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i. iIntroduction. In the early 1980s Novikov constructed an analog of Morse theory 
for closed 1-forms. Let us briefly recall the basic ideas, limiting ourself, for the sake 
of simplicity, to the case of rational forms. Suppose a closed Morse 1-form is defined on 
a closed smooth manifold M. We will suppose that this form is rational, i.e., there exists 
a regular Z-covering on which the form becomes exact and on which a Morse function is de- 
fined. As is usual in Morse theory the incidence coefficient between the critical points 
of neighboring indices may bedetermined. The only difference is that an infinite number 
of point S with index p - 1 may occur at the algebraic boundary of the point with index p. 
Further, a Novikov complex 

Co~-C,---...C.-,~-C. 

may be c0nstructed by analogy with a Morse complex. Here C i is a free module with number of 
generators equal to the number of critical points of index i over a ring of integral Laurent 
series infinite in only one direction. The homologies of this complex are called Novikov 
homologies. They are homotopically invariant, and possess Morse-type inequalities and an 
analog of Smale's theorem concerning the precision of these inequalities (cf. [2, 5]). 

In the present article, we compute Novikov homologies for the complementary space to a 
knot. We will also provide an explanation of the relation between Alexander's polynomial 
and homologies with coefficients in a one-dimensional local system. 

2. Basic Definitions. Suppose K is a knot in a three-dimensional sphere S 3. Since 

~I(S3\K)i'[~I(S3\K), vI(S3\K)] = Z, there is a standard Z-covering corresponding to the com- 
mutant ~i:(S3\K). We partition S3\K into cells; this partition is understood as an etale 
space that transforms it into a CW-complex. We let S3\K = M and let M be an etale space. 
C,(~) is I obviously, a free complex over Z[t, t-l]. The Alexander polynomial A(t) is, by 
definition, of order HI(M) as a module over Z[t, t-l]. This means that if this module is 
specified by n generators and k relations, ~(t) is the greatest common divisor of the minors 
of a relational matrix of order n; and if there are fewer relations than generators, A(t) = 
0. Notei however, that the latter possibility is actually not realized, since it is well 
known that for any knot, 4(1) = • 

The equivalence of this definition to the generally accepted definition is proved by 
Milnor in [6]. 

Now suppose we are given the representation ~I(M) § C*. We denote this representation 
by Pt if a generator in HI(M) is carried into t. (It is clear that any such representation 
factors through HI(M).) We set bk(M, t) = rk cHk(M, C), i.e., dimc[Hk(C,(M)~[t,t-1 ] | C]. 

We set A;=Z[t, t-l], S = {P e A: P(0) = i}. Here it is supposed that P does not have any 
negative!exponents. The Novikov numbers ~k(M) and qk(M) are, by definition, the torsion 

ranks an d torsion numbers of the module Hk(M) over S-IA. Farber proved in [5] that the 
Novikov numbers thus introduced coincide with those which were defined in [i]. 

3. iRelation Between Alexander Polynomials and Homologies with Local Coefficients. 
Novikov 13] proved that the Betti numbers bkP(M) with local coefficients of an arbitrary 
smooth manifold M are almost always constant, and that discontinuities occur on certain al- 
gebraic manifolds (over Z I) in the space of representations ~I(M) in GL(N, C). 

Pazhitnov investigated this problem for one-dimensional representations. 

LEM~ i. Let us consider Hk(~ , C) as a module over z-1]~ 
ring ~-~cipal ideals and possesses the Q[z, This constitutes a decomposition Hk(~ , Q) Q[z • ~Q[zil]/(pj), 

where (pj) is the ideal generated by the polynomial pj. Then if t is transcendental, then 
! 
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Sk(M) = bk(M , t) and is equal to the number of free generators in Hk(M, Q), and if t is al- 

gebraic, bk(M , t) = Sk(M) + I k + Ik_i, where I k is the number of polynomials Pj that anni- 
hilate t. 

A proof may be given following [4] with only slight changes. 

It is easily seen that if t is transcendental, C is a Q[z, z-1]-planar module. Further, 

Hd'(M, C)=|174174 On the other hand, if the module Hk(~) A 

S-IA is additionally localized with respect to integral constants, it will obviously have 
rank equal to Sk(M) and equal to the rank of Hk(~,Q) over Q[z, z-l]. The first part of the 
lemma is proved. 

Now suppose t is algebraic. By the formula for universal coefficients, we have the 
following decomposing triple: 

0 - -*  Hh (~[, Q)QI~,] @ C - - *  Hk (C, (M)Q[z~I]'@C * 
__~ TorQt~+l] (Hk_i (~/), C) --~0. 

We have the resolvent 

0 - - ~ q ~ - t Q  [z• Pt ~Pk-,+%-, n _ _ , . ~  ,~[z+*]--* - 
[* ]I(~) = H~_,(~),  

Multiplying it as a tensor by C, we obtain 

0 - - *  ~ - ' Q  [z:  +']o~,+,, ~ . . . .  C - - *  ~ ' - ' + % - ' Q  [z• , | C - - *  

It is clear that every factor in Pj which vanishes in C, adds one to the dimension of 

Tot a. A corresponding contribution is also made to Hk(M,Q)Qcz~,I@C. The lemma is proved. 

Proposition i. Suppose A = {roots of A(t)} U {i}. Then for t ~ A, we have bk(M, t) = 

Sk(M) = 0. 

Since M is an open manifold, it is homotopically equivalent to a complex with dimension 
2. Therefore, in ~ it is homotopically equivalent to a complex of dimension 2. That is, 
H3(~) = O. 

Since Cs(M) = O, there are no boundaries in the group C2(M, Q), consequently H2(~, Q) = 
Z2(M , Q), where Z2(M, Q) are two-dimensional cycles, and since C,(~, Q) is a free complex 
over the ring of principal ideals Q[z• we find that H2(M, Q)=~QIzl is a free module. 

Now let H,(M. Q)=ZQ[z•177 
We c o n s i d e r  Hi(M, Z )  a s  a module  o v e r  Z [ t •  The r e l a t i o n s  in  Hi(M, Q)  o v e r  Q [ z  • 

are obtained from the relations in Hx(~ , Z) by discarding those of the relations that are 
linearly dependent (over Q) on the others. Next the relations are reduced to standard diag- 
onal form. It is clear that if A(t) # 0 (and this is, in fact, the case), Hi(M, Q) will be 
a torsion module and A(t) = EjPj (to within a rational factor). 

Let us turn to the null group of homologies. It is clear that multiplication by z rep- 
resents an identity automorphism of H0(M). Therefore, H0(M, Q) =Q[z• - i), and, by 
the lemma, the unit is always a singularity (point of discontinuity) of the Betti numbers. 

Thus, we have proved that the set of singularities of the Betti numbers of the homology 
group with coefficients in the representation Pt coincides with the set {A(t) = 0} U {i}. 
Moreover, from the foregoing argument it follows that, for a general position relation, 

Ofb,,(M. I)=~o(M)=b,(M./)=~,(M) =b,(M, l )r} . (M}.  

I t  r e m a i n s  f o r  us  t o  p r o v e  t h a t  b2(M, t )  = O, where  t # {A( t )  = O} U {1}. By A l e x a n d e r -  
P o n t y a g i n  d u a l i t y  H2(M) = n~  1) ffi O, where  ~ * ( - )  a r e  r e d u c e d  c o h o m o l o g i e s .  T h e r e f o r e ,  t h e  
E u l e r  c h a r a c t e r i s t i c  x(M) = O. Note  t h e  e q u a l i t y  0 = x(M) = b2(M, t )  - b l (M,  t )  + b0(M, t ) .  
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Since bi(M, t) = b0(M, t) = 0, b2(M, t) = 0 as well. The proposition is proved. 

4. Calculation of One-Dimensional Novikov Homologies. By the proposition, there is 
only a single nonzero Novikov number, namely qi(M). This number, it turns out, may be com- 
puted in terms of the Alexander matrix. 

THEOREM. Suppose &(t) = Ii.12, where li is the product of polynomials irreducible over 
Z that occur in the decomposition of &(t) and that have free term i, and 12 is the product 
of the remaining cofactors, while A(t) is a normalized Alexander polynomial with no negative 
powers. 

Then the former group of Novikov homologies may be represented in the form EjS-iA/(Pj), 
where Kj>j = 12. 

LEMMA 2. A system of generators may be selected in the Z[t, t-i]-module Hi(M ) such 
that the Alexander matrix, i.e., the relational matrix, becomes quadratic. 

Progf of the Lemma. Let us suppose that Z [t• a module of Hi(M), is specified by n 
generators and k relations. It is clear that n ~ k and that we have to prove that k ~ n. 
Without ioss of generality, it may be assumed that k = n + i. Since in the passage to 
Q[t• the matrix may be diagonalized, one of its rows, say the last row, is a linear com- 
bination of the first n rows with rational coefficients. We write it thus: 

where mi is an integer. If all the m i are divisible by mn+i, the entire lemma is proved 
and the last row is an integral linear combination of the first n rows. Suppose this is 
not the Case; for example, suppose that m i is not divisible by mn+ i. Let us consider the 
minor obtained by discarding the first row. It is obviously equal to mi'A(t)/mn+ i. By the 
condition &(1) = • this cannot be. We have obtained a contradiction. 

Theilemma is proved. 

LEM~ 3. There are no Z-torsions in the Z[t, t-i]-module HI(M ) (which is equivalent to 
asserting that Hi(~) is a free abelian group). 

Proof. Suppose the Z[t, t-i]-group module Hi(M ) is specified by n generators and k re- 
lations.[ The presence of Z-torsion asserts that an element may be found in the submodule 
of relations divisible by p in Hi(M), but not divisible by p in the submodule of relations. 
This elementl may he represented in the form mie i + ... + mnen, where e i is a generator in 
the submOdule of relations corresponding to the i-th row of the matrix. Let us show a con- 
tradiction by analogy to the proof of the preceding lemma; suppose m i is not divisible by 
p. We r~place the first row of the relational matrix by a linear combination of rows with 
coeffici@nts mi, ..., m n. The determinant is thus multiplied by ml. But since the first 
row is divisible by p, this new determinant will be divisible by p. We have arrived at a 

I 
contradiction. That is, our element is actually divisible by p in the relational submodule. 
That is, lthere is no p-torsion. 

The~e lemmas are, apparently, not new, though I do not know where they have been pub- 
lished p~eviously. 

Letlus now prove the theorem. 

By Semma 3 the Novikov numbers do not vary in the passage to a rational field, i.e., 
they arelequal to the torsion ranks and torsion numbers over S-iA of the module ~Q[z• 
(Pj)A | $ -iA, where HjPj = A(t). If there are polynomials among the Pj that have absolute 

term 1 (as always, it is assumed that the absolute term is the trailing term), following 
localiza~ion these polynomials will vanish. The theorem is proved, that is, those irreduc- 
ible cof@ctors in &(t), and only those cofactors, that do not have absolute term 1 contribute 
to torsion. 

l 
Remark. The Alexander polynomial uniquely determines a Novikov number only if the ir- 

reducibl+ cofactors that contribute to the torsion occur linearily in the expansion of the 
Alexande~ polynomials. In the general case this is not so. It is, however, possible to re- 
fine theitheorem by introducing polynomials &k(t) equal to the greatest common divisor of 

�9 I 

all mino[s of order n - k of the Alexander matrix, which may be supposed to be quadratic, 
of dimen$ion n • n. In this notation A(t) = A0(t ). 
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Using the polynomials Ak(t) , we may obtain any information concerning the Novikov ho- 
mologies. Suppose, for example, that an irreducible cofactor Pj (Pj(0) # i) occurs in the 

decomposition of A(t) raised to the power i; we wish to determine the contribution it makes 
to the torsion. The answer: If and only if k is defined in such a way that Ak(t ) is di- 
visible by Pj whereas Ak+1(t) is not divisible by Pj, the contribution of Pj is equal to 

~=,S-'A/(~")I There is also an obvious procedure for finding s These results may all be 

easily found by passing to a rational field and diagonalizing the Alexander matrix. 

Thus, the final result is as follows. All the groups of Novikov homologies of the com- 
plementary space to a knot in S 3, other than the first, are null, while the first is a tor- 
sion module over S-IA without p-torsions, and the torsion number may be effectively computed 
in terms of the knot polynomials, i.e., essentially in terms of the knot diagram. 

In conclusion, I wish to express my appreciation to S. P. Novikov for having formulated 
the problem, and to A. V. Pazhitnov, for a host of useful suggestions. 
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GROUPS WITH THE MAXIMAL CONDITION 

S. V. Larin 

An example of a group with the maximal condition is an almost polycyclic group (the 
terminology is taken from [i]). It is natural to try to generalize this example by consider- 
ing groups having a subnormal series such that each section is either finite or infinite 
cyclic. However, as our Lemma I shows, the expected extension of the class of almost poly- 
cyclic groups does not result. Lemma 2 establishes that for an almost polycyclic group to 
be nilpotent it is sufficient that each finite factor group be nilpotent. A theorem dividing 
the set of all groups with the maximal condition into three nonoverlapping classes is proved. 
Using this classification, we establish two criteria for a group with the maximal condition 
to be nilpotent. 

In this paper we will employ the following notation, taken from [i]: H TM = <hmlh e H>; 
IG:HI < ~ means that the index in G of the subgroup H is finite; IG:HI = ~ means that the 
index in G of the subgroup H is infinite; Ym(G) is the m-th central of the group G; H' is 
the commutant of the group H; ~(H) is the Frattini subgroup of H; NF(M) is the normalizer of 
the set M in the group F; b a = a-lba and [a, b] = a-lb-lab, where a, b are elements of a 
group; lal is the order of the element a; C(A) is the center of the group A. 

LEMMA i. If a group G has a subnormal series for which each section is either finite 
or infinite cyclic, then G is almost polycyclic and torsion-free. 
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