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Prologue.

Suppose M is a closed smooth manifold. Is the “smoothness” of the
underlying topological manifold unique up to diffeomorphism?

The answer is no, and the first, stunningly simple examples of distinct
smooth structures were constructed for the 7-sphere by John Milnor as
3-sphere bundles over S4.

Theorem 1.1. (Milnor [52]) For any odd integer k = 2j +1 let M7
k be the

smooth 7-manifold obtained by gluing two copies of D4×S3 together via a

map of the boundaries S3 × S3 given by fj : (u, v) → (u, u1+jvu−j) where

the multiplication is quaternionic. Then M7
k is homeomorphic to S7 but,

if k2 6≡ 1 mod 7, is not diffeomorphic to S7.

This paper studies smooth structures on compact manifolds and the
role surgery plays in their calculation. Indeed, one could reasonably claim
that surgery was created in the effort to understand these structures.
Smooth manifolds homeomorphic to spheres, or homotopy spheres, are the
building blocks for understanding smoothings of arbitrary manifolds. Mil-
nor’s example already hints at surgery’s role. M7

k is the boundary of the
4-disk bundle over S4 constructed by gluing two copies of D4 ×D4 along
S3 × D4 using the same map fj . Computable invariants for the latter
manifold identify its boundary as distinct from S7.

Many homotopy spheres bound manifolds with trivial tangent bundles.
Surgery is used to simplify the bounding manifold so that invariants such
as Milnor’s identify the homotopy sphere which is its boundary. We will
encounter obstructions lying in one of the groups 0,Z/2, or Z (depending
on dimension), to simplifying the bounding manifold completely to a con-
tractible space, so that its boundary will be the usual sphere. We call these
groups the Wall groups for surgery on simply connected manifolds.

Except in the concluding §7, no advanced knowledge of topology is
required. Some basic definitions are given below, and concepts will be
introduced, intuitively or with precision, as needed, with many references
to the literature. Expanded presentations of some of this material are also
available, e.g. [40] or Levine’s classic paper [45].



74 Timothy Lance

§1 Topological and smooth manifolds.

A topological n-manifold (perhaps with boundary) is a compact Haus-
dorff space M which can be covered by open sets Vα, called coordinate
neighborhoods, each of which is homeomorphic to Rn (or Rn−1 × [0,∞))
via some “coordinate map” ϕα : Vα → Rn, with any points of the bound-
ary ∂M carried to Rn−1×0 via the maps ϕα (M is closed if no such points
exist). M is a smooth manifold if it has an “atlas” of coordinate neighbor-
hoods and maps {(Vα, ϕα)} such that the composites ϕα ◦ϕ−1

α′ are smooth
bijections between subsets of Euclidean space where defined (i.e., on the
sets ϕα′(Vα

⋂
Vα′).)

Similarly, M is piecewise linear, or PL, if an atlas exists such that the
composites ϕα ◦ϕ−1

α′ , when defined, are piecewise linear. For any PL man-
ifold there is a polyhedron P ⊂ Rq for some large q and a homeomorphism
T : P → M , called a triangulation, such that each composite ϕα ◦ T is
piecewise linear. Any smooth manifold M may be triangulated and given
the structure of a PL manifold, and the underlying PL-manifold is unique
up to a PL-isomorphism.

The triangulation T may be chosen so that the restriction to each
simplex is a smooth map. Any PL manifold clearly has an underlying
topological structure. A deep result of Kirby and Siebenmann [39] (see
also §7) shows that most topological manifolds may be triangulated.

We assume that all manifolds are also orientable. If M is smooth this
means that coordinate maps ϕα can be chosen so that the derivatives of the
composites ϕα ◦ϕ−1

α′ have positive determinants at every point. The deter-
minant condition ensures the existence, for each coordinate neighborhood
Vα, of a coherent choice of orientation for ϕα(Vα) = Rn. Such a choice is
called an orientation for M , and the same manifold with the opposite ori-
entation we denote −M . Orient the boundary (if non-empty) by choosing
the orientation for each coordinate neighborhood of ∂M which, followed
by the inward normal vector, yields the orientation of M .

The sphere Sn, consisting of all vectors in Rn+1 of length 1, is an
example of an orientable smooth n-manifold. Sn has a smooth structure
with two coordinate neighborhoods Vn and Vs consisting of all but the
south (north) pole, with ϕn carrying a point x ∈ Vn to the intersection
with Rn × 0 of the line from the south pole to x, and similarly for ϕs. Sn

is the boundary of the smooth (n + 1)-manifold Dn+1.
If M is a closed, smooth, oriented manifold, then the question regard-

ing the uniqueness of “smoothness” means the following: given another set
of coordinate neighborhoods Uβ and maps ψβ , does there exist a homeo-
morphism Φ of M such that the composites ϕα ◦Φ◦ψ−1

β and their inverses
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are smooth bijections of open subsets of Rn which preserve the chosen
orientations?

One might also ask whether a topological or PL manifold has at least
one smooth structure. The answer is again no, with the first examples due
to Kervaire [37] and Milnor [52]. In this paper we assume that all manifolds
have a smooth structure. But we shall see in 4.5 and again in 4.8 examples
(including Kervaire’s and Milnor’s) of topological manifolds which have
smooth structures everywhere except a single point. If a neighborhood of
that point is removed, the smooth boundary is a homotopy sphere.

§2 The groups of homotopy spheres.

Milnor’s example inspired intensive study of the set Θn of h-cobordism
classes of manifolds homotopy equivalent to the n-sphere, culminating in
Kervaire and Milnor’s beautiful Groups of homotopy spheres: I [38]. Two
manifolds M and N are homotopy equivalent if there exist maps f : M →
N and g : N → M such that the composites g ◦ f and f ◦ g are homotopic
to the identity maps on M and N , respectively. They are h-cobordant if
each is a deformation retraction of an oriented (n + 1)-manifold W whose
boundary is the disjoint union M t (−N).

For small values of n 6= 3 the set Θn consists of the h-cobordism class
of Sn alone. This is clear for n = 1 and 2 where each topological manifold
has a unique smooth structure, uniquely determined by its homology. The
triviality of Θ4, due to Cerf [24], is much harder, requiring a meticulous
study of singularities. The structure of Θ3 is unknown, depending as it
does on the Poincaré conjecture. But each topological 3-manifold has a
unique differentiable structure ([65], [98]), so if a homotopy 3-sphere is
homeomorphic to S3 it is diffeomorphic to it. The vanishing of Θ5 and Θ6

will use surgery theory, but depends as well on the h-cobordism theorem
of Smale.

Theorem 2.1. (Smale [79]) Any n-dimensional simply connected h-cobor-

dism W , n > 5, with ∂W = M t (−N), is diffeomorphic to M × [0, 1].

Smale’s proof is a striking demonstration of reflecting geometrically the
algebraic simplicity of the triple (W,M,N), that is, H∗(W,M) ∼= H∗(W,N)
∼= 0. One can find a smooth real valued function f : (W,M,N) →
([a, b], {a}, {b}) such that, around each point x ∈ W where the deriva-
tive of f vanishes, there is a coordinate neighborhood (Vα, ϕα) such that
the composite f ◦ ϕ−1

α : Rn → R equals (x1, . . . xn) → −x2
1 − x2

2 − . . . −
x2

λ + x2
λ+1 + . . . + x2

n. We call x a non-degenerate singularity of index λ,
and f a Morse function for W . The singularities are necessarily isolated,
and f can be adjusted so that [a, b] = [−1/2, n + 1/2] and f(x) = λ for any
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singularity of index λ. Morse functions for W not only exist, but are plen-
tiful ([56], [57]). If f could be found with no singularities, then the integral
curves of this function (roughly, orthogonal trajectories to the level sets of
f , whose existence and uniqueness follow by standard differential equations
arguments) yield a diffeomorphism W ∼= M × [0, 1]. This is always possible
given the above assumptions about trivial homology of (W,M) and (W,N).

To check this, let Wλ = f−1((−∞, λ + 1/2]), and let Mλ−1 be the
level set f−1(λ−1/2) (the level set of any value between λ−1 and λ would
be equivalent). Let xα be an index λ critical point. Then xα together
with the union of all integral curves beginning in Mλ−1 and approaching
xα form a disk Dλ

α,L, called the left-hand disk of xα, with bounding left-
hand sphere Sλ−1

α,L ⊂ Mλ−1. Wλ is homotopy equivalent to the union of
Wλ−1 and all left hand disks associated to critical points of index λ, so that
Cλ = Hλ(Wλ, Wλ−1) is a free abelian group with a generator for each such
singularity. We can similarly define, for any index (λ− 1) critical point yβ ,
the right-hand disk Dn−λ+1

β,R and right-hand sphere Sn−λ
β,R ⊂ Mλ−1.

If the intersection number Sλ−1
α,L · Sn−λ

β,R = ±1, we can move Sλ−1
α,L by

a homotopy so that it intersects Sn−λ
β,R transversely in a single point, and

change f to a new Morse function g with the same critical points and the
newly positioned left hand sphere for xλ. (The dimension restriction n > 5
is critical here, providing enough room to slide Sλ−1

α,L around to remove
extraneous intersection points.) With this new Morse function there is a
single integral curve from yβ to xα. By a result of Morse, g can be further
altered in a neighborhood of this trajectory to eliminate both critical points
xα and yβ .

This cancellation theorem is the key tool in proving the h-cobordism
theorem. The groups Cλ form a chain complex with ∂λ : Cλ → Cλ−1,
the boundary map of the triple (Wλ,Wλ−1,Wλ−2), given explicitly by in-
tersection numbers: the yβ coefficient of ∂λ(xα) equals Sλ−1

α,L · Sn−λ
β,R . But

H∗(C) ∼= H∗(W,M) ∼= 0. Thus for each λ, kernel(∂λ) is the isomorphic
image under ∂λ+1 of some subgroup of Cλ+1. Thus the matrices for the
boundary maps ∂λ corresponding to bases given by critical points can, by
elementary operations, be changed to block matrices consisting of identity
and trivial matrices. These operations can be reflected by correspondingly
elementary changes in the Morse function. By the above cancellation the-
orem all critical points can thus be removed, and W ∼= M × [0, 1].

As an immediate consequence of 2.1, two homotopy spheres are h-
cobordant if and only if they are orientation preserving diffeomorphic. The
h-cobordism theorem also fixes the topological type of a homotopy sphere
in dimensions ≥ 6. If Σ is a homotopy n-sphere, n ≥ 6, and W equals Σ
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with the interiors of two disks removed, what remains is an h-cobordism
which, by 2.1, is diffeomorphic to Sn−1 × [0, 1]. Since this product may
be regarded as a boundary collar of one of the two disks, it follows that Σ
may be obtained by gluing two disks Dn via some diffeomorphism f of the
boundaries Sn−1 of the two disks. If Σ′ is constructed by gluing n-disks via
a diffeomorphism f ′ of Sn−1, we may try to construct a diffeomorphism
Σ → Σ′ by beginning with the identity map of the “first” disk in each
sphere. This map induces a diffeomorphism f ′ ◦ f−1 of the boundaries
of the second disks, which extends radially across those disks. Such an
extension is clearly a homeomorphism, and smooth except perhaps at the
origin. If n = 5 or 6, then Σ bounds a contractible 6- or 7-manifold [38],
and by the above argument is diffeomorphic to S5 or S6.

Corollary 2.2. ([79], [81], [100]) If n ≥ 5, any two homotopy n-spheres

are homeomorphic by a map which is a diffeomorphism except perhaps at

a single point.

Θn has a natural group operation #, called connected sum, defined as
follows. If Σ1 and Σ2 are homotopy n-spheres, choose points xi ∈ Σi, i =
1, 2, and let Di be a neighborhood of xi which maps to the disk Dn under
some coordinate map ϕi which we may assume carries xi to 0. Define
Σ1#Σ2 as the identification space of the disjoint union (Σ1−x1)t(Σ2−x2)
in which we identify ϕ−1

1 (tu) with ϕ−1
2 ((1 − t)u) for every u ∈ Sn−1 and

0 < t < 1.
Give Σ1#Σ2 an orientation agreeing with those given on Σ1 − x1 and

Σ2 − x2 (which is possible since the map of punctured disks tu → (1 −
t)u induced by the gluing is orientation preserving). Intuitively, we are
cutting out the interiors of small disks in Σ1 and Σ2 and gluing along the
boundaries, appropriately oriented.

Connected sum is well defined. By results of Cerf [23] and Palais [69],
given orientation preserving embeddings g1, g2 : Dn → M into an oriented
n-manifold, then g2 = f ◦ g1 for some diffeomorphism f of M . (One may
readily visualize independence of the choice of points xi. Given x1 and x′1 in
Σ1, there is an n-disk D ⊂ Σ1 containing these points in the interior and a
diffeomorphism carrying x1 to x′1 which is the identity on ∂D.) Connected
sum is clearly commutative and associative, and Sn itself is the identity.

The inverse of any homotopy sphere Σ is the oppositely oriented −Σ.
If we think of Σ#(−Σ) as two disks Dn glued along their common boundary
Sn−1, then we may intuitively visualize a contractible (n + 1)-manifold W

bounding Σ#(−Σ) by rotating one of the disks 180◦ around the boundary
Sn−1 till it meets the other — rather like opening an n-dimensional awning
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with Sn−1 as the hinge. Removing the interior of a disk from the interior
of W yields an h-cobordism from Σ#(−Σ) to Sn.

Theorem 2.3. (Kervaire, Milnor [38]) For n 6= 3 the group Θn is finite.

We shall see below that in almost all dimensions, Θn is a direct sum of
two groups: one is a cyclic group detected, much as in Milnor’s example,
from invariants of manifolds which the spheres bound; the second is a
quotient group of the stable nth homotopy of the sphere.

The above definition of # applies to arbitrary closed n-manifolds M1

and M2. Though not a group operation in this case, it does define a group
action of Θn on h-cobordism classes of n-manifolds. For bounded manifolds
the analogous operation, connected sum along the boundary, is defined as
follows.

Suppose Mi = ∂Wi, i = 1, 2. Choose a disk Dn+1 in Wi such that
the southern hemisphere of the bounding sphere lies in Mi. Remove the
interior of Dn+1 from Wi, and the interior of the southern hemisphere from
∂Wi = Mi, i = 1, 2. What remains of these (n + 1)-disks are the northern
hemispheres of their bounding spheres. Glue the two resulting manifolds
together along these hemispheres Dn to form W1#W2. Restricted to the
boundaries this operation agrees with # defined above, and again respects
h-cobordism classes.

§3 An exact sequence for smoothings.

To compute the group Θn, we consider the tangent bundles of homo-
topy spheres and the manifolds they bound. Let M be any compact smooth
m-manifold. We may suppose M is a differentiable submanifold of Rk via a
differentiable inclusion Φ : M → Rk for some k sufficiently large. (In fact,
this is a fairly direct consequence of the definition of smooth manifold).
For any x ∈ M , coordinate neighborhood Vα containing x, and coordinate
map ϕ : Vα → Rm, define the tangent space to M at x, τ(M)x, to be the
image of the derivative of Φ ◦ ϕ−1

α at ϕα(x). Change of variables in cal-
culus shows that the m-dimensional subspace τ(M)x of Rk is independent
of the choice of Vα and ϕα. Define the tangent bundle τ(M) to be the
set {(x, v) ∈ Rk ×Rk|v ∈ τ(M)x} together with the map p : τ(M) → M

induced by projection to the first coordinate. The fiber p−1(x) is the m-
dimensional vector space {x} × τ(M)x.

The tangent bundle is a special case of an n-dimensional vector bundle
ξ consisting of a total space E, base space B, and map p : E → B which
locally is a projection map of a product. Thus we assume there are open
sets Uβ covering B (or M in the case of τ(M)) and homeomorphisms :
ψβ : Uβ × Rn → p−1(Uβ) such that ψ−1

β ◦ ψβ′ is a linear isomorphisms
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on x ×Rn for every x ∈ Uβ ∩ Uβ′ , and p ◦ ψβ is the projection onto Uβ .
When the base space is a smooth manifold, we will assume the maps ψβ are
diffeomorphisms. Any operation on vector spaces defines a corresponding
operation on bundles. For example, using direct sum of spaces we define
the Whitney sum ⊕ as follows.

If ξ1 and ξ2 are m- and n-plane bundles, with total spaces E1 and E2

and common base B, then ξ1 ⊕ ξ2 is the (m + n)-plane bundle with base
B and total space the fiber product {(x1, x2)|p1(x1) = p2(x2)}. Bundles
over a manifold “stabilize” once the fiber dimension exceeds that of the
manifold. That is, if ξ1 and ξ2 are bundles over an m-manifold M of fiber
dimension k > m, and if ξ1⊕εj

M
∼= ξ2⊕εj

M , where εj
M is the product bundle

M ×Rj → M , then ξ1
∼= ξ2.

We will need other vector bundles associated with M . If M is em-
bedded as a submanifold of an n-dimensional smooth manifold N , where
for simplicity we assume both M and N are closed, contained in Rk for
some k, and m < n, the (n −m)-dimensional normal bundle of M in N ,
ν(M,N), has as fiber at x ∈ M the elements of τ(N)x which are orthogonal
to τ(M)x. Here orthogonality can be defined using dot product in Rk. We
denote the normal bundle of M in Rk by ν(M).

We call a manifold M parallelizable if τ(M) is trivial, that is, isomor-
phic to M ×Rm → M . The sphere Sn is parallelizable precisely when n

equals 1, 3, or 7, a magical fact proved by Bott and Milnor [10] (and inde-
pendently by Kervaire) who also show that these are the only spheres which
support multiplications (complex, quaternionic, and Cayley). Recall that
Milnor used the quaternionic multiplication on S3 in his first construction
of homotopy spheres.

A somewhat weaker condition on τ(M) is stable parallelizability, that
is, the bundle τ(M) ⊕ ε1M

∼= εn+1
M . More generally, two vector bundles ξ1

and ξ2 over a base B are stably isomorphic if ξ1⊕εj
B
∼= ξ2⊕εk

B where, if B is
a complex of dimension r, the total fiber dimension of these Whitney sums
exceeds r. Such bundles are said to be in the “stable range”. A connected,
compact m-manifold M with non-trivial boundary is parallelizable iff it is
stably parallelizable, since it has the homotopy type of an (m−1)-complex
and thus τ(M) is already in the stable range.

Though few spheres are parallelizable, all are stably parallelizable. In
fact, if we envision the fiber of ν(Sn) at x, in the usual embedding of
Sn ⊂ Rn+1, as generated by x, then ν(Sn) ∼= Sn×R. Thus τ(Sn)⊕ ε1Sn is
isomorphic to the restriction of the trivial tangent bundle of Rn+1 to Sn.
Far less obvious is the following result of Kervaire and Milnor ([38], 3.1),
which follows from obstruction theory and deep computations of Adams
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about the J-homomorphism:

Theorem 3.1. Every homotopy sphere Σn is stably parallelizable.

As an immediate corollary, if Σn is embedded in Rk where k > 2n+1,
then ν(Σn) ∼= εk−n

Σn . For τ(Σn) ⊕ ε1Σn ⊕ ν(Σn) equals the restriction of
Rk⊕ ε1Rk restricted to Σn. But τ(Σn)⊕ ε1 ∼= εn+1

Σn since the tangent bundle
is stably parallelizable, so ν(Σn) is trivial by stability.

Given an isomorphism ϕ : ν(Σn) ∼= Σ×Rk−n we define a continuous
map Sk → Sk−n as follows. Regard Σ × Rk−n as a subset of Sk, and
Sk−n as the disk Dk−n with its boundary identified to a point ∗. Then
send the pair ϕ−1(x, y), where (x, y) ∈ Σ × Dk−n to the point in Sk−n

corresponding to y, and send all other points of Sk to ∗. Following [38],
let p(Σn, ϕ) denote the homotopy class of this map in the stable homotopy
group of the sphere Πn(S) = πk(Sk−n).

Generally, if (M,ϕ) is any n-manifold with framing ϕ : ν(M)
∼=→

(M × Rk−n) of the normal bundle in Rk, the same definition yields a
map p(M, ϕ) ∈ Πn(S). This is the Pontrjagin-Thom construction. If
(M1, ϕ1)t(M2, ϕ2) ⊂ Rk form the framed boundary of an (n+1)-manifold
(W,∂W, Φ) ⊂ (Rk×[0,∞),Rk×0), we say that they are framed cobordant.

Theorem 3.2. (Pontrjagin [72], Thom [89]) For any manifold M with

stably trivial normal bundle with framing ϕ, there is a homotopy class

p(M, ϕ) dependent on the framed cobordism class of (M, ϕ). If p(M) ⊂
Πn(S) is the set of all p(M, ϕ) where ϕ ranges over framings of the normal

bundle, it follows that 0 ∈ p(M) iff M bounds a parallelizable manifold.

The set p(Sn) has an explicit description. Any map α : Sn → SO(r)
induces a map J(α) : Sn+r → Sr by writing Sn+r = (Sn ×Dr) ∪ (Dn+1 ×
Sr−1), sending (x, y) ∈ Sn × Dr to the equivalence class of α(x)y in
Dr/∂Dr = Sr, and sending Dn+1 × Sr−1 to the (collapsed) ∂Dr. Let
J : πn(SO) → Πn(S) be the stable limit of these maps as r → ∞. Then
p(Sn) = image(J(πn(SO)) ⊆ Πn(S).

Let bPn+1 denote the set of those h-cobordism classes of homotopy
spheres which bound parallelizable manifolds. In fact, bPn+1 is a subgroup
of Θn. If Σ1,Σ2 ∈ bPn+1, with bounding parallelizable manifolds W1,W2,
then Σ1#Σ2 bounds the parallelizable manifold W1#W2 where the latter
operation is connected sum along the boundary.

Theorem 3.3. For n 6= 3, there is a split short exact sequence

0 → bPn+1 → Θn → Θn/bPn+1 → 0
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where the left hand group is finite cyclic and Θn/bPn+1 injects into

Πn(S)/J(πn(SO))

via the Pontrjagin-Thom construction. The right hand group is isomorphic

to Πn(S)/J(πn(SO)) when n 6= 2j − 2.

Injectivity of Θn/bPn+1 → Πn(S)/J(πn(SO)) follows from 3.2; see [38]
for details. Since the stable homotopy groups are finite, so is Θn/bPn+1.
In the next two sections we examine how surgery is used to calculate bPn+1

and show that the sequence splits. In particular, we will get an exact order
for the group bPn+1 for most n, and verify the finiteness asserted in 2.1.

§4 Computing bPn+1 using surgery.

Suppose Σn ∈ bPn+1 bounds a parallelizable manifold W whose ho-
motopy groups πi(W ) vanish below dimension j for some j < n/2. With
this latter restriction, any element of πj(W ) may be represented by an
embedding f : Sj → interior(W ). Since W is parallelizable, the restric-
tion of τ(W ) to f(Sj) is trivial and hence, by stability, so is the normal
bundle ν(f(Sj), W ). Let F : Sj × Dn+1−j → interior(W ) be an embed-
ding which extends f and frames the normal bundle. Let W (F ) denote
the quotient space of the disjoint union (W × [0, 1]) t (Dj+1 ×Dn+1−j) in
which (x, y) ∈ Sj ×Dn+1−j is identified with (F (x, y), 1) ∈ W × 1. Think
of the (n + 2)-manifold W (F ) as obtained from W × [0, 1] by attaching a
(j + 1)-handle Dj+1 × Dn+1−j via F . This manifold seems to have non-
smooth corners near the gluing points Sj × Sn−j , but a straightforward
argument shows how to smoothly straighten the angle on this set. The
resulting manifold has boundary (W ×{0})∪ (Σn× [0, 1])∪W ′ where W ′,
the “upper boundary” of W (F ), is obtained by cutting out the interior
of F (Sj × Dn+1−j), leaving a boundary equal to Sj × Sn−j , and gluing
Dj+1 × Sn−j to it along its boundary.

We say that W ′ is obtained from W by doing surgery via the framed
embedding F . Since this process attaches a (j +1)-disk via f and j < n/2,
it follows that πi(W ′) ∼= πi(W ) for i < j, and πj(W ′) ∼= πj(W )/Λ for some
group Λ containing the homotopy class of f . The surgery can be done in
such a way that the tangent bundle τ(W ′) is again trivial. The restriction
of τ(W (F )) to the image of f has two trivializations, one coming from
the parallelizability of W × [0, 1], the other from the triviality of any bun-
dle over Dj+1 × Dn+1−j , a contractible space. Comparing them gives a
map α : Sj → SO(n + 2). Since j < n − j, this factors as a composite

Sj β→ SO(j + 1) ⊂→ SO(n + 2), where the second map is the natural in-
clusion. (This is an elementary argument using exact homotopy sequences
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of fibrations SO(r) → SO(r + 1) → Sr for r ≥ j.) It follows that the
(n + 2)-manifold W (Fβ−1) is parallelizable, where β−1 : Sj → SO(n − j)
carries x to (β(x))−1, and Fβ−1(x, y) = F (x, β−1(x)y). The restriction
of the tangent bundle of the “upper boundary” W ′

β−1 of W (Fβ−1) is iso-
morphic to τ(W ′

β−1) ⊕ ε1W ′
β−1

, with the trivial subbundle ε1W ′
β−1

generated

by the inward normal vectors along the boundary. Thus W ′
β−1 is stably

parallelizable and, since ∂W ′
β−1 = Σ 6= ∅, parallelizable.

Though surgery kills the homotopy class represented by f , it opens
up an (n − j)-dimensional “hole” represented by the homotopy class of
F |x×Sn−j for any x ∈ Dj+1. But no matter. Our strategy is to start with
a generator g of the lowest non-zero homotopy group πj(W ). As long as
j < n/2 we can do surgery to kill g, adding no new homotopy in dimension
j or lower, and leaving ∂M = Σ fixed. Thus working inductively on the
finite number of generators in a given dimension j, and on the dimension,
we obtain:

Proposition 4.1. If Σn bounds a parallelizable manifold, it bounds a

parallelizable manifold W such that πj(W ) = 0 for j < n/2.

Suppose that n = 2k. The first possible non-zero homotopy (and
hence homology) group of the manifold W of 4.1 occurs in dimension k.
By Poincaré duality, all homology and cohomology of W is concentrated
in dimensions k and k + 1. If by surgery we can kill πk(W ), the resulting
manifold W ′ will have trivial homology. Removing a disk from the interior
of W ′ thus yields an h-cobordism between Σ and Sn.

But if we do surgery on W using a framed embedding F : Sk×Dk+1 →
interior(W ) to kill the homotopy class of f = F |Sk×0, it is possible that
the homotopy class of f ′ = F |0×Sk might be a “new” non-zero element of
πk(W ′). If there were an embedding g : Sk+1 → W whose image intersected
that of f transversely in a single point, then f ′ would be null-homotopic.
For we may suppose that image(g) ∩ image(F ) = F (x × Dk+1) for some
x ∈ Sk. Then f ′ is homotopic to f̃ = F |x×Sk , and f̃ deforms to a constant
in the disk formed by the image of g lying outside F (Sn × int(Dn+1)).

By moving to homology, we get criteria which are easier to fulfill and
insure the triviality of f ′. Let λ ∈ Hk(W ) and λ′ ∈ Hk(W ′) be the homol-
ogy classes corresponding to f and f ′ under the Hurewicz isomorphism,
and suppose also that λ generates a free summand in Hk(W ). By Poincaré
duality there is µ ∈ Hk+1(M) such that λ · µ = 1 where · denotes inter-
section number. The element µ plays the role of the transverse sphere. A
straightforward argument involving homology exact sequences of the pairs
(W,W0) and (W ′, W0), where W0 = W\int(F (Sk × Dk+1)) shows that
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λ′ = 0, even when the framing F is replaced by Fβ−1 to ensure paralleliz-
ability. Thus, by a sequence of surgeries, we can reduce Hk(W ) to a torsion
group T .

Here the argument becomes more technical and delicate. Kervaire
and Milnor show that if k is even, surgery always changes the free rank of
Hk(W ), so if λ is a generator of T , surgery on λ reduces |T | at the cost
of introducing non-zero Z summands, which are then killed by subsequent
surgeries. If k is odd, special care must be taken to choose a framing which
both reduces the size of T and preserves parallelizability. In both cases,
Hk(W ) can be eliminated by surgery and we obtain:

Theorem 4.2. (Kervaire-Milnor [38]) For any k ≥ 1, bP2k+1 = 0.

§5 The groups bP2k.

Suppose W is a parallelizable 2k-manifold with boundary the homo-
topy sphere Σ2k−1, k > 2. As in §4, we may assume, after performing
surgery on W leaving ∂W fixed, that W is (k− 1)-connected. By Poincaré
duality the homology of W is free and concentrated in dimension k. Once
again, the homotopy class of an embedding f : Sk → W can be killed by
surgery without adding new non-trivial homotopy classes if the geometry
near it is nice — i.e., if f(Sk) has a trivial normal bundle and there is an
embedding g : Sk → W whose image intersects f(Sk) transversely in a
single point. Of course, we have no assurance that such transverse spheres
exists and, since ν(f(Sk),W ) is just below the stable range, parallelizabil-
ity of W does not guarantee triviality of this normal bundle. But there
is a simple criterion for ensuring homological intersection conditions which
enable elimination of Hk(W ) by surgery.

Let k = 2m. The intersection number defines a symmetric bilinear
map H2m(W )×H2m(W ) → Z. Since ∂W is homeomorphic to a sphere, we
can view W as a topologically closed manifold and hence, by Poincaré du-
ality, the intersection pairing is non-singular. If this pairing is diagonalized
over R, define the signature σ(W ) to be the number of positive diagonal
entries minus the number of negative ones.

Theorem 5.1. ([38], [54]) The homotopy (and hence homology) groups of

W can be killed by surgery if and only if σ(W ) = 0.

The intersection form is also even (for any homology class λ∈H2m(W ),
the self-intersection number λ·λ is an even integer), and hence the signature
must be divisible by 8 ([15], [76]). A (2m−1)-connected parallelizable 4m-
manifold W 4m

0 with boundary a homotopy sphere and signature σ(W 4m
0 )

precisely equal to 8 can be constructed as follows. Let E1, E2, . . . , E8 be
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disjoint copies of the subset of τ(S2m) of vectors of length ≤ 1. We glue
E1 to E2 as follows. The restriction of Ei to a 2m-disk in the base is
diffeomorphic to D2m

b,i ×D2m
f,i where the subscripts b and f denote base and

fiber (i.e., for x ∈ D2m
b,i , an element of the base of Ei, x×D2m

f,i is the fiber
over x). Then we identify (x, y) ∈ D2m

b,1 ×D2m
f,1 with (y, x) ∈ D2m

b,2 ×D2m
f,2 .

Thus the disk in the base of E1 maps onto a fiber in E2, transversely
crossing the base in a single point. We say that we have attached these
disks by “plumbing”. As before, there are corners, but these can be easily
smoothed by straightening the angle. We similarly attach E2 to E3, E3

to E4, . . ., E6 to E7, and E8 to E5. The resulting manifold W 4m
0 has

boundary a homotopy sphere Σ4m−1
0 and homology intersection form given

by the following matrix with determinant 1 and signature 8 (see [15] or [60]
for nice expositions):

A =




2 1
1 2 1

1 2 1
1 2 1

1 2 1 0 1
1 2 1 0
0 1 2 0
1 0 0 2




where all omitted entries are 0. The 2’s on the main diagonal are the
self-intersections of the 0-section of τ(S2m) in E1, . . . E8. Note that even
though the 0-section of each Ei has a sphere intersecting transversely in a
single point, it cannot be killed by surgery since its normal bundle in W 4m

0

is non-trivial.
By taking connected sums along the boundary (as described in §2) we

obtain, for any j, a parallelizable manifold with signature 8j and boundary
a homotopy sphere. If (W 4m

0 )#j equals the j-fold sum W0# . . . #W0 if j >

0, and the (−j)-fold sum (−W0)# . . . #(−W0) if j < 0, then σ((W 4m
0 )#j) =

8j. By 2.2, the boundary (Σ4m−1
0 )#j is a homotopy sphere, homeomorphic

to S4m−1. We use this construction to compute the cyclic group bP4m.

Theorem 5.2. For m > 1 the homomorphism σ : Z → bP4m given by

σ(j) = ∂(W 4m
0 )#j = (Σ4m−1

0 )#j

is a surjection with kernel all multiples of

σm = am22m−2(22m−1 − 1)numerator(Bm/4m)
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Here am = 2 or 1 depending on whether m is odd or even, and the
rational Bernoulli numbers Bm are defined by the power series

z

ez − 1
= 1− z

2
+

B1

2!
z2 − B2

4!
z4 +

B3

6!
z6 −+ . . .

This lovely result, announced in Groups of Homotopy Spheres I , is a con-
fluence of earlier work of Kervaire and Milnor, the signature theorem of
Hirzebruch ([31], [62]) and J-homomorphism computations of Adams ([1]
– [4]). We sketch a proof.

Suppose W 4m is an oriented, closed, smooth manifold with a framing ϕ

of the stable tangent bundle in the complement of a disc. By the signature
theorem,

σ(W ) =
〈22m(22m−1 − 1)Bm

(2m)!
pm(W ), [W ]

〉

where pm(W ) is the mth Pontrjagin class and [W ] ∈ H4m(W ) is the ori-
entation class. There is an obstruction O(W,ϕ) ∈ π4m−1(SO) ∼= Z to
extending to all W the given framing on W less a disk. Milnor and Ker-
vaire [61] showed that the Pontrjagin number 〈pm(W ), [W ]〉 ∈ Z corre-
sponds to ±am(2m − 1)!O(W,ϕ) under this identification of groups. This
shows that O(W,ϕ) is independent of the choice of ϕ, and that an almost
parallelizable W is stably parallelizable iff σ(W ) = 0. A straightforward
argument using the Pontrjagin-Thom construction shows that an element
γ ∈ πj−1(SO) occurs as an obstruction O(W ) to framing an almost par-
allelizable W j iff J(γ) = 0. A hard computation of Adams [4] showed
that the order(J(π4m−1(SO))) = denominator(Bm/4m), up to (perhaps)
multiplication by 2 in half the dimensions. In their solutions to the Adams
conjecture, Quillen [73] and Sullivan [87] showed that this multiplication
by 2 is unnecessary, completing the proof.

Corollary 5.3. Let Ŵ 4m
j denote the space obtained from (W 4m

0 )#j by

attaching a cone on the boundary. If j 6≡ 0 mod σm, then Ŵ 4m
j is a closed

topological 4m-manifold with a smooth structure in the complement of a

point, but no smooth structure overall.

A second application of Adams’ J-homomorphism computation yields
the exact order of Θ4n−1. By the Pontrjagin-Thom construction, any el-
ement of the stable homotopy group Π4n−1(S) corresponds uniquely to a
framed cobordism class of (4n − 1)-manifolds. From the same argument
that showed that bP4m−1 = 0, any such class is represented by a homotopy
sphere. Thus the injection of Θ4m−1/p(S4m−1)→Π4n−1(S)/J(π4m−1(SO))
of 3.3 is a bijection and we have:
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Theorem 5.4. [38] For m > 1, Θ4m−1 has order

am22m−4(22m−1 − 1)Bm(order(Π4m−1(S)))/m.

Brieskorn ([11], [12]), Hirzebruch [33], and others ([34], [71]) have stud-
ied these homotopy spheres and their bounding manifolds in a very different
context. Let a = (a0, a1, . . . , an) be an (n + 1)-tuple of integers aj ≥ 2,
n ≥ 3. Define a complex polynomial fa(z0, . . . , zn) = za0

0 + . . . + zan
n .

The intersection f−1
a (0) ∩ S2n+1 of the affine variety f−1

a (0) ⊂ Cn+1 with
the sphere is a smooth (2n − 1)-manifold Ma. For small ε > 0, Ma

is diffeomorphic to f−1
a (ε) ∩ S2n+1, and this in turn bounds the paral-

lelizable 2n-manifold f−1
a (ε) ∩ D2n+2. Brieskorn [12] shows that if a =

(3, 6j − 1, 2, . . . , 2), with 2 repeated 2m − 1 times (so that n = 2m),
then σ(f−1

a (ε) ∩ D2n+2) = (−1)m8j. In particular, Ma is diffeomorphic
to (Σ4m−1

0 )#(−1)mj . It follows from the work above, and is shown directly
in [12] or [34], that σ(f−1

a (ε) ∩D2n+2) is diffeomorphic to (W 4m
0 )#(−1)mj .

Finally, we consider bPn+1 when n = 4m + 1, even more delicate and
still not computed for all m. Suppose Σ = ∂W 4m+2 where W is paral-
lelizable with framing ϕ. By surgery, we may assume W is 2m-connected.
The obstruction to continuing this framed surgery to obtain a contractible
space, the Kervaire invariant c(W,ϕ) ∈ Z/2, derives from the Arf-invariant
for non-singular Z/2 quadratic forms. If V is a Z/2 vector space, we say
that ξ : V → Z/2 is a quadratic form if ξ(x + y) − ξ(x) − ξ(y) = (x, y) is
bilinear, and ξ is non-singular if the associated bilinear form is. Suppose
V is finite dimensional, and choose a symplectic basis {αi, βi|i = 1 . . . r}
where (αi, αi) = (βi, βi) = 0 and (αi, βj) = δi,j . Define the Arf invariant of
ξ by A(ξ) =

∑r
i=1 ξ(αi)ξ(βi) ∈ Z/2. A theorem of Arf [6] (see also [15], pp

54-55) states that two non-singular quadratic forms on a finite dimensional
Z/2 vector space are equivalent iff their Arf invariants agree. The Arf in-
variant has been used by Kervaire [37], Kervaire and Milnor [38], Browder
[16], Brown [17], Brown and Peterson [18], and others to study surgery of
spheres and other simply-connected (4m+2)-manifolds, and by Wall ([95],
[96]) to extend this work to the non-simply connected case.

Theorem 5.5. There is a non-singular quadratic form

ψ : H2k+1(W,∂W ;Z/2) → Z/2

with associated quadratic form (x, y) → 〈x ∪ y, [W ]〉. Let c([W,∂W ], ϕ),
the Kervaire invariant, be the Arf invariant of ψ, which depends on the
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framed cobordism class of ([W,∂W ], ϕ). Then ([W,∂W ], ϕ) is framed co-

bordant to a contractible manifold iff c([W,∂W ], ϕ) = 0. In particular,

bP4k+2 is isomorphic to Z/2 or 0.

In [38], ψ is defined as a cohomology operation which detects [ ι, ι](x∪
y), where [ , ] is the Whitehead product; Browder [16] defines ψ using func-
tional cohomology operations. Using the Poincaré duality isomorphism
H2k+1(W,∂W ;Z/2) ∼= H2k+1(W ;Z/2), an alternative description of ψ may
be given using homology. From the Hurewicz theorem, any integral homol-
ogy class reducing to w ∈ H2k+1(W,Z/2) can be represented by a map
ω : S2k+1 → W . By [28] or [77], this map is homotopic to a framed im-
mersion. Define ψ0(ω) to be the self-intersection number of this immersion
mod 2. Then A(ψ) = A(ψ0) = c(W,ϕ).

If dim(W ) = 6 or 14, we can find a symplectic basis represented
by framed embeddings, and bP6 = bP14 = 0. Thus we suppose that
m 6= 1, 3, and that W 4m+2 is a framed manifold with boundary a ho-
motopy sphere. As in the case of the signature, c(W,ϕ) is independent of
the choice of framing. We write c(W ) for the Kervaire invariant, which
vanishes iff the quadratic form vanishes on more than half the elements
of H2m+1(W,∂W ;Z/2) (see, e.g. [15]). But computing this invariant has
proved extraordinarily hard.

By plumbing together two copies of τ(S2m+1), we obtain a (4m + 2)-
manifold W0 with c(W0) = 1 and ∂W0 a homotopy sphere. If ∂W0 =
S4m+1, then by attaching a disk we obtain a closed, almost framed (4m+2)-
manifold of Kervaire invariant 1. Adams [2] showed that if m 6≡ 3 mod 4,
the J-homomorphism πm(SO) → Πm(S) is injective, so the almost framed
manifold can be framed. Thus bP4m+2 = Z/2 precisely when the Kervaire
invariant vanishes for framed, closed (4m + 2)-manifolds — that is, when
∂W 4m+2

0 is non-trivial. Kervaire [37] showed this for dimensions 10 and 18,
Brown and Peterson [18] in dimensions 8k + 2. Browder extended this to
show that the Kervaire invariant vanishes in all dimensions 6= 2i−2, and is
non-zero in one of those dimensions precisely when a certain element in the
Adams spectral sequence survives to E∞. Combining this with calculations
of Mahowald and Tangora [48], and of Barratt, Jones, and Mahowald [8],
we have:

Theorem 5.6. bP4m+2 = Z/2 if 4m+2 6= 2i−2, and vanishes if 4m+2 =
6, 14, 30, and 62.

It is interesting to compare the results of this section with the h-
cobordism theorem. Suppose, for example, that j > 0 is chosen so that
∂((W 4m

0 )#j) is the usual sphere S4m−1. Removing a disk from the interior,
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we obtain a cobordism W of S4m−1 to itself. Giving W a Morse function f

and following the proof of 2.1, it is possible to replace f with a new Morse
function f ′ on W with critical points of index 2m only, with each left hand
disk corresponding to one of the 2m-spheres used to construct (W 4m

0 )#j .
These disks are embedded in W , but their bounding spheres S2m−1 in the
“lower” boundary component S4m−1 link according to the same rules for
intersections of the spheres plumbed together in constructing (W 4m

0 )#j .

§6 Computation of Θn and number theory.

Let Ωframed
k denote the family of framed cobordism classes of k-mani-

folds with a framing ϕ of the stable trivial normal bundle in Euclidean
space. The Pontrjagin-Thom construction gives an equivalence Ωframed

k
∼=

Πk(S) which generates the injection Θn/bPn+1 → Πn(S)/J(πn(SO)) of
§3. In particular, Ωframed

k is finite group, with disjoint union as the group
operation.

By placing different restrictions on the normal bundle, we obtain other
cobordism groups. For example, ΩU

k denotes the class of manifold where the
stable normal bundle has the structure of a complex vector bundle. Milnor
[53] showed that the groups ΩU

k are torsion free, so that the canonical map
Ωframed

k → ΩU
k must be trivial. Thus for any Σ ∈ Θk there is a U -manifold

W k with ∂W = Σ, even though Σ may not bound a parallelizable manifold.
When k = 4m − 1, Brumfiel [19] shows that W 4m may be chosen with
all decomposable Chern numbers vanishing. In this case, σ(W ) is again
divisible by 8, and independent mod 8σm of the choice of such W . Define
a homomorphism αm : Θ4m−1 → Z/σm by sending the h-cobordism class
of Σ4m−1 to σ(W )/8 mod σm. Then αm is a splitting map for the exact
sequence 3.3 in dimension n = 4m − 1. By similar arguments, Brumfiel
([20], [21]) defines splittings in all dimensions n = 4m + 1 not equal to
2j −3. Combining this, the bijection Θn/bPn+1 → Πn(S)/J(πn(SO)), and
the calculations of bPn for n even we obtain:

Theorem 6.1. If n = 4m + 1 6= 2j − 3, then

Θ4m+1
∼= Z/2⊕Π4n+1/J(π4m+1(SO)).

If n = 4m − 1 ≥ 7, then Θ4m−1
∼= Z/σm ⊕ Π4n+1/J(π4m+1(SO)),

where σm = am22m−2(22m−1 − 1)numerator(Bm/4m).

The calculation of Θn is thus reduced to determination of

Πn(S)/J(πn(SO)),

the cokernel of the J-homomorphism, a hard open problem in stable ho-
motopy theory, and calculating bPn+1. Surgery techniques yield bPn+1 = 0
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when n is even, Z/2 most of the time when n + 1 ≡ 2 mod 4 (and a hard
open homotopy theory problem if n + 1 = 2j − 2), and the explicit formula
bP4m = Z/σm for m > 1.

Even for the latter, there are intricacies and surprises. For any given
m, it is possible (with patience) to display bP4m explicitly. When m = 25,
for example, we get a cyclic group of order

62,514,094,149,084,022,945,360,663,993,469,995,647,144,254,828,014,731,264,

generated by the boundary of the parallelizable manifold W 100
0 of signature

8.
The integer σm increases very rapidly with m, with the fastest growing

contribution made by numerator(Bm)/m. For all m > πe,

numerator(
Bm

m
) >

Bm

m
>

4√
e

( m

πe

)2m− 1
2 > 1

where the first three terms are asymptotically equal as m → ∞ (see [62],
Appendix B, or [66]). As noted in §5, denominator(Bm/4m) equals the
image of the J-homomorphism ([4], [47]). Unlike the numerator, it is read-
ily computable. In 1840 Clausen [26] and von Staudt [83] showed that
denominator(Bm) is the product of all primes p with (p− 1) dividing 2m,
and the next year von Staudt showed that p divides the denominator of
Bm/m iff it divides the denominator of Bm. Thus for any such prime p,
if pµ is the highest power dividing m, then pµ+1 is the highest power of p

dividing the denominator of Bm/m.
Such results suggest that it might be better to compute one prime p

at a time. Let Z(p), the integers localized at p, denote the set of rational
numbers with denominators prime to p. Then for any finite abelian group
G, G⊗Z(p) is the p-torsion of G. We investigate the p-group bP4m ⊗Z(p).

Let p be a fixed odd prime (the only 2-contribution in σm comes from
the factor am22m−4), and suppose k ∈ Z generate the units in Z/p2. Define
sequences {ηm}, {ζm}, {σ̃m}, and {βm} by ηm = (−1)m+1(k2m−1)Bm/4m,
ζm = 22m−1 − 1, σ̃m = (−1)m22m(k2m − 1)(22m−1 − 1)Bm/2m, and
βm = (−1)mBm/m if m 6≡ 0 mod (p − 1)/2 and 0 otherwise. The first
three are sequences in Z(p) since, for any generator k of the units in Z/p2,
νp(k2m − 1) = νp(denominator(Bm/4m)), where νp(x) denotes the expo-
nent p in a prime decomposition of the numerator of x ∈ Q ([2], §2 or
[62], Appendix B). The last sequence lies in Z(p) from Clausen’s and von
Staudt’s description of the denominator of Bm/m.

The sequence η isolates p-divisibility in the numerator of Bm/m:
νp(ηm) = νp(numerator(Bm/m)), and one is a unit in Z(p) times the other.
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Similarly, νp(σm) = νp(σ̃m) where σm from 5.2 is the order of bP4m. These
sequences come from maps, described in §7, of the classifying space BO for
stable bundles. The homology of these maps yields congruences between
terms of the sequences, and descriptions of the growth of p-divisibility of
those terms satisfied for many primes p :

Theorem 6.2. [42] Let λ = (λ1, λ2, . . .), denote any of the above se-

quences.

1) λm ≡ λn mod pk+1 whenever m ≡ n mod pk(p− 1)/2.

2) Suppose m ≡ n mod (p − 1)/2 are prime to p, and j is minimal such

that νp(λmpj ) ≤ j. Then νp(npi) = j for all i ≥ j.

For the sequence β, the congruences are the familiar congruences of
Kummer: (−1)mBm/m ≡ (−1)nBn/n mod pk+1 if m ≡ n mod pk(p − 1)
and m,n 6≡ 0 mod (p− 1)/2.

For λ = η, ζ, or σ̃, 6.2 gives tools for mapping out the p-torsion in
the groups bPm. If νp(λm) = 0, that is, λm is a unit in Z(p), the same
is true for any λn where n ≡ m mod (p − 1)/2. Applying this to σ̃, it
follows that a given group bP4m has p-torsion iff bP4n does for every n ≡ m

mod (p − 1)/2. Thus to map out where all p-torsion occurs, it suffices to
check p-divisibility of the coefficients σ̃1, σ̃2, . . . , σ̃(p−1)/2 Furthermore, the
growth of p-torsion is likely quite well behaved.

Conjectures 6.3. Let λ = η, ζ, or σ̃, and suppose m0 ∈ {1, 2, . . . (p −
1)/2} is such that p divides λm0 (there could be several such m0).

1. For any n ≡ m0 mod (p−1)/2 which is prime to p, the exponents of p in

the subsequence λn, λpn, λp2n, . . . are given by j, νp(λm0), νp(λm0), . . .,
where j may be any integer ≥ νp(λm0).

2. νp(λm0 − λm0+(p−1)/2) = νp(λm0).
3. ηm0 and ηpm0 are non-zero mod p2.

These have been verified by computer for many primes. By the congru-
ences in 6.2, conjectures 1 and 2 are actually equivalent. When λ = ζ, 1 and
2 are not conjectures but true globally and easily proved. The statement
for ζ analogous to 3 fails, however. There exist primes p, albeit not many,
such that p2 divides 2p−1− 1. For primes less than a million, p = 1093 and
3511 satisfy this. However, there is no 1093 torsion in the groups bP4m,
since 2j 6≡ 1 mod 1093 for any odd exponent j. The prime 3511 is more
interesting, with possible values of m0 equal to 708 and 862 (where 3511
but not 35112 divides ηm0 and σ̃m0), and m0 = 878 (where 35112 but not
35113 divides 21755 − 1 and σ̃m0).
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The p-divisibility of these sequences have long been of interest because
of their relationship to Fermat’s Last Theorem, recently proved by Andrew
Wiles ([99], [88]).

Theorem 6.4. 1. (Kummer [41]) If p does not divide the numerator of

Bm/m for m = 1, 2, . . . , (p − 3)/2, then there is no integral solution to

xp + yp = zp.

2. (Wieferich [97]) If 2p−1 6≡ 1 mod p2, then there is no integral

solution to xp + yp = zp where xyz is prime to p.

A prime p satisfying the condition in 1 is said to be regular. Thus p is
regular iff it is prime to the sequence η. The smallest irregular prime is 37,
which divides the numerator of B16. There are infinitely many irregular
primes, with the same statement unknown for regular primes. Extensive
computations suggest rough parity in the number of each (about 40% are
irregular).

The condition in 2 is almost equivalent to p2 not dividing the sequence
ζ — almost, but not quite. The prime p = 1093 is prime to ζ even though
10932 divides (21092 − 1) because 2j 6≡ 1 mod 1093 for any odd factor of
1092. Vandiver [91], Miramanoff [63], and others (see [92] for an extensive
summary) have shown that for primes r ≤ 43, rp−1 6≡ 1 mod p2 implies
that xp + yp = zp has no integral solutions with xyz prime to p.

All this work attempted to verify Fermat’s last theorem. It would
be wonderful to know whether Wiles’s result could be used to establish
any of the conjectures 6.3, potentially giving complete information about
the p-torsion in the groups bP4m. Other fairly recent algebraic results
have yielded partial information. For example, by translating Ferrero and
Washington’s proof of the vanishing of the Iwasawa invariant [27] into the
equivalent formulation using Bernoulli numbers [36], it follows that p2 does
not divide (Bn/n)−Bn+(p−1)/2/(n + (p− 1)/2).

§7 Classifying spaces and smoothings of manifolds.
By comparing the linear structures on a “piecewise linear” bundle

(discussed below), we are able to define a space PL/O whose homotopy
groups equal Θn. Specifically, PL/O is the fiber of a map BO → BPL

where BO and BPL, the spaces which classify these bundle structures, are
defined as follows.

For any positive integers n and k, let Gn(Rn+k) be the compact
Grassmann nk-manifold O(n + k)/O(n)×O(k) where O(j) is the orthog-
onal group. We may think of this as the space of n-planes in (n + k)-
space. There are natural maps Gn(Rn+k) → Gn(Rn+k+1), and we write
BO(n) = limk→∞Gn(Rn+k). The elements of the individual n-planes in
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Gn(Rn+k) form the fibers of a canonical Rn-bundle γn, and given any n-
bundle ξ over a compact base B, there is a map g : B → BO(n) unique up
to homotopy such that ξ is isomorphic to the pullback bundle f∗(γn). Set
BO = limn→∞BO(n) ∼= limn→∞Gn(R2n). The set of homotopy classes
[M,BO(n)] and [M,BO] then correspond to n-dimensional and stable bun-
dles over the compact manifold M .

For PL manifolds the object corresponding to the vector bundle is
the block bundle [74]. (Alternatively, one may use Milnor’s microbundles
[55]). We omit the definition, but note that the vector bundle tools used for
surgery on a smooth manifold are also available for block bundles. Given
any embedding M → N of PL manifolds, for example, there is a normal
block bundle of M in N . One may construct a classifying space BPL(n) for
n-dimensional block bundles, which is the base space for a universal block
bundle γn

PL. (We abuse notation slightly; BPL is often denoted BP̃L

in the literature, with BPL used for its equivalent in the semisimplicial
category.)

Set BPL = limn→∞BPL(n). Piecewise differentiable triangulation
of the canonical vector bundles γn yields γn

PL, classifying maps BO(n) →
BPL(n), and the limit map BO → BPL. Regarding this map as a fibra-
tion, we define PL/O to be its fiber.

Products and Whitney sums of block bundles are defined analogously
to × and ⊕ for vector bundles. Using these constructions, we obtain com-
mutative H-space structures µ⊕ : BO × BO → BO and µ⊕PL : BPL ×
BPL → BPL under which the map BO → BPL is an H-map, and defines
an H-space structure on the fiber PL/O as well.

Let S(M) denote the set of concordance classes of smoothings of a
PL manifold M , where two smoothings of M are concordant if there is a
smoothing of M × [0, 1] which restricts to the given smoothings on M × 0
and M ×1. If M is the smooth triangulation of a smooth manifold Mα, we
think of S(Mα) as the concordance classes of smoothings of M with a given
preferred smoothing Mα. Note that S(Sn) = Θn except for n = 3. The
unique smooth and PL structure on a topological S3 dictates that S(S3)
consists of a single element.

If a PL manifold M has a smooth structure, then the normal block
bundle of the diagonal ∆ in M×M is actually the normal vector bundle. In
fact, such a linearization is sufficient for existence of a smoothing. For any
PL manifold M and submanifold K ⊂ M , a linearization of (M, K) is a
piecewise differentiable vector bundle p : E → K where E is a neighborhood
of K in M , and M induces a compatible PL structure on E. Let L(M, K)
denote the set of all equivalence classes of such linearizations, and Ls(M, K)
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the classes of stable linearizations (i.e., the direct limit of L(M, K) →
L(M × R1,K) → L(M × R2,K) → . . ., where the maps are defined by
Whitney sum with a trivial bundle).

Theorem 7.1. ([55], [30], [44]) A closed PL-manifold M has a smooth

structure iff L(M × M, ∆) 6= ∅ iff Ls(M × M, ∆) 6= ∅, and there is a

bijection S(M) → Ls(M ×M, ∆).

This description uses block bundles and follows the notation of [30],
but essentially identical results using microbundles are true. The theorem
suggests that “smoothability” is a stable phenomenon. This is true; the
natural map S(M) → S(M×Rm) is a bijection (see [29], [50] for smoothing
products with R, or [90], [65] for the M × [0, 1] analogue). By 7.1, a PL

manifold M supports a smooth structure iff the classifying map M → BPL

for the stable normal block bundle of the diagonal ∆ ⊂ M×M lifts to BO.
But the homotopy classes of such lifts are in turn classified by maps into
the fiber of BO → BPL:

Theorem 7.2. ([30], [44]) Let M be closed PL-manifold which can be

smoothed, and let Mα be some fixed smooth structure on it. Then there is

a bijection Ψα : S(M) → [M, PL/O] which carries the concordance class

of Mα to the trivial homotopy class.

Despite apparent dependence on a particular smooth structure and,
given Mα, on a choice of smooth triangulation, there is a great deal of
naturality in the bijection Ψα. If N is another smoothable PL manifold
with chosen smooth structure Nβ , and if f : Mα → Nβ is both a dif-
feomorphism and PL-homeomorphism, then Ψβ ◦ f∗ = f# ◦ Ψα where
f∗ : S(N) → S(M) and f# : [N,PL/O] → [M,PL/O] are the natural
maps. The bijections Ψα can be used to reformulate 7.2 as a well defined
homotopy functor defined on “resmoothings” of a smooth manifold [30].

The H-multiplication PL/O × PL/O → PL/O gives [M, PL/O] the
structure of an abelian group. Given a smoothing Mα of M , the bijection
Ψα gives S(M) the structure of a group, which we denote S(Mα). For
any smoothing Mβ of M , let [Mβ ] denote its concordance class, a group
element of S(Mα)

Theorem 7.3. The group operation ∗ in S(Mα) is given by [Mβ ]∗ [Mγ ] =
[Mω] where Mω is the unique (up to concordance) smoothing such that the

germ of the smooth manifold Mα ×Mω along the diagonal equals that of

Mβ ×Mγ . In particular, [Mα] is the identity element. If M = Sn
0 denotes

the n-sphere regarded as a PL manifold given the usual smoothing, the

resulting bijection Ψ0 is a group isomorphism Θn → πn(PL/O) for n 6= 3.
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Using 7.2, the H-space structure on PL/O, induced by Whitney sum
of vector- and block-bundles, allowed us to define (isomorphic) group struc-
tures on S(M) via the bijections Ψα.

It is interesting to note that the finite group structures on Θn (with
0 substituted for the unknown Θ3) can in turn be used to describe the H-
multiplication on PL/O. See [30] for a proof. Theorem 7.2 also provides a
homotopy theoretic description of smoothings for an arbitrary smoothable
PL manifold, one which recasts the obstruction theories for smoothings of
Munkres [65] and Hirsch [29] in terms of classical obstruction theory.

We examine the homotopy theory of PL/O, studying it one prime
at a time, just as we did for the coefficients in §6. For any prime p and
well-behaved space X (for example, any CW complex or any H-space),
there is a space X(p), the localization of X at p, and map X → X(p) which
on homotopy groups is the algebraic localization πn(X) → πn(X) ⊗ Z(p).
Similarly, H∗(X(p)) ∼= H∗(X)⊗Z(p). We will see below that the localization
PL/O(p) is a product, reflecting homotopy theoretically the splitting of the
exact sequence of 3.3.

Suppose first that p is an odd prime. The sequences η, ζ, σ̃, and β of §6
all arise from self-maps of the p-localizations of BO and BU (the analogue
of BO which classifies stable complex vector bundles) which are reflections
of geometric operations on bundles. An important example is the Adams
map ψk : BU(p) → BU(p), which arises from the K-theory operation

ψk(x) =
∑

w(α)=k

(−1)|α|+k(k/|α|){α}(∧1(x)α1 . . . ∧j (x)αj ) ,

where x ∈ K(X), ∧i is the exterior power, the sum is taken over all j-tuples
of non-negative integers α = (α1, . . . , αj) of weight w(α) = α1 +2α2 + . . .+
jαj = k, and {α} is the multinomial coefficient (α1 + . . . + αj)!/α1! . . . αj !.
The reader may recognize this as the Newton polynomial applied to exterior
operators. The induced map on the homotopy group π2m(BU(p)) = Z(p) is
multiplication by km. The Adams map on BU(p) induces one on BO(p) by
the following:

Theorem 7.4. (Adams [5], Peterson [70]). There are H-space equiva-

lences

BU(p) → W ×Ω2W × . . . Ω2p−4W and BO(p) → W ×Ω4W × . . . Ω2p−6W

where π2j(p−1)(W ) = Z(p), j = 1, 2, . . ., and πi(W ) = 0 otherwise. In

particular, BU(p)
∼= BO(p) × Ω2BO(p). Any H-map f : BO(p) → BO(p)
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induces H-maps f4j of Ω4jW , and under this equivalence f becomes a

product f0 × f4 × . . . × f2p−6, with an analogous decomposition for a self

H-map of BU(p).

In fact, these are infinite loop space equivalences. Peterson constructs
W as the bottom space of a spectrum associated to a bordism theory with
singularities. The maps f4j allow us to write the fiber F of f as a product
F0 × F4 × . . . × F2p−6, where F4j can be seen to be indecomposable by
examining the action of the Steenrod algebra on it.

Returning to the Adams map, associated to the K-theory operation
x → ψk(x)−x is an H-map ψk− 1 of BU(p) and, by 7.4, ψk− 1 : BO(p) →
BO(p). The induced homomorphism on π4m(BO(p)) ∼= Z(p) is multiplica-
tion by k2m − 1. If k generates the units in Z/p2, the fiber J of ψk − 1
(sometimes called “Image J”) is independent, up to infinite loop space
equivalence, of the choice of k, and has homotopy groups equal to the p

component of the image of the J-homomorphism. Since k2j 6≡ 1 mod p

unless j ≡ 0 mod (p− 1)/2, using 7.4 we may also describe J as the fiber
of (ψk − 1)0 : W → W.

The numbers k2j − 1 are an example of a “characteristic sequence”. If
f : BO(p) → BO(p) induces multiplication by λj ∈ Z(p) on π4m(BO(p)), it is
determined up to homotopy by the characteristic sequence λ = (λ1, λ2, . . .)
(with a similar statement for self-maps of BU). The elements of λ sat-
isfy the congruences and p-divisibility conditions of 6.2 for any self-map
of BO(p), and analogous statements for almost any map (including all H-
maps) of BU(p) ([42], [25]).

We can use the Adams map and other bundle operations to realize the
sequences of §6 as characteristic sequences. To construct these maps we
must depart from the more self-contained material of the first six sections,
and in particular require p-local versions of oriented bundle theory and the
Thom isomorphism Φ. We refer the reader to May [49] or the Adams J(X)
papers [1] - [4] for beautiful presentations of this material, and present the
constructions without greater detail simply to show that these sequences,
so rich with number theoretic information, all arise geometrically.

ζ. Since p is an odd prime, ψ2 is a homotopy equivalence. Then

(1/2)(ψ2)−1 ◦ (ψ4 − 2ψ2) : BO(p) → BO(p)

has characteristic sequence ζ, where ζm = 22m−1 − 1.
η. For an oriented bundle ξ define ρk(ξ) = (Φ)−1ψkΦ(1) ∈ KO(B) where

B is the base of the bundle ξ and k generates the units in Z/p2 as above.
The resulting H-map ρk : BO⊕

(p) → BO⊗
(p), the so called Adams-Bott
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cannibalistic class ([2], [9], [49]), has characteristic sequence η given by
ηm = (−1)m+1(k2m − 1)Bm/4m. The superscripts ⊕ and ⊗ indicate
that BO(p) carries the H-multiplication coming from Whitney sum
and tensor product, respectively.

σ̃. In the J(X) papers ([1] to [4]) Adams conjectured, and Sullivan [87]
and Quillen [73] proved, that for any x ∈ K(X), where X is a finite
complex, the underlying spherical fiber space of kq(ψk(x)− x) is sta-
bly trivial for large enough q. Localized at p, this means that the map

BO(p)
ψk−1−→ BO(p) → BG(p) is null-homotopic, where BG is the classi-

fying space for stable spherical fiber spaces. (Its loop space G = ΩBG

has homotopy equal to the stable homotopy of spheres.) Thus ψk − 1
lifts to a map γk : BO(p) → (G/O)(p), where G/O is the fiber of
BO → BG. In his thesis [84] Sullivan showed that, when localized
at an odd prime p, the fiber G/PL of BPL → BG is H-space equiv-

alent to BO⊗
(p). Let θk denote the composite BO⊕

(p)

γk

→ (G/O)(p) →
(G/PL)(p)

≈→ BO⊗
(p). Then θk has characteristic sequence σ̃ where

σ̃m = (−1)m22m(k2m − 1)(22m−1 − 1)Bm/2m.
β. For j = 1, 2, . . . , (p− 3)/2, define bj : Ω4jW → Ω4jW to be ρk ◦ (ψk −

1)−1, and let b0 be the constant map on W . Taking the product of
these maps and applying 7.4, the resulting map b : BO(p) → BO(p)

has characteristic sequence β where βm = (−1)mBm/m.

Let bP denote the fiber of θk. Clearly there a map ι : bP → (PL/O)(p).
There is also a p-local space C, the so-called “cokernel of J”, whose homo-
topy is the p-component of the cokernel of the J-homomorphism in Π∗(S)
(see e.g. [49]). These spaces yield a p-local splitting of PL/O (see [49] for
a beautiful presentation).

Theorem 7.5. There is a map κ : C → (PL/O)(p) such that the compos-

ite

bP × C
ι×κ−→ (PL/O)(p) × (PL/O)(p)

mult−→ (PL/O)(p)

is an equivalence of H-spaces (indeed, of infinite loop spaces).

The homotopy equivalence (PL/O)(p) ≈ bP × C now yields a p-local
isomorphism Θn

∼= bPn+1 ⊕ Πn(S)/J(πn(SO)), not just when n = 4m −
1 (6.1), but in all dimensions 6= 3 (where π3(PL/O) vanishes). Hidden
in this is the representability of framed cobordism classes by homotopy
spheres. In dimension 4m this is a consequence of the signature theorem
and finiteness of Π∗(S). In dimension 4m + 2 there may be a Kervaire
invariant obstructions to such a representative, but the obstruction lies in
Z/2 and hence vanishes when localized at odd p.
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Let L and M denote the (p-local) fibers of the maps 2ψ2 − ψ4 and
ρ. Comparing characteristic sequences, it follows that θk is homotopic to
ρk ◦ (2ψ2−ψ4), and there is a fibration L → bP → M . If the factor spaces
L4j and M4j are both non-trivial for some j = 1, . . . , (p−3)/2, the induced
fibration L4j → bP4j → M4j cannot be a product. Otherwise, we do have
a homotopy equivalence bP ≈ L×M by 7.4.

This is usually the case; bP can be written this way, for example,
for all primes p < 8000 except p = 631. When p = 631, both ρk

452 and
(2ψ2 − ψ4

452) are non-trivial, and the indecomposable space bP452 cannot
be written as a product.

In sections 4 and 5, we saw that it was possible to kill a framed homo-
topy class x by surgery with no new homotopy introduced if there was a
framed sphere crossing a representing sphere for x transversely at a single
point. The same kind of criterion provides a tool for computing the group
[M, bP ] of smoothings classified by bP . Suppose M is a smoothable PL n-
manifold, with smooth handle decomposition ∅ ⊆ M0 ⊆ M1 ⊆ . . . ⊆ Mn =
M , where each Mj is obtained from Mj−1 by attaching handles Dj×Dn−j

via embeddings ϕα : Sj−1 ×Dn−j → ∂Mj−1. Thus with each attachment
of a j-handle hj

α we are performing surgery on a homotopy class in ∂Mj−1.
For any j-handle, we refer to the image of Dj × 0 as the left hand disk of
the handle.

Handles give us a way of trying to build new smoothings. Given a
j-handle hj

α, and a homotopy j-sphere Σ regarded as the union of two j-
disks attached by a diffeomorphism fj,β : Sj−1 → Sj−1, form a new smooth
manifold Mj#Σ by attaching the handle using the map ϕα ◦ (fj,β×1). We
describe circumstances under which such resmoothings extend to all of M

and give a tool for explicitly calculating smoothings.
Suppose that the homology of M and of its suspension ΣM is p-locally

Steenrod representable. Thus given any x in the p-local homology of M or
of ΣM , there is an orientable smooth manifold X and map X → M which
carries the orientation class of X to x. Suppose in addition that the odd
prime p satisfies the conjecture 6.3. Then there is a set of manifolds {Xα},
and maps Xα → M with the top handle Djα of Xα mapped homeomor-
phically onto the left hand disk of some jα-handle hjα

α (the rest mapping
to Mjα−1) satisfying the following: any resmoothing of M corresponding
to a homotopy class in [M, bP ] is formed by extensions to M of smooth-
ings of Mjα of the form Mjα#Σjα

β . This is a sort of “characteristic variety
theorem” for smoothings classified by bP . See [43] for details.

We conclude with a few remarks about the prime 2, where life is very
different. At the outset we have the problem posed by Kervaire in 1960, and
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still not completely settled, on the existence of a framed, closed (4m + 2)-
manifolds W with Kervaire invariant 1. This prevents the algebraic split-
ting Θ4m+1

∼= Z/2 ⊕ Θ4m+1/bP4m+2 for some values of m. Furthermore,
not all parallelizable manifolds are representable by homotopy spheres, so
we may not in general identify Θ4m+1/bP4m+2 with the cokernel of the
J-homomorphism.

Many of the results above at odd primes depend on the solution of
the Adams conjecture — a lift γk : BSO(2) → (G/O)(2) of ψk − 1. Such a
solution exists at 2, but cannot be an H-map, a condition needed to define
the H-space structure for bP .

Finally, at odd p Sullivan defined an equivalence of H-spaces

(G/PL)(p) → (BO⊗)(p).

At 2, G/PL is equivalent to a product

S ×
∏

j≥1

(K(Z/2, 4j + 2)×K(Z(2), 4j + 4)),

where K(G,n) denotes the Eilenberg-Maclane space with a single homo-
topy group G in dimension n, and where S is a space with two non-zero
homotopy groups, Z/2 in dimension 2, and Z(2) in dimension 4. There is
a non-trivial obstruction in Z/2 to S being a product, the first k-invariant
of S. For the 2-localization of the analogous space G/TOP (the fiber of
BTOP → BG) that obstruction vanishes. This is a consequence of the
extraordinary work of Kirby and Siebenmann:

Theorem 7.6. [39] The fiber TOP/PL of the fibration G/PL → G/TOP

is an Eilenberg-MacLane space K(Z/2, 3), and the following homotopy

exact sequence does not split:

0 → π4(G/PL) → π4(G/TOP ) → π3(TOP/PL) → 0 .

Epilogue.

Surgery techniques, first developed to study smooth structures on
spheres, have proved fruitful in an extraordinary array of topological prob-
lems. The Browder-Novikov theory of surgery on normal maps of simply
connected spaces, for example, attacked the problem of finding a smooth
manifold within a homotopy type. This was extended by Wall to the non-
simply connected space. Surgery theory has been used to study knots and
links, to describe manifolds with special restrictions on their structure (e.g.,
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almost complex manifolds, or highly connected manifolds), and to under-
stand group actions on manifolds. The articles in this volume expand on
some of these topics and more, and further attest to the rich legacy of
surgery theory.
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314, 1966/67.



Differentiable structures on manifolds 101

34. Hirzebruch, F., and Mayer, K., O(n)-Mannigfaltigkeiten, exotische
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104.

81. Stallings, J., Polyhedral homotopy spheres, Bull. Amer. Math. Soc. 66
(1960), 485–488.

82. Stasheff, J., The image of J as an H-space mod p, Conf. on Algebraic
Topology, Univ. of Illinois at Chicago Circle, 1968.

83. von Staudt, C., Beweis eines Lehrsatzes, die Bernoullischen Zahlen
betreffend, Jour. für reine u. angew. Math. 21 (1840), 372–374.

84. Sullivan, D., Triangulating homotopy equivalences, Ph.D. dissertation,
Princeton University, 1965.

85. Sullivan, D., On the Hauptvermutung for manifolds, Bull. Amer. Math.
Soc. 73 (1967), 598–600.



104 Timothy Lance

86. Sullivan, D., Geometric topology, Part I, Localization, periodicity, and
Galois symmetry, mimeo. lecture notes, M.I.T., 1970

87. Sullivan, D., Genetics of homotopy theory and the Adams conjecture,
Annals of Math. 100 (1974), 1–79.

88. Taylor, R., and Wiles, A., Ring-theoretic properties of certain Hecke
algebras, Annals of Math. 141 (1995), 553–572.

89. Thom, R., Quelques propriétés globales des variétés différentiables,
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