An arithmetical property of quadratic forms.

by Ledermann, Walter in Commentarii mathematici Helvetici volume 33; pp. 34 - 37

Terms and Conditions

The Göttingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Göttingen State- and University Library.

Each copy of any part of this document must contain these Terms and Conditions. With the usage of the library's online-systems to access or download a digitized document you accept these Terms and Conditions.

Reproductions of materials on the web site may not be made for or donated to other repositories, nor may they be further reproduced without written permission from the Göttingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

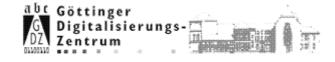
Contact:

Niedersaechsische Staats- und Universitaetsbibliothek Göttingen Digitalisierungszentrum 37070 Göttingen Germany E-Mail: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation in the document. For availability and pricing, please contact:

Niedersaechsische Staats- und Universitaetsbibliothek Göttingen Digitalisierungszentrum 37070 Göttingen Germany E-Mail: gdz@www.sub.uni-goettingen.de



An arithmetical property of quadratic forms

By Walter Ledermann, Manchester

In their paper [1] F. HIRZEBRUCH and H. HOPF have encountered an interesting arithmetical property possessed by certain symmetric bilinear forms

$$f(x,y) = \sum_{i,j=1}^{n} a_{ij} x_i y_j$$
 (1)

that arise in algebraic topology. In the forms which they consider, the coefficients a_{ij} and the variables are integers and det $a_{ij} = \pm 1$; and it is known that there exists an integral vector w such that

$$f(x, x) \equiv f(x, w) \pmod{2} \tag{2}$$

for all x. If τ is the signature of f, then it is a corollary of their topological investigations that

$$\tau \equiv f(w, w) \pmod{4}. \tag{3}$$

It is desirable to give a purely algebraic proof of (3), and I am greatly indebted to Professor Hopf for having drawn my attention to this question, which will be discussed in this note.

In fact, it will be shown that (3) is a special case of a result concerning forms (1) in which the coefficients and variables are rational numbers with odd denominators. This subset, Ω , of all rationals forms a ring, whose elements may be grouped into residue classes modulo any power of 2 by stipulating that

$$\frac{c_1}{d_1} \equiv \frac{c_2}{d_2} \pmod{2^{\alpha}}$$

whenever $c_1d_2-d_1c_2\equiv 0 \pmod{2^{\alpha}}$; since only odd denominators are allowed, this definition evidently does not depend on the representation of the fractions involved. In particular, a fraction is termed even or odd according as its numerator is even or odd; and we note that, if r is odd, $r^2\equiv 1 \pmod{4}$.

The set, V, of n-tuples or "row-vectors" $x = (x_1, x_2, \ldots, x_n)$ $(x_i \in \mathbb{Q})$ is a \mathbb{Q} -module. A change of basis of V amounts to replacing x by the n-tuple $\tilde{x} = xP$, where P is a fixed n-rowed matrix in \mathbb{Q} with odd determinant.

Let f be a symmetric bilinear form which relative to the original basis is expressed as xAy', where $A=(a_{ij})$. After the change of basis, f becomes $\tilde{x}\,B\tilde{y}'$, where

$$B = PAP'. (4)$$

We write $\Delta = \Delta_f = \det A$, and throughout this paper we restrict ourselves to forms with odd determinants, a property which is clearly preserved by the transformation (4).

For a given form f we can in many ways determine a constant vector w such that (2) holds for all x in \mathbb{Q} . Indeed, w may be taken as the solution of the vector equation

$$wA = (a_{11}, a_{22}, \ldots, a_{nn}),$$

this solution being in Q, because det A is odd. For since

$$f(x, x) \equiv \sum_{i} a_{ii} x_i^2 \equiv \sum_{i} a_{ii} x_i \pmod{2}$$
,

we have that

$$f(x, w) = wAx' = \Sigma a_{i,i}x_{i,j}$$

and (2) is satisfied. If \tilde{w} is another vector satisfying (2), then $f(x, \tilde{w} - w) \equiv 0 \pmod{2}$ for all x, so that $(\tilde{w} - w)A \equiv 0 \pmod{2}$. It follows that

$$\tilde{w} = w + 2z, \tag{5}$$

where z is a suitable vector in \mathfrak{Q} . Conversely, any vector of the form (5) satisfies (2). We have that

$$f(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{w}}) = f(\boldsymbol{w}, \boldsymbol{w}) + 4f(\boldsymbol{w}, \boldsymbol{z}) + 4f(\boldsymbol{z}, \boldsymbol{z})$$

Thus

$$f(\tilde{\boldsymbol{w}}, \tilde{\boldsymbol{w}}) \equiv f(\boldsymbol{w}, \boldsymbol{w}) \pmod{4}$$

that is, f(w, w) (though not w itself) is an invariant modulo 4 of f. Our aim is to prove the following

Theorem. Let f be a quadratic form in n variables in \mathbb{Q} with odd determinant Δ and with signature τ . Then 1)

$$f(w, w) - \tau \equiv \Delta - \operatorname{sgn}\Delta \pmod{4}$$
, (6)

where w is a solution of (2).

We remark that, whilst Δ is not an invariant of f, both $\operatorname{sgn}\Delta$ and Δ are invariants mod 4. For in a transformation of the type (4), Δ is multiplied by $(\det P)^2$, which is congruent with 1 mod 4, since $\det P$ is odd.

In particular, when f is unimodular, whether integral or not, we have that $\Delta = \operatorname{sgn}\Delta$, so that (6) reduces to (3).

The theorem is proved by an induction with respect to n which is based on the following simple matrix formula. Consider a partitioning of A, say

$$A = \begin{pmatrix} K & L' \\ L & M \end{pmatrix},$$

¹⁾ As usual, we define $\operatorname{sgn}\varDelta$ to be +1 or -1 according as $\varDelta>0$ or $\varDelta<0$.

where K is non-singular and of dimension less than n. Put

$$P = \begin{pmatrix} I & O \\ -LK^{-1} & I \end{pmatrix}$$

where the identity matrices on the diagonal are of dimensions (in general distinct) equal to those of K and M respectively. Then

$$PAP' = \begin{pmatrix} K & O \\ O & M - LK^{-1}L' \end{pmatrix}. \tag{7}$$

When det K is odd, this transformation is admissible, since P then lies in \mathbb{Q} . Now if not all diagonal elements of A are even, we may, without loss of generality, assume that a_{11} is odd and then put $K = (a_{11})$. If, on the other hand, all diagonal elements are even, then each row of A must contain at least one odd element, or else det A could not be odd. We may then assume that a_{12} is odd and that K is the leading 2-rowed submatrix; for in that case det $K = a_{11}a_{22} - a_{12}^2 \equiv -1 \pmod{4}$, which is certainly odd. Thus, when n > 2, we can always apply a transformation of the type (7), in which the dimension of K is either 1 or 2.

When V is referred to the new basis, f splits and we write

$$f(x, x) = g(x^{(1)}, x^{(1)}) + h(x^{(2)}, x^{(2)})$$
,

where $x = (x^{(1)}, x^{(2)})$ and the dimensions of the vectors $x^{(1)}$ and $x^{(2)}$ are those of K and M respectively²). Evidently

$$\Delta_f = \Delta_g \Delta_h$$
, $\tau_f = \tau_g + \tau_h$,

where suffixes are used to distinguish quantities corresponding to different forms. Also, if $w^{(1)}$ and $w^{(2)}$ are such that

$$g(x^{(1)}, x^{(1)}) \equiv g(x^{(1)}, w^{(1)}) \pmod{2}$$

for all $x^{(1)}$ and

$$h(x^{(2)}, x^{(2)}) \equiv h(x^{(2)}, w^{(2)}) \pmod{2}$$

for all $x^{(2)}$, then $w = (w^{(1)}, w^{(2)})$ satisfies (2).

Leaving aside for the present the cases in which n = 1 or n = 2, we may assume, by induction, that the theorem holds for the forms g and h. Then, since

$$f(w, w) - \tau_{t} = (g(w^{(1)}, w^{(1)}) - \tau_{a}) + (h(w^{(2)}, w^{(2)}) - \tau_{h}),$$

we have that

$$f(w, w) - \tau_f \equiv \Delta_g - \operatorname{sgn}\Delta_g + \Delta_h - \operatorname{sgn}\Delta_h, \tag{8}$$

²⁾ A somewhat similar method of reduction, but in a different context, has been employed by Minkowski ([2], 16-20).

with the convention that henceforth all congruences are mod 4. Now, if r and s are odd, (1-r) (1-s) is divisible by 4, so that

$$r+s\equiv 1+rs$$
.

Hence, in particular,

$$\Delta_q + \Delta_h \equiv 1 + \Delta_q \Delta_h = 1 + \Delta_f$$

and

$$\operatorname{sgn}\Delta_{g} + \operatorname{sgn}\Delta_{h} \equiv 1 + \operatorname{sgn}(\Delta_{g}\Delta_{h}) = 1 + \operatorname{sgn}\Delta_{f}.$$

Substituting in (8) we immediately obtain (6).

It only remains to verify the theorem for the two lowest dimensions. When $n=1, f=a_{11}x_1^2$, where a_{11} is odd. We may then put $w_1=1$ to satisfy (2). Thus $f(w,w)=a_{11}=\Delta$. Since $\tau=\operatorname{sgn} a_{11}=\operatorname{sgn} \Delta$, the relation (6) is certainly true. When n=2, that is when $f=a_{11}x_1^2+a_{22}x_2^2+2a_{12}x_1x_2$, we have to distinguish two cases.

- (i) Assume that a_{11} and a_{22} are not both even, so that we may assume that a_{11} is odd. The transformation (7) can then be applied with $K = (a_{11})$, and f splits into two unary forms. The induction argument is therefore available as before.
- (ii) If a_{11} and a_{22} are both even, a_{12} is necessarily odd and $\Delta = a_{11}a_{22} a_{12}^2 \equiv -1$. Evidently, f(x, x) is even for all x, so that the vector w = 0 satisfies (2). We have therefore to show that

$$-\tau \equiv -1 - \operatorname{sgn}\Delta . \tag{9}$$

When $\operatorname{sgn} \Delta = -1$, the form is indefinite, that is $\tau = 0$, and (9) is true. On the other hand, when $\operatorname{sgn} \Delta = 1$, then $\tau = 2$ or $\tau = -2$ according as $a_{11} > 0$ or $a_{11} < 0$. But $2 \equiv -2$, and again (9) holds in each case.

REFERENCE

- [1] F. HIRZEBRUCH and H. HOPF, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten. Math. Annalen 136 (1958).
 - [2] H. MINKOWSKI, Gesammelte Abhandlungen I (Leipzig 1911).

(Received April 14, 1958)