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Introduction

On the weekend of April 20-21, 2007, a group of mathematicians gathered in
New Orleans to honor Terry Lawson on the occasion of his impending retirement
from Tulane University.

The event was organized by Terry’s Tulane colleague Sławomir Kwasik.
The symposium began on Friday afternoon with an appreciation of Terry’s

work in topology presented by Reinhard Schultz (University of California, River-
side) in the form of a general colloquium talk for the whole mathematics depart-
ment at Tulane.

That evening a group went out for dinner with Terry at a local restaurant.
On Saturday four friends and colleagues of Terry’s gave lectures on topologi-

cal topics of current interest. These speakers at the symposium included

• Nikolai Saveliev (University of Miami)
• Allan Edmonds (Indiana University)
• Daniel Ruberman (Brandeis University)
• Ron Fintushel (Michigan State University)

On Saturday evening the visiting topologists joined members of the Tulane
Math Department at a party in honor of Terry and his wife Barb.

Terry and Barb will both be sorely missed by colleagues and friends in New
Orleans. We wish them all the best in their new adventures upon their move to
Portland, Oregon.
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Between lower and higher dimensions

(in the work of Terry Lawson)

Reinhard Schultz

Introduction

There are several approaches to summarizing a mathematician’s research ac-
complishments, and each has its advantages and disadvantages. This article is
based upon a talk given at Tulane that was aimed at a fairly general audience,
including faculty members in other areas and graduate students who had taken
the usual entry level courses. As such, it is meant to be relatively nontechnical
and to emphasize qualitative rather than quantitative issues; in keeping with this
aim, references will be given for some standard topological notions that are not
normally treated in entry level graduate courses.

Since this was an hour talk, it was also not feasible to describe every single
piece of published mathematical work that Terry Lawson has ever written; in par-
ticular, some papers like [42] and [50] would require lengthy digressions that are
not easily related to the central themes in his main lines of research. Instead, we
shall focus on some ways in which Terry’s work relates to an important thread
in geometric topology; namely, the passage from studying problems in a given
dimension to studying problems in the next dimensions. Qualitatively speaking,
there are fairly well-developed theories for very low dimensions and for all suffi-
ciently large dimensions, but between these ranges there are some dimensions in
which the answers to many fundamental questions are extremely unclear. Much
of Terry’s work, and most of his best known results and papers, are directly related
to such questions.

Acknowledgments. I am grateful to Sławomir Kwasik for inviting me to speak
on this topic at Tulane and for assistance with some questions which arose in
preparing this writeup. Also, I would like to thank Elmar Winkelnkemper for
some helpful comments regarding the theory and applications of Open Book De-
compositions.

5



Lower versus higher dimensions

Of course, the concept of dimension is central to many geometrical questions,
and in the physical world one can have objects of dimension n for n = 0, 1, 2, 3.
During the nineteenth century, several mathematicians recognized that the meth-
ods of coordinate geometry lead to a theory of n-dimensional geometrical objects,
where n is an arbitrary nonnegative integer. In particular, the vector space struc-
ture on Rn, including the standard inner product, provide a setting in which one
can describe an n-dimensional analog of classical Euclidean plane or solid geome-
try. Higher dimensional objects are more than just intellectual curiosities, for they
have multiple uses in many contexts, including a many areas in the mathematical
sciences, several branches of physics, and even in other subjects like mathematical
economics.

Many important n-dimensional geometrical objects are examples of topological
n-manifolds; formally, these are Hausdorff topological spaces in which every point
has an open neighborhood which is homeomorphic to Rn. Objects of this sort were
introduced in the middle of the nineteenth century, and as noted above they arise
naturally in a wide range of topics, both within the mathematical sciences and in
their applications to other fields. We shall deal mainly with topological manifolds
in this article, but in some cases we must restrict attention to differential or smooth n-
manifolds (see [46] or [33]), which have the additional structure needed to discuss
differentiation and integration on the space.

In classical Euclidean geometry, clearly some things become more complicated
when one passes from line geometry to plane geometry or from plane geometry
to solid geometry, and it is normal to expect a similar pattern when one goes from
n-dimensional objects to (n + 1)-dimensional objects. This is true in many cases,
but one also has the following somewhat unanticipated fact:

Sometimes the answers to basic geometrical questions become simpler if
the dimension n is sufficiently large. In other words, there are instances
where general patterns of results exist if one excludes finitely many ex-
ceptional dimensions.

An example from euclidean geometry. The classification of solid regular poly-
hedra in Euclidean n-space up to similarity illustrates this phenomenon fairly well.
If n = 2 then the possibilities are given by the usual regular k-gons, where k is an
arbitrary integer ≥ 3. On the other hand, if n = 3 then the theory is simpler in
some ways but more complicated in others. There are only finitely many pos-
sibilities, and they are given by the classical Platonic solids; namely, the regular
triangular pyramid (or tetrahedron), the cube, the regular octahedron (which can
be constructed by taking the centers of the six faces of a cube), the regular dodec-
ahedron and the regular icosahedron (compare [15] and [32]).
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If we pass to higher dimensions, then purely algebraic considerations show
that for every n ≥ 4 one can construct a hypercube given by all x ∈ Rn whose
coordinates lie between 0 and 1, an n-simplex which is analogous to an equilateral
triangle or regular tetrahedron, and a third object which is dual to the hypercube,
with vertices given by the centers of the faces of the hypercube; such objects are
analogous to the regular octahedron in 3 dimensions. Further information on these
figures can be found in either [32] or [15].

One immediate question is whether there are any other examples, and this was
answered by results of Ludwig Schläfli [94] which date back to the mid-nineteenth
century. In particular, he showed that there are three additional examples if n = 4,
but no additional examples if n ≥ 5. All but one of the examples for n = 4 are
analogs of Platonic solids (again see [32] or [15]).

The illustrates the earlier comment about simplifications for sufficiently large
dimensions; if we agree that the 2- and 3-dimensional cases are understood, then
we see that the 4-dimensional case is more complicated than the 3-dimensional
situation and in all dimensions n ≥ 5 there is a uniform pattern of behavior which
is simpler to describe than in either dimension 3 or 4.

Similar patterns in algebra. Such patterns also arise very often in group the-
ory. For example, for each integer n consider the alternating group An of all even
permutations on n letters. A basic result of group theory states that An has no
nontrivial normal subgroups for all n except n = 4. For lower values of n there is
no room to squeeze in any nonzero proper subgroups at all, while if n ≥ 5 there is
enough room to perform certain algebraic constructions which force a nontrivial
normal subgroup to be the whole group.

Still further examples arise at deeper levels of group theory. In each case
there is a very systematic conclusion provided one avoids a finite list of excep-
tional values; however, in general the latter are not contained in {1, 2, 3, 4}. For
example, one can consider the automorphism group of the symmetric group Σn

on n letters; one natural question is whether this group has automorphisms be-
sides the standard inner automorphisms; in this case there are no other automor-
phisms unless n = 6, in which case there is an additional “outer” automorphism
(for example, see [88]). Another illustration of systematic behavior with finitely
many exceptions is the classification of compact simply connected Lie groups,
which can be written down very directly provided a numerical invariant called
the rank is greater than 8 [4] (a quick but accurate summary is available online at
http://en.wikipedia.org/wiki/Compact Lie Group), and yet another such pattern is the
classification of finite simple groups (see [109] for a summary and [102] for a more
detailed discussion; this result involves 26 exceptional or sporadic examples — the
orders of the latter are often astronomical, so the notion of “sufficiently large” is
not in the very small ranges we have seen thus far).
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Counterparts in geometric topology. Here is a basic question that is simple
to formulate:

For a fixed value of n, which finite abelian groups can arise as the fun-
damental groups of compact (unbounded) n-manifolds?

If n ≤ 2 one can answer this using the well-known classification theory for mani-
folds in these dimensions (e.g., see [70] for the 2-dimensional case); no finite groups
can be realized if n = 1, and only finite groups of orders 1 and 2 can be realized
if n = 2. Fundamental results of C. D. Papakyriakopoulos in 3-dimensional topol-
ogy [85] imply that a finite abelian group G can be realized if n = 3 if and only
if G is cyclic (see Chapter 9 of [31] for further information). On the other hand, if
n ≥ 4 then by results of A. A. Markov (see [74] or [75]) one has enough geometric
“room” to show that every finite abelian group can be realized.

Similar patterns appear elsewhere in geometric topology. Often one sees that
everything can be described fairly systematically if n ≥ M for some small value
of M (which is generally equal to 4, 5 or 6), and for all sufficiently small values
of n (usually n ≤ 2) everything is fairly well understood but usually for entirely
different reasons. In particular, if n = 1 everything is usually extremely straight-
forward (for example, see the relevant sections of [35]), and our understanding
geometric topology in dimension 2 is fairly complete based upon advances from
the first part of the twentieth century (compare [70], [95], or [112]). If n = 3, there
are many new phenomena to consider (including some highly pathological ones
as in [7] or [93] in addition to new regular patterns discussed in [31] and [79]),
but it appears that 3-dimensional topology will be in a fairly definitive (but still
incomplete) form within the next ten years.

As in the case of regular polyhedra (but for entirely different reasons), many
basic phenomena in geometric topology become much easier to analyze if n ≥ 5,
As noted in a survey article by L. Siebenmann [99] several breakthroughs involv-
ing work from the nineteen forties to seventies have laid a very solid foundation
for studying n-manifolds with a few loose ends remaining if n = 5 (see [40] for
additional information; some later developments are covered in [87]). The results
in [99] and [40] also imply that some basic results in higher dimensions cannot
be extended to dimensions 3 and 4 (see [98]) Our present understanding of the
case n = 4 is still only partial despite some revolutionary advances during the
past three decades, particularly in the work of M. H. Freedman (see [24] and [25])
and S. K. Donaldson (see [16], [17], [18]); when R. Kirby compiled a list of open
questions in 4-dimensional topology during the past decade [41], the result was a
massive work of more than 350 pages. A good qualitiative description of the sit-
uation is given at the beginning of of A. Scorpan’s long and very readable survey
of 4-dimensional topology [97]: Dimension 4 has enough room for wild things to
happen, but not enough room to tame and undo them.
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REMARK. Since n = 4 is exceptional in both geometric topology and the struc-
ture of alternating groups, it seems worthwhile to stress that the similarities are
qualitative and (presumably) the appearance of the same number 4 in both con-
texts is basically coincidental.

Much of Terry’s mathematical work has been devoted to issues involving the
relation of 4-manifold theory to the theory of manifolds in higher dimensions.
I shall concentrate on two themes runing through many of his papers; the first
mainly involves work up to the early nineteen eighties, and the second mainly
involves work after that point.

Higher dimensional shadows: Stabilization and bisection

We have already noted one basic fact from higher dimensional topology which
in fact holds for all n ≥ 4 (all finite abelian groups arise as fundamental groups of
compact n-manifolds). During the nineteen sixties it was known that reasonably
simple modifications of certain other basic results for n ≥ 5 were also true if n = 4,
and one recurrent (but often unstated) motivation for much of the research during
the sixties and seventies was to see how much insight into 4-dimensional topology
could be obtained using the methods and results from higher dimensions (cf. [72]).

We shall be particularly interested in the following problem, which is impor-
tant for its own sake and has many far-reaching implications throughout the topol-
ogy of manifolds:

Cylinder recognition question. Suppose that we are given a compact connected
unbounded n-manifold Mn. Can one describe elementary criteria under which a topologi-
cal space X is equivalent to the cylinder Mn × [0, 1]?

If n = 1 this question has a very elegant answer given by the classical theory
of surfaces. The first step is to generalize the concept of n-manifold to include
manifolds with boundaries. For example, the unit disk in Rn should be an n-manifold
whose boundary is the (n− 1)-dimensional unit sphere, and a standard cylinder
Mn × [0, 1] should be an (n + 1)-manifold whose boundary is two disjoint copies
of M; more generally, an (n + 1)-manifold with boundary W will then have a
closed subset ∂W (called the boundary of W) such that ∂W is an n-manifold without
boundary and the interior W− ∂W is an (n + 1)-manifold without boundary. More
information on manifolds with boundary can be found in the standard textbooks
by S. Lang [46] and M. Hirsch [33].

Standard results in classical surface theory (see [70]) imply that a compact con-
nected 2-manifold with boundary W is topologically equivalent to the standard circular
cylinder S1 × [0, 1] if and only if

(i): the boundary of W has two components, say V0 and V1,
(ii): the inclusion of either boundary component is a homotopy equivalence.
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More generally, manifolds with boundary that satisfy these properties are
called h-cobordisms, and the following h-cobordism Theorem, which was shown by S.
Smale [101] around 1960, is one of the cornerstones of high-dimensional geometric
topology. The standard source for the proof in the category of smooth manifolds
is Milnor’s book [77]; the first proof in the topological case was given a few years
later by E. H. Connell [14] and predates the results presented in [40].

THEOREM. Let n ≥ 5, and let W be a simply connected compact (n + 1)-
manifold with boundary V0 q V1 such that conditions (i) and (ii) above are satis-
fied. Then W is topologically equivalent to the cylinders V0 × [0, 1] and V1 × [0, 1].

This result extends to manifolds with free abelian fundamental groups, but it
does not extend to the general case. Instead, one has the following result, known
as the s-cobordism Theorem [43] (original sources include [89] and [40]):

THEOREM. Let n ≥ 5, and let W be a connected compact (n + 1)-manifold
with boundary V0 q V1 such that conditions (i) and (ii) above are satisfied. Then
W is topologically equivalent to the cylinders V0 × [0, 1] and V1 × [0, 1] if and only
if a Whitehead torsion invariant τ(W, V0) in the algebraically defined Whitehead
group Wh(π1(V0)) is equal to zero.

Elements of the Whitehead group are represented by invertible matrices over
a certain ring associated to π1(M), and the Whitehead torsion can be defined en-
tirely in terms of algebraic topology (see [13]); the Whitehead group is trivial if
π1(V0) is a free abelian group, and it follows from our previous remarks that the s-
cobordism theorem is also true if n = 1; thus the result is true provided n 6= 2, 3, 4.
It is not known whether the result remains true for arbitrary topological mani-
folds if n = 4, but the analogous result for smooth 5-dimensional h-cobordisms
was shown to be false in the nineteen eighties by S. Donaldson [18]. If a basic
statement about 3-manifolds known as the Thurston Geometrization Conjecture [80]
is true (as most workers in the area expect), then the s-cobordism Theorem will
also hold if n = 2, but if n = 3 then there are s-cobordisms that are not cylinders
(the first examples are described in [11]). Finally, we should note that

the topological h-cobordism Theorem for simply connected manifolds is
true in EVERY positive dimension.

If n = 4 this follows from the work of Freedman [25] in the nineteen eighties,
if n = 2 this follows from the recent solution of the 3-dimensional Poincaré Con-
jecture by G. Perelman [80], and if n = 3 this follows by combining Perelman’s
result with certain parts of Freedman’s work.

The techniques which prove the s-cobordism theorem yield weak analogs of
the latter if n = 4 by results of D. Barden [5] and C. T. C. Wall [107]. In particular,
Wall’s results are part of a general pattern.
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Many basic results concerning manifolds of dimension ≥ 5 have “stabi-
lized” analogs in dimension 4.

Roughly speaking, the advantage of stabilization is that it provides some extra
room in which to make key constructions. The alternating groups An provide
a simple but fundamentally important example of algebraic stabilization. One
crucial step in proving the simplicity of An for n ≥ 5 is showing that it is generated
by cyclic permutations of three letters. If n = 4, then there is not enough room
in A4 to express some even permutations in this manner, but if one stabilizes by
passing to A5 then there is enough working room to write an even permutation of
four letters as a product of such cyclic permutations.

There are several ways of viewing the geometric stablization process. Given
a manifold Mn, one can adopt the viewpoint of algebraic geometry and “blow up”
a finite number of points topologically in a suitable manner (the mental picture is
the nonexplosive inflation of a balloon). More precisely, one finds a manifold Nn

and a map f : Nn → Mn such that f is a homeomorphism (or diffeomorphism of
smooth manifolds) on some set f−1[A], where A is a finite subset of M, and the
inverse images of points in A all have some prescribed topological type (the classi-
cal process of blowing up points is described in detail, with extensive illustrations,
on pages 286–290 of [97]). For one of Wall’s result when n = 4, these exceptional
sets are all homeomorphic to unions of two 2-dimensional spheres with exactly
one point in common; alternatively, one can view these stabilizations as connected
sums [92] with finitely many copies of S2× S2, and if there are k exceptional points
we shall say that N4 is a k-fold stabilization of M4 by S2 × S2.

One then has the following analog of the s-cobordism theorem when n = 4 for
finite stabilizations by S2 × S2 (see [107]).

THEOREM. Let n = 4, and let W be a connected compact smooth (n + 1)-
manifold with boundary V0 q V1 such that conditions (i) and (ii) above are satis-
fied (hence W is an h-cobordism). Then there is some k ≥ 0 such that the k-fold
stabilizations of V0 and V1 by S2 × S2 are diffeomorphic.

There are also several interesting and important results involving stabiliza-
tions by other 4-manifolds (e.g., see [73] or page 151 of [97]), but for our purposes
it will suffice to consider only stabilizations by S2 × S2.

Numerous other results involving stabilizations by S2 × S2 were obtained by
many topologists during the nineteen sixties and seventies (for example, [9], [10],
[23], and [100]), and Terry was also one of the contributors ([51], [52], [53], [54],
[55], [58]). In some instances his work also shed light on related questions about
higher dimensional manifolds; for example, his paper with A. Hatcher [30] proves
a strong analog of Wall’s result in higher dimensions and also gives a very nice
1-parameter analog. The latter can also be viewed as one aspect of Terry’s work
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on fiber bundles (see [48], [49], [52]), which contains several interesting results but
was not covered in my talk at the miniconference due to time constraints.

One of the more important and easily stated contributions in Terry’s work is
his extension of Wall’s result to a stabilized h-cobordism theorem [55] which gives
deeper insight into the structure of a 5-dimensional h-cobordism and shows that
such an object becomes a product if one performs a 1-parameter version of the
stabilization construction described above.

Twisted doubles and open books. Certain other results from around this
time concern special structures on manifolds that are highly significant, both for
the insights they yield into the structure theory of manifolds and for their useful-
ness in studying various sorts of flexible geometrical structures on manifolds. The
underlying concept is given as follows:

DEFINITION. Let W be a manifold with boundary V, and let h : V → V be
a homeomorphism. The twisted double W ∪h W is the space formed by taking
two disjoint copies W1 and W2 of W and gluing them together such that each point
x ∈ ∂W1

∼= V is identified to the corresponding point h(x) ∈W2 ∼= V.

A result of M. Brown (the Collar Neighborhood Theorem [8]) implies that
W ∪h W is a topological manifold without boundary. Furthermore, if W has a
smooth structure and h is a diffeomorphism, then the twisted double has a smooth
structure, and frequently other special properties of h translate into corresponding
special properties of W ∪h W.

For each positive integer n, the n-dimensional sphere Sn ⊂ Rn+1 has a stan-
dard description as a twisted double, where W is the unit disk and the images of
W1 and W2 correspond to northern and southern hemispheres, given by points for
which the last coordinate xn is either nonnegative or nonpositive. Of course, the
common boundary corresponds to the equator, which is merely Sn−1, and in this
case one can take h to be the identity map (i.e., the sphere is an untwisted double).
More generally, if W is any manifold with boundary we can form the untwisted
double

D(W) = W ∪ identity W .

The only compact 1-manifold (without boundary) is the circle S1, and we have
seen that the latter is an untwisted double. In the case of 2-manifolds, the theory
of surfaces yields three important facts about twisted doubles.

Dependence on h: Different choices of h generally yield manifolds that are
not homeomorphic (or even homotopy equivalent). For example, the
2-dimensional torus is homeomorphic to the untwisted double of S1 ×
[0, 1], but if one forms the twisted double using the homeomorphism of

∂S1 × [0, 1] = S1 × {0} ∪ S1 × {1}
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which sends (x, y, ε) to (x, (−1)εy, ε), then one obtaines the Klein bottle
[110].

Most surfaces are doubles: A compact unbounded 2-manifold is (homeo-
morphic to) a twisted double if and only if it is NOT homeomorphic to
the real projective plane RP2 (see [81], p. 372), and every oriented sur-
face is in fact (homeomorphic to) an untwisted double. (See pp. 234–236
of [29] for a discussion of orientations.)

Converse statement: The manifold RP2 is not (homeomorphic to) a twisted
double.

In 3-dimensional topology, twisted double structures always exist (cf. Chapter
2 of [31]); the standard examples are called Heegaard splittings because the existence
of such structures on arbitrary compact unbounded 3-manifolds was discovered
(in the smooth case, at least) by P. Heegaard just before the end of the nineteenth
century.

What happens in higher dimensions? There are systematic infinite families of
manifolds in all even dimensions≥ 2 which cannot be realized as twisted doubles
(for example, the even- dimensional complex projective spaces CP2n, where n ≥ 1;
these are defined on pp. 90–93 of [6]). On the other hand, in odd dimensions such
structures always exist, and for sufficiently large odd dimensions this was shown
in the unpublished doctoral dissertations of D. Barden [5] and J. P. Alexander [2].
In the early nineteen seventies, H. E. Winkelnkemper [113] and (independently) I.
Tamura ([104] and [105]) described a very special type of twisted double structure
called an open book decomposition [27], which has proven to be extremely useful in
the theory of foliations on manifolds (see [47]) and also in recent work on contact
geometry. A detailed discussion of these matters would require substantial di-
gressions (see the survey by Winkelnkemper [114] for more information, and see
[115] for a purely algebraic approach to the 3-dimensional case). For our purposes
it will suffice to state the Open Book Theorem for simply connected manifolds as
follows:

THEOREM. Let n ≥ 6, and let M be a simply connected compact smooth n-
manifold (without boundary). Then M has an open book decomposition if and
only if either n is NOT divisible by 4 or if n is divisible by 4 and an integer valued
invariant called the signature of M (see [78]) is equal to zero.

Terry’s results establish a nontrivial extension of the Open Book Theorem to
arbitrary odd-dimensional manifolds in dimensions≥ 7 [56], and in another paper
the existence of twisted double structures for 5-manifolds is shown [57]. If one
combines these results with the previous remarks on low-dimensional cases, then
one has the following unified conclusion.
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THEOREM. If n is an odd positive integer, then every compact n-manifold can
be realized as a twisted double.

In addition to its intrinsic interest and applications, this result reflects a re-
lationship between 2k-manifolds and (2k + 1)-manifolds that plays a central role
in the classification theory of manifolds; for example, in Wall’s theory of nonsim-
ply connected surgery [108] one has a parallel relationship between the surgery
obstruction groups in dimensions 2k and 2k + 1 (in more technical terms, the com-
mon thread is that (2k + 1)-dimensional objects correspond to automorphisms of
2k-dimensional objects that are represent zero in some appropriate group of equiv-
alence classes).

Incidentally, if one has a nonsimply connected 2k-manifold, the existence of
an open book structure implies additional numerical conditions beyond the van-
ishing of the signature, and further work is needed. Subsequent work of F. Quinn
[86] gives a definitive formulation of the necessary conditions and shows that they
are also sufficient for the existence of open book decompositions on arbitrary 2k-
dimensional compact manifolds if k > 2.

From the preceding discussion it is clear that Terry’s work on some of these
problems during the nineteen seventies is closely related to the research of sev-
eral other topologists, and in fact there are cases of overlapping, independently
obtained results; we shall not try to tabulate such instances for the sake of relative
brevity (in particular, there is no conscious effort to ignore or denigrate the contri-
butions of others). In cases where there is overlap with the contributions of others,
usually Terry’s work is particularly noteworthy because (i) he always added some
fresh insights of his own, (ii) he was very effective at writing up his results in a
clear and thorough form. At the time, geometric topology was an extremely active
field with an enormous amount of competition, and in the rush for recognition
many pieces of work were written up too hastily (or never even published!) and
did not always meet the high standards for mathematical writing that are implicit
in Terry’s papers (related concerns are stated emphatically and but perhaps exces-
sively in [83]).

Stabilization revisited. The work of Terry described above was done during
the nineteen seventies. However, during the nineteen eighties he wrote one more
paper on the subject, and it reflected some important breakthroughs that had taken
place in 4-dimensional topology during the intervening years and yielded the fol-
lowing results on 5-dimensional h-cobordisms.

THEOREM. Let W be a simply connected compact 5-manifold with boundary
V0 ∪V1 that is an h-cobordism. Then W is topologically equivalent to the cylinders
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V0 × [0, 1] and V1 × [0, 1]. However, there are examples of smooth simply con-
nected compact 5-dimensional h-cobordisms that are NOT smoothly equivalent to
cylinders because V0 and V1 are not diffeomorphic.

The first part of this follows from the work of M. Freedman [25], while the
second follows from the work of S. Donaldson [18]. Further work of many topol-
ogists and geometers yielded large families of examples similar to Donaldson’s
(see [26] for a survey of the earliest examples, and [97] for an extensive survey
of work through the middle of 2004), and one particularly noteworthy family in-
volves a class of objects related to algebraic geometry which are called Dolgachev
surfaces (see pp. 310-316 of [97]). By Wall’s earlier work, if such 4-manifolds are
h-cobordant then certain stabilizations of them are diffeomorphic, and the central
question in [65] concerns the number of stabilizations that are needed. We know
that this number must be positive, and [65] gives simple conditions on Dolgachev
surfaces for which one or two stabilizations will suffice. In some cases this yielded
new classification theorems for smooth h-cobordisms between nondiffeomorphic
Dolgachev surfaces.

The preceding results reflect the emergence of gauge theory as an important
tool for studying questions about smooth 4-manifolds, and as such they provide a
natural transition to the second theme in Terry’s work to be discussed here.

Gauge theory and surfaces in 4-manifolds

Gauge theory was first studied by physicists, and in the late nineteen seven-
ties mathematicians began to discover some striking results on the relationship of
gauge theories to geometry [3]. In the early nineteen eighties the potential of gauge
theory to be a powerful tool in topology became undeniably obvious in monu-
mental work of Donaldson (see [16] and [17]), including his totally unanticipated
discovery of smooth manifolds that are homeomorphic to ordinary Euclidean 4-
space but not smoothly equivalent to it. We shall not attempt to discuss the details
of gauge theory here, for our emphasis will be on its applications to topological
questions in Terry’s work during the nineteen eighties and nineties. Much of the
work involves questions regarding smooth nonsingular surfaces embedded in a
smooth 4-manifold.

Questions about embedded surfaces play important roles in the structure the-
ory of n-manifolds if n 6= 1 (in which case everything can be worked our directly).
The reasons for this may be summarized as follows.

n = 2: The quickest justification is that “a surface IS a surface.”

15



n ≥ 5: Fundamental methods due to H. Whitney [111] show it is possible to
construct embedded surfaces which can be used to replace certain geo-
metric configurations with much simpler ones (in fact, this property es-
sentially characterizes topological manifolds in sufficiently large dimen-
sions [87]).

n = 3: The work of Papakyriakopoulos [85] (see also Chapter 4 of [31] and
later results of other topologists (e.g., W. Haken [28], F. Waldhausen [106],
K. Johannson [38], W. Jaco and P. Shalen [37]) show that one can often
detect embedded surfaces from relatively weak algebraic data, and these
surfaces can often be used to cut a 3-manifold into relatively manageable
pieces.

n = 4: Under suitable restrictions, the work of Freedman yields locally flat
topological surfaces (see [93], p. 33) which behave like Whitney’s surfaces
when n ≥ 5.

In several respects, our understanding of 4-manifolds is limited by our lack
of understanding embedded surfaces. The first example of a breakdown was dis-
covered by M. Kervaire and J. Milnor around 1960 [39], and it concerns smoothly
embedded copies of S2 in S2 × S2. Up to homotopy, continuous mappings from
S2 to S2 × S2 are classified by an ordered pair of integers known as the degrees of
the projections onto the factors (see Hatcher’s book [29] for the concept of degree).
It is not difficult to show that a degree pair (a, b) can be realized if either a or b
is equal to 0 or ± 1 (the other can be arbitrary). In contrast, the result of Kervaire
and Milnor showed that the pair (2, 2) cannot be realized by a smoothly embed-
ded sphere (however, one can realize every pair by a piecewise smooth embed-
ded sphere). Several further results on nonembeddings of surfaces in 4-manifolds
were obtained by others before the emergence of gauge theory in the early nine-
teen eighties Their methods and results were extended by others (e.g., see W.-C.
Hsiang and R. Szczarba [36]; in a somewhat different direction see [12]). One early
application of gauge theory was a complete determination of the pairs (a, b) that
could be realized by a theorem first published by K. Kuga [45] (see also [103]):

THEOREM. A pair of integers (a, b) is realized by a smooth embedding of S2

into S2 × S2 if and only if one of a or b is equal to 0 or ± 1.

This result also illustrates one of the many ways in which the structure the-
ories of topological and smooth 4-manifolds differ, for it is known that many or-
dered pairs of integers (a, b) can be realized by locally flat topologically embed-
ded spheres; if a and b are nonzero and relatively prime, this is true by Corollary
1 of [24], and the results of [71] provide considerably more detailed information
for other ordered pairs. Incidentally, there is a much closer relationship between
smooth and locally flat embeddings in higher dimensions (cf. Theorem 2 in [96]).
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More generally, for every compact, unbounded, smooth, simply connected
4-manifold M and every continuous mapping from S2 to M, one can assign a mul-
tidegree — i.e., a sequence of k integers (d1, · · · , dk), where k depends upon the
underlying topological space of M — which generalizes the notion of degree pair
when M = S2 × S2, and one can then ask which multidegrees are realized by
smooth embeddings of S2.

For the most basic choices of M, there are relatively short lists of multide-
grees which can be realized by well-known constructions. The preceding theorem
implies that no others can be realized if M = S2 × S2, and a similar conclusion
holds for the complex projective plane CP2. In [64] Terry considered some of the
next few cases from a somewhat different viewpoint involving results of R. Fin-
tushel and R. Stern [21], and he obtained new results for the manifolds M(1, 1)
and M(1, 2) given by taking connected sums of CP2 with 1 or 2 copies of the
oppositely oriented manifold CP2 (in the previously used language of algebraic
geometry [26], this corresponds to blowing up one or two points). The results
for M(1, 1) are complete, while the results for M(1, 2) apply to exactly half of the
possible multidegrees.

Several other papers by Terry address further questions involving the meth-
ods of Fintushel and Stern as well as the applications of their techniques. To de-
scribe this work, we first recall that gauge theory analyzes topological questions
by first constructing certain associated “moduli spaces of instantons” whose el-
ements are equivalence classes of appropriate types of geometric structures, and
then studying the properties of such spaces. Especially in the early work, com-
pactness questions involving such spaces played a fundamental role, and a pair
of Terry’s papers ([6] and [66]) — one of which was joint with Fintushel — show
that earlier compactness results of Fintushel and Stern [22] could be generalized
extensively.

In some related papers such as [63] and [68], Terry considered another ques-
tion arising from work of Fintushel and Stern [21]. It is known that every compact
3-manifold M3 bounds a smooth compact manifold W4, and a central problem
in low-dimensional topology is to make W4 as simple as possible. The results of
[63] yield lower limits on the amount of simplification that can be done for certain
fundamental 3-manifolds called Seifert homology 3-spheres (see [84]), and the pre-
cise conclusions are stated in terms of certain trigonometric expressions. Terry ex-
tended the the earlier results of [21] on such questions in two ways, using his com-
pactness results and analyzing the trigonometric expressions by number-theoretic
methods from work of W. Neumann and D. Zagier [82].

An entirely different class of contributions appear in [62], which consider
smooth embeddings of the real projective plane RP2 into simply connected 4-
manifolds. Terry’s interest in such issues was already evident in earlier papers
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about embeddings of RP2 in S4 ([59], [60], [61]). In general, if we are given a
smooth embedding of RP2 into a simply connected 4-manifold, then there is an
integer called the twisted Euler number which describes small neighborhoods of
the embedded submanifold, and the goal of [62] is to describe the possible Euler
numbers for certain choices of M. When M = S4, the answer to this question was
found in the late nineteen sixties [76]. Using the methods described above for the
given 4-manifolds, Terry proves a numerical congruence mod 4 and determines
a lower bound for the twisted Euler number in a substantially more general situ-
ation; there is also a natural conjecture for the upper bound, but this remains an
open question.

In all these cases, Terry’s results yielded strong new results on questions that
had seemed totally beyond reach in 1980 (the beginning of the decade when the
papers were written). Equally important, his work was also significant because it
provided models for applying the recently developed machinery of gauge theory
in a systematic manner that did not require extensive work with the deep and
complicated details of gauge theory itself. Terry’s work marked a major step in
reducing many topologists’ apprehensiveness about the powerful and effective
new methods that had already made such an enormous impact on the subject.

The results of [63] on Seifert homology 3-spheres led to some highly original
joint work with S. Kwasik [44] on symmetries of certain compact 4-manifolds with
boundary. References are given for several specialized terms which appear in the
statement of the main result.

THEOREM. There are infinitely many finite group actions [91] on compact,
smooth, contractible 4-manifolds with boundary W4 (see [81], p. 330) such that

(i) each action is free [90] on the complement of a single fixed point in the
interior of W4,

(ii) the restrictions of each action to the interior and boundary are smoothable,
(iii) none of these actions are globally smoothable.

The results of [44] also yielded some new implications about the differences
between the structure theories for smooth and topological 4-manifolds which are
unique to dimension 4.

During the nineteen nineties, gauge theory underwent some major changes
that were motivated by work in theoretical physics due to N. Seiberg and E. Witten
(e.g., see [19]). This new and improved version of gauge theory depends strongly
on geometric properties called Spin and Spinc structures, which are essentially
higher order analogs of orientations on a manifold. In [1], written jointly with D.
Acosta, the role of these conditions in the case of 4-manifolds is analyzed carefully,
and the result is a clear description of issues which, as noted in the summary of [1]
in Mathematical Reviews, “can be confusing even to the initiated.”
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Finally, no discussion of Terry’s papers on gauge theory would be complete
without mentioning two excellent and very highly regarded survey articles of re-
sults on smoothly embedded surfaces in compact simply connected 4-manifolds.
The first of these [68] deals with embedded spheres, while the second [69] concerns
more general oriented surfaces and lower bounds for a basic numerical invariant
(the genus) of such a smoothly embedded surface.

Closing remarks

Terry Lawson has worked productively on a variety of problems that really
matter in geometric topology, he has been willing and able to move with the sub-
ject, and he has done an excellent job of presenting both his results and related
material. Each of these qualities is indispensable for the successful development
of a mathematical subject, and I have very much appreciated Terry’s contributions
in all these directions.
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On the homology cobordism group

Nikolai Saveliev

Introduction

A homology sphere Σ is an oriented 3-manifold such that H∗(Σ) = H∗(S3).
According to the recently solved Poincaré conjecture, the only simply connected
homology sphere is S3. Other examples of homology spheres include Brieskorn
homology spheres Σ(p, q, r) = { (x, y, z) ∈ C3 | xp + yq + zr = 0 } ∩ S5 with
gcd(q, r) = gcd(p, r) = gcd(p, q) = 1, and more generally, Seifert fibered homol-
ogy spheres Σ(a1, . . . , an) with gcd(ai, aj) = 1 for all i 6= j.

A homology cobordism between Σ0 and Σ1 is an oriented smooth cobordism W
with ∂W = −Σ0 ∪ Σ1 such that the induced maps H∗(Σi) → H∗(W) are isomor-
phisms for i = 0, 1.

The homology cobordism group Θ3 is the abelian group of the equivalence classes
of homology cobordant homology spheres with connected sum as operation. The
Rohlin invariant is the homomorphism ρ : Θ3 → Z/2 defined by ρ(Σ) = signW/8
(mod 2), for any choice of smooth compact spin manifold W with ∂W = Σ.

Here is a list of what is known about the homology cobordism group and the
Rohlin invariant :

• ρ is surjective, in fact, ρ(Σ(2, 3, 5)) = 1 because the singularity at zero of x2 +
y3 + z5 = 0 has a resolution with the intersection form E8.

• Σ(2, 3, 5) has infinite order in Θ3. This follows from Donaldson’s diagonal-
ization theorem [5], whose proof relies on the study of ASD moduli spaces on
closed 4-manifolds (recall that a connection A is called ASD if F+

A = 0, where
F+

A = FA + ∗FA stands for the self-dual part of its curvature).

• Fintushel and Stern [7] studied ASD moduli spaces on closed orbifolds and
came up with an invariant R(a1, . . . , an) ∈ Z having the property that R(a1, . . . , an) >

0 implies that Σ(a1, . . . , an) has infinite order in Θ3.

• Fintushel and Lawson [6] included R(a1, . . . , an) into a family of invariants
R(a1, . . . , an; `) with the same significance.

• Furuta [9] showed that Θ3 is infinitely generated; in fact, Σ(2, 3, 6m− 1), m ≥ 1,
all have infinite order and are linearly independent over Z.
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• Seiberg–Witten techniques on orbifolds and the µ̄–invariant of Neumann and
Siebenmann were used by Fukumoto–Furuta [8] and Saveliev [17] to prove the
following result. Suppose that Σ is homology cobordant to a Σ(a1, . . . , an). If
ρ(Σ) = 1 then Σ has infinite order in Θ3 (similar techniques were used earlier
by Danny Acosta [1] to study embedded surfaces in 4–manifolds).

• Frøyshov (unpublished) showed that there are homology spheres which are not
homology cobordant to any Σ(a1, . . . , an). The homology sphere Σ(2, 9, 17) # (−3) Σ(2, 3, 5)
is one such example.

It is still not known if Θ3 has any torsion, and the last two results on the above
list demonstrate that Seifert fibered homology spheres are of limited use in an-
swering this question. This torsion problem is of great importance because of its
link to the triangulation conjecture.

THEOREM. (Matumoto [13] and Galewski–Stern [11]) Every closed topological n–
manifold, n ≥ 5, is homeomorphic to a simplicial complex iff there is a homology sphere Σ
of order two in Θ3 such that ρ(Σ) = 1.

Below, I will outline our joint work with Daniel Ruberman on two possible ap-
proaches to showing that all order two homology spheres in Θ3 must have trivial
Rohlin invariant.

An approach via Donaldson theory

Let W be a homology cobordism from a homology sphere Σ to itself, and X =
W/ ∼ the furled up manifold obtained by identifying the two copies of Σ in the
boundary of W by the identity map.

Let D(X) be a (properly defined) signed count of the conjugacy classes of irre-
ducible representations π1(X) → SU(2). If the number of such conjugacy classes
is infinite, choose a metric on X and note that all ASD connections in a trivial SU(2)
bundle over X are flat, so that the holonomy provides an identification between
the ASD moduli space and the SU(2) representation variety. We define D(X) as a
signed count of irreducible solutions of the perturbed ASD equation F+

A = ε. Of
course, this is just a version of the degree zero Donaldson polynomial.

THEOREM. (Furuta–Ohta [10], Ruberman–Saveliev [16]) D(X) is well defined and
D(X) = 0 (mod 4).

CONJECTURE. (Furuta–Ohta [10]) Let λFO(X) = D(X)/4 then λFO(X) = ρ(Σ)
(mod 2).

THEOREM. (Ruberman–Saveliev [16]) The above conjecture is true for the mapping
tori X of all orientation preserving diffeomorphisms τ : Σ → Σ of finite order (in fact,
λFO in this case equals the equivariant Casson invariant, compare with [4], which can be
given by an explicit formula in terms of classical invariants).
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Our general approach to the conjecture is via torus surgery on X. Despite
some serious progress we have made to date, see survey [14], a lot remains to be
done.

The relevance to the 2–torsion problem in Θ3 is as follows. Let us suppose
that the Furuta–Ohta conjecture is true. Let V be a homology cobordism with
∂V = Σ ∪ Σ (compare with ∂([0, 1]× Σ) = −Σ ∪ Σ) and glue V to −V in such a
fashion that X = −V ∪V is closed and has a free orientation reversing involution.
Then λFO(X) = λFO(−X) = −λFO(X) (this last equality is another conjecture)
hence ρ(Σ) = λFO(X) = 0 (mod 2).

An approach via Seiberg–Witten theory

Let W be a spin cobordism (not necessarily a homology cobordism) from Σ
to itself, and X = W/ ∼ the furled up manifold. Choose a smooth compact spin
manifold Z with ∂Z = Σ and consider the end–periodic manifold Z ∪W ∪W ∪ . . .
as in Taubes [18].

THEOREM. (Ruberman–Saveliev [15]) Vanishing of signX is a necessary and suffi-
cient condition for the Dirac operator D on Z ∪W ∪W ∪ . . . to be Fredholm for a generic
metric on X.

The intended application of this result is as follows. Let V be a spin cobordism
with ∂V = Σ∪Σ and consider the (non-orientable) furled up manifold X′ = V/ ∼
and its orientation double cover X = −V ∪V. Choose a metric g on X as provided
by the above theorem, and define the (metric dependent) invariant

β̃ = indC D+(Z ∪ (−V ∪V) ∪ . . .) +
1
8

signZ− 1
16

signV,

where D+ is the chiral Dirac operator. Observe that β̃ is independent of the choice
of Z (by excision property of index) and reduces modulo 2 to the Cappell–Shaneson
invariant [3] (a diffeomorphism invariant)

β(X′) = ρ(Σ)− 1
16

signV (mod 2).

If the metric g on X is invariant with respect to the natural orientation revers-
ing involution on X, we can write

β̃ = ind D+((Z ∪−V) ∪ (V ∪−V) ∪ . . .) +
1
8

sign(Z ∪−V) +
1

16
signV

= ind D+(−Z ∪ (V ∪−V) ∪ . . .)− 1
8

signZ +
1

16
signV = −β̃

(we replaced −Z ∪V with −Z in the second line). Therefore, β̃ = 0 and β(X′) = 0
(mod 2).

In particular, if V is a homology cobordism with ∂V = Σ ∪ Σ and there exists
an invariant metric g as above then β(X′) = ρ(Σ) must vanish. Unfortunately,
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there is an obstruction to making g invariant, and this obstruction is precisely
ρ(Σ) !

One way to fix the problem we are currently pursuing is to add a certain count
of solutions of the Seiberg–Witten equations on X to the above β̃ to make it metric
independent and see if the resulting invariant is still good enough to prove that
ρ(Σ) = 0.

Metrics of positive scalar curvature

There is at least one instance when an invariant metric g as in the previous
section can be found : this is when X′ possesses a metric of positive scalar curva-
ture. The above argument then exhibits β(X′) as an obstruction to the existence of
a metric of positive scalar curvature on X′.

For example, let S1×̃S3 be the non-orientable S3 bundle over S1 and consider
the manifold X′ = (S1×̃S3) # K3. By cutting X′ along Σ = S3, we calculate β(X′) =
1 (mod 2), hence X′ cannot have metric of positive scalar curvature. Note that the
orientation double cover of X′ is (S1×̃S3) #22 (S2 × S2) and hence admits a metric
of positive scalar curvature. The first examples of this nature in dimension four
were found by Claude LeBrun [12] using Seiberg–Witten theory.

Observe that X′ is homeomorphic but not diffeomorphic to (S1×̃S3) #11(S1 ×
S2) because the latter has β = 0. Thus X′ can be viewed as an exotic (S1×̃S3) #11 (S1×
S2). In fact, Akbulut [2] and Fintushel and Stern constructed examples of ex-
otic (S1×̃S3) #k (S1 × S2) for all k ≥ 1. They are distinguished from the standard
(S1×̃S3) #k (S1 × S2) by the non-vanishing β hence none of them has a metric of
positive scalar curvature.
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Finite group actions on tori

Allan Edmonds

For Terry

Introduction

Tori of the form Tn = Rn/Zn constitute the most accessible family of aspher-
ical manifolds, whose topology is largely determined by fundamental group, yet
have many natural symmetries. We consider questions of the finite group actions
on tori, addressable in quite fine detail, motivated by a low-dimensional perspec-
tive.

Simple examples of group actions arise from subgroups G ⊂ GL(n, Z) acting
on Rn while preserving the integer lattice Zn. For example it follows that any finite
group acts on some torus. The motivating question throughout is how nearly does
an arbitrary action resemble such a linear model?

Actions on tori in dimensions less than four

In low dimensions geometry dominates topology. One naturally expects that
every action is equivalent to a standard geometric model. One can work out all
possible finite group actions on the 2-torus T2. All are equivalent to standard
actions that one naturally writes down in coordinates. Similarly, it has been shown
directly that every free action of a finite group on the 3-torus is equivalent to a
standard geometric action. This involves basic 3-manifold theory, in particular,
the theory of Haken manifolds. There are exactly ten possible orbit spaces. This
is due to Hempel [5] in the case of cyclic groups, to K.B. Lee et al. [7] for abelian
groups, and to K.Y. Ha et al. [4] in the case of general finite groups.

Indeed, it would be a consequence of Thurston’s Geometrization Theorem that
any smooth, PL, or topological locally linear action of a finite group on T3, free or
not, is equivalent to a standard action. Of course there are topological actions with
wildly embedded fixed point sets.

Linear Models

A crystallographic group of rank n is a uniform discrete subgroup π of the group
E(n) of rigid motions of Rn. According to the classical Bieberbach theorems,
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(1) A group is isomorphic to a crystallographic group of rank n if and only
if it contains a normal free abelian group of rank n of finite index that is
maximal abelian.

(2) In each dimension there are only finitely many isomorphism classes of
crystallographic groups.

(3) Two crystallographic groups are isomorphic if and only if they are conju-
gate in the affine group A(n).

Thus a crystallographic group Γ fits into an extension

0→ π → Γ→ G → 1

where π ≈ Zn is maximal abelian and normal, the quotient G is finite, and acts
faithfully on π ≈ Zn. Note that there is an induced action of G on Tn = Rn/Zn.

J. Wolf gives a full discussion in his book Spaces of Constant Curvature [10]. See
also Thurston’s book [8] on three-dimensional geometry for a topological perspec-
tive in low dimensions.

There are 17 crystallographic groups in dimension 2. This classification was
certainly known, if not proved rigorously, in the 19th century. There are exactly 230
isomorphism classes of crystallographic groups in dimension 3, up to orientation
preserving affine equivalence. There are exactly 32 finite subgroups of O(3) that
occur as images of crystallographic groups of rank 3, the so-called point groups.
With improved algorithms and computer assistance, there are now known to be
exactly 4783 crystallographic groups in dimension 4. In higher dimensions no one
has succeeded in enumerating all crystallographic groups, although partial results
do exist.

THEOREM (K.B. Lee-F. Raymond (1981) and probably others). If G is a finite
group acting on Tn, then there is a geometric realization of G acting effectively and iso-
metrically on Tn, inducing the same action on homology.

A given action of G on Tn gives rise to an extension Γ consisting of all lifts
of all elements of G to the universal covering, which can be shown to satisfy the
requirements for being isomorphic to a crystallographic group. When one has
realized Γ as an actual crystallographic group, then there is an induced action on
the torus obtained by quotienting out the subgroup of translations. It follows from
Bieberbach’s theorems that the induced action on the torus is unquely determined
up to affine equivalence.

General Conjectures and Questions

Could it be that a finite group action on a torus Tn is equivalent to its linear
model action? We have seen that this is true in dimensions ≤ 3, as long as the
actions are locally linear.
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This cannot be true in dimensions ≥ 5, since the fixed point set of G acting on
Tn could then contain a non-torus, e.g. the connected sum of a torus and a suitable
lens space (Y. W. Lee, unpublished, mentioned by Lee-Raymond [6]). It is not true
in dimension 4 either, since one could connect sum the given action with an action
on S4 fixing a knotted 2-sphere.

The study of free actions on tori is essentially a question of the homeomor-
phism classification of the orbit spaces, which are themselves aspherical mani-
folds. The so-called Borel Conjecture states that if Mn and Nn are closed, aspheri-
cal, topological n-manifolds, then any homotopy equivalence Mn → Nn is homo-
topic to a homeomorphism.

This conjecture is true for tori, and more generally, flat manifolds, of dimen-
sions at least five, by work of Farrell and Hsiang. The surgery-theoretic Farrell-
Hsiang argument can be carried over to dimension four, since the fundmental
groups in question are “good” in the sense of Freedman and Quinn. The result
also holds in dimension three “‘modulo the Poincaré Conjecture” by Waldhausen’s
theory of sufficiently large manifolds. Of course the Poincaré Conjecture is now
generally accepted by the work of Perelman on Ricci flow.

It follows that a free action of a finite group on a torus is determined up to
equivalence (and automorphisms of the group) by the the induced extension by
Zn.

It remains to consider more closely how nearly an action with fixed points
resembles its associated linear model. In this direction we also have an equivariant
analogue of the Borel Conjecture: if Mn and Nn are closed, aspherical, topological
n-manifolds, with actions of a finite group G, then any G-homotopy equivalence
Mn → Nn is G-homotopic to a G-homeomorphism.

Connelly and Kosniewski [1] proved that it is true for an action of a finite
group of odd order acting affinely on a torus with “small gaps” of at least 3 di-
mensions between fixed point sets included in one another (i.e., when one of the
manifolds is as described). Connolly and Kosniewski ConnollyKosniewski1991
also gave example of non-rigidity for crystallographic groups.

Weinberger [9] has observed that although the (naive) equivariant Borel con-
jecture is most definitely false, it still serves as a good guiding principle. One needs
to replace G-homotopy equivalence by a suitably stratified version, say requiring
“isovariance” and something about the neighborhoods of fixed point sets.

Basic results about actions on tori

Homologically trivial actions. The following result is the core observation
needed in the construction of linear model actions alluded to earlier.

THEOREM (Lee-Raymond [6]). Let G be a finite group and let 0 → C → E →
G → 1 be a central extension of G such that E is torsion free. Then E and G are abelian.
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COROLLARY. Let G be a finite group acting effectively on the n-torus Tn. If the
action is trivial on homology, then the action is free, G is abelian of rank≤ n, and the orbit
space Tn/G is a (homotopy) torus.

In this case, one identifies the orbit space Tn/G with Tn by rigidity for tori,
and the orbit map then is identified with a standard covering map.

Actions of p-groups.

THEOREM. If a finite p-group G acts on the n-torus, then each component of the fixed
point set has the mod p homology of a k-torus for some k.

This may be proved by lifting the action to the universal covering, applying
Smith Theory there, and then interpreting the result in the base space.

THEOREM. If a p-group G acts on the n-torus, then all components of the fixed point
set have the same dimension.

This is really an addendum to the previous theorem. One can identify the
group of deck transformations preserving the upstairs fixed point set with the in-
variant elements π1(Tn, x)G. The dimension of Fx then is the mod p cohomological
dimension of this group, which is independent of the choice of fixed base point.

COROLLARY. Suppose a finite p-group G acts in an orientation-preserving fashion
on the 4-torus T4, with fixed point set F. Then F consists of isolated points or 2-tori, not
both.

Is it necessary to assume the group is a p-group?
There is also an interesting analysis possible of orientation reversing actions

of C2 on Tn with codimension one fixed point set, but we do not discuss it further
here.

Normal representations. The next step is to understand the possible actions
in a neighborhood of the fixed point set.

CONJECTURE. If a finite group G acts on a torus Tn, then the normal representations
to all components of the fixed point set of G are equivalent.

We will, however, propose a possible example where this might not be true.
Related to this we also have the question of non-equivariant type of the neigh-

borhood of the fixed point set.

CONJECTURE. If a finite group G acts on a torus Tn, then the normal bundle to the
fixed point set is trivial.

To what extent do the results of this section have analogues for actions on
other aspherical manifolds and for groups of order that is not a prime power?
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Homologically faithful actions

Since homologically trivial actions are understood, we now turn to the oppo-
site extreme of homologically faithful actions, ignoring the issues that come with
group actions that involve elements of both. We concentrate on such actions by
cyclic groups Cp of prime order, and further assume actions are orientation pre-
serving.

We further specialize to the case n = 4, where we only have p = 2, 3, 5.
One may enumerate all the possible representations on homology and use the

Lefschetz Fixed Point Theorem together with the spectral sequence of the Borel
fibering, to find that in all these cases the fixed point set must agree with that of a
corresponding linear model.

One may go further and consider the G-Signature Theorem in a case by case
manner. The conclusion is that in all but possibly a single case the fixed point set
and its normal representation must agree with those of the linear models.

If C5 acts linearly on T4 in such a way that the action on H1(Tn) has no fixed
vectors, then the action has exactly five fixed points. This standard linear action
has equivalent local tangential representations at all five fixed points, namely the
one with rotation numbers (1, 3). That is, up to equivalence and choice of gen-
erator of C5 the action in a neighborhood of each fixed point is equivalent to the
action given in complex coordinates by T(z, w) = (e2πi/5z, e6πi/5w).

THEOREM. If C5 acts locally linearly on T4 in such a way that the action on H1(Tn)
has no fixed vectors, then the action has exactly five fixed points. In addition to the lin-
ear fixed point data, there is essentially one other family of fixed point data that satis-
fies the g-signature formula for such an action, having the triple of rotation numbers
(1, 4), (1, 3), (2, 2), together with an arbitrary “cancelling pair” (that contributes noth-
ing to the g-signature formula, namely, (1, 1), (1, 4) or (1, 2), (1, 3) or (2, 2), (2, 3).

Can this non-linear data be realized by a locally linear or smooth action of C5?

Addendum. It turns out that this data cannot be realized. One can argue
that the normal representations are G-homotopy equivalent to those of the lin-
ear model, at least when the fixed set is of sufficiently large codimension. And
free G-homotopy equivalent representations of C5 are (weakly) equivalent. It fol-
lows that, in contrast to the simply connected case, we have data satisfying the
G-signature theorem (and a certain Reidemeister torsion condition) that is not re-
alizable by an action on the torus.
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Casson and Gordon meet Heegaard and Floer

Daniel Ruberman∗

To Terry, with admiration and thanks

The computation of the classical knot concordance groups Ctop (topological) and
Csmooth (smooth) remains, despite some 50 years of activity [5], one of the central
problems in low-dimensional topology. The work of Levine [14] gave a complete
calculation of the knot concordance group in high dimensions, via an isomorphism
Φ : C → Z∞ ⊕ Z∞

2 ⊕ Z∞
4 . (Except for a minor issue in ambient dimension 5, there

isn’t any difference between Ctop and Csmooth in high dimensions.) Subsequently,
Casson and Gordon [1, 2] showed that while Φ is onto in the classical dimension,
it is not injective.

In addition to their intrinsic interest, questions about concordance are inti-
mately related to surgery theory and other questions about 4-manifolds. Indeed,
the original paper of Fox and Milnor [6] explains that the problem of represent-
ing a 2-dimensional homology class in a 4-manifold by an embedded sphere often
reduces to asking if some knot is slice. Conversely, the ability to represent cer-
tain homology classes by topologically embedded spheres means that methods of
surgery theory will show certain knots to be topologically slice. The most famous
instance of this is Freedman’s proof that Alexander-polynomial 1 knots are slice;
there are more recent results along these lines by Friedl-Teichner [7].

More recently, gauge theory has provided very strong obstructions to a ho-
mology class in a 4–manifold being represented by an embedded sphere, or more
generally by a surface of low genus. Terry was an early contributor to this study–
see [11] and the wonderful survey articles [12, 13]. The most recent ‘gauge-theo-
retic’ tool, the Heegaard-Floer homology of Ozsváth and Szabó is no exception:
many of the genus bounds proved via Donaldson and Seiberg-Witten theory have
new (and in some sense easier) proofs via the new theory. These results can be

∗My talk at Tulane, and this note on which it was based, represent joint work with Eli Grigsby and
Sašo Strle.
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translated into new obstructions to knots being slice, but the Ozsváth-Szabó the-
ory provides a more direct route to such obstructions. They [21, 20], simultane-
ously with Rasmussen [22], introduced ‘knot Floer homology’ groups HFK(K) for
a knot K ⊂ S3, from which they derived a numerical invariant τ(K) ∈ Z.

The invariant τ(K) in fact vanishes on slice knots, and provides a homomor-
phism Csmooth → Z that is distinct from all classical invariants, including the sig-
nature. It has a nice property that is, on the other hand, reminiscent of signature
invariants of knots: the τ invariant can in fact be defined for a null-homologous
knot in a rational homology sphere Y; in the case at hand Y will be the 2-fold
branched cover of a knot K in S3, and we will consider τ(Y, K̃) of the branch set
K̃ ⊂ Y. As we will explain below, τ(Y, K̃) is a function from H2(Y) → Z, where
H2(Y) parameterizes the spinc structures on Y. Our idea was that τ could be con-
sidered as analogous to the Casson-Gordon invariant τ(K, χ) which is a function
of χ ∈ Hom(H1(Y), Q/Z). The main theorem says that if K is slice, then τ(Y, K̃, s)
vanishes for appropriately chosen s ∈ Spinc(Y), much as τ(K, χ) must vanish for
appropriate characters χ.

To give a precise statement, we need to quickly review some notions from
the realm of Heegaard-Floer theory. Let Y be a rational homology sphere, and let
s ∈ Spinc(Y) be a spinc structure. A Heegaard decomposition of Y (or equiva-
lently, a Morse function) defines a chain complex ĈF(Y, s) whose homology is the
Heegaard-Floer group ĤF(Y, s). Because we are working on a rational homology
sphere, there is a rational-valued ‘Maslov grading’, ie a function g̃r : ĤF(Y, s) →
Q. There is a canonical summand ĤFU(Y, s) of ĤF(Y, s), and the correction term
for a spinc structure s, denoted d(Y, s), is the absolute Q homological grading, g̃r,
of ĤFU(Y, s).

The d-invariant has the important property that d(Y, s) = 0 whenever Y =
∂W where W is a rational homology ball and the spinc structure s extends over
W. Because the 2-fold cover of S3 branched along a slice knot bounds a ratio-
nal homology ball (the branched cover of the 4-ball over the slicing disk) the d-
invariant gives a new obstruction to a knot being slice. This has been investigated
by Manolescu-Owens [17] and Jabuka-Naik [10]). One point about the use of the
d-invariant that is common with the original Casson-Gordon invariants is that one
does not know a priori which spinc structures on Y extend over W, so that in ap-
plying this obstruction one may have to do a great deal of computation.

Our idea was to strengthen the application of Heegaard-Floer homology by
using observation that (with notation as in the last paragraph) not only does Y =
∂W, but the preimage of K in Y is slice in W. So we can use another concordance
invariant: the τ invariant, which arises from the knot homology theory HFK(K).
Very briefly, a null-homologous knot K gives rise to a Z-grading on the Heegaard-
Floer chain complex ĈF(Y, s). The minimal grading of an element that projects
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non-trivially to the aforementioned group ĤFU(Y, s) is by definition τ(Y, K, s).
When Y is the 3-sphere, τ(K) is a concordance invariant, and in fact gives a lower
bound for the genus of an oriented surface bounded by K in the 4-ball. Our main
technical result states something similar for all of the spinc structures on Y that
extend over W.

THEOREM. Let K be a knot in S3, and Y the 2-fold cover of S3 branched along K.
Denote by K̃ the preimage of K in Y. If K is slice, then there exists a subgroup G <

H2(Y; Z) with |G|2 = |H2(Y; Z)| such that d(Y, s) = 0 and τ(Y, K̃, s) = 0 for all
s ∈ s0 + G, where s0 is the unique spin structure on Y.

An only slightly more elaborate statement holds with 2 replaced by pr for any
prime p.

Having been raised to believe that a theorem is not worth much unless it can
be applied to some interesting examples, we went looking for knots for which we
could compute the invariants τ(Y, K̃, s). There have been important recent ad-
vances [18] in the computation of Heegaard-Floer groups, and these have brought
the computation of τ(Y, K̃, s) within reach for at least one class of knots, the 2-
bridge knots. Recall that these are knots Kp,q whose double branched cover is the
lens space L(p, q). Eli Grigsby [9] showed how to compute the groups

ĤFK(L(p, q), K̃p,q)

purely combinatorially, and with some extra work one can extract combinatorial
calculations of the corresponding τ invariants. The question of which 2-bridge
knots are smoothly slice has been definitively answered by Paolo Lisca [16]. How-
ever, there remain further questions about this category of knots, in particular the
question of showing that a particular 2-bridge knot has infinite order in the concor-
dance group.

One issue that arises in the Casson-Gordon invariants, and indeed in all con-
cordance obstructions based on branched covers, is that one does not know a pri-
ori the restriction map H2(W; Z) → H2(Y; Z) where W and Y are as above the
branched covers of the 4-ball and 3-sphere respectively. In the original setting and
also in the initial gauge-theoretic extensions [4, 19, 23], this comes out as a lack of
information about which cyclic covers of Y extend over W, whereas in the Seiberg-
Witten and Heegaard-Floer setting, it is a question about extension of spinc struc-
tures. In principle, to use an obstruction such as that in Theorem to show that
some knot isn’t slice, one might have to test whether the conclusions fail for every
G < H2(Y; Z) with |G|2 = |H2(Y; Z)|! This clearly gets out of hand when the or-
der of H2(Y; Z) is large. For example, to use the theorem as stated to determine if
the sum of 4 copies of the 2-bridge knot 45/17 is slice would require examination
of 9, 745, 346 such subgroups. As it turns out, there are subgroups on which the
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d-invariant vanishes, so that invariant alone would not suffice to determine the
concordance order of 45/17.

To get around this problem, we developed a way to package the functions
d(·) : Spinc(Y)→ Q and τ(Y, K̃, ·) : Spinc(Y)→ Z that does not require examina-
tion of subgroups. It is easiest to explain in the case that H2(Y; Z) is cyclic, which
we now assume. We define two invariants Tp (resp. Dp) to be the absolute value
of

∑
{s∈Spinc(Y)|s has order p}

τs(K̃) (resp. ds(Y)).

We then showed

THEOREM. Let K ⊂ S3 be a knot and p ∈ Z+ prime or 1. If there exists a positive
n ∈ Z such that #nK is smoothly slice, then Tp(K) = Dp(K) = 0.

To finish the discussion of the example for K the 2-bridge knot 45/17, the
invariants D3(K) and D5(K) both vanish, but T3(K) = T5(K) = −1. Hence we
conclude that this knot has infinite order in the smooth concordance group. It
would of course be of great interest to know if it has finite order in the topological
concordance group.

Postscript: There have been some interesting recent developments in applying
gauge theory to knot concordance since we posted the preprint on which this talk
was based. Lisca [15] showed how to apply Donaldson’s diagonalization theorem
to deduce that every 2-bridge knot, other than those already known to be ribbon [1,
2, 3] has infinite concordance order. Combining this essentially algebraic technique
with the d-invariant, Greene and Jabuka [8] extended this result to pretzel knots
all of whose twisting numbers are odd. It seems likely that much more can be said
with these techniques.
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Reverse engineering families of 4-manifolds

Ronald Fintushel

To Terry, a true friend

Introduction

We describe joint work with Ron Stern and Doug Park which introduces a
general procedure called ‘reverse engineering’ that can be used to construct infi-
nite families of smooth 4-manifolds in a given homeomorphism type. As one of
the applications of this technique, we produce an infinite family of pairwise non-
diffeomorphic 4-manifolds homeomorphic to CP2# 3CP2.

Reverse engineering is a process for constructing infinite families of distinct
smooth structures on a given simply connected 4-manifold. Starting with a model
manifold M which has a nontrivial Seiberg-Witten invariant, one tries to find b1

essential tori that carry generators of H1 and to surger each of these tori in order to
kill H1 (and, in favorable circumstances, π1). The final step is to compute Seiberg-
Witten invariants. In each of the first b1 − 1 surgeries, one needs to preserve the
fact that the Seiberg-Witten invariant is nonzero. The Morgan, Mrowka, Szabó
formula roughly states that if 1/n-surgery is performed on a torus S1 × α in a
manifold X to obtain Xn then SWXn = SWX + n SWX0 where X0 is the result
of 0-surgery. To get an infinite family, we only need to assure that SWX0 6= 0.
The terminology ‘reverse engineering’ arises from the fact that the above process
is contrived so that if X is the final manifold in the above process, with b1 = 0,
then SWX0 is forced to be nonzero.

Infinite families

One of the key questions in smooth 4-manifold topology is whether a fixed
homeomorphism type containing a smooth 4-manifold must actually contain in-
finitely many diffeomorphism types. We wish to state and prove a general theo-
rem pointing in this direction.

Let T be a torus of self-intersection 0 in a 4-manifold X with tubular neighbor-
hood NT . Let α and β generate π1(T2) and let S1

α and S1
β be loops in T3 = ∂NT

homologous in NT to α and β respectively. Let µT denote a meridional circle to T
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in X. By p/q-surgery on T with respect to β we mean

XT,β(p/q) = (XNT) ∪ϕ (S1 × S1 × D2),

ϕ : S1 × S1 × ∂D2 → ∂(XNT)

where the gluing map satisfies ϕ∗([∂D2]) = q[S1
β] + p[µT ] in H1(∂(XNT); Z). The

new manifold XT,β(p/q) has a ‘core torus’ T′ = S1 × S1 × {0}.
We have the following situations for surgery on T:

1. Suppose that T0 is primitive in H2(X) and that S1
β 6= 0 in H1(XNT0 ; R), then T′0

is nullhomologous in XT0,β(p).
2. Suppose that T1 is nullhomologous and that and that S1

β bounds in XNT1 , then T′1
is primitive in XT1,β(0). Furthermore, in this case, H1(XT1,β(1/n); Z) = H1(X; Z)
and the core torus in XT1,β(1/n) is nullhomologous.

In situation (1) there is a loop λ on T′0 with pushoff S1
λ which is the image of

µT0 under the gluing map which defines the surgery manifold XT0,β(p/q). Then
S1

λ is plainly nullhomologous in XT0,β(p/q)NT′0
= XNT0 and 0-surgery on λ gives

back X. Similarly in situation (2), the loop on ∂NT′1
which is the image of µT1 is

essential, and 0-surgery on it gives back X. Thus these two situations are dual.
If X is a symplectic manifold and T is any Lagrangian torus, then there is a

canonical framing, called the Lagrangian framing, of NT . This framing is uniquely
determined by the property that pushoffs of T in this framing remain Lagrangian.
If one performs 1/n surgeries with respect to the pushoff in this framing of any
nontrivial curve on T, then the result is also a symplectic manifold.

An easy-to-state simplified version of our theorem (joint with Ron Stern and
B. Doug Park) is:

THEOREM ([FPS]). Let X be a smooth 4-manifold with an embedded nullhomologous
torus Λ containing a nontrivial loop λ with pushoff S1

λ which is nullhomologous in XNΛ.
Suppose that X0 = XΛ,λ(0) has, up to sign, just one Seiberg-Witten basic class. Then the
manifolds Xn = XΛ,λ(1/n), n = 1, 2, 3, . . . are pairwise nondiffeomorphic.

This is particularly interesting when X is simply connected and if it can be
shown that the {XΛ,λ(1/n)} are also simply connected; for then the {XΛ,λ(1/n)}
are all homeomorphic.

Here is outline of a proof of the theorem: The hypothesis puts us in situa-
tion (2) above; so, letting X0 = XΛ,λ(0) and Λ0 = Λ′, after surgery, we have
(X0, Λ0, S1

β) as in situation (1). Similarly, set Xn = XΛ,λ(1/n) and let Λn be the
core torus of the surgery in Xn. As above, Λn is nullhomologous in Xn.

Let k0 ∈ H2(X0; Z) be the (up to sign) unique basic class of X0. The adjunction
inequality implies that k0 is orthogonal to Λ0. Thus, there are (unique, because
Λ (resp. Λn) are nullhomologous) corresponding homology classes kn and k in
H2(Xn; Z) and H2(X; Z), respectively, where k agrees with the restriction of k0 in
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H2(XNΛ, ∂; Z) in the diagram:

H2(X; Z) −→ H2(X, NΛ; Z)y ∼=
H2(XNΛ, ∂; Z)x ∼=

H2(X0; Z) −→ H2(X0, NT ; Z)

and similarly for kn.
It follows from [MMS] that

SWXn(kn) = SWX(k) + n SWX0(k0)

and that ±kn are the only basic classes of Xn. (When b1(Y) 6= 0, the expression
SWY(κ) denotes the sum of the Seiberg-Witten invariants of all spinc structures
on Y whose c1 is Poincaré dual to κ.) Thus, if b+ > 1, the manifolds Xn, n ≥ 2, are
pairwise nondiffeomorphic. This is still true when b+ = 1, but a few details need
to be checked. For this see [FPS].

Fake CP2# 3CP2’s

In order to illustrate reverse engineering, we show how to construct an infi-
nite family of 4-manifolds homeomorphic but not diffeomorphic to CP2# 3CP2.
The first examples of such manifolds were obtained via a different process by
Akhmedov and Park, and Baldridge and Kirk [AP, BK]. For the model mani-
fold take M = Sym2(Σ3), the 2-fold symmetric power of a genus 3 surface. Since
π1(Sym2(Σ3)) = H1(Σ3; Z), b1(M) = 6 and also e(M) = 6, sign(M) = −2, in
agreement with the characteristic numbers for CP2# 3CP2.

Let {ai, bi}, i = 1, 2, 3 denote standard generators for π1(Σ3) as in the figure
below. Then the tori ai × aj, bi × bj, ai × bj, and bi × aj, i < j, in Σ3 × Σ3 descend to
twelve Lagrangian tori in M. In the figure we see loops ai, a′i, and a′′i . We also have
based loops (with basepoint the vertex x) which we denote by the same symbols.

The abelian group π1(M) = Z6 is generated by the ai = ai × {x} and bj =
bj × {x}. With respect to the Lagrangian framings these surgeries are:

(a′1 × a′2, a′2,−1), (a′′1 × b′2, b′2,−1), (a′1 × a′3, a′1,−1),

(b′1 × a′′3 , b′1,−1), (a′2 × a′3, a′3,−1), (a′′2 × b′3, b′3,−1).

The (Lagrangian) framing circles are S1
a′i

= ai and S1
b′i

= bi.
Performing these surgeries iteratively, we obtain manifolds Mi, i = 1, . . . , 6,

and our comment above about surgeries on Lagrangian tori implies that each Mi

is a symplectic manifold. Let X = M6. A simple computation shows that X is
simply connected (see [FPS]).
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In M5, there is a primitive torus T corresponding to a′′2 × b′3 and a loop β cor-
responding to b′3 whose Lagrangian pushoff S1

β = b3 is essential in M5NT . We are
in situation (1) of the previous section, and the surgery giving M6 = X puts us in
situation (2). There is a nullhomologous torus Λ in X and a loop λ on Λ so that 0-
surgery on (Λ, λ) with respect to the appropriate framing (not Lagrangian!) gives
back M5 = XΛ,λ(0).

In order to apply our theorem, we wish to see that M5 has just one basic class,
up to sign. The model manifold, M = Sym2(Σ3) is a surface of general type,
and so its only basic class (up to sign) is its canonical class, KM, which we now
describe. The three tori ai × bi in Σ3×Σ3 descend to tori Ti of square−1 in M, and
{pt}×Σ3 ∪Σ3×{pt} descends to a genus 3 surface which represents a homology
class b with self-intersection +1. We have KM = 3b + T1 + T2 + T3. Consider
M1 = Ma′1×a′2,a′2

(−1), the result of the first surgery on M. In Z = Ma′1×a′2,a′2
(0)

the surface Σ3 × {pt}, which represents b, has its genus reduced by one because
of the surgery. Applying the adjunction inequality to this situation, we see that
any basic class of Z has the form ±b ± T1 ± T2 ± T3. Since the square of a basic
class must be 3 sign(Z) + 2 e(Z) = 6, in fact none of these classes can be basic; so
the Seiberg-Witten invariant of Z vanishes. The result of this argument is that the
Morgan, Mrowka, Szabó formula tells that the only basic classes of the manifold
M1 are ± its canonical class. The very same argument works for each surgery and
finally shows that M5 and X = M6 have just one basic class up to sign.

Thus the theorem shows that the manifolds X and XΛ,λ(1/n), n ≥ 2 are pair-
wise nondiffeomorphic. Since one can also check that the manifolds XΛ,λ(1/n),
n ≥ 2 are simply connected, they are all homeomorphic to CP2# 3CP2, and we get
our desired examples.

We conclude with a question:
• Is there a nullhomologous torus T in CP2# 3CP2 so that surgeries on T give these
manifolds?
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