OPEN BOOK DECOMPOSITIONS FOR ODD DIMENSIONAL MANIFOLDS

TERRY LAWSON

(Received 9 February 1977)

An open book decomposition of a PL manifold M is a decomposition of M as $V_h \cup (\partial V \times D^2)$, where $V_h = V \times I/(x, 1) \sim (h(x), 0)$, h a PL homeomorphism of V which restricts to the identity on ∂V , and M is formed by joining V_h and $\partial V \times D^2$ by a PL homeomorphism of their boundaries. The terminology was introduced by H. Winkelnkemper, who proved that simply connected closed PL manifolds of dimension ≥7 possess open book decompositions if their index is zero (cf. [16, 17]). In particular, odd dimensional simply connected closed PL manifolds of dimension ≥7 always have open book decompositions. I. Tamura gave an independent proof [14] of the existence of open book decompositions (which he calls spinnable structures) in Tamura[14] Both simply connected case. dimensional Winkelnkemper[16] conjectured that the hypothesis of simple connectivity could be removed, but no proof of this conjecture has appeared. We wish to furnish a proof here. The reader can consult [5, 6, 10, 12-16, 18] for various applications of open book decompositions.

Our approach will be to start with a decomposition of M^{2k+1} as $W_1 \cup_E W_2$, where W_1 denotes the handles of index $\leq k$ and W_2 denotes the handles of index $\geq k+1$ in a and show that after decomposition, $W_1\Pi(\prod_{i=1}^{n}(S^k \times D^{k+1})_i) \cup_{E \neq (N^k + S^k)_i} W_2\Pi(\prod_{i=1}^{n}(D^{k+1} \times S^k)_i) = W_1' \cup_{E'} W_2', \text{ we can imbed } V$ in E' so that $W'_i = V \times I$. It is easy to get from this condition to the open book decomposition of M (cf. [16, 17]). Note that we get as a corollary that M is a double. The representation of a manifold as a double under various hypotheses was first given by Smale [11] (M simply connected, tors $H_k(M) = 0$, dim $M = 2k + 1 \ge 7$), and has since been proved by Barden[3] (M orientable, dim $M = 2k + 1 \ge 7$), Levitt[8] (dim $M = 4m + 2 \ge 6$, M simply connected, tors $H_{2m+1}(M) = 0$), Winkelnkemper [15] (M simply connected, dim $M \ge 7$), and Alexander [1, 2] (dim $M \ge 7$, $\pi_1 M$ finite if dim Meven). Unfortunately, none of the proofs besides Smale's is readily available in the literature. We are indebted to John Alexander for providing us with a copy of [2], which has influenced greatly our presentation here.

OPEN BOOK THEOREM. Let M be an odd dimensional closed connected PL manifold of dimension ≥ 7 . Then M has an open book decomposition.

Proof. Our proof will consist of a number of steps, where we start with an initial decomposition and improve it in each step until it is in the required form.

Step 1. Our initial decomposition of M^{2k+1} will stem from a choice of handlebody decomposition, $M = W_{11} \cup_{E_1} W_{21}$, where W_{11} denotes the handles of index $\leq k$ and W_{21} denotes the handles of index $\geq k+1$. Note that W_{21} processes a dual handle decomposition with handles of index $\leq k$. There are k-dimensional CW complexes (essentially formed from displaced cores of handles) K_{i1} and simple homotopy equivalences \bar{f}_{i1} : $K_{i1} \rightarrow W_{i1}$, i=1, 2. Note that $E_1 \subset W_{i1}$ is k-connected. In particular, this implies there is a map f_{11} : $K_{11} \rightarrow E_1$ with $K_{11} \xrightarrow{f_{11}} E_1 \subset W_{11}$ homotopic to \bar{f}_{11} . Let L be the (k-1)—skeleton of K_{11} and consider the compositions ϕ_1 : $L \subset K_{11} \xrightarrow{f_{11}} E_1$ and ψ_1 : $L \subset W_{21}$. Both are (k-1)—connected since $0 \approx \pi_i(W_{21}, E_1) \approx \pi_{i-1}(f_{11}) \approx K_{i1}$

 $\pi_{i-1}(\psi_1)$, $i \le k$. Let us denote the common fundamental groups, which we will identify, by π_1 .

Let $\mathbb{Z}\pi_1$ be coefficients for all homology groups unless otherwise indicated. Since W_{21} is homotopy equivalent to K_{21} , which is k-dimensional, $H_i(W_{21}) = 0$ for i > k and $H^{k+1}(W_{21}; P) = 0$ for any $\mathbb{Z}\pi_1$ -module P. Since L is (k-1)-dimensional, this implies $H_i(\psi_1) = 0$ for i > k and $H^{k+1}(\psi_1; P) = 0$ for any $\mathbb{Z}\pi_1$ -module P. Also, $\psi_1(k-1)$ -connected implies that $H_i(\psi_1) = 0$ for i < k. Now Theorem 4 of [7] implies that $H_k(\psi_1)$ is a finitely generated stably free $\mathbb{Z}\pi_1$ -module.

In succeeding steps we will "stabilize" and change W_{i1} , E_1 , K_{i1} , \bar{f}_{i1} , f_{11} , ϕ_1 , ψ_1 to W_{in} , E_n , K_{in} , \bar{f}_{in} , f_{in} , ϕ_n , ψ_n , where $M = W_{1n} \cup_{E_n} W_{2n}$, \bar{f}_{in} : $K_{in} \to W_{in}$ is a simple homotopy equivalence (except \bar{f}_{22}), $L \subset K_{11} \subset K_{in} = K_{11} \vee (\bigvee_{i=1}^{p_n} S_i^k)$, $W_{in} = W_{11} \coprod_{i=1}^{p_n} (S^k \times D^{k+1})_i$),

 $W_{2n} = W_{21} \coprod (\coprod_{i=1}^{P_n} (D^{k+1} \times S^k)_j), E_n = E_1 \# (\# (S^k \times S^k)_j), f_{in}: K_{in} \to E_n \text{ with } \bar{f}_{in} = i_{E_n \subset W_{in}} f_{in}$ and $\phi_n: L \to E_n$, $\psi_n = i_{E_n \subset W_{2n}} \phi_n$ are (k-1)-connected. The stabilization is achieved by using pairs of cancelling k and (k+1)-handles in a collar of the equator E_n , or equivalently, regarding M as $M \# S^{2k+1}$ and using the decomposition of S^{2k+1} as $S^k \times D^{k+1} \cup_{S^k \times S^k} D^{k+1} \times S^k$ and taking our connected sum carefully near equators. The change from \bar{f}_{i1} to \bar{f}_{in} , etc., will be the obvious ones such as mapping additional factors of S^k to corresponding factors $S^k \times x$ or $x \times S^k$ unless otherwise indicated.

Step 2. We stabilize as indicated above to make $H_k(\psi_2)$ a free $\mathbb{Z}\pi_1$ -module. Now choose a $\mathbb{Z}\pi_1$ -module basis e_1, \ldots, e_m for $H_k(\psi_2) \simeq \pi_k(\psi_2)$. Attach m k-cells to L via $\partial e_i \in \pi_{k-1}(L)$ and use representatives for e_i to obtain an extension f_{22} : $K_{22} = L \cup (\bigcup_{i=0}^{m} e_i) \to W_{22}$. The exact sequence

$$0 \longrightarrow H_{k+1}(\bar{f}_{22}) \longrightarrow H_k(K,L) \stackrel{\approx}{\longrightarrow} H_k(\psi_2) \longrightarrow H_{k+1}(\bar{f}_{22}) \longrightarrow 0$$

shows that $H_{k+1}(\bar{f}_{22}) = H_k(\bar{f}_{22}) = 0$. One easily sees that $H_i(\bar{f}_{22}) = 0$, $i \neq k$, k+1, so \bar{f}_{22} is a homotopy equivalence. It may not be simple, however; we make it simple in Step 3. All other changes in Step 2 are the standard ones.

Step 3. Suppose the torsion τ of \bar{f}_{22} is represented by an $n \times n$ matrix A. Let B = A if k is odd, $B = A^{-1}$ if k is even. Note that $\bar{f}_{22} \vee i$: $K_{23} = K_{22} \vee (\stackrel{n}{\vee} S_i^k) \to W_{23} = W_{22} \coprod (\stackrel{n}{\coprod} (D^{k+1} \times S^k)_i)$ will again be a homotopy equivalence with torsion τ . Use the matrix B to define a map $g: K_{22} \vee (\stackrel{n}{\vee} S_i^k) \to K_{22} \vee (\stackrel{n}{\vee} S_i^k)$ with $g|K_{22} = 1|K_{22}$ and $S_i^k \to K_{22} \vee (\stackrel{n}{\vee} S_i^k)$ chosen to represent $\sum b_{ij}e_i$ in $\pi_k(K_{22} \vee (\stackrel{n}{\vee} S_i^k), K_{22})$, where e_i is a generator corresponding to a lift of S_i^k in the universal cover. One may check that g is a homotopy equivalence with torsion $-\tau$. Now replace \bar{f}_{22} by $\bar{f}_{23} = (f_{22} \vee i)g$. This will be a simple homotopy equivalence. Note that $L \subset K_{23}$ and \bar{f}_{23} is unchanged on L, apart from stabilization. Use connectivity again to get f_{23} : $K_{23} \to E_3 = E_2 \# (\#(S^k \times S^k)_i)$,

with $K_{23} \xrightarrow{f_{23}} E_3 \subset W_{23}$ a simple homotopy equivalence, and $f_{23}|L = f_{13}|L$. Complete the stabilization in the standard fashion, giving $M = W_{13} \cup_{E_3} W_{23}$, where there exist f_{i3} : $K_{i3} \to E_3$ with $K_{i3} \xrightarrow{f_{i3}} E_3 \subset W_{i3}$ a simple homotopy equivalence. Moreover $K_{i3} = L \cup (\bigcup_{i=1}^{r_i} e_i)$ and $f_{13}|L = f_{23}|L$. We claim $r_1 = r_2$. For using the handlebody decomposition of M to compute its Euler characteristic gives $0 = \chi(M) = \chi(W_{13}) - \chi(W_{23}) = \chi(L) + r_1 - \chi(L) - r_2 = r_1 - r_2$.

Step 4. Form $K = L \cup_{\alpha_1} (\bigcup_{i=1}^r e_i^k) \cup_{\alpha_2} (\bigcup_{i=1}^{2r} e_i^k) = K_{13} \cup_L K_{23}$, where $K_{13} = L \cup_{\alpha_1} (\bigcup_{i=1}^r e_i^k)$ and $K_{23} = L \cup_{\alpha_2} (\bigcup_{i=1}^r e_i^k)$. First define $f' : K \to E_3$ by $f'' | K_{i3} = f_{i3} | K_{i3}$. We may assume f' sends a small disk in e_i^k to a base point. Now define $\phi : K \to K \vee (\bigvee_{i=1}^r S_i^k) = \overline{K}$ by pinching each

cell e E_4 b

r + 1,

 $W_{24} =$

K —

Note differ $x \times S$ a hor isomorphandl that f_1 is:

L positi hypo

D $1 \ge 7$ simple H: l contc

W C decoi denoi

n wit

7 wit exists

> 1. J. (15 2. J.

4. J. 5. L.

6. T.

cell e_i^k on its small disk and mapping e_i^k to $e_i^k \vee S_i^k$. Define $g': \overline{K} \to E_3 \# (\# (S^k \times S^k)_i) =$ E_4 by sending K via f' and $S_i^k \to (x \times S^k)_j$, $j = 1, \ldots, r$, and $S_i^k \to (S^k \times x)_{j-r}$, $j = 1, \ldots, r$ $r+1,\ldots,2r$. Let $f\colon K\to E_4$ be g'p. Stabilize again by $W_{14}=W_{13}\coprod(\coprod_{i=1}^{n}(S^k\times D^{k+1})_i),$ $W_{24} = W_{23} \coprod (\coprod_{i} (D^{k+1} \times S^k)_i), M = W_{14} \cup_{E_4} W_{24}.$ We claim that each composition f_i : $K \xrightarrow{f} E_4 \subset W_{i4}$ is a simple homotopy equivalence. By symmetry, we need only show it for i = 1. Consider the diagram

$$\begin{array}{c}
K_{13} \xrightarrow{f_{13}} W_{13} \\
\downarrow \\
K \xrightarrow{f_1} W_{14}
\end{array}$$

Note first that the diagram commutes up to homotopy since the only essential difference between the two compositions lies on the small disks that are mapped to $x \times S^k$ via f_1 ; but $x \times S^k$ bounds $x \times D^{k+1}$ in W_{14} and this disk may be used to construct a homotopy. Note also that the induced map $H_k(K, K_{13}) \rightarrow H_k(W_{14}, W_{13})$ is a based isomorphism of free \mathbf{Z}_{π_1} -modules, where the bases come from the additional cells and handles, respectively. A chase in exact sequences, using the above fact and the fact that \bar{f}_{13} is a simple homotopy equivalence together with Theorem 3.1 of [9], shows that f_1 is a simple homotopy equivalence.

Now use Stallings Embedding Theorem (cf. [4, Theorem 12.1]) to find an embedded subcomplex $K' \subset E_4$ with $K' \subset E_4 \subset W_{i4}$ a simple homotopy equivalence. Let Vbe a regular neighborhood of K' in E_4 . Then the s-cobordism theorem implies $W_{i4} \approx V \times I$, giving the open book decomposition.

Let us now state as a standard corollary of the existence of open book decompositions (cf. [16]) the Double Theorem. A variant of this theorem (with the same hypotheses) is the main result in [2].

Double Theorem. Let M be a closed connected PL manifold of dimension 2k+ $1 \ge 7$. Then $M = W_1 \cup_E W_2$, where $W_1 \approx W_2$. Moreover, W_1 can be chosen to be of the simple homotopy type of a k-dimensional complex and there is a PL homeomorphism $H: M \rightarrow M$ isotopic to the identity fixing a codimension two submanifold of M contained in E with $H(W_1) = W_2$.

We close with two immediate corollaries of our proof of the Open Book theorem.

COROLLARY 1. Let M be a closed connected PL manifold of dimension $2k+1 \ge 7$ decomposed as $M = W_1 \cup W_2$, where W_1 denotes the handles of index $\leq k$ and W_2 denotes the handles of index $\geq k+1$ in a handle decomposition of M. Then there exists n with $W_1 \coprod (\coprod_{i}^{n} (S^k \times D^{k+1})_i) \approx W_2 \coprod (\coprod_{i}^{n} (S^k \times D^{k+1})_i).$

COROLLARY 2. Suppose W_1 , W_2 are connected handlebodies of dimension $2k+1 \ge$ 7 with handles of index \leq k and PL homeomorphic connected boundaries. Then there exists n with $W_1\coprod(\coprod_1^n(S^k\times D^{k+1})_j\approx W_2\coprod(\coprod_1^n(S^k\times D^{k+1})_j).$

REFERENCES

- 1. J. P. ALEXANDER: The bisection problem, Ph.D. Thesis, University of California at Berkeley, Berkeley
- 2. J. P. ALEXANDER: The bisection problem: odd dimensions, 1972, preprint. (1972).

j),

∘te

fis:

on

ind

s a ach

- 3. D. BARDEN: The structure of manifolds, Ph.D. Thesis, Cambridge University, Cambridge (1963).
- 4. J. F. P. Hudson: Piecewise Linear Topology. W. A. Benjamin, Inc., New York (1969).
- 5. L. KAUFMANN: Branched coverings, open books, and knot periodicity, Topology 13 (1974), 143-160. 6. T. LAWSON: Applications of decomposition theorems to trivializing h-cobordisms, Can. Math. Bull. (to

- 7. J. LEES: The surgery obstruction groups of C. T. C. Wall, Adv. Math. 11 (1973), 113-156.
- 8. N. LEVITT: Applications of engulfing, Ph.D. Thesis, Princeton University, Princeton (1967).
- 9. J. MILNOR: Whitehead torsion, Bull. Am. math. Soc. 72 (1966), 358-426.
- 10. W. NEUMANN: Manifold cutting and pasting groups, Topology 14 (1975), 237-244.
- 11. S. SMALE: On the structure of manifolds, Am. J. Math. 84 (1962), 387-399.
- 12. I. TAMURA: Spinnable structures on differentiable manifolds, Proc. Japan Acad. 48 (1972), 293-296.
- 13. I. TAMURA: Specially spinnable manifolds, *Manifolds-Tokyo* 1973, pp. 181-187. University of Tokyo Press, Tokyo (1973).
- 14. I. TAMURA: Foliations and spinnable structures on manifolds, Analyse et topologie differentielles, Strasbourg, pp. 197-214. Centre National de la Recherche Scientifique, Paris (1973).
- 15. H. E. WINKELNKEMPER: Equators of manifolds and the action of θ^n , Ph.D. Thesis, Princeton University, Princeton (1970).
- 16. H. E. WINKELNKEMPER: Manifolds as open books, Institute for Advanced Study, Princeton, 1972, preprint.
- 17. H. E. WINKELNKEMPER: Manifolds as open books, Bull. Am. math. Soc. 79 (1973), 45-51.
- 18. H. E. WINKELNKEMPER, On the actions of θ^n . I, Trans. Am. math. Soc. 206 (1975), 339-346.

Tulane University New Orleans DANIEL Dennis S simplicia by comp rational a chain ı isomorp In the of K (fo of natur plex A* cohomol $A^{*q}(K, I)$ cohomol coefficie It is to comp techniqu The rational Sullivan In S arbitrary and is a element: forms (c $\gamma^{\alpha_0}(x_0)\gamma^{\alpha_0}(x_0)$ $\left[\sum_{i=1}^{n}\alpha_{i}\right]+$ consists such mc Secti $A^{**}(K,$ is a sub analogo $H^p(K, S)$