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A study is made of the problem of extending groups by monoids. Given a group
K and a monoid Q, a category Ext(Q, K) is defined and studied by means of
functors, natural transformations, factor systems, and various homological concepts
which generalize from group extension theory. Comparisons are made between
groupby-monoid extensions and both group extensions and #-coextensions of

monoids.

In this paper we study normal extensions of a group K by a monoid Q. By
a normal extension of K by Q is meant a monoid S containing K in its group
of units G(S) so that K is a normal subgroup of S and S/K=Q. We study
such extensions by reducing various questions we may ask about them to
questions involving functors, natural transformations, and the computations
of certain cocycle and cohomology groups. In this aspect our study will be
quite similar to classical group cohomology theory as found in Chap. 4 of
[8].

As was shown in [5], the part of monoid theory corresponding to group
extension theory is _#-coextension theory. For _#-coextensions, most of the
concepts of group extension theory and group cohomology generalize.
However, there is only modest success in generalizing many of the
cohomological results to _#-coextensions. This is not the case for the subject
of this paper. Almost all of the results of classical group cohomology can be
successfully generalized. Hence group-by-monoid extension theory is in some
sense a halfway point between group extension theory and & -coextension
theory. Thus this extension theory should prove to be useful in establishing
the structural similarities and differences between the Schreier—Eilenberg—
MacLane theory of group extensions and -#-coextension theory for monoids.

The first section of this paper is comprised mainly of definitions and some
basic lemmas. In particular, the definition is given of the extension category,
Ext(Q, K). In the second section, which consists of the main part of this
paper, we study this category by means of a generalized Schreier—Eilenberg—
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2 JONATHAN LEECH

MacLane theory. In the third section we look at the case where the monoid

Q is idempotent generated and make some remarks about central extensions
 S/K.

of groups by monoids. "The results obtained there are useful in finding some
differences between the extension theory of this paper and group extension
theory. In the last section we study the ways in which group-by-monoid
extension theory fits into o2~ -coextension theorys

In order to save space and avoid a lot of repetition we assume some
familiarity with the basic results of [5]. Nonetheless, we have repeated a
minimal amount of material from [S] in order to hopefully ensure some
smoothness in the exposition. In our notation we follow both [1] and [5].

Finally, we make a few historical remarks about some of the previous
work on the subject. Normal extensions of groups by monoids were first
studied by the author in his unpublished dissertation (UCLA, 1969).
Modified versions of Lemma 1.3, Lemma 1.6, Theorem 2.2, Lemma 2.5, and
Theorem 2.13 first appeared there. In 1971, Fulp and Stepp in a pair of
papers [2,3] studied (using our terminology) central extensions of abelian
groups by monoids under the restriction that all groups and monoids under
consideration were compact and all homomorphisms were continuous. Some
of our results in the third section are mild generalizations of the algebraic
(i.e., discrete) analogues of their results. In 1971-1972 the author studied the
_#-coextension problem and his results (which appear in [5]) have strongly
influenced the approach taken in this paper. Quite recently, Grillet has
shown in [4] the relevance of obstructions in the third cohomology group to
our etension theory. His result, together with those of this paper, completes,
to a large extent, the task of generalizing classical group extension theory to
both group-by-monoid extension theory and -#-coextension theory.

1. NORMAL SUBGROUPS AND NORMAL EXTENSIONS

DerINITION 1.1, If K is a group and S is a monoid, then K is called a
normal subgroup of S if K is a subgroup of G(S), the group of units of S,
and if for all x € S, xK = Kx. Under these conditions we also say that K is
normal in S.

1.2. If K is a subgroup of the group of units of S, then as for groups we
may talk about left cosets of K in S, i.e., subsets of the form xK. As in the
case for groups, left cosets form a partition of the monoid S. Likewise, we
may talk about right cosets of K in S and the right coset partition of S.
When K is normal in S, left cosets and right cosets coincide, i.e., xK = KXx,
and the usual subset multiplication on 2K yields

xKyK = xyKK = xyK.
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Hence the coset decomposition of S by K is a congruence decomposition.
The corresponding quotient monoid, i.e., the monoid of cosets, is denoted

LEMMA 1.3. LetKbea normal subgroup of S and let m: S — S/K be the
canonical morphism: X = xK. Then the coset congruence on S is contained in
the Green’s relation & and m: S = S/K is an # -coextension.

Proof. xK<xG& #(x) and Kx& Gx < #(x). Hence xK= Kx <

Rx)NL(x)= H(x).
1.4. Hence we can factor out a normal subgroup K to obtain S/K. If
S/K = Q, then this isomorphism induces an epimorphism p: S = Q whose

~ corresponding congruence on S is precisely the coset congruence induced by

K on S. Thus we call S a normal extension of K by Q. In a more formal
fashion we define a normal extension of K by Q to be a short exact sequence
K ! S P Q, where i is a monomorphism from K into G(S) such that iK is
normal in S, p is an epimorphism of S onto Q whose induced congruence on
S is precisely the coset congruence on S induced by iK. Extensions will be

denoted by triples of the form (i, S,p)-

1.5. It is clear that we actually have a category of normal extensions of
K by O, Ext(Q, K), if we define a morphism from (i, S, p) to (J, S"s g) to be
a monoid morphism, f: S - S’ such that the following diagram commutes:

Sl

In particular, if fis an isomorphism, then we say that the t?;vo extension§ are
isomorphic since it is clear that f~' must also be a morphism of extensions.
The first observation to be made about the morphisms of Ext(Q, K) is the
following analogue of the short five lemma.

Lemma 1.6. Let f: (i, S,p)— (j,S',q) be a morphism of extensions if’l
Ext(Q, K). Then f is an epimorphism. Moreover, ifg:,SHa)~ gi, S,p) is
also a morphism, then f and g are both isomorphisms. In particular, all
endomorphisms of extensions are automorphisms.

Proof. For each x€ Q let XES be chosen so that p(X)=X. T}}en
gof(¥)=p(Xx)=x and setting X =f(X) we get q(x) = x. Now S=='U x(lK,)
and S’ = U £(jK). Hence f5=/[U %(iK)) = U f&®)f(K) =V X(jK)=S"
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and f is surjective. To prove the rest of the lemma, we need only prove that
endomorphisms of extensions are automorphisms. Let f be an endomorphism
of (i, S, p). Then f must be an epimorphism. Suppose f (%k') = f(k.). Then
x=pof(%ki)=pof(Pkt)=y. Since foi=i, the above equation now

becomes f(¥) ki =f(%) k,. Since p o /= p, we_have f(X) = kiz and hence our

equation becomes k'%k} = k'xk}. Cancelling k' yields %ki = xk’. Hence f'is

bijective.
The second observation to be made about Ext(Q, G) is:

LEmMMA 1.7. The map Ext(Q, G) —»#(Mon,) defined by (i, S,p)— (S,p)
and f— f is a well defined forgetful functor.

As a consequence of Lemma 1.7 we can use the results of [5] to give a
description of the objects and morphisms of Ext(Q, K). This is done in the
next section, and as a consequence of results presented there we may deduce
the main theorem on the morphism structure of Ext(Q, K) which we state
here:

THEOREM 1.8. All morphisms of Ext(Q,K) are epimorphisms. All
automorphism groups are abelian. If Hom(i, S, p), € j»S'q)) is nonempty,
then the action of Aut(j,S’,q) on this hom-set given by morphism
composition is simply transitive. In this situation, for each automorphism 6 of
(i, S, p) there exists a unique automorphism 0 of (j,S’',q) such that for all
extension morphisms f: S— S', 0" o f=fo 6. Finally, all endomorphisms of
Ext(Q, K) are automorphisms.

1.9. We have already seen the first and last statements of the above
theorem. The last statement also must follow from the simple transitivity
assertion, since then every endomorphism must differ from the identity
morphism by a unique automorphism. From the simple transitivity,
epimorphism, and abelian assertions everything else must also follow. For by
simple transitivity, for given f and 6 there exists a unique 6’ such that
' o f=fo 6. If another extension morphism g is given, then g=wuo f for
some automorphism u and hence 6’ o g=6"ouof=uc¢’ of=uofof=
go® and the map -6’ is invariant of f. Thus we need only show
abelianess and simple transitivity.

1.10. When Q is a group, then all normal extensions of K by Q are
groups. In this case Theorem 1.8 reduces to the well known fact that
Ext(Q,K) is a groupoid (i.e., a category of all whose morphisms are
isomorphisms), all of whose automorphism groups are abelian since they are
all isomorphic with various groups of one dimensional cocycles of Q with
coefficients in ZK, the center of K. Here the map -6’ is just the map
6 - f9f ~', where f is any isomorphism in the hom-set.

EXTENDING GROUPS BY MONOIDS 5
2. THE STRUCTURE OF Ext(Q, K)

In this section we use the results of [5] to study Ext(Q, K). This is done
by using certain group valued functors to construct a full subcategory of
Ext(Q, K) such that every object of Ext(Q, K) is isomorphic with an object
of this subcategory. We begin with a construction.

2.1. Let £(Q) and #(Q) be the - and #-quasiorders on Q. Let Gr
denote the category of groups. We call a pair of functors F: & (Q) - Gr and
G: #(Q) - Gr compatible if for all x € 0 we have F(x) = G(x), and denote
compatible pairs of functors by (F, G): (£(S), Z(S)) - Gr. We call the pair
(F, G) surjective if for all morphisms x>, y [x >4 y] we have F(x>4)
[G(x >4 )] being an epimorphism from F(x) onto F(y). In what follows,
F(x>, y) will be denoted by F’ and G(x >4 ») will be denoted by Gf‘.' If
(F,G)is a compatible pair of functors, then a factor system for (F, G)is a
function @: Q X @ — U ,eq F(x) such that for all x,y € @, a(x,y) € F(xp).
Throughout the paper, (F,G,a) denotes a compatible pair of functors
together with a factor system. Given a triple (F, G, a) one can construct a
multiplicative system Q X, (F, G) as follows: the underlying set is {(x,a)|
xE€ Q,a € F(x)} and the multiplication is defined by {x,a){y, b) = {x,
G¥(a) a(x,y) Fy (b)). This multiplication need not be associative, but when
it is, Q X, (F, G) is a monoid whose identity element is (1, (1, 1)~'). When
associativity holds, then a is called an associative factor system and
(F, G, a) is called an associative triple. 1t is shown in [5] that there is no
loss in generality in assuming that a(1, 1) = Lz, and if a is associative, this
forces a(x, 1) = a(l,x) = 1g for all x € S. Such an a is called unitary and
(F, G, a) is called a unitary triple.

We are now ready to construct objects in Ext(Q, K).

TueoREM 2.2. Let (F,G,a) be a unitary associative triple such that
(F, G) is surjective and F(1) =K. Define i: K~ Q X, (F, G) by i(k)=(1,k)
and define m: Q X, (F, G) = Q by n(x,a) = x. Then

K-5H0x,(FG—¢
is a normal extension of K by Q. Moreover, every normal extension of K by
Q is isomorphic to an extension constructed in this fashion.

Proof. By Lemma 1.7 we know that if (i, S, p) is a normal extension of K
by Q, then in particular (S,p) is an #-coextension of Q. Thus b.y
Theorem 3.9 of [5] there is an isomorphism over Q of (S, p) with a pair
(Q X, (F, G), n) for some associative unitary triple. Since

K=p ‘(D= '(1)=F()




6 JONATHAN LEECH

we may assume that F(1) = G(1) =K. If i: K > Q X, (F, G) is defined as in

the theorem, then it is clear that we have

>
R

0 X, (F, G)

commuting, so that (i, @ X, (F, G), ) is in Ext(Q, K) and is isomorphic with
(i, S, p) in this category. Thus all parts of the theorem follow when we prove
that an associative unitary triple (F, G, a) with F(1) = K yields an object
(i, Q Xq4 (F, G), 7y in Ext(Q, K) if and only if (F, G) is a surjective pair.

Asserting that (i, Q X, (F, G), n) € Ext(Q, K) is clearly equivalent to
asserting that for all x€ @, a € F(x) we have

K{x,a)={x} X F(x)=n""(x) = (x,a)K.

But K(x, a) = {{x, G{(k)a): k € K}. Clearly this equals 7~ '(x) if and only if
G* is surjective. Dually 7~ '(x) = {x, a)K if and only if F{ is surjective. Thus
(i,Q X, (F,G),m)is a normal extension if and only if for all x € Q, both Fy
and G are surjective. But the latter imply that both F and G are surjective.
For all x,y € Q we have F}*o Fi=F}* and G¥ o G¥ = G7*. But if F}* and
G*¥ are surjective, then so are F** and G}’. Thus both F and G are
surjective. This proves the theorem.

2.3. Let F: Y(Q_)—+Gr. Then C!(f) denotes the set {§ € [ [.cq F(X):
¢(1)=1}. Two unitary triples (F,G,a) and (F',G',B) are said to be
equivalent if F=F', and there exists ¢ € C'(F) such that

(i) G;y ___( )c»(.v) ° Gi ° ( )m(x)—' for x}y ¥,
() B y)=0(xp) " GPB()) alx,y) F7@(1)):

where ( )° denotes the conjugation b~'( )b. We denote this relationship by
.(F’, G',B) = (F, G,a)° =(F,G,, a,). When (i) and (i) hold, then there is
induced an isomorphism of multiplicative systems 0*:Q X, (F,G)=
Q X (F', G") defined by ¢*(x, a) = (x, ¢(x)"'a). Since (F',G') is surjective
if and only if (F,G) is, and f is unitary if and only if a is, we see that
(F, G, a) satisfies the conditions of Theorem 2.2 if and only if (F’,G',5)
does, in which case it is an easy check to see that ¢* is an isomorphism of
normal extensions. We call these isomorphisms, equivalences. Note that if we
c(:lef;r;i —(Z*E ?‘(F) by —g(x)=¢(x)"", then (F,G,a)=(F' G',B)"° and

and for all x,y€Q, B(x,y)=

 of Ext(Q, K). If o

~ Moreover, if f1 O X, (F, G)
 that for all x, f(x,1)= (x,

(F',G',p)tobea collection of
all u, x,

 defined by 0*(x, g) = (X, o(x)[g]). o*isa
! lemma

EXTENDING GROUPS BY MONOIDS 7

we define a natural transformation, o: (F, G,a)—
morphisms {o(x): F (x) = F'(x)} such that for
v € Q the following diagram commutes:

2.4. As in [5]

_ " Fux)

a(ux)

F(xv) e——g——— F(x)

la(xv) la(x)

Fw) 2 F'(x) _ B Fr(ux)

o(xy)|a(x,y)]. Moreover, in this paper we
make the added restriction that ¢(1) is the identity map on F(1)=F'(1)=K.
¢ induces a map on algebraic structures, 6*: 0 X, (F,G)~ 2%, (F',G")
homomorphism and the following
yields the important facts about o*.

Let (i, Q X, (F,G), n) and (i, Q Xg (F', G'), m) be objects
(F,G,ay— (F', G',p) is a natural transformation, then it
is a morphism in Ext(Q, K) such that o*(x, 1) =(x, ).
- Q Xy (F',G') is an extension morphism such
1) then f is the only morphism with this property
both fand o

LEMMA 2.5.

is unique and o*

and f=o* for some unique natural transformation, 0. Finally,
are surjective (o(x): F (x)— F'(x) is surjective for all x).

Proof. If ois a natural transformation then for all x € S the following
diagram commutes:

F(1) =K== F'(1)

P'fl IF i
o(x)

Fx) —29— F'(x).

Since F7 is surjective, o(x) is uniquely determined. Since Fi* =0(x) o F} is
surjective, so is o(x). The rest of the lemma is an immediate consequence of
these two facts and Lemma 3.31 of [5] which is the #(Mon,) version of this
lemma.

From our proof we also get:

ProposITION 2.6. If F,F": £(Q) - Gr are surjective functors such that
F()=K=F'(1), then if there exists a natural transformation o: F— F’
such that a(1) = idy, then o is uniquely determined.

2.7. If such a natural transformation exists, then we denote this by
F— F. If G: #(Q)—Gr is a surjective functor such that (F,G) is a
compatible pair, then the question arises as to whether or not there exists a
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5@%%/

surjective functor G': #(Q) — Gr such that (F',G')is a compatible pair and
the unique natural transformation a: F —» F' becomes a natural transfor
mation of compatible pairs o: (F, G)—- (F', G'). Clearly a necessary and
sufficient condition for this is that for all x,y€Q, G¥ Ker(o(x)) S
Ker(a(xy)). Then when this occurs, G is defined for all x,y € Q to be the\
unique morphism which makes the following diagram commute: .

o

o(x)

Ker(o(x)) — F(x) F'(x)

lc’;y ! l(;';y

Ker(o(xy)) —— Flxy) =25 F/(xp).

X
GY

If o can be extended to (F,G) and « is an associative factor system for
(F, G), then if we define «, by aa(x,y)za(xy)[a(x,y)] then a, is an_
associative factor system for (F', G') and 6*: Q X, (F, G)- Q X,, (F', G')
is a morphism of extensions. We denote the triple (F’,G’,aa> thus
constructed by (F, G,a)". Clearly all morphisms of Lemma2.5 are
morphisms of this type.

2.8. We are now in a position to describe all morphisms from
(i, Q X, (F,G),m) to i, @ X5 (F',G"),m). If f is a morphism, then /
determines an element ¢ € C 1(F") defined by the equation f(x, 1) = (x, ¢(x)).
From 2.3 we see that ¢*of is a morphism from (i, @ X, (F; G), ) to
i, Q Xz, F' G.), m) such that ¢* o f(x, 1) = (x, 1). Hence by Lemma 2.5
we have ¢* o f=0%*, where 0 is the unique natural transformation from
(F, G, a) to (F', G', ). From 2.7 we must have (F',G',B)° = (F, G, a)’.
We obtain the following theorem:

THEOREM 2.9. There exists an extension morphism from Q X, (F,G) to
Q X, (F',G") if and only if
(i) F—»gF'
(i) Ifo:F—-F'is the unique morphism such that o(1) =
triple (F, G, a) can be Sformed.

id , then the

(iii) There exists ¢ € C\(F') such that (F, G, )" = (F',G",B)°.
Under these conditions, the homomorphism set is
(6*~1 o o* |9 € C'(F) and (F, G, a)’ = (F', G, B}

Finally, the decomposition of each morphism into ¢* ' oo™ is unique.

We are now ready to compute the automorphism group of an extension.

x4, then
into centers, G (¢(x)) and

EXTENDING GROUPS BY MONOIDS 9

TueoreM 2.10. Let (i, Q Xqo (F, G),n) bea normal extension of K by Q.
Let Z'(F, G) denote the subset of C'(F) consisting of all ¢ such that
(i) forallx€ 0, ¢(x) € Z(F(x)).
(i) forall x,y€Q $(xy) =GY @) F (@)

Then Z'(F,G) is an abelian group under pointwise addition, i.e.,
@ +wv)x)= ¢(x) y(x). Moreover, Z'\(F, G) = Aut(i, @ X, (F, G), ) under

_ the map o—0*.

Proof. We first note that since ¢(x) and ¢(y) lie in the centers of their
respective groups, ( )@ and ( ) are the identity automorphisms, and if
in 2.3(4) G°=G. Since epimorphisms of groups take centers
F2(6(»)) lie in the center of F(xy). Hence by (ii)
above, 2.3(ii) becomes a,=a. Thus (F,G,a)® = (F, G,a) and ¢*€E
Aut(i, @ X, (F, G), . If ¢vE Z'(F,G), then y* o y*(x,a) =
(x, w(x) " o) ey =% (0 F w)(x)~'a) = (¢ + ¥)*(x.a) so that ¢ —¢* is
a monomorphism of groups. By Theorem 2.9 above, we must have
Aut(i, @ X, (F, G), 1) = {¢* € C'(F)| (F, G, a)® = (F, G, a)}. For such o,
2.3(i) tells us that G} =( )*™ o G%. Since G} is surjective, ( )°¥ =g -
Thus for all x € Q we have o(x)E Z(F(x)). Again, surjectivity of F and G
implies G’ (¢(x)) and F (@) lie in the center of F(xy). Hence 2.3(ii),

a(x, y) = 9(xy) "' G¥(9(x) a(x,») F} (),
becomes ¢(xy) ' GY ($(x)) FY(¢(y) =1 Hence ¢ € Z'(F, G).

If o: (F, G, &)= (F', G', ), then

COROLLARY 2.11.
(i) Hom({i, @ Xo (F, G) 1), G, Q X5 (F', G, m) =Z'(F, G)*oo*.
F', G') defined by

Moreover, ¢ induces a homomorphism o': Z' (F, G) - Z'\(
o' (9)(x) = 0(x)[6(x)] such that for all $ € Z'(F, G), o*og*=0'(P)* oo™
Finally. if ©: (F', G’ By~ (F".G"7), $ € 7\, G') and y € Z'(F",G"),
then

(i) (y*or*)o(9*e0®)= (v +1'9)* o (z0)*.

Proof. The hom-set of (i) above must consist of those ¢* o o* for which
(F',G'.B)°* = (F',G',B), i.e., those ¢*oo* withg € Z'(F',G"). The rest of
the corollary follows from straightforward computations. (Or else, see 3.35

of [5].)

2.12. Iff: (i, S,p)— U, S'q)
it is possible to find triples (F,
mation a: (F, G, a)~ (F',G",B),
diagram

is a morphism of normal extensions, then
G, a) and (F',G'.B), a natural transfor-
and a pair of isomorphisms such that the
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(i, 8,p) = (i, 2 X, (F, G), )
1 I
(U, S, q) =i, Q Xz (F', G"), )
commutes. Hence many of the results of this sétion may be stated in full

generality. From this diagram and Theorem 2.10 and Corollary 2.11(i) we
obtain Theorem 1.8.

We now turn our attention to the statements of other analogues of results
from group extension theory. We shall not furnish some proofs, since they

are furnished elsewhere.

restrictions of a group-valued functor defined on & (Q) if and only if for all

x, V€ Q, a(x,y) € ZF(xy). Suppose (F, G) are restrictions of such a functor,
denoted by F also. Then the set of all associative factor systems for F forms

an abelian group, denoted Z*F, where addition is defined pointwise, i.e.,
(a + B)(x,y) = a(x,y) B(x,y). Let B2F denote the set of all factor systems ¢
defined by

8¢ = GY (9(x)) ¢(xp) ™" F}7 (1)),

where ¢ € C'(F) is such that ¢(x) € ZF(x) for all x€ Q. Then B*F is a
subgroup of Z’F, and two extensions Q X, F and Q X F are isomorphic if
and only if @ — B € B*F. Finally, if F is abelian group-valued, an extension
O X, F splits if and only if a € B*F. (See 3.47, 3.53, 5.18 of [5])

Naturally one calls the second cohomology group H?F = Z*F/B*F the
group of F-extensions of K by Q.

2.14. Suppose we are given a compatible pair of surjective functors
(F, G) for which F(1) =K. The question arises as to whether or not there
exists an associative factor system a belonging to (F, G) so that one can
form an extension Q X, (F, G). From 3.9 I of [5] it is clear that a necessary
condition for an a to exist is that for all u, x, v € Q, Fi3" o G" and
G o F** differ only by an inner automorphism of F(uxv). Grillet has
called such pairs weakly coherent (as compared with coherent pairs (F, G)
where FYX o G = G'*° o F** for all u,x,v € Q, ie., F, G can be extended
to a functor F: Z(Q) - Gr). If (F, G) is a weakly coherent pair, then the pair

(ZF, 2G), where ZF(x) = ZG(x) = the center of F (x), is a coherent pair of

functors with a unique extension to all of Z(Q) denoted ZF and called the
center of (F, G). Note that the group Z'(F, G) of 2.10 is really the group of
1-cocycles of the center of the pair (F,G) in that theorem. Likewise the
groups B2F, Z'F, and H’F are really the groups of 2-coboundaries, 2-
cocycles, and the second cohomology group of ZF. Grillet has shown that if
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(F,G) is a weakly coherent pair of functors, then one can form an
 obstruction, Obs(F, G), lying in the third cohomology group of ZF. He

obtains the following generalization of a classical result of group extension

_ theory.

THEOREM 2.15 (Grillet [4]). Let (F,G) be a weakly coherent pair of

functors and let ZF:Z(Q)— Ab be the center of (F,G). Let Obs(F,G) €
IBZF denote the obstruction formed from (F, G). Then (F, G) possesses an

associative factor system if and only if Obs(F, G)=0.

2.16. Suppose that (F, G) has an associative unitary factor system. We
can talk about the set of extensions Ext(F, G) = {(i, @ X, (F, G), ny}. If ZF

i h ist Il defined ti
TuroreM 2.13. Let (i, Q X, (F.G). ) € Ext(Q, K). Then (F,G) are is the center of (F, G), then there exists a well defined group action

Ext(F, G) X Z*(&F) - Ext(F, G),

(i, @ Xy (F,G),m), )= (i O Xo i (F,G),n). Indeed, if

given by

B E€ Z*(ZF), then it is an easy check using 3.9 I of [5] to see that a + f is
_also an associative unitary factor system for (F, G). Notice that this action is

semiregular, i.e., a + f = a if and only if #=0. It turns out that this action is

also transitive. For suppose that a, a’ are associative unitary factor systems
_ for (F, G). Then the epimorphisms F}’ o G} and G}’ o FY are related by

FyoGl= ()" o GY o Fy
— ( )a’(x,y) ° G«;y ° F«lv.

. Hence there exists a 2-chain f(x, y) of ZF defined by a'(x,y)=alx,y)+
~ B(x,y). Plugging a(x,y) + B(x,y) into 3.91 of [§] it is easy to see that

B E Z*(ZF). Hence our action is regular, or simply transitive. Using

~ Theorem 2.9, it is easy to see that two extensions (i, @ X, (F, G),m) and
- (,Q X, (F,G),n) are isomorphic if and only if a and differ by a

coboundary in B*(ZF). To sum up:

Tureorem 2.17. Let (F,G) be a weakly coherent pair of functors for
which Ext(F, G) is not empty. Then the action of Z*(ZF) on Ext(F,G) is
simply transitive. Two extensions of Ext(F, G) are isomorphic if and only if
they lie in the same orbit of B2(ZF). Hence there is a bijection between the
isomorphism classes of Ext(F, G) and H*(ZF).

2.18. From Theorems 2.15 and 2.17 it follows that if (F, G) is a weakly

~ coherent pair for which F(x) is centerless for x € 0, Ext(F, G) consists of

precisely one extension. Note that this does not follow if we just assume that

F(1)=K is centerless.
We conclude this section with a description of the functorial aspects of the

above theorem.
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G') be a natural transformation of compatibl
in Lemma 2.5,

2.19. Let o: (F, G)— (F',
pairs of surjective functors such that o(1)=idg. As

weakly coherent pair, then soO is (F', W
A(u, x, v) € F(uxv) is defined for all u,x,v € Q such that

() (Y= o Firvo G = Gi o F™
Then setting B(u, X, v) = o(uxv)[A(u, x, V)] EF '(uxv) it is easy to show that

(“) ( )B(u.x,v) o F;;jxv ° G;xv — G;ng ° F;ux.
Indeed composing (i) with o(uxv) on the left and pulling o to the right yields
(ii) composed with o(x) on the right. Since o(x) is surjective, cancellation
yields (ii). Likewise, if @ is an associative unitary factor system for (F, G)
and one sets a,(x, ) = o(xy)[a(x, N
associative  unitary  factor  system for (F',G') and that
o*: (i, @ X, (F, G),m)—~ i, Q Xq, (F' G'),m) is a morphism in Ext(Q, K).
Finally, if (F,G) and hence (F',G") are weakly coherent, then under
restriction o becomes a natural transformation g: ZF - ZF'. This is a conse-
quence of the fact that o(x) is surjective and thus o(x)[BF(x)] < ZF "(x).
Thus we obtain induced maps o’ Z2(ZF) - Z*(&F’) and H*(o): H*(&F)~
H*(ZF').

L)

TueoReM 2.20. Let o: (F,G)~ (F',G') be a natural transformation of
surjective pairs such that o(1) =idy. If (F, G) is weakly coherent then so is
(F', G"). If Ext(F, G) is nonempty then so is Ext(F', G') and o induces a map
Ext(c) between these sels defined by QX,(F, G)—- Q X, (F', G’)
Moreover, a*:Q X, (F,G)—= QXq, (F',G') is a morphism of extensions.
Finally, the following diagram commutes; i.e., (Ext(0), 0?) is a morphism of
actions,

Ext(F, G) X Z(ZF) — Ext(F,G)

Ext(a)l laz

Ext(F', G') X ZX(ZF') — Ext(F', G'),

Ext(o)

and Ext(o) is isomorphism class preserving.

3. CENTRAL EXTENSIONS AND THE CASE
WHERE Q IS IDEMPOTENT GENERATED

LEmMMA 3.1. Let K be a normal subgroup of S. Then K centralizes the
submonoid of S generated by its idempotents, (E(S))-

o(x): F(x)> F ’(x) must be surjective. It is easy to se¢ that if (F,G) is a 1
G') weakly coherent. For suppose

then it is easy to show that a, is an

e
i
.
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Proof. Let a € E(S). Then Ka = aK < G(a), the maximal subgroup of a.
. Hence Ka = aKa=0aK, and for all k € K we have ka = aka = ak. Hence K
centralizes E(S), and thus (E(S))-

TuEOREM 3.2. Let .7(Q) be the J -quasiorder on Q and let
F:.7(Q)— Gr be a surjective functor such that F(1)=K. Let a be an
. associative unitary factor system for (F1£(Q),F | Z(Q)). Set QX,F=
OX,(F |, F| #). Then a € Z*(ZF). If Q is idempotent generated, then

each normal extension of K by Q is isomorphic to one constructed in this
_ fashion, and moreover, for all such F, Z L(F) is trivial. Thus if Q is idem-

' potent generated, all hom-sets of Ext(Q, K) are either singletons or empty. In
 particular, all automorphism groups are trivial.

Proof. The first part is a consequence of Theorem 2.13. For the second
part, let Q be idempotent generated and let K be a normal subgroup of S
_ with S/K = Q under p. We construct a lifting x » % Q to S as follows. For
~ each e € E(Q), p~'(e) is a subgroup of S with idempotent &. Set &= é. For
each x € Q, choose one Expression of x as a product of idempotents, x =
e e, Set X=e e, Clearly {X|x € Q}<(E(S)) and hence by
Lemma 3.1, {X¥|x € Q} and K commute elementwise. Let X be the right
_ structure functor on Z(S) corresponding to the coset congruence of K.
_ Consider Z | 2 ((E(S))). Since (E(S)) is idempotent generated 1 is an initial
object in 2(S), and hence for all u,v€ (E(S)) we have 2, 1,v)=
Z(uv, 1, 1) =Z(1, 1, uv). (See [7].) Let u, u’, x, v, v’ € (E(S)) be such that
uxv = u'xv’. Then '

-

Z(u, x,v) 0 Z(x, 1, 1) = Z(ux, 1,v) = Z(uxv, 1, =Z@u'x’, 1,1)
=Z(u'x, 1,0")=2ZW,x, v')o Z(x, 1, 1).

Since Z(x,1,1) is an epimorphism we can cancel to obtain Z(u,x,v)=
Z(u',x,v"). Hence Z | 2((E(S))) must factor through # ((E(S))). Let
a(x, y) € Z(xy) be such that Xy =Xy - a(x, ), where X,y € Q. Then for all
k € K we have (using the exponential notation of 3.5 of [5]),

3 - a(x,y) KD = (o - a(x, ) k= x5k =KXy
= Ky - a(x,y) =xy - kP a(x, )

=xy - k" Da(x, p).

Since (X7, 1, 1) is surjective, a(x, y) must lie in the center of Z(xy). Thus by
3.9 of [5], the (F, G, a) used to parametrize (i, S, p) must be such that (F, G)
are restrictions of a functor defined on S (Q)anda€Z 2(F). Denoting this
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extension by F also, we are done with the second part. For the final part, let

¢ € Z'(F). Then for all e € E(Q) we have,
g(e) = g(e?) = F*(d(e)) Ff(g(e)) = d(e)™.

Hence ¢(e) = 1. Finally let x=¢e,e, :-- ¢,. Then

¢(x) = U F:,-¢(ei) = lpo»
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construct functors from .7 (Q) to Gr, as well as natural transformations
between them. Indeed, if u: .7 (Q)— R2(K) is an order morphism, then define

 F,:.7(Q)— Gr by:

(i) Fu(x)=K/u(x).
(i) If x>, y then F} . F,(x)— F,(y) is the canonical epimorphism

' induced by the inclusion of pairs, (K, u(x)) < (K, u(y)).

If u,v:.7(Q) — 2(K), then it is easy to see that there exists a (necessarily

~ unique by Proposition 2.6) natural transformation o:F, - F, such that

so that Z'(F) is the trivial group.

3.3. Just because the first cohomology group of a Z(S)-domained,
abelian group-valued functor of an idempotent generated monoid always
vanishes, one should not assume that the second cohomology group must
vanish. The homological reason for this lies in the fact that our cohomology
comes from {Ext"(Z, )} in the abelian category Ab”*® and not from
{Ext"(Z, )} in the category Ab“®. (See the first chapter of [5].) Hence
although Ext!(Z, ) of Z(S)-domained functors may vanish, Ext'(Z, ) need
not vanish on all of Ab®'S. Likewise, using the appropriate examples of
idempotent generated monoids, it is easy to see that it is not always possible
to embed a normal extension of an abelian group into a split normal
extension of some perhaps bigger abelian group. (See [6].) The homological
reason for this is similar to that above. Although it is possible to embed a
functor of AbZ® into a functor of Ab?*® for which the second cohomology

group vanishes, e.g., an injective functor, such a functor need not be in
AbZS),

3.4. The above theorem leads us to the following considerations. We call
an extension (i, S,p) a central extension if S =K Cy(K"), where Cy(K")
denotes the centralizer of K'=iK in S. Equivalently, ¢i, S, p) is a central
extension if there exists a unitary lifting x —» X from Q to S such that for all
x € Q, X € C4(K"). From such a cross section one can construct a surjective
functor F:.#(Q) - Gr and an associative unitary factor system a such that
i, S,py={i,Q X, F,n). Conversely, normal extensions of K by @
constructed from . (Q)-domained surjective and their factor systems must
be central extensions. The proofs of these facts are quite similar to much of
what is found in the proof of Theorem 3.2 and so we shall not give them.

3.5. Surjective functors F:.# (Q)— Gr for which F(1)=K have an
important subclass which we shall describe. First we let 2(K) denote the
lattice of normal subgroups of K. We let (7 (Q), 2(K)) denote the set of all
maps, 4, from £ (Q) to 2(X) such that u(1) = {15} and for all x > y in Q,
u(x) € u(y). This collection of maps becomes a lattice if we define u < v to
mean u(x)<v(x) for all x€ Q. We can use these order morphisms to

o(1)=id, if and only if u <v, in which case for all x, g(x) is the canonical
epimorphism from K/u(x)— K/v(x). We denote the subcategory of Gr”‘?
constructed above by (#(Q), 2*(K)), where 2*(K) denotes the category of
all canonical images of K and canonical epimorphisms between them.

3.6. If F:.7(Q) - Gr is a surjective functor for which F(1) = K, then we
define u,: 7 (Q)— 2(K) by up(x)=Ker(F}). It is easy to see that there
exists a unique natural isomorphism o: F— F, such that o.(1)=id. It
follows that (. (Q), 2*(K)) is a skeletal subcategory of the category of all
surjective .7 (Q)-domained functors which are K at 1, and that F—> F, is a
retraction onto this subcategory. Moreover, the full subcategory of the
category of central extensions of K by Q whose objects are those
(i, Q X, F,n) where F € (#(Q), 2*(K)) is almost a skeletal subcategory of
the category of central extensions. It is skeletal modulo equivalence
isomorphisms. This leads to the following construction.

3.7. To each F,€ (S (Q), 2*(K)) associate the cohomology group
H*(ZF,). To each canonical natural transformation o: F, - F, associate the
map H*(o): H(ZF,)— H*(ZF,). Since (#(Q), 2*(K)) naturally forms a
lattice, we obtain a functor H?: (.# (Q), 2*(K)) — Ab. We use this functor to
form a semilattice of groups (see 4.11 of [1]). We denote this semilattice of
groups by H*(#(Q), 2*(K)) and call it the semigroup of central extensions
of K by Q. Clearly its elements are bijective correspondence with the
isomorphism classes of central extensions of K by Q. Finally, if the . -class
of 1 in Q is {1}, this semigroup must have a zero. For setting u,(1) = {1}
and u,(x) = K for x # 1, clearly u < y, for all g, and HZ(ZF“O) =0.

THEOREM 3.8. Let Q be an idempotent generated monoid and let K be a
group. Then all normal extensions of K by Q are central. Moreover, the
isomorphism classes of extensions naturally form an abelian inverse monoid
with zero.

Proof. Immediate from Theorem 3.2 and 3.4-3.7 and the fact that the
#-class of 1 in an idempotent generated monoid is trivial (see [7]).

481/747/1.97
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4. RELATIONSHIPS BETWEEN NORMAL EXTENSIONS
AND #-COEXTENSIONS

If Q is a monoid, then we define Ext(Q, Gr) to be the full subcategory of
~#(Mong) whose objects consist of these .#-coextensions which are obtained.
as normal extensions of arbitrary groups by Q. Notice that Ext(Q, Gr)
more than just the big union of Ext(Q, K) as K ranges over Gr. Ext(Q, Gr) is
usually a proper subcategory of -#(Mong). In this section we examine
various relationships between -#°(Mony) and its subcategory Ext(Q, Gr). We
begin with a lemma.

LEMMA 4.1. Let Q be such that for all u,x,v € Q, ux=x = xv if and
only if u=v=1. Then #(Mon,)=Ext(Q, Gr). In particular all #-
coextensions of Q are in Ext(Q, Gr) whenever Q is a cancellative monoid.

Proof. Let Q X, (F,G) be an #-coextension of Q for which « is a_
unitary factor system. Then condition 3.9 II of [5] reduces to

Fi(F(1)) = F(x) = G{(F(1)).

Hence F and G are surjective so that Q X (F, G) is a normal extension of
F(1) by Q.

4.2. We let (Mon, Q) denote the comma category of monoids over 0.
The objects are pairs (S,p) where p:S— Q is a monoid morphism. A
morphism f: (S, p) - (S’,q) is a monoid morphism f: S — S’ such that
g of=p. Mon,, denotes the full subcategory determined by those pairs for \
which the p is an epimorphism onto. Clearly we have the following
containments of full subcategories:

Ext(Q, Gr) = -#(Mon,) = Mon, < (Mon, Q).

4.3.  Clearly pullbacks exist in Mon, with the usual construction being
that of the fibred product. So let 7: T— Q be an object of (Mon, Q). Then 7
induces a functor 7*: (Mon, Q) - (Mon, 7). Here t*(S,p)=(T Xo S, 7r)
and t*(f)=id Xf|TX,S. It is easy to see that r*: Mon, - Mon,.
Suppose that (S,p)=(Q X, (F,G),n). Then (TXyS,7;)=(T Xoiryn
(FoZ(r), Go #(r)), n) under the map (s, {x,g))— (t,g). If (F,G) is a
surjective pair of functors, then so is (Fo (r),Go #(r)). Hence
t*: Ext(Q, Gr) - Ext(7T, Gr). In general t*:#(Mon,) » #(Mon;). To see
this, let 7' be any cancellative monoid for which there exists an epimorphism :
7 from T onto Q (e.g., T is the free monoid on the set Q — {1} and ©: T> Q
is the obvious epimorphism). Then (F o £(1), G o #(1)) is a surjective pair .
if and only if (F, G) is a surjective pair. Hence for this particular (T, ), if
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_ (S,p) €E#(Mon,), then 1*(S,p) €#(Mon,) if and only if (S,p)€
~ Ext(Q, Gr). Hence we have the following theorem:

THEOREM 4.4, Let (S,p) € Mon,. Then the following are equivalent:

(i) (S, p)€ Ext(Q, Gr).
(i) For all {T,t) € (Mon, Q), t*(S, p) € Ext(T, Gr).
(iii) For all (T, t) € (Mon, Q), T*(S, p) € #(Mon).
(iv) For all {T,t) € Mon,, t*(S, p) € Ext(T, Gr).
(v) For all (T, t) € Mong, t*(S, p) € #(Mon;).
Proof. From the above we have (i) implying (ii), (iii), (iv), and (v).

Using 7 = id, we have (ii) and (iv) implying (i).. In both (iii) and (Y) we h.ave
t=1id, implying (S, p) € -#(Mon,). Now letting (7, 7) be an epimorphism
from a cancellative monoid onto Q, we have (S, p) € Ext(Q, Gr) by the
above.

4.5. Since Mon has pullbacks, (Mon, Q) has products. Herg (S,p) X
(§',q)=(S Xo S',pomg). These products become productf in MonQ,.
Suppose Q X, (F, G) and Q X, (F', G') are given. Define F X F’ and G X G
to be the pointwise products of the functors involved, e.g., F X F'(x) = F(x) X
F'(x) and (FXF'),=F,XF}. Define axf by aXpB(xy)=(ax)
B(x,y)). Clearly we have

(0 Xo (F, G)my X (Q X (F', G'), ) = (Q Xaxp (FXF', G X G'), ).

under the map ((x,a), (x, b)) > (x, (a,b)). In general -#(Mony) is not
closed under this product. However,

THEOREM 4.6. Let (S,p) € #(Mon,) and (S',q) € Ext(Q, Gr). Then
(S, p) X (S, g) € #(Mony,).

Proof. Let (T,q')y=p*(S',q) € Ext(S, Gr). Then <T,1.7 og'yE
#(Mon,) since -#-coextensions of J#-coextensions are -#-coextensions. But
(T,poq'y=(S,p)X(S',q), and we are done.

CoroLLARY 4.7. Ext(Q, Gr) is closed under products.

4.8. We can use a construction like that of 5.16 of [5] to give an
example of an ~#-coextension (S, p) such that (S, p) X (S, p) is not an #-
coextension.

4.9. A question which one might ask is whether or not A -coextensions

of Q can be embedded in objects of Ext(Q, Gr), i.e., giyen (S,p)eF# (qus)
does there exist (S’,q) € Ext(Q, Gr) together with a monomorphism




18 JONATHAN LEECH

S8 — 8’ such that g o f=p? In general, the answer is no. To see this, let Q
be an idempotent generated monoid. Let f: (S,p)—>(S’,q) be
monomorphism from an -#-coextension to an object of Ext(Q, Gr). As in the
proof of Theorem 3.2 we choose a lifting *— % from Q to S such that
€EE(S) for all e€ E(Q), and x=¢,--- ¢, if e, --- e, is a fixed represen-

tation of x as a product of idempotents. Setting X =/(%), then x — % is a
lifting from Q to S’ with the same properties. Let (F,G,a) and (F',G'",)

be the triples which parametrize S and S’ and are obtained by these liftings. |

Then there exists a natural transformation o: (F, G,a)- (F',G',B) such

that o* is the parametrization of /. Clearly each a(x): F(x) > F'(x) is a\
monomorphism. But by Theorem 3.2 we have B(x,y)€ Z(F'(xy) for all

X,y € Q. Hence a(x, y) € Z(F(xp)) for all x,y€ Q. Since it is easy to
construct ~#-coextensions of idempotent semigroups which do not possess |
this property, such -#-coextensions cannot be embedded in objects of
Ext(Q, Gr). For example, let S be a completely simple semigroup for which

E(S) is not a subsemigroup. Suppose also that the structure group of S is
nontrivial and centerless. Then S' is an .#-coextension of Q=S8"/# which

cannot be embedded in a normal extension of some group by Q.

4.10. Let S=.#(G;1,4,P) be a completely simple Rees matrix
semigroup with structure group G and sandwich matrix P. We attach G as a

group of units to § by extending the multiplication of G and S to GU S by
g (M) = (gh)i and (R)ir * & = (hg),y.

The only place where associativity may break down is at (h)ia = g% (h');,.

.

L

Multiplying both ways yields (hgP,;h'),, and (hP,;gh’),,. Clearly * is

associative (and thus GU S is a monoid) if and only if P,;€ ZG for all 4,.

In this case GU S is a normal extension of G by the band IxXA)'. Ttis

easy to show that if S is a completely simple semigroup, then the following
are equivalent:

(i) S' can be embedded in an object of Ext(Q, Gr), where
0=5S'7.
(i) If e,/ € E(S), then ef € Z#(ef).

o
o

(iii) There exists a Rees matrix parametrization of S whose sandwich |

matrix P takes its values in the center of the structure group of this

parametrization.

(iv) A normal faithful group of units can be attached to S, i.e., there

exist a group G and an associative multiplication on GU S extending the

multiplication on S and on G such that G is a normal group of units and for
all maximal subgroups -#(e), the actions G X #(e) > #(e) and #(e) X G -
“#(e) given by multiplication are simply transitive. Under these conditions
we obtain G = .#(e) under g - ge.
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