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POINCARE DUALITY AND COBORDISM

BY
R. LASHOF

A smooth manifold M" imbedded in (n + 2r)-dimensional space E"*?" is
called weakly complex if a specific reduction of the normal bundle to the unitary
group U, is given. A ‘complex cobordism theory’ for such manifolds may be
defined and Milnor [4] has shown that two weakly complex closed manifolds
belong to the same cobordism class if and only if they have the same Chern
numbers.

The following theorem says roughly we may kill a nonzero multiple of a charac-
teristic class of a closed weakly complex manifold that does not show up in the
Chern numbers.

THEOREM A. Let uy be a homogeneous polynomial in the Chern classes of
a weakly complex manifold M" such that any n-dimensional homogenous poly-
nomial wy, with uy as a factor (i.e., wy = Uy -vy) has value zero on the basic
class of M. Then M is complex cobordant to a manifold M’ with u,. of finite
order.

Further, if the normal bundle of M is trivial over its (2q—1)-skeleton, the
same may be assumed for M'.

Let X be an n-dimensional complex cobordism class, and let K(X)
= UM <x Ker fy,where f;: M - BU is a classifying map for the (stable) normal
bundle, and f3; : H¥(BU; Q) —» H*(M; Q) is the induced homomorphism in the
rational coefficients. (For M empty, Ker f3; = H¥(BU; Q).) Then Theorem A
implies K(X)is an ideal. Let C(X) = H* (BU; Q)/K(X); it is a graded algebra
called the rational characteristic ring of X.

THEOREM B  (POINCARE DUALITY FOR COMPLEX COBORDISM CLASSES). The map
C(X)® C""}(X) > C"(X) induced by cup product gives a pairing of C{(X)
and C""{(X) to Q; the isomorphism C"(X)~ Q(X #0) being given by as-
sociating to each monomial in H"(BU; Z) the corresponding Chern number,
extending linearly, and then passing to the quotient. (If X =0, then all the
groups C{(X) are zero.)

Theorem B is an immediate consequence of Theorem A.
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In order to prove these theorems we first generalize cobordism theory to ar-
bitrary (not necessarily differentiable) topological groups with specified homo-
morphism into the orthogonal group; or equivalently, arbitrary spaces with
specified homotopy class of maps into the universal base space of the orthogonal
group. Given a connected countable CW-complex C and a map f:C — BO,,
we may assume that f is a bundle projection of an associated bundle to the uni-
versal O,-bundle (i.e., there exists a homotopy equivalence of the total space
with C and the projection corresponds to f under this equivalence). If a smooth
manifold M" is immersed in E"** (Buclidean n + k-space), we will say that its
normal bundle has a (C, f)-structure if we are given a specific homotopy class
of lifts ¥ of the normal map, v:M"— G, , = BO,, to C; i.e., v =f7. Now given
a sequence of pairs (Cy, fi), fi: Cx— BO;, and maps j,:C,— C,,, such that
i fx = fi+ 1jks Where i, : BO, — BO,., is induced by the inclusion O, = O, ; wWe
will say M" hasa (C, f)-structure, (C, f)={(C,, f)}, if the normal bundle of M"
in some E"** has a (C,, f,)-structure. By considering M" = E"** < g"*¥* it is
clear that a (C,, fi)-structure defines a unique (Cy .., fi+,)-Structure, r=0,1,2, .-,
and we identify these structures. Further, given two immersions of M" in
E™** k sufficiently large, they are regularly homotopic, and any two such regular
homotopies are themselves homotopic through regular homotopies. By using the
covering homotopy theorem on f, : C, — BO,, we get a 1-1 correspondence be-
tween (C, f)-structures defined by the two immersions. This enables us to define
a (C, f)-structure on M" independent of the particular immersion. A (C, f) co-
bordism theory may then be defined in the usual way. Letting y, be the universal

k-dim vector bundle over BO,, and T(f}(y,). The Thom space of the induced
vector bundle over C,, we prove:

THEOREM C. T he (C, f)-cobordism group of closed n-manifolds is isomorphic
1o Lim 7,4, (TfE(70))-

Our general technique is also used to obtain the following results:

THEOREM D. Let M" be a closed weakly complex manifold with ¢, =c,
=...=¢,=0, 2k < n/2; then M is complex cobordant to a 2k-connected manifold.

THEOREM D’. Let M*, s> 1, be a closed weakly complex manifold with
¢, =cp=-=c,_; =0, and ¢ =0; then M is complex cobordant to an almost
parallelizable manifold.

TueorReM E. In every homotopy class of maps of S™**-S"m > 4k + 1,
there exists a differentiable map f such that f~* (base point of S™) = M**, where
M** is a smooth manifold homeomorphic to a sphere S** and imbedded in S™***
with a trivial normal bundle.

Theorem E has obvious consequences for differentiable structures on 4k-di-
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mensional spheres, but Kervaire and Milnor [16] have much more general
results in this direction.

The author wishes to thank R. F. Williams and E. Dyer for many helpful
conversations. In particular, Theorem E is a joint result of E. Dyer and the
author. Also, the referee has made a number of helpful suggestions.

1. Lifting the group of a bundle. Given a homomorphism of topological
groups p : G — H, we may ask when an H-bundle(!) may be lifted to G;i.e., is
induced from a G-bundle by p. For the case that p is an inclusion, a simple
criterion is given in [13]. We generalize this result as follows: Let (Eg, G, Bg)
be a universal bundle; i.e., n(Eg) = 0 all i (such bundles always exist [6]), and
let G act on Eg x H by right action in E; and right translation on H (via p).
Let H act on E; x H by left translation on the second factor and trivial action
on the first. Since the actions of H and G commute, we get a well-defined action
of H on (Eg x H)/G.

ProrosiTION 1.1. Given p:G — H, an H-bundle can be lifted to G if and
only if the associated bundle with fibre F = (Eg x H)/G has a cross-section.

Proof. Let (Ey, H,By) be a universal bundle for H. Let B, =(E; x Ep)/G,
G acting on the right of Eg and on the right of Ey via p. Then (Eg x Eg, G, B)
is again a universal bundle for G. On the other hand, defining f : B; — By by
passage to the quotients from E; x Ep 23 Ep, we see that B is a bundle over By
with fibre F, associated to (Eg, H,By). Further, since p,((x,)g) = p2(xg,yp(g)
= yp(g), x€Eg, y€Ey, g€G; f*(Eg,H,By) ~ p(Eg % Eg, G, B;). Hence for a
bundle with group H, the following are equivalent:

(1) The bundle is induced from a G-bundle via p.

(2) The classifying map into B, may be lifted to Bj.

(3) The associated bundle with fibre (E; x H) /G has a cross-section.

Let W, be the category of spaces of the same homotopy type as a countable
CW-complex. Looking at Proposition 1.1 from the point of view of the universal
base spaces we get:

PROPOSITION 1.2. Let Be W, be connected, and let uy = (Eg, H,By) be any
universal bundle. Then:

1. Any map f:B— By may be replaced by a bundle projection. Explicitly,
there is a weak homotopy equivalence Y :B— B; and a bundle projection
f: B— By of a bundle (B, F,By) with fibre F ~ the total space of f*uy (asso-
ciated to pg); such that fijg is homotopic to f. Further there is a map n:B— B
such that mj is homotopic to the identity; and if Ey is contractible, { is a homo-
topy equivalence with inverse 7.

(1) All bundles are locally trivial.
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2. If g:X > By is a classifying map of an H-bundle over X, the homotopy
classes of cross-sections of the associated bundle with fibre F are in 1-1 corre-
spondence with the homotopy classes of maps of X into B covering g (the homo-
topies being covering maps at each stage).

COROLLARY 1.3 (FADELL). Any map f:B— C, B, Ce W, with B and C con-
nected, may be replaced by a bundle projection f:B— C; i.e., there exist
homotopy equivalences \y : B— B and A :C— C such that Jfiy is homotopic to f.

Proof of Proposition 1.2. We may assume B is a countable connected simplicial
complex in the weak topology [7]. Then Milnor [5] has shown that there exists
a contractible universal bundle (Eg, G,Bg), Bg = B,Eg and G CW-complexes,
such that for any principal bundle &4 over B (with group H) there exists a homo-
morphism p :G — H such that &g ~ p,(Eg, G, Bg).

Choose p:G — H so that p,(Eg,G,Bg) ~ f* uy. Now apply Proposition 1.1,
and let B = B; as defined in the proof of that proposition. Then (2) of 1.2 fol-
lows immediately. Now the F of 1.1 is essentially the total space of p.(Eg, G, B;),
(we have switched the action of G and H to the opposite sides of H, but these
correspond under the inverse map) and hence is isomorphic to the total space
of f*uy. It remains to define ¥ and =.

According to the definition of p, there exists a map 60 :E;— Ey satisfying
0(xg) = 0(x)p(g), x € Eg, g € G and covering f. Define  : B = B; — B, by passage
to the quotient from the map x — (x,0(x)) of Eg— Eg x Eg. Then fiy =f. Now
B; = (Eg x Eg)/G is a bundle over B with projection map = : B; — B defined by
passage to the quotient from p, : Eg X Eg— E;. Then my =1 and the fibre of
n is Ey. Since n(Ey) = 0 for all i, it follows that = and ¥ are both weak homotopy
equivalences. Finally, if Ej is contractible, the bundle (B;, Ey, B, 7) is the same
fibre homotopy type as the trivial bundle over B with fibre a single point. (See
[2].) This implies in particular that yx is homotopic to the identity.

Proof of corollary. We may assume that B and C are both countable connected
locally finite simplicial complexes. Then as in the proof above C is the base
space of a contractible universal bundle. The corollary now follows from the
proposition.

DerINITION. Let (B, F,BO,) be any associated bundle to the universal bundle
for 0,, and let f: B— BO, be the bundle projection. We will say that an n-plane
bundle £ over a space X is (B,f)-reducible if the associated bundle over X with
fibre F has a cross-section. A (B,f)-structure on & is an isotopy class of cross-
sections of the associated bundle with fibre F (i.e., a homotopy class of cross-
sections, where the homotopies are cross-sections at each stage).

If instead of a bundle we are given only a map f: B— BO, of a space Be W,
into the universal bundle for O,,. We will say that an n-plane bundle & over a para-
compactspace X is (B,f)-reducible if it is (B, f)-reducible; i.e., if the associated
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bundle to £ over X with fibre F = f*EO, has a cross-section. A (B,f)-structure

on ¢ is an isotopy class of cross-sections of the associated bundle with fibre F.
Explicitly, if P(&) is the principal bundle of n-frames corresponding to &,

then the associated bundle with fibre F is ((P(¢) x f*EO,)/0,, f*E0",0,,X).

ReMARK. The property of (B,f)-reducibility depends only on the equivalence
class of the bundle &. A (B, f)-structure on the other hand, is for a specific bundle,
and there is no way in general of corresponding (B, f)-structures for different
but equivalent bundles.

Starting with a bundle map of the n-plane bundle ¢ into the universal n-plane
bundle, one gets a uniquely defined map of the principle bundles, and hence of
the associated bundle (P(¢) x F)/0,into (EO, % F)/0,.If g : X— BO,,is the map on
base spaces under the above bundle maps, then any lifting g: X — (EO, X F)/0,
defines a unique cross-section of the associated bundle to & and conversely. Note
that this correspondence depends in general on the explicit bundle map of the
associated bundles.

2. Thom spaces and cobordism. Let G,, be the Grossmann manifold of
(unoriented) r-planes in E"*". Let y; be the r-plane bundle over G, , consisting
of pairs: an r-plane together with a vector in the r-plane. Then BO, = Lim, G, ,,
and the universal r-plane bundle y" = Limy;,.

Let M" be a smooth (C*) compact manifold with or without boundary. An
imbedding i:M — E"*" gives a naturally defined map of the bundle of vectors
normal to M into y), by translating a normal vector at a point x € M, together
with the normal plane to M at x, to the origin of E"*". This, followed by the
inclusion of y) into 7", gives a bundle map of the normal bundle to i(M) into
the universal r-plane bundle. Let v(i) : M — BO, be the induced map on base
spaces.

If (B, F, BO,.f) is any associated bundle to the universal O,-bundle, we will say
that i: M — E"*" has a (B, f)-structure, if we are given an isotopy class of liftings
#(i) : M — B, f9(i) = v(i). (See discussion at the end of §1.)

If r is sufficiently large (r depends on »n only), any two imbeddings
i1,i, :M"— E""" are regularly homotopic, and any two such regular homotopies
are themselves homotopic through regular homotopies leaving endpoints fixed
[3]. This enables us to prove:

LemMA 2.1.  If r is sufficiently large, then there is a one-to-one correspon-
dence between the (B, f)-structures oni,,i, : M—E"*" i, and i, any imbeddings.
Consequently, we may speak of a (B, f)-structure on M"independent of the
particular imbedding.

Proof. Let #(i;) :M — B, f¥(i;) = v(i). Now a regular homotopy from i, to
i, gives a homotopy between v(i;) and v(i,) and any two such homotopies are
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homotopic with end points fixed. Using the covering homotopy theorem in
(B,F,BO,,f) we get a homotopy of #(i;) to a map ¥(i,) : M — B covering v(i,).
We claim the class of #(i,) depends only on the class of ¥(i,).

Let #'(i;) be any other lift of v(i;) in the same class and ¥'(i,) be the lift of
v(i,) obtained from 7'(i,) by any covering homotopy. This defines a map V of
M x Tinto B, where T is the subspace of I x I consisting of three edges of the
square. Further i covers a map ¥ : M x T— BO, with ¥(x,t;,0) = v(i,)(x), and
W(x,0,t,), ¥(x,1,t,) being two homotopies between v(i;) and v(i,) which are
themselves homotopic with end points fixed. Thus ¥ is extendable to M x I x I
with Y(x,;,1) = v(i,). Consequently, i/ is extendable to M x I x I with §(x,t,1)
over ¥(i,) and giving the desired isotopy between #(i,) and ¥'(i,). This establishes
the above claim.

Now applying the same argument, a class of lifts #(i,) of v(i,) defines a unique
class of lifts of v(i,); and by a further application of the same argument the cor-
respondence ¥(i;) to #(i,) to ¥'(iy) returns us to the same class. This establishes
the lemma.

Now suppose we are given a sequence (B, f) of bundle projections f, : B, » BO,
(associated to the universal bundle) and maps g, :B,— B,,; such that

Br _i’ Br+1

£, l lf

BO, —T> BO, .4,

where j, is the standard inclusion. Then a (B,.f)-structure on M"in E"*"
defines a unique (B, ;.f,,)-structure on M" < E"*" < E"*"*!. This sequence
of structures denoted & = (¢,) will be called a (B, f)-structure on M", and (M", &)
a (B, f)-manifold. Two such structures will be identified if they correspond for
some r (and hence for all larger r) under the covering homotopy theorem. The
above lemma then shows that this structure is well defined.

If instead of bundles, we are given only spaces C,, and maps f,:C, - BO,,
and g,:C,— C,,, such that f,, g, and j, f, are the same up to homotopy; we
may replace the pairs (C,, f,) by equivalent bundle pairs according to §1, at least
if C, e W,. The above diagram will then commute up to homotopy, but by using
the covering homotopy theorem, we may inductively deform the maps g, so that
the above diagram commutes. As we will see later, the cobordism groups we are
about to define depend only on the homotopy type of the pairs (C,, f,) and maps
8:C,—>Chyy.

Let M", i=1,2, be two closed manifolds. Let (W"*'¢) be a (B, f)-mani-
fold with boundary the disjoint union of M; and M,. We will define induced
(B.f)-structures on M. By standard imbedding theorems [8] one may imbed
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W™t in E"*"*1 r sufficiently large, so that W"*! lies between two parallel
(n + r)-planes E}*", j = 1,2, with its boundaries M; imbedded in E'*" and W"*!
meeting E}"" perpendicularly. We take a fixed orientation on our Euclidean
spaces and take E3*" on the positive side of E%*". Then the normal planes to M,
in E}"" are just the restriction to M, of the normal planes to Win E"*"*1 If
v:W— BO, is the normal map, and the (B, f)-structure on Wis represented by
an isotopy class of liftings ¥ : W— B,; then \7|Mi will be a lifting of v|M; and
define a (B,,f,)-structure on M, in E"*". Using the same arguments as in Lem-
ma 2.1 above, it is easy to check that the (B, f)-structures on M, so defined are
independent of the particular imbedding of the above type of W"*1,

We can now make the

DEFINITION. Let (M} €, i = 1,2, be two closed (B, f)-manifolds. We will say
they are (B, f)-cobordant if there exists a (B,f) manifold (W"*!, &) such that:

(@) ow"*! is the disjoint union of M, and M,.

(b) The (B, f)-structures on M, and M, induced by that on W coincide with
¢, and &,, respectively.

LemMA 2.2. (B, f)-cobordism is an equivalence relation,and the cobordism
classes of closed (B, f)-manifolds form an abelian group under addition induced
by disjoint union of (B, f)-manifolds.

Proof. We leave most of the proof to the reader. See for example [8]. We
will consider only the construction of an inverse. Given a (B, f)-manifold
(M", &), imbed M" in E"*", r sufficiently large, and imbed M" x I in E"*"x E
= E"*"*!. The normal map v: M" x I - BO, is simply the projection of M" x I
onto M" followed by the normal map of M", and hence the (B, f)-structure on M "
defines a (B, f)-structure ¢’ on W"*! = M" x I. Now deform W through a regular
homotopy so that W is imbedded in the interior of E"*" x I, except for M" x O,
and M" x 1 which are imbedded disjointly in E"*" x 0, and W meets E"*" x O
perpendicularly. This induces a structure ¢’ on M" x 1, and by the definition
of class addition [M",&] +[M",&'] =0. It is clear that ¢’ depends only on £,
and we write — ¢ for £, (In the case that B, = BSO, and f, is the standard covering
map, ¢ is just an orientation of M" and —¢& is the opposite orientation.)

It is possible to define (B, f)-structures and (B, f)-cobordism in terms of the
stable tangent bundle as follows: Let B = Lim(B,,g,), f = Limf,: B — BO. Let
I:BO - BO, BO = BO,,, be the map induced from I, y: G, y = Gy, (I, y sends
an n-planeinto its orthogonal N-plane) by passage to the limit. Note that I* = iden-
tity. Then B is a bundle over BO with fibre F = LimF,, and I*B is also such a
bundle over BO. Since I*EO = EO, I*B = B. Let t(M) be the tangent bundle
of M, and let P(7) be the associated principal bundle with group O, and con-
sider the associated bundle t, = (P(z) x F)/0,F,0,M) with fibre F. We define
a (B, f)-structure & on M as an isotopy class of cross-sections of 7,. Two closed
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(B, f)-manifolds (M1, ¢,), (M5, &,) will be called (B, f)-cobordant if there exists a
(B, f)-manifold (W"*! &), with boundary the disjoint union of M, M,, with
E|M; =¢,.

To show the correspondence between the definitions of (B, f)-manifolds in
terms of tangent and normal bundles, let M" be imbedded in E"*", N sufficiently
large. The map vy:M"— Gy, and 7y:M"—> G,y are related by Ty = Iy ,vy.
Let v:M"—> BO, and t:M"— BO be the maps obtained by passage to the
limit, then 7 = Iv. Further, these are covered by explicit bundle maps N :v, — B,
T :1;— B of the associated bundles with fibre F, such that T=IN (denoting
again by I the bundle map of B into B covering I : BO—BO). A (B, f)-structure
&y on M defined in terms of the normal bundle corresponds via N to an isotopy
class of lifts ¥ of v to B. Then I gives an isotopy class of lifts of  to B, and hence
via T'to a (B, f)-structure £p=I&y in terms of the tangent bundle. Conversely,
starting with £; we may define in the same way a (B, f)-structure &y=1IE&;. Since
I? is the identity, this establishes a 1-1 correspondence between (B, f)-structures
defined in terms of tangent and normal bundles. By Lemma 2.1, this correspon-
dence is independent of the imbedding, if N is sufficiently large. It now follows
that this correspondence also defines a 1-1 correspondence between (B, f)-co-
bordism classes defined in terms of tangent and normal bundles, respectively.

Considering BO, to be the space of r-planes contained in some E* = E®, and
defining the usual metric on the subspace of E® consisting of vectors with only
a finite number of coordinates nonzero, we obtain a Riemannian metric on the
universal vector bundle y" over BO,. Consequently, we may form the Thom
space TBO, of y" by identifying all vectors of length = 1 to a single point denoted
0. Since BO, =limG, ,, it is easy to see that TBO, =1im TG, ,. Now define
Thom space of (B,, f,), T(B,,f,) (or simply TB, if no confusion arises) as the Thom
space of the r-plane bundle f7(y") (with the induced metric). Write T, : TB,—O,
for the naturally induced map. Now j¥(y"*?) is also a vector bundle over BO,,
isomorphic to the Whitney sum of y" and a trivial line bundle; hence the Thom
space of j¥(y"*!) may be identified to the suspension £TBO, of the Thom
space of y,. It is easy to see then that the commutative diagram above leads to
the commutative diagram:

sTB, -L8v% TB,,,

T, l l Thoos
XTBO, .T],? TBO,.,;.

In particular, Tg, °X induces a homomorphism 7, 4 (TB,, ©) = 7,4, + 1(TB, +1,0).

THEOREM. The cobordism group X" of n-dimensional (B, f)-manifolds is iso-
morphic to Lim, . (Tf¥(y").
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Proof.

(a) Definition of © : X" — Lim=, . (Tf*(#").

Let M"< E"*" with a (B,,f,)-structure, i.e., we are given a map 7:M" - B,
such that £, = v:M"— BO,. Now v is covered by a bundle map n:N —y" of
the normal bundle of M in E"*" by translating normal vectors to the origin.
The exponential map exp:N — E"*" is an embedding for the subspace N, of
vectors of length less than or equal to ¢, for ¢ sufficiently small. By changing
scale if necessary, we may assume that n takes N, onto vectors of length less
than or equal to one in y". We define a map 60 :8"*" = E"""Up - T(y") by
sending all points of S"*" outside or on the boundary of N, to co. The lift ¥
together with 8’ then defines a unique map 0 :S"*"— T(f¥(y") with T f,0=0".
Clearly the map obtained by considering M" < E"*" < E"***! is just Tg,°Z#.
Thus we get an element of Lim =, (Tf*(")).

To show that this element depends only on the cobordism class of M"
(and is independent of the imbedding) let M7, M’ be cobordant (B, f)-manifolds;
i.e., there exists a (B, f)-manifold W"*! with dW"*! the disjoint union of M,
and M, and inducing the given (B, f)-structures on M; and M,. This means
we may imbed W"*! in E"*"*!, r sufficiently large, so that the imbedding of
OW"*! coincides with given imbeddings of M; in parallel E!*", i=1,2.
Further the lift ¥ : W— B, may be assumed to coincide with the lifts ¥;: M; — B,
when restricted to dW. Define the bundle map n of N, = E"*" x I onto the vec-
tors of length less than or equal to one of y", and the maps 6': (E"*"U p) x I > T(y")
and 0:S"*" x I -» Tf¥(y") as above. As the homotopy class of 6; is unaffected
by taking smaller ¢’s if necessary, we may assume all maps are defined for the
same ¢. Then 0]S"*" x 0 and 6]S"*" x 1 coincides with 6 and 0,, respectively,
and hence represent the same homotopy class in 7, (TfF(y")). Thus we get
a well-defined map @ : X" - Lim, 7, . (Tf¥("))-

(b) © is a homomorphism.

Let M; and M, represent two cobordism classes of X", and imbed them on
different sides of E"*"~! in E"*’, r sufficiently large. Then O([M,] + [M,]) is
represented by a map 0 = 0, \V 0,, where 0;:S"*" — Tf¥(y") represent [M]; i.e.,
O([M,] + [M,]) = 6([M,]) +O([M,]).

(c) O is onto.

Let 0:(S"*", p)—(Tf¥(y"), ), r sufficiently large, then Tf,c 0: (S"*", p)—>(T(y"),0).
Since T(y") = TBO, = Lim TG, ,, and S"*" is compact, Tf,°0(S"*") = TG, ,, for
some s. Using standard techniques [8] or [14], Tf,°0 may be deformed to a
map h, so that:

(1) h, is differentiable in the preimage of some open neighborhood of
G, = TG, and t-regular on G, ;.

() If M"=h G,,), h, is a bundle map on a normal tube of M" in E"*"
— Sn+r —p.
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(3) The map is left unchanged on the preimage ¥ of some closed neighborhood
of oo. '

Since h,l M is a classifying map for the normal bundle of M, we may assume
(by a further deformation if necessary) that:

4) h,lM is the normal map v:M — G, , < G, ;, and h, on some normal tube
of M is just translation of vectors to the origin. Now notice that Tf, : TB, —» TBO,
is a bundle map except at the point co. Let V, be the interior of V. Then
Tf,°0(S"*" — V,) does not contain oo, and so the covering homotopy theorem
holds, and the deformation of Tf,°0 on S"*"— V, may be covered by a de-
formation of § on S"*" — V,, which is stationary on the boundary of V. Hence
we may cover the deformation of Tf,°08 by one of 6 to 6,. Then
07 '(B,) = (Tf,°07 Y)(G, ) = h, (G,,) = M". Further 0,| M :M - B, is a lift of
h,|M =v. This defines a (B,, f,)-structure on M" in E"*" and hence a (B, f)-
structure on M". On the other hand, defining ®([M]) using the above imbedding
of M" in E"*", © = (6,), i.e., ®([M)]) is the given element of Limn,, (T f¥ (")
and O is onto.

(d) © is cne-to-one.

Let M be a (B, f)-manifold such that ®([M]) = 0; we must show that M is
(B, f)-cobordant to 0. Now ©([M]) is represented by a map 6,:S"*"— TB,
which is homotopic to 6, :S"""— o by a homotopy L:S"*" x I - TB,. Then
Tf, 20, is homotopic to Tf, ¢, by Tf,°L. Again Tf, °L(S"*"x I) = TG, , s
sufficiently large. We may assume L, = 0, for t near 1,say t€[1 — #,1]; then L is
differentiable and transverse to G,, on N (M) x [1 —n,1] since 6, has this
property on N, (M). As in the proof that ® is onto we may deform, Tf, L (re-
lative to N, x [1 —#,1]) in a neighborhood of G, to a map G, which is dif-
ferentiable and transverse to G,,. Then W= G, '(G,,) is a submanifold of
E"" x I with 0W= M and meeting E"*" x 0 perpendicularly. Again as above
we may assume G,] W is the normal map, and G, on some normal tube of W is
translation of vectors to the origin. Covering this homotopy of Tf, cLby a homo-
topy of L to amap 0:S"*"xI— TB,, , = 0, for t near 1 (and 8| S"*" x 0 = 6,.)
Further, 0| W:W— B, covers the normal map G, | W. Since 6; covers the normal
map of M, the (B, f)-structure defined on W by 6 induces the given (B, f)-structure
on M. Hence M is (B, f)-cobordant to zero. This shows that ® is one-to-one,
and completes the proof of the theorem.

The above proof was for bundle pairs (B, f,); but if (C,, h,)is homotopically
equivalent to (B,, f,), the Thom spaces T(h¥(y") are homotopically equivalent
to T(f*(y")), and the induced isomorphisms on homotopy commute with
all the maps. Thus Theorem C follows immediately from the above
theorem.

REMARK. In connection with the above argument, it should be noted that
even if for example Tf, °6, is homotopic to the constant map, #; may not be
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s0; because the homotopy of Tf, °0; may slide over the point at co, and this
cannot always be covered by a homotopy of 6,.

3. Some special classifying spaces. Let BUZ, n > g, be the space obtained
from BU, (U, the n-dimensional unitary group) by killing off the first 2q —1
homotopy groups (cf. Adams [1]). Then there is a natural map g,:BUZ— BU,
which is an isomorphism on all higher homotopy groups. Since BU, is a count-
able CW-complex, we may choose BUZe W,, [7] and hence by Proposition 2.1,
g, to be a bundle projection.

Let ue H*BUY;Z), k <n, and let BUY#) be the fibre of a fibre map
¢ :BUI— K(Z,2k) with ¢*i,, =u. Again we may assume BUX(#d)e W, and
hence replace the inclusion by a bundle map h, : BUX#d)— BUL.

Given a bundle with group U, over a polyhedron X, let y: X —» BU, be a
classifying map. Then the bundle is trivial over the 2q — 1 skeleton of X if and
only if yy may be lifted to a map @ : X — BUY. Given such a bundle, @ may be
further lifted to BUY(#) if and only if §/*(u) = 0.

We evidently may choose maps jZ, jI to make a commutative diagram,

2q
BU%@) —2> BUY, (a)
hn\t hn+ 1\1'

jt

BUz e BU3+1

&l o &rtd
J

BU, —=> BUpuy,
where u € H*(BUZ, ,;Z) and by abuse of notation we use the same symbol for
its image in H*(BUZ;Z); such that j,, ,4,7¢ induces isomorphisms in homotopy
up through dimension 2n. We thus have H*(BU%L) ~ Lim H*(BUY), similarly
H*(BU% (1)) ~ Lim H*(BU(#)), arbitrary coefficients, where say u € H**(BU,,; Z)
is any polynomial in the Chern classes (and we again use the same symbol for the
image of u under the various maps). Let Q be the rational numbers.

PROPOSITION 3.1. (a) H¥(BU%,;Q) ~ Q[c,, ¢,+1,"*], where we again write c;,
for the image under the homomorphism H*(BU  ; Z)&> H*(BUZ ;Z)— H*(BUY, ;9),
of the ith Chern class.

(b) If u is any polynomial in the c;’s, h* : H¥(BU%,; Q) > H*(BUL(#); Q)
is onto and has kernel the ideal generated by u.

Proof. BUY is the same homotopy type as Q’BU%}* [1]. Since

Z i = 2q + 2_], j=0,1’2,"'3

f q =
m(BU {0 otherwise,
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it follows from the theory of H-spaces [10] that the rational cohomology ring is
a polynomial algebra over Q with generators dual to the image in H(BU%;0)
of a set of generators of n(BUZL) x Q, i=1,2,---. The result (a) follows from
the known properties of BU,, and the definition of the map g:BU%, — BU,.
To prove (b), we use the fact that K(Z,2k — 1) has the same rational coho-
mology as a sphere, and hence we can apply the Gysin sequence to the fibration

K(Z,2k — 1) - BU%(#) k By,

and obtain the exact sequence (rational coefficients):
i PPN a P -2k q
v « H(BUL()) «~ H(BUY) « H' " “{(BU%L) « -+,

where p is cup product with the class u € H**(BU%,). The result (b) follows im-
mediately.

A manifold M" is called weakly complex if the group of its normal bundle in
some E"*?" is reducible to U,. In our terms a weakly complex manifold is a
(BU, f)-manifold, where f, : BU, - BO,, is a bundle projection with fibre 0,,/U,.
The (BU, f) cobordism is called complex cobordism, and a (BU,, f,)-structure
will also be called a U, structure. For convenience we will also refer to a
BUY structure as a UZ structure, etc. (i.e., Uf may be considered the group
whose universal base space is BUY as in §1).

As is well known, the map in homotopy

32 i
2022/ (TBU,, ) > T 30422 TBU,, 0)—L% 7, 3,4 2(TBU, 1, ),

is an isomorphism for n < 2r. Also Milnor [4] has shown that the Hurewicz map
Ty 4 2(TBU,, ) = H, . ,(TBU,) is a monomorphism, n < 2r, and it follows that
two weakly complex closed manifolds are complex cobordant if and only if they
have the same Chern numbers.

Any normal map ¥, : M — BO,, for the normal bundle of a weakly complex
manifold M may be lifted to ¥ :M — BU, by the (BU, f)-structure. The last
statement in the above paragraph implies that the cobordism class of M depends
only on the homotopy class of ¥ in BU, (i.e., independent of a specific isotopy
class of liftings within the homotopy class).

4. Poincaré duality for complex cobordism classes. Let M" be a closed weakly
complex manifold whose normal bundle in a sufficently large Euclidean space
is trivial over the (2q — 1)-skeleton. (Thisis always true for g = 1.) Let  : M » BU
(actually BU,,, for r sufficiently large, but we omit the subscript hereafter) be a
classifying map for the normal bundle and ¥ :M — BU? any lifting. Let
ue H*¥BU;Z), and uy = Y*(u) € H*(M; Z). Suppose u,, is spherical;i.e., there
exists a map f:M — S, such that f*p,, = uy, 72 € H*(S**;Z) a generator.
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Deforming f to be differentiable and t-regular on the base point p of S%* we,
have f~'(p) a submanifold N~ %* imbedded in M. Then N represents an
homology class of M dual to u,,, and a fortiori:

(1) Some nonzero multiple of the homology class of M represented by N is
dual to u,,.

Also since the normal bundle of N in M is equivalent to the pull back of the
normal bundle of p in S we have:

(2) The normal bundle of N in M is trivial.

Choosing a particular product structure for the normal bundle of N in M, we
see that the unitary structure of the normal bundle of M in Euclidean space in-
duces a U x I,;-structure on the normal bundle of N in Euclidean space, where
I,, is the subgroup of O, containing the unit element only. The classifying map
for this structure is given by

NCM}!” BU=B(UXIZk).

PROPOSITION 4.1. Let N < M satisfy (1) and (2) above. If every Chern number
of M having uy, as a factor is zero, N (with any U x I, structure as defined
above) is U x I,, cobordant to zero.

Proof. TB(U, x I,;) =X**TBU and m,,,(TB(U, x I,})) ~ m,_ 5+ ,(TBU,),
2r > n. It follows that the U x I,;, cobordism classes are determined by their
Chern numbers. If v is any homogenous polynomial in the Chern classes, vy is
the pull back of vy, by the last remark above. Now let v e H" 2(BU;Z); then
if sN is dual to uyy, soN[ N] = upw,[M] = 0 by hypothesis, and hence vy[N] = 0.
Thus all Chern numbers of N are zero, and N is U x I, cobordant to zero.

Given N c M satisfying (1) and (2) above, we may choose a map f: M — S
such that f*sy,, = u,; and f maps:

(a) The normal tube N x D* =M into S?*, by first projecting onto D?* and
then by a relative homeomorphism (D, S%*~*) - (S, p"), p’ the antipodal point
to p, sending o e D** into p.

(b) M — (N x Int D*) into p’.

PROPOSITION 4.2. Given N < M satisfying (1) and (2) above, §| (M — N x Int D?¥)
can be lifted to ¥ :M — (N x Int D**) > BU%(%).

Proof. In fact the map M Y, gue —g>K(Z, 2k), g*i,, = u; is homotopic to the
map ML S* L K(Z, 2k), f as above, h*iy, = 574, since Y*g¥iy, = f*h*iy, = uy,.
By (b) above, f is trivial on M — N x Int D**and gy |(M — N x IntD?) is
homotopically trivial. It follows that tP](M — N x IntD?*) can be factored
up to homotopy through BU%i). By the covering homotopy property,
¥ |(M — N x IntD**) may be lifted to BUY#).
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Now assume u,, satisfies the hypothesis of Proposition 4.1. We wish to construct
a manifold M, cobordant to M, such that the classifying map {, of M, can be
lifted on all of M, to BU%(d). The idea is to cut out the ‘bad’ part of M; namely,
N x Int D*; and attach W x S*~' instead, where 0W = N, and W has the pro-
perty that the lifting |/7|N x D°%* can be extended to W x S*7!. To begin with
we need a construction due to Wall [15]:

DEFINITION 4.3. Let M" be a closed G-manifold and N"™" a closed manifold
with trivial normal bundle. Then any G x I, cobordism of N may be extended
to a G-cobordism of M as follows: Let Wbe a G x I, cobordism of N with N;,.
Attach W x D" to M" x I by identifying N x D" x (1) in M" x I to N x D" in
W x D', and smooth out the corners (see [15] for details). This gives a manifold
"t = (M" x I) U (W x D") with boundary the disjoint union of M and a mani-
fold M, =(M — N x IntD") U (W x S""1)U (N, x D) (attached along the com-
mon boundaries and with corners smoothed). Since the structures agree where
identified, ¥"*! may be given a G-structure so that the restriction to M < V"*!
is the given one. Thus the G-structure on M, obtained by restriction, makes M,
G-cobordant to M.

Finally, we remark that if N, is empty, M; =(M — N x IntD") U (W x S"™1).
We call this the G-cobormism of M defined by the G x I, cobordism of N.

PROPOSITION 4.4. Let N"~%* be imbedded in a U%manifold M", N and M
closed, such that

(1) Some nonzero multiple of N represents an homology classin M dualtou,,.

(2) N has a trivial normal bundle in M.

(3) N is connected.

4) Giving N=N x p (peS*~'=D**) a U%d) x I, structure defined by
¥ | N x p ( as in 4.2), N is Ud) x I, cobordant to zero.

Then M is Ul-cobordant to a manifold M, with uy, =0.

Explicitly, if W is a U%#@) x I, manifold with boundary N, then
M, =(M — N x Int D*)U (W x S*1) (see 4.3) is U%cobordant to M and ad-
mits a U%#)-structure.

Proof. Wis a fortioria U? x I,, cobordism of N to zero, and since all of
M has a Ulstructure, the construction of (4.3) yields a U%structure on V"*?!
and hence M,. Let §;: M; » BU? define this structure; then we may assume
that §, | Wx S*~! factors through p; : W x S%*~1 W, since ¥, may be ex-
tended to V"* ! and hence over W x D**. Thus we have the commutative diagram:

BUY(1)
2/ 4k

wx s%1 Pty sppa

where p, =9 | W x S* 'and A covers 1 (4 exists since W is a U%(d) x I
2k
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cobordism of N to zero). Then Ap, restricted to N x S*~! covers
¥|N x $**7' = §,| N x $*7, and we will sec how this differs from | N x §2*~,

Now h:BU (i)~ BU? may be assumed to be a principal bundle with group
K(Z,2k — 1) (the bundle as defined in §3 is in any case of the same fibre homo-
topy type by [2]). Hence Ap, and { restricted to N x S*~* differ by a map
p:N x S* ' K(Z,2k — 1). The homotopy class of p is determined by
P*izey cH* (N ® S*1.7) = sz_l(N;Z) ®H°(S”‘_1;Z) + HZk—l(SZk—I; Z)
®HO(N; Z). But Ap; and \/ agree on N x p; and hence if N is connected, we
may consider that p¥iy_, e H*~1(S*71; 7). Then there exist a map
0:8%*" 15 K(Z,2k — 1) with 0%iy,_; = p*ip_,. And

wx 521 22X puacay« Kz, 26— 1) B BULa)
(u the action of K(Z, 2k—1) on BU%(#)), belongs to the same homotopy class of
liftings as ¥ | N x S**7*. Thus M, = (M — N x IntD*) U(W x S*~') may be
given a BUY(#)-structure.

We have yet to show under what circumstances conditions (3) and (4) of Pro-
position 4.4 are fulfilled. Condition (3) is taken care of as follows: First, any
closed weakly complex manifold M" is complex cobordant to a connected ma-
nifold. Second, if N"~%, s > 1, is imbedded in a connected M" with a trivial normal
bundle, N is cobordant in M to a connected manifold imbedded with trivial
normal bundle. Although these two statements are easy to prove directly, we will
not include the proofs here, as the statements are an immediate consequence
of the zero-dimensional cases of Propositions 5.1 and 5.2 of §5.

We would now like to show that N satisfying the hypothesis of (4.1) is
U%#) x I,, cobordant to zero. However, we can only show in general that
some nonzero multiple r of N is U%) x I,, cobordant to zero (4.5) below.
Since N is imbedded in M with trivial normal bundle, we may imbed r disjoint
copies of N parallel to each other in a product neighborhood of N in M, and
hence the connected sum rN. Thus, starting with an N = M satisfying the hypo-
thesis of (4.1), we may replace it with an N’ = M’ satisfying (1), (2), (3), (4) of
(4.4), but with ru in place of u (note that rN is a fortiori U%(r#@) x I,, cobordant
to zero).

Since (1) and (2) are satisfied if u,, is spherical, Propositions 4.4 and 4.5 (below)
imply.

THEOREM A’. Let uy be a homogenous polynomial in the Chern classes of
a weakly complex closed manifold M. If uy, is a spherical cohomology class
‘and every Chern number of M with u,, as a factor is zero, then M is complex
‘cobordant to a manifold M’, with uy. of finite order. Further, if the normal
bundle of M is trivial over its (2q— 1)-skeleton, the same may be assumed for
"M’ (in a sufficiently large Euclidean space).
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COROLLARY (THEOREM A). Let uy, be a homogeneous polynomial in the Chern
classes of a weakly complex closed manifold M. If every Chern number of M
with uy as a factor is zero, M is complex cobordant to a manifold M’ with uy,.
of finite order. Further, if the normal bundle of M is trivial over its (2q—1)-
skeleton, the same may be assumed for M'.

Proof. Assume first that uZ is of finite order. Then some nonzero multiple
s of uy, has its square zero. Hence, some nonzero multiple ¢ of su,, is spherical (%).
By Theorem A’, M is cobordant to M’ with tsu,,. of finite order; i.e., u,. is of
finite order.

Now consider the general case. Since M is finite-dimensional, some 2‘th
power of u,, is zero. If the hypothesis of the corollary holds for u,, it holds for
ui/. Thus by iterating the preceding argument i— 1 times starting with
uy™t, we eventually get an M’ cobordant to M with u,,. of finite order.

PROPOSITION 4.5. If a (UY#) x I,,)-manifold N*~%* is U x I,, cobordant to
zero, some nonzero multiple of N is U%d) x I,, cobordant to zero.

Proof. The U x I, (U%(#) x I;)-cobordism group of n-manifolds is isomorphic
to 7,4, (E**TBU,) (m,.,(E*TBUY#)), if r sufficiently large. The result will
follow if we show that the map =, ,,(2*TBUY#)) ® Q —» 7, ,(E*TBU,)® Q
is a monomorphism.

Since we are only interested in the stable range, the Hurewicz map
Ty 2{Z*TBU,) ® Q = H,,,(E*TBU,)® Q@ = H,.,(2**TBU,;Q) is a mono-
morphism (similarly for BU?(#)). Hence it is sufficient to show that
H,.,,(2*TBU? (4); Q) - H,.,(2**TBU,;Q) is a monomorphism; or
H,_514+2(TBU%(%); Q) » H,_ ;4 ,,Z*(TBU,;Q) is a monomorphism. Since our
bundles are oriented, this is equivalent to H,_,(BUf (1); Q) > H,_,(BU,; Q)
a monomorphism. Finally, this comes to showing that H"~?(BU,;Q)
—H""*(BUX#);Q) is onto. But this is proved in Proposition 3.1. Q.E.D.

5. Spherical modifications of (B, f)-manifolds.

PrROPOSITION 5.1. Let M" (n>1) be a (B, f)-manifold and y e m(M"), k < n/2.
If Y. (y) =0, y : M" — B a classifying map for the normal bundle of M, then M

is (B, f)-cobordant to M, with nx(M,) ~n(M)/(y) ((y) a subgroup contain-
ing v), and n(M,) ~ (M) for i > k.

Proof. We first note that a spherical modification (surgery) is the special
case of the construction in (4.3) where N = S* and W= D***, As pointed out in
[9], y is represented by an imbedding g : S*— M, since k < n/2. Since y,(y) =0,
the normal bundle of M restricted to S*< M is trivial, and since k < n/2 the

(?) See for example: I. Berstein, Homotopy mod C of spaces of category 2, Comment.
Math. Helv. 35 (1961), 9-15 (Proposition 1.5).
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normal bundle of S* in M must be trvial. It remains to show that if M" is a
G-manifold (G = (G,), G, the group with universal base space B,, see §1); we may
choose a product structure on the normal bundle of S* in M, so that the
G x I,_, structure on S* may be extended over D***.

We start with the fact that the O,.,_ structure on the normal bundle of
S* < M < E"*" may be lifted to a G, x O,_, structure. By what was observed
above, this may be lifted to an I, x O,_, structure and thence to an I, X I,,_;
structure. Now an arbitrary choice of these product structures may not give a
product structure on the normal bundle of S*in E"*" which is extendable to D**?,
but it will differ at most by a map of S* into O, ,,_, from such a structure. On the
other hand, the choice of the lifting of the O, _, structure on the normal bundle
of S¥in M to an I,_, structure may be varied by any map of S* intc 0,_,. But
theinclusionmapi:0,_;,— 0, ,-inducesan epimorphism iy :7,(0,, - 1) > 70, 4 n 1),
since k < n — k. It follows that we may choose an I,_, structure on the normal
bundle of S¥ in M so that the I, x I,_, structure, and hence a fortiori the
G, x I,_, structure, on the normal bundle of S* in Euclidean space may be ex-
tended over D**1,

It now follows by (4.3) that M" is B-cobordant ((B, f)-cobordant)) to the G
manifold M, = (M —S*xInt D" ) U D*** x §" ¥~ As pointed outin [9] 7, (M) is
a quotient of m(M) by a subgroup containing y, and n,(M,) ~ n(M) for i < k.

ReMARK 1. If k = 0, the conclusion of the proposition is interpreted to mean
that M, has one less component than M. Since the spaces (B,, f,) are assumed
connected (see §1), we have the conclusion: Every (B, f)-manifold M" is
(B, f)-cobordant to a connected manifold.

ReMARk 2. The above argument that M” is G-cobordant to

M, =(M —S*x IntD" ¥y D*** x §" %71

will hold if n = 4s and k = 2s, since i, :7M,(045) = 7240, +45) is an epimorphism,
provided S* has a trivial normal bundle in M.

CoROLLARY. Let M" be a closed weakly complex manifold whose (stable)
normal bundle is trivial over the (2r — 1)-skeleton and such that u, =0,
ue H*(BU; Z), then M is complex cobordant to a manifold M’ which is
min(2r—1, [(n + 1)/2], 2k — 2)-connected, with uy. =0 and the normal bundle
of M’ trivial over the (2r — 1)-skeleton.

Proof. M" is a BU'(i%) manifold. But n(BU'(&%)) is zero if i £2r—1 and
i # 2k — 1. Hence the corollary follows from the proposition.

THEOREM B. Let M" be a closed weakly complex manifold with
€y =c¢y=+=¢,=0,2k <nf2; then M is complex cobordant to a 2k-connected
manifold.
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Proof. We may assume M is zero-connected. We prove inductively that M
is cobordant to a 2i-connected manifold with ¢;,; = - =¢,=0. But if M is
2i-connected and c¢;,; =0, the classifying map of the normal bundle of M,
being trivial on the 2i-skeleton, may be assumed to send the boundaries of the
(2i — 1)-cells into the base point. Since 7n,;,(BU) = 0, the classifying map will
be trivial on the (2i + 1)-cells, and hence may be assumed to send the boundaries
of the (2i + 1)-cells to the base point. But ¢;, ; has a nonzero value on the genera-
tor of m,;.,(BU), so the classifying map must be trivial on the (2i + 2)-skeleton.
Thus the normal bundle restricted to M®*? js trivial. Thus M is a
BU'**?(¢,,,, -, é,)-manifold, and is cobordant to a (2i + 2)-connected manifold
with ¢4 = =¢,=0; just as in the corollary above, since
n{BU™ X (G142,,6)) =0, j<2i+3. QE.D.

PROPOSITION 5.2. Let M" be a closed (k — 1)-connected G-manifold, and let
N"7% be a closed submanifold imbedded with trivial normal bundle. Then any
spherical modification of N to N' satisfying

(1) the modification is a G x I; cobordism from N to N’,

(2) the modification is of type (p + 1,9 +1), p+q +1=n—s, where

p+1<min(k + 1,s,n/2)
can be made in M.

Explicitly, if W is the cobordism from N to N’ corresponding to the modi-
fication, then the imbedding of N in M may be extended to an imbedding of
W in M. Further, W has a product structure on its normal bundle in M which
induces the given G x I, structures on N and N'.

Proof. Let f:S?x D?"'— N beanimbedding defining the modification. Since
M is p-connected, S JO9N = M is homotopic to a constant. Taking a normal
frame on N = M, corresponding to the I, structure in (1), move S? a small dis-
tance in the direction of the first vector y of this frame. Since p + 1 <5, we can
get an imbedding of DP** in M, with N N D?*! = S? and such that D**' comes
into N along this direction.

NcMc E"™ has a G, x Igstructure on its normal bundle. Considering
E"*" < E"*"*1 Nhasan I, x G, x I structure in E"*"**, In the two-dimensional
subspace, of the normal space to each point of N, spanned by the vector e per-
pendicular to E"*" and the first vector y of the I structure, rotate the frame
(e, ) 90° so that e comes into the position originally occupied by y. This does
not change the I; x G, x I, structure on N in E"*"*1,

Now the I, structure on S? in N together with the above, gives an
I, X G, x Iy x I, structure on S? in E"*"*!. The fact that f defines a G x I,
cobordism means that the G, x I x I, structure on the normal bundle of
DP*1in E"*r*1 restricted to S, is extendable over D?*!. On the other hand,
the normal bundle of D?*' in M has a unique (up to orientation) I, structure
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and this together with the I, x G, structure of M in E"*"*! restricted to D?*?,
gives a Iy x G, x I, structure on DP*' in E"*"*1. Both of these structures
come from the unique (up to orientation) I, 4+ structure on D?*! in E"*"*1,
by projection.

Now over S¥, these two structures are represented by frames which (if we
choose the orientations properly) containing the same set of » + 1 vector fields
normal to M over S”. Consequently, the two I, structures on the normal
bundle of DP*! in M restricted to S, differ by a map g:S,— O, such that
S, 5 0,4+ < Oyys4,41 is homotopic to the trivial map. Smce p<s—1,weare
in the stable range and g is homotopic to the trivial map.

This means that we can extend the normal I, ,-frame of S”in N over D
and thus imbed D?*! x D?*! in M. Now thicken N to N x I imbedded in M
using the vector field —y. Then we can imbed N x I yD?*! x D?*! in M, and
smooth the corners, so that W is imbedded in M and the I,_; structure on the
nermal bundle of N x I in M extends over W.

Since W gives the G x I, cobordism of N to N’ and induces the given G x I
structure on N, we have N’ imbedded in M with an I structure on the normal
bundle. By using the reverse rotation, to that for N above, on the corresponding
pair of vectors in the normal bundle of N’ in E"*"*! we see that the induced
G x I, structure is the same as that given by the cobordism.

p+1

PROPOSITION 5.3. Let M" be a closed G-manifold and let N*~° be imbedded
in M with trivial normal bundle. Let W taking N to N' be a G x I, cobordism
corresponding to a spherical modification of N of type (p +1,q +1). Then
M'=(M — N x IntD*) UW x "1 UN’ x D% (see §4) is obtained from M
by a spherical modification of type (p +1,q +s + 1).

Proof. In fact N'= (N — S” x Int D*"!) u (DP*! x 89, W = (N xI)
U (DP* x D). Hence M’ — (84 x D* D%t x §2%~1) % IntDP*'=M — S?
x Int (D?*! x D**). Since in the construction of §4, the corners have been
smoothed out, this is precisely a spherical modification of the stated type.

Note also that M and M’ make up the boundary of V= (M x I) y(W x D),
which is diffeomorphic to (M x I) y(DP*! x DIt2k+1),

PROPOSITION 5.4. Let M* be a (2s — 1)-connected closed weakly complex
manifold with ¢2=0.If s> 1, M is complex cobordant to a (2s — 1)-connected
manifold with c; = 0; and hence almost parallelizable.

Proof. Let ve H*(M) be a generator such that c, is a multiple of v. Then
v* =0. The dual of v is represented by S$>* imbedded in M [9]. Since
¢;[S*] = ¢,, vs = 0, the normal bundle of M restricted to S?* is trivial. It follows
that the normal bundle of S** in M may be given a product structure (see proof
of Lemma 7 in [9]). Since 7,(0,5) = 7,4(0, . ,,) is onto, Remark 2 following
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Proposition 5.1, shows that we may choose a product structure on the normal
bundle of S* in M so that the corresponding spherical modification is a
U%(é,) x I,, cobordism; i.e., D**! is a U%é) x I, cobordism of S* to
zero. Thus the conditions of Proposition 4.4 are fulfilled and
M; =(M — 8% x Int D¥) yD**! x §**~! is complex cobordant to M and has
¢, =0. As in the proof of Theorem 4 in [9], M, is (2s — 1)-connected. Q.E.D.
Theorem B and the above proposition give:

THEOREM B’. Let M*, s> 1, be a closed weakly complex manifold with
g =cy=-=c,_, =0and ¢2=0; then M is complex cobordant to an almost
parallelizable manifold.

A m-manifold is a manifold whose normal bundlein a sufficiently high dimensional
Euclidean space is trivial; i.e., the group reduces to the identity element of the
orthogonal group. We will call the correspoding cobordism theory, I cobordism.
Pontrjagin proved that the I cobordism classes of n-dimensional closed manifolds
forms a group (under disjoint union) isomorphic to G,= x,,+,(S™), m >n + 1.
This is of course a special case of the general cobordism theory of §2. We now
prove:

THEOREM C. If n =4k, and M"is a closed n-manifold with product structure
y, then (M",y) is I-cobordant to (M',7"), where M’ is a differentiable n-manifold
homeomorphic to a sphere and v’ is a product structure on M'.

Proof. Since the universal base space of I has all homotopy groups zero,
Proposition 5.1 shows that M is I-cobordant to a (2k — 1)-connected n-manifold.
The same argument as in the proof of Theorem 4 in [9], together with Remark 2
following Proposition 5.1 (also see 5.4 above) shows that we may kill off the middle
homotopy group to obtain a 2k-connected and hence (4k — 1)-connected n-mani-
fold, at least for k > 1. The theorem now follows by Smale’s result [12] on the
generalized Poincaré conjecture. (Since the stable 4-stem 7,,,(S") is zero,
the theorem is also true for k =1.)
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