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We introduce here the concept of "cell-like" mappings, i.e. map
pings with "cell-like" inverse sets (definition below). For maps of 
ANR's, this concept is the natural generalization of cellular maps of 
manifolds (see (3) below). Also, a proper mapping of ANR's is cell
like if, and only if, the restriction to any inverse open set is a proper 
homotopy equivalence.This latter condition is one studied by Sullivan 
in connection with the Hauptvermutung (see [8]). 

DEFINITION. A space A is cell-like if there is an embedding <f> of A 
into some manifold M such that <t>(A) is cellular in M (see [3]). A 
mapping/: X-*Yis cell-like iif~l(y) is a cell-like space for each yÇzY. 

The following technical property is useful in studying cell-like 
spaces. 

PROPERTY (**). A map <j>: A-+X has Property (**) if, for each 
open set U of X containing <j>(A), there is an open set V of Xy with 
<t>(A) C VQ U, such that the inclusion VQ U is null-homotopic (in 17). 

The above terminology arose in generalizing McMillan's cellularity 
criterion [ô] to hold for cell-like spaces. S. Armentrout [ l] has inde
pendently studied this property, calling it "property UV <*> '\ 

To avoid confusion, we will assume that an ANR is a retract of a 
neighborhood of euclidean space Rn. 

THEOREM 1. Let A be a compact, finite-dimensional metric space. 
Then the following are equivalent: 

(a) A is cell-like. 
(b) A has the "fundamental shape" or "Cech homotopy type" of a 

pointj as defined by Borsuk in [2]. 
(c) There exists an embedding of A into some ANR which has Prop

erty (**). 
(d) Any embedding of A into any ANR has Property (**). 

Working independently and from a different point of view, Armen
trout has obtained results quite similar to Theorem 1. The proof is 
not hard. The implications (a)=Kb)=»(c)=Kd) make use only of 
elementary properties of ANR's ; (d)=>(a) is easy using [6]. 
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Now we can clarify the concept of cell-like maps of ANR's. Recall 
that a map is proper if preimages of compact sets are compact. A 
proper homotopy equivalence is a homotopy equivalence in which all 
maps and homotopies can be chosen to be proper» 

THEOREM 2. Let X and Y be ANR's, and let f be a proper mapping of 
X onto Y. Then the following are equivalent: 

(a) ƒ is cell-like. 
(b) For each contractible open subset U of Y, f^iU) is contractible. 
(c) For any open subset U of Y, f\f~l(U):f-l(U)-*U is a proper 

homotopy equivalence. 

The proof of Theorem 2 reduces easily to the following: 

LEMMA 2.1. Iff: X->Yis a proper, cell-like map of ANKs, then f is 
a proper homotopy equivalence. 

(Notice that a cell-like map is onto, since the empty space is not 
cell-like.) 

A crucial step in the proof of (2.1) is 

LEMMA 2.2. Let the following be given: 
(i) An ANR X. 
(ii) A locally compact metric space Y. 
(iii) A locally finite pair (K, L) of simplicial complexes. 
(iv) A proper, cell-like map f: X—*Y. 
(v) A proper map <f>: K-*Y. 
(vi) A proper map \f/: L—*X such thatjty = # | L. 
(vii) A continuous function e: Y—»(0, oo). 
(viii) A metric d on Y under which closed, bounded sets are compact. 

Then, there exists a proper map <j>: K-+X such that $ | J L = ^ and 
d(f$,<t>)^«t>. 

T. Price independently and G. Kozlowski obtained versions of 
(2.2) (see [7] and [9]). 

Applications to topological manifolds. I t follows immediately from 
Theorem 2 and [5] that 

(1) If/: M-+N is a proper, cell-like map of topological w-manifolds 
(without boundary), wè 5, and if U is an open n-cell in N, then/^(ZT) 
is an open w-cell. One consequence is 

(2) If ƒ is as in (1), and if X is a cellular subset of N, then f~*(X) is 
cellular in M. In particular, 

(3) A cell-like map of high-dimensional topological manifolds is 
cellular. (Compare with [4].) 
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Piecewise linear manifolds. D. Sullivan has studied condition (c) 
of Theorem 2 in connection with his proof of the Hauptvermutung. 
In particular, for closed PL manifolds of dimension ^ 5 , he can show 
that any onto map ƒ : M—*N satisfying condition (c) is homotopic to 
a PL isomorphism: M~*N, provided that TTI(M) =EP(M; Z2)==0. 
See [8] for a proof. 

Added in proof. Although there seems to be some question about 
the proof in [5] for the case w = 5, L. C. Siebenmann has recently 
given a proof of a more general statement which implies (1) as well as 

(4) If ƒ : Rn—>N is a proper, cell-like map of Rn onto a manifold, 
n^5t then N~Rn. 
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