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POINCARE DUALITY AND COBORDISM 
BY 

R. LASHOF 

A smooth manifold M' imbedded in (n + 2r)-dimensional space En 2r is 

called weakly complex if a specific reduction of the normal bundle to the unitary 
group Ur is given. A 'complex cobordism theory' for such manifolds may be 
defined and Milnor [4] has shown that two weakly complex closed manifolds 
belong to the same cobordism class if and only if they have the same Chern 
numbers. 

The following theorem says roughly we may kill a nonzero multiple of a charac- 
teristic class of a closed weakly complex manifold that does not show up in the 
Chern numbers. 

THEOREM A. Let UM be a homogeneous polynomial in the Chern classes of 
a weakly complex manifold Mn such that any n-dimensional homogenous poly- 
nomial WM with uM as a factor (i.e., wM = uMvM) has value zero on the basic 
class of M. Then M is complex cobordant to a manifold M' with uM, of finite 
order. 

Further, if the normal bundle of M is trivial over its (2q-1)-skeleton, the 
same may be assumed for M'. 

Let X be an n-dimensional complex cobordism class, and let K(X) 

UM ex Kerfm,wherefM: M -> BU is a classifying map for the (stable) normal 
bundle, and f* : H*(BU; Q) -* H*(M; Q) is the induced homomorphism in the 
rational coefficients. (For M empty, KerfM = H*(BU; Q).) Then Theorem A 
implies K(X) is an ideal. Let C(X) = H* (BU; Q) /K(X); it is a graded algebra 
called the rational characteristic ring of X. 

THEOREM B (POINCARE' DUALITY FOR COMPLEX COBORDISM CLASSES). The map 
Ci(X)0 Cn-1(X)__*Cn(X) induced by cup product gives a pairing of C'(X) 
and C'-'(X) to Q; the isomorphism Cn(X) Q(XO O) being given by as- 
sociating to each monomial in Hn(BU; Z) the corresponding Chern number, 
extending linearly, and then passing to the quotient. (If X = 0, then all the 
groups CQ(X) are zero.) 

Theorem B is an immediate consequence of Theorem A. 
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In order to prove these theorems we first generalize cobordism theory to ar- 
bitrary (not necessarily differentiable) topological groups with specified homo- 
morphism into the orthogonal group; or equivalently, arbitrary spaces with 
specified homotopy class of maps into the universal base space of the orthogonal 
group. Given a connected countable CW-complex C and a map f: C -> BOk, 

we may assume that f is a bundle projection of an associated bundle to the uni- 
versal Ok-bundle (i.e., there exists a homotopy equivalence of the total space 
with C and the projection corresponds to f under this equivalence). If a smooth 
manifold M' is immersed in E' +k (Euclidean n + k-space), we will say that its 
normal bundle has a (C, f)-structure if we are given a specific homotopy class 
of lifts v of the normal map, v:Mn - Gk n C BOk, to C; i.e., v =fv. Now given 
a sequence of pairs (Ck, fk), fk Ck-> BOk, and maps Ik Ck -+ Ck+ 1 such that 
ikfk =fk+ ljk' where ik BOk - BOk+l is induced by the inclusion ?k C Ok+1; we 
will say Mn has a (C, f)-structure, (C, f) = {(Ck, fk)} if the normal bundle of Mn 

in some En+k has a (Ck, fk)-structure. By considering M _ c En+k En +k+i, it is 
clear that a (Ck, fk)-structure defines a unique (Ck+rr fk+r)-structure, r =0, 1,2, ..., 

and we identify these structures. Further, given two immersions of M" in 
Entk, k sufficiently large, they are regularly homotopic, and any two such regular 
homotopies are themselves homotopic through regular homotopies. By using the 
covering homotopy theorem on fk: Ck -> BOk, we get a 1-1 correspondence be- 
tween (C, f)-structures defined by the two immersions. This enables us to define 
a (C, f)-structure on Mn independent of the particular immersion. A (C, f) co- 
bordism theory may then be defined in the usual way. Letting Yk be the universal 
k-dim vector bundle over BOk, and T(fk(Yk)). The Thom space of the induced 
vector bundle over Ck, we prove: 

THEOREM C. The (C, f)-cobordism group of closed n-manifolds is isomorphic 
to Lim Cr +k(YTfk(yk)). 

Our general technique is also used to obtain the following results: 

THEOREM D. Let Mn be a closed weakly complex manifold with C1 = C2 

= . =Ck=O, 2k < n/2; then M is complex cobordant to a 2k-connected manifold. 

THEOREM D'. Let M4S, s > 1, be a closed weakly complex manifold with 
C = C2 = *= C = 0 and C2 = 0; then M is complex cobordant to an almost 

parallelizable manifold. 

THEOREM E. In every homotopy class of maps of Sm+4k__ S m m > 4k + 1, 
thtere exists a differentiable mapf such thatf (base point of Sn) = M4k, where 
M4k is a smooth manifold homeomorphic to a sphere S4k and imbedded in Sn'+4k 
with a trivial normal bundle. 

Theorem E has obvious consequences for differentiable structures on 4k-di- 
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mensional spheres, but Kervaire and Milnor [16] have much more general 
results in this direction. 

The author wishes to thank R. F. Williams and E. Dyer for many helpful 
conversations. In particular, Theorem E is a joint result of E. Dyer and the 
author. Also, the referee has made a number of helpful suggestions. 

1. Lifting the group of a bundle. Given a homomorphism of topological 
groups p: G -> H, we may ask when an H-bundle(l) may be lifted to G; i.e., is 
induced from a G-bundle by p. For the case that p is an inclusion, a simple 
criterion is given in [13]. We generalize this result as follows: Let (EG,G,BG) 
be a universal bundle; i.e., 1ri(EG) = 0 all i (such bundles always exist [6]), and 
let G act on EG x H by right action in EG and right translation on H (via p). 
Let H act on EG x H by left translation on the second factor and trivial action 
on the first. Since the actions of H and G commute, we get a well-defined action 
of H on (EG x H)/G. 

PROPOSITION 1.1. Given p:G -H, an H-bundle can be lifted to G if and 
only if the associated bundle with fibre F= (EGx H)/G has a cross-section. 

Proof. Let (EH,H,BH) be a universal bundle for H. Let BG = (EG x EH) /G, 
G acting on the right of EG and on the right of EH via p. Then (EG X EH, G, BG) 

is again a universal bundle for G. On the other hand, defining f:BG -> BH by 
passage to the quotients from EG x EH P2 EH, we see that BG is a bundle over BH 

with fibre F, associated to (EH, H, BH). Further, since p2((x, y)g) = p2(xg YP(g)) 

- yp(g), x EG YeEH, g eG; f*(EfH,BH) p*(EG x EH, GBG) Hence for a 
bundle with group H, the following are equivalent: 

(1) The bundle is induced from a G-bundle via p. 
(2) The classifying map into BH may be lifted to BG. 

(3) The associated bundle with fibre (EG x H) IG has a cross-section. 
Let W0 be the category of spaces of the same homotopy type as a countable 

CW-complex. Looking at Proposition 1.1 from the point of view of the universal 
base spaces we get: 

PROPOSITION 1.2. Let B E WO be connected, and let UH = (EH,H,BH) be any 
universal bundle. Then: 

1. Any map f: B -*BH may be replaced by a bundle projection. Explicitly, 
there is a weak homotopy equivalence : B -, B; and a bundle projection 
f: B-+BH of a bundle (B,F,BH) with fibre F the total space of f*pm (asso- 
ciated to pH); such that fif is homotopic to f. Further there is a map t : B -* B 
such that 7?Ef is homotopic to the identity; and if EH is contractible, i/ is a homo- 

topy equivalence with inverse rr. 

(1) All bundles are locally trivial. 
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2. If g: X -+ BH is a classifying map of an H-bundle over X, the homotopy 
classes of cross-sections of the associated bundle with fibre F are in 1-1 corre- 
spondence with the homotopy classes of maps of X into B covering g (the homo- 
topies being covering maps at each stage). 

COROLLARY 1.3 (FADELL). Any map f:B - C, B, C E WO with B and C con- 
nected, may be replaced by a bundle projection f:A C; i.e., there exist 
homotopy equivalences V/ :B -+ B and A: e-+ C such that 2fi/ is homotopic tof. 

Proof of Proposition 1.2. We may assume B is a countable connected simplicial 
complex in the weak topology [7]. Then Milnor [5] has shown that there exists 
a contractible universal bundle (EG, G, BG), BG =B, EG and G CW-complexes, 
such that for any principal bundle {H over B (with group H) there exists a homo- 
morphism p G -H such that H - p*(EG, G, BG). 

Choose p G H so that p*(EG, G,BG) %f*/H. Now apply Proposition 1.1, 
and let B = BG as defined in the proof of that proposition. Then (2) of 1.2 fol- 
lows immediately. Now the F of 1.1 is essentially the total space of P*(EG, G, BG), 

(we have switched the action of G and H to the opposite sides of H, but these 
correspond under the inverse map) and hence is isomorphic to the total space 
of f *uH. It remains to define V/ and 7t. 

According to the definition of p, there exists a map 0 :EG -+ EH satisfying 
0(xg) = 0(x)p(g), x E EG, g E G and coveringf. Define Vf: B = BG -+ BG by passage 
to the quotient from the map x -+ (x, 0(x)) of EG -+ EG x EH. Then fl/ =f. Now 
BG = (EG x EH) IG is a bundle over B with projection map t: BG -+ B defined by 
passage to the quotient from P : EG x EH -+ EG. Then 7l// = 1 and the fibre of 
it is EH. Since lri(EH) = 0 for all i, it follows that it and if are both weak homotopy 
equivalences. Finally, if EH is contractible, the bundle (AG, EH, B, 7t) is the same 
fibre homotopy type as the trivial bundle over B with fibre a single point. (See 
[2].) This implies in particular that q/nr is homotopic to the identity. 

Proof of corollary. We may assume that B and C are both countable connected 
locally finite simplicial complexes. Then as in the proof above C is the base 
space of a contractible universal bundle. The corollary now follows from the 
proposition. 

DEFINITION. Let (B, F, BOJ) be any associated bundle to the universal bundle 
for On, and let f: B -+ BO, be the bundle projection. We will say that an n-plane 
bundle 4 over a space X is (B,f)-reducible if the associated bundle over X with 
fibre F has a cross-section. A (B,f)-structure on 4 is an isotopy class of cross- 
sections of the associated bundle with fibre F (i.e., a homotopy class of cross- 
sections, where the homotopies are cross-sections at each stage). 

If instead of a bundle we are given only a map f: B -+ BOn of a space B E WO 
into the universal bundle for On. We will say that an n-plane bundle 4 over a para- 
compact space X is (B,f)-reducible if it is (Bj)-reducible; i.e., if the associated 
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bundle to 4 over X with fibre F =f*EO2 has a cross-section. A (B,f)-structure 
on 4 is an isotopy class of cross-sections of the associated bundle with fibre F. 

Explicitly, if P(4) is the principal bundle of n-frames corresponding to X, 
then the associated bundle with fibre F is ((P(4) x f *EOn) 1On, f *Eon, On, X) . 

REMARK. The property of (B,f)-reducibility depends only on the equivalence 
class of the bundle 4. A (B,f)-structure on the other hand, is for a specific bundle, 
and there is no way in general of corresponding (B,f)-structures for different 
but equivalent bundles. 

Starting with a bundle map of the n-plane bundle 4 into the universal n-plane 
bundle, one gets a uniquely defined map of the principle bundles, and hence of 
the associated bundle (P(4) x F) 1On into (EOn x F) /On . If g: X-+BOn is the map on 
base spaces under the above bundle maps, then any lifting g: X -+ (EOn x F)/O, 
defines a unique cross-section of the associated bundle to 4 and conversely. Note 
that this correspondence depends in general on the explicit bundle map of the 
associated bundles. 

2. Thom spaces and cobordism. Let Grn be the Grossmann manifold of 
(unoriented) r-planes in Er+n. Let yr be the r-plane bundle over Gr,n consisting 
of pairs: an r-plane together with a vector in the r-plane. Then BOr = Limn Gr,n, 
and the universal r-plane bundle yr = Lim yr. 

Let Mn be a smooth (Cx) compact manifold with or without boundary. An 
imbedding i :M -En+r gives a naturally defined map of the bundle of vectors 
normal to M into yr, by translating a normal vector at a point x E M, together 
with the normal plane to M at x, to the origin of En+r. This, followed by the 
inclusion of yr into yr, gives a bundle map of the normal bundle to i(M) into 
the universal r-plane bundle. Let v(i):M -+BOr be the induced map on base 
spaces. 

If (B, F, BOr,f) is any associated bundle to the universal Or-bundle, we will say 
that i : M -+ En+r has a (B, f)-structure, if we are given an isotopy class of liftings 
v(i) : M -+ B, fI (i) = v(i). (See discussion at the end of ?1.) 

If r is sufficiently large (r depends on n only), any two imbeddings 

il, i2 : Mn-+ E" +r are regularly homotopic, and any two such regular homotopies 
are themselves homotopic through regular homotopies leaving endpoints fixed 
[3]. This enables us to prove: 

LEMMA 2.1. If r is sufficiently large, then there is a one-to-one correspon- 
dence between the (B, f)-structures on il, i2: M-+En+r, il and i2 any imbeddings. 
Consequently, we may speak of a (B, f)-structure on Mn independent of the 
particular imbedding. 

Proof. Let i(i1): M -+ B, f i(i1) = v(i 1). Now a regular homotopy from i 1 to 
i2 gives a homotopy between v(il) and v(i2) and any two such homotopies are 
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homotopic with end points fixed. Using the covering homotopy theorem in 
(B,F, BOr,f) we get a homotopy of vi(il) to a map V(i2) :M -+ B covering v(i2). 
We claim the class of i(i2) depends only on the class of i(il). 

Let v'(il) be any other lift of v(il) in the same class and V'(i2) be the lift of 
v(i,) obtained from V'(il) by any covering homotopy. This defines a map it of 
M x Tinto B, where T is the subspace of I x I consisting of three edges of the 
square. Further ; covers a map i/: M x T-* BOr with /(x, tl, 0) = v(i ) (x), and 
(x, 0, t2), (x, 1, t2) being two homotopies between v(il) and v(i2) which are 

themselves homotopic with end points fixed. Thus / is extendable to M x I x I 
with /(x, tl, 1)= v(i2). Consequently, p is extendable to M x I x I with i7(x, tl, 1) 
over v(i2) and giving the desired isotopy between v(i2) and i'(i2). This establishes 
the above claim. 

Now applying the same argument, a class of lifts i(i2) of v(i2) defines a unique 
class of lifts of v(il); and by a further application of the same argument the cor- 
respondence V(il) to V(i2) to V'(il) returns us to the same class. This establishes 
the lemma. 

Now suppose we are given a sequence (B, f) of bundle projections fr: Br + BOr 
(associated to the universal bundle) and maps gr Br Br+B1 such that 

Br g Br+1 

fr j tfr+i 

BOr BOr +i 
Jr 

where Jr is the standard inclusion. Then a (Br,fr)-structure on Mn in En+r 
defines a unique (Br+ l,fr+ 1)-structure on Mc En+r c En+r+ 1. This sequence 
of structures denoted 4 = ('r) will be called a (B, f)-structure on M', and (M", {) 
a (B, f)-manifold. Two such structures will be identified if they correspond for 
some r (and hence for all larger r) under the covering homotopy theorem. The 
above lemma then shows that this structure is well defined. 

If instead of bundles, we are given only spaces Cr, and maps fr: Cr BOr, 
and gr Cr >+ Cr +?, such that Jr + igr and Irfr are the same up to homotopy; we 
may replace the pairs (Cr, fr) by equivalent bundle pairs according to ?1, at least 
if Cr E WO. The above diagram will then commute up to homotopy, but by using 
the covering homotopy theorem, we may inductively deform the maps gr so that 
the above diagram commutes. As we will see later, the cobordism groups we are 
about to define depend only on the homotopy type of the pairs (Cr, fr) and maps 

bCr Cr +i 

Let Mn, i = 1,2, be two closed manifolds. Let (W'+1, ) be a (B, f)-mani- 
fold with boundary the disjoint union of M1 and M2. We will define induced 
(B,f)-structures on Mi. By standard imbedding theorems [8] one may imbed 
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Wn+l in E n+r,+ r sufficiently large. so that W +1 lies between two parallel 
(n + r)-planes E7+", i = 1,2, with its boundaries Mi imbedded in En+r and Wn L 

meeting E,+r perpendicularly. We take a fixed orientation on our Euclidean 
spaces and take E'+r on the positive side of E'+r. Then the normal planes to Mi 
in En+r are just the restriction to M, of the normal planes to W in E n+r+l. If 
v: W BOr is the normal map, and the (B,f)-structure on Wis represented by 
an isotopy class of liftings v: W-* Br; then v j Mi will be a lifting of v I Mi and 
define a (Br,fr)-structure on Mi in En+r. Using the same arguments as in Lem- 
ma 2.1 above, it is easy to check that the (B, f)-structures on Mi so defined are 
independent of the particular imbedding of the above type of W'+'. 

We can now make the 
DEFINITION. Let (Mn,, i), i = 1,2, be two closed (B, f)-manifolds. We will say 

they are (B,f)-cobordant if there exists a (B,f) manifold (Wn, l) such that: 
(a) aWn+l is the disjoint union of M1 and M2. 
(b) The (B, f)-structures on Ml and M2 induced by that on W coincide with 

{l and 42, respectively. 

LEMMA 2.2. (B, f)-cobordism is an equivalenice relation, and the cobordism 
classes of closed (B, f)-manifolds form an abelian group under addition induced 
by disjoint union of (B, f)-manifolds. 

Proof. We leave most of the proof to the reader. See for example [8]. We 
will consider only the construction of an inverse. Given a (B, f)-manifold 
(Mn) 4) imbed Mn in En+r, r sufficiently large, and imbed Mn x I in E n+ x E 
= En+r+ 1. The normal map v Mn x I -> BOr is simply the projection of Mn x I 
onto Mn followed by the normal map of Mn, and hence the (B, f)-structure on M n 
defines a (B, f)-structure ' on Wn+1 = Mn x I. Now deform Wthrough a regular 
homotopy so that Wis imbedded in the interior of E n+r x I, except for M' x 0, 
and Mn x 1 which are imbedded disjointly in En+r x 0, and W meets En+r x 0 
perpendicularly. This induces a structure <' on Mn x 1, and by the definition 
of class addition [M"l, {] + [Mn, ('] = 0. It is clear that d' depends only on {, 
and we write - 4 for {'. (In the case that Br = BSOr and Jr is the standard covering 
map, X is just an orientation of M" and - : is the opposite orientation.) 

It is possible to define (B,f)-structures and (B,f)-cobordism in terms of the 
stable tangent bundle as follows: Let B = Lim (Br, gr) f = Limfr: B -* BO. Let 
I: BO -- BO, BO = BOc,, be the map induced from In,N: Gn,N -> GN,n (Inl,N sends 
an n-plane into its orthogonal N-plane) by passage to the limit. Note that 12 = iden- 
tity. Then B is a bundle over BO with fibre F = Lim Fr, and I*B is also such a 
bundle over BO. Since I*EO = EO, I*B = B. Let T(M) be the tangent bundle 
of M, and let P(z) be the associated principal bundle with group 0, and con- 
sider the associated bundle Tf = (P(T) x F) /0, F, 0, M) with fibre F. We define 
a (B, f)-structure 4 on M as an isotopy class of cross-sections of Tf . Two closed 
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(B, f)-manifolds (Mn, ) (Mj2, 42) will be called (B, f)-cobordant if there exists a 

(B, f)-manifold (Wn1 ,I), with boundary the disjoint union of M1, M2, with 

mi = {i. 
To show the correspondence between the definitions of (B, f)-manifolds in 

terms of tangent and normal bundles, let Mn be imbedded in En+N, N sufficiently 

large. The map VN :Mn - GN,n and ZN :Mn -Gn,N are related by TN= IN,nVN. 

Let v:Mn -BO, and T:Mn -+ BO be the maps obtained by passage to the 

limit, then z = Iv. Further, these are covered by explicit bundle maps N Vf -+ B, 

T :Tf -* B of the associated bundles with fibre F, such that T = IN (denoting 

again by I the bundle map of B into B covering I: BO -BO). A (B, f)-structure 

{N on M defined in terms of the normal bundle corresponds via N to an isotopy 
class of lifts v of v to B. Then Iv gives an isotopy class of lifts of z to B, and hence 

via T to a (B, f)-structure {T = 'N in terms of the tangent bundle. Conversely, 

starting with {T we may define in the same way a (B,f)-structure {N=R{T* Since 

12 is the identity, this establishes a 1-1 correspondence between (B, f)-structures 

defined in terms of tangent and normal bundles. By Lemma 2.1, this correspon- 

dence is independent of the imbedding, if N is sufficiently large. It now follows 

that this correspondence also defines a 1-1 correspondence between (B, f)-co- 

bordism classes defined in terms of tangent and normal bundles, respectively. 

Considering BO, to be the space of r-planes contained in some Es c E', and 

defining the usual metric on the subspace of E3 consisting of vectors with only 

a finite number of coordinates nonzero, we obtain a Riemannian metric on the 

universal vector bundle yr over BOr. Consequently, we may form the Thom 

space TBOr of yr by identifying all vectors of length > 1 to a single point denoted 

so. Since BOr = lim Gr,m, it is easy to see that TBOr = lim TGr,m. Now define 

Thom space of (Br, fr), T(Br,fr) (or simply TBr if no confusion arises) as the Thom 

space of the r-plane bundle f*(Tr) (with the induced metric). Write Tf.:TBrOr 
for the naturally induced map. Now j*(yF+ 1) is also a vector bundle over BOr, 

isomorphic to the Whitney sum of yr and a trivial line bundle; hence the Thom 

space of 1*(Tr+l) may be identified to the suspension I TBO, of the Thom 

space of Vr. It is easy to see then that the commutative diagram above leads to 

the commutative diagram: 

,TBr A TBr+ 

Tfr t Tfr+I 

STBOr > TBOr+1. 

In particular, Tg, o I induces a homomorphism 7n + r(TBr5 x) 7n + r + I(TBr+ 1+,)) 

THEOREM. The cobordism group Xn of n-dimensional (B, f)-manifolds is iso- 
morphic to Limr7r,i+r(Tf,r(yr)). 
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Proof. 
(a) Definition of 0 :X" - Lim Zn+r(Tfr(Y)) 
Let Mn c En+r with a (Br,r)-structure, i.e., we are given a map v M' Br 

such that fri = v: Mn BOr. Now v is covered by a bundle map n: N -y' of 
the normal bundle of M in En+r by translating normal vectors to the origin. 
The exponential map exp:N - Enl is an embedding for the subspace N, of 
vectors of length less than or equal to s, for s sufficiently small. By changing 
scale if necessary, we may assume that n takes N. onto vectors of length less 
than or equal to one in yr. We define a map 0' Sn+r = E+rU p -T(yr) by 
sending all points of Sn+r outside or on the boundary of Ne to cx. The lift v 
together with 0' then defines a unique map 0: Sn+r - T(f*(yr)) with T frO = 0'. 
Clearly the map obtained by considering Mn c En+r(E"`r +I is just Tgr o10 
Thus we get an element of Lim 7Cn+r(Tf (yr)). 

To show that this element depends only on the cobordism class of Mn 
(and is independent of the imbedding) let Mn, Mn be cobordant (B, f)-manifolds; 
i.e., there exists a (B, f)-manifold Wn+ I with aW"+' the disjoint union of M1 
and M2 and inducing the given (B, f)-structures on M1 and M2. This means 
we may imbed Wn+1 in En+r+, r sufficiently large, so that the imbedding of 
aWn+1 coincides with given imbeddings of Mi in parallel E + r, i = 1,2. 
Further the lift v: W-* Br may be assumed to coincide with the lifts vi: Mi -> Br 
when restricted to a W. Define the bundle map n of N, c En+ r x I onto the vec- 
tors of length less than or equal to one of yr, and the maps 0': (En+r u p) x I -+ T(yr) 
and 0 :Sn+r x I _+ Tf *(yr) as above. As the homotopy class of Oi is unaffected 
by taking smaller s's if necessary, we may assume all maps are defined for the 
same e. Then 0 Sn+r x 0 and 0 J Sn+r x 1 coincides with 0 and 02, respectively, 
and hence represent the same homotopy class in 7n+r(Tf*(yr)). Thus we get 
a well-defined map 0 :Xn - Limr7rn+r(Tf*(yr)). 

(b) 0 is a homomorphism. 

Let M1 and M2 represent two cobordism classes of Xn, and imbed them on 
different sides of En+r-l in En+r, r sufficiently large. Then 0([M1] + [M2]) is 
represented by a map 0 = 01 V 02, where Oi Sn+r - Tf*(yr) represent [Mi]; i.e., 

0([M1] + [M2]) = 0([M1]) + 0([M2]) 

(c) 0 is onto. 
Let 0: (Sn +r, p)(TfJ*(Qr), cx), r sufficiently large, then Tfro 0: (Sn +r, p)(T(r), cx). 

Since T(yr) = TBOr = Lim TGr,s, and Sn+r is compact, Tfr ? o(Sn+r) c TGr,s, for 
some s. Using standard techniques [8] or [14], Tfr 00 may be deformed to a 
map hr so that: 

(1) hr is differentiable in the preimage of some open neighborhood of 
Gr,s c TGr s, and t-regular on Gr,s. 

(2) If Mn = h-'(Grs), hr is a bundle map on a normal tube of Mn in E+r 
= Sn+r - p 
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(3) The map is left unchanged on the preimage Vof some closed neighborhood 
of cx. 

Since hr I M is a classifying map for the normal bundle of M, we may assume 
(by a further deformation if necessary) that: 

(4) hr I M is the normal map v: M- Grn c Gr, and hr on some normal tube 
of M is just translation of vectors to the origin. Now notice that Tfr TBr -+ TBOr 
is a bundle map except at the point cx. Let V0 be the interior of V. Then 
Tfr 0 O(Sn + r - VO) does not contain cx, and so the covering homotopy theorem 
holds, and the deformation of Tfr 00 on sn+r-V0 may be covered by a de- 
formation of 0 on Sn+r - V0, which is stationary on the boundary of V. Hence 
we may cover the deformation of Tfr oO by one of 0 to 01. Then 
0j '(Br) = (Tfr o01 1)(Gr,3) = h =T '(Gr,s) = Mn. Further 01 f M: M + Br is a lift of 
hr I M = v. This defines a (Br, fr)-structure on Mn in En+r and hence a (B, f)- 
structure on Mn. On the other hand, defining ?([M]) using the above imbedding 
of Mn in Enr 0 = (01), i.e., 0([M]) is the given element of Limn+ r(Tf* (r)) 
and 0 is onto. 

(d) 0 is one-to-one. 
Let M be a (B, f)-manifold such that 0([M]) = 0; we must show that M is 

(B, f)-cobordant to 0. Now 0([M]) is represented by a map 01 Sn+r TBr 
which is homotopic to 00: Sn + r _xo by a homotopy L: Sn + r x I TBr. Then 
Tfr ?01 is homotopic to Tfr o00 by Tfr oL. Again Tfr oL(Sn+r x I) c TGr, s, S 

sufficiently large. We may assume L, = 01 for t near 1, say t E [1 - il, 1]; then L is 
differentiable and transverse to Gr,s on NE(M) x [1 - il, 1] since 01 has this 
property on NE(M). As in the proof that 0 is onto we may deform, Tfr ?L (re- 
lative to NE x [1 - Cl, 1]) in a neighborhood of Gr,s to a map Gr which is dif- 
ferentiable and transverse to Gr,S. Then W= Gr-'(Gr,s) is a submanifold of 
En+r x I with AW= M and meeting En+r x 0 perpendicularly. Again as above 
we may assume Gr I W is the normal map, and Gr on some normal tube of W is 
translation of vectors to the origin. Covering this homotopy of Tfr oLby a homo- 
topy of L to a map 0: Sn+r x I > TBr, 0t = 01 for t near 1 (and 0 I Sn+r x O = 00.) 
Further, 0 1 W: W-* Br covers the normal map Gr I W. Since 01 covers the normal 
map of M, the (B, f)-structure defined on Wby 0 induces the given (B, f)-structure 
on M. Hence M is (B, f)-cobordant to zero. This shows that 0 is one-to-one, 
and completes the proof of the theorem. 

The above proof was for bundle pairs (Br, fr); but if (Cr, hr) is homotopically 
equivalent to (Br, fr), the Thom spaces T(h*(Yr)) are homotopically equivalent 
to T(f*(yr)), and the induced isomorphisms on homotopy commute with 
all the maps. Thus Theorem C follows immediately from the above 
theorem. 

REMARK. In connection with the above argument, it should be noted that 
even if for example Tfr o01 is homotopic to the constant map, 01 may not be 
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so; because the homotopy of Tfr 001 may slide over the point at cx, and this 
cannot always be covered by a homotopy of 01. 

3. Some special classifying spaces. Let BU9, n > q, be the space obtained 
from BUn (Un the n-dimensional unitary group) by killing off the first 2q -1 
homotopy groups (cf. Adams [1]). Then there is a natural map gn: BU9-+ BUn 
which is an isomorphism on all higher homotopy groups. Since BUn is a count- 
able CW-complex, we may choose BUg e W0, [7] and hence by Proposition 2.1, 
gn to be a bundle projection. 

Let u eH2k(BU9;Z), k <n, and let BU'(ut) be the fibre of a fibre map 
BU:B -? K(Z, 2k) with 1*i2k =u. Again we may assume BU(a) e Wo and 

hence replace the inclusion by a bundle map hn BU9(ut) - BUg. 
Given a bundle with group Un over a polyhedron X, let / :X -+ BUn be a 

classifying map. Then the bundle is trivial over the 2q - 1 skeleton of X if and 
only if / may be lifted to a map / X -+ BUq. Given such a bundle, / may be 

further lifted to BUq(u) if and only if i*(u) = 0. 
We evidently may choose maps jnqn to make a commutative diagram, 

In 
Un( ) 

jq 
+U1(q 

hn4 hn+l4 

jq 

BUq n- BUq+ 

gn; gn+ I 

in 
BUn BU n + 

where u E H2k(BUq+1 ;Z) and by abuse of notation we use the same symbol for 
its image in H2k(BUq; Z); such that jqnq induces isomorphisms in homotopy 
up through dimension 2n. We thus have H*(BUUq)Lim H*(BU9), similarly 
H*(BU' (u)) Lim H*(BUq(ut)), arbitrary coefficients, where say u E H2k(BU.,; Z) 
is any polynomial in the Chern classes (and we again use the same symbol for the 
image of u under the various maps). Let Q be the rational numbers. 

PROPOSITION 3.1. (a) H*(BUq ;Q) _ Q[Cq, cq+i, ]j where we again write ci, 

for the image under the homomorphism H*(BUcIo,; Z)g-4H*(BUq ;Z)-)*H*(BUq ;Q), 
of the ith Chern class. 

(b) If u is any polynomial in the ci's, h* :H*(BU 0;Q) -H*(BU (U);Q) 
is onto and has kernel the ideal generated by u. 

Proof. BUqO is the same homotopy type as g12BUq'+I [1]. Since 

(BUq) (Z i = 2q + 2j, j=0,1,2,5 ., 
ir~(BU~) otherwise, 
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it follows from the theory of H-spaces [10] that the rational cohomology ring is 
a polynomial algebra over Q with generators dual to the image in Hr(BU ; Q) 
of a set of generators of 7ri(BU ) x Q, i = 1,2,... The result (a) follows from 
the known properties of BU,ci and the definition of the map g BU" - BU". 

To prove (b), we use the fact that K(Z, 2k - 1) has the same rational coho- 
mology as a sphere, and hence we can apply the Gysin sequence to the fibration 

h U K(Z, 2k-l) - BU (u) BUq, 

and obtain the exact sequence (rational coefficients): 

...BU (ah HUq ) h P HI 2k(Uq )** 

where p is cup product with the class u E H2k(BU ). The result (b) follows im- 
mediately. 

A manifold Mn is called weakly complex if the group of its normal bundle in 
some En+2r is reducible to Ur. In our terms a weakly complex manifold is a 
(BU, f)-manifold, where fr: BUr -+ BO2r is a bundle projection with fibre O2r/Ur. 

The (BU, f) cobordism is called complex cobordism, and a (BUr, fr)-structure 
will also be called a Ur structure. For convenience we will also refer to a 
BUq structure as a Urq structure, etc. (i.e., Uq may be considered the group 
whose universal base space is BU!, as in ?1). 

As is well known, the map in homotopy 

Vr(2r Tir 
n+2r(TB U ??) ) > tn+2r+2( TBUr, oo)-> r n+2r+2(TBUr+1 x), 

is an isomorphism for n < 2r. Also Milnor [4] has shown that the Hurewicz map 
ltr+2r(TBUr, ?o) -+ Hn+2r(TBUr) is a monomorphism, n < 2r, and it follows that 

two weakly complex closed manifolds are complex cobordant if and only if they 
have the same Chern numbers. 

Any normal map Vf0 : M -* BO2r for the normal bundle of a weakly complex 
manifold M may be lifted to Vf : M -* BUr by the (BU, f)-structure. The last 

statement in the above paragraph implies that the cobordism class of M depends 
only on the homotopy class of tf in BUr (i.e., independent of a specific isotopy 
class of liftings within the homotopy class). 

4. Poimcare duality for complex cobordism classes. Let Mn be a closed weakly 
complex manifold whose normal bundle in a sufficently large Euclidean space 
is trivial over the (2q - l)-skeleton. (This is always true for q = 1.) Let t : M -+ BU 

(actually BU2r, for r sufficiently large, but we omit the subscript hereafter) be a 

classifying map for the normal bundle and i>: M -* BU' any lifting. Let 
u E H2k(BU; Z), and um = i/*(u) E H2k(M; Z). Suppose UM is spherical; i.e., there 
exists a map f : M _+ S2k, such that f*y2k = UM, Y2ke H2k(S2k; Z) a generator. 
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Deforming f to be differentiable and t-regular on the base point p of S2k we, 
have f'-(p) a submanifold N'-2k imbedded in M. Then N represents an 
homology class of M dual to UM, and a fortiori: 

(1) Some nonzero multiple of the homology class of M represented by N is 
dual to UM. 

Also since the normal bundle of N in M is equivalent to the pull back of the 
normal bundle of p in S2k, we have: 

(2) The normal bundle of N in M is trivial. 
Choosing a particular product structure for the normal bundle of N in M, we 

see that the unitary structure of the normal bundle of M in Euclidean space in- 
duces a U x I2k-structure on the normal bundle of N in Euclidean space, where 
I2k iS the subgroup of 02k containing the unit element only. The classifying map 
for this structure is given by 

N c(M + BU = B(UX I2k) 

PROPOSITION 4.1. Let N c M sa tisfy (1) a nd (2) above. If every Chern number 
of M having UM as a factor is zero, N (with any U X I2k structure as defined 
above) is U X I2k cobordant to zero. 

Proof. TB(U, X I2k) = 2kTBU and I n+2,(TB(Ur X I2k)) ' 7n-2k+2r(TBUr), 
2r > n. It follows that the U x I2k cobordism classes are determined by their 
Chern numbers. If v is any homogenous polynomial in the Chern classes, VN iS 

the pull back of VM, by the last remark above. Now let v e H n-2k(BU; Z); then 
if sN is dual to UM, SVN[N] = uMvM[M] = 0 by hypothesis, and hence VN[N] = 0. 
Thus all Chern numbers of N are zero, and N is U X I2k cobordant to zero. 

Given N C M satisfying (1) and (2) above, we may choose a map f: M -+ S2k 

such thatf *SY2k = UM and f maps: 

(a) The normal tube N x D2k CM into S2k, by first projecting onto D2k and 
then by a relative homeomorphism (D2k, S2k 1) (s2k, p'), p' the antipodal point 
to p, sending o eD2k into p. 

(b) M - (N x IntD2k) into p'. 

PROPOSITION 4.2. Given N c M satisfying (1) and (2) a bove, fJ (M - N x Int D2k) 

can be lifted to M - (N xIntD B u 

Proof. In fact the map M BUg 4 K(Z, 2k), g*i2k = U; is homotopic to the 
map M 4 S2k +K(Z, 2k),f as above, h*i2k = SY2k' since *g*i2k =f *h*i2k = UM. 

By (b) above, f is trivial on M - N x Int D 2k and gfiJ(M-N x IntD2k) is 
homotopically trivial. It follows that ff(M-N x IntD2k) can be factored 
up to homotopy through BU9(u1). By the covering homotopy property, 

i (M- N x IntD2k) may be lifted to BUq(g). 
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Now assume uM satisfies the hypothesis of Proposition 4.1. We wish to construct 
a manifold M1 cobordant to M, such that the classifying map *l of M1 can be 
lifted on all of M1 to BUq(u1). The idea is to cut out the 'bad' part of M; namely, 
N x IntD2k; and attach Wx S2k-l instead, where @W= N, and Whas the pro- 
perty that the lifting ; I N x Do2k can be extended to W x S2k 1. To begin with 
we need a construction due to Wall [15]: 

DEFINITION 4.3. Let Mn be a closed G-manifold and Nn`r a closed manifold 
with trivial normal bundle. Then any G x Ir cobordism of N may be extended 
to a G-cobordism of M as follows: Let W be a G x Ir cobordism of N with N1. 
Attach W x Dr to Mn x I by identifying N x Dr x (1) in Mn x I to N x Dr in 
W x D , and smooth out the corners (see [15] for details). This gives a manifold 
yn+= (Mn x I) U (W x Dr) with boundary the disjoint union of M and a mani- 
fold M1 = (M - N x IntDr) U (Wx Sr l)U (N1 x D') (attached along the com- 
mon boundaries and with corners smoothed). Since the structures agree where 
identified, Vn+l may be given a G-structure so that the restriction to M C V"+ 1 

is the given one. Thus the G-structure on M1, obtained by restriction, makes Ml 
G-cobordant to M. 

Finally, we remark that if N1 is empty, M1 = (M - N x IntDr) U (Wx Sr-1). 

We call this the G-cobormism of M defined by the G x Ir cobordism of N. 

PROPOSITION4.4. Let Nn-2k be imbedded in a Ug-manifold Mn, N and M 
closed, such that 

(1) Some nonzero multiple of N represents an homology class in M dual to um. 

(2) N has a trivial normal bundle in M. 
(3) N is connected. 
(4) Giving N = N x p (pe 2k-1 = Do2k) a U( )X I2k structure defined by 

ii j N x p (i as in 4.2), N is UV(u) X I2k cobordant to zero. 
Then M is Uq-cobordant to a manifold M1 with uM1 = 0. 
Explicitly, if W is a UV(u) x I2k manifold with boundary N, then 

M, = (M - N x IntD2k)U (Wx S2k-) (see 4.3) is W-cobordant to M and ad- 
mits a Uq(-)-structure. 

Proof. W is a fortiori a Uq x I2k cobordism of N to zero, and since all of 
M has a Uq-structure, the construction of (4.3) yields a UW-structure on yn+1 

and hence M1. Let i/': M1 - BUq define this structure; then we may assume 
that i/i | W x 52k- 1 factors through Pi: W x 52k- 1 W, since i7l may be ex- 
tended to V"+ 1 and hence over W x D2k. Thus we have the commutative diagram: 

BUW(t) 

WxS2k - Uq(iU 

where Ap =li | W x S2kl and A covers A (A exists since W is a Uq(u) X I2k 
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cobordism of N to zero). Then Ap, restricted to N x S2k-1 covers 
i N x S2k-1 = 1| N x S 2k- 1 and we will see how this differs from i IN X S2k- 1. 

Now h :BU (u )- BUq may be assumed to be a principal bundle with group 
K(Z, 2k - 1) (the bundle as defined in ?3 is in any case of the same fibre homo- 
topy type by [2]). Hence Ap1 and ; restricted to N x S2k-1 differ by a map 
p: N x S2k1 -1 K(Z, 2k - 1). The homotopy class of p is determined by 
p*i2k_l1E H (N 0 S ;Z) = H 2kl(N; Z) H (S2k ; Z) + H2k (S2k ; Z) 
0HO(N; Z). But Ap1 and ; agree on N x p; and hence if N is connected, we 
may consider that p*i2k-1 CH2k-l(S2k-l; Z). Then there exist a map 
0: S2k- I K(Z, 2k- 1) with 0* i2k- 1 =P *i2k- 1 And 

WX s2k-1 Ai 0 BUq(8) (,2-) U 

(,u the action of K(Z, 2k-1) on BUq(u2)), belongs to the same homotopy class of 
liftings as | N x S2k-1. Thus M1 = (M - N x IntD 2k) U(Wx S2k1) may be 
given a BUq(u)-structure. 

We have yet to show under what circumstances conditions (3) and (4) of Pro- 
position 4.4 are fulfilled. Condition (3) is taken care of as follows: First, any 
closed weakly complex manifold Mn is complex cobordant to a connected ma- 
nifold. Second, if Nn-, s > 1, is imbedded in a connected Mn with a trivial normal 
bundle, N is cobordant in M to a connected manifold imbedded with trivial 
normal bundle. Although these two statements are easy to prove directly, we will 
not include the proofs here, as the statements are an immediate consequence 
of the zero-dimensional cases of Propositions 5.1 and 5.2 of ?5. 

We would now like to show that N satisfying the hypothesis of (4.1) is 
u I2k cobordant to zero. However, we can only show in general that 

some nonzero multiple r of N is U4(U) X 12k cobordant to zero (4.5) below. 
Since N is imbedded in M with trivial normal bundle, we may imbed r disjoint 
copies of N parallel to each other in a product neighborhood of N in M, and 
hence the connected sum rN. Thus, starting with an N c M satisfying the hypo- 
thesis of (4.1), we may replace it with an N' c M' satisfying (1), (2), (3), (4) of 
(4.4), but with ru in place of u (note that rN is a fortiori Uq(ru) X I2k cobordant 
to zero). 

Since (1) and (2) are satisfied if uM is spherical, Propositions 4.4 and 4.5 (below) 
imply. 

THEOREM A'. Let UM be a homogenous polynomial in the Chern classes of 
a weakly complex closed manifold M. If Um is a spherical cohomology class 
and every Chern number of M with uM as a factor is zero, then M is complex 
cobordant to a manifold M', with UM, offinite order. Further, if the normal 
bundle of M is trivial over its (2q-1)-skeleton, the same may be assumed for 

'M' (in a sufficiently large Euclidean space). 
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COROLLARY (THEOREM A). Let UM be a homogeneous polynomial in the Chern 
classes of a weakly complex closed manifold M. If every Chern number of M 
with uM as a factor is zero, M is complex cobordant to a manifold M' with uM, 
of finite order. Further, if the normal bundle of M is trivial over its (2q-1)- 
skeleton, the same may be assumed for M'. 

Proof. Assume first that u2 is of finite order. Then some nonzero multiple 
s of uM has its square zero. Hence, some nonzero multiple t of suM is spherical (2). 

By Theorem A', M is cobordant to M' with tsuM, of finite order; i.e., uM, is of 
finite order. 

Now consider the general case. Since M is finite-dimensional, some 2'th 
power of uM is zero. If the hypothesis of the corollary holds for uM it holds for 
u2f. Thus by iterating the preceding argument i - 1 times starting with 
uM , we eventually get an M' cobordant to M with uM, of finite order. 

PROPOSITION 4.5. If a (Uq(u) x I2k)-manifold N k is U x I2k cobordant to 
zero, some nonzero multiple of N is Uq(u) X I2k cobordant to zero. 

Proof. The U x I2k (Uq(u) x I2k)-cobordism group of n-manifolds is isomorphic 
to zn+ 2r (Z2kTBUr) ( +2F(Y2kTBUq(a)), if r sufficiently large. The result will 
follow if we show that the map 7 Zn 2r( 2kTBUq(a)) 0 Q 7C+ 2r( 2kTBUr) 0 Q 
is a monomorphism. 

Since we are only interested in the stable range, the Hurewicz map 
Tnn+2r(Y2kTB Ur) 0& Q -+ Hn + 2( 2kTB Ur) C) Q = Hn + 2r( 2kTB Ur; Q) is a mono- 
morphism (similarly for BUq (u)). Hence it is sufficient to show that 
Hn+2r( r2kTBUq (u); Q) -+ Hn+2r(y2kTBUr; Q) is a monomorphism; or 

Hn-2k+2r(TBU (2);Q) Hn-2k+2ry2k(TBUr;Q) is a monomorphism. Since our 
bundles are oriented, this is equivalent to Hn_ 2k(BUq(u);Q) -H-2k(BU;Q) 
a monomorphism. Finally, this comes to showing that Hn-2k(BUr;Q) 

+Hn-2k(BUq ();Q) is onto. But this is proved in Proposition 3.1. Q.E.D. 

5. Spherical modifications of (B, f)-manifolds. 

PROPOSITION 5.1. Let Mn (n> 1) be a (B, f)-manifold and ye Etk(Mn), k < n/2. 
If f*(v) = 0, i/: MM -+ B a classifying map for the normal bundle of M, then M 
is (B, f)-cobordant to M1, with 7tK(Ml) 27K(M)I(v) ((y) a subgroup contain- 
ing y), and ni(M1) - 7ci(M) for i > k. 

Proof. We first note that a spherical modification (surgery) is the special 
case of the construction in (4.3) where N = Sk and W= Dk+ 1. As pointed out in 
[9], v is represented by an imbedding g: Sk_+ M, since k < n/2. Since fr *(v) = 0, 
the normal bundle of M restricted to Sk C M is trivial, and since k < n/2 the 

(2) See for example: I. Berstein, Homotopy mod C of spaces of category 2, Comment. 
Math. Helv. 35 (1961), 9-15 (Proposition 1.5). 
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normal bundle of Sk in M must be trvial. It remains to show that if Mn is a 
G-manifold (G = (G,), Gr the group with universal base space B, see ?1); we may 
choose a product structure on the normal bundle of Sk in M, so that the 
G x In-k structure on Sk may be extended over Dkl+1. 

We start with the fact that the Or+n-k structure on the normal bundle of 
sc C M c Enl, may be lifted to a Gr x ?n-k structure. By what was observed 
above, this may be lifted to an I, x On-k structure and thence to an I, x In-k 

structure. Now an arbitrary choice of these product structures may not give a 
product structure on the normal bundle of Sk in Efn+r which is extendable to Dk+ 1, 

but it will differ at most by a map of Sk into 0r+n-k from such a structure. On the 
other hand, the choice of the lifting of the ?n-k structure on the normal bundle 
of Sk in M to an In-k structure may be varied by any map of Sk intG On-k. But 
the inclusion map i 0?n-k?+Or+n-k induces an epimorphism i$, 7tk(On - k) 7k(Or + n -k) 

since k < n - k. It follows that we may choose an In-k structure on the normal 
bundle of Sk in M so that the Ir x In-k structure, and hence a fortiori the 
Gr x In-k structure, on the normal bundle of Sk in Euclidean space may be ex- 
tended over Dki 

It now follows by (4.3) that M' is B-cobordant ((B, f)-cobordant)) to the G 
manifold M1 = (M-Skx IntDn-k)U Dk+ 1X Sn-k- 1. As pointed outin [9] 7tk(Ml) is 
a quotient of 7tk(M) by a subgroup containing y, and 7ti(M1) -7i(M) for i < k. 

REMARK 1. If k = 0, the conclusion of the proposition is interpreted to mean 
that M1 has one less component than M. Since the spaces (Br, fr) are assumed 
connected (see ?1), we have the conclusion: Every (B, f)-manifold Mn is 
(B, f)-cobordant to a connected manifold. 

REMARK 2. The above argument that Mn is G-cobordant to 

M1 = (M-Sk X Int Dn-k) u Dk+1 X Sn-k-1 

will hold if n = 4s and k = 2s, since i*: 72s(04s) -+ lt2i(Or+4s) is an epimorphism, 
provided Sk has a trivial normal bundle in M. 

COROLLARY. Let M' be a closed weakly complex manifold whose (stable) 
normal bundle is trivial over the (2r - 1)-skeleton and such that uM = 0, 
u eH2k(BU; Z), then M is complex cobordant to a manifold M' which is 
min(2r- 1, [(n + 1)/2], 2k - 2)-connected, with UM, = 0 and the normal bundle 
of M' trivial over the (2r - 1)-skeleton. 

Proof. Mn is a BUr(u1) manifold. But 7Tj(BUr(u?)) is zero if i ? 2r - 1 and 
i A 2k - 1. Hence the corollary follows from the proposition. 

THEoREM B. Let Mn be a closed weakly complex manifold with 

Cl = C2 = .= C = 0, 2k < n/2; then M is complex cobordant to a 2k-connected 
manifold. 
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Proof. We may assume M is zero-connected. We prove inductively that M 
is cobordant to a 2i-connected manifold with Ci+1 = .. = Ck =0. But if M is 
2i-connected and ci +1 = 0, the classifying map of the normal bundle of M, 
being trivial on the 2i-skeleton, may be assumed to send the boundaries of the 
(2i - 1)-cells into the base point. Since T2i +1(BU) = 0, the classifying map will 
be trivial on the (2i + 1)-cells, and hence may be assumed to send the boundaries 
of the (2i + 1)-cells to the base point. But Ci+ 1 has a nonzero value on the genera- 
tor of r2i +2(BU), so the classifying map must be trivial on the (2i + 2)-skeleton. 
Thus the normal bundle restricted to M(2& + 2) is trivial. Thus M is a 
BU +2(ci+2, CO,k)-manifold, and is cobordant to a (2i + 2)-connected manifold 
with Ci+2 = C= ck = 0; just as in the corollary above, since 

7Cj(BU+(Ci+2,.",k)) O, j < 2i + 3. Q.E.D. 

PROPOSITION 5.2. Let M' be a closed (k - 1)-connected G-manifold, and let 
Nn-s be a closed submanifold imbedded with trivial normal bundle. Then any 
spherical modification of N to N' satisfying 

(1) the modification is a G x Is cobordism from N to N', 
(2) the modification is of type (p + 1,q + 1), p + q + 1 = n - S, where 

p + 1 < min(k + 1,s, n/2) 
can be made in M. 

Explicitly, if W is the cobordism from N to N' corresponding to the modi- 
fication, then the imbedding of N in M may be extended to an imbedding of 
W in M. Further, W has a product structure on its normal bundle in M which 
induces the given G x Is structures on N and N'. 

Proof. Let f: SP x D q+ '- N be an imbedding defining the modification. Since 
M is p-connected, S 4oN c M is homotopic to a constant. Taking a normal 
frame on N c M, corresponding to the Is structure in (1), move SP a small dis- 
tance in the direction of the first vector X of this frame. Since p + 1 < s, we can 
get an imbedding of DP+' in M, with N f) DP+' -_ SP and such that DP`' comes 
into N along this direction. 

Nc~ M c En+r has a Gr x Is-structure on its normal bundle. Considering 
En+r c En+r+ 1, N has an I, x Gr x Is structure in En+r+ . In the two-dimensional 
subspace, of the normal space to each point of N, spanned by the vector e per- 
pendicular to E n+r and the first vector X of the Is structure, rotate the frame 
(e,x) 900 so that e comes into the position originally occupied by X. This does 
not change the I, x Gr x Is structure on N in E 

Now the Iq+1 structure on SP in N together with the above, gives an 
I1 x Gr X Is X 'q+1 structure on SP in En +r+l. The fact thatf defines a G x Is 
cobordism means that the Gr x Is x I,q+1 structure on the normal bundle of 
DP+' in E n+r+ restricted to SP, is extendable over DP+'. On the other hand, 
the normal bundle of DP+' in M has a unique (up to orientation) Iq+s structure 
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and this together with the II x Gr structure of M in E' Ir+1 restricted to DP+1, 
gives a I, x Gr X Iq+s structure on DP+' in En+r+ . Both of these structures 
come from the unique (up to orientation) Iq+r+s+ 1 structure on DP+ 1 in En+r+ 1, 
by projection. 

Now over SP, these two structures are represented by frames which (if we 
choose the orientations properly) containing the same set of r + 1 vector fields 
normal to M over SP. Consequently, the two Iq+s structures on the normal 
bundle of DP+' in M restricted to Sp differ by a map g: Sp-Oqs such that 
sAp 0q+s C Oq+s+r+ 1 is homotopic to the trivial map. Since p < s - 1, we are 
in the stable range and g is homotopic to the trivial map. 

This means that we can extend the normal Iq+ -frame of SPin N over DP+' 

and thus imbed DP+' x D'+1 in M. Now thicken N to N x I imbedded in M 
using the vector field -X. Then we can imbed N x I UDP+' x D q+ in M, and 
smooth the corners, so that Wis imbedded in M and the IS-, structure on the 
nermal bundle of N x I in M extends over W. 

Since Wgives the G x Is cobordism of N to N' and induces the given G x Is 
structure on N, we have N' imbedded in M with an Is structure on the normal 
bundle. By using the reverse rotation, to that for N above, on the corresponding 
pair of vectors in the normal bundle of N' in En+r+l, we see that the induced 
G x Is structure is the same as that given by the cobordism. 

PROPOSITION 5.3. Let Mn be a closed G-manifold and let N's be imbedded 
in M with trivial normal bundle. Let W taking N to N' be a G x Is cobordism 
corresponding to a spherical modification of N of type (p + 1, q + 1). Then 
M' = (M - N x IntD2k) U W X S2k-1 UN' x D2k (see ?4) is obtained from M 
by a spherical modification of type (p + 1, q + s + 1). 

Proof. In fact N' = (N -SP x Int Dq+l) U (DP+' x S%), W = (N xI) 
u (DP+' x Dq+ ). Hence M'-(Sq X D)2k U Dq+1 x S2k-1) x IntDP+1 = M-SP 
x Int (Dq+l x D2k). Since in the construction of ?4, the corners have been 
smoothed out, this is precisely a spherical modification of the stated type. 

Note also that M and M' make up the boundary of V= (M x I) u (W x D2k), 
which is diffeomorphic to (M x I) u (DP+' x D q+2k+ 1). 

PROPOSITION 5.4. Let M4S be a (2s - l)-connected closed weakly complex 
manifold with C2 = 0. If s > 1, M is complex cobordant to a (2s - l)-connected 
manifold with cS = 0; and hence almost parallelizable. 

Proof. Let v e H2s(M) be a generator such that c5 is a multiple of v. Then 
v2 = 0. The dual of v is represented by S2s imbedded in M [9]. Since 

cs[s2s] = cs, vs 0, the normal bundle of M restricted to S2s is trivial. It follows 
that the normal bundle of S2S in M may be given a product structure (see proof 
of Lemma 7 in [9]). Since n2,(02s) > 2s(Or+ 2s) iS onto, Remark 2 following 
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Proposition 5.1, shows that we may choose a product structure on the normal 
bundle of S2S in M so that the corresponding spherical modification is a 
Uc(es) x '2s cobordism; i.e., D2s+l is a UsQ(c) x I2S cobordism of S2S to 

zero. Thus the conditions of Proposition 4.4 are fulfilled and 

Ml = (M -S2s x IntD2s) uD2S+l x S2s-l is complex cobordant to M and has 
CS = 0. As in the proof of Theorem 4 in [9], M1 is (2s - 1)-connected. Q.E.D. 

Theorem B and the above proposition give: 

THEOREM B'. Let M4S, s > 1, be a closed weakly complex manifold with 
C1 = C2 Cs- = 0 and C2= 0; then M is complex cobordant to an almost 
parallelizable manifold. 

A i-manifold is a manifold whose normal bundle in a sufficiently high dimensional 
Euclidean space is trivial; i.e., the group reduces to the identity element of the 
orthogonal group. We will call the correspoding cobordism theory, I cobordism. 
Pontrjagin proved that the I cobordism classes of n-dimensional closed manifolds 
forms a group (under disjoint union) isomorphic to Gn= 7m +n(Sm), m > n + 1. 
This is of course a special case of the general cobordism theory of ?2. We now 
prove: 

THEOREM C. If n = 4k, and M' is a closed 7r-manifold with product structure 
y, then (M", y) is I-cobordant to (M', y'), where M' is a differentiable n-manifold 
homeomorphic to a sphere and y' is a product structure on M'. 

Proof. Since the universal base space of I has all homotopy groups zero, 
Proposition 5.1 shows that M is I-cobordant to a (2k - 1)-connected 7-manifold. 
The same argument as in the proof of Theorem 4 in [9], together with Remark 2 
following Proposition 5.1 (also see 5.4 above) shows that we may kill off the middle 
homotopy group to obtain a 2k-connected and hence (4k - 1)-connected 7r-mani- 
fold, at least for k > 1. The theorem now follows by Smale's result [12] on the 
generalized Poincare conjecture. (Since the stable 4-stem 7tr+4(Sr) is zero, 
the theorem is also true for k = 1.) 
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