An arithmetical property of quadratic forms.

by Ledermann, Walter
in Commentarii mathematici Helvetici
volume 33; pp. 34 - 37

0
y

Gottingen State and University Library

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for
noncommercial educational, research and private purposes and makes no warranty with regard to
their use for other purposes. Some of our collections are protected by copyright. Publication and/or
broadcast in any form (including electronic) requires prior written permission from the Géttingen
State- and University Library.

Each copy of any part of this document must contain these Terms and Conditions.With the usage of
the library's online-systems to access or download a digitizied document you accept these Terms
and Conditions.

Reproductions of materials on the web site may not be made for or donated to other repositories, nor
may they be further reproduced without written permission from the Gottingen State- and University
Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper
attribution of the source.

Contact:

Niedersaechsische Staats- und Universitaetsbibliothek Goéttingen
Digitalisierungszentrum

37070 Gottingen

Germany

E-Mail: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes /
monographs in PDF for Adobe Acrobat. The PDF-version contains the table of contents as
bookmarks, which allows easy navigation in the document. For availability and pricing, please
contact:

Niedersaechsische Staats- und Universitaetsbibliothek Géttingen
Digitalisierungszentrum
37070 Gottingen

Germany
E-Mail: gdz@www.sub.uni-goettingen.de

abt Gottinger
(W Digitalisierungs-7"
Goéttingen State and University Library et ?ﬂ“f rum




An arithmetical property of quadratic forms

By WALTER LEDERMANN, Manchester

In their paper [1] F. HirzeBrucH and H. Hopr have encountered an
interesting arithmetical property possessed by certain symmetric bilinear
forms

n
f@y)= 2 a;=y, (1)
i, i=1
that arise in algebraic topology. In the forms which they consider, the coeffi-
cients a;; and the variables are integers and det a;; = + 1; and it is known
that there exists an integral vector w such that

f(z,z) = f(z, w) (mod 2) (2)

for all z. If 7 is the signature of f, then it is a corollary of their topological
investigations that
T =f(w, w) (mod 4). (3)

It is desirable to give a purely algebraic proof of (3), and I am greatly
indebted to Professor Hopr for having drawn my attention to this question,
which will be discussed in this note.

In fact, it will be shown that (3) is a special case of a result concerning
forms (1) in which the coefficients and variables are rational numbers with
odd denominators. This subset, Q, of all rationals forms a ring, whose elements
may be grouped into residue classes modulo any power of 2 by stipulating that

c

b ¢
4,

= E:— (mod 2%)
whenever ¢,dy —d,c, = 0 (mod 2%) ; since only odd denominators are
allowed, this definition evidently does not depend on the representation of the
fractions involved. In particular, a fraction is termed even or odd according
as its numerator is even or odd; and we note that, if r is odd, 72 = 1 (mod 4).
The set, V, of n-tuples or ‘“row-vectors” =z = (2, %;,..., %,) (z; €Q)
is a Q-module. A change of basis of ¥ amounts to replacing = by the n-tuple
z = aP, where P is a fixed n-rowed matrix in Q with odd determinant.
Let f be a symmetric bilinear form which relative to the original basis
is expressed as x4y’ , where 4 = (a,;) . After the change of basis, f becomes
z By', where
B = PAP'. (4)
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We write 4 = A, = detA, and throughout this paper we restrict ourselves
to forms with odd determinants, a property which is clearly preserved by the
transformation (4).

For a given form f we can in many ways determine a constant vector w
such that (2) holds for all z in Q. Indeed, w may be taken as the solution
of the vector equation

WA = (@, Qag, - - -5 Bpp) »
this solution being in Q, because detd is odd. For since
flz,z) = Xa;;2} = Xa;;x; (mod 2),
we have that i '
flz, w) = wdz' = Xa,,z,,

and (2) is satisfied. If w is another vector satisfying (2), then f(z, w — w) =0
(mod 2) for all «, so that (w — w)A4 = 0 (mod 2). It follows that

w=w-+ 2z, (5)

where 2z is a suitable vector in Q. Conversely, any vector of the form (5)
satisfies (2). We have that

f(ib, &}) =f(w’ w) + 4f(w’ 2) + 4f(z’ z) .
Thus

f(w, w) = f(w, w) (mod. 4),

that is, f(w,w) (though not w itself) is an invariant modulo 4 of f.
Our aim is to prove the following

Theorem. Let f be a quadratic form in n variables in Q with odd determinant
A and with signature v. Thent)

flw,w)—7v=4—sgnd (mod 4), (6)
where w is a solution of (2).

We remark that, whilst 4 is not an invariant of f, both sgn4 and A4 are
invariants mod 4. For in a transformation of the type (4), 4 is multiplied by
(det P)2, which is congruent with 1 mod 4, since det P is odd.

In particular, when f is unimodular, whether integral or not, we have
that A = sgn4, so that (6) reduces to (3).

The theorem is proved by an induction with respect to » which is based
on the following simple matrix formula. Consider a partitioning of 4, say

KL
A= (L M)’

!) As usual, we define sgn A to be 41 or — 1 accordingas 4 > 0or 4 < 0.
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where K is non-singular and of dimension less than n. Put

I O
P= (-—LK—1 I)

where the identity matrices on the diagonal are of dimensions (in general
distinct) equal to those of K and M respectively. Then
K o )

0 M — LKL @

PAP = (
When det K is odd, this transformation is admissible, since P then lies in Q.
Now if not all diagonal elements of 4 are even, we may, without loss of
generality, assume that a,, is odd and then put K = (a,,) . If, on the other
hand, all diagonal elements are even, then each row of 4 must contain at least
one odd element, or else det 4 could not be odd. We may then assume that
a,, is odd and that K is the leading 2-rowed submatrix; for in that case
det K = a,,a,, —a}, = —1 (mod 4), which is certainly odd. Thus, when
n > 2, we can always apply a transformation of the type (7), in which the
dimension of K is either 1 or 2.

When V is referred to the new basis, f splits and we write

f(z, z) = g(z®, 20) + h(z®, z@),
where = = (2, () and the dimensions of the vectors 2" and z'® are those
of K and M respectively?). Evidently
4, =4,4;,, 1, =1, + 74,
where suffixes are used to distinguish quantities corresponding to different

forms. Also, if w® and w® are such that

g(zW, 2W) = g (2, w®) (mod 2)
for all ™ and
h(z®, ) = h(z®, w®) (mod 2)

for all @, then w = (w', w®) satisfies (2).
Leaving aside for the present the cases in which » = 1 or n = 2, we may
assume, by induction, that the theorem holds for the forms g and A. Then, since

fw, w) — 7, = (g(w®, w®) —17,) + (h(w®, w®) —1,),

we have that
flw,w) —7,=A4,—sgnd, + A4, —sgnd,, (8)

%) A somewhat similar method of reduction, but in a different context, has been employed
by MiNnkowskI ([2], 16-20).
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with the convention that henceforth all congruences are mod 4. Now, if r and s
are odd, (1 —r) (1 — g) is divisible by 4, so that

r+s8s=1+4rs.
Hence, in particular,
4, +4,=14+4,4,=1+4 4,
and
sgnd, 4 sgnd, =1 4 sgn(4,4,) = 1 + sgnd, .

Substituting in (8) we immediately obtain (6).

It only remains to verify the theorem for the two lowest dimensions. When
n =1, f = a,, 2}, where a,, is odd. We may then put w, = 1 to satisfy (2).
Thus f(w,w)=a,, =4 . Since t = sgna,, =sgnd, the relation (6) is
certainly true. When n = 2, that is when f= a2} + a,,2} + 2a,,2,%,,
we have to distinguish two cases.

(i) Assume that a,, and a,, are not both even, so that we may assume that
@,, is odd. The transformation (7) can then be applied with K = (a,,), and f
splits into two unary forms. The induction argument is therefore available
as before.

(ii) If a,, and a,, are both even, a, , is necessarily odd and 4 = a,,a,, —a},
= —1. Evidently, f(z, z) is even for all z, so that the vector w = 0 satisfies
(2). We have therefore to show that

—1=—1—sgnad. (9)
When sgn4 = —1, the form is indefinite, that is v = 0, and (9) is true.
On the other hand, when sgnd =1, then v = 2 or v = —2 according as
a,,>00r a,<0. But 2 =—2, and again (9) holds in each case.
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