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Abstract. This paper gives a simplicial chain complex description of the compactly supported
cohomology and Borel-Moore homology for polyhedra. These are compared to ordinary
cohomology and homology theories, called end cohomology and end homology. The end
homology of an open manifold M of dimension n satisfies Poincaré duality in dimensionn — 1.
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The purpose of this paper is to give a simplicial chain complex description of the
compactly supported cohomology and Borel-Moore homology for polyhedra.
These are compared to ordinary cohomology and homology and the difference is
measured by suitable cohomology and homology theories, called end cohomology
and end homology. The end homology and end cohomology of an open manifold
M of dimension n satisfy Poincaré duality in dimension n — 1. If M is the interior of
a'compact manifold with boundary dM then the end homology (resp. cohomology)
of M is realized as the ordinary homology (resp. cohomology) of the space d M. Many
results are well-known from sheaf theory or Alexander—Spanier theory; our aim is to
present an elementary simplicial construction. The algebraic core of the paper is
a study of Borel-Moore duals and limits of chain complexes which might also have
some independent interest.
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1. Duality and limits of chain complexes

Let R be a principal ideal domain. Denote by C(R) the category of chain complexes
of R-modules and chain maps. We allow chain groups also in negative degrees but
require the complexes to be bounded below. Let C*(R) denote the corresponding
category of cochain complexes. If K is the fraction field of R we consider the canonical
injective resolution

K - K/R
of R both as a chain complex R, and as a cohain complex R* with K in degree 0.
Definition 1.1. The dual of a chain complex C, is the cochain complex
DC, = Homg(C,, R,) and the dual of the cochain complex C* is the chain complex

DC* = Homg (C*, R¥).

This agrees with the notion of the dual of a differential graded module by Borel and
Moore [BM, p.142]. More precisely, we have

DCy = Homg(C,, K) ® Homg(C,-, K/R)
with the differentials induced from C, and R, and likewise
DCY¥ = Homg (C", K) @ Hom, (C"*', K/R).
(Note that if C* starts in dimension 0 then DC* starts in dimension — 1. This is the

reason why we consider complexes bounded below instead of non-negative ones.)
Chain maps induce dual chain maps and we get functors

D:C(R) - C*(R), D:C*(R) » C(R).

Lemma 1.2.1) Ifachaimmapf: C, — C, induces isomorphism on homology, so does its
dudl Df : DC, - DC,.
ii) There are natural short exact sequences

0 — Extg(H,-,(C,), R) - H"(DC,) - Homg(H,(C,), R) - 0
0 — Extg(H"*(C*), R) » H,(DC*) - Homg(H"(C*), R) — 0

which are split.
Proof. ii) is clear since R, is an injective resolution of R: the spectral sequence of the

double complex DC breaks into exact sequences.
i) follows from ii) and the five lemma. 0O
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The “‘naive” duality functor Hom( , R) satisfies the universal coefficient formulas of
Lemma 1.2 only on the subcategory of free complexes. If the free complexes are
moreover finitely generated, one has natural double duality

n: C = Hom(Hom(C, R), R)

given by evaluation. This is generalized as follows. We say that a complex C has
locally finite homology, if the groups H,(C) (resp. H"(C)) are finitely generated
R-modules for each n.

Proposition 1.3. If C has locally finite homology then the canonical map n : C — DDC
is a homology isomorphism.

Proof. Suppose first that C is a chain complex. Since it has locally finite homology
and R is Noetherian, we may find a homology isomorphism f: P, = C, where P, is
finitely generated and free for each n. By Lemma 1.2 the map DDf'is a homology
isomorphism, so it is enough to prove the claim for F,.

e

—— DDP,

*

P,

*
7| | por
C, - DDC

*
Since P, is free, the inclusion Hom (P, R) 4 DP, is a homology isomorphism. Now
P, is finitely generated, so that Hom(P,, R) is again free and the inclusion

k : Hom(Hom(P,, R), R) - DHom(P,, R)

is a homology isomorphism. But P, ~ Hom(Hom(Z,, R), R) and the result follows
from the commuting triangle

DHom(P,, R)

where k and Dj are homology isomorphisms. For cochain complexes one may de-
compose the cohomology groups into free and torsion parts, H"(C) = F(C)@ T"(C),
and prove the claim by considering the universal coefficient sequence of Lemma 1.2..
We omit the details. O
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Remark. The derived category is defined as the localization of the category of
complexes and homotopy classes of chain maps with respect to homology
isomorphisms. In this language Proposition 1.3 may be expressed by saying that the
duality functors establish a natural equivalence between the derived categories of
chain and cochain complexes with locally finite homology, cf. [Ha, V.§1].

We next turn to questions of exactness and limits. A sequence of complexes and chain
maps is called exact, if it is exact at each degree. As R, and R* consists of injective
modules, it is clear that the duality functor D is exact. The direct limit C = llm ()
of a direct sequence of complexes and chain maps

C():C00)—-C) = C(2) —»
is defined by taking direct limit in each degree separately. The direct limit is an exact
functor so that the homology H,(C) = hm H,(C(i)) only depends on the homology
of the system C(-). The (degreewise) inverse limit llln C(i) of an inverse sequence of
complexes is not an exact functor, and an inverse limit of acyclic complexes need not

be acyclic. However, duals of direct sequences behave properly:

Proposition 1.4. Let C(0) L, (1) EiR ... be a direct sequence of complexes.
i) The complexes D li_rgl C(i) and Iir_n DC(i) are canonically isomorphic.

i) There are natural short exact sequences

0 lim'H"(DC(i)) » H"(lim DC(@)) ~ lim H"(DC(i)) - 0
0 > lim'H,,,(DC(i)) > H,(lim DC(i)) — lim H,(DC(0)) - 0

for chain and cochain complexes, respectively.

Proof. i) The direct limit li_n’l C(i) can be defined as the cokernel in the short exact
sequence

(*) 0— @ c@) S @-) C(i) = limC(i) - 0

where

fcg, €45 €3, ...) = (¢, ¢y — foleo)s ez = fi(ey), -..)

The exact functor D turns (x) to the short exact sequence

0— Dli_rpC(i) l_[ DC(r) l—[ DC(i) =+ 0
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where
Df(d():dpdz, ) =(dy — Dfo(dl)’ d, —Df1(dz)s---)-

But the kernel of Df is by definition IEEI DC(i). This proves i).
The claim ii) follows from the homology sequence of (+x) using the definition of
1§£n' [M1, p. 338] as the derived functor of the inverse limit. 0

Remark. The argument shows more generally that any inverse system C(-) of
complexes for which the complex 1251‘ C is acyclic satisfies the Milnor sequences of
Proposition 1.4ii). This holds in particular when iir_n‘C = (), e.g. each map C(n)
— C(n — 1) issurjective. A homotopy invariant inverse limit of complexes is obtained
by using lix_n‘—acyclic resolutions. In particular, if each C(i) has locally finite
homology, the inverse system DDC (i) is liE"l L_acyclic and the homotopy inverse limit

holir_n C(i) = liin DDC(i) = Dli_rp DC(i)

has good formal properties. In fact it is the derived functor of lim on the category of
complexes bounded below with locally finite homology in the sense of [Ha, 1§ 3.

2. Homology of polyhedra

We shall work in the category of polyhedra of [RS]. A subset X = R™is a polyhedron
if each point a€ X has a cone neighborhood N = aL in X where L is compact.
A polyhedron can be triangulated as a locally finite simplicial complex [RS, p. 12].
Conversely, an abstract simplicial complex can be geometrically realized as a poly-
hedron if and only if it is countable, locally finite and finite-dimensional [Sp, p. 120].

Let X be a polyhedron. An exhaustion (K;) of X is a sequence of compact
subpolyhedra

KOCKlCch...

such that X = UK-' and K, c Int K;, for each i. Exhaustions always exist and X
may be triangulated so that the sets K; are finite subcomplexes [RS, proof of Th. 2.2
p.12]. We fix one exhaustion and a corresponding triangulation.

The closed subset X \Int K; is a subcomplex of X. Consider the exact sequence of
complexes of simplicial cochains

0 —» C*(X, X\IntK,) - C*(X) - C*(X\IntK;) - 0

with coefficients in R. As the cochain complex of a relatively finite simplicial complex
C*(X, X \IntK,) is finitely generated and free. The exact sequences of complexes
form a direct system and the limit

21) 0= C*X) » C*(X) = C*(X) - 0
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is still exact, where C}*(X) = li_rp C*(X, X\IntK;) and C*(X) = lim C* (X \Int K;).
More precisely, if S, is the set of n-simplices of X, then

CQ(X)=§—)R, C"(X)=ls—[ R, C,;‘(X)=(;BR/]S_[ R.

Definition 2.2. Let X be a polyhedron with exhaustion (K;). The cohomology of X
with compact supports is

H?(X) = H™(C¥(X)) = lim H"(X, X \Int K,)

and the end cohomology is

HY(X) = H™(C¥(X)) = lim H"(X \Int K,).

Remark. End cohomology of polyhedra in dimensional 0 has been used in the
classical theory of Freudenthal, Hopf and Specker in connection with surfaces,
3-manifolds and discrete groups. For a modern exposition see e.g. [AS], [E], [M2]
or [R]. The following results are collected from an unpublished Master’s Thesis of
Jussi Talsi [T]. The space of ends e(X) of a polyhedron X (or more generally any
locally path connected, locally compact space) in the sense of [F] and [Ho] can be
interpreted as the inverse limit

e(X) = limmy (X \K)

where K runs through the compact subsets of X, or a suitable cofinal collection like an
exhaustion. It is always a Hausdorff totally disconnected space and X® = Xu e(X)
has a natural locally compact topology where X'is an open and dense set. If X has only
finitely many components, the space X° is compact, called the Freudenthal or end
compactification of X. For a polyhedron with finitely many components, the end
spade e¢(X) is homeomorphic to a closed subset of the Cantor set, and the connection
with end cohomology is that H? (X) is isomorphic to the Cech cohomology H°(e(X))
of the space of ends e(X).

End cohomology has been introduced under the name cohomology of the ideal
boundary by Raymond [R, p.951] in Alexander-Spanier theory and Bredon
[B, p. 79] in sheaf theory and under the name cohomology at infinity by Godbillon
[G]in Cech theory. Massey [Ma] gives a chain complex description based on finitely
valued Alexander-Spanier cochains.

As homology commutes with direct limits, the long exact sequence of (2.1) takes
the form

(23) 0 - H(X) > - = HI(X) - H"(X) » H}(X) > H™'(X) > -
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Let ¥ be another polyhedron with exhaustion (L,). If f: X — Y is a continuous
proper map, i.e. f~'(C) is compact whenever C = Y is compact, then /(X \Int K;)
is contained in some Y \Int L, for each i. Hence finduces a mapping of direct systems
(H"(Y, Y\Int L;)) = (H"(X, X \Int K;)) and in the limit a map f* : H!(Y) — H!(X).
Properly homotopic maps give the same induced map (by the ordinary homotopy
axiom). In particular, H!(X) and similarly H;(X) depend only on the proper
homotopy type of X, but not on the chosen triangulation and exhaustion. The
sequence (2.3) is functorial with respect to proper maps.

The groups H"(X, X \Int K,) are always finitely generated since (X, X' \Int K;) is
a relatively finite complex. Consequently the groups H;'(X) are countably generated,
hence countable if R is countable. On the contrary H"(X) and H}(X) may well be
uncountably generated.

Example 2.4. If X is a discrete countable set then
HYX)=@R, HX)=[]R, HXX)=[]R/DR
X X X X

and the other groups vanish. When the coefficient ring R is a field, the vector space
H?(X) has countable dimension but the dimension of both H°(X) and H; (X) is the
cardinality of the continuum. Hence H* is “‘small” cohomology whereas H* and H}
are “‘big"” cohomologies.

Each compact set K < X is contained in some K;. Hence the sets X \Int K; form
a cofinal system system in the set of all cobounded sets. Since Cech cohomology and
sheaf cohomology agree with ordinary cohomology on polyhedral pairs, it follows
from [Sp, Th. 6.6.15, p. 322] that H*(X) is isomorphic to the cohomology of X with
compact supports in the sense of Cech cohomology or sheaf cohomology.

The simplicial chain complexes of the pair (X, X' \Int K})
0 = C, (X\IntK;) - C, (X) » C, (X, X\IntK;) - 0

form an inverse system of complexes. Taking ordinary inverse limits is now clearly
inappropriate, since C,(X \Int K;) form a decreasing sequence with
li[“ C,.(X\IntK;) = ﬂ C,(X\IntK;) =0.

i=0

Instead we replace the sequence with

C,(X) % C (X, X\IntK,)) > C,(p)
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where C, (p,) is the algebraic mapping cone of p,. Taking inverse limits leads to a
cofibration sequence

25)  C,(X) 5 clx) - ca[1]

where C}/(X) = lim C, (X, X \Int K;) and C{(X)= lix_n C.(p)[—1]. More pre-
cisely if §, is the set of n-simplices of X, then

C,X)=@R, C/X)=]]R CiX)=@DR [] R
Sn Sn Sn

s,,+1

Definition - Proposition 2.6. Let X be a polyhedron with exhaustion (K;). The locally
finite homology of X is HY (X)= H,(CY (X)) and the end homology of X is
Hy(X) = H,(Cy(X)). There are short exact sequences

0 = lim'H, ., (X, X\Int K)) > HY (X) - lim H,(X, X \IntK)) - 0
0 = lim' H, ., (X \IntK;) —» Hz(X) - lim H,(X \IntK;) - 0.

Proof. The inverse systems C, (X, X\IntK;) and C,(p;) consist of surjective
chain mappings so their limits satisfy the Milnor exact sequence (Remark after
Prop.1.4). Since p; is surjective, the homology of C_(p,) is the homology of
Kerp;, = C (X \IntK}) translated by one. 0O

Remark. The locally finite homology seems to be folklore. End homology in the
Borel-Moore homology corresponding to Alexander-Spanier theory is treated in
Raymond [R, Section 2] and Massey [ Ma, Section 10.2]. We could also have defined
Cg(X) as the quotient CY/ (X)/C,(X) translated by one as in the case of end
cohomology. The above definition was chosen in order to represent the chain
complex Cg(X) as a suitable inverse limit.

The ¢hain complexes C, (X) and C¥/ (X) start at dimension 0 but because of the
translation Cg(X) starts at dimension —1. Hence the exact sequence in homology
of (2.5) is now

Q7)o HE(X) = H(X) > HY(X) = HE((X) = -+ = HE(X) 0,
The possibility H¢,(X) # 0 is not excluded:

Example 2.4, continuation. If X is a countable discrete set then

Hy(X)= DR, HfX)=]]R, HEI(X)=HR/G;) R
X X X
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and the other groups vanish. Hence H, is a “small” homology and H,/ and Hy, are
“big” ones.

As in the case of cohomology one sees that HY (X) and Hy(X) only depend on the
proper homotopy type of X and that 2.7 is functorial with respect to proper maps.

The ordinary cohomology H* (X ) is dual to the ordinary homology H, (X) in the
sense that H"(X) is determined by H,_,(X) and H,(X) via the universal coefficient
theorem. It turns out that locally finite homology HY (X) is dual to compactly
supported cohomology HX (X).

Proposition 2.8. For any polyhedron X there is an exact sequence
0 - Extg(H!*'(X), R) - HY(X) - Hom(H!(X), R) = 0.

Proof. HX(X) s the homology of C*(X) = lim C*(X, X \Int K}). The dual of C*(X)
is
DC*(X) = Dlim C*(X, X \Int K;) = lim DC*(X, X \Int K)).

Since C, (X, X \IntK;) is a free chain complex, C*(X, X \IntK)) is equivalent
to DC, (X, X \Int K;). By local finiteness Proposition 1.3 implies that the canonical
map C, (X, X\IntK;) = DC*(X, X \Int K;) induces an isomorphism on homology.
The homology of both inverse limits is determined by Milnor exact sequences
(Prop.1.4.ii) so that

CY(X) = lim C, (X, X \Int K;) - lim DC* (X, X \Int K))

is a homology isomorphism. The claim now follows from Lemma 1.2.ii). O

As a corollary it follows that the locally finite homology H}/ (X) agrees with the
sheaf-theoretic Borel-Moore homology with closed supports, and with Massey’s
version of Steenrod homology, since both homologies satisfy similar split exact
sequences [B, p.184], [Ma, p.115]. This does not establish functoriality; it can be
obtained on the chain level in the derived category by composing the equivalence of
simplicial and singular homology and the equivalence of singular cohomology and
sheaf alias Alexander-Spanier cohomology.

Incidentally, a more concrete proof of Proposition 2.8 can be obtained by noting
that the matrices of the boundary maps é,: C,(X) = @5 R » @5, , R = C,_;(X)
have only finitely many non-zero elements in each degree. The compactly supported
cochain complex has the same chain groups but transposed differentials 4" = d;, and
CY(X) = ([]s. R, 8,)is the naive dual of the free complex C* (X). Hence 2.8 follows
from the ordinary universal coefficient theorem.



130 E. Laitinen

Let us symbolize the dualities obtained so far by two arrows H, 2 H" and
H' B HY and insert them between the sequence 2.3 und 2.7:

C o HIX) - H'(X) > HIX) —

| I

o= HEX) & HyX) « Hp(X) + ¢

To be precise, the arrows should be interpreted as duality functors on the chain level.
Since they point to opposite directions, there is little hope for any duality between
H*(X) and HE(X) without further assumptions. If X is assumed to have finitely
generated homology, then we show in the next Proposition that H is the universal
coefficient dual of H*. This can be explained by noting that the right hand duality
D can then be inverted, at least if we are using field coefficients (and in the derived
category in general). On the other hand if X is a manifold, we shall see in the next
section that Poincaré duality holds for H,(X) with a shift of dimensions.

Proposition 2.9. If X is a polyhedron with finitely generated homology H, (X), there is
an exacl sequence

0 — Extg(H*1(X), R) - H(X) - Homg(HX(X), R) — 0.

Proof. By the universal coefficient theorem C*(X) has finitely generated homology.
Since C* (X, X \Int K;) has always finite homology, so does C* (X \Int K;). The claim
follows now by dualizing the complex C}(X) = l.i_rP C*(X \Int K,) as in the proof of
Proposition 2.8 and using the Milnor exact sequences. O

The assumption that H, (X) is finitely generated does not imply that any of the
groups HY (X), H.(X), H¥(X) or H}(X) is finitely generated.

Example 2.10. A tree with infinitely many branches. Let X be the union of the positive
real axis and countably many non-intersecting half-lines starting at the integer points.
Then X is contractible,

H!(X)=@R, H°(X)=R, H)(X)=DR
i=0 i=0
and the other cohomology groups vanish. The dualities 2.8 and 2.9 then show that
HY(X) =[] R, Hy(X)=R, HiX)=]]R
i=0 i=0

are the only non-trivial homology groups.
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3. Poincarée duality

Let M be an unbounded PL-manifold of dimension n,i.e. a polyhedron such that each
point has a neighborhood PL-homeomorphic to an open set in R". Then we may
choose an exhaustion

MycM,c M,c

such that each M, is a compact PL-manifold with boundary by using regular neigh-
borhoods [RS, Ch. 3]. Notice that if M is the interior of a compact manifold N with
boundary dN we can use a collar on dN to choose an exhaustion such that all
inclusions M \Int M, ., = M \Int M, are homotopy equivalences, each space being
homeomorphicto dN x [0, 1). Then the end cohomology and the end homology of M
equal the ordinary cohomology and homology of dN,

H*(M) = H*(@N), Hi(M)=H,/(N)
and moreover
H*(M) >~ H*(N,0N), HJ(M)=H,(N,0dN).

As the inclusion M = N is a homotopy equivalence, it is clear in this case that we get
Poincaré dualities between H* (M) and H, (M), between H* (M) and H,;/ (M), and
between the end theories H*(M) and H{ (M) in dimension n —1.

We shall now indicate how Lefschetz duality for compact manifolds implies
Poincaré duality for M and the end theories of M in general. This is well-known for
ordinary homology and it is due to Raymond in the case of end theory [R, Th. 3.1].
We assume either that M is oriented or that char R = 2. Hence every M, gets an
R-orientation, compatible with each other.

Theorem 3.1. Let M be an unbounded PL-manifold of dimension n. Then there is
a commutative diagram with exact rows

> HYM) - H*M) - HiM) - H7'(M) -

| | | |

© = H, (M) - H:LR(M) - Hy_ (M) — Hy g (M)~ -

where the vertical maps are isomorphisms induced by capping with a fundamental class
in HY (M).

Proof. We have fundamental classes y; € C,(M, M \Int M,) = C,(M;, 0M;) which
are compatible to give in the limit a fundamental class u € C;/ (M). It is the sum of all

n-simplices of M suitably oriented. Capping with g, gives rise to homomorphisms

At C*(M) = Co (M, M\Int M)
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which are again compatible to yield a cap homomorphism
Ap:C*(M) = CH (M)

in the limit. It can be considered as a chain map with suitable signs. As Ny maps the
subcomplex C* (M) to C,—, (M) we get a commutative diagram

0— C¥M) - C*(M) - C¥ (M) -0

o |

0 = €y (M) = C (M) » C,(M)|C,— (M) — 0.

There is a unique chain map making the right hand square commute. As we have
a canonical homology equivalence C&(M)[1] = CY (M)/C, (M) (Remark after 2.6)
we get a commutative ladder with exact rows as claimed.

We are left with showing that the vertical arrows are isomorphisms. The maps
Ap: H¥(M) - H,_ (M) are direct limits of Lefschetz isomorphisms [RS, Th. 6.11,
6.12, p. 84]

A (M, M\Int M) = H*(M;,0M;) - H,_,(M;)
and thus isomorphisms. Similarly the cap products
Ny HY (M) — H,_ (M, 0M;) = H,_, (M, M\Int M;)

form isomorphisms between the inverse systems and by the Milnor exact sequence the
maps Ny : H*(M) —» H,. (M) are isomorphisms as well. It follows from the five
lemma that H}(M) and Hj (M) satisfy Poincaré duality in dimension n—1. O

Remark 3.2. The simplicial techniques we use are suitable for PL-manifolds, in
particular for smooth manifolds. The duality theorem holds for topological
manifplds, too, but in that case more refined tools such as sheaf cohomology and
Borel-Moore cohomology are needed, see [R].

The (—1)-dimensional homology in Example 2.4 gets now a natural explanation:
since M = X is a zero-dimensional manifold, H?(M) =~ H*,(M). For general
manifolds H, (M) is the free module on all components of M and H{/ (M) is the direct
product of R over the compact components. Since M always has at most countably
many components, we get

H (M) = H(M)

0, M has finitely many compact components,
_ a0 @
) [ R/@ R, M has infinitely many compact components.
i=0 i=0
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Hence in order to realize H(M) as the homology of a space it is reasonable to
assume that M has only finitely many compact components. The problem of fitting
a boundary to M is much deeper and leads to an obstruction in the projective class
group, cf. [Si]

We finally point out that if M is a manifold with finitely generated homology, then
H*(M) and HY (M) are finitely generated by Poincaré duality. The long exact
sequences (3.1) show that H*(M) and Hj (M) are also finitely generated.
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