {non-singular +forms € Xo4(a)} / {H+(L) | [L]ET}
Un(A) = T
{non-singular tformations € Xyj,q(A)}/
{(Hi(P);Pvr(P,@))lLPJET}'
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Inverses are given by
T
-(Q;(P) = (Q;—CP) € U2i(A)

~(Q,9;F,8) = (Q,-g;F*,G*) € UL

2141 (A) -
This is clear on noting that the diagonal of a +form (Q,¢),

£s(Q,¢) ={ (x,x) €EQBQ | x€Q},

lagrangian
is a in (QQQ,‘P$-(P)1 if (Q,CP) is

hamiltonian complement to LeL*

trivial, with L,L* any hamiltonian complements in (Q,¢) .

%non—singular

The sum formula of Lemna 3.3 in I. generalizes to

Lemma 2.2 (Q,9;F,8)@(G,;6,H) = (Q,p;F,H) € U

5141 (A) 1 [F], [6], [H] € T.

Proof: The identity
(Q,9;F,6) ©(Q,9;6,H)D[(Q,-0;6%,6%) ]
BL(QDQ,pD-; FOF* HBG*) B (WDQ, 9@ g5 Dy ) ®6)]
= (Q,p;F,H) B (QDQ,9 ®~¢; F OF*,G DG*) ]
D[(QBQ,9D-9;6DC* , HOG*) D (QHQ, -0 D03 /_\.(Q,q)) L ®G) ]
is such that each of the +formations in square brackets is elementary.
]
Let & be an abelian group with involution
¥ 2 GG ; g g* .
The Tate cohomology of this 22—action is given by groups
HNG) = {x€eG | x*=()x }/{y+ )% |yea}
defined for n{mod 2), which are abelian of exponent 2.
The exact sequence of Theorem 4.3 in I. (the case T = {0},

Tt = Eb(A) ) generalizes to

Theorem 2.3 Given ¥-invariant subgroups T< 'S EO(A), there is defined

an exact sequence of abelian groups

e B (2/m) —— 0 ) Dy ()T EN /D ——
H+(P) 2i
where Hn+1(T'/T)'—~5U§(A);[P]F——4 § * ifn= *
(H+(P);P,P) 2i+1 .

L]
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& 3, Intermediate V-theories

A based A-module, Q, is a f.g.free A-module Q together

with a base q= (q1,...,qn), and n is the rank of g. The dual based

A-module Q* is Q% with the base g* = (q?,...,q;) given by
1 if i=j
af(q.) =
J 0 otherwise .
Identify Q** with Q .
Define the abelian groups

K, (&) = GL(A)/E(4) » X,(4) = coker(K,(2)—>K,(4))

as usual, regarding their elements as the torsions ={f:P—P) of
automorphisms (f:P—»P) € P (A) . There is defined a duality involution
* 3 K1(A)————v K1(A) i T(f:PIP)r»T(f*:P* > P*) |

In dealing with #forms and +formations on based
A-modules it is more natural to measure torsions not in ﬁ1(A), but
in the slightly larger group K'(A) defined below, which coincides with
i1(A) if A is such that f.g.free A-modules have a well-defined rank
(e.g. A = 2[n]).

Let I(A) be the abelian monoid of isomorphism classes
of triples (Qrzz§)’ with Q a f.g.free A-module and f,g two bases of Q
{not necessarily of the same rank), under the sum operation

(0L,L,e)@ Q5,8 = (1@, L8 gog') .

Let J{A) be the submonoid of I(A) generated by the triples of type

i) (Q,(fj 9'0'9fn)9(f1 yoo-,f 6fi+af‘,fi+1 ,..-,fn}}

d
(6=+1, aCa, i#j)
ii) (Q,£,2)® (Q,g,)® (Q,h,f) .

The guotient monoid

i-1?

K'(4) = I(A)/J(4a)
is an abelian group in which there is a sum formula

(Q,2,8)®(Q,8,h) = (Q,f,h) € K'(4) .
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It is therefore possible to regard the elements of K'(4) as the
torsions
©(£:2—Q) = (Q,q,f(p)) € K'(4)
of isomorphisms fGHomA(P,Q) of based A-modules E,Q'.
By the Whitehead lemma, the function
1?1 (A) —>K'(4);2(f:P>P) —> (P®-P,b,(f ®1)b)
is a group morphism, where -P is any projective inverse 1o P, and b
is any base of P®-P. In fact, there is a short exact sequence of
abelian groups

0 — 21 () —> X' (4) —> ker(K,(2) = K (4))—> 0

where

K'(4) — ker(Kq(2) —> K(4));5(Q,£,8) —> [m2] - [nZ]
if £ = (£,...,5), g = (85++++8,). The duality involution

8 K — K(A) ;5 (QF,8)—> (Q%,8%,1%)
agrees with that previously defined on 21(A), but there is a change
of sign.in passing to ker(Ko(Z)——)KO(A)).
A based iform (over 4), (Q,9), is a xform (Q,p) defined

on a based A-module Q. The torsion of (Q’@) is

T (g,q;):
0 otherwise

T{p+p*:Q —*) if (Q,p) is non-singular -

- - } €K1(A) .
Let S€K'(A) be a »-invariant subgroup.
4n S-eguivalence of based +forms

f:le) — (Q'he')
is an equivalence of #forms such that

T(£:—Q') €8, .

Now £*(g'+¢'*)f = (9#¢*) € Hom;(Q,u*), so that

+T* if (Q,¢) is non-singular

T
T(Ez,@)—‘c(g',,@'):i %e SCK'(A)

0 otherwise

whereT= < (f:g_——-ég_') € 3.
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Given a free sublagrangian L of a +form (.4,¢) such that
L"'/L is free, it 1is possible to extend a base Qel;l; to one of Q
uniguely up to simple changes, using any of the equivalences
3 Hy(L)®(T/L,5) —> (4,0)
given by Theorem 1.1, Call such a base
q = F(LOrOLY/L)

a gubhamiltonian base for (Q,¢), and a hamiltonian base if L is a

lagrangian.

A based +formation (Q,9;F,G) is a sformation (Q,9;F,G)

together with bases Efg’E for E,G,G7G respectively. The forsion of
(Q,9;F,G) is
T©(Q,9;8,8) = (Q,f@f*,g@g*®h) € K'(A)
with £@®f* any hamiltonian base extending f, and §©§*@?_ any
subhamiltonian base extending gﬁbh . 48 shown above, this definiticn
does not depend on the choice of §*,§*.
4s before, let SSK'(a) be a s—invariant subgroup.
An S-equivalence of based +formations
£1(Q,¢;F,8) — (Q',9"3E",6")
is an equivalence of #formations such that
Z(EF'), T(e—g), z(@/eoct/er) es .
~ ~L —L2
Then
z(Q,9"F',8") -T(Q,9;E,G) = T-T* € SCK'(4)
where T = (&(E-—E')-w(g2¢')-eY/c—a't/6) €5 .
A gtable S-equivalence of based #formations

[£] : (Q,9;F,8) — (Q',9";F',8")

is an S-~equivalence of based +formations
£:(Q,9;F, ) D(H(P);R,P*) — (Q',9"F,6 )@ (1 (P');2,2'%)

defined for some based A-modules P,P',
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Theorem 2.1 has a based analogue:
Theorem 3.1 For n(mod 4) and a s—invariant subgrou SC€K'(4) define
S—eguivalence classes

S
the abelian monoid Yn(A) of of
stable S-eguivalence classes

based +forms A 21
with torsion in 8, with + = (-)* if n ={
based Zformations 2i+1 .

The monoid morphisms

S

(Q9) ¥ (B:(Q);Q, ¥ )
27 ) — T (a); * (o)

(Q,9;1,8) — (6%/6,%)

are such that (63)2 = 0 . The subguotient monoids

V3(4) = ker(@5:¥3(A) Y3 () /im( 95: Y5, 1 (A)—>YD(A))

are abelian groups.

A l-preserving morphism of rings with involution

f: A—r A

induces morphisms of gsbelian groups

S st (L) — (4'® 9,1B )
£ 1 Vp(a) —> Vp(at);
(u,cp;g,g) —(A'®,Q,1® @;A'@E,A'@Q)
for any s-—invariant subgroups SS K'(4),>S'C K'(a') such that £(S)& S'.

L]

Note that

S a
Voi(A) = {non-singular based +forms € Y;i(ﬁ)}/{ Hy(ma)| >0}

S

. S
V5i41(A) = {non-singular based tformations € Y,; 4{A)}/

{ (H£(P);P, f'(g,ep | z(p,0) € 8}
Inverses are given by

- = - S
(Q.!P) (9_’ ‘P) € Vzi(A)

]

S
-(Q,CP;E,E) = (Q,"'@;E*’g,*) € V21+1 (A) .
The sum formula of lemma 2.2 has a based analogue
S
Lemma 3.2 (QO‘P;ElE)e(Q"P;Eyg) = (Qr‘P;};':’E) € V2i+1 (&)

[ ]

426



16

For S€Z§Q(A), this allows the identification of V§i+1(A)

with the stable unitary group of S-equivalences
H, (mA) ——> H_ (m4) (m > 0)

modulo the subgroup generated by those of the type

£ Y]
i) 1 where Z(f:mA —>mA) € S
0 ik
1 6%e* _
ii) for any +form (mA*,6)
0 1
iii) o8evs. Qo with m copies of
o 4y
o = : ABDA® —> ADA*
Y 0
where Yi:A-— A*;avws (brsba) .

This is the kind of definition adopted for the odd-dimensional
L-groups in {9] and [10].

The exact sequence of Theorem 2.3 has a based analogue
Theorem 3.3 Given *-invariant subgroups S<S'C K'(4), there is
defined an exact segquence of abelian groups

.. — (51 /5) > Vlsl(A) ~1—+V§'(A) (81 /8) —a.

with 0 1 o
BT (51/8) — V2 (4)5(Q,1,8) v—> e (0 °>) if n =221
(Hy (Q)54,Q) 2i+1
where 3 is Q with base f » and Q is Q with base § .
L]
This is the exact sequence of Theorem 3 of [1O]Uv
8 ) V()
Following I,,II.denote the groups by .
i Vx{uo} (&) LW, (4)

It is possible to identify
[ Uy

Thus if f.g.free A-modules have a well-defined rank (that is,
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ker(Ky(2) —Ky(4)) = {0} ), then
{0}y =
ulta) = v .
Otherwise, Theorem 3.3 gives exact sequences
u10} {0}
00—V, (4) —U05 1, (4)— Z,—Vyy (4) — U5 (4) — 0
for i(mod 2).

§4. K-theory of twisted Laurent extensions

The purpose of this section is to recall those
K-theoretic definitions and results from [ 2], [7] and II. which
will be needed in this part.

The Laurent extension of A, Az, is the ring of

[-=]

polynomials zr zJaj in an indeterminate z and its inverse z",

j:'.—w

with coefficients a, € A and { j € 2 | 85 # 0 } finite. Addition is by

J
(E_Jjaa" (5 = (2 sHapey) € g,

and nmultiplication by

(Zza)(Zzb)-ZZ ajbkEAz

Jj=—e0 =—c0 j=—cc K==—oo .
There is defined an involution on Az, by
oo j—

(Zza) _Zza_jeAz.

J_-oo J:—oo
Then Az is an associative ring with 1 and involution, thus
satisfying the conditions imposed on A in §1 above.

The functions

€: A—> AZ ; a+— a

o< . o0
€: A—— A z: z9a —0> §: a,.
2 —— 9 jo—e 9
are 1-preserving morphisms of rings with involution, such that &

splits €,
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Given an automorphism

a3 A—>» A

{preserving 1 and the involution), define the g-twisted Laurent extension

of A, A, , to be the associative ring with the elements and additive

structure of A, , but multiplication by

z_1az = afa) € A, (a € 4) .
The involution defined above for A, is also an involution of Ay . Thus
Aa satisfies the conditions imposed on A in 81 . Note that AZ is the

special case Ai:A4A

The inclusion
E:A—-)Aa;ai—'a
is a morphism of rings with involution, though not in general split.
Given Q € |® (4)]| define zQ € |®(A)| by writing z in front
of each element of Q, defining addition by
zx + zy = z{x+y) € 2Q@ {x,y € Q)
and an A-action by

A 2Q —¥2Q; (a,zx)—zala)x .

Then
@ : Ko(A) —> Kq(4) 5 [Q)—>[2Q] .
Given f € Hom,(P,Q) , define zf € Hom, (2P, zQ) by
zf : zP —»2Q ; zxw-»zf(x) .
Then

a : K {(a)—K (a) ; t(f:g-—-»g)&—)'r(zf:zg—;zg)

Given Q € |®(a)| define Q € |P(4,)| by extending the
action of A on the abelian group

Q= 2. 2%

J=_°°
to one of Ay by
(%) (29x) = 29 ad(a)x € @ (a€a,xeq, j,k€2) .

Then
£ Ko(a) — KA ); [Ql— (el -
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Given £ € Hom,(P,Q) define £, € Hom, (Pgy,Qq) by

o [~ s
. . Ixs Jf(x+
fo * Pa>Qa ; jg_mz er—S;Z_wz £(xj)

a
Then
€ : K'(A) = K"(Ag); T(L:PaQ) mT(£: P — Qo).
A modular A-base of an A, -module Q is an A-submodule 4, of

Q such that every x € Q has a unique expression as
o

X = Z ijj (XJ € QO) .

j:—co

If Q € |®(4) has a modular A-base Q, , then Q, € [P (4)[, and it is

o ?

possible to identify

Q=(Q), .
Given Qo € |3(A)| define complementary A-submodules
+ & . - =1 .
= zd = 2. ziQ
Qo 5;5 Qo Qo il 0

in Q = (Qo)a . If F,G are modular A-bases of Q then
zNF+§; (ehs
for sufficiently large integers N > O ,For such N define the A-module
By(F,G) = 2rne’,
and observe that there is a sum formula
By, y(F,H) = zMBy(¥,6) ®By(G,H) .
This shows that each BN(F,G) is a f.g.projective A-module, with

N-1

-N j
1 Al — J
BN(F,6)®z "By, (G,F) = jg_IN1z F o,

and also that Nt
B : Ki(Ay) — Ko(A); v(f:Gq—> Gg) V> [By(F,q)] - ng 29F)
is a well-defined morphism, where F = £(G).
Recall from 88 of |7] the definition of the group K(A,a).
Consider pairs
(P € |®(a)|, f€Homy(P,zP) isomorphism)
under the equivalence relation

(p,£) ~(P',f') if there exists an isomorphism g € Hom,(P,P')
such that T(g~'£'~1(zg)f:P—P) = 0 € K1 (4).
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Then K(A,a) is the abelian group with one generator [P,f] for each
equivalence class of pairs (P,f), under the relations
{P,f]l@®lP',f'] = |P@®P',f®F"] .
Given a based A-module Q , define [Q,§] € K(4,a) by
£:Q—2Q; i% aiqi‘-"’i% za(ai)qi (a; € A)
with g = (qy,+.+,ay) the given base of Q.
The exact sequence of Theorem 9.2 of [7] can be extended

to the right by one term, to give

Lemma 4.1 The sequence of abelian groups

1-a 3 P 1-a e
Ky (A) —> K¢ (4) — K(4,a) —>» Kg(4) —> Ko(a) —> Kg(ay)
is exact, where
3K (A) —> K(A,0); 2(£:8— §) > [G,5F] - [6,8]

p:K(A,a) —> Ko(4); [P,£]+— [P]

Proof: Use the Aj-module isomorphisms

Q—>(2Q)4 3 Jg:m szj —> Jé_m zj”1(zxj)
to identify

Qe = (2Q)g € |P(ay) | Qe [PwWh .
It follows that the composite

Ko (A) 175 K, (4) S5 Ky(a,)
is zero.
Given [G] - _[F] € ker(&:Kp(A)—Kp(4,)), stabilize F and G

until there is defined an isomorphisnm

(F,—G) € P(a) .
The identity

By, (F,6) = z2NF@By(F,6) = zBy(F,0)@6
shows that
[G] - [F] = (1-a)([BN(F,G)] - L?éé 2IF 1€ im(1—a:Ko(A)—*K@(A))-

(]
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Defining a duality involuticn
#:K{A,a) — K(A,a);[P,f]r—> -[P*,f*—w ,

note that

Je = %3 : K1(n) —y K(a,a)

px = —»p : K(A,q) —> KO(A) .
As in 812 of [7], it is possible to combine the results
of [2] and [7] to obtain

Theorem 4.2 There is a natural direct sum decomposition

Ky (A)) = K(4,a)@®N11 (4,a)@ N1l _(4,0)

where Nil (A,a)-{7(1+zi NE P - P ) | yeHom (P,P}nilpotent,zveHomA(P,zP)}.
“The i 1nclusxon a 2

i Kla,a)— K1(Aa) 3 1P,f] —>2'(fa:Pa—a. (zP)a = Pa)
is split by
q ¢ K (4ay) —K(4,a) ;
T(£1Gq — Go) — [Byyq (F,0),t] - ng ZXF, € ]
where F = £(G) and
t = 108§ ¢ By (F,6) = 2By(F,)®C —»zBy (F,0)@z" P = 2By (F,6),
The duality involution

x K () =K (8)

is such that

ix = #i : K(4,a) — K, (4,)

ax = #q : K (4) — K(4,a)

and interchanges Nil (4,«), Nil_(4,a) .

In the untwisted case, a = 1 &+ A —> 4, there are defined

morphisms

P : Kg(a) —K(a,1) ; [P]— [P,2]

5 2 K(4,1) —K(4) {P,f]t—bt(z-jf:P—?P)
such that
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3 P
K1 (A) — K(Ar1 )(— KO(A)
J b

is a direct sum system,

L]
Note that

ij =§: K (a) —> K, ()

pa = B: Ky (4 ) —Ky(4)

with j,p as in Lemma 4.1, and that in the untwisted case
ip = B: Ko@) — K (A); [Pl p—pr(2: P > P )
Jq = (£000): K;(a ) = oKy (A)eBK,(A) o Nil, (A,1)e Nil_(a,1) —K, (A)
in the untwisted case.
The relation
B* = - *B : Ky (4 ) —> Ep(4)
can be obtalned directly, from the A-module isomorphism

By(F*,6*) —> By(F,G)* 5 £ (x> [£(x)]g)
o0
- ; _ J
where [a]) = aj € 4 if a = gg;; z'aj € Ay .
Giving Z the identity involution, define a morphism
of rings with involution

© . OO .
Z, — Ay 3 3. zdnj o—)jEw zdnj.1

J X s

and define reduced groups

K(a,a) = coker(K(Z,1) —K(4,a))
B (a,) = coker(k, (z,) —» K, (4))

From now on we shall assume that Ay is such that

f.g.free Ag-modules have a well-defined rank .

It follows that A also has this property. Lemma 4.1

gives an exact sequence

~ 1-a -~ i~ ~ = ~ T ~
Ry(0) = K (a) —5 R(a,0) 2o B (0) 5% B (1) s B (ag)

in the reduced groups. Theorem 4.2 gives a direct sum decomposition
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§1 (8,) = R(a,0)® Nil, (4,a)@Nil_(4,a)

Convention: Given a #-invariant subgroup SQﬁ(A,a) let

R=j3"1(8)SE (a) » T=p(®)SEH(4) .

Then RS E1 (a), 1€ EO(A) are *-invariant subgroups.

Theorem 4.3 Given s-invariant subgroups S& S'S ﬁ(A,a), there is defined

an exact seguence of Tate cohomology groups
oo — B@RY/R)Z B (s/8) 2 (2 S BN R /R) L
with €, B induced by j, p respectively and C the connecting morphism,
¢ @ BNTY/D) — BNR'/R) 5 [x]v—> [T (5+(~)Py") ]

for any y € S'/S such that ply) = x € T'/T, associated with the short

exact sequence
0 — R'/R-—Ea s'/8 —g+ /T —> 0 .
In the untwisted case o = 1:A-— A, with
5= J(RB®B(D) , 8 = JRISBH(T')C K(4,1) = K (D)@ FK(4),
there is defined a direct sum system
g B
ER/R)E2 ENS /) T2 ET (/D
B

(]
§5., L~theory of twisted laurent extensions

~
Theorem 5.1 Given a x—invariant subgroup TSI&§A), there is defined an

exact seguence of abelian groups

-1
T4y £, el B f-a7 ¢ T

in a natural way.
The exact sequences associated with x—invariant subgroups

~
€< KO(A) combine with the exact sequence of Theorem 2.3 and the

Tate cohomology of the short exact sequence

0= (1=a)" "2 /(1=a)~ 10 X870 _Eugni/r 0

to define a commutative diagram
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- .
.

l A v

— gt (pr /) — T (70 /67) S ER((1=) " T/ (1-) " D) —»Hn(\’I.:'/T)——»..

L2 ¥ v v
T B B (1-) o ¢
. > U (4) - Uy (s ) ——— U] Ta)y—— Un 1(8)— ..
N v v 1 v
ot ) Es B ) 2 s T T ) S i -
v A v A 4
L — N1 /) — HRET /ET) — 8 (=) 2 /(=) T ) oE (1 /T s
v v A4 v
with exact rows and columns.
IfET =§T'C zo(Aa) , the seyuences interlock in a
commutative exact braid
/’—é_\) m 1
T ET (1-q)” '
U, (&) ) U (4)
1

/\ /\/

o0 Gy /(e T )" ) O

N 7

n-
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If (1-&)"1T = (1-a)-1T'§; ﬁb(A), the seguences

interlock in a braid

C
/"—‘“\ /_'\)
U(?—a) -ip () HY( 1 /1) =H( 21" /£7)
ul(4) fﬁ{(A )
\ / \ _/
B (/)= (870 JET) UzT(A ) U“Ta)
\-.__/// \L«/ .

L]

{4s Wall points out, in a letter of 19th January 1973, these braids
are a formal consequence of the larger diagram drawn above.)

Let S, be the infinite cyclic subgroup of §1(A&)
generated by r(g:Aa'——*Aa).

Given a w~invariant subgroup RS ,I\{‘1 (A) let

~iR _ JER®Sg
V(A ) = vERR0(a )

?

and denote Vio(ka) by wg(Aa). Theorem 3.3 gives an exact sequence

Q—> v (A)“——'>V2+1(A)———‘*Z

21_” ——)VER(A ) ~—>V£R(A ) ——> 0

2
for i(mod 2).

By analogy with Theoarem 5.1 we have:
Theorem 5.2 Given a ¥—invariant subgroup RS£E1(A) there ig defined
an exact seguence of abelian groups

: i -1
oo iRy S TR ) B gLl TRy Oy Ry s

L]

with similar naturality and exactness properties.
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Given a x-invariant subgroup S€ K(4,a), let

=5 = 3
To(ay) = Vola)

where
U P C¥ (a4
8 =q (u)_.K1(Aa) ’

with the projection
q:k, (&) —> R(4,a)

defined as in Theorem 4.2.

The exact sequence of Theorem 3,3 for scse K, (Aa) can

be written as
~3 ~lE
...———»Hn‘”(s'/s)——-——wvi(aa)—-av; (a,) —HNE'/S)—> ...,
using the isomorphism
qg:8/S —s/s
to identify
HYS/8) = B™s'/s) .

In particular,

e V(&) K(4,a)
V(a) = ’_13 a if 8 = ¢
~ER, . ~
VR4 ) J(R) (REE, (4)).

Theorem 5.3 Given a *-invariant subgroup SS:%(A,«) there i8 defined

an exact seguence of abelian groups
R £ 3 B T .\ _GC :
coe =V (A) =V (8 )= U, (4) —%Vﬁ_jm) - ...

in a natural way, with R = §7 ()%, (&) , T = p()ES Ky(a) .

The exact sequences associated with x-invariant subgroups

$€5'C (A,q) and the exact sequences of Theorems 2.3,3.3,4.%

combine, to give a commutative diagram



Ny
“3

- . -
. . -
- .

. —> g™ (r1/R) —~—>Hn'M (s'/s)2— §® (T/T) —C——>21"(R°/R) —>

foob

) — s By Bt w S R —

! l

N V?;'(A)“L* b '(Aa)_g_) Ug 1(A)—c——=; VR_'_1(A)—~—~>

| |

v \d

er — BNR'/R) —2 (51 /5) 2 w0 (2 /) S B (R /R) —> ...

T

.
N

es e

ja N &1

with exact rows and columns.

If R = R'§§1(A) , Ihe sequences interlock in a commutative

exact braid

///”___ji_ﬁ_\‘\\\M£ //,//”_—"“~\\\\\3

Va(A) > (4g) (st /8)=H""" (20/1)
PBay) vl (&)
B (s1/8)=H" (/1) ()

v\c_/f’
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If T = T'¢C ﬁb(ﬁ) , the seguences interlock in a commutative

exact braid

TN

UT(4) VR (a) EH(R' /R)=H"(S'/8)
VA (4) T (ay) Ve, (a)
R /R)=E (51/8) Vo(a) vl (&)

~__ ‘__wﬂww//;ﬂ \“~‘-~§__,~——’/;’

L]

In proving the exactness of the sequences of Theorems
5.1,5.2,5.3 (in §6, below) we shall make much use of the following
version of Theorem 1 of [8],

Lemma 5.4 Suppose given a commutative diagram of sbelian groups

and morphisms

NN N
P

1
n+1 Nn

\/\

Mn—1

Ln—1

such that the seguences

y 1 — t
Pn—ﬂ B Mn———"r P’n Pn —> Mn_,} —— Mn—?

1 ) e 1 ___) !_)
Nn+1 Pn+1 I“n Nn Pn

are exact.
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If the composites of successive norphisms in the seguences

y— Mn_—)Nn—_) Ln—f__\’MnJ (*)
a 3 ] 3 y ¥ * N
Ln Mn Nn Ln—l Mn-? ()

are zero, then (¥) is exact at M {resp. Nn, Ln~1) if and only if

L. ,) .

(**) is exact at M {resp. Nﬁ,

n-1
L]
Assuning that the morphisms in the sequences of Theorens
5.1,5.2,5.3 have already been defined, and are such that the
composites of successive ones are zero, and that all the braids
are indeed commutative, it follows from Llemma 5.4 that the exactness
of the sequences for all the coefficient groups T, R, S(but keeping
A and « fixed) is related as for (*), (**).
To see this, note first that for any s-invariant subgroup
TS'KB(A) the exactness of the sequences of Theorem 5.1 for T,and
TI\(1-a)E0(A) is related (since
(1-a) 7' = (1-0)™ (2R (1-a)Ry (4))E Ky(a) ),
as is that for Tf\(l-a)ﬁo(A), {0} (since
(P n(1-a)F(8) = {0}S Ky (a) ).
Hence the exactness of the sequences for any two *-invariant subgroups
T,T'QZE%(A) is related.
Similar considerations apply to the sequence of Theorem 5.2.
For any #-invariant subgroup SE X(4,«) the exactness of
the sequences of Theorem 5.3 for § , S+3K1(A) is related (since
p(8) = p(8+jK, (A))S K (8) ),

as is that for S+jK, (a), K(&,a) (since

57N (saE () = 5T (Ea,e) = Ky (a) ).
Hence the sxactness of the sequences for any two s-invariant subgroups

8,8'¢C E(A,a) is related.
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The sequence of Theorem 5.1 for T = {0}& gO(A)
z B Ko(a)¥ c
e —an(A) £ Vn(Aa) ~—>U " (4a) — Y (A) —> ..

coincides with that of Theorem 5.3 for S = L(4,u) (or will be seen
to do so, once both are defined).
The sequence of Theorem 5.2 for R = §1(A)
g ~'§1 (&) B .. . C
vee V(W) S WIS (8) S v (B) L

coincides with that for Theorem 5.3 for 8 = j§1(ﬁ)§f§(A,a).

Hence the exactness of all the sequences is related.

In proving Theorems 5.1,5.2,5.% (in 86, below) it will
be left to the reader to verify that the definitions of the morphisms
B, C are sufficiently natural for the commutativity of the diagrams

drawn above (implicitly so for 5.2).

§6. Proof of theorems inf§5.

Given a *-invariant subgroup T& iO(A) , define

(1=a)”
2i

ET

1
; > Ty (0.0: —>
B'U21+1 (Aa) U (A)v(Qr‘:P’F:G) (PQG)

where
= J(.
(P,8) = (By(Fo@Fy,0,@0),loly)@He( {5 27 (-F))
for any modular A-~bases FO,GO of F,G such that
[qﬂ-ug}eTS@ﬁm ,

with -FO any projective inverse for FO , and F6 ’ Gs the dual

modular A-bases to FO,GO in any haniltonian complements F*,G*
to F,G in (Q,9) , with
I_q;]o : Q —-)HomA(Q,A) ; xH(yt—)LQ(X)(Y)EO) ,
oo

writing [a], for a; € 4 if a = jz:m zjaj € A .
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The identity
(By(Fo @F3,0,®05),L9]p) @ (=7 1By (G, @8, Fy@Fp) , [9])

= H+( 2 szo ) (up to equivalence of +forms over A)
J=-M

shows that (P,0) is a non-singular +form. The identity

N =
BN+1(Fo®F6.G0®G3) z (FO®F5)®BN(F0®1-‘5,GO®G5)

1

(%936) D ZBN(FO 63‘6 ,GO@ Gg)

shows that
(1-a)[P]

N-1
[6,@08) - L2 (F,@F8)] + (1-0)] z 23 (-E, @ -F*) ]

([6o] = LFE]) + (l6g) -[Fy]) € TSR () .

-1
Hence (P,0) € Uél—“) T(A) .
For N > 0 so large that
2F S (a @ay)”
define a +form over A
N-1 .
N
(P1,0') = (By(F,,6,@®0%)/2 Fy , (9], ®Hs( J{_(’) 29 (-Fy))
where
+ N+
Eg(Fo,G,@6Y) = {x € (6,@G5)" |[gxp*](x)(z"Fy) = {0}Sa } .
Increasing N by 1 adds on
-1
N L _ (1-a)™'T
Ht(z (FOQwFO)) =0 € U2i (4)

to (P',0'), and for N so large that

N + +

z (Fy ®Fy)" S (G, ®ag)
the +forms (P,8) , (P',0') coincide, as then

_ Koy + N+

E(Fy,6,@63) = (FOZFEIN(G D63 = 2 F OF .
-1

Hence (P,6) € Uél’a) T(A) does not depend on the choice of N

or of the hamiltonian complement F* . The choice of G* can be

dealt with similarly,
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" ET
If (Q,9;F,6) = 0 € U7 .

(Q’(P;FyG) = (H_‘L'(L) ;L,(—'(L’)‘)) @(H_t(M) ;MyM*)

(Aa)’ it may be assumed that

with [L],[M] € €T, Choosing

Fy = Ly @M, (with [L]O,[M]O € T) Fg = Ly@oMy
Gy = LyoM, (Gg)* = Lo@My {(in Q) ,

note that by symmetry of the definition of B with respect to
the lagrangians and their hamiltonian complements

B(Q,05F,0) = B(Q,q;¥,G*) y
(By(F,@F%,6,@68),[p]g) = 0 € uS1™) T(a) .

It now only remains to verify that the choice of modular
-1
é;—a) T{A) .
Let Fé,Gé be some other modular A-bases of I,G such that
[Gé] - {Fé*] €E7T.
Choose N',N" > 0 so large that

A-bases FO,GO for P,G is immaterial to (P,0) € U

' " +
N (FyertC (rp@rg)t 2 (6 @0 S (sp@sym)’
and let M= N + N' + N" ., Then up to equivalence
(By(FE ®FY*, i ®G3*) , [9]y)
N+N" - " N" " » '
= He(z" " By, (F4*,F8)) (2" By(F ®FE,G DG, o)) ®HL(By.(Gy,64))
"=t

(2" "By (F @ F3,6,®08) , [9],) Hz( j%g aday )

1"

: 41
= (By(F ®F¥,6,@6%),[¢],) ®Hx( }%;O’ 29 ) .

Now 1t

(1-a) (12" By, (Ry* FE) @ (29 (2P @-0)) @1y, (65,60) 1)
M=1 N=i -
- (1"0‘)([']'%02:11?{’)*] - [Jgozal“a]) = ({Gé}-[Fé*])*—(LGO]“L}%D € TQKO(A)
and so
. (1-a)™ "2
(P ,e ) = (?’e> € UZi {A) y

where

M-l
(B',0') = (By(FY®F.*,a) ©6I*), (9], )DHx( Zo 22 (-F}) )

J::

is defined as (P,8) but with F§,G4,M replacing Fy:Gy,N respectively.
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Hence
B: U21+1(A ) —’Uu—a) T(a); (Q,93F,8) —> (P,0)
is a well-defined morphism.

The composite

oL (1-a) p
0y (0) = U21+1 (4) — (4)
is zero, sending (Q,9;F,G) € Ul (A) to

i+
BE(Q,9;F,0) = (By(F,@®F}) ioazf}é)'[%&o) =0¢€ U;;-a)—1T(A) .
Define
001707 24y s 0T, (4)5(0,9) > (2,) @ (Qy-0) @ He(-0) .
This is well-defined because
CH(L) = He(L@zL@®-L@-L) = 0 € Uy (4) if [L] € (1-)" '
The composite
0l ™12y _CL T () —E 0B )

“1g
is zero, sending (Q,@)eu(1’“)

(A) to
, ET
(Q,9,) ®(Q,,-p ) BH£(-0)) = Hx((Q@-0),) = 0 € B5(4,)
The composmte
ve? )25 ull- )Ty Ul (&)
is zero, as is clear from the identity (valid up to equivalence)
X n! N\
(By,, (F@F2,6,@6%),19])) = (By(F,@F,co@6),[9]) @H(27F,)

a(By (F @®FE,G,®G%), L¢],) BHz(G).

Lemma 6.1 The seguernce

T

-1
Ul (8) AN SOy )-——-—-—»U“"“) Ty =S, (A)—-——)U Tay)

21+1

is exact for all x—invariant subgroups TS KO(A).

Proof:It has already been verified that the composite of
successive morphisms in the sequence is zero. As explained in
§ 5 , it is therefore sufficient to consider exactness in the

special case T = {0}< 'IEO(A) ,
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- o] [+ 4 -
Vospy (B) =52V 1 (a) 2 ’Ugg(A) (a) =2 YVoy (B) 557, (4)

where Kb(A)a = ker(1~a:E0(A)——+ﬁo(A)). (This use of Lemma 5.4

anticipates the definition of

-1 . -1
yl1-a)7 e T gD (1-a)" 1,
C:Upipr” "B =205 (A) BaUpi (Ag) ——> U35 y" 7(4)

but no extra exactness properties}).
Given (Q,p) € ker(E:VZi(A)—-—*VZi(Aa)), it may be assumed
that
€(Q,9) = EHx(L)
for some f.g.free A-module L. Then
(2,0) = (B(L@®L*,Q),[0],)
is a non-singular +form over A such that (up to equivalence)
(By,, (L@L*,0),l0],) = (Q,@)®@a(P,6) = (P,0)@DHs("L) .
Hence

~ a
() = C(p,8) € im(c:Ugg(A) (a) —v,,(4)) ,
and the sequence is exact at VZi(A) .
> a
Given (Q,9) € ker(C:Ugg(A) (A)—~9V2i(A)), it may be

assumed that

() ®a(Q,~p) BaHr(-Q) = H+(L)
for some f.g.free A-module L. Then

(Qe) = (B (e®Q@-00-0*,L81%), (¢ ],)

BU(2® 300,@ -9 ) @HE(-Q )i By o @ -0, L)
a’ 'a

€ im(B:V (Aa)"“* Ugg(A)a(A)) ,

2i+1

> a
verifying exactness at Ugg(A) (a)

e «
Given (Q,9;F,G) € ker(B:Vzi+1(Aa)———e-Ugg(A) (a)) , it

may be assumed that
(By(Fo@®F3,G,®G8),[9],) = Hi(L)
with [L] € iO(A)“.
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Let
Py = LOL* = B (F @Fy,6,®08) € [P(a)]

and define an Aa-module morphism

£:2 = (Py) —Q
by extending the inclusion of PO in Q . Let

(P, ¥) = tH+(L)

and let

& : P —>P*

be the unique Aa-module morphism such that

t*(p£p*)f = 0+0* € Hom, (P,P*) (6-9) (P)E §:; szg .
a i=

Define Aa-module morphisms

] *ta

- — *

(t* o : P* = L;@La———) La@La =P
a

1

-1
= * . = Y *
§ = 1@t : P=1L ©L* L &L

for some isomorphism t € HomA(L,zL)

Then

1
hy == 16(0 v:) : (Q,p) ®H+(P) ——(Q,9) ®B£(P)

1 -£§ 0
h, = 0 1 0 | : (Q,9)@H+(P) —>(Q,0)BH+(P)
I (p1p*) -S*Oy 1
are self-equivalences (over Aa) such that h, preserves the
lagrangian F®P of (Q,p)@®H+(P) and h, preserves the lagrangian
FeP* . It now follows from the sum formula of Lemma 3,2 that
(Q',9';F',6') = ((Q,9)®H£(P);n(F®P),6®F) (h=h,h,)
is a xformation over Aa such that
(Q',9';F',6') = ((Q,p)DH+(P);F®P,GOP)
(A

(Q,;F,G6) € V

2i+
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Define a modular A-base
| .

G, = GoePo
for G', giving the hamiltonian complement G'* = G*@® P* to G' in
(Q',p') the dual modular A-base

Gé* = Gé&l’g .
Let

QA = Gé%(}(‘)*
be the corresponding modular A-base for Q' .

The A-module morphism

¥iQ'—s Q' 20 2dx s 37 2dx. (x. € Q)

R d J:O J J
ig such that
V(F') < F'

because

Hot o ot
hix,y) (x,y)E2 F.@P
vh(x,y)=§ if { 0770

n(0,7'p(£8(y)-x))  Ux,y)ea"Fy@P;

where B is the projection
B=(1 0):Q=P,®(F@r ®(a,@®68)7) —> 2, .

It follows that each x € F' has a unique expression as

with
xg = a(1-v)z vz dx € POy,
and so
Fy = F'nQy
is a modular A-base for F', (This is precisely the same argument
as was used in the untwisted case,in §2 of II.). Now

[Fg] - L@ Py) € ker(E:K (A) >Ky(A ) = im(1-a:Ky(a)—E,(4))

{by the reduced version of Lemma 4.1), so that
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{(Q,9:F,G) = (Q',9";F',G")

E(H-_&-_(G('));Fc'),(}(')) € im(é:Uél_';?)Ko(A)(A) — V4 (8))

We have shown that

ker(BiV, o (4 ) —> UM (1)) sa(e:ul7OFOW () v, (a))
Chasing round the diagram
m
Vo141 (A)\ 21+1 Ag)
\ a
Uy g (A) ET (Ro(a) /B ()9 =(1-a)F(8))

~_

(which is part of a braid, and anticipates the definition of

C s tma t Uy, () — uilm®Rol gy

the exactness of

V.. . (a)-S5v (4, )~——)UKO(A) (a)

2i+1 2i+1

follows.

[ ]

In the untwisted case, a=1:A—»A , Lemma 6,1 gives

a short exact seguence

00— U 1(A) (A )———9?’ (A)———aO

21+ 21+1

which splits, with B split by

€7
Ui (8,)

E: V2i(A)."*_5 2i+

(2,9 (Q, @09,

GB—@Z;él(Qz,@z),(zeai)ZA(QZ’@Z)> R
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Given a *-invariant subgroup R§;§1(A} define

BVER () — 7807 R4 (4,952,0)—— (2,6)

as follows. Let
(Pae) = (BN(FOQFasGO@ Gg) ? l_q)]o)

with FO’GO the modular A-bases of F,G generated by the given
Aa~bases. Let'fo € R be such that N
T4,9;E,9) =ET €E RCX ,(4) (=coker(K, (2,)—K,(4.)))
(so that by the reduced version of the exact sequence of Lemma 4.1
7, is unique up to torsions in Rr\(1—a)ﬁ}(A) ). Now
[P] = Bigy= 0 € K (4) ,
so that for sufficiently large N > 0 P is a free f,g. A-module.
Applying Theorem 4.2, note that
qxQ,9;F,8) (F ®F%,6,DG) ,
N1

(B
1@ e p@(c @) — 2@ (F,@FF) )

iz, € K(4,a)

with f defined by
T(GOG*) = FOF* .
Choosing any A-base for P, it follows that’
JT(1:22 (G ®GE) —> Pz (F®FE)) = 3¢, € K(4,a) ,
and so (by Lemma 4.1)
N ~
(1:22B(G B EE) —P@z (F®FY)) - Ty = (1-a)T € K, (4)
for some %, € R;(A) which is unique up to torsions in (1—a)'1R
(allowing T to vary). Changing the base of P by'z-'1 , we can
ensure that
T (1:2PD(G . ®C*) —PD®Z (FDFY)) =T, €RCE (8) (%) .
~VAI0¥S0 ~ ~0 =0 ¢ 1
Let
B(Q:@;?\_’g) = (2’6}
with P in the preferred class of bases of P {unique up to changes

in (1-a)7'R ) satisfying the condition (*). Then
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(1-a)r(g,e) = _(r0+1b*) €ER,
and so we dc have an element
-1
(1-a)” 'R
(2,6) € V3, (a)
which does not depend on the choice of TO or P . The verification

that this does define a morphism

_ -1
_ ~ER (1-a)" 'R
B i Voyq(ay) =V (4)

is by analogy with that for

B : y—u{1m) T ()

21-*—1(A

carried out above, taking into account torsions rather than
projective classes.

Define also

¢ Vé;'a)-1R(A)—% Vgi(A) i (L) —> (Q,9)@® a(g',—qﬁ
where g: is Q with the base defined by
Y= (exe®) T
80 that
Z((L,9)®al(@-9)) = (1-a)7(Q,9) € REK, (4)

Given a s-invariant subgroup SS:E(A,a)‘define

B s Ty, (8) —U5 (&) 5 (Qe;F,8) F—> (By(F @ Fs,6,@88 ),l9])

with FO,GOthe modular A-bases of F,G generated by the given Aa-bases>

s0 that
| By(Po @Y, G, DaE) ] = BT(Q,9:F,8) € T = p(SISKy(4)
Define also
Ul (a) — VR (4) 5 (Q,0) — (Q',0")
2i 21 ' +9 < ¢
with

(Q',9") = (Q,9)D a(Q,-¢)BHL(-Q)
¥ = (e@-Q ®(t(p19*) '@ 1) (Q@-Q)*
~ Lauany - )
for any projective inverse -Q to {, and any A-base (@gizg) , where
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t € HomA(Q,zQ) is any isomorphism such that [Q,t] € S (and is thus
unique up to composition with automorphisms of Q with torsion in
i71(8) = REK, (8) ). Wow
Q= (20-0), ®((p 20%)7'® 1) (4@ -}

is a hamiltonian A -base for £(q,9) such that

T (139, =91 = 1la,5)e K (8
Applying Theorem 4.2,

az(1:Q; @) = [Q,8] € sc&(a,a) ,
so that

UL et)

I

QEUQ' ,9")
~(1Q,%] + [Q,t]*) € SCK(4,a)

It

and
T(Q',9') € 371 (8) = REEK,(4) .
Thus we do have an element
(Q',9") € V3, (a)
which does not depend on the choice of (Béi:ﬂ) or t.
The verification that all the morphisms B, C appearing
in the sequences

R

-1 __—
2141 (8g) 2 Vgi_a) ) ~—C-»v§i(a) “E"WZ?(%)

R E .o
Voie (&) —V

VR

2141 ¢4) 7 (Aa)i"Ugi(A)“q‘“’Vgi(“ —'z‘—ﬁgi“‘a)

2i+1

are well-defined, and that the composite of successive morphisms
is zero, is by analogy with that for the sequence of Lemma 6.1.
Exactness follows, by the argument of §5.
In particular, in the untwisted case a=1:A-*A , with
s = JRIBHMCK(4,1) = K, (A)@BK,(4)
there is defined a split short exact sequence

§ S
0 —> vy, () T

B T
141 (8) = U5, (8) —> 0,

with splitting morphisms
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s
SAPYIw (Az) _)Vgiﬂ (4)
7.uyT 3 .
B:U, (A) —— V5, 1 (A)5
(Q,9) — ((Q,8Q,,9,8 -9, )®HL(-Q,);L,,5L,)
where
§ =2@1 : Q,®(Q,8-0,0-2) —>q, B(Q,D -, D-})
L={(xy,0 €q0e®-Q,e8-0 | (x,y) € (Q;%‘l) }

for any projective inverse ~Q to Q, and any A-base (Q@-Q).
e —
Given a *-invariant subgroup TQI'ZO(A) , define

. -1
BaU5Ta,) —> U510 T ()5 (Q,9) v (B 5By, By (g )

as follows, where
N-1 .
PN = Z: ZJQO .
J=0

Choose a modular A-base QO of Q such that

[Q] € TS (8)

let

N

v:Q@Q*—)(QO@Q6)+; 2 2%, s

j:—OO J

" ZJXj (xjﬁ(QdaQé)),

3
and define

By(Qpa) = {(zN (127, Ngre*)x) By DPE [ xEBy ((g29*)7'08,40) 1.

Then BN(QO,¢) is a lagrangian of H;(PN),with hamiltonian complement

BX(Qps0) = {(=¥y,pro*) (1-)y)ER @R |yEB(Qy, (929*) ™ Q8) }.
The associated Fhermitian product of H;(PN)

0 1

. H N@Pﬁ R Pﬁ@PN = (PNEBPE)*

\Fi o)
restricts to the A-module isomorphism
B} (Qy»9) —By(Qg,0)*;

(-»y, Xorg*) (1-9)3) = (2N (1-9) 27, Wore%)x)=> [ (p2p%) (¥) (x) ]) -
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Hence
[By(Qer9) ] = [By((pxe%) 7 08,Q0)] € Ky(a)
and
(1-a) ([BR(Qy,9) I-[PFD)
(L -Lz"ag D +([2"ag1-Lag D

[Qo)-[0g] € TSE(a)

80 that we do have an element
-1
B . (1=a)™'T
Increasing N by 1, note that

Biret (Qos9) = BN(QO:Q)GB{(ZN+1(1—»)z'(N+1)x,(¢:m*)XI
xe(mzm*)’j(zNQg)} .
Now Bﬁ(Qo,m)QazNQo is a hamiltonian complement in H;(PN+1) to
both BN+1(QO,¢) and BN(QO,Q)GBZNQB . Applying the sum formula of
Lemma 2.2,

N
(H;(PN);PN’BN(QO’q))) = (H:(PN-iJ);PN-F] ,BN(Qqu))ez Q.a)

N
(H:!-—(PN+1 ) ;PN‘§‘1 ’Bﬁ(QO ,CP)@ 2z Qo)

it

(Hi(PN+1);PN+1’BN+1(QO’¢))

-1
€ U(q—ﬂ‘.) T(A) .

211 »
Hence the choice of N is immaterial to B(Q,p) € Uéljﬁ) T(n).
Let Qé be another modular A-base of Q such that
[Qler,

write
N-4

Pl = szl
N jég c
and define

o0 . [-~] N
1 . »* 1 1T +¢ J J
u' o QDY —5(Q°$Qo ) ,jzz 2 %y v—-—»; 2%

(x; € (Q) ®Y*)
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Let M > 0 be so large that

M . M .
' J Jor
QO gj:— 2 QO QO g_ J:Z-MZ QO

Then N' = N + 2M is sufficiently large for BN,(Qé,@) to be defined,
with

BN.((@i@*)'1Qé*,Qé) = (?1@*)“1 (T

By (QQ*,48))
@28y ((p20%) ™" Q¥ Q) DBy(Q), Q)
and

By, (90,9) = {(28 (1-0)™ ', (g2p*)x) [x€(gre®) ™ (2" By (Qg*, 00}

® {(x, (pre*)x) |x€2" B ((929*)71Q8,Qy))
& {(x,»" (pxo*)x) ]XEBM(QO,Q('))} C PO .
Now

Pt = ZM+N

' M '

and
2B, (04,00 2B (4, 0) BBy (94, Q4 %)
is a hamiltonian complement in HI(PI;I') to both BN.(Q('),cp) and

zM+NBM( Qs Qg) @zMBN( 9 ) @BM( Q> Q(‘)) . Applying the sum formula

of Lemma 2.2,
(H;(PI'I' ) ;P&s rBNv (Q('),(p))

(B (L) 3B, 2 By (0%, 08 D2 By (Qq 0 )@ By (00, )

M+N M+N

' MR '
By(QY,Qp) )2 BylQh,Qy) 2

i

(H(z By (Q*»%))
D (B (Py) s 2y, By (9 9))

D (5 (By (45 ,Q8) ) 5 By (g Q8) »By(Q8,94™))

-1
MEz(P) iRy, By(Qgee)) € ULITH T4y

But zB{(Q,,9)®Q, is a hamiltonian complement to By , (Qg»9) in
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H;(PN+1) , 80 that

(H;(PN);PN’BN(QO'CP)) = (H;(PN+1);PN+1 'BN+1(Q0'(P))

(1-a)"'a

]

Hence

B(4,p) = (Ho(Py) 12y Bi(Qge)) € U4178) 7 T(a)

does not depend on the choice of modular A~base QO .
Finally, suppose
(qu)) =E (Qoycpo)
for some (QQ,@O) € Ugi(ﬁ}. Then

- : ) (1-0)7'r
B(Q,(P) = (H;(O);OyBo(Qqu’)) =0 € U2f|.—1 (A)

Hence
UET(A )——)U(1"a)_1T(A)-(Q Y — (H=(By) 3Py s By (Qr y 03
2i%a 24-1 EANELS FAVRN/ I Pt o ?

is well-defined, and such that the composite

- s -1
Ugi(ﬁ.) -—-"—)UZ?{AG) B U= Ty,

2i-1
is zero.
The morphism
- (1-a)" "o
C=1-a: U21 1 (A)«-«+U 1(A)

(Q'(P;F;G)’_"‘"—) (Q’QJ;F)G) @a(Q,—WF*;G*)
is clearly well-defined, and such that the composites of

successive morphisms in

(A ) ’Uél'_?) l(A) ’Ugl  (4) Ui_f 1

is zero ( CB = 0 follows from the relation

-1 =
aB(Q,0) = B(Q,¢) € USI~9 Ta)  ((q,9)eu51(a )

proved above).
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Given a #-invariant subgroup RC }2'1 (4), define

z e
B s Tex(a ) = ViTY T Ry (Q,90 > (H5(2) iRy, By(Q0e9))
""“‘\J

as follows. Let‘go be the modular A-base of Q generated by the given

Aa—base, with the corresponding A-base. Let N > O be so large that

BN((@iQ*)—1Q5,QO) is & free A-module. Let T, € R be such that

z(Q,9) = T, € FRSK, (A) .
Then, working as in the definition of B : V;§+1

there is a preferred class of A-bases Bx((¢i¢*)—1 B’QO)’ unique up to

-1
(a,) —> vSI™ 7 Ray,

changes in (1—a)-1R for varying Ty, such that

T (123 (pa9*) 705, 0 @8 —— By (9x9%) ™' 05,85 ) @loze®) ™ (2"a))

T T e

=TO€ R?.K1 (A) .

Give BN(QO,@) an A-base by choosing one of these, and setting
N =N - -1y
By(Qys9) = {(z" (1-2)27"x,1(p29* ) x)e 2 @ P | x€By ((929*) 7 05,0} -
=Y

/_\M‘
Bye1(%0r9)
Let ( ) stand for BN+1(QO,w) with the base
B Qqs®
B4 (9079
-1 -t )
Pt (929708, 59) = By ({o29) 02,9009 %
-1 -1 -1, _H,
By, 1 (lo29%)7 Q¥,Q0) = Byl(gzp*) Q5 Q) Dlyp*) ™ (2 9

Using the hamiltonian complements given above (in the definition

(1-a)"‘m(

of B : UEE(AQ)-—~9U 4) ) it can be shown that

211
(Hg(Pyy )5 Py »Brryq Q090
. N, *
= (p(Pyyy )5 Py » 28y (0o 9 )P 274E)

{4

-1
aliig(2) iy, By (%,9)) € vl R

and similarly
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(Ho (Py . );5P (Q,9))
N1 N+1’w

!
(Hz (B g )5 B,y » By (G 0) @ 2708)
S — S

[

-1
(g (Py) 3 By, By (Qg,9)) € e R

Hence
(1—&)‘:(H;(PN);E ’ N(Qo,(}))) = (ro"c*) €ER,
and we do have an element
B(Q,9) = (Hp(Ry) iy By(done)) € V5175 "Ry

Define also

(1-a)”

C=1-a : V2i-1

By —vl s
(Qo;F,6) > (Q,9;F,0)8a(Q,-g;F%,6*%) .
Given a #-invariant subgroup SCK(A,a) define
BV, (A ) —> UD.  (8);5(2,0) > (Ho(By) 32y, By(Qg,9)
with QO the modular A-base of Q generated by the given Aa-base,
so that
(B (Qp»9) ] = Bx(Q,9) € T = p(8) SR (4) .
Define also
Cngi__1 (a) *V'giq (4);(Q,9;F,G) v—> (Q",9'3E",G')
as follows. It may be assumed that F is free and that there is

defined an isomorphism t € HomA(G,zG) such that [G,t] € S .Let
(Q'y‘P';F"G") = (Q,@;F,G-}ea(Q,’ﬂp;F*,G*)
for any hamiltonian complements F¥*,G*% to F,@¢ . Choosing any
base for F, let
F' = FezF*  G' = (1@t* 1)(GDG*)  (G@C*) = FOF* .
~ % ~ =
Now
- | -1
ET(Q,9"5E",6") = T(Q@Q,,p @-p ; (1@8)) (Far*) ,(1etx™ ) (Ge6*) )
= 1(%-1)(16,t]-[F*,£]) € i(8)CK, (&)

( 1 as in Theorem 4.2 ).
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Hence
T(Q',9"E,6") € 37 (8) = REE, (4) ,
and we do have an element

C(Q,9;F,6) = (Q',9";F',6") € V i1 (A) .

The verification that the morphisms B, C appearing in
the sequences

£

C
V() —E ¥R (s ) -2 v TR SR —o T ()

2i-1 &)

2i- 1(

£ S B € %5
v (w7 () —Eoul. =Sl (S5, (4

2i-1
are well-defined, and that the composite of successive morphisms

is zero, is by analogy with that for the sequence

-1
2w i) Bl Ty S ol ST )

which was dealt with above.

We can now apply the trick (first used in [4])of
introducing a new Laurent variable to deduce the exactness of
these sequences from that of Lemma 6.1.

Note first that for *-invariant subgroups

5 = J(RDHDC(4,1) = &, (DPDK,(4)

there is defined a morphism

B UL, (A)—T, (4 );( (6, ® (’” ! ))
BE: U ,(a)—Vo (4 );(Q,¢;F,0 ¢ De*
2i~1 2irFgiri Tyt ~z ~g' 5 (W—Z)ﬁﬁtlf
with G any base for G (which may be assumed to be free), and

('«\.:«.X‘ Y )
: GG —>G*eh.G

6 AxX*
an expression for
0 1
: FRF* —3 F*PF ,
0 o

for any hamiltonian complements F*,G* to F,G in (Q,¢).
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It was shown in §3 of II. that this does define a morphism B, and that
oy (A)<__._v L) e, ()
B

is a direct sum system, if 8 = {0} or R(A,1). The proof generalizes
immediately to any S of type j(R)®Dp(T)
Let z' be an invertible indeterminate over Aa .

Identify (Aa)z, with (Az,) , » where

a
oo
at 1 A —>A, 5 2] 238 —s 37 z'Ja(a) ,
20 e =m0

and write Aa - for this double lLaurent extension of A.
b

8, gx (Aa)
Let be the infinite cyclic subgroup of { _ generated by
8} L&,
T(€:A_ ~—>A ) §e Hom, (A ,A )
{ , a a , Where {, Aa e’ e is multiplication on
% (£ :AZ,—-)AZ,) §e HomAz'(AZ,,Az,)
z
the right by . Define
z' 2y s(z )8 @ E(a)SY
Walhy o) =T «,z0)  (n(mod 4))

e(z')sA —— A
where ¢ _ %2 is the inclusion. The preimage of

s(a):Az,———a Aa,z'

K(a,1)% = §& ()% TR, (A)* CR(a,1)
undexr the projection
a:k, (4,,) = &K, (A)®BK (A)@Ni1, (A,1)ONi1_(4,1)
——— K(a,1) = 5K, (1)@ TEy(a)

(as defined in Theorem 4.2) is

W = ek, (A)*@ B(1 )@ Nil, (4, 1)@ Ni1_(4,1)CE (A ,) ,
where
= (1-0)7" (1m(Ky (8) —> K, (A))C K (A) .
Further,
(1-a1)7"(s) = K, (M) @F(r )@ N1, (4,1)" @ Ni1_(4, ) C K, (4,,),

where at
Ni1 (4,1)" = { ze K, (a,1) | ve Hom, (P,P) nilpotent ,

11

4 =‘;:'-(1+)’z :Pz’—)PZ') =t(1+(Z»)Z'i13(ZP)za—’(ZP)Zs) € §1 (Azs)}c
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Hence

Al

(4,1)% (a,) = an(A,1)“ (4,1) (by definition)
1y=1 1
v ) (= (4, ta=1)

by the exact sequence of Theorem 3.3 .

— A
All the squares of shape L il R T T in the diagram

R K. (a)% &)
Vpy(A) —— =9, Vo (8 =25 4 21 (a) = v Voi- 1(“‘)(_’?21-1 (&)
B }?’(Z') &) Bz) Be)| |Be) B |B@)
w V -
~ ) o! ) ~ €(°<)
Woi+41 (Az')s(ﬂ; Woi41 By, z1) —Tsh ) (4, D= Zi(A DT (A L)
A =
! %@ )| e q"’i %) ) F(zo qz')l L@
N N o4 Y
), 86 K, (4) Ced 69
Wi (A) — 2 Woiet (Be) — V21i (1) === (A)_’w 1 (&)

commute, except for those round the shaded area, the columns are direct

(4) are exact (being

sum systems, and the rows through W (AZJ,W

21i#+1 2i+1

the sepecial cases S K (A D), {0}€ i1(A) of the sequence of

o=
Theorem 5.2 in the range of dimensions considered in 86). It was shown

in Lemma 3.4 of II. that the square

g  Kow)®

Voslhg) = Ups 4 (A)
8= l‘éﬁz‘v

B ~%(,1)%,
21+1(Aa z')___+ Vgi ) (Az')

skew-commutes for @ = 1 . The proof generalizes immediately to the
twisted case (for any a). It follows that both the squares round the
shaded area (in the large diagram above) skew-commute, and that the
row through V2i(A) is exact as well. But this is the special case

T = {0} of the sequence of Theorem 5.1 in the range of dimensions not
already covered in 86. As explained in §5, this suffices to complete

the proof of Theorems 5.1,5.2,5.3.
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§ 7, Lower L-theories

Bass has defined lower K-groups KP(A) for p <0 ,
with natural split injections
B i K (A) —K ,(4)
such that

Kp+1(AZ) = (A)@BK (A)Gamll(p)(A)@Nll(p)(p.)

p+1
There is defined a duality involution

* 3 KP(A}-——9 KP(A)
for all p <0 , with

Bx = B : K (&) —> K 4 (4)

p+1

*(Nilip)(A)) = Nilfp)(A)
= ¥

In II. there were defined "lower IL-theories” Lgp)(A)
for p < 0 and n(mod 4), by
Lép)(A) = ker( &: L(p+1>(A ) — L(p+1)(A))
: (0) -
with L (A) = Un(A) .
Given a x-invariant subgroup QC_ZKO(A) let QSKO(A)
be the subgroup to which the natural projection KO(A)->ﬁ%(A) sends Q,
and define
13(s) = t%4)  (n(mod 4)).
n n
|
Assuming inductively that Li (AZ} has already been defined for all

*-invariant subgroups Q'SK +1(Az), define

(4) ®BQ

K .(4a)
Q +1 . +1
L3(A) = ker(& : Ln+§ (4,) —— L 27 (4))

for *-invariant subgroups QQ'KP(A), p <0.
Theorem 2.3 gives

Theorem 7.1 There is defined an exact sequence of abelian groups

oo 1 (/) — 13 — 1 (0) —ENQ/Y — ..

for x—invariant subgroups QEQ'C KP(A) ,y P<0.

]
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In particular, it follows that

L)y 01C K (
L§<A) ™ (&) if Q = (03& Ky

(p),.
an)(A) KP(A) .

Theorem 5.1 gives

Theorem 7.2 There is defined an exact sequence of abelian groups

Q E £Q B (1—0:)'1
ees ———aLn(A)-—-4 L (Aa)———a-L

Q) C 10
N (m—518 (1) — ...

in a natural way, for *-invariant subgroups QQQKP(A) , P <O .

L]

4 lower L-theoretic analogue of Theorem 5.3 requires a lower

K-theoretic analogue of Theorem 4.2. So far, this is only available
in the untwisted case:

Theorem 7.3 Let Q =& (R)® ms)ngH(Az)’ for some x—invariant

subgroups R&;KP+1(A) , S€ KP(A) (p < 0). Then there is defined a

direct sum system

Ry —E 4. Q B .8
La) &1 (a) (—T—)L’H (A)

in a natural way.
L]
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