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by A.A.Ranicki 

Introduction 

The algebraic definition of the surgery obstruction groups 

I 
L~(x) {open 

L~(,) , for surgery on ~compact 

L~(~) proper [compact 

complexes up to 

simple 

ring Z[~], together with the involution 

g6~ ngg 

given by a group morphism 

w : ~ , z 2 = { I , - I }  

manifolds, over 

I m 
finite 

simple 

Poincar@ 

homotopy, depends on n(mod 4) and a group 

>~ - I  (ngGZ) g~ w(g)ngg 

(cf.[10]). For finitely presented groups ~ it is possible to obtain 

geometrically direct sum decompositions 

s ~L~ I ( ~ )  ( [ 6 ] )  L~(~ × Z) = Ln(~) _ 

The hamiltonian formalism of [4] allowed a unified 

approach to the three L-theories, and a purely algebraic description 

of these decompositions. This was done in parts I. and II. of this 

paper ([5]), which will be denoted I.,II.. In I. there were defined 

abelian groups l Un(A) {f.g.projective 
I Vn(A)' using quadratic forms on ~f.g.free 

Wn(A) [based 

A-modules, for any associative ring A with I and involution and 

n(m0d 4). It was then shown in Ii. that there are direct sum 

decompositions 
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Vn(A z) = Vn(A)~Un_I(A) 

~n(Az) = Wn(A)~Vn_I(A) 

where A z = A[z,z -I ] is the Laurent extension of A, with involution by 

z w-~z -I , and ~n(Az) differs from Wn(A z) in at most one element, of 

order 2. 

Here, we shall generalize I. by considering the intermediate 

1 UTn(A) If-g-proj ective 

L-theories ~Vnl~(A) , defined using quadratic forms on 

Lbased 

i pro j e c t i v e  c l a s s e s  
A-modules such that all the ~Whitehead torsions lie in a prescribed 

I T C_~o(A) 
subgroup . The direct sum decompositions of II. generalize to 

R~ ff~ (A) 

exact sequences 

B C U T --~UT(A) ~ u~T(A ) ~U(I-~)-IT(A) (A)--@ (Theorem 5.1) 
• " " n-1 ~ n-1 " ' 

V(I-~)-IR(A) C ~V~ I(A)--~ . (Theorem 5.2) ..-~V~(A) ) ~R(A ) B) n-1 - " 

..-,-tVRn(A) ~ Ii VSn(A) B ).UnT_I (A) C ~.. V~n_ 1 CA) "l... (Theorem 5-3) 

where A is the s-twisted Laurent extension of A (assumed to be such 

that f.g.free A -modules have a well-defined rank) for some automorphism 

of A, £is the inclusion of A in A , and C is induced by I-~ . 

For A = Z[~] it is possible to identify 

L~(~) = Vn(Z[x 2) = V~I(ZL~]) (A)  

L~(~) = v ~ i ( z [ ~ ] )  ( = Wn(Z[~]) ,  up to 2 - t o r s i on  ) .  

The special case R = {x} of Theorem 5.2, with ~ given by an automorphism 

a • x ~ such that w~ = w : ~-~Z2, is the exact sequence 

• .. ~LS(~) ~ LnS(~X Z) ~ L'n_1(~) ~ Lsn-1(g) ~ "'" 
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of the case H = H' = K of Theorem 10 of Eli, where a geometric 

derivation is announced, following on from some earlier work of 

F°T.Farrell and W.C.Hsiang. The groups L~(x) are defined as L~(x), 

except that torsions are measured in Wh~/ker(1-~:Wh~ ~Wh~) rather 

than in the Whitehead group Whx = KI(Z[x~)/{~}. (Thus, if ~ = I 

torsions are not measured at all, and L~(~) = L~(~)). It is Cappell 

(in [I~) who first used the intermediate L-theories. 

I am grateful to Professor C.ToC.Wall for sending a 

preprint to [IO~ (which contains an earlier account of the 

intermediate L-theories), and for suggesting that I generalize II. 

to the twisted case. 

I wish to thank the Arhus Mathematical Institute and the 

Battelle Seattle Research Center for their hospitality, and also 

Trinity College, Cambridge, for partial support of my stays there. 

This part of 

~I. 

~2. 

~3. 

~4. 

~5. 

~6. 

~7. 

the paper is divided as follows: 

L-theory 

Intermediate U-theories 

Intermediate V-theories 

K-theory of twisted Laurent extensions 

L-theory of twisted Laurent extensions 

Proof of theorems in §5 

Lower L-theories . 

This part can be read independently of the previous parts, taking 

for granted the proofs of the results quoted from I. and II° 
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~I. L-theory 

The purpose of this section is to introduce some 

notation, and to recall those definitions and results from I. which 

will be needed in this part. 

Let A be an associative ring with I, and with an 

involution, that is a function 

-: A ~A ; a~ ,, 

such that 

i) (a+b) =a+ 

ii) (ab) = ~.~ 

iii) ~ = a 

iv) T = I 

for all a,b £ A. 

Let ~ (A) be the category of finitely generated (f.g.) 

projective left A-modules. Denote the class of objects of~(A) by 

by I@ (A) I. Given P,Q C I~ (A) I , write HomA(P,Q) for the additive 

group of morphisms (f:P-~Q) G~(A). 

There is defined a contravariant duality ftulctor, by 

* :~(A) ~CA) ; 

Q ~ Q** ; x --~ (f ~f(x)) 

allow an identification 

** = I : @ (A)" )~(A) . 

~(~)I 

IQ * = HomA(Q,A), left A-action by Ii e I~ (A) I ~ ~ |A •Q* ) Q*; (a,f)~-~ (x~-~f(x).~a) 

HomA(P,Q)~ (f*:Q* ~ P*;gF-~ (x~-*gf(x))). 

The natural A-module isomorphisms 

(Q e I'~J~(A) I) 
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Let 

f : A ....... ~ ~' 

be a morphism of rings with involution (such that f(1) = I 

Give A' an (A',A)-bimodule structure by 

A TM A'× A > A' ; (a',x,a)~----+a'.x.f(a) 

The induced functor 

f .p(A) . . . .  ~(~) ; 

is such that 

and 

e A'). 

~ p I -~fp = A'@Ap 

~geliomA(P,~) ~ I ®g6Hom A, (fP,fQ) 

f(A) = i' 6 I~ (i')I 

.f = f* :~ (A) ~(A') 

(up to natural equivalence). 

Given Q C I~ (A) I , and ~ C HomA(Q,Q* ) such that 

0* = +_8 G HomA(Q,Q*) 

(for one of the signs indicated), there is defined a +hermitian 

se squilinear product 

< > : QXQ ~A ; (x,y)~--~ <x,y> ~ ~(x)(y) 

with 

<x,y> = +_<y,x> 6 A (x,y 6 Q) 

A +form (over A) is a pair 

(Q 6 I~ )(A) I, ~ 6 HomA(Q,~*)). 

We shall be interested only in the +hermitian products 

= ~ +9* : Q . . . . . .  ~Q* 

associated with +forms (Q,~). 

An equivalence of +forms 

f : (Q,~) > (q',V') 

(over the same ground ring A) is an isomorphism f G llomA(Q,Q') 
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such that 

f*~'f - ~ = Y ~ y* G HomA(Q,Q* ) 

for some lform (Q,Y). Then 

f*(~' ~ @'*)f = ~ ± ~* 6 HomA(Q,Q*) , 

so that equivalences preserve the +_hermitian products associated 

with ~forms. 

The direct sum @ in ~(A) generalizes to a sum operation 

on +_forms : the sum. of +-forms is defined by 

(q,~) ~(~',~') = (Q~Q',~'). 

A ~form is trivial if it is equivalent to the hamiltonian 

+--form 

~+(P) = (P @P*, (o 
-- 0 

on some P 6 I~(A) I. 

0 :P~P* ~P*OP = (P•P*)*; 

(x,f)~---~((x ' , f ' ) , , ,  ~ f (x ' ) )  ) 

L-theory considers _+forms up to equivalence because that 

is how they arise in even-dimensional surgery obstruction theory. 

Surgery corresponds to the addition of a trivial +_form (or the 

inverse operation ), 

A subla~rangian L of a ~form (Q,~) is a direct summand L 

of Q such that 

i) j*(~*) 6 HomA(Q,L*) is onto, 

ii) j*~j = 8~8" G HomA(L,L*) for some Tform (L,6), 

writing j ~ HomA(L,Q) for the inclusion. The annihilator of L in (Q,~), 

L = ker(j*(~*) : Q---*L* ) 

is then a direct summar~ of Q (by i)) containing L as a direct summand 

(by ii)). Restriction of ~ C HomA(Q,Q*) to a direct complement to L in 

L ~ defines a ~form (L ~/L ,~ ) uniquely up to equivalence. 
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For example, L G ]~ (A) I is a sublagrangian of 

CQ,~) = ~4(~) ~ ( P , o )  

for any +--form (P,O), with 

( L ~ / ~ , ~ )  = ( P , o ) .  

The converse holds up to equivalence, by the following version of 

Witt's theorem in the classical theory of quadratic forms. 

Theorem 1.1 Let L be a sublagrangian of the ~form (Q,~). The inclusion 

j : L~(L ~/L)-- - - -~ Q 

extends to an equivalence of ~forms 

f : H ~ ( L ) ~ ( L ~ I L , ~ )  > (Q,~) 

uniquel~ up to composition with the self-equivalences 

(I0 0~0")(~i1 : H+(L)~_ (L &/L,~) ~ H+_(L)~(L ~/L,~) 

given by ~forms (L*,e). 

[] 

A sublagrangian L of a +_form (Q,~) such that 

L & = L 

is a la~ran~ian of (Q,~). 

Corollary 1.2 A ~ form is trivial if and only if it admits a lagrangian. 

[] 

A +-formation (over A) , (Q,~;F,G), is a +_form (Q,~) over A, 

together with a lagrangian F and a suhlagrangian G. ~m equivalence of 

~formations 

f : (Q,~;F,~).. , (Q',~';F',G') 
is an equivalence of ~forms 

f : (c~,~) -~ ( Q , , ~ , )  

such that f(F) = F' f(G) = G' 7 • 
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The sum of ~formations is defined by 

(Q,~;F,G)~(Q',~';F',G') = (Q~Q',~';F~F',G~G'). 

A stable equivalence of +--formations 

If ]  : CQ,~;F,G) ~ (Q' ,~ ' ;F' ,G')  

is an equivalence of ~formations 

f : (Q,~;F,G)~(H~(P);P,P*) ~ (Q',~':F',G')~(R~(P');P',P'*) 

defined for some P,P' G I~ (A) I. 

A +_formation is elementary if it is equivalent to 

(R±(P);P, U(p,e)) 

for some ~form (P,~), where 

(P,e) 

is the ~ of (P,e). 

L-theory considers ~formations up to stable equivalence 

because that is how they arise in odd-dimensional surgery obstruction 

theory. Surgery corresponds to the addition of an elementary +-formation 

(or the inverse operation). 

A hamiltonian complement to a lagrangian L in a ~form (Q,~) 

is a lagrangian L' which is a direct complement to L on Q. It follows 

from Theorem I.I that every lagrangian has hamiltonian complements, 

and that the hamiltonian complements to P* in H+(P) are just the graphs 

r of ~-forms (P,e), for any P ~ l~°(A) l. 
(P,e) 

Corollary I,~ A +..formation (Q,~;F,G) is elementary if and only if G 

is a lagr~ngian sharing a hamiltonian complement with F. 

Given a lagrangian L in a +._form (Q,~),and a hamiltonian 

complement L', the A-module isomorphism 

L' ---* ~* ; x ~ (y ~ (~±~*) Cx) Cy) ) 

will be used to identify L' with L* (in general). This is an abuse of 

language, as hamiltonian complements are not unique. 
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~2. Intermediate U-theories 

Let I be an abelian monoid. Given a submonoid J of I, 

define an equivalence relation ~ on I by : 
J 

i--j i' if there exist j,j'GJ such that i~j = i'~j' £ I . 

Denote the quotient monoid I/-~j by I/~ , because it depends only on 

the stabilization of J in I, the submonoid 

Y : {ieIli-jo} 

Note that I/~ is an abeiian group if and only if for every i£1 there 

exists i'6I such that i~i'£J. 

Define the abelian group 

K0(A) = K(~(A)) 

as usual. The reduced group 

KO(A) = coker(Ko(Z)---~K0(A)) 

can be regarded as the quotient monoid 

{isomorphism classes in~(A)}/is/{ ..... 
omorphism classes of 

f.g.free A-modules}. 

Duality in~ D (A) defines an involution of K0(A) 

. : K0(A) ~ ~o(A); [P] ~-~ [P*] 

and similarly for ~(A). 

Theorem 3.2 of I. ( the case T = %(A) ) generalizes to 

Theorem 2~I For n(mod 4) let Xn(A) be the abelian monoid of 

I ~ classes of 
stable equivalence 

with + = (_)i. 

The monoid morphisms 

: Xn(A) * Y~n_ I (A) ; I 

%2=0 . 

I~forms I 2i 
......... over A, if n = 

+__formations ~ 2i+I 

(Q,~), , (H$(Q);Q,V(Q,~)) 

(Q,~;F,G) ~ (GA/G,~) 
n = 

2i 

2i+I 
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The monoid morphisms 

I I ( Q ' ~ )  ' ~ [Q] n = 
# ~ Xn(A) ~ F%(~) ~ ( ~ , ~ F , G ) :  > [ G ] - [ F * ]  2i+1 

define a chain map 
)n+1. 

: (Xn(A),B) I (Ko(A), I + (- ) 

of chain complexes of abelian monoids. 

Given a .-invariant sub~rou~ T ~(A) (that iS~*(T) = T) 

define a chain complex of abelian monoids, 

T T ~-I (_)n+1. 
(Xn(A),~) = (T, I + ) 

The subquotient monoid,s 

T 
Un(A) = 

(n(mod 4)) • 

ker( BT: T T )/ Xn(A)--~Xn-I(A) T T T 
/i "m( ~ : Xn+I(A)--@Xn(A)) 

are abelian ~r0uDs. 

A l-preserving morphism of rinks with involution 

f : A ~.A' 

induces morphisms_of abelian groups 

f : U n ( A ) '  . ) U n ~ A ' ) ;  , . / ( ~ 2 , ~ ; F ' G ) ~ - * C ~ ' @ A ~ " I ® ~ ; ~ i ' ® t ' ~ ' ~ ' ® G ) - [ 2 ± +  1 

for any .-invariant subgroups T_C~(A), T'C_ ~(A') such that f(T)_C T'. 

L] 

Following I., II. the groups U A) will be denoted by 

Un(A). 

~X form (Q,~) 
A (+formation (Q,~;F,G) is non-singular if 

I ~* G HomA(Q,Q* ) is an isomorphism . Then 

G is a lagrangian of (Q,~) 
T 

T ~ {non-singular ~forms G X2i(A) } / {H~(L) I[L]GT } 

Un(A) = 1 T 
{non-singular +_formations G X2i+I(A)} / 

{(H±(P)~P,r(~,e))l[P]~J". 
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11 

Inverses are given by 

-(~,~) = (Q,-~) 6 U2Ti(A) 

-(Q,~;F,G) = (Q,-~;F*,G*) g U T 2i+I (A) 

This is clear on noting that the dia~onal of a +form (Q,~), 

A ( ~ , ~ )  = { { x , x )  e Q~Q 1 x e  Q } , 

I lagrangian 

is a (hamiltonian complement to L~L* in (Q~Q,~-~), if (Q,~) is 

I non-singular " 

trivial, with L,L* any hamiltonian complements in (Q,~) 

The sum formula of Len~aa 3.3 in I. generalizes to 

Lemma 2.2 (Q,~;F,G)~(Q,~;G,H) = (Q,~;F,H) 6 U T (A) if [F], [G] [H] 2i+I 

Proof: The identity 

(Q,9 ; F,G) ~ ( Q , 9  ; G , t t ) ~  [ (Q,-~;  G* ,G*) ] 

~ [  (Q~Q,cp~-¢p ; F ~ F * , H ~ G * )  ~ (Q~Q,-cp~ ¢p ; LN.(Q,cp) ,H* ~B G) ] 

= (Q,~;F,H)~[(Q~Q,~-~;F~F*,G~G*)] 

[ (Q~BQ,~-~;G~G*,H~G*)~ (Q(DQ,-~; /k(Q,@) ,H*~G) ] 

is such that each of the +formations in square brackets is elementary. 

E T. 

[] 

Let G be an abelian group with involution 

* : G---~G ; gl )g* 

The Tate cohomology of this Z2-action is given by groups 

Hn(G) = { x 6 G I x* = (-)nx }/{ y + (_)ny, I Y 6 G } 

defined for n(mod 2), which are abelian of exponent 2. 

The exact sequence of Theorem 4.3 in I. (the case T = {O}, 

T' = Ko(A) ) generalizes to 

Theorem 2.~ Given *-invariant subgroups T-CT 'C - Ko(A), there is defined 

an exact sequence of abelian groups 

T ~ T,(A ) o" ... ~ H n+I(T'/T) )U (A) U n )Hn(T'/T) ~ ... 

{2i i.  where Hn+I(T'/T) )uT(A)I[P]~---~ L(H+(P)lp,p) if n = 

[] 
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3. Intermediate V-theories 

A based Armodule , Q, is a f.g.free A-module Q together 

with a base ~= (ql ,''',qn), and n is the rank of q. The dual based 

A-module Q* is Q* with the base q* = (q~,...,qn) given by 

(qJ) ={I 0 if i=j 

q'~ otherwise . 

Identify Q** with Q . 

Define the abelian groups 

K I (A) = GL(A)/E(A) , ~I (A) = eoker(K I (Z)--*K I (A)) 

as usual, regarding their elements as the torsions ~:(f:P--)P) of 

automorphisms (f:P--~P) 6 ~ (A) . There is defined a duality involution 

* : KI(A) ~ KI(A) ; ~r(f:P-gP)~--~T(f*:P*--@P*) . 

In dealing with +forms and +formations on based 

A-modules it is more natural to measure torsions not in KI (A), but 

in the slightly larger group K' (A) defined below, which coincides with 

~I (A) if A is such that f.g.free A-modules have a well-defined rank 

(e.g. A = Z[~]). 

Let I(A) be the abelian monoid of isomorphism classes 

of triples (Q,~,g) with Q a f.g.free A-module and f,g two bases of Q 

(not necessarily of the same rank), under the sum operation 

(~,f,£)~(Q' ,~' ,g') : (~Q' ,fef' ,ge~') • 

Let J(A) be the submonoid of I(A) generated by the triples of type 

i) (Q, (fl ..... fn )' (fl '''" 'fi-1 '6fi+afj'fi+1 ..... fn ) ) 

(6=ZI , a£A, i~j) 

The quotient monoid 

K'(A) = I(A)/J(A) 

is an abelian group in which there is a sum formula 

(Q,f,g)~(Q,g,h) = (Q,f,h) 6 K'(A) 
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It is therefore possible to regard the elements of K'(A) as the 

torsions 

m(f:P ,Q) : (Q,%,f(p)) 6 K'(A) 

of isomorphisms f6HomA(P,Q ) of based A-modules ~,~. 

By the "Whitehead iemma, the function 

K~(A) )K'(A);z/f:P~P) , , (Pe-P,~,(fel)b) 

is a group morphism, where -P is any projective inverse to P, and 

is any base of P~-P. In fact, there is a short exact sequence of 

abelian groups 

0--+ KI(A) ' K'(A) ~ ker(K0(Z)-~K0(A)) '~ 0 

where 

K'(A) > ker(K0(Z) )K0(A));(Q,f,g) I ~[mZ] - [nZ] 

if f = (fl .... ,fm )' g = (gl .... ,gn ). The duality involution 

. : ~'(A) ~K'(A) ; (~,f,g): ~(Q*,g*,f*) 

agrees with that previously defined on KI (A), but there is a change 

of sign in passing to ker(K0(Z)--+F~(A)). 

A based +form (over A), (Q,~), is a +_form (Q,~) defined 

on a based A-module ~. The torsion of (Q,~) is 

I 
T(~+~*:Q--*~*) if (Q,~) is non-singular } 

0 otherwise 

Let SC_K'(A) be a .-invariant subgroup. 

An S-equivalence of based +forms 

f:(!,~) > (!''~') 

is an equivalence of +forms such that 

~y(f:Q >Q') 6 S. 

Now f*(~'+~'*)f = (~+~*) £ 11omA(Q,/*), so that 

(r+I: * if (Q,~) is non-singn/lar 
~ =~. ~" e s c  ~ : , ( A )  

~(Q'~)-~(Q' "@' ) 0 otherwise 

where[= qr (f:Q--@Q') 6 S. 
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Given a free sublagrangian L of a +_form (Q,~) such that 

L~/L is free, it ks possible to extend a basu L~L&/L to one of Q 

uniquely up to simple changes, using any of the equivalences 

f : H ~ ( L ) ~ ( L ~ / L , $ )  • (Q,~)  

g i v e n  by Theorem ] . 1 .  C a l l  such  a base  

q~ = f(L@L*~)LA~/L)~ 

a subhamiltonian base for (Q,~), and a hamiltonian base if L is a 

lagrangian. 

A based +formation (Q,~;F,G) is a +--formation (Q,q-~;F,G) 

together with bases f,g,h for F,G,G~G respectively. The torsion of 

•(Q,?;F,G) = (Q,fOf*,gll)g*~)h) £ K'(A) 

with f~)f* any hamiltonian base extending f, and g~)g*@h any 

subhamiltonian base extending g~h . As shown above, this definition 

does not depend on the choice of f*,g*. 

As before, let SC-K'(~) be a ,-invariant subgroup. 

An S-equivalence of based +formations 

i s  an  e q u i v a l e n c e  o f  +_format ions  such  t h a t  

zC.k-'-",F'), "~(~.- -~' ) ,  z(.c-~'t~--,,~'~/c- ') G s .  
T h e n  

~ ( Q ' , ~ ' , ~ - F ' , G ' ) ~  - ~ ( Q , ~ ; ~ , G )  = z - ~ *  e SC~K'(A) 

where Z = (~(F--*F')-z(G-~G')-W(GA/G--~ G'~/G ' )) e S . 

A stable S-equivalence of based +formations 

if] : (~,q,;F,~) ; (~,,~,,~ ,~ ) 
is an S-equivalence of based +_formations 

• p, p,.~ • F '  ,G..~' ) ~  ( t t + _ ( P ' ) ,  ,...,. ,, f: (~,~;£,!)~(H+_(P);L,P~) : (~, ,~',~ 

defined for some based A-modules P,P'. 
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Theorem 2.1 has a based analogue: 

Theorem ~.I For n(mod 4) and a .-invariant subgroup S~K'(A) define 

~S-equivalenqe classes 
• he abelian monoid Yn(A )S of of 

tstable S-equivalence classes 

~ based ~forms based +_.formations 

The monoid morphisms 

with torsion in S, with + = (_)i if n = 2i 
(2i+I 

s s s ( (~,~); ~ (H;(q);9, V(~,~)) 
: Yn(A) ) Yn-I(A); t (Q,~;Z,~)' ) (G~/G,~) 

are such that ( DS)2 = 0 . The subquotient monoids 

VnS(A) = k e r ( ~ S : Y S n ( A ) - = = ) Y ~ _ 1 ( A ) ) / i m ( ~ S : Y S n + I ( A ) - - ~ Y ~ ( A ) )  

are a.belian groups. 

A 1-preserying morphism .0f rings with involution 

f : A )A' 

indu,c,es morphisms of abeli,an groups 

s s, ~(q,~), ) (A'®AQ,I®~) 
f : Vn(A) ~ Vn(A' ) ; 

t 
for ~Y .-invariant subgr0ups S c- K' (A) ,% ~,C K' (A') such that f(S)C_ S'. 

[] 

Note that 

S S 
V2i(A) = {non-singular based +--forms G Y2i(A)}/{ H+(mA) I m~> 0 } 

8 
V2i+ IS (A) = {non-singular based _+formations 6 [2i+I [A)}/ 

{ (~{+(P);~, r (~,e})  
Inverses are given by 

-(~,~1 = (!,-~) 6 V~i(A ) 
S 

- (Q,~;F,G)  = (Q, -~ ;F* ,G*)  6. V2i+ l (A)  . 

The sum formula of Lemma 2.2 has a based analogue 

S CA) Lemm.a. ~.2 ( Q , ~ ; F , G ~ ( Q , ~ ; G , H )  = (Q,~;F,H) £ V2i+l 

I ~ (P,e)  e s } 

[ ]  
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For S:K~I(A), this allows the identification Of ~2i+1(A) 

with the stable unitary group of S-equivalences 

H+(mA) ~ H+(mA) (m > O) 

modulo the subgroup generated by those of the type (f o) 
i) where ~(f:mA ~mA) 6 S 

0 f.-1 

il) (: 7) for any ~form (mA*,e) 

iii) o'IBG'~., .~(Y with m copies of 

0 ~T -I ) 

= : A~A* ....... ~ A~A* 
Y O 

where T:A--~A*;a~-~(b~,b~) 

This is the kind of definition adopted for the odd-dimensional 

L-groups in [9] and [10]. 

The exact sequence of Theorem 2.3 has a based analogue 

Theorem 3.3 Given *-invariant subgroups S ~S'~ K'(A), there is 

defined an exact sequence of abelian groups 

. . .  ~H n+I(S /S) --~ ~n(A) t ~ , . ~vS'(A) Hn(s' /S) n 

i 
with (~ Q~ ' 0 ) 

H n+I(S'/S) ) VSn(A);(Q,f,g), 

where Q is Q with base f , and Q is Q with base g . 

i_~f n = 

[] 

This is the exact sequence of Theorem 3 of [10] .  
r VX~(~)(A ) n 

( "n 
Following I.,II.denote the groups v{O}(A) 

It is possible to identify 

g~'(A)(A)= U~O}(A) 

Thus if f.g.free A-modules have a well-defined rank (that is, 

r 2 i  

t2i+1 

I Vn(A) 

LWn(A) 
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ker(Ko(Z)--~Ko(A)) = {0} ), then 

u{O}(A) = Vn(A) • 
n 

Otherwise, Theorem 3.3 gives exact sequences 

0 ~VRi+I(A) ~ U  {0} (A) ) Z ' V2i(A) 2i+I 2 

for i(mod 2). 

§ 4. K-theory of twisted Laurent extensions 

The purpose of this section is to recall those 

K-theoretic definitions and results from [21, [7] and II. which 

will be needed in this part. 

The Laurent extension of A, A z, is the ring of 

polynomials ~ zJaj in an indeterminate z and its inverse 
j=-~ 

with coefficients aj 6 A and { j 6 Z I aj ~ 0 } finite. Addition is by 

(~ zJaj) + (~. zkbk) = ( ~__ zl(al+bl )) e A z 
j=-~ k=-Qo l=-~ 

and multiplication by 

(~ sJaj)(Z zkb k) = ~, ~ zJ+kajbk G A z 
j=-~ k=-¢~ j=-~ k=-~ 

There is defined an involution on A z, by 

(.~ zJaj)= ~ zJa_j 6 A z • 

Then A z is an associative ring with I and involution, thus 

satisfying the conditions imposed on A in §I above. 

The functions 

~: A ~A z ; a~ ~a 

~: A m , A ; ~ zJajl ~ ~ a. 
J=-~ j=-~J 

are l-preserving morphisms of rings with involution, such that 

splits ~, 

~ = I : A ~A . 
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Given an automorphism 

: A ~ A 

(preserving I and the involution), define the a-twisted Laurent extension 

of A, A s , to be the associative ring with the elements and additive 

structure of A z , but multiplication by 

-I 
z az = ~(a) G A (a G A) . 

The involution defined above for A z is also an involution of A a . Thus 

A s satisfies the conditions imposed on A in~1 . Note that A is the 
z 

special case AI:A, A . 

The inclusion 

E:A ~ A=;a~-~a 

is a morphism of rings with involution, though not in general split. 

Given Q £ I~ (A) J define zQ C I~(A) I by writing z in front 

of each element of Q, defining addition by 

zx + zy = z(x+y) ~ zQ (x,y C ~) 

and an A-action by 

AxzQ ) zQ; (a,zx)1 ~ze(a)x . 

Then 

Then 

: K0(A) ~ K0(A) ; [Q]~---@[zQ] . 

Given f C HomA(P,Q ) , define zf C HOmA(ZP,zQ) by 

zf : zP • zq ; zx~-~zf(x) . 

: K'(A) ~!(A) ; =(f:~--.Q)~-~(zf:z L +zQ) . 

Given Q G I~(A) I define ~ a l~(Aa) l by extending the 

action o~ A on the abelian group 

Q~ = .~ zJQ 

to one of A s by 

(zka)(zJx) = zJ+kaJ(a)x C Q~ (aGA,xGQ, j,k~Z) . 

Then 

" : :o (A)  - - *  : ' :0(A~); 
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Then 

Given f 6 HomA(P,Q) define fa £ H°mAa(Pa,Qa) by 
f~ : Pa---~ Q~ ; ~ zJxj I )~ zJf(xj) j=-~ j=-~ • 

: K'(A) --*K'(A~);r(f:P-~)~r(fa:Pa--~Q~). 

A modular A-base of an A~-module Q is an A-submodule Qo 

such that every x 6 Q has a unique expression as 

x = ~ zJxj 6 Qo) J=-~ (xj • 

If Q 6 I '~<~)l  has a modular A-base Qo 

possible to identify 

in 

of 

, then Qo 6 i~(A) l, and it is 

Q = (Qo)~ . 

Given Qo 6 I~(A) I define complementary A-submodules 
+ j~ -I 

Qo = ZJ~o ~ = ~ zJ% j=-e~ 

Q = (Qo)~ • If F,G are modular A-bases of Q then 

zNF + C G + 

for sufficiently large integers N ~ 0 .For such N define the A-module 

~(F,G) ~NF-~ G + p 

End observe that there is a sum formula 

BM+N(F,H) = zMBN(F,G)~BM(G,II) 

This shows that each BN(F,G) is a f.g.projective A-module, with 

BN(F,G)~z-NIBNI(G,F) = j~i~izJF , 

and also that N-I 

B : KI(A~) ~ Ko(A); ~(f:Ga-~Ga) ~-* [BN(F,G)] - [j__~ zJF] 

is a well-defined mcrphism, where F = f(G). 

Recall from ~8 of [7] the definition of the group K(A,~). 

Consider pairs 

(P 6 I~(A) I, f6HomA(P,zP) isomorphism) 

under the equivalence relation 

(P,f)~(P',f') if there exists an isomorphism g G HomA(P,P') 

such that T(g-lf'-1(zg)f:P--@P) = 0 £ KI(A). 
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Then K(A,~) is the abelian group with one generator [P,f] for each 

equivalence class of pairs (P,f), under the relations 

[P,f]~lP',f'] : [PeP',fef'] . 

Given a based A-module ~ , define [Q,~] 6 K(A,a) by 
n n 

~:Q "zQ; i=~I aiqiv---~i__~ z~(ai )q  i (a i 6 A) 

with q = (ql,''',qn) the given base of Q. 

The exact sequence of Theorem 9.2 of 

to the right by one term, to give 

Lemma 4.1 The sequence of abelian 6roups 

I -~ j. p I -a 
K I (A) ----9 K I (A) . K(A,a) > Ko(A) ", No(A) >' Ko(A a) 

[7] can be extended 

is exact, where 

J:KI(A) ~ K(A,~);~(f:G---)G) ~ ~ [G,~f] - [G,~] 

p:K(A,~) )K0(A); [ P , f ] l  }[P] 

Proof: Use the As-module isomorphisms 

Qa )(zQ)~ ; ~ zJxj : ~ ~ zJ-1(zxj) 
3=-~o j=-~o 

to identify 

Q~ = (zQ)a £ l~(Aa)  l (Q ~ I ~ ( A )  I) 

It follows that the composite 

~o(A ) 1-~, ~0(A ) ~ ~ ~o(Aa) 

is zero. 

Given [G] - IF] £ ker(g:Ko(A)--@1~(A~)), stabilize F and G 

until there is defined an isomorphism 

(F~--~G~) 6 ~ (Am) 

The identity 

B~+ I (F,Q) = z~F~(F,a) = zBI~(P,G)~G 

shows that 
N-I 

IG] - LF] = ( I - . ) ( [ N ( F , ~ } ]  - lj~.= zJF ]1 e i m ( 1 - . - I b ( a l ~ K o ( a ) ) .  

[ ]  
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note that 

Defining a duality involution 

*:K(A,a) ~K(A,~);[P,f]i ) _[p. f.-1] , 

j* = *j : K 1(ll) ~ K(A,a) 

p. = -.p : K(A,~) ......... -~ K0(A) • 

AS in ~12 of [7], it is possible to combine the results 

of [2] and [7] to obtain 

Theorem 4.2 There is a natural direct sum decomposition 

K 1(Am) = K(A,~)~NiI+(A,~)~NiI_(A,a) 

where Nil+(A,a)=[<(l+z~+lg: P ~ P ) I vEHOmz(P,P)nilpotent, zv6H°mA(P,zP)]" 
The inclusion a 

is split by 

i : K(A,~) 

q : K I (A~) 

(f:G~ 

where F= f(G) and 

* K(A,a) ; N 

-~ G~) ,,,, ) LBN+I ( F , G ) , t ]  - L~---- o zkF,  ~ ]  

t = le~N+If : BN+I~F,G) = zBI~(F,G)~G 

The duality involution 

~ZBN(F,G)~zN+IF = ZBN+ I (F,G). 

. : K I(A ) ~ K I(A ) 

is such that 

i. = .i : K(A,~) 

q. = .q : KI(A a) 

and interchanges Nil+(A,a), Nil_(A,a) 

In the untwisted cas,9, ~ = I 

mor~hisms 

KI(A ~) 

K(A,~) 
P 

A 

such that 

) A, there are defined 

: Ko(A ) ) K ( A , I )  ; [ P ] '  

j - mA,1 )  ,KI(A~, ; [P , f ] ~  

- [P,~] 
~ z-lf:p--~p) 
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J p 
)---4 

K I(A) ~ K(A,I ~ K0(A ) 

is a direct sum system. 

[] 

Note that 

ij =~: x I(A) ~I(A) 

Pq = ~: ~I (A~) --*~o(A) 

with j,p as in Lemma 4.1, and that in the untwisted case 

i F = B: Ko(A) } KI(Az); [P] i )r(z: Pz --> pz) 

jq = (¢000): KI(A z) = ~KI(A)~K0(A) @ Nil+(Ael)@ Nil_ 

in the untwisted case. 

The relation 

can be obtained directly, from the A-module isomorphism 

BN(F*,G*) ) BN(F,G)* ; f~ (x~ [f(x~] O) 

where [a]0 = a 0 £ A if a = T zJaj e Aa - 
j=-oo 

Giving Z the identity involution, define a morphism 

of rings with involution 

Z z , A~ ;.~ zJnj , ~ zJnj.1 
j=-~ 3=-~ , 

and define reduced groups 

~(A,~) = coker(K(Z,1) ~K(A,a)) 

K I(A ) = coker(K 1(Zz) • K I(A )) 

From now on we shall assume that A a is such that 

f.~.free Aa-modules have a well-defined rank 

It follows that A also has this property. Lemma 4.1 

gives an exact sequence 

~I(A) I-~ j p l-a, ) f l (A)  ) K(A,a) • g0(A) ~o(A) ,~0(A~) 
in the reduced groups. Theorem 4.2 gives a direct sum decomposition 

(A, i) --~K 1 (A) 
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KI(A ) = K(A,~)~Nil+(A,~)~Nil_(A,a) 

Convention: Given a *-in~ariant sub6rou P S ~K(A,g) let 

R = j-I(S)~KI(A) , T = p(S)~ ~(A) 

Then R~KI(A), T~ ~(A) are *-invariant subgroups. 

Theorem 4.~ Given .-invari<~nt subgroups S~ S'~ ~(A,~), there is defined 

an exact sequence of Tate cohomology groups 

• .. ...> Hn(R,IR) ~ ) Hn(s,IS) B ~Hn-I(T,IT) C i Hn-I(R'IR)--~... 

with ~ , B induced by j, p respectively and C the connecting morphism, 

C : Hn(T'/T) .,lln(R'/R) ; [x]i ~ [j-1(y+(_)ny.)] 

for a~v y 6 S'/S such that p(y) = x G T'/T, associated with the short 

exact sequence 

0 ~ R'IR j" S'/S p ~ T'/T--@0 

I~ the untwisted case ~ = I:A--IA, with 

S = j(R)~(T) , S' = j(R')~(T') C K(A,I) = jKI(A)~p'~(A), 

there is defined a direct sum system 

B 
Hn(R./R)~ Hn(s./S)~ _ i Hn-I(T,/T) 

B 

[] 

§5. L-theory of twisted Laurent extensions 

Theorem ~.I 

exact sequence of abelian groups 

U~(A) i ) u~T(A ~ B 
e.o n - ~" 

~n a natural wa E. 

Given a *-invariant subgroup TC_Ko(A), there is defined an 

-i 

~I-~T(A ) C UT (~) 
) n-1 ~ n-1 " " • 

The exact sequences associated with .-invariant subgroups 

T~ T'~ ~(A) combine with the exact sequence of Theorem 2.~ and the 

T ate cohomolo~y of the short exact sequence 

o --t> (1-<~)- lT , / ( l_<~)- lT  ~ '%T' /T  ~ , i T ' / ~ T  ---~0 , 

to define a commutative diagram 
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..  - - iN n+l (T ' /T)  --'IH n+l ( iT ' / i :T )  --tiin( (1 _a)- I  T, / (1_~)-1 T) - I n n ( T ' / T )  

i [ : : 
~ ~ u(i_~)-I~(~) c o m (A)---~ 

) U (A) ~ ~ U n (a) ~ n-1 ~ n-1 "" 

1 : i i 
' ~(I_~)-IT ' C T' 

)U nT'(A) E .~T, n (A) B ~ ~n-1 (A) ~ Un_I(A) ~ .. 

: : i I 
>Hn(T,/T) ----i. Hn(l T,/gT) ; Hn-1 ( ( l _ a ) - l T , / (  1 _o;)-IT) --iHn-1 (T, /T) -i.. 

1 l I I 
: : : : 

with exact rows and columns. 

If ~T = ~T'~ ~0(A ) , the sequences interlock in a 

commutative exact braid 

U~(A) 

Un ~' (A) 

1 u(1-~)-1~' (a) 
n 

Un ~T (Ao) U(n-11-a)-IT' ~"/4 , 

U(I-~)-IT(A~ 
~-I " ' \ / ' ' , <  

Hn( ~,/~) =Hn( (1 _~)-1 m'/(1 -~)-1 ~) ) 

T '  
Un_ I (A) 

/ 
u ~ (A) n-1 
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If (1-a)-IT = (I_~)-IT ' _~ Ko(A), the sequences 

interlock in a braid 

U ( I-~)-I T(A) U T' (A) Hn( T'/T) =Hn( ~T'/~T) 
n n 

UnT(A) U~nT~ (A) UTn-I (A) 

H n+1 (T'/T) =H n+1 (~T'/~T) ZT(A) Un_ I(I-~)-I T (A) 

[] 

(As Wa~ll points out, in a letter of 19th January 1973, these braids 

are a formal consequence of the larger diagram drawn above.) 

Let S O be the infinite cyclic subgroup of KI(A ) _ 

generated by r(~:Aa---~A ). 

Given a .-invariant subgroup R~ K I (A) let 

v~R(Aa) = v~R~O(Aa ) 

and denote 'vSnO(Aa) by Wn(A ). Theorem 3.3 gives an exact sequence 

o .... z 2 

for i(mod 2). 

By analogy with Theorem 5.1 we have: 

Given a.-invariant ' subgroup R ~KI(A) there is defined ~heorem 

an exact sequence of abelian ~roups 

VR(A) i ~R . , B • V(I-a)-IR(A) 
"''- ~n ~ n (AaJ n-I 

with similar naturality and exactness properties. 

~ .  o .  

1]  
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where 

Given a .-invariant subgroup S C _ K(A,a), let 

with the projection 

= q-I(s)~KI(A ) 

defined as in Theorem 4.2. 

The exact sequence of Theorem 3,3 for S~S'~ KI(A ) can 

be written as 

. . .  ) Hn+I (S, /S)  ' ~ ( A a )  

using the isomorphism 

to identify 

In particular, 

q - 2 ' t g  > s ' / s  

Hn(~',/S ") = ttn(~D'/S) 

I = if S = 

( n (a) 

Theorem 5.~ Given a *-invarian t subgroup S~(A,a) there is defined 

an exact sequence of abelian groups 

>V~(A) ~sc ~B VTn_1(.) C > ~ - I ( A )  ' V n . A  ~ .  • . . .  @ @ @ 

in a natural way~ with R = j-I(s)C_-~I(A) , T = p(~)~O(k) 

The exact sequences associated with .-invariant subgroups 

S~S'~ ~(A,a) an d the exact sequences of Theorems 2.~,~.3,4.3 

combine, to give a commutative d~agram 

j(R) (RC_ KI(A))o 
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n 

i 
Hn+I(R,/R ) 

l 
I 

(A) 

i 

~" "H n+1 ( S ' / S )  B , Hn(T, /T)  

l i 
> ~Sn(Aa ) B > UTn-I (A) 

1 1 
n -- > Un_ I (A) 

o 

C ~ t t n ( R , / R )  ~ ... 

l 
C v~_ I (A) , . . .  

i 
C R' 

Vn_1(A)~ > ... 

i 
• H n - l ( ~ ' / ¢  ) C~Hn_l (R , / a )  • . . .  ~_ "~ t t n ( s , /S )  B 

i 

with exact rows and columns. 

exact braid 

the seuuences interlock in a commutative 

~ ' ' ~ '  (Aa) lln(g'/S)=H n-1 (T ' /T )  
n 

/ 
~(A) 

H n+1 (S'/S)=Hn(T'/T) U T (A) 
n-1 

T' ~S 
Un_ I (A) Vn_ ~ (A m) 

~n_l (A) 

C ~ 
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i_~f T = T'g K0(A) , the sequences interlock in a commutative 

exact braid 

uT(A) ~'n (A) Hn(R '/R)=Hn(s'/S) 

nR(A) ~ '  (A~) V~n_l (A) 

H n+1 (R'/R)=H n+1 (S'/S) Vn(~i ) UTn-I (A) 

[] 

In proving the exactness of the sequences of Theorems 

5.1 ,5.2,5.3 (in §6, below) we shall make much use o£ the following 

version of Theorem I of [ 8]. 

Lemma ~.4 Suppose given a commutative diagram of abelian gTOUpS 

and morphisms 

L M' P 
n n 

 q+1 M n 

Pn+ I Nn Ln- I n- I 

such that the sequences 

M' ~- P ~ ~ Mn_ I Pn+1 ) Mn n n Mn-1 

I~n+1 ) Pn+1 7 ii n ~ Nn > Pn 

are exact. 
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If the composites of successive morphisms in the sequences 

M n ~N ~ Ln_1---~Mn_ I (*) Ln n 

L n ~ M'n ~ N'n ~ Ln-1 )Mn-1 (**) 

are zero, then (*) is exact at ~ (rg~P. N n, Ln_ I ) if and only if 

(**) is exact at M'n (resp. N~, Ln_ I) . 

[] 

Assuming that the morphisms in the sequences of Theorems 

5.1 ,5.2,5.3 have already been defined, and are such that the 

composites of successive ones are zero, and that all the braids 

are indeed commutative, it follows from Lemma 5.4 that the exactness 

of the sequences for all the coefficient groups T, R, S(but keeping 

A and ~ fixed) is related as for (*), (**). 

To see this, note first that for any .-invariant subgroup 

T~Ko(A) the exactness of the sequences of Theorem 5.1 for T~and 

Tn(I-~)Ko(A) is related (since 

( 1 - ~ ) - 1 T  = (1 -~ )  -1 ( T n  (1-U)~o(A))C~ K0(A) ) , 

as is that for Tn (I-e)Ko(A), {O} (since 

(~ n(1-~l~o(Al) = { 0 } ~ 0 ( A  ~1 1. 

Hence the exactness of the sequences for any two *-invariant subgroups 

~o(A) is related. T,T' 

Similar considerations apply to the sequence of Theorem 5.2. 

For any ~-invariant subgroup S~ K(A,a) the exactness of 

the sequences of Theorem 5.3 for S , S+JKI(A) is related (since 

p(S) = p(S+jKI(A))~K0(A) ) , 

as is that for S+JKI(A) , K(A,e) (since 

.-1 j-1 ~ CA) ) 3 (S+JKI (A) )  = ( K i A , ~ ) )  = K 1 • 

Hence the exactness of the sequences for any two ~-invariant subgroups 

S,S'~K(A,a) is related. 
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The sequence of Theorem 5.1 for T = {O}~o(A) 

... ~Vn(A) ~ Vn(A~)~-n_ I .... Vn_ I 

coincides with that of Theorem 5.3 for S = ~(A,a) (or will be seen 

to do so, once both are defined). 

The sequence of Theorem 5.2 for R = ~](A) 

... >Vn(A) ~ ~nKI(A)(A ) B ~Vn_I(A ) ~__~Vn_I(A ) ~ ... 

coincides with that for Theorem 5.3 for S = j~I(A)CK(A,a). 

Hence the exactness of all the sequences is related. 

In proving Theorems 5.1,5.2,5.3 (in ~6, below) it will 

be left to the reader to verify that the definitions of the morphisms 

B, C are sufficiently natural for the commutativity of the diagrams 

drawn above (implicitly so for 5.2). 

~6. proof of theorems in~. 

m KO Given a .-invariant subgroup ~ (A), define 

U(]-a)-IT{A~ B'uET" 2i+1(A )----~ 2i , ,;(Q,~;F,G) a • (P,O) 

where N-~ 

(P,e) = (BN(Fo~F~,G0~G~),[~]O)~:I+( Z zj(_Fo)) - j=O 

for any modular A-bases F0,G 0 of F,G such that 

[%] - [F~] G ~Ko(A) , 

with -F 0 any projective inverse for F 0 , and F~ , G~ the dual 

modular A-bases to Fo,G 0 in any haniltonian complements F*,G* 

to F,G in (Q,~) , with 

L~] o : q ---~HOmA(Q,A) ; xb-~(yl ~L~(x)(y)] o) , 

zJaj 6 A writing [a]0 for a 0 6 A if a = j=_~ 
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The identity 

(BN(F 0 ~F~ ,G O ~GS) , [~ ]0 ) ~)(z -Nm BNI G0@G ~ ,F0~F~) , [~ ]0 ) 
N-I 

= H+( ~ zJF 0 ) (up to equivalence of +_forms over A) 
j =-NI 

shows that (P,0) is a non-singular +form. The identity 

BN+ I (F0~F~,Go~DG 8) = zN(Fo~F~)~BN(Fo~DF~,Go~G~) 

= (Go~G~)~)ZBN(Fo~)F~,Go~)G~) 

shows that 
N-I 

j=O 

= ([Go]  - LF~]) + ([GS] -LFo] )  e TC_~(A)  . 

Hence (P,0) E U(I-~)-IT(A) 
2i 

For N >_ 0 so large that 

N+ 
~. F o _C (%~G~)+ 

define a +form over A 
N-I 

. N + 
(P,,e') = (EN(Fo,G0~o)/Z F o , t~]o)@H+_( 21; zJ(-F0)) 

j=0 

where 

EN(F0,G0~G 8) = {x e (Go~G~)+t[cp+_~*]0(x)(zNF~) = {O}C_A } 

Increasing N by I adds on 

H+(zN(Fo~)-F~))  = 0 e U ( 1 - a ) - I T ( A )  
- 2 i  

to (P',O'), and for N so large that 

the ~forms (P,0) , (P',0') coincide, as then 

EN(F0,G0~G ~) = (F~zNF~-)N(Go~GS) + = zN~+~0 ~P 

Hence (P,0) G U(I-a)-]T(A) does not depend on the choice of N 2i 

or of the hamiltonian complement F* . The choice of G* can be 

dealt with similarly. 
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If (Q,~;F,G) = 0 6 u~T2i+I(A ), it may be assumed that 

(Q,~p;F,G) = ( H + ( L ) ; L , F ' ( L , ) , ) ) ~ ( H + ( M ) ; M , M * )  

w i t h  [ L ] , [ M ]  6 ~ T. C h o o s i n g  

F 0 = Lo•M 0 (with [L]0,[M]0 6 TI F~ = L~M; 

G 8 = LS~M 0 (GS)* = Lo~M ~ (in Q) , 

note that by symmetry of the definition of B with respect to 

the lagrangians and their hamiltonian complements 

B(Q,~ ;F ,O)  = B(Q,~ ;F ,O*)  

: ( B o ( ~ o ~ F ~ , ° o ~ ° ~ ) , L ~ ] o )  : o e U ( 1 - a l - I T ( A ~ 2 i  " " 

I t  now o n l y  r e m a i n s  t o  v e r i f y  t h a t  t he  c h o i c e  o f  modu la r  

A-bases F0,G 0 for F G is immaterial to (P,O) 6 U(I-~)-IT(A~ 
' 2i " j " 

Let F O' ,G 0' be some o t h e r  m o d u l a r  A - b a s e s  o f  F,G s u c h  t h a t  

[ % ]  - [G* ] e T . 

Choose N' ,N" _> 0 so large that 

z N' iF' ~F'*)+C (Fo~F~)+ N" o o - , z (OO~OS)+C_(G;eO;*) + 

and let M = N + N' + N" . Then up to equivalence 

(BM(F ~ ~F~* ,G~ 6G~*) , [9 ]0 ) 

.- , N+N"~ N" 
= n+~z ON,(F~*,F~))~(z BN(Fo~F~,G0~DG~),[~]oI~H+(BN,,(Go,G~)) , 

N" 
z BN(Fo~FS,Go~G 8) [~]o)~H+( ~I zJOo ) ' - j=0 

t~ 

= (BN(F0~F~'G0~BGS)'[~]0)~H+-( ~I zJ+NF~ ) • 

Now N" I 
N+N"~ ~,. - " 

(1-a)([z nN,k2 0 ,FS)e(j__~0z3(zNF~)-G0))~BN,,(Go,G~) ]) 
N-1 ~.~ . 

(1-a)('tj=o ~' zJF '*0 ]- ~j=o' ~ z3F*])o~ = (LG&]-LF&*])-(LGo]-[F~]) e T-CKo(A) 

and so 

(~',0') = (~,o) c u2i CA) , 

where 
M-I 

(P',O') = (BM(F~F~*,GSeGS*),L~P]o)~H+( ~ zJ(-F~) ) 
j=O 

is defined as (P,O) but with F~,G~,M replacing F0,Go,N respectively. 
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Hence 

___, U ( I -~) -1 ~ (A) ~(A);(~,~;F,~) B:U2i+I 2i 
is a well-defined morphism. 

, ~ (P,e) 

The composite 

U T (A) ~ ~T (A) B. ,,(I-~)-IT(A) 
2i+I ~ U2i+1 ~u2i 

is zero sending (Q,~;F,G) 6 U T (A) to 
• 2i+I 

B~(Q,~;F,G) (Bo(Fo~FS,Go~G~) , [~ ]O)  = 0 6 U(1-~) - IT(A)  
= 2 i  " 

Define 

C.U(I-~)-IT(A) - U~i(A);(Q,@)~--~(Q,~ )~(Q -~)~H+(-Q) . 
• 2i " ' - 

This is well-defined because 

CH~(L) = H ~ ( L ~ z L ~ - L ~ - L )  = 0 G U~i(A) i f  [L ]  C (1-~) - I T .  

The composite 

(1-~)-~T C T ~ ~T . 
U2i (A) ~ U2i(A) ~ U2i(& a) 

i s  zero• sending (Q,~)6U~-~)-IT(A) ' -  to 

( % , ~ ) e ( % , - % ) e H ± ( - % )  = H ± ( ( ~ e - ~ ) ~ )  = 0 e ~(%) 
The composite 

U2i+1 ~u2i  
is zero, as is clear from the identity (valid up to equivalence) 

(BN+I(Fo~F~,Go~G~),[~] O) = (BN(FoeF;,Go~GS),[~]O){BH±(zNF O) 

= ~(B~(F0~F~,G0~G~),[~]0)~H~(G0). 

Lemma 6.1 The sequence 

.u~T B (1 a ) - l T  C U~i(A) ~ u~T - - T (A) (A) - (A) ~ ~ ) 2i(A~) U2i+1 "-2i+I U2i 

is exact for all .-invariant subgroups T~0(A). 

Proof:It has already been verified that the composite of 

successive morphisms in the sequence is zero. As explained in 

5 , it is therefore sufficient to consider exactness in the 

special case T = {0}C~n(A) , 
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V2i+](A) 

where go(A) a 

anticipates the definition of 

C.U(I-~)-IT(A ~ T (A) 
• 2i+I " " ~ U2i÷1 

but no extra exactness properties). 

Given (Q,~) E ker(~:V2i(A) 

that 

[(Q,~) = ~Hz(L) 

for some f.g.free A-module L. Then 

'V2 i+ I (A  )M~--*B U2F~i(A) (A) C ~V2i(A ) ~ )V2 i (A  ) 

= ker(I-~:K0(A)---~K0(A)). (This use of Lemma 5.4 

. E T  U(I-a)-IT(A) 
B:U2i(A~) ~ 2i-I 

>V2i(A )) , it may be assumed 

(P,O) = (BN(L~L*,Q),[~] 0) 

is a non-singular +form over A such that (up to equivalence) 

(BN+ I ( L ~ L * , Q ) , [ ~ ] O )  = (Q,~)~(z(P,O) = (P,e)~H+_.(zNL) . 

Hence 

(Q,~) = C(P,~) G im(CIU~i(A)~(A) ~V2i(A)) , 

and the sequence is exact at V2i(A) . 

Given (Q,~) E ker(C:U2~i( ) (A)--~V2i(A)) , it may be 

assumed that 

(Q,~;) ~, ~((~,-~) ~,~+_(-Q) = ~+_( r . )  

for some f.g.free A-module L. Then 

(Q,~) = (B I(QcBQEB-Q@-Q*,L~L*),[~a]0 ) 

= B((Q~® Q~,~-~)~H+_(-Q); r~(Q~,~)~ _Q~ , T ) 

G im(B:V2i+1 (As) ~. U2~i(A)&(A)) , 

verifying exactness at U2~i(A)a(A)'" . 

Given (Q,~;F,G) G ker(B:V2i+1(Aa) ~U2~i(A)&(A)) , it 

may be assumed that 

(BN(Fom FS,Go~GS) , [9 ]0 ) = H±(L) 

with LL] G ~0(A) ~ 
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Let 

PO = LOL* = B~(F0~P~,G0~) 

and define an As-module morphism 

f:P = (PO)~ )Q 

by extending the inclusion of PO in Q . Let 

(P,~) : ~H~(L) 

and let 

G I:~(A) I 

0 : P "~ P* 

be the unique Aa-module morphism such that 

f*(~+_~*lf = O._O* E Hom A (P,P*) (O-*)(po)C_ ~ zJP 8 
j=1 

Define A -module morphisms 

= t* 0 : P* : L~L ----~L ( ~ L * _  : P 

g = 1~t~ -I = P = L ~L~ ~ ~L ~L~ 

for some isomorphism t g HomA(L,zL) . 

Then 

(1 
h I =: I @ : (Q,~)~H+_(P),, ,(~,~)~H+(P) 

0 I 

I .  1 -f~ o / 
h 2 = 0 I 0 : (Q,~)@H+(P) ~(Q,~)~H+(P) 

f*(~+_,~*)-~*e~ 1 
are self-equivalences (over A ) such that h I preserves the 

lagrangian F~P of (Q,~)~H+(P) and h 2 preserves the lagrangian 

F~P* . It now follows from the sum formula of Lemma 3.2 that 

(Q',~';F',G') = ((Q,~)EBH+(P);h~F~P),G~P) (h=hlh 2) 

is a +..formation over A such that 

(Q',~';F',G') = ((Q,~)E~H+(P);F~P,G~P) 

= (Q,~;F,G) g V2i+1(A ) . 
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Define a modular A-base 

G 6 = Go~P o 

for G' , giving the hamiltonian complement G'* = G*~P* to G' 

(Q',~') the dual modular A-base 

Let 

be the corresponding modular A-base for Q' . 

The A-module morphism 

~:Q' ~ Q'; ~ zJxJ ' ~j~O zjxj (xj 

is such that 

because 

~(F') ~ F' 

~h(x,y)= 

in 

G Q~) 

l h(x,y) if ~ x'~GzNF~6~ 

h(0,~-16(f~(y)-x)) ~x,y)£zNFo~Po 

where ~ is the projection 

= ( I 0 ) : Q = P0~(zN(F0~F~)+6(Go~GS)-) ~ P0 

It follows that each x g F' has a unique expression as 

x = ~ zJxj 
j=-Go 

xj = z(1-~)z-1~z-Jx G F'~Q~ , 

with 

and so 

F~ -- F'n Q~ 

is a modular A-base for F'. (This is precisely the same argument 

as was used in the untwisted case, in ~2 of II.). Now 

[F~]- LFo~Po] G ker(K:Ko(A)-@K~o(A )) = im(m-~:K%(A)-~K~o(A)) 

(by the reduced version of Lemma 4.1), so that 
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(Q,~;F,G) = (Q',~';F',G') 

= C(H+(G6);F6,G6) 6 im(E: 2i+I --+V2i+1 " 

We have shown that 

ker(B:V2i+1(A ) ,U~i(A)a(A ))Cim(~:U(21i;~ )~(A)(A)  --~V2i+I(A )) 

Chasing round the diagram 

V2i+I(A ) " V~i+I(A =) 

,(I-=)g0(A)(A) (A) 
~2i+I 

U2i+1 (A) H 2i+I ~ ~ = ((Ko(A)/Ko(A))=(1-a)l{o(A)) 

(A) 

(which is part of a braid, and anticipates the definition of 

c = I-= : ~2i+I (A)- > ~(I-~)~0(A)(A)2i+I ~ ) 

the exactness of 

V2i+l (A) e > V2i+1 (Ac~) B--~u2K~i(A) (A) 

follows. 

[] 

In the untwisted case, ==I:A--~A , Lemma 6.1 gives 

a short exact sequence 

0 ~U T (A) g B V2i(A) 70 2i+I ~ u~2Ti+1 (Az) 

which splits, with B split by 

~ (Az) ; : V2i(A)~ U2i+1 

(Q,~)~ ~ (Qz~ Qz,~z~-~z ; /k(Qz,~z ) ,(z~1 )/~k(Qz,~z ) ) 
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Given a *-invariant subgroup R C K  1 (A) define 

. V(1-cz)-IR6A ~ 
B'~R'-2i+I(As) ~ 2i , ,;(Q,~;F,G)~ ~(P,8)~ 

as follows. Let 

(P,0) = (BN(FoeF~,G0eGS) ,L~]0) 

with F0,G 0 the modular A-bases of F,G generated by the given 

As-bases. Let T O G R be such that 

-~(Q,~;F,G) =glY 0 6E RCK 1(As) (=coker(K I(Zz)-+K 1(As))) 

(so that by the reduced version of the exact sequence of Lemma 4.1 

7 0 is unique up to torsions in Rf~(I-~)~I(A) ). Now 

[Pl = ~ =  o e ~o(A) , 

so that for sufficiently large N _> 0 P is a free f.g. A-module. 

Applying Theorem 4.2, note that 

qx(Q,~;F,G) = [BN+ I(FO~)F~,GO6G~) , 

lep~N+If : zP~)(G0eGS)--*zPez N+I(F0~F~) ] 

= J~o e ~(A,~ )  

with f defined by 

f ( ~ * )  = Fe )F*  . 

Choosing any A-base for P, it follows that 

j ~ ( ~ : z P ~ ( G o e G  ~) ~ e z N ( F 0 ~ F ~ ) )  = . i% e ~(A,( , )  , 

and so (by Lemma 4.1) 

--,p~ z N ( F0~ ~(~:z~e(~o~) ~ ~ f~)) -% = (~-~)~ e K~(A) 

for some ~I ~ ~I(A) which is unique up to torsions in (1-a)-IR 

(allowing ~O to vary). Changing the base of P by ~I , we can 

ensure that 

"r (I : z ~ ( G o e G  ~) ~Pe~zN(Fo~F~) ) =~'0 ~ ~CK~ (A) (*) . 

Let 

B(Q,~;K,G _) = (~,e) 

with P in the preferred class of bases of P (unique up to changes 

in (1-a)-IR) satisfying the condition (*). Then 
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(I-~)~(~,8) = -(~0+T0*) G R , 

a n d  s o  we do  h a v e  a n  e l e m e n t  

(P,e) e V(1-~)-~(A) 
2 i  

which does not depend on the choice of ~0 or ~ . The verification 

that this does define a morphism 

~ -  ~R ___~V(I-~)-IRfA ~ B ' " "  

is by analogy with that for 

~T .vv(1--~) -I 
B : U2i+I(A )----u2i T(A) 

carried out above, taking into account torsions rather than 

projective classes. 

Define also 

C : V~-~)-m~(A)---~ ~2i(A); (~,~)~--~(~,~)~a(~',-~) 

where Q' is Q with the base defined by 

Q; = (~±~*)-~ (~*) , 

so that 

~((~,~)e&(~-~)) = (I-~)~(~,~) G R~KI(A ) . 

Given a .-invariant subgroup S~K(A,a) define 

B : ~S2i+1(A )---~uTz(A)2. ; (Q'~; , )FG'~--~ (BN(F0~F~,G0~G~),[~]0 ) 

with F0,G0the modular A-bases of F,G generated by the given Am-bases 

so that 

LBN(F0~F~,G0~G~) ] = Br(Q,~;F,~) e T = p[3)~Ko(A) . 

Define also 

(Q',~,) = (Q,~)~(q,-~)~+_(-Q) 

~* = (qe-Q) ~(t(~+_~*)-~e i )(Q~-Q)* 

with 

, where for any projective inverse -q to Q, and any A-base (Q~Q) 
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t 6 HomA(Q,zQ ) is any isomorphism such that [Q,t] G S (and is thus 

unique up to composition with automorphisms of Q with torsion in 

j-I(s) = R C-~I(A) ). llow 

is a hamiltonian A -base for ~(Q,~) such that 

(I :~& -~Q&) = i[~,t]e K~ (A} 

Applying Theorem 4.2, 

q~(1:Q' 

so that 

and 

= [Q,t] 6 SC~(A,~) , 

jX(~',~'} : q~(~',~'} 

= -(LQ,t] + [q,t]*) e sg K(A,~) 

~(Q,,~') s j-1(s) R_KI(A) 

Thus we do have an element 

(Q,,~,) ~ ~2i(A) 
which does not depend on the choice of (~) or t. 

The verification that all the morphisms B, C appearing 

in the sequences 

V R (A) ~ ~=~R (A) B ~V(I-a)-IR(A) C ~V~i(A ) ~ ~RCA 
2i+I ....... v2i+1 2i r 2i" ~ "  

~2i+1 (A) ~ ~VS2i+I(A ~) B ~U~i(A) C ~V~i(A)~, ~VS2i(A ) 

are well-defined, and that the composite of successive morphisms 

is zero, is by analogy with that for the sequence of Lemma 6.1. 

Exactness follows, by the argument of §5. 

In particular, in the untwisted case &=I:A ~ A , with 

j (R)~ ~(T) C K(A,I ) S = = JKI (A)~ p~(A) 

there is defined a split short exact sequence 

o ~i÷1{A} ~ ~~ (A z} ~ ~i(A} ,0, ...... ~ V2i+1 

with splitting morphisms 
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• 2i+1(Az) 

N:U~i(A) 

)~2i+I(A) 

~S (Az) ; 
• 2i+I 

(Q,~) .... ~((Qz~ Qz,~z ~ -~z)~li~(-Qz);~z,~z ) 
where 

= z~1 : Qz~(Qz~-Qz~-Q~) 

: { ( x , ~ , x , o )  ~ Q ~ e ~ z e - % e - ~  ~ 

% @( %~ -% m-%) 

I (x,y) G (Q~) } 

for any projective inverse -Q to Q, and any A-base (Q~-Q). 

Given a .-invariant subgroup T C~(A), define 

B:~2T(Aa) ~ IT(1--~)--I 
-- ~2i-I T(A) ; (Q,~) i 

as follows, where 
N-I 

PN = ~ zJQo 

Choose a modular A-base Q0 of Q such that 

let 

~:Q~Q* 

LQo] G T~o(A) , 

(H¥(PN);PN,BN(Qo,@)) 

,(Qo~BQ~)+; ~ zJxj : ~ z J x .  (xjG(Q~Q~)) 
j =-~o j =0 3 ' 

and define 

BN(Q 0,~) = {(zN(1_~)z-Nx,~+~.)x)ePN~P~ixG~ ((~+~.)-IQS,QO)}. 

Then BN(%, ~) is a lagrangian of H¥(P N) ,with hamiltonian complement 

~(%,~) = { (-~y, ~ ~+_~*) (~-~)y) eP~ eP~ I yeB~(%, (~+_~*)-I Q8 ) }. 

The associated Shermitian product of H¥(P N) 

~0 ~: PN~P~ ' P~PN = ( P N ~ B P ~ ) * I  

restricts to the A-module isomorphism 

(-~y, ~(~+~*) (I-P)y) i ~ ( (zN( I -~) z-Nx, ~(~+~*)x) ~-~ [ (~+~*) (y) (x) ]0 ) . 
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Hence 

and 

[B~(qO,~)] = [B~((~+_~*)-~QS,%)] ~ ~0(A) 

(~ -~) ( [B~(Qo,~) ] - [P~] )  
= ( [%]- [z~QS])+( [zNQS]- [QS])  

: [%] - [Q~]  G ~ ( ~ )  , 

so that we do have an element 

B(Q,~) = (H;(PN);PN,BN(%,~)) e U(I-~)-IT(A)2i-I 

Increasing N by I, note that 

BN+I (Qo,~) = BN(Qo,~)~ { (zN+1 (l--V)z -(N+I )x, ((p+_cp*)x I 
xe(~+_,~*) -1 (zNq~) } . 

Now B~(Qo,~)~zNQo is a hamiltonian complement in H~(PN+ I ) to 

both BN+ I (Q0,~) and BN(Qo,~)~zNQ 8 . Applying the sum formula of 

Lemma 2.2, 

(H¥(PN) ;PN'BN(Q0 '~) ) = (H¥(P1~.I) ;PI{+I 'BN(Qo'~)~zNq8 ) 

= (H~-(PI~+I) ;PN+I ' ~ ( q o ' ~ ) e  zN%) 

= (H;(PN+~) ;Pt~+1 'B~+I (Q0,~)) 

U ( I _~)-I T(. 

6_. 2i-I " ~ J  "TT(I_(z)_I T(A) " 
Hence the choice of N is immaterial to B(Q,~) G ~2i-I 

Let Q& be another modular A-base of Q such that 

Q' [O]GT, 
write 

and define 

N'-I 

,)..} t : Q~Q*"~(Q&~q~*)+;.~zJxj : "~j__~ zJxj 

(xj c (%~%*)) 
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Let M > 0 be so large that 
M M 

% ~ ~_z J % % ~_ J:-~ z J % 

Then N' = N + 2M is sufficiently large for ~,(Q~,~) to be defined, 

with 

B N, ( (~+_~-1-~ %* ,%) : (~*)-~ (z~+~BN(%*,aS)) 

zMBN ( ( ~+-@* ) - I Q~, Q0 ) ~BM ( Q0' Q0 ) 

and 

BN,(Q$,q~) = {(z N'(1-~')z-N'x,(tp+_qo*)x)Ix6(~_%o*) -I(zM+NBN(Q$*,QS))} 

{ (x, (~p+q~*) x) IxezMBN( (q~+q~.)-1Q~, QO) } 

Now 

and 

P~, -- zM*NBN( %, %) ~ zMP N ~BN ( %, % ) 

M+N , M . . z ~(%,Qo)~Z BN(%,~)~BM(%,%~) 

is a hamiltonian complement in H¥(P~. ) to both B N, (Q~,~) and 

zM+NBM(Q$*,QS)~zMBN(QO,~)~(Qo,Q~). Applying the sum formula 

of Lemma 2.2, 

(H~(P~,);P~, ,B N, (%,~)) 

= (H~(PN.)" ',,zM+NBM(Q ' ,PN 6*,~8)ez~(%'~)~BBM(%'~$)) 

= (H~ ( zM+~BN ( %, %) ) ; zM+NBM ( %, %), M+~%~( %.,  9~) ) 

~(zM(H~,(PN) ; PN,BN(%,~) ) 

6(H~.(BM(%,%) ) ;~M(QO,%) ,BM(Q 8,%*)) 

~M(H~(P N) ;PN,BN(%,~)) C U (I-~)-IT(A) 
= 2i-I 

But zB~(Q0,~)~Q 0 is a hamiltonian complement to BN+ I (Q0,~) i n  
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H$(PN+ I ) , so that 

(H~(PN) IPN,~(Qo,~)) = (H¥(PN+I)IPN+I,BN+I(Qo,~)) 

= a(H¥(PNI;PN,BN(Qo,~))~)(H~(Q0);Q0,Q ~ ) 

= =(H;(PN);PN~BN(Q0,~)) e U(I-=)-IT(A)2i-I 

Hence 

B(Q,~) = (R;(PNI;PN,~(Q0,~)) 6 U(1-=)-1T(A)2±-I 

does not depend on the choice of modular A-base Q0 " 

Finally, suppose 

(Q,~) = ~(Qo,%) 

for some (%,~0) 6 U~i(A ) . Then 

B(Q,9) = (H¥(O);O,Bo(Qo,9)) = 0 g U(I-~)-IT(A) 2i-I 

Hence 

u(I-a)-IT(A);(Q,~), ) ( H ~ ( ~ N ) ; P N , B N ( Q O , ~  B:U~(A=)" ) ~ 2 i - 1  

is well-defined, and such that the composite 

U~i(A) .... ~ ~U~(A )B ~U(I-~)-IT(~2i-I "-" 

is zero. 

The morphism 

U(I-~)-IT¢~,~, T (A) ; 
C = 1-& :. 2i-1 .... 'U2i-1 

(Q,~;F,G), --+ (Q,~;F,G) ~=(Q,-~;F*,G*) 

is clearly well-defined, and such that the composites of 

successive morphisms in 

U~(Aa ) B >U(I-~)-IT(A) C , U T 
2i-I 2i-I (A) 

is zero ( CB = 0 follows from the relation 

proved above). 

2i-I 

=B(Q,~) = B(Q,~) 6 U2i_1 (A) ((Q,~) 
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Given a .-invariant subgroup RC~I(A) , define 

v~R(A ~ " V ( 1 - ~ ) - I R ( A )  ; (Q,@)l ~ (H¥(PN);PN,BN(Q0,~))  B : 2i ~ a I " 2i-I ~ % J  

as follows. Let ~0 be the modular A-base of Q generated by the given 

A -base, with the corresponding A-base. Let N > 0 be so large that 

BN((~*)-IQ~,Q 0) is a free A-module. Let~ 0 ~ R be such that 

(~ ,~ )  = ~ o  ~ ~ R ~ X I ( A )  . 

v ( 1 - ~ ) - 1  R ~~R (Aa) ~ 2i (A), Then, working as in the definition of B : V2i+1 

' ((~+~.)-Iq there is a preferred class of A-bases ~ 8,Q0 ), unique up to 

changes in (1-a)-IR for varying ~0' such that 

1 

=T 0~ R~K/(A) 

Give BN(Qo, ~) an A-base by choosing one of these, and setting 

BN(Qo, ~) = { ( z N ( 1 - ~ z - N x , ~ ( ~ d ~ * ) x ) ~ P N ( ~ I x £ ~ ( ( ~ ± V * ) - I Q S , Q o  )} . 

Let stand for BN+I(Q0, ~) with the base 

BN+~ ( (~+~.)-1 q~,Q ) = S~( ( ~ * ) - ~  ~,qO)~(~±~*) -~ ( z ~ )  
- ~ . . . . .  ~ ~ - -  ~ . , . , . , ~ . ~  

Using the hamiltonian complements given above (in the definition 

As) ~U(I-a)-IT(A) ) it can be shown that ~T 
of B : U2i( 2i-I 

(H¥ (PN+ 1 ) ;P~N+ 1'  BN+ ] ( QO'_~ ~ ) ) 
N .  

= (H;(PN+ I ) ;P~+~ ,z~N(%,~)~z )0 ) 

= c~(tt¥(PN);PN,BN(Qo,~)_ ) e V(]-a)-IR(A~__ .Pi-1 " " 

and similarly 
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Hence 

= (H;(~+~) ;~+~ , ~ N ( % , ~ ) •  z~!~) 

= (R$(PN);P R BN(Qo,~)) 6 V(I-~)-IR(A) 
' ~ 2i-I 

(1-~)~(H~(P N) ;f~ ,B1%(%,~)) = (%-~8) G R , 
and  we do h a v e  a n  e l e m e n t  

- -  V(I-~)-IR(A) 
B ( Q , ~ )  = (HF(P N ) ; P N , B N ( Q O , ~ ) )  6 - 2 i - 1  

D e f i n e  a l s o  

,,~ I-~)-IR __. R (A); 
C = 1 - o L  : "2i-I (A) V2i_1 

Given a *-invariant subgroup S_C~(A,~) define 

~S T (A) ; (q,~) ~_~ (1i$ (pN) ; PN,BN(QO,~) ) B:V2i(A ~) , ~. U2i_1 

with Q0 the modular A-base of Q generated by the given A -base, 

so that 

IBN(%,,~)] = B'~(.~,~) G ~ = p(~)_C~:o(A)  

Define also 

T (A) --*vR 2 (A);(Q,~;F,G) : ~ (q',~',~. ,~. - "F' G' ) C:U2i-I i-I 

as follows. It may be assumed that F is free and that there is 

defined an isomorphism t £ HomA(G,zG) such that [G,t] £ S .Let 

(Q',~';F',G') = (Q,~;F,G~(Q,-~;F*,G*) 

for any hamiltonian complements F*,G* to F,~ . Choosing any 

base for F, let 

F' = FezF* G' = (I et *-I)(G~G*) (GeG*) = FeF* . 

Now 

~ ( Q ,  ,,~,, ....'F' ,£ ' )  = "~ ( % e % , % ® - % ;  (~e4)  ( ~ * ) , ~ ,  (~*t ~- ~ ) (~.~_/) ,~) 

= i(,-1)([G,t]-[F*,~]) 6 i(S)C_~I(A a) 

( i as in Theorem 4.2 ). 
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Hence 

• F '  G') E j-1(S) = RC21(A ) , ~(Q',~',~ ,~ - 

and we do have an element 

'.F' ~') c V~ CA) c(~, ;F,~)~ = (~',~ ,~ ,~ i-I 

The verification that the morphisms B, C appearing in 

the sequences 

~2i(A) - ~" ~ g .~R (As) ~V2i(A~) -2i-I ~V2i-1(A)------'v2i-1 

~2i(A) ~ ~i(A ) B ~U~i_I(A ) C ~vR" 2i-1(A) ~ >V2i_I~'S A ) 

are well-defined, and that the composite of successive morphisms 

is zero, is by analogy with that for the sequence 

uTi(A)2 ~ i T  S ~,,(I-~)-IT(A) C T 6 gT 
* U2i(Aa) v u2i_1 ~ (A) (A a) ' U2i_1 ~ U2i_1 

which was dealt with above. 

We can now apply the trick (first used in [4] )of 

introducing a new Laurent variable to deduce the exactness of 

these sequences from that of Lemma 6.1. 

Note first that for *-invariant subgroups 

S = j(R)~p(T)~(A,I) = J~I(A)~o(A) 

there is defined a morphism 

~ : uT2i-I(A)---~2Si(Az);(Q'~;F'G)W-~(Gz~Gz'( ) ~ ~  ~ 6 (I-z)(,+X~*-zY ) ) 

with G any base for G (which may be assumed to be free), and 

an expression for 

f o r  a n y  h a m i l t o n i a n  c o m p l e m e n t s  F * , G *  t o  F , G  i n  ( Q , ~ . ) .  
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It was shown in §3 of II. that this does define a morphism B, and that 

~2i (A)~-~ V2Si (A m ) ~B .T ~ u2i_1 (A) 

is a direct sum system, if S = {0} or K(A,I). The proof generalizes 

immediately to any S of type j(R)@~(T) . 

Let z' be an invertible indeterminate over A s . 

Identify (As)z, with (Az,)~, , where 
{}O * {~O . 

~' : Az, )A z, ; ~ z'3ajl ~ ~ z'3~(aj) , 
j=-~ j:-~ 

and write As,z, for this double Laurent extension of A. 

Let S0 (Az) 

I T (g:As ---~As ) {~e 'A where H°mA~ (As'As) is multiplication on 
(g: Z,---}Az,) ' ~'a HOmAz (Az,,Az,) 

the right by . Define 
Z t ~(z')Soe~(~)s ~ 

Wn(As, z,) = V n (As, (n(mod 4)) 

where 

z,} 

I~(z'):A is the inclusion. The preimage of 
Y Aspz! 

~(s}:Az, ~ A~, z, 

K(A,I)s' = J~I(A)S~0 (A)~-C~(A'I) 

under the projection 

q:K1(Az,) = ~KI(A)@BK0(A)~Nil+(A,I)~Nil_(A,I) 

) ~(A,I) = JKI(A)~K0(A) 

(as defined in Theorem 4.2) is 

= ~I (A)S~B(T0)~ Nil+ (A' I )~ Nil_(A, I )C KI (Az') ' 

where 

T O = (1_s) -I (im(Ko(Z)---~K0(A))C_ K0(A) 

Further, 

(1-~'}-1(S~) = ~f1(A)~(To)~Nil+ (A'I)s'~ ~il_(A,1)~h Kt(Az' }' 
where 

Nil+(A,1) s' = { ~E KI(Az,) I ~ a HomA(P,P) nilpotent , 
m 

= ~(I+~z'+I:Pz'-*Pz ') =~(I+(z~)z'+I:(zP)z'--~(ZP)z') e KI(Az')}" 
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Hence 

nK(A' I )s' (Az') = vJ(A ' I )s (Az') (by definition) 

= Vn(~-s' ) -1  ( % ) ( A z '  ) ( = Vn(Az'  ) i f  s = 1 ) 

by the exact sequence of Theorem 3-3 - 

All the squares of shape ~:i, t:t in the diagram 

- " ~(o~ K~"~.(A) s C(o(3 ) V2i-1 (A) V2i(A) £C~) ~ V^. (A) > U~. U . (A) ~V i-I (As) 

W2i+,(Az,) >W2i+1(As,z,) -----':2K: A' ) (Az,) ~ :2i(Az,) ~2i(As,z ,) 

W2i+1 (A) ~(~)) -- ~I (A)s C(a3> W2i(A) ~(~ W2i'(As) w2i+1 (A s) ~(-~ v2i (A) 

commute, except for those round the shaded area, the columns are direct 

sum systems, and the rows through W2i+I(Az,),W2i+I(A) are exact (being 

,CKI(Az,) , {O}~KI(A) of the sequence of the special cases S 0_ 

Theorem 5.2 in the range of dimensions considered in 46). It was shown 

in Lemma 3.4 of II. that the square 

> u2i_1 (A) 

W2i+1 (As, z ' ) ~ ~(A,2i I ) ='(Az, ) 

skew-commutes for a = I • The proof generalizes immediately to the 

twisted case (for any s). It follows that both the squares round the 

shaded area (in the large diagram above) skew-commute, and that the 

row through V2i(A) is exact as well. But this is the special case 

T = {0} of the sequence of Theorem 5.1 in the range of dimensions not 

already covered in ~6. As explained in ~5, this suffices to complete 

the proof of Theorems 5.1,5.2,5.3. 
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7. Lower L-theories 

Bass has defined lower K-groups Kp(A) for p < 0 , 

with natural split injections 

: ~(A) -----*Kp+ I (%) , 

such that 

Kp+I(A z) = ~Kp+I(A)(B~Kp(A)~Ril~P)(A)~I~il(P)(A)_ • 

There is defined a duality involution 

. : Kp(A) > Kp(A) 

for all p < 0 , with 

N* = -*~ : Kp(A) > Kp+1(Az) 

.(Nii~P)(A)) = ~il(P)(i) 
- 

In II. there were defined "lower L-theories" L(P)(A) , n 

for p < 0 and n(mod 4), by 

= L(P+I)( ~ L(Pfl)(A)) L(P)(A) ker( ~ : n+1 Az) n+1 n 

with L~O)(A) = Un(A) 

Given a ,-invariant subgroup Q~Ko(A) let Q~I~(A) 

be the subgroup to which the natural projection Ko(A)-~o(A) sends Q, 

and define 

L~(A) = uQ(A)n (n(mod 4)). 

Assuming inductively that L~'(A z) has already been defined for all 

• -invariant subgroups ~'~ Kp+1(Az), define 

~ (A)~Q LKp+I(A) 
~ p+1 (AZ) ) n+1 (A)) LQ(A) = ker(E : ~n+1 

for *-invariant subgroups ~ Kp(A), p < O. 

Theorem 2.3 gives 

Theorem 7.1 There is defined an exact sequenc e of abelian ~roups 

... ~ H n+I(Q'/Q) ~ L~(A) > L~'(A) >Hn(Q'/Q) ~ ... 

for .-invariant subgroups Q~Q'~Kp(A) , p < O . 

L2 
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In particular, it follows that 

L~(A) I L~p+I)(A) = if Q = 

L(P)(A) 
n 

Theorem 5.1 gives 

~p(A) 

Theorem 7.2 There is defined an exact sequence of abelian groups 

"'" I,Qc ~ ~ ~ ~ ~ L(I-~)-I~(A ) C~LQ (~) )L .A. LnQ(A ~) > n-1 n-1 "'" 

in a natural way, for *-invariant subgroups QC-K(A) , p < 0 . 

[] 

A lower L-theoretic analogue of Theorem 5.3 requires a lower 

K-theoretic analogue of Theorem 4.2. So far, this is only available 

in the untwisted case: 

Theorem 7.~ Let Q =~(R)~(S)C_Kp+ I(A z), for some .-invariant 

subgroups R_CKp+ I (A) , SC Kp(A) (p < 0). Then there is defined a 

direct sum system 

*--f-- n" z'~-~ -- n-1 (A} 

in a natural way. 
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