CELL-LIKE MAPPINGS OF ANR'S

BY R. C. LACHER¹

Communicated by N. Steenrod, April 24, 1968

We introduce here the concept of "cell-like" mappings, i.e. mappings with "cell-like" inverse sets (definition below). For maps of ANR's, this concept is the natural generalization of cellular maps of manifolds (see (3) below). Also, a proper mapping of ANR's is celllike if, and only if, the restriction to any inverse open set is a proper homotopy equivalence. This latter condition is one studied by Sullivan in connection with the Hauptvermutung (see [8]).

DEFINITION. A space A is cell-like if there is an embedding ϕ of A into some manifold M such that $\phi(A)$ is cellular in M (see [3]). A mapping $f: X \to Y$ is cell-like if $f^{-1}(y)$ is a cell-like space for each $y \in Y$.

The following technical property is useful in studying cell-like spaces.

PROPERTY (**). A map $\phi: A \to X$ has Property (**) if, for each open set U of X containing $\phi(A)$, there is an open set V of X, with $\phi(A) \subset V \subset U$, such that the inclusion $V \subset U$ is null-homotopic (in U).

The above terminology arose in generalizing McMillan's cellularity criterion [6] to hold for cell-like spaces. S. Armentrout [1] has independently studied this property, calling it "property $UV \infty$ ".

To avoid confusion, we will assume that an ANR is a retract of a neighborhood of euclidean space \mathbb{R}^n .

THEOREM 1. Let A be a compact, finite-dimensional metric space. Then the following are equivalent:

(a) A is cell-like.

(b) A has the "fundamental shape" or "Čech homotopy type" of a point, as defined by Borsuk in [2].

(c) There exists an embedding of A into some ANR which has Property (**).

(d) Any embedding of A into any ANR has Property (**).

Working independently and from a different point of view, Armentrout has obtained results quite similar to Theorem 1. The proof is not hard. The implications $(a) \Rightarrow (b) \Rightarrow (c) \Rightarrow (d)$ make use only of elementary properties of ANR's; $(d) \Rightarrow (a)$ is easy using [6].

¹ Supported by the National Science Foundation grant GP-7952X.

Now we can clarify the concept of cell-like maps of ANR's. Recall that a map is *proper* if preimages of compact sets are compact. A *proper homotopy equivalence* is a homotopy equivalence in which all maps and homotopies can be chosen to be proper.

THEOREM 2. Let X and Y be ANR's, and let f be a proper mapping of X onto Y. Then the following are equivalent:

(a) f is cell-like.

(b) For each contractible open subset U of Y, $f^{-1}(U)$ is contractible.

(c) For any open subset U of Y, $f|f^{-1}(U):f^{-1}(U) \rightarrow U$ is a proper homotopy equivalence.

The proof of Theorem 2 reduces easily to the following:

LEMMA 2.1. If $f: X \rightarrow Y$ is a proper, cell-like map of ANR's, then f is a proper homotopy equivalence.

(Notice that a cell-like map is onto, since the empty space is not cell-like.)

A crucial step in the proof of (2.1) is

LEMMA 2.2. Let the following be given: (i) An ANR X.

(ii) A locally compact metric space Y.

(iii) A locally finite pair (K, L) of simplicial complexes.

(iv) A proper, cell-like map $f: X \rightarrow Y$.

(v) A proper map $\phi: K \rightarrow Y$.

(vi) A proper map $\psi: L \rightarrow X$ such that $f \psi = \phi | L$.

(vii) A continuous function ϵ : $Y \rightarrow (0, \infty)$.

(viii) A metric d on Y under which closed, bounded sets are compact. Then, there exists a proper map $\overline{\phi}: K \rightarrow X$ such that $\overline{\phi} | L = \psi$ and $d(f\overline{\phi}, \phi) \leq \epsilon \phi$.

T. Price independently and G. Kozlowski obtained versions of (2.2) (see [7] and [9]).

Applications to topological manifolds. It follows immediately from Theorem 2 and [5] that

(1) If $f: M \to N$ is a proper, cell-like map of topological *n*-manifolds (without boundary), $n \ge 5$, and if U is an open *n*-cell in N, then $f^{-1}(U)$ is an open *n*-cell. One consequence is

(2) If f is as in (1), and if X is a cellular subset of N, then $f^{-1}(X)$ is cellular in M. In particular,

(3) A cell-like map of high-dimensional topological manifolds is cellular. (Compare with [4].)

934

Piecewise linear manifolds. D. Sullivan has studied condition (c) of Theorem 2 in connection with his proof of the Hauptvermutung. In particular, for closed PL manifolds of dimension ≥ 5 , he can show that any onto map $f: M \rightarrow N$ satisfying condition (c) is homotopic to a PL isomorphism: $M \rightarrow N$, provided that $\pi_1(M) = H^3(M; \mathbb{Z}_2) = 0$. See [8] for a proof.

Added in proof. Although there seems to be some question about the proof in [5] for the case n=5, L. C. Siebenmann has recently given a proof of a more general statement which implies (1) as well as

(4) If $f: \mathbb{R}^n \to N$ is a proper, cell-like map of \mathbb{R}^n onto a manifold, $n \ge 5$, then $N \approx \mathbb{R}^n$.

References

1. S. Armentrout, Homotopy properties of decomposition spaces, (to appear.)

2. K. Borsuk, Homotopy properties of compact subsets of Hilbert space, Fund. Math. (to appear).

3. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76.

4. V. Kompaniec, Homotopy properties of cellular mappings of PL manifolds, Ukrain. Mat. Z. 18 (1966), 3-10.

5. E. Luft, On contractible open topological manifolds, Invent. Math. 4 (1967), 192-201.

6. D. R. McMillan, A criterion for cellularity in a manifold, Ann. of Math. 79 (1964), 327-337.

7. T. Price, On decomposition and homotopy, Notices Amer. Math. Soc. 14 (1967), Abstract 67T-197.

8. C. P. Rourke, *The Hauptvermutung according to Sullivan*, Part II, Mimeographed notes, Princeton University, Princeton, N. J., 1968.

9. G. Kozlowski, Factorization of certain maps up to homotopy, (to appear).

INSTITUTE FOR ADVANCED STUDY

1968]