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Séminaire de théorie spectrale et géométrie

CHAMBÉRY-GRENOBLE

1990-1991 (119-132)

K-THEORY AND TOEPLITZ-C*-ALGEBRÀS - A SURVEY
par Matthias LESCH

This article is an elaborate version of a lecture given at Institut Fourier, April 91.
lts aim is to give an overview over some developments in the theory of Toeplitz C*-
algebras and to advertise that operator K-theory is a strong tool for their investigation.
Since it is devoted to non-specialists in operator algebras, I have decided to put in a
rough introduction to operator K-theory. As a standard référence for this I nefer to [B],

I gratefully acknowledge the hospitality of Institut Fourier, especially thanks to
Laurent Guillopé.

1. C*-algebras and K-theory

As for many objects in mathematics there are two définitions for a C*-algebra, an
intrinsic and an extrinsic one:

DÉFINITION (concrete C*-algebra). — A concrete C*-algebra is a norm-closed
*-subalgebra A of the algebra ofbounded operators C(Ji) on a Hubert space 7i. *-
subalgebra means, that with T 6 A we also have T* G A.

DÉFINITION (abstract C*-algebra). — An abstract C*-algebra A is a complex
algebra together with a Banach-space structure and an antilinear involution • such that
for aybeA

(i) \\ab\\ ̂  \\a\\ \\b\\

(H) \\a*a\\ = |Hp .

Of course, every concrete C*-algebra is an abstract one with the usual *-operation,
since (i),(ii) are easy to check for arbitrary bounded operators in a Hubert space. The
converse is non-trivial.
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THEOREM (Gelfand-Naimark [GN]). — Every abstract C*-algebra A is a
concrete one, L e. hos an isometric embedding A «-> C(7i).

For a long time one was seeking for the right axioms guaranteeing this theorem.
Gelfand and Naimark assumed in addition the invertibility of I + a*a for every o € A
Lateron one found out, that this extra condition is redundant. It is a remarkable fact, that
this redundancy does not hold for real C*-algebras. As a counterexample consider the
algebra C as a real algebra with trivial involution *=id Then we have l+x*i = 1+i2 = 0
and hence this algebra cannot have a faithful ^-représentation on a real Hubert space,
i. e. is no real C*-algebra.

The main advantage of the abstract characterization of C*-algebras is that it is
more easy to check if a given object is a C*-algebra, since in real life a C*-algebra
does not corne with a canonical représentation.

Example. — Let X be a locally compact space and consider the algebra Co(X)
of continuous functions vanishing at infinity with the usual pointwise involution and
norm

H/11 := sup{\f(x)\ \ x e X].

To obtain a représentation we consider a Radon measure fi on X and put

M : Co(X) -> £(L2(X, fi)), Mf9 := f g .

This représentation is faithful if and only if the support of // is X.

This example is a very important one, since the C*-algebras obtained in this
way are exactly the commutative ones. Namely, the functor Co which assigns to every
locally compact space its C*-algebra of continuous functions vanishing at infinity
is a (contravariant) category équivalence between the category of locally compact
spaces with proper continuous maps and the category of commutative C*-algebras
with *-homomorphisms. This is an abstract formulation of the Gelfand représentation
theorem. The inverse of the functor Co is the Gelfand functor Ç which assigns to
every commutative C*-algebra A its spectrum spec(A) of continuous nontrivial algebra
homomorphisms into the complex numbers. In a canonical way spec(A) is a locally
compact subspace of the unit bail in the dual A' equipped with the weak-*-topology.
Hence every topological notion has its reflection in the category of commutative C*-
algebras. However, the translation is sometimes nontrivial. As an important example
we intruduce K-theory, which is the appropriate cohomology theory for locally compact
spaces.

Let X be a compact space and consider the set of isomorphism classes of complex
vector bundies over X. The Whitney sum of vector bundies makes this set into a
commutative monoid, denoted by V(X).

DÉFINITION. — K°(X) is the Grothendieck group of the monoid V(X). If X
is locally compact, then K°(X) := kcT(K°(X") — /v°(+))f where X+ dénotes the
one-point compactification of X.
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K gives a cohomology theory for locally compact spaces, which satisfies all Eilen-
berg-Steenrood axioms except the dimension axiom. Now, how to translate K into terms
of commutative C*-algebras? Of course, one has I<o(Co(X)) = K°(X); but this is trivial
and rather useless, since we would like to have an intrinsic characterization, that cames
over to the non-commutative case. First of all we need a more algebraic characterization
of vector bundies. This is obtained from the observation that a vector bundie can equally
well be described by the set of its sections. For the moment let X be compact The set
of sections C(E) of a vector bundie E over X is a C(A>right-module in the following
way

C(E) x C(X) -+ C(E), (sf)(x) := f(x)s(x) (1)

for s € C(E)J G C(X). If E ~ C£ is trivial, then this module is free, i.e.
C{E) ~ C(X)n. Those C(AT)-right-modules that occur as sections of a vector bundie
can be characterized algebraically:

THEOREM (Swan [At, Corollary 1.4.14], [K, Theorem 1.6.5]). — Let E be a
vector bundie over the compact space X. Then there is a vector bundie F over X such
that E® F is trivial.

COROLLARY. — To a C(X)-right-module £ there exists a vector bundie E over
X such that £ ~c(X) C(E) ifand only if€ is a direct swnmand of a finite-dimensional
free C(X)-right-modulet i. e. £ is afinitely generated projective C(X)-right-module.

Proof. — The only if part is Swan's theorem. To prove the if part, consider
a finitely generated projective C(A>right-module £. Projective means, that there is
another such module T with £ © T ~ C(X)n. Now let p : C{X)n —• £ be the
projection with respect to this décomposition. Since this is a module homomoiphism
we have p 6 Mn(C(X)) = C(X, M„(C)), i. e. p is a continuous family of projections.
Then Ex := im p(x), Fx := ker p(x) define vector bundies over X with C(E) ^ £,
C(F) - T [K, Theorem 1.6.3].

With this at hand, K-theory can be carried over to non-commutative C*-algebras.
So let A be an arbitrary C*-algebra with unit and consider a finitely generated projective
•4-right-module £. Choose another such module T with

£ e T 2r An . (2)

We identify £ with its image in An and dénote by p : An —• £ the projection with respect
to the décomposition (2). Since this is a module homomoiphism we have p G Mn(A)
and £ = pAn. Since A is a C*-algebra we may assume that p = p* and it turns out
that two modules £, T are isomorphic if and only if the corresponding projections p, q
are Murray-von Neumann equivalent, i. e. if there exists a partial isometry u such that
u*u = p, uu* = ç. Thus, as before, we consider the set V(A) of équivalence classes
of finitely generated projective .4-right-modules, which is a commutative monoid with
direct sum as addition. The discussion above shows that V(A) can alternatively be
described as the set of Murray-von Neumann équivalence classes of projections in the
infinité matrix algebra Moo(A) = limn_>oo Mn(A) over A
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DÉFINITION. — I<o(A) is the Grothendieck group ofthe monoid V(A). If A
has no unit, then ï<o(A) :=ker (/<ro(.4

+) -> KQ(C)), where A+ dénotes A with an identity
adjoined.

Higher K-groups are defined as in algebraic topology via the suspension, namely
one defines for n 6 N

SnA := C0(Rn) ® A ~ C0(Rn, A) (3a)

and puts
Kn(A) := Ko(SnA). (36)

K\ has another characterization, namely there is a canonical isomorphism K\(A) ^
^o(^ooM)), where Uoo(A) is the unitary group in McoiA). With (3b) one finds by
induction

Kn^{A)-itn{U^{A)). (3c)

This relation is the reason for the significance of K-theory for the stable homotopy of
the classical groups.

K* is a homology theory on the category of C*-algebras [B,Chap. 21]. The
property of K* we mention first is one, that cannot be seen in the commutative category.

PROPOSITION. — 7\* is a stable functor, L e. there is a canonical isomorphism
K*(A) ^ K*(A® /C), where K, dénotes the idéal of compact operators on a (separatie)
Hubert space.

Example. — A = C : two projections in Mn(C) are Murray-von Neumann
equivalent if and only if they have the same rank, thus we have

Z ) (4)

and since the unitary group C/„(C) is connected we have K\(C) = 0- With the
stabilization property we obtain

KO(IC)~Z, KidO-O. (5)

The isomorphism $ : Ko(lC) —• Z is canonical and can be described as follows. Every
element in I<o(fC) is of the form [p] — [q] with finite dimensional projections p, q € /C.
Then one has

$([/>] - [?]) := tr{p) - tr(q) = rank(p) - rank(q). (6)

The most important theorem at this stage is the Bott periodicity theorem, which
in this context is due to Wood, Karoubi.

THEOREM (Bott periodicity, [W],[K]). — The map which sends a projection
p e Mn(A) to the map t *-• e27rt'p+(l-p) in t/n((Cb(0,1)M)+) induces an isomorphism
Ko(A) ^ K\(SA), L e. there are canonical isomorphisms

Kn(A)~Kn+2(A). (7)
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For a proof of this theorcm see also [B,Chap. 9].
An important conséquence of this theorem is that the long exact séquence in

homology is in fact a six term cyclic exact séquence.

THEOREM. — ƒƒ 0 —• J-^A-^B —> 0 is an exact séquence of C*-
algebras, then there is an exact séquence

Ko(J) - ^ K0(A) — Ko(B)
di T . A * <8)

2- Ki(A) £-

Example. — With these theorems it is an easy exercise to compute the K-groups
of sphères inductively from K*(C). It turns out that K*(5n) ~ AT*(C) 0 K*(SnC) and

(0 if fc + n = I(mod2) f«.
" \ Z if k + n = 0(mod2).

The non-trivial generator of 7£*(Sn) which corresponds to the generator of K*(SnC)
is called the Bott element.

As a last remark in this paragraph we want to point out a relationship between
K-theory and index theory. The Connecting homomorphism d\ has an interprétation as
an index.

PROPOSITION. — Assume that the C*-algebra in (8) is represented in some
Hubert space 7it A C CÇH), such that J = K. Then one has the following abstract
"index theorem99:

An operator T G Mn(A) is a Fredholm operator if and only ifits symbol a(T) is
invertible in Mn(B) and in this case we have the formula

ind T = & [<T(T)] e Ko(fC) - Z , (10)

where [<r(T)] dénotes the class of the invertible element <r(T) in K\(B) and d\ :
K\(B) —* Ko(/C) is the Connecting homomorphism in (8) (cf. [B,8.3.2]).

Example. — Consider a compact manifold M and let CZ(M) be the Calderon-
Zygmund algebra, which is the C*-algebra generated by the (scalar) pseudo-differential
operators of order zero on M. It is well-known, that there is an exact séquence

0 - • K(L\M)) —> C Z ( M ) - ^ C ( 5 * M ) — 0 , (11)

where C(S*M) dénotes the cosphere bundie over M and a is the usual symbol map for
pseudo-differential operators. We obtain from the preceding proposition, that a System of
pseudo-differential operators is Fredholm iff it is elliptic and that the index is given by
the Connecting map è\ : Kl(S*M) —> Z. Thus we have an expression for the analytical
index of Atiyah-Singer and we obtain immediately that the index of an elliptic operator
only dépends on the stable homotopy class of the symbol in MQO(C(S*M)). Of course
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the hard work is contained in proving the exact séquence (11) and it is another story to
express the analytical index in topological terms, which was done by Atiyah-Singer.

2. Toeplitz-C*-algebras on bounded symmetrie domains

A bounded domain D C Cn is called symmetrie, if for every z £ D there exists
a holomorphic automorphism $ 2 of D with z as isolated fixed point and $z o $z =id.
We may assume that 0 € D and D is circular, i. e.

Xrz € D, for A € S\r € (0, \),z e D. (12)

The group Aut(£>) of holomorphic automorphisms acts transitively on D. It is a Lie
group that generalizes the Möbius transformations in case of the unit dise.

We consider the Banach-algebra

7i(D) = {ƒ G C(D) | /|Dholomorphic} (13)

of bounded holomorphic functions on D that have a continuous extension to D. A set
F C D is called determining if for ƒ € H(D) | | / | | 6 = | | / | |F . The set

5<D) f | F
F CD determining

is called the Shilov boundary of D. By the maximum principle we have §(D) C dD
and it is a standard theorem from the theory of commutative Banach-algebras that §(D)
is determining. Now dénote by K C Aut(D) the isotropy group of 0 € D. This is
a compact group acting linearly on Cn. The following proposition is important for
determining the Shilov boundary.

PROPOSITION (Bott-Korânyi [KW, Chap. 3]). — K acts transitively on S(D).

COROLLARY. — There exists a unique K-invariant propability measure // on

Examples. —

Since a circular domain is star-shaped and hence simply-connected, by the
Riemann mapping theorem, there is only one example in dimension one: the
unit dise D = { : g C \ \z\ < 1}. The automorphisms of D with fixed point 0
are the rotations, i. e. K = 5 1 . Since this group acts transitively on the whole
topological boundary dD = S1 we infer from the theorem of Bott-Korânyi that
§(D) = 51 . The invariant probability measure on S1, of course, is the usual
Lebesgue measure.
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2. The direct generalization of the preceding example to higher dimensions are the
unit balls in Cn Ant\ := {z e Cn \ \\z\\ < 1}. The denotion Ai,i will become
transparent in the next example. Here the results are essentially the same as before,
one has §(i4n>i) = dAni\ = S2n~l, K = U(n) and the invariant measure is the
usual Lebesgue measure.

3. (Matrix domains) One class of matrix domains is defined f6r n ^ m as follows

An,m := {Z e Af„|m(C) I lm - Z*Z is positive definite} . (14)

It is clear, that this is a circular domain. To describe its automorphisms we
introducé

+ rn9Qi G*In,mG = 7 n , m } ,

SU(n, m) := U{n, m) n SL(n + rn, C) .

( A B\
An element G = f „ n ) e SU(n,rn) induces an automorphism <&G of Anjm9

which is a generalized Möbius transformation, by $G(Z) := (AZ+B)(PZ+D)-1.
One can show that all automorphisms of Antfn are obtained in this way [H]. From
this description one can construct the symmetries and AntTn is in f act a symmetrie

domain. ®G(Z) lies in the isotropy group of 0 if and only if G = f ft n ) with

A e U(n), B e U(rn\ det(A)det(B)=l. Thus K is not transitive on the topological
boundary if m > 1 and it turns out that

m) ={Ze Mn,m(C) | Z*Z = Im} = Vntm (16)

is the complex Stiefel manifold of orthonormal m-frames in C \ in particular
§

All these examples are-iireducible bounded symmetrie domains, i, e. they cannot
be written as the product of some bounded symmetrie domains. The irreducible bounded
symmetrie domains have been classified by E. Cartan [C]. Beside the examples above
there are three other series of domains and two exceptional ones. With one of the other
series, the Lie balls, we will become acquainted lateron.

Now we are going to introducé Toeplitz operators. We consider again an arbitrary
bounded symmetrie domain D.

DÉFINITION . — The Hardy space H2(D) is the closed subspace of L2(S(D)y //)
generaled by {f\§(D) I f € Ti(D)}. The orthogonal projection P : L2($(D),fi) -+

H\D) is called the Szegö projection.

DÉFINITION. — For f e C(S(D)) the Toeplitz operator Tj is defined as



126 M. LESCH

g~ P(fg) (17)

and the Toeplitz C*-algebra T(D) of D is the C*-algebra generated by ail Tj.

These are interesting C*-algebras since they reflect much of the structure of the
domain D. There are relationships to pseudo-differential operators [BM]. The structure
of these algebras is completely determined by the following two theorems.

THEOREM (Upmeier [Upl,Lemma 3.1, Proposition 3.11], Schröder [SI, Satz
2.4.5, Satz 2.4.10]). — Let C(D) be the closed *-ideal in T(D) generated by ail
commutators [Tj ,T9], Then there is an exact séquence

0 —• C(D) —> T(D)-^C(S(D)) —• 0. (18)

The map ƒ »-• Tj is a completely positive cross-section of a. Moreover if D is
irreducible, then T(D) acts irreducible on H2(D).

From now on, we restrict ourselves to irreducible D.

THEOREM (Upmeier [Up2, Theorem 3.12]). — There are ideals

{0} C Jo C Ji C ••• C Jr = T(Z5), (19)

with Jo = K(H2{È(D))), J r . ] = C(D). More precisely3

Jr/Jr-i * C(S(D)) , Jt/Ju-i - C(SkiK), Jb = I, • • •,r - 1, (20)

where r is the rank of D as a symmetrie space and the Sk are the "strata" of the
boundary dD.

I will not describe what the Sk are in gênerai, since this would require the
machinery of Jordan-algebras. I will explain it only in case of the three examples above.
One can show, that the rank of Anjm is m, thus the rank of the Hubert balls is one and
these are the only irreducible domains of rank one. In this case we have S\ = 52""1. In
gênerai, the boundary of AniVn contains all partial isometries in Afnjfn(C), which have
a natural stratification by their rank. In fact, it turns out that

Sk(Antfn) = {u € Mn,m(C) | uti*u = T/,rank(u) = k} , k = 0, • • •, m. (21)
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3. Index theory for Toeplitz operators

Since the Toeplitz algebra on an irreducible bounded symmetrie domain contains
the compact operators, one can ask for Fredholm criteria and index theorems, The
answer dépends on the rank of the domain. I will discuss here the rank one and two
case and make some remarks on the gênerai case. The rank one case is the most similar
one to elliptic operators, since it is a special case of Boutet de Monvel's index theorem.
Since in this case, the commutator ideal is the ideal of compact operators, the abstract
index theorem of Chap. 1 applies. It remains to détermine the index homomorphism.

THEOREM. — For the Hilbert balls AnA one has the exact séquence

0 ^ /C ̂  T(AnA)-^C(S2n-1) — 0. (22)

An operator T e Mk(T(An>\)) is Fredholm iff an(T) is invertible and in this case one
has

indr = (-l)n62n-i[^n(T)]) (23)

where [an(T)] dénotes the class of the invertible element <rn(T) in Kl(S2n~l) and
-i : K\S2n'1) ->Z is the Bon isomorphism in (9).

Thus we have found an extension of C*-algebras that represents up to sign the Bott
isomorphism. In particular, it follows from this theorem, that in Mk(T(An7\)) there exist
Fredholm operators of arbitrary index. For n = 1 this theorem is the celebrated Gohberg-
Kreïn index theorem [GK], which is equivalent to the Atiyah-Singer index theorem on
51 . For n > 1, where Toeplitz operators are no longer pseudo-differential, this theorem
is due to Venugopalkrishna [V]. Schröder [S1,S2] has extended it to operators whose
symbols take values in a J/i -factor.

It should be noted, that with séquence (22) and n = 1 an alternative proof of Bott
periodicity can be given [Cu, § 4].

Domains of higher rank are more complicated since the ideal of compact operators
stands at the beginning of an ideal chain. It seems to me that spectral séquence techniques
would be appropriate here [Sch],[SP]. Beside two other special domains there are two
classes of domains of rank 2: the Ant2S and the Lie balls. The Lie balls Bn are defined
as

^ | } ^ ^ 3 , (24a)
i

and their Shilov boundaries are the so called Lie sphères
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Ln := S(Bn) = {z = Xx € C | A € S1 , x € 5""1} = S1 • 5""1 C C 1 . (246)

The Lie balls are exactly the tube domains of rank 2. Tube domains have a norm
function on their Shilov boundary which generalizes the determinant. For the Lie sphères
this norm function is defined as

By Upmeier's theorem one has the idéal chain

O c / C c C ( L n ) C T ( L n ) .

This idéal chain had been discovered before by Berger, Coburn and Koranyi
[BCK], who also had determined C(Ln). They had shown that H\Ln) ~ H2(Sl) ®
L2^""1) and this isomorphism induces an embedding T(L„) C T^S1) ® CZ(Sn~l)
under which C(Ln) ~ K\ ® CZ(Sn~l), where /Ci := fCiHHS1)). Thus (11) with
M = S""1 yields C(Ln)//C(#2(Ln)) ~ C(5*5n-1,ACi) and hence 5i(Ln) =
S*Sn~1. Analyzing the various identifications involved one obtains the following huge
commutative diagram

0
1

K(H2(Ln))
i

C(Ln)
i O"0

C(S*Sn-\fCi)

- T(Ln)
i 0o

— C(S*Sn-'1 ,T(S1))

- C(Ln)
if*

•^ C(S* x S*Sn-1)

(25)

— 0

— 0

0

where <ri is the symbol map in (22) with n = 1, tensored with C(S*5n"1); <ro is the
symbol map for pseudo-differential operators on 5""1, tensored with K\ (resp. T(S ])),
and

ƒ : 51 x 5 * 5 n - ! - Ln , (A,*,£) ~ -(ar - £ç + A(ar + ̂ ) ) . (26)

It is possible to compute the induced map in K-theory ƒ* : K*Ln —* K*Sl x
S*gn-\ ^ Prop. 2.8]. I cannot go into this here, since the computations are rather long
and tedious. Basicly one has to construct explicit generators for the K-groups and to
compute their pullbacks under f. But since it is more convenient to deal with differential
forms, one has to plug in the Chern character. Details may be found in [Ll, § 2]. Having
done this, diagram chasing yields the following theorem, which is the key ingrediënt
for the investigation of Fredholm operators in T(Ln).

THEOREM [Ll, Theorem 3.2]. — In the exact séquence of K-groups
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K0(C(Ln)) i K0(T(Ln)) ^L K0(C(Ln))
ô i î id2 (27)

d\ is an isomorphism and di is surjective with ker(cfe) = Z [ 1 L B ] , inparticular we have

Ko(T(Ln)) = Z [1 T ( L B ) ] , tf,(T(Ln)) ~ 0. (28)

This theorem has some interesting conséquences for the Fredholm operators in
M]e(T(L„)), which may be derived completely abstract within the framework of K-
theory. In order to formulate them, I have to introducé the notion of stable homotopy
of Fredholm operators. Two Fredholm operators T\ € Mfc,(T(Ln)), T2 € Mkz(T(Ln))
are called stably homotopic iff there is a path

u : [0,1] -f {T € Mk.(T(Ln)) | T Fredholm} (29)

for some k' ^ max(^i, k2) such that

-«-(Î /,°-J^>=(o2;t°.J-
It is clear that stably homotopic Fredholm operators have the same index.

THEOREM [LI, Proposition 3.4, Theorem 3.5]. —

1. Two Fredholm operators Ti.Tz € Mk( T(Ln)) are stably homotopic if and only
ifindTi = ind T2.

2. A Fredholm operator T 6 Mjt(T(Ln)) is stably homotopic to a Fredholm operator
T\ e lr(Ln) + C(Ln)t especially one has

= 0. (31)

Since C(L„) ^ K\ ® CZ(Sn~l) this theorem says that up to stable homotopy
there are as many Fredholm operators in T(Ln) as there are elliptic operators over
5 n - 1 and the index for Fredholm operators in T(Ln) is completely determined by the
Atiyah-Singer index theorem on Sn~l. In some sense this result is a négative one, i. e.
no new phenomena occur.

Recently, the author has proved that essentially the same results hold for the
Anj!s% i. e. one has

K0(T(Ant2)) = Z[ l r W n f 2 ) ] , /<Ti(TC4n|2)) = 0, (32)

with similar conséquences for the Fredholm operators in T{Ani2). So beside the two
other existing domains of rank two, the situation in the rank two case is completely
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understocxi. Further compilations show that therc is some évidence for the following
conjecture.

CONJECTURE. — K0(T(D)) = Z[l r ( /»L ATi(T(D)) ~ Ofor ail irreducible
domains, at least for domains oftube type.

Beside the Toeplitz algebras on bounded symmetrie domains, there is another
Toeplitz construction, that cornes from dynamical Systems and it is a remarkable fact
that always the above K-groups occur, if the algebras are irreducible in some natural
sensé ([JK],[MPX],[L2]). So, it is natural to state the following problem, which of course
cannot be made précise in a mathematical sensé.

PROBLEM. — Find an interesting Toeplitz algebra, not having the K-groups
above.

One can ask conversely: what is the deeper reason for the occurence of these
K-groups?

Fd like to finish with some further remarks concerning the index theorems of
Upmeier [Up3], which also lead to some ideas for attacking the conjecture above. I
start completely abstract and consider a filtered C*-algebra. This is a C*-algebra T
with a chain of closed *-ideals

JoCJiC---Cjr = T. (33)

One immediately checks that

0 — Jib-iAfc-2 — Jkf Jk-i — Jk/Jk-i — 0 (34)

is an exact séquence of C*-algebras. The k-index

) (35)

is defined to be the Connecting map in the six-term exact séquence of (34). The
significance of these index maps stems from the fact that

J înH • pi _>pi (36)
dpq .= ind E — E u

is the E"1-term of a spectral séquence {Epv <Fpq) converging to A*(T). Hence complete
knowledge of the index maps leads to complete knowledge of K*(T) up to group
extension [Sch].

Now we turn back to the Toeplitz C*-algebra on an irreducible bounded symmetrie
domain. By Upmeiers theorem we have Jh/Jk~\ — C(Sh,/C)9 where K is the idéal of
compact operators on some Hubert space (possibly one dimensional). Hence
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ind* : K*(Sk) — / r - l ( S * - i ) (37)

is a map between the K-groups of some nice homogeneous spaces. Upmeier has
expressed ind* in topological tenus in complete generality. The genera! result again
uses Jordan algebras. For simplicity we rcstrict to the An%m

9s. Let

Km - UW) € Sk-l(An,m) * Sl(Ai,m) 1 ^ 1 ^ } , (38)

where u ± v means that v is a partial isometry from ker u to lm u 1 . The isotropy
group K acts transitively on this space. For fixed u0 G Sk-\(Anttn) the set

(39)

is a strongly pseudoconvex (singular) domain with boundary

**,«,«. = {V € SxtAn.m) \v±Uo}. (40)

The family index theorem of Boutet de Monvel [BM, Final Remarks] yields an
index homomorphism

x'CSt.m) : K*&kn,m) — /f-'CSSk-lCiln.m)) • (41)

Moreover, there is a canonical map

A : E j j m — 5fc(i4„fm) , (« ,« ) • ->« + «. (42)

Now one has the fascinating result

THEOREM (Upmeier, [Up3, Theorem 4.2]). —

ind^xkEÏU)0^*- <43>

With this at hand and the spectral séquence (36) it should be possible to attack the
conjecture above, although the computations become combinatorially very complicated

The details for the Anj!s and some domains of higher rank will be worked out
in a forthcoming publication.
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