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ON THE HOMOLOGY OF DOUBLE BRANCHED COVERS 

RONNIE LEE AND STEVEN H. WEINTRAUB 

(Communicated by Thomas Goodwillie) 

Dedicated to Frank Raymond on the occasion of his sixtieth birthday 

ABSTRACT. If 7F X x X is a double branched cover, with branching set F, 
we relate H.(: Z2), H.(X: Z2), H.(X, F: Z2), and H.(F: Z2) - 

In this note we present a pair of observations on the homology of double 
branched covers. These observations arose in our investigations [LW1, LW2], 
but because of the specialized nature of those investigations and the potential 
general utility of these observations, we have chosen to present them separately 
here. 

All (co)homology in this paper is to be taken with Z2 coefficients. 
Our first result is a simple generalization of the Gysin sequence, which, how- 

ever, we have not been able to find in the literature. 

Theorem 1. Let 7r X -- X be a twofold cover of the simplicial complex X, 
branched over a subcomplex F of X. Let A be an arbitrary subcomplex of X, 
and set A = 7r-I (A) . If T. denotes the transfer map on homology, then there is 
a long exact sequence 

H,+ H(X, F UA) T HijX, A )n>Hi(X, A) d>Hi- I(X, F UA) +v 

Proof. If T: C* (X, A) -- C* (X, A) is the transfer map on chains, then there 
is a short exact sequence of chain complexes 

0 -- C* (X, F U A) TC* (f, A) nC* (X, A) O-~ . 
O 

We suppose throughout the remainder of this paper that we are in the follow- 
ing situation (where we use the term "manifold" to mean connected, compact 
manifold): 

Situation (*) . X is a smooth, and hence piecewise linear, n-manifold (possibly 
with boundary), and r: I -. X is a double cover branched over a subcomplex 
F, where F is the union (not necessarily disjoint) of codimension 2 smooth 
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1264 RONNIE LEE AND S. H. WEINTRAUB 

submanifolds F1, ..., Fk which are pairwise mutually transverse. Also, F is 
transverse to OX, and hence F n OX = OF, which may be empty. 

In Situation (*), Theorem 1 yields the long exact sequence 

***Hi(X, F u OX) T) Hi(l, 01) 

) Hi(X, OX) d) Hi-,(X, FuOX) ,***. 

Theorem 2. In Situation (*), let d* be as in Theorem 1 and let 0* be the com- 
position of the boundary map of the triple (X, F U OX, OF) with the projection 
of 

H*(F U OX, OF) H* (F, OF) E H*(OX, OF) 
onto its first summand. Then the composite 

H,(X OX)d. 0 
Hn(X, OX) -d HI(X, FUOX)- H,-2(F, OF) 

satisfies 
O*d*([X, AX]) = [FI, OFJ] + **+ [Fk , OFk 

Here [X, OX] and [Fi, OFi] denote the fundamental homology classes of 
(X, OX) and (Fi, OFi), and the sum lies in H,-2(Fl, 0F1).. *eHn-2(Fk, OFk) 

Hn-2(F, OF). 
Proof. First we consider the case (X, OX) = (D, S), where D is a 2-disk, S 
is its boundary circle, and F = C, the center of D. (Then we may identify 
7r: (X, OX) - (X, OX)with the map z _ Z2, Z E C, IzI < 1.) Let R 
be a radius of D. Then it is easy to check directly that d*([D, S]) = [R] E 
H1 (X, F U OX) and O* ([R]) = [C] E Ho(F) as claimed. 

The exact sequence of Theorem 1 may be dualized to cohomology, and so 
we have a map d*: Hi-l(X, F U OX) -- Hi(X, OX). Then, if { } denotes 
the fundamental cohomology class, we have in the above case 

(**) ~ 5*({C}) = {R}, d*({R}) = {D, S}. 

Now for the general case. Consider a submanifold Fi in F, and let Ei be 
the complement of an open regular neighborhood of Fi n (F1 u.. u Fi_ 1 U Fi+I U 
*.. U Fk) in Fi . Let Pi be a closed regular neighborhood of Fi in X. Then we 
may identify Pi with the total space of a D2-bundle over Fi, and we assume 
that Pi is chosen small enough so that if Ni is the restriction of Pi to Ei, then 
N, n F = Ei . Let Ti = OP1 n Ni, an SI-bundle over Ei . Consider the diagram 

Hn-2(Ei, OEi) = Hn-2(Ei, OEi) = Hn-2(Ei, OEi) 

U {S} U{R} {U{C} 
Hn (Ni, a N) Hn- 1 

(Ni, Ei U ONi) h -(Ei , 0 Ei) 

.1 1 .1 

Hn (X, aX) I H-(X, FiU OX) Hn- (Fi, Fi) 

where we identify D with a fiber of Ni . 
In this diagram we use {C} to denote the unique class of HO(Ei) restricting 

to the class {C} E HO(Di), where Di is the fiber of Ni over any point of 
Int(Ei) . This class is obviously just the nonzero element of HO(Ei) . Similarly, 
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we use {D, S} to denote the unique class in H2(Ni, Ti) restricting to the class 
{D, S} e H2(Di, Si), with Di as above and Si = 0Di. This class is simply 
the Thom class of the bundle Ni [B, II.2.3]. The vertical map in the upper left- 
hand corner is actually the composition of the isomorphism Hn-2(E1, 0Ei) - 

Hn-2(N,, NiJOEi) with the cup product with the class {D, S} under the cup 
product map Hn-2(Ni, NiJOEi) x H2(Ni, Ti) -- Hn(Ni, ONi). Also, we use 
{R} to denote the class in H' (Ni, Ei U Ti) which restricts to the class {R} in 
H' (Di, Ci U Si), where Ci is the center of Di, in each fiber, and the middle 
vertical map is a similar composition. 

First, we observe that this diagram commutes. For the top half, this follows 
directly from (**), and for the bottom half, this is clear. 

Second, we observe that all four vertical maps on the outside of the diagram 
are isomorphisms. For the map in the upper left-hand corner, this is the Thom 
isomorphism [B, II.2.3], and for the other three maps, this is clear. 

Thus we see that the composition d*J* on the bottom line is an isomor- 
phism, and since {Fi, OFi} (resp. {X, OX}) is the only nontrivial element 
of Hn-2(Fi, OFi) (resp. Hn(X, OX)), we have d*5*({Fi, OFi}) = {X, OX}, 
i = 1, . .. , k . Then, if (,) denotes the Kronecker product of cohomology and 
homology, 

1 = ({X, OX}, [X, OX]) = (d*J*({Fi, OFi}), [X, OX]) 
= ({Fi, 0Fi}, O*d*([X, OX])) 

for i = 1, ...,k, and hence O*d*([X, OX]) = [F, OF] + *+ [Fk, OFk] as 
claimed. 0 

Remark. Note that in the proof of Theorem 2 we removed a neighborhood of 
Fin (FI U ... UFi- I UFi+ I U ..* * UFk) . Thus, while we assume Fi and Fj transverse 
for i :$ j, we need no assumption on triple (or higher) intersections. Similarly, 
while we assume Fi transverse to OX for each i, we need no assumption on 
double (or higher) intersections with OX. (Of course, X will be a manifold if 
and only if Fi n Fj = z for i A j.) 

Let us indicate the use of Theorem 2 in conjunction with Theorem 1. For 
simplicity let us suppose that OX = 0. Of course, 7r*([X]) = 0, so [X] ? 

Im(t* ). However, consider a class y E Hq (X) and the problem of deciding 
whether y E Im(7t*) or, equivalently whether d*(y) =0. Suppose that y is 
represented by an embedded submanifold Y, i.e., y = i*([Y]), where i: Y -. 
X is the inclusion. Of course, if Y c F, then clearly y E Im(7t*). Otherwise, 
we may suppose that for some j < k, Y intersects F, ..., Fj transversely 
and Fj+,, ..., Fk not at all and that Gi = Fi n Y, i = 1, ...,j, are pairwise 
mutually transverse in Y. Let G = F n Y = GI U . U Gj. Then we have a 
commutative diagram 

Hq(X) d. Hqi,(X, F) Hq-2(F) 

Hq(Y) d. Hqi,(Y, G) @ Hq-2(G) 
and 

O*d*(y) = O*d*(i*([Y])) = i*(O*d*([Y])) 

= i*([GI] + * + [Gj]) = g E Hq-2(F). 
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Thus, if g $ 0 in Hq-2(F), then d*(y) $ 0 and y ? Im(nr). On the other 
hand, if g = 0 and H,,,(X) = 0, then d*(y) = 0 and y E Im(7r) . 
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