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0. Introduction

We establish a connection between the η invariant of Atiyah, Patodi and Singer
([1, 2]) and the condition that a knot K ⊂ S3 be slice. We produce a new family
of metabelian obstructions to slicing K such as those first developed by Casson and
Gordon in [4] in the mid 1970s. Surgery is used to turn the knot complement S3−K
into a closed manifold M and, for given unitary representations of π1(M ), η can be
defined. Levine has recently shown in [11] that η acts as an homology cobordism
invariant for a certain subvariety of the representation space of π1(N ), where N is
zero-framed surgery on a knot concordance. We demonstrate a large family of such
representations, show they are extensions of similar representations on the boundary
of N and prove that for slice knots, the value of η defined by these representations
must vanish.

The paper is organized as follows; Section 1 consists of background material on η
and Levine’s work on how it is used as a concordance invariant [11]. Section 2 deals
with unitary representations of π1(M ) and is broken into two parts. In 2·1, homo-
morphisms from π1(M ) to a metabelian group Γ are developed using the Blanchfield
pairing. Unitary representations of Γ are then considered in 2·2. Conditions ensuring
that such two stage representations of π1(M ) allow η to be used as an invariant are
developed in Section 3 and Pk, the family of such representations, is defined. Sec-
tion 4 contains the main result of the paper, Theorem 4·3. Lastly, in Section 5, we
demonstrate the construction of representations in Pk.

Notation 0·1. Throughout this paper, let Λ be the ring of Laurent polynomials
Z[Z]. We will frequently write Z multiplicatively as {ti}i∈Z so that Λ = Z[t, t−1]. Let
S be the multiplicative set {p(t) ∈ Λ | p(1) = 1}.

In addition, let Rk(G) = {θ:G - U (k)} be the space of k-dimensional unitary
representations of the group G.

1. Background

In [1] and [2], Atiyah, Patodi and Singer developed an invariant ηα(M ) defined
for any compact, oriented, odd dimensional Riemannian manifold M , with a unitary
representation α:π1(M ) - U (k). This invariant appears in their Index Theorem,
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which relates ηα(M ) to signβ(N ), where ∂N = M and β:π1(N ) - U (k) restricts
to α on π1(M ).

A reduced η invariant is also defined in [2]; η̃α(M ) = ηα(M ) − kηo(M ), where o
denotes the trivial representation. The main result of [2] is the following:

Theorem 1·1 ([2], theorem 2·4). η̃α(M ) is independent of the Riemannian metric
and so is a differential invariant of M and α. If M = ∂N and α:π1(M ) - U (k)
extends to a unitary representation on π1(N ), then η̃α(M ) = k · sign (N )− signα(N ).

In [11], Levine investigates the behaviour of η̃α(M ) under homology cobordism
and applies it to study link concordance. We first review some of his results.

Definition 1·2. If G is a group, then a G-manifold is a pair (M,α) where M is a
compact oriented manifold with components {Mi} and α is a collection of homo-
morphisms αi:π1(Mi) - G, where each αi is defined up to inner automorphisms
of G.

Thus for any such G-manifold (M,α) and any representation θ ∈ Rk(G), the
composition θα:π1(M ) - U (k) determines η̃θα(M ) ∈ R. For M =

∐n
i=1 Mi,

η̃θα(M ) =
∑n

i=1 η̃θαi(Mi).

Definition 1·3. Two odd-dimensional G-manifolds (Mi, αi), i = 0, 1, are hom-
ology G-bordant if there exists a G-manifold (N, β) such that ∂N = M0 q −M1,
H∗(N,Mi) % 0 and up to inner automorphisms of G, β|π1(Mi) = αi.

Definition 1·4. Define ρ(M,α):Rk(G) - R by ρ(M,α) · θ = η̃θα(M ).

Levine shows [11], that if (M0, α0) and (M1, α1) are homology G-bordant, then
ρ(M0, α0) · θ = ρ(M1, α1) · θ for θ ∈ Rk(G) lying outside some special subvariety,
defined in terms of perfect modules.

Definition 1·5. A module B over the group-ring ZG is a perfect ZG module if
Z⊗ZG B % 0.

In addition, we will assume such modules are finitely presented. Note that this
implies that for λ a presentation matrix for B, ε(λ) is unimodular over Z, where
ε:ZG - Z is augmentation. In particular, if λ is square, then det (ε(λ)) = ±1.

Definition 1·6. A special subvariety is a subvariety of the form

ΣA = {θ ∈ Rk(G) | Ck ⊗θ A� 0},
where A = C⊗Z B for some perfect ZG module B.

Note that A is a finitely presented CG module with presentation matrix (λi,j) and
ΣA is the set of representations of G such that the image of (λi,j) is singular. Thus,
ΣA is a subvariety of Rk(G).

The following proposition is due to Levine. The proof is included for completeness.

Proposition 1·7 ([11], corollary 3·3). For any homology G-bordant manifolds
(Mi, αi), i = 0, 1, there exists a special subvariety Σ such that ρ(M0, α0) = ρ(M1, α1) on
Rk(G)− Σ.
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Proof. Let (N, β) be a 2n-dimensional homology G-bordism between (M0, α0) and

(M1, α1). Then H∗(N,Mi) % 0 for i = 0, 1, and so the intersection pairing

Hn(N )⊗Hn(N ) - Z

is identically zero. Thus, sign (N ) = 0.
We want to find a subvariety Σ such that for any θ ∈ Rk(G) − Σ we get

H∗(N,Mi; θβ) = 0 for some i ∈ {0, 1}. Then signθβ(N ) = 0 and so, by Theorem 1·1
and the previous paragraph, ρ(M0, α0) = ρ(M1, α1) on Rk(G)− Σ.

We proceed to show the above subvariety Σ exists. Let C∗ = C∗(N,Mi) for some
i ∈ {0, 1}. Since H∗(N,Mi) % 0 and C∗ is a chain complex of free Z modules, C∗
is contractible. Let s∗ be the contraction. Then ∂sn−1 + sn∂ = In, where In is the
identity on Cn.

Let ˜(N,Mi) be the universal cover of (N,Mi) and consider C̃∗ = C∗ ˜(N,Mi). Since
C̃∗ is a chain complex of free Zπ1(N ) modules, the contraction s∗ lifts to a chain
homotopy s̃∗ with ∂̃s̃n−1 + s̃n∂̃ = ψn. Then ψ∗: C̃∗ - C̃∗ is a chain homomorphism
lifting I∗. By abuse of notation, we will denote the chain homomorphism on the
complex of free ZG modules induced by the map β:π1(N ) - G by ψ∗ as well.

Let Bn = cok (ψn) for such a complex of ZG modules. Then Bn is a perfect ZG
module, i.e. Z⊗ZG Bn % 0. Letting An = C⊗Z Bn, we get the exact sequence

Cn(N,Mi;CG)
ψn- Cn(N,Mi;CG) -- An.

If we let

Σn = {θ ∈ Rk(G) | Ck ⊗θ An� 0},
then for θ ∈ Rk(G)− Σn we obtain the exact sequence

Ck ⊗θ Cn(N,Mi;CG)
I⊗ψn- Ck ⊗θ Cn(N,Mi;CG) - Ck ⊗θ An % 0

where I is the identity matrix for Ck. Thus I ⊗ ψn is an isomorphism of complex
vector spaces. Letting Σ =

⋃
Σn, Σ is a special subvariety ([11], p. 94), and for

θ ∈ Rk(G)−Σ, I⊗ψ∗ will be a chain isomorphism. Then I⊗ s̃∗ is a chain contraction
on Ck ⊗θ C∗(N,Mi;CG), and so H∗(N,Mi; θβ) % 0.

Terminology 1·8. We call the special subvariety Σ defined in the proof above the
special subvariety associated with the chain complex C∗(N,Mi;ZG).

2. Unitary representations of π1(M )

In the previous section, we saw how the η invariant can be used as a cobordism
invariant over a group G. In order to make use of this for knot concordance, we need
to make the knot complement into a closed manifold. By doing surgery on the knot
concordance, i.e. removing a tubular neighbourhood of S1 × I and replacing it with
(D2 × I)× S1, the boundary becomes the disjoint union of zero framed surgeries on
the knot complements.

Notation 2·1. We denote byN andMi the zero framed surgery on the knot concor-
dance and zero framed surgery on the knot Ki, respectively, with ∂N = M0 q−M1

for concordant knots K0, K1.
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We also need a unitary representation of π1(∂N ) that extends to π1(N ) and avoids

the special subvarieties of the previous section. The problem is divided into two parts.
First, a homomorphism from π1(∂N ) to an intermediate group Γ is constructed with
the required extension criteria. Then representations of Γ are analysed, and are
composed with the extendible homomorphism. The problem of avoiding the special
subvarieties is tackled in Section 3.

2·1. Homomorphisms from π1(M ) to Γ

Definition 2·2. Γ = S−1Λ/Λ o Z, where the action of an element n ∈ Z is multi-
plication in Λ by tn.

We construct a family of non-abelian homomorphisms

{αx:π1(M ) - Γ | x ∈ H1(M ; Λ)}
using the Blanchfield pairing. They will be dependent on x ∈ H1(M ; Λ), and well
defined up to inner automorphisms of π1(M ).

We begin with some well known results of Blanchfield [3] and provide sketches of
proofs following [10]. We have not seen Corollary 2·9 in the literature, but believe it
to be folklore.

Proposition 2·3. For M zero-surgery on a knot K ⊂ S3,

H1(M ; Λ) % HomΛ(H1(M ; Λ), S−1Λ/Λ).

Sketch of Proof. H1(M ; Λ) % H2(M ; Λ) by Poincaré Duality. Using the Universal
Coefficient Spectral Sequence, one shows H2(M ; Λ) % ExtΛ(H1(M ; Λ),Λ).

To see that ExtΛ(H1(M ; Λ),Λ) % HomΛ(H1(M ; Λ), S−1Λ/Λ), consider the long
exact sequence for the Λ module H1(M ; Λ)

· · · - HomΛ(H1(M ; Λ), S−1Λ) - HomΛ(H1(M ; Λ), S−1Λ/Λ)

- ExtΛ(H1(M ; Λ),Λ) - ExtΛ(H1(M ; Λ), S−1Λ) - · · ·
obtained from the coefficient sequence

Λ- - S−1Λ -- S−1Λ/Λ.

Since H1(M ; Λ) is isomorphic to a subgroup of H1(S3 − K; Λ), which is S torsion
(see [12]), HomΛ(H1(M ; Λ), S−1Λ) and ExtΛ(H1(M ; Λ), S−1Λ) are both trivial. The
result follows.

Definition 2·4. The isomorphism in Proposition 2·3 defines the nonsingular bilinear
Blanchfield pairing

〈 , 〉M : H1(M ; Λ)⊗H1(M ; Λ) - S−1Λ/Λ.

One computes that for a, b ∈ H1(M ; Λ),

〈a, b〉M =
1
p(t)

∑
i∈Z

(tia, c)M ti (mod Λ)

where ( , )M is the usual intersection pairing, and c ∈ C2(M ; Λ) such that ∂c = p(t)b.
Since H1(M ; Λ) is S-torsion, such a p(t) exists for all b ∈ H1(M ; Λ).

The following is a relative version of Proposition 2·3. The proof follows that of
Proposition 2·3 exactly.



Slice knots and the eta invariant 305
Proposition 2·5. For N an homology cobordism between 0-surgeries on knots M0

and M1,

H2(N, ∂N ; Λ) % HomΛ(H1(N ; Λ), S−1Λ/Λ).

This defines a bilinear Blanchfield style pairing on N ,

〈 , 〉N : H2(N, ∂N ; Λ)⊗H1(N ; Λ) - S−1Λ/Λ,

however the pairing may be singular, as H1(N ; Λ) is not necessarily isomorphic to
HomΛ(H2(N, ∂N ; Λ), S−1Λ/Λ).

Again, one computes that for a ∈ H2(N, ∂N ; Λ), b ∈ H1(N ; Λ),

〈a, b〉N =
1
p(t)

∑
i∈Z

(tia, c)N ti (mod Λ)

where c ∈ C2(N ; Λ) such that ∂c = p(t)b, p(t) ∈ S.
Note that such pairings are additive over disjoint unions of manifolds by defining

the pairings on the direct sum of the homology modules in the obvious way.

Definition 2·6. Let D = im{∂: H2(N, ∂N ; Λ) - H1(∂N; Λ)}.
Notation 2·7. Let D⊥ = {a ∈ H1(∂N ; Λ) | 〈a, d〉 = 0 for all d ∈ D} be the annihila-

tor of D in H1(∂N ; Λ).

Proposition 2·8. Let N be as above, ∂N = M0 q−M1. Then:
(i) D ⊆ D⊥;
(ii) D⊥ is self annihilating under the Blanchfield pairing on ∂N , i.e. D⊥ = D⊥⊥.

Proof (i). Consider the exact sequence of pairs

H2(N, ∂N ; Λ)
∂- H1(∂N; Λ)

i∗- H1(N; Λ),

and let a, b ∈ D. Then for any a′ ∈ H2(N, ∂N ; Λ) such that ∂a′ = a,

〈a′, i∗(b)〉N = 〈a, b〉∂N .
Since ker i∗ = im ∂∗,

〈a, b〉∂N = 〈a′, i∗(b)〉N = 〈a′, 0〉N = 0,

and so D ⊆ D⊥.

Proof (ii). It is clear from Proof (i) that D⊥⊥ ⊆ D⊥. To see the converse, let
b ∈ D⊥. Then for any a′ ∈ H2(N, ∂N ; Λ),

〈a′, i∗(b)〉N = 〈∂∗(a′), b〉∂N = 0.

But this Blanchfield style pairing on N may be singular, and so i∗(b) may not be
trivial in H1(N ; Λ). Following the proof of Proposition 2·3, Poincaré duality yields
H1(N ; Λ) % H3(N, ∂N ; Λ), and the Universal Coefficient Spectral Sequence gives us
the short exact sequence

Ext2
Λ(H1(N, ∂N ; Λ),Λ)- - H3(N, ∂N; Λ) -- ExtΛ(H2(N, ∂N; Λ),Λ).

Thus, H1(N ; Λ)/Ext2
Λ(H1(N, ∂N ; Λ),Λ) % ExtΛ(H2(N, ∂N ; Λ),Λ). Levine shows in

[10] that the functors ExtΛ and Ext2
Λ pick out the Z torsion free and
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Z torsion parts (respectively) of Λ modules such as H1(N, ∂N ; Λ),Λ) and
H2(N, ∂N ; Λ),Λ). Since ExtΛ(H2(N, ∂N ; Λ),Λ) is Z torsion-free, the Z torsion part
of H1(N ; Λ) is isomorphic to Ext2

Λ(H1(N, ∂N ; Λ),Λ).
If we combine all this with another result from the proof of Proposition 2·3, that

HomΛ(H2(N, ∂N ; Λ), S−1Λ/Λ) % ExtΛ(H2(N, ∂N ; Λ),Λ), we see that

HomΛ(H2(N, ∂N ; Λ), S−1Λ/Λ) % H1(N ; Λ)/Ext2
Λ(H1(N, ∂N ; Λ),Λ).

Thus, the elements that give us a zero homomorphism under this Blanchfield style
pairing are exactly the Z torsion elements of H1(N, ∂N ; Λ).

Let a, b ∈ D⊥, and let i∗(b) ∈ H1(N ; Λ), be Z-torsion of order n. Then nb ∈ D and
so

0 = 〈a, nb〉∂N = n〈a, b〉∂N .
Thus 〈a, b〉∂N = 0 for all a, b ∈ D⊥ and the result follows.

Corollary 2·9. The homomorphism φ ∈ HomΛ(H1(∂N ; Λ), S−1Λ/Λ) extends to
φ′ ∈ HomΛ(H1(N ; Λ), S−1Λ/Λ) if and only if there exists an x ∈ D such that φ(y) =
〈x, y〉∂N for all y ∈ H1(∂N ; Λ).

Proof. Consider the diagram

H2(N, ∂N ; Λ)
∂ - H1(∂N ; Λ)

i∗ - H1(N ; Λ)

HomΛ(H1(N ; Λ), S−1Λ/Λ)

% (Prop. 2·5)

?
∂̂- HomΛ(H1(∂N ; Λ), S−1Λ/Λ)

% (Prop. 2·3)

?

where ∂̂ is defined by restricting φ′ ∈ HomΛ(H1(N ; Λ), S−1Λ/Λ) to i∗(H1(∂N ; Λ)). A
diagram chase confirms that it commutes. Let φ ∈ HomΛ(H1(∂N ; Λ), S−1Λ/Λ). By
the definition of the Blanchfield pairing, there exists an x ∈ H1(∂N ; Λ) such that
φ(y) = 〈x, y〉∂N for all y ∈ H1(∂N ; Λ).

Let φ′ be an extension of φ. Then there exists an x′ ∈ H2(N, ∂N ; Λ) such that
φ′(z) = 〈x′, z〉N for all z ∈ H1(N ; Λ). Then

φ(y) = ∂̂φ′(y) = 〈x′, i∗(y)〉N = 〈∂(x′), y〉∂N ,
as in the proof of Proposition 2·8. Since the Blanchfield pairing is nonsingular,
∂x′ = x and so x ∈ D.

Conversely, let x ∈ D. Then there exists an x′ ∈ H2(N, ∂N ; Λ) such that ∂x′ = x.
Define φ′ ∈ HomΛ(H1(N ; Λ), S−1Λ/Λ) as φ′(z) = 〈x′, z〉N for all z ∈ H1(N ; Λ). Then
for any y ∈ H1(∂N ; Λ),

∂̂φ′(y) = φ′(i∗(y)) = 〈x′, i∗(y)〉N = 〈∂(x′), y〉∂N = 〈x, y〉∂N = φ(y),

and so φ′ extends φ.

We use this extension property of the Blanchfield pairing to construct homomor-
phisms from π1(∂N ) to the metabelian group Γ that extend over π1(N ). Our first
step is getting from π1(∂N ) to H1(∂N ; Λ), in order to apply the Blanchfield pairing.
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Notation 2·10. Let π = π1(M ), π′ be the commutator subgroup [π, π], and π′′ =

[π′, π′].

Note that H1(π) % H1(M ) % Z, generated by the image of any meridian of K.
Since π′′ is normal in both π and π′, and Z is free, we get the following split exact
sequence.

π′/π′′- - π/π′′ �
s

a
-- Z.

A choice of splitting s:Z - π/π′′ determines a unique isomorphism

ψ:π/π′′ - π′/π′′ o Z

given by ψ(g) =
(
g · sa(g−1), a(g)

)
with inverse ψ−1(h, k) = h · s(k).

Recall that given a splitting s:Z - π/π′′, the action of Z on π′/π′′ is given by
conjugation in π/π′′ by s(1). Thus π′/π′′ is a Λ module. Since π′ % π1(M∞, ∗), the Z
cover of M , π′/π′′ % H1(M∞), and a choice of base point in the Z cover determines
the Λ module structure for the group, giving an isomorphism between H1(M∞) and
H1(M ; Λ) (see [12], section 7·D). This induces an isomorphism

φ:π′/π′′ o Z - H1(M; Λ)o Z.

Definition 2·11. For x ∈ H1(M ; Λ), define Bx: H1(M ; Λ)oZ - Γ = S−1Λ/ΛoZ
by Bx(y, k) = (〈y, x〉M , k) where 〈y, x〉M is the Blanchfield pairing on H1(M ; Λ).

Definition 2·12. Given a splitting s:Z - π/π′′ and an isomorphism φ as above,
we define αx:π - Γ by the composition

π
q- π′/π′′

ψ- π′/π′′ o Z φ- H1(M; Λ)o Z Bx- Γ,

where q is the quotient map and ψ is the isomorphism defined by our choice of
splitting s.

Proposition 2·13. αx is well defined up to inner automorphisms of π = π1(M ).

Proof. The Blanchfield pairing is well defined and so Bx is well defined, q is a
quotient homomorphism and therefore well defined. This leaves ψ and φ. Since ψ is
uniquely determined by the choice of a meridian of K for the image of s(1) and φ by
the choice of base point in M∞, ψ and φ are well defined up to inner automorphisms
of their domains. But these inner automorphisms lift to inner automorphisms of π,
giving the result.

2·2. Unitary Representations of Γ

In order to have unitary representations of π1(M ) for the η invariant, we will
compose the homomorphisms from Section 2·1 with unitary representations of the
group Γ. The results of this section are used in the proof of Theorem 4·3 and in the
construction of examples in Section 5.

Lemma 2·14 ([6], lemma 3·4). Let {p1, . . . , pr} be the set of distinct primes dividing
k, and di be the largest power of pi dividing k for each 1 6 i 6 r. Then there is a map
Ψ:S−1Z[Zk] - ⊕r

i=1 Z(pi)[Zdi] such that the following diagram is Cartesian, where
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∆ is the diagonal map.

S−1Z[Zk]
ε - Z

r⊕
i=1

Z(pi)[Zdi]

Ψ

?
⊕ε-

r⊕
i=1

Z(pi)

∆

?

Notation 2·15. We will henceforth denote Z[Zk] by Λk.

Corollary 2·16. S−1Λk/Λk is a torsion Z module.

Proof. Since the above diagram is Cartesian, the sequence

S−1Λk
-(Ψ,ε)-

(
r⊕
i=1

Z(pi)[Zdi]

)
⊕ Z ⊕ε−∆--

r⊕
i=1

Z(pi)

of additive groups is exact. Modding the first term by Λk and the subsequent terms
by the appropriate images of Λk gives the result.

Definition 2·17. For θ ∈ Rk(Γ), let θ′ be θ restricted to S−1Λ/Λ < Γ. Then define
Hθ = im (θ′) < U (k).

Definition 2·18. For g ∈ Γ an element that generates Z under abelianization, let
u = θ(g).

Using these two definitions, we see that im (θ) is generated by Hθ and u.
Note that the choice of g ∈ Γ corresponds to a choice of splitting s:Z - Γ

of the abelianization of Γ and so is well defined up to inner automorphisms of Γ.
In practice, we let g be the image under αx of a meridian of the knot K and so
these inner automorphisms of Γ will lift back to inner automorphisms of π1(M ) (see
Proposition 2·13).

Note also that since S−1Λ/Λ is abelian, Hθ is abelian. Thus, it is contained in some
maximal torus of U (k). Since all maximal tori of U (k) are conjugate, there exists an
element a ∈ U (k) such that aHθa

−1 ⊆ T k, the maximal torus of diagonal elements
in U (k). We can thus assume, up to conjugacy in U (k), that Hθ ⊆ T k.

Lemma 2·19. Any matrix h ∈ Hθ has entries which are roots of unity. In particular,
Hθ is a torsion abelian group.

Proof. Let W = N (Hθ)/Z(Hθ) be the Weyl group of Hθ ⊆ T k. Then W is isomor-
phic to a subgroup of the symmetric group on k letters (see e.g. [7]). Since u ∈ N (Hθ),
there exists an n ∈ Z such that un ∈ Z(Hθ). Thus conjugating by un is the iden-
tity in Aut (Hθ). Since the Z action in Γ is multiplication by t, θ((tn − 1)S−1Λ/Λ) is
the identity in U (k). This, and the exactness of localization, tells us that θ factors
through S−1Λn/Λn oZ. By Corollary 2·16, S−1Λn/Λn is a torsion Z module, i.e. all
elements are of finite order. Since every element of Hθ is the image of an element in
S−1Λn/Λn, Hθ is a torsion Z module and the result follows.
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Remark 2·20. At this point it is important to note that, of the unitary represen-

tations of π1(∂N ) constructed in this section, those which extend to π1(N ) are a
larger set than they first appear. For x ∈ D (Definition 2·6), we have shown that the
Blanchfield pairing, and thus the representation θαx, extends to a unitary represen-
tation of π1(N ) (Corollary 2·9). In fact, for any x in the self-annihilating submodule
D⊥ that contains D, we also get this extension property.

Lemma 2·21. Let x ∈ D⊥. Then for all θ ∈ Rk(Γ), θαx extends to a U (k) representa-
tion of π1(N ).

Proof. We have seen in the proof of Proposition 2·8 that i∗(x) is Z-torsion for
x ∈ D⊥. Then there exists n ∈ Z such that 0 = ni∗(x) = i∗(nx) in H1(N ; Λ). Thus,
nx ∈ D, and so αnx extends to a homomorphism α′:π1(N ) - Γ based on the
Blanchfield style pairing on N , defined as in Definition 2·12. Thus, the composite
representation θαnx extends to the representation θα′ of π1(N ).

Recall that π1(N ) is finitely generated and let {g1, . . . , gn} be a generating set. Then
α′(gi) = (pi,mi) ∈ Γ = S−1Λ/Λ o Z. Under θ, these are elements hi · umi ∈ U (k),
a generating set for the image of π1(N ) in U (k), with each hi ∈ Hθ.

As shown in Lemma 2·19, Hθ is a torsion abelian group whose elements are diag-
onal matrices in U (k) with entries that are roots of unity. Thus, we can write

hi =

 exp{2πiq1}
. . .

exp{2πiqk}


for 0 < q1 . . . qk 6 1 in Q.

In general, for p ∈ S−1Λ/Λ, θ(np) = (θ(p))n in U (k). Thus, we define the represen-
tation χ:π1(N ) - U (k) by χ(gi) = h

1/n
i · umi where

h
1/n
i =

 exp{2πiq1/n}
. . .

exp{2πiqk/n}

 .

Note that by the linearity of the Blanchfield pairing, and the use of the generating
set {gi}, χ extends θαx. However, it does not factor through Γ, since S−1Λ/Λ does
not admit division over Z.

3. Representations and special subvarieties

To use the η invariant as a concordance invariant, we compose the representations
of the previous two sections in order to miss the special subvariety associated with
the chain complex C∗(N,Mi;ZG) (see Section 1). This section develops the required
machinery.

Definition 3·1. A group Π is called Z-primary if Π % P oZ for some finite p group
P and the projection Π - Z is an isomorphism on first homology.

Notation 3·2. Throughout this section, we assume Π is a Z-primary group. Then
the commutator subgroup of Π is the p-group P . Thus, a ZΠ module A is also a ZP
module. Similarly, a choice of splitting Z - Π of the abelianization of Π makes
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A a Z[Z] module. For a ring R, R ⊗Z A is an RΠ module which we will denote RA.
Note that if R is a field, RA is a module over the p.i.d. R[Z].

We begin with a finitely presented ZΠ module A.

Proposition 3·3. If A is a perfect ZΠ module (see Definition 1·5), then for any
splitting Z - Π, QA is a torsion Q[Z] module.

The proof of Proposition 3·3 is delayed; the idea is to show that if QA is not a
torsionQ[Z] module, thenA has an infinitely generated free summand as a Zmodule.
Lemma 3·5 shows ZpA is a finite module and thus can have no infinitely generated
free summand over Zp. Thus QA is a finite dimensional vector space and is therefore
Q[Z] torsion. Lemma 3·4 is used to prove Lemma 3·5.

Lemma 3·4 (cf. lemma I·4·3 of [11]). If P is a finite p-group and B a Zp[P ] module
with Zp ⊗Zp[P ] B finite, then B is finite.

Proof (Case 1). Let P % Zp, generated by x. Then

B/(x− 1)B % Zp ⊗Zp[P ] B

and so B/(x− 1)B is finite. Now consider the map

(x− 1)k−1B
x−1- (x− 1)kB/(x− 1)k+1B.

This map is surjective and factors through (x − 1)k−1B/(x − 1)kB. Induction then
gives us (x− 1)kB/(x− 1)k+1B finite for all k.

The exact sequence

(x− 1)kB/(x− 1)k+1B- - B/(x− 1)k+1B -- B/(x− 1)kB

gives us another inductive step; for if the first and last terms are finite, the centre
term shall be and soB/(x−1)kB is finite for all k. Now, in Zp[P ] % Zp[Zp], (x−1)p =
xp − 1 = 0 and so B/(x− 1)pB % B is finite.

(Case 2). Let |P | = pi, i > 1. Then we can find P ′ normal in P with |P ′| = pi−1.
Let B′ = Zp[P/P ′]⊗Zp[P ] B. Since P/P ′ % Zp, we get

Zp ⊗Zp[P/P ′] B
′ % Zp ⊗Zp[P ] B,

which is finite. Case 1 implies B′ is finite.
Since P ′ < P , the Zp[P ] module B is also a Zp[P ′] module. As Zp[P ′] modules,

Zp ⊗Zp[P ′] B % Zp[P/P ′] ⊗Zp[P ] B = B′ and this is finite when Zp ⊗Zp[P ] B is.
Continuing this inductive process along the composition series for P shows B is
finite.

Lemma 3·5. If A is a perfect ZΠ module, then ZpA is finite.

Proof. First recall that for a perfect ZΠ module A (Definition 1·5), ε(λ) is unimod-
ular over Z, where λ is the ZΠ presentation matrix for A. Since ZpA has presenta-
tion matrix λ′ = idZp ⊗ λ over ZpΠ, ε(λ′) = ε(λ)(mod p) is also unimodular and so
Zp ⊗ZpΠ ZpA % 0.

Since Π % P oZ, A is a Z[P ] module and a Z[Z] module. Let A′ = Zp⊗Zp[P ]ZpA.
Then A′ is a Zp[Z] module where ti(x⊗ y) = x⊗ tiy. We get

Zp ⊗Zp[Z] A
′ = Zp ⊗Zp[Z] (Zp ⊗Zp[P ] ZpA) % Zp ⊗ZpΠ ZpA % 0.
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This implies that A′ is a torsion module over the p.i.d. Zp[Z], since a free Zp[Z]
summand of A′ would not vanish in Zp ⊗Zp[Z] A

′.
Since A is a finitely generated ZΠ module and [Z: Π] = |P | is finite, A′ is a finitely

generated module over Zp[Z]. Since A′ is Zp[Z] torsion, A′ % ⊕ni=1Zp[Z]/(pi(t)) for
some n and some set of monic polynomials {pi(t)} ⊂ Zp[Z], where t is a generator of
Z. Thus, A′ is a Zp vector space with dimension

∑n
1 deg(pi) and so is finite.

Since A′ = Zp ⊗Zp[P ] ZpA is finite, Lemma 3·4 completes the proof.

Proof of Proposition 3·3. Since A is finitely presented, A is finitely generated over
ZΠ. Since [Z: Π] = |P | is finite, A is a finitely generated Z[Z] module and so QA is
a finitely generated Q[Z] module.

If QA is not a torsion Q[Z] module, then QA has a free Q[Z] summand, since
Q[Z] is a p.i.d. Then there exists a nonzero Q[Z] homomorphism f :QA - Q[Z].
Let f ′ be the restriction of f to A. Then f ′ is a nonzero Z[Z] homomorphism into
Q[Z]. Since A is finitely generated as a Z[Z] module, we can find n ∈ Z such that
nf ′ is a nonzero Z[Z] homomorphism into Z[Z]. Then the ideal nf ′(A) ⊂ Z[Z] is
infinitely generated over Z. Thus, A has a split free summand as a Z[Z] module,
and so ZpA = Zp ⊗Z A has a split free summand as a Zp[Z] module, contradicting
Lemma 3·5. Thus, QA is a torsion Q[Z] module.

Corollary 3·6. Given A as in Proposition 3·3, there is a polynomial p ∈ Q[Z] such
that p annihilates QA.

The corollary follows immediately, upon observing that such modules are finitely
generated.

We now show how Z-primary groups allow us to avoid the special subvarieties
associated with particular chain complexes.

Definition 3·7. LetG be a group such that H1(G) % Z. A transcendental Z-primary
representation θ:G - U (k) is a non-abelian representation satisfying:

(i) Z-primary – There exists an epimorphism G -- Π, where Π is a non-abelian
Z-primary group, such that θ factors through Π;

(ii) transcendental – For some g ∈ G such that g generates H1(G), θ(g) has eigen-
values which are transcendental over Q.

We denote these representations by Pk(G) ⊂ Rk(G).

Remark 3·8. Note that an epimorphism G -- Π will induce an isomorphism on
H1, since the induced map will be an epimorphism of Z onto itself.

We will see in Section 5 that Z-primary transcendental representations of knot
groups are quite easy to construct.

Proposition 3·9. Let γ: Π - U (k) be a transcendental representation of a Z-
primary group Π. Then for any perfect ZΠ module A, Ck ⊗γ A % 0.

Proof. Note that Ck⊗γA % Ck⊗γQA, so it will suffice to show that x⊗γ y = 0 for
x ∈ Ck and y ∈ QA. Since A is a perfect ZΠ module, QA is a torsion Q[Z] module,
by Proposition 3·3. By Corollary 3·6, we are able to find a nonzero polynomial
p(t) ∈ Q[Z] that annihilates QA, i.e. p(t) · y = 0 for all y ∈ QA.

Let g ∈ Π be such that g generates H1(Π) and γ(g) has transcendental eigenvalues
{gi}. Let h ∈ U (k) be such that hγ(g)h−1 is diagonal. Then hp(γ(g))h−1 = p(hγ(g)h−1),
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which is a diagonal matrix with entries p(gi). Since each gi is transcendental, this
diagonal matrix is nonsingular, implying that p(γ(g)) is nonsingular.

Let δ = p(γ(g)). Since the action of g on the Q[Z] % Q[t, t−1] modules is multipli-
cation by t, p(g) annihilates QA. Thus, for any x⊗ y ∈ Ck ⊗γ QA,

0 = δ−1x⊗ p(g)y = (δδ−1x)⊗ y = x⊗ y.
The result follows.

Corollary 3·10. Let θ ∈ Pk(G), i.e. θ is a Z-primary transcendental representation
of a group G. Then for A a perfect ZG module, Ck ⊗θ A % 0.

Proof. Since θ is Z-primary and transcendental, it factors as γϕ, where γ is tran-
scendental, and the following diagram commutes. Thus,Ck⊗θA % Ck⊗γ (ZΠ⊗ZGA),
and so ZΠ⊗ZG A is a perfect module over ZΠ. Proposition 3·9 finishes the proof.

u ç

h

The main result of this section demonstrates that such representations lie outside
of the special subvariety Σ associated with a connected homology cobordism N with
∂N = M0 qM1.

Theorem 3·11. Let N be a connected homology cobordism with M one of the bound-
ary components. Let G = π1(N ) and let Σ be the special subvariety associated with
C∗(N,M ;ZG) (see Section 1). If θ ∈ Pk(G), then θ ^ Σ.

Proof. Since H∗(N,M ) % 0, there exists a chain contraction on C∗(N,M ). Since
Z⊗ZG C∗(N,M ;ZG) % C∗(N,M ), this chain contraction lifts to a chain homotopy
on C∗(N,M ;ZG) between a chain homomorphism ψ∗ and the zero homomorphism,
as in the proof of Proposition 1·7. Note that ε(ψn) = In, the identity on Cn(N,M ),
for all n.

LetAn = cok (ψn). ThenAn is a perfect ZGmodule. Since θ ∈ Pk(G),Ck ⊗θ A % 0
by Corollary 3·10. Thus, θ lies outside the special subvariety Σn for all n and so θ lies
outside the special subvariety Σ =

⋃
n Σn of Rk(G) associated with C∗(N,M ;ZG).

4. Main Theorem

Definition 4·1. Define η
K

: H1(M ; Λ)×R∗(Γ) - R by

η
K

(x, θ) = ρ(M,αx) · θ = η̃θαx(M ),

for any θ ∈ Rk(Γ) and for any k.

Lemma 4·2. Let MO be zero-framed surgery on the trivial knot O (the unknot), i.e.
MO = S1 × S2. Then for any group G and any α:π1(MO) = Z - G, ρ(MO, α) = 0.
In particular, η

O
(x, θ) = 0 for all x ∈ H1(MO; Λ) and all θ ∈ Rk(Γ).
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Proof. Let N = S1 ×D3. Then ∂N = MO. Since N is homotopy equivalent to S1,

H2(N ) % 0 % H2(N ; θα) for any θ ∈ Rk(G). Thus, sign (N ) = 0 = signθα(N ), and so
ρ(MO, α) = 0 on all of Rk(G) by Theorem 1·1.

Theorem 4·3 (Main Theorem). Let M be zero-framed surgery on a slice knot K.
Then there exists P ⊆ H1(M ; Λ) such that P = P⊥, and for all x ∈ P and θ ∈ Rk(Γ)
such that θαx ∈ Pk(π1(M )), η

K
(x, θ) = 0.

Note that the self annihilating submodule P is the module D⊥ of Section 2·1.

Proof. We have seen in Lemma 2·21 that for an homology cobordism N between
M and MO = S1×S2 (zero-framed surgery on the unknot O), there exists a unitary
representation β extending θαx. We need to show that β is in Pk(π1(N )) and so lies
outside the special subvariety Σ of Rk(π1(N )) associated with C∗(N,M ;Zπ1(N )).
Since K is concordant to the unknot O, Proposition 1·7 and Lemma 4·2 imply
η
K

(x, θ) = η
O

(x, θ) = 0.
LetN be as above, obtained by zero-framed surgery on a concordance, and suppose

x ∈ D = im{∂: H2(N, ∂N ; Λ) - H1(∂N; Λ)} ⊆ P (see Section 2·1). Since ∂N =
M q (S1 × S2), we have H1(∂N ; Λ) % H1(M ; Λ)⊕H1(S1 × S3; Λ). Since the Z cover
of S1×S2 is R×S2, H1(∂N ; Λ) is just H1(M ; Λ). By Corollary 2·9, αx:π1(M ) - Γ
extends to a homomorphism α′:π1(N ) - Γ.

Since N is compact, π1(N ) is finitely generated, and so L = im (θα′) is a finitely
generated subgroup of Hθ o Z = im (θ). The inclusion of L into Hθ o Z is a first
homology isomorphism, and so the commutator subgroup [L,L] < Hθ. Hθ is a
torsion abelian group by Lemma 2·19, so [L,L] = F is a finite abelian group. Thus,
L % F o Z.

By our choice of θ, θαx ∈ Pk(π1(M )) and so factors onto a group of the form
P oZ for some nontrivial p-group P . Then in the following diagram, all solid arrows
commute.

Since im (θαx) ⊆ im (θα′), there exists a homomorphism ξ:P o Z - F o Z
(the dashed arrow above), making the whole diagram commute. Since i∗ and both
surjections ϕ and ϕ′ are isomorphisms on first homology, ξ is as well. Since P and F
are the kernels of the respective abelianizations, ξ(P ) ⊆ F .

Let P ′ be the Sylow p-subgroup of F containing the image of P . Since
θαx ∈ Pk

(
π1(M )

)
, it is a non-abelian representation. Thus the image of P under ξ is

nontrivial and so P ′ is nontrivial. Since F is finite abelian, the inclusion of P ′ into F



314 Carl F. Letsche
splits. Since the action of Z preserves the order of the elements of F , it restricts to an
action on P ′ and so P ′oZ is a subgroup of FoZ. Let j:P ′oZ - FoZ be this inclu-
sion. The splitting F - P ′ of P ′ ⊆ F determines a splitting σ:F oZ - P ′oZ.
This gives the following non-commutative diagram, which can be added to the dia-
gram above.

π1(N )
ϕ′- F o Z

γ′ - U (k)

P ′ o Z

σ

??

j

6

Let β = γ′jσϕ′. Then βi∗ = γ′jσϕ′i∗ = γ′jσξϕ. Since im (ξ) ⊆ im (j), βi∗ = γ′ξϕ,
and by the commutativity of the diagram, βi∗ = θαx. Note that as a representation,
β is Z-primary since it factors through P ′ o Z for the p group P ′. To see that β is
transcendental, let µ be a meridian of the knot K. Then µ generates H1(M ) under
abelianization and so i∗(µ) generates H1(N ). Thus, βi∗(µ) = θαx(µ) has transcenden-
tal eigenvalues and so β ∈ Pk(π1(N )). This implies β ^ Σ, the special subvariety of
Rk(π1(N )) associated with C∗(N,M ;Zπ1(N )). Thus, η

K
(x, θ) = 0.

To deal with the case where x ∈ P but is not in D, we consider nx ∈ D, as in
Lemma 2·21. So the representation θαx can still be extended to χ, by extending
αnx to α′ as above and taking the nth roots of the generators of the image of θα′

in U (k), as we did in the proof of Lemma 2·21. Although this extension does not
factor through Γ anymore, the image of χ is still of the form F o Z, with F a finite
subgroup containing P . The large diagram above becomes the diagram below, and
β can be constructed as before, extending θαx and contained in Pk(π1(N )).

5. Examples

Notation 5·1. We shall use the ordered pair notation for elements of a semi-direct
product (see e.g. [8]). We also let Hθ and u be defined as they are in Section 2·2 and
assume Hθ ⊆ T k in U (k).

Consider a genus 1 knot K with Seifert pairing A =
(

0 −7
−8 5

)
over some basis

{e1, e2} for H1(F ), where F is the Seifert surface of K. Such a knot is algebraically
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slice. We compute representations such that the associated η invariants vanish if
such a knot is slice.

By [9], the Blanchfield pairing is given by

(1− t)(tA−AT )−1 =
t− 1

(8t− 7)(7t− 8)

(
5(t− 1) 8t− 7
7t− 8 0

)
over the Λ module basis {f1, f2} of H1(X∞) = H1(S3−K; Λ), whereX∞ is the infinite
cyclic cover of the knot complement S3 − K. The generators fi are the Alexander
duals to the basis elements ei in H1(S3 − F ), lifted to a fixed fundamental domain
in the Z cover of S3 −K. Note that H1(S3 −K; Λ) = H1(M ; Λ), since the addition
of the two-handle in our zero-framed surgery bounds a parallel to the knot, which is
already null-homologous. Thus, the above pairing is also the Blanchfield pairing on
H1(M ; Λ).

A calculation shows that the self annihilating submodules for this pairing are P1,
generated by x = f2, and P2, generated by y = −3f1 + f2. Then the homomorphisms
αx, αy: H1(M ; Λ)o Z - Γ are determined by the images of the generators (f1, 0)
and (f2, 0). We get

αx(f1, 0) =
(
t− 1
8t− 7

, 0
)

αx(f2, 0) = (0, 0)

and

αy(f1, 0) =
(

1− t
7t− 8

, 0
)

αy(f2, 0) =
(

3(1− t)
7t− 8

, 0
)
.

We now begin the construction of a set of representations Q ⊆ ∐
k Rk(Γ) such

that if K is slice then either η
K

(x, θ) = 0 for all θ ∈ Q or η
K

(y, θ) = 0 for all θ ∈ Q.
We will concern ourselves only with irreducible representations, since the value of
an η invariant defined by a reducible representation is determined by its irreducible
constituents. Though we only compute representations for k = 2 and 3, higher dimen-
sional representations are computed analogously.

We will show by example that such representations are not hard to construct. The
general technique is given in the following paragraph, with the details for k = 2 and
3 following.

One first observes, using the arguments of Lemma 2·19, that if θ ∈ Rk(Γ) is
irreducible, then u∗, the action generated by u, is the action of a k-cycle. Then
θ:S−1Λ/ΛoZ - U (k) factors through a representation θ′:S−1Λk/ΛkoZ - U (k).
By Lemma 2·14, S−1Λk/Λk is a subring of a sum of group rings. Fixing u, the possible
representations θ′ are then computed.

For irreducible θ ∈ R2(Γ), u∗ is a 2-cycle, and so u =
(

0 ζ1

ζ2 0

)
where |ζi| = 1.

The representation is transcendental if and only if the eigenvalues of u, ±√ζ1ζ2, are
transcendental over Q. This is equivalent to det(u) = −ζ1ζ2 being transcendental
over Q.
θ factors through S−1Λ2/Λ2oZ. By Lemma 2·14, this is isomorphic to a subgroup

of R2[Z2] o Z, where R2 = Z(2)/Z. A representation θ′:S−1Λ2/Λ2 o Z - U (2)
restricts to a Z2 equivariant homomorphism S−1Λ2/Λ2

- T 2 ⊆ U (2) where Z2

acts on T 2 via conjugation by u, which permutes the diagonal entries. Clearly such
a homomorphism extends to a Z2 invariant homomorphism R2[Z2] - T 2 and any
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Z2 invariant homomorphism ρ: R2[Z2] - T 2 together with a choice of u as above,
determines an irreducible representation θ′:S−1Λ2/Λ2 o Z - U (2), and thus an
irreducible representation θ ∈ R2(Γ).

Note that Z2 invariant homomorphisms ρ: R2[Z2] - T 2 % (R/Z)2 lie in one-to-
one correspondence to commuting diagrams of Z[Z2] homomorphisms

Z[Z2] - Z[Z2]

Z(2)[Z2]
?

- R[Z2]
?

and these lie in one-to-one correspondence to HomZ[Z2](Z[Z2],Z[Z2]) and are given by
multiplication by a polynomial q(t) = q0+q1t ∈ Z[Z2]. The representation determined
by q0 + q1t is given by

ρ

(
a

m
t +

b

n

)
=
(

exp{2πi(q0a/m + q1b/n)} 0
0 exp{2πi(q1a/m + q0b/n)}

)
.

In the group R2[Z2], (7t − 8)−1 = −(7t + 8)/15, and (8t − 7)−1 = (8t + 7)/15.
Thus, the image of αx(f1, 0) = ((1 − t)/15, 0) and αx(f2, 0) = (0, 0) and the image of
αy(f1, 0) = ((t− 1)/15, 0) and αy(f2, 0) = ((t− 1)/5, 0) in R2[Z2]o Z.

Then

θαx(f1, 0) = θ′
(

1− t
15

, 0
)

=
(

exp{−2πi(q0 − q1)/15} 0
0 exp{2πi(q0 − q1)/15}

)

θαx(f2, 0) = θ′ (0, 0) =
(

1 0
0 1

)
and

θαy(f1, 0) = θ′
(
t−1
15 , 0

)
=
(

exp{2πi(q0 − q1)/15} 0
0 exp{−2πi(q0 − q1)/15}

)
θαy(f2, 0) = θ′

(
t−1

5 , 0
)

=
(

exp{2πi(q0 − q1)/5} 0
0 exp{−2πi(q0 − q1)/5}

)
.

Clearly for F oZ, the image of θ composed with one of either αx or αy, F % Z15, Z5

or Z3, depending on our choice of q(t). Thus, the representations θ that have either
θαx or θαy in P2(π1(M )) are the ones such that q0 − q1 is a multiple of either 5 or 3.

The computations are similar for U (3) representations. Without loss of generality,
let

u =

 0 0 ζ1

ζ2 0 0
0 ζ3 0

 ,

so that u∗ is the 3-cycle (1 2 3). Again, if det (u) = ζ1ζ2ζ3 is transcendental over Q, θ
will be a transcendental representation.

The group S−1Λ3/Λ3 is isomorphic to a subgroup of R3[Z3], where R3 = Z(3)/Z,
and in this group (7t−8)−1 = (−49t2−56t−64)/169. Then the image of αy becomes
((15−8t−7t2)/169, 0) and (3(15−8t−7t2)/169, 0) for (f1, 0) and (f2, 0), respectively.
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Since the automorphism θ′ is multiplication by q = q0 + q1t + q2t

2 in R3[Z3], we get

(15q0 − 8q2 − 7q1) + (15q1 − 8q0 − 7q2)t + (15q2 − 8q1 − 7q0)t2

169

and

3(15q0 − 8q2 − 7q1) + 3(15q1 − 8q0 − 7q2)t + 3(15q2 − 8q1 − 7q0)t2

169

respectively. The simplest example, where q(t) = 1, gives us the result

θαy(f1, 0) =

 exp{2πi(−7/169)} 0 0
0 exp{2πi(−8/169)} 0
0 0 exp{2πi(15/169)}


and

θαy(f2, 0) =

 exp{2πi(−21/169)} 0 0
0 exp{2πi(−24/169)} 0
0 0 exp{2πi(45/169)}

 .

Clearly, the image is isomorphic to Z132 o Z and so θαy ∈ P3(π1(M )). Similar com-
putations give, for q(t) = 1,

θαx(f1, 0) =

 exp{2πi(−8/169)} 0 0
0 exp{2πi(−7/169)} 0
0 0 exp{2πi(15/169)}


and

θαx(f2, 0) =

 1 0 0
0 1 0
0 0 1

 .

The computations are left to the reader.
As a final example, we give an interesting U (6) representation of the knot with

Seifert pairing 
0 −6 0 0
−7 1 0 0

0 0 0 −5
0 0 −6 1

 .

Note that this can be thought of as the connected sum of two genus one knots, each
having Seifert pairing given by the obvious 2 × 2 diagonal blocks. Our interest in
such a knot stems from the fact that we have 13-torsion in both the U (2) and U (3)

irreducible representations. The knot with Seifert pairing
(

0 −6
−7 1

)
has 13-torsion

appearing in its U (2) representations and the knot with Seifert pairing
(

0 −5
−6 1

)
has both 7-torsion and 13-torsion in its U (3) representations.
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The Blanchfield pairing for this knot is given by



(1− t)2

(6− 7t)(7− 6t)
1− t
6− 7t

0 0

1− t
7− 6t

0 0 0

0 0
(1− t)2

(5− 6t)(6− 5t)
1− t
5− 6t

0 0
1− t
6− 5t

0


with respect to the Λ module basis {f1, f2, f3, f4} of H1(M ; Λ). One obvious self
annihilating submodule is P = span{f2, f4} (there are several others). We shall look
at the representations θαx where x = f2 + f4 ∈ P . Since both f2 and f4 vanish when
paired with x, We need only concern ourselves with the images of the generators
(f1, 0) and (f3, 0) of H1(MΛ)o Z. We get

αx(f1, 0) =
(

1− t
7− 6t

, 0
)

αx(f3, 0) =
(

1− t
6− 5t

, 0
)
.

Let θ ∈ U (6) be irreducible, with u∗ a 6-cycle. Without loss of generality, let

u =



0 0 0 0 0 ζ1

ζ2 0 0 0 0 0
0 ζ3 0 0 0 0
0 0 ζ4 0 0 0
0 0 0 ζ5 0 0
0 0 0 0 ζ6 0

 ,

where |ζi| = 1. Again, if det(u) = −∏ ζi is transcendental, then the representation
will be transcendental. Now θ:S−1Λ/ΛoZ - U (6) factors through S−1Λ6/Λ6oZ
and S−1Λ6/Λ6 is isomorphic to a subgroup of R2[Z2]⊕R3[Z3], by [6]; so the image
of αx in (R2[Z2]⊕R3[Z3])o Z is((

1− t
13

,
13− 7t− 6t2

127

)
, 0
)

and
((

1− t
11

,
11− 6t− 5t2

91

)
, 0
)

for (f1, 0) and (f3, 0), respectively.
Note that an automorphism θ′ on R2[Z2] ⊕ R3[Z3] can be represented by a

pair (q(t), r(t)) ∈ Z[Z2] ⊕ Z[Z3]. For simplicity in our example, we will assume
q(t) = r(t) = 1.

The Chinese Remainder Theorem allows us to find an element in Z[Z6] that
projects to both 127(1− t) ∈ Z[Z2] and 13(13− 7t− 6t2) ∈ Z[Z3], and another that
projects to both 91(1− t) ∈ Z[Z2] and 11(11−6t−5t2) ∈ Z[Z3]. Letting R6 = Z(6)/Z,
where Z(6) = Z(2) w Z(3), we get the image of αx in R6[Z6]o Z is(

205− 91t− 78t2 − 36t3

13× 127
, 0
)

and
(

146− 66t− 55t2 − 25t3

7× 11× 13
, 0
)
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for (f1, 0) and (f2, 0), respectively. Thus, since θ′ is the identity, we get

θαx(f1, 0) =



1 0 0 0 0 0
0 1 0 0 0 0

0 0 exp
{

2πi(−36)
1651

}
0 0 0

0 0 0 exp
{

2πi(−78)
1651

}
0 0

0 0 0 0 exp
{

2πi(−91)
1651

}
0

0 0 0 0 0 exp
{

2πi(205)
1651

}


and

θαx(f2, 0)=



1 0 0 0 0 0
0 1 0 0 0 0

0 0 exp
{

2πi(−25)
1001

}
0 0 0

0 0 0 exp
{

2πi(−55)
1001

}
0 0

0 0 0 0 exp
{

2πi(−66)
1001

}
0

0 0 0 0 0 exp
{

2πi(146)
1001

}


.
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