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0. Introduction

We establish a connection between the n invariant of Atiyah, Patodi and Singer
(1, 2]) and the condition that a knot K C S* be slice. We produce a new family
of metabelian obstructions to slicing K such as those first developed by Casson and
Gordon in [4] in the mid 1970s. Surgery is used to turn the knot complement S* — K
into a closed manifold M and, for given unitary representations of (M), n can be
defined. Levine has recently shown in [11] that 1 acts as an homology cobordism
invariant for a certain subvariety of the representation space of m(N), where N is
zero-framed surgery on a knot concordance. We demonstrate a large family of such
representations, show they are extensions of similar representations on the boundary
of N and prove that for slice knots, the value of 1 defined by these representations
must vanish.

The paper is organized as follows; Section 1 consists of background material on 7
and Levine’s work on how it is used as a concordance invariant [11]. Section 2 deals
with unitary representations of (M) and is broken into two parts. In 2-1, homo-
morphisms from (M) to a metabelian group I' are developed using the Blanchfield
pairing. Unitary representations of I" are then considered in 2-2. Conditions ensuring
that such two stage representations of 7((M) allow 1 to be used as an invariant are
developed in Section 3 and 2, the family of such representations, is defined. Sec-
tion 4 contains the main result of the paper, Theorem 4-3. Lastly, in Section 5, we
demonstrate the construction of representations in 2.

Notation 0-1. Throughout this paper, let A be the ring of Laurent polynomials
Z[Z]. We will frequently write Z multiplicatively as {t'};cz so that A = Z[t,t7']. Let
S be the multiplicative set {p(t) € A | p(1) = 1}.

In addition, let Ri(G) = {0: G —— U(k)} be the space of k-dimensional unitary
representations of the group G.

1. Background
In [1] and [2], Atiyah, Patodi and Singer developed an invariant 1, (M) defined
for any compact, oriented, odd dimensional Riemannian manifold M, with a unitary
representation «: (M) —— U(k). This invariant appears in their Index Theorem,

1 I would like to thank Peter Teichner for pointing out an error in a previous draft.
I This paper was written using Paul Taylor’s commutative diagrams package for TEX.
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which relates 1o (M) to signg(N), where ON = M and §:m(N) — U (k) restricts
to a on w((M).

A reduced 7 invariant is also defined in [2]; o (M) = o (M) — kno(M), where o
denotes the trivial representation. The main result of [2] is the following:

THEOREM 1-1 ([2], theorem 2-4). 7, (M) is independent of the Riemannian metric
and so is a differential invariant of M and o. If M = ON and o:m((M) — U(k)
extends to a unitary representation on w((N), then fjo (M) = k - sign (N) — sign (V).

In [11], Levine investigates the behaviour of 7,(M) under homology cobordism
and applies it to study link concordance. We first review some of his results.

Definition 1-2. 1f G is a group, then a G-manifold is a pair (M, «) where M is a
compact oriented manifold with components {M;} and « is a collection of homo-
morphisms «a;: 7 (M;) — G, where each «; is defined up to inner automorphisms

of G.

Thus for any such G-manifold (M, «) and any representation 8 € Ry(G), the
composition fa:m (M) —— U(k) determines fjpo(M) € R. For M = [, M,
flga(M) = Z:'L:l e, (M;).

Definition 1-3. Two odd-dimensional G-manifolds (M;, o), ¢ = 0,1, are hom-
ology G-bordant if there exists a G-manifold (N, 3) such that ON = M, II —M,,
H. (N, M;) = 0 and up to inner automorphisms of G, 8|m(M;) = «;.

Definition 1-4. Define p(M, a): Ri(G) — R by p(M, a) - 0 = flgo (M).

Levine shows [11], that if (M, ay) and (M, y) are homology G-bordant, then
p(My, ap) - 0 = p(My,ay) - 0 for 8 € Ri(G) lying outside some special subvariety,
defined in terms of perfect modules.

Definition 1-5. A module B over the group-ring ZG is a perfect ZG module if
7 Rz B =~ 0.

In addition, we will assume such modules are finitely presented. Note that this
implies that for A a presentation matrix for B, £(\) is unimodular over Z, where
€: LG — Z is augmentation. In particular, if A is square, then det (e(A)) = £1.

Definition 1-6. A special subvariety is a subvariety of the form
Ta={0€ Rp(G)| CFxyA=+0},
where A = C ®z B for some perfect ZG module B.

Note that A is a finitely presented CG module with presentation matrix (}; ;) and
X 4 is the set of representations of G' such that the image of (}; ;) is singular. Thus,
X 4 is a subvariety of Ry (G).

The following proposition is due to Levine. The proof is included for completeness.

PropositioN 1-7 ([11], corollary 3-3). For any homology G-bordant manifolds
(M, ), @ = 0,1, there exists a special subvariety X such that p(My, ) = p(My, ay) on
Ry (G) — .
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Proof. Let (N, ) be a 2n-dimensional homology G-bordism between (M, ay) and
(My, ay). Then H. (N, M;) = 0 for i = 0,1, and so the intersection pairing

is identically zero. Thus, sign (N) = 0.

We want to find a subvariety X such that for any 6 € Ry(G) — X we get
H.(N, M;;083) = 0 for some i € {0,1}. Then sign,z(N) = 0 and so, by Theorem 1-1
and the previous paragraph, p(My, ap) = p(My, o) on Ri(G) — Z.

We proceed to show the above subvariety X exists. Let C, = C, (N, M;) for some

i € {0,1}. Since H (N, M;) =~ 0 and C, is a chain complex of free Z modules, C,
is contractible. Let s, be the contraction. Then 9s,,_, + 5,0 = I,,, where I,, is the
identity on C,.
_Let (]m) be the universal cover of (N, M;) and consider C.= C’*(]m). Since
C. is a chain complex of free Zm(N) modules, the contraction s, lifts to a chain
homotopy 3. with 03, +35,0 = Up. Then 9,: C, — C, is a chain homomorphism
lifting I.. By abuse of notation, we will denote the chain homomorphism on the
complex of free ZG modules induced by the map §: 7 (N) — G by v, as well.

Let B, = cok (¥,) for such a complex of ZG modules. Then B,, is a perfect ZG
module, i.e. Z @z¢ B, = 0. Letting A, = C ®z B,,, we get the exact sequence

Cu(N, My;CG) —+ C,(N, My;CG) —= A,

If we let
2, =1{0 € Ri(G) | CF @4 A, # 0},

then for 6 € Ry (G) — Z,, we obtain the exact sequence

CF @9 Cp(N, M;; CG) 12%% CF @4 Co(N, Mi;CG) —— CF @4 A, = 0
where I is the identity matrix for C*. Thus I ® 1), is an isomorphism of complex
vector spaces. Letting £ = (JZ,, T is a special subvariety ([11], p. 94), and for
0 € Ri(G)—X, I®y, will be a chain isomorphism. Then I ® 3, is a chain contraction
on C¥ @y C,(N, M;; CG), and so H, (N, M;;03) = 0.

Terminology 1-8. We call the special subvariety X defined in the proof above the
special subvariety associated with the chain complex Cy (N, M;; ZG).

2. Unitary representations of m(M)

In the previous section, we saw how the 1 invariant can be used as a cobordism
invariant over a group G. In order to make use of this for knot concordance, we need
to make the knot complement into a closed manifold. By doing surgery on the knot
concordance, i.e. removing a tubular neighbourhood of S' x I and replacing it with
(D* x I) x S', the boundary becomes the disjoint union of zero framed surgeries on
the knot complements.

Notation 2-1. We denote by N and M; the zero framed surgery on the knot concor-
dance and zero framed surgery on the knot K, respectively, with ON = M, 11 —M,
for concordant knots K, K.
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We also need a unitary representation of m(ON) that extends to m;(N) and avoids
the special subvarieties of the previous section. The problem is divided into two parts.
First, a homomorphism from 7 (ON) to an intermediate group I is constructed with
the required extension criteria. Then representations of I' are analysed, and are
composed with the extendible homomorphism. The problem of avoiding the special
subvarieties is tackled in Section 3.
2-1. Homomorphisms from (M) to T’

Definition 2-2. T' = ST'A/A x Z, where the action of an element n € Z is multi-
plication in A by t".

We construct a family of non-abelian homomorphisms

{ag:m(M) — T |z € H{(M;A)}

using the Blanchfield pairing. They will be dependent on x € H{(M;A), and well
defined up to inner automorphisms of 7 (M).

We begin with some well known results of Blanchfield [3] and provide sketches of
proofs following [10]. We have not seen Corollary 2-9 in the literature, but believe it
to be folklore.

ProrosiTioN 2-3. For M zero-surgery on a knot K C S3,
H{(M;A) = Homy(H(M;A),ST'A/A).

Sketch of Proof. H{(M;A) = H?(M;A) by Poincaré Duality. Using the Universal
Coefficient Spectral Sequence, one shows H?(M; A) = Exta(H,(M;A), A).

To see that Exta(H{(M;A),A) = Homp(H(M;A),S™'A/A), consider the long
exact sequence for the A module H{(M; A)

. —— Homp(H,(M:A), S™'A) — Homy (H,(M;A), S™'A/A)

—— BExta(H{(M;A),A) — Extpa(H{(M;A),S™'A) — --.
obtained from the coefficient sequence
Ar—s ST'A —= ST'A/A.

Since H(M:;A) is isomorphic to a subgroup of H{(S* — K;A), which is S torsion
(see [12]), Homa(H{(M; A), S7'A) and Exta(H,(M;A),S™'A) are both trivial. The

result follows.
Definition 2-4. The isomorphism in Proposition 2-3 defines the nonsingular bilinear
Blanchfield pairing
(s H(M:;A) @ Hi(M; A) — ST'A/A.
One computes that for a,b € H(M;A),
1

(a,bypr = e iezz(tia,c)M t* (mod A)

where (, ) is the usual intersection pairing, and ¢ € Cy(M; A) such that dc = p(t)b.
Since H{(M; A) is S-torsion, such a p(t) exists for all b € H (M A).

The following is a relative version of Proposition 2-3. The proof follows that of
Proposition 2-3 exactly.
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ProrosiTioN 2-5. For N an homology cobordism between 0-surgeries on knots M,
and M,
Hy(N,0N:A) = Homp(H{(N:A),ST'A/A).
This defines a bilinear Blanchfield style pairing on IV,
{(,)n:Ho(N,ON:A) @ H{(N;A) — ST'A/A,

however the pairing may be singular, as H,(/V; A) is not necessarily isomorphic to
Homy (Hy(N,ON; A), ST'A/A).
Again, one computes that for a € Ho(N,0N; A),b € H{(N;A)

(a,byn = e iezz(tia,c)N t* (mod A)

where ¢ € Cy(N; A) such that dc = p(t)b, p(t) € S.
Note that such pairings are additive over disjoint unions of manifolds by defining
the pairings on the direct sum of the homology modules in the obvious way:.

Definition 2-6. Let D = im{90: Hy(N,ON; A) — H(ON; A)}.

Notation 2-7. Let D+ = {a € H{(ON:A) | (a,d) = 0 for all d € D} be the annihila-
tor of D in H{(ON; A).

ProrosiTioxN 2-8. Let N be as above, ON = My 11 —M,. Then:
(i) D C D*;
(i) D+ is self annihilating under the Blanchfield pairing on ON, i.e. D+ = D+,

Proof (). Consider the exact sequence of pairs
Ho(N,ON: A) —2+ H, (ON: A) —“~ H,(N: A),
and let a,b € D. Then for any o’ € Hy(N,IN; A) such that da’ = a,
(a',i.(b))n = (a,b)on-
Since ker 7, =im 0,
{a,b)on = (a,i.(b))n = (a’,0)n = 0,
and so D C D+,

Proof (). Tt is clear from Proof (i) that D+t C DL, To see the converse, let
b € D+, Then for any a’ € Hy(N,ON; A),

(@',ic(b)) N = (0u(a’),b)on = 0.

But this Blanchfield style pairing on N may be singular, and so i,(b) may not be
trivial in H{(IV; A). Following the proof of Proposition 2-3, Poincaré duality yields
H,(N;A) = H*(N,0N;A), and the Universal Coefficient Spectral Sequence gives us
the short exact sequence

Ext?(H,(N,ON; A),A) — H¥(N,ON; A) —»» Exta(Hs(N,ON: A), A).

Thus, H;(N; A)/Exti(H{(N,0ON:A),A) = Exty(Hy(N,0N:A),A). Levine shows in
[10] that the functors Exty and Ext} pick out the Z torsion free and
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Z torsion parts (respectively) of A modules such as H{(N,0N;A),A) and
H2(N,0N: A), A). Since Exta(H2(N,ON: A), A) is Z torsion-free, the Z torsion part
of H{(N; A) is isomorphic to Exti (H(N,0N:A),A).

If we combine all this with another result from the proof of Proposition 2.3, that

Homy (Hy(N,ON; A), ST'A/A) = Extp(Hy(N,0N;A),A), we see that
Homya (Ho(N,ON:A),ST'A/A) = H{(N:A)/Exti(H(N,0N:A),A).
Thus, the elements that give us a zero homomorphism under this Blanchfield style
pairing are exactly the Z torsion elements of H(N,ON;A).

Let a,b € D+, and let i, (b) € H,(N;A), be Z-torsion of order n. Then nb € D and
S0

0= <CL, nb>5N = n(a, b>8N~
Thus (a,b)on = 0 for all a,b € D+ and the result follows.

COROLLARY 2:9. The homomorphism ¢ € Homa(H{(ON;A),ST'A/A) extends to
¢ € Homp(H{(N;A),ST'A/A) if and only if there exists an x € D such that ¢(y) =
(,y)on for all y € H{(ON:A).

Proof. Consider the diagram

H.(N,N: A) 2 - H,(ON:A) —

Hi(N:A)
~ (Prop. 2:5) ~ (Prop. 2:3)

Homy (H{(N;A), ST'A/A) A Homy (H{(ON;A), ST'A/A)

where 9 is defined by restricting ¢’ € Homa(H{(N;A), S~'A/A) to i, (H(ON: A)). A
diagram chase confirms that it commutes. Let ¢ € Homa(H(ON;A), ST'A/A). By
the definition of the Blanchfield pairing, there exists an x € H,(ON; A) such that
d(y) = (x,y)an for all y € H{(ON;A).

Let ¢ be an extension of ¢. Then there exists an ' € Hy(N,9N;A) such that
¢ (z) = (¢, z) v for all z € H{(N;A). Then

P(y) = 08/ (y) = (&', in(y))n = (O@'), Y)on,

as in the proof of Proposition 2-8. Since the Blanchfield pairing is nonsingular,
Or' =z andsox € D.

Conversely, let € D. Then there exists an 2’ € Hy(N,dN; A) such that 9z’ = x.
Define ¢ € Homy (H{(N;A), ST'A/A) as ¢/(z) = (2/, z) 5 for all z € H{(N;A). Then
for any y € H{(ON; A),

09 (y) = ¢/ (in(y) = (&', i) = (D), y)on = (z,Y)on = B(y),
and so ¢’ extends ¢.

We use this extension property of the Blanchfield pairing to construct homomor-
phisms from 7(ON) to the metabelian group I' that extend over m((N). Our first
step is getting from m(ON) to H{(ON; A), in order to apply the Blanchfield pairing.
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Notation 2-10. Let m = m(M), " be the commutator subgroup [, 7], and #” =
[, 7'].

Note that H,(7m) =~ H,(M) = Z, generated by the image of any meridian of K.
Since 7" is normal in both 7 and 7/, and Z is free, we get the following split exact
sequence.

S
' 7" — /7" 5 L.
a

A choice of splitting s:Z — 7/7" determines a unique isomorphism
vim/n’ — 77" N T

given by ¥(g) = (g -sa(g™h), a(g)) with inverse ¥~ '(h, k) = h - s(k).

Recall that given a splitting s:Z — 7/%", the action of Z on ©’/7"" is given by
conjugation in w/7” by s(1). Thus 7’/ /7" is a A module. Since 7’ = 7{(My, *), the Z
cover of M, ' /" =~ H{(Ms.), and a choice of base point in the Z cover determines
the A module structure for the group, giving an isomorphism between H, (M) and
H(M; A) (see [12], section 7-D). This induces an isomorphism

¢’ /7" ML —— H{(M;A) x Z.

Definition 2-11. Forxz € H{(M;A), define B,: H{(M;A)xZ — T' = S7'A/AXZ
by B.(y, k) = ({y, z)n, k) where (y, z) s is the Blanchfield pairing on H(M; A).

Definition 2-12. Given a splitting s: Z — 7/7"" and an isomorphism ¢ as above,
we define a,: m —— I' by the composition

e " e " 0 T —2 e H(M:A) x Z 25 T,

where ¢ is the quotient map and % is the isomorphism defined by our choice of
splitting s.

PROPOSITION 2:13. a, is well defined up to inner automorphisms of m = m(M).

Proof. The Blanchfield pairing is well defined and so B, is well defined, ¢ is a
quotient homomorphism and therefore well defined. This leaves ¥ and ¢. Since 9 is
uniquely determined by the choice of a meridian of K for the image of s(1) and ¢ by
the choice of base point in M., 1 and ¢ are well defined up to inner automorphisms
of their domains. But these inner automorphisms lift to inner automorphisms of 7,
giving the result.

2-2. Unmitary Representations of I’

In order to have unitary representations of (M) for the n invariant, we will
compose the homomorphisms from Section 2-1 with unitary representations of the
group I'. The results of this section are used in the proof of Theorem 4-3 and in the
construction of examples in Section 5.

LeMMA 214 ([6], lemma 3-4). Let {p,...,p.} be the set of distinct primes dividing
k. and d; be the largest power of p; dividing k for each 1 < i@ < 7. Then there is a map
W:ST'Z|Zx) — D, Zp,)|Za,]| such that the following diagram is Cartesian, where
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A is the diagonal map.

€

S™Z| 74, 7

Y A
T @ T
e
@ Z(pi) [Za,] — @ Z(pz‘)
=1 =1

Notation 2-15. We will henceforth denote Z|Zy| by Ag.
COROLLARY 2:16. ST'Ay /Ay is a torsion Z module.

Proof. Since the above diagram is Cartesian, the sequence

a e [ oA
ST —— (EB Z(m)[ZdJ> ®Z —> PZy,
=1 =1

of additive groups is exact. Modding the first term by Ay and the subsequent terms
by the appropriate images of Ay gives the result.

Definition 2:17. For 6 € Ry (T), let 6" be 6 restricted to S™'A/A < I'. Then define
Hy =im (0") < U(k).

Definition 2-18. For g € I' an element that generates Z under abelianization, let
u=0(g).

Using these two definitions, we see that im (6) is generated by Hy and u.

Note that the choice of g € I' corresponds to a choice of splitting s:Z —— I'
of the abelianization of I" and so is well defined up to inner automorphisms of I".
In practice, we let g be the image under o, of a meridian of the knot K and so
these inner automorphisms of I' will lift back to inner automorphisms of 7 (M) (see
Proposition 2-13).

Note also that since S™'A/A is abelian, Hy is abelian. Thus, it is contained in some
maximal torus of U(k). Since all maximal tori of U(k) are conjugate, there exists an
element a € U(k) such that aHga™" C T*, the maximal torus of diagonal elements
in U(k). We can thus assume, up to conjugacy in U(k), that Hy C T*.

LeMMA 2-19. Any matriz h € Hy has entries which are roots of unity. In particular,
Hy is a lorsion abelian group.

Proof. Let W = N(Hy)/Z(Hg) be the Weyl group of Hy C T*. Then W is isomor-
phic to a subgroup of the symmetric group on k letters (see e.g. [7]). Since u € N(Hp),
there exists an n € Z such that v € Z(Hy). Thus conjugating by u" is the iden-
tity in Aut (Hp). Since the Z action in I is multiplication by ¢, ((t" — 1)ST'A/A) is
the identity in U(k). This, and the exactness of localization, tells us that 0 factors
through S7'A,,/A,, x Z. By Corollary 2-16, S™'A,,/A,, is a torsion Z module, i.e. all
elements are of finite order. Since every element of Hy is the image of an element in
ST'A,. /A, Hy is a torsion Z module and the result follows.
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Remark 2-20. At this point it is important to note that, of the unitary represen-
tations of m(ON) constructed in this section, those which extend to m((NN) are a
larger set than they first appear. For x € D (Definition 2-6), we have shown that the
Blanchfield pairing, and thus the representation fc,. extends to a unitary represen-
tation of m((IN) (Corollary 2-9). In fact, for any x in the self-annihilating submodule
D= that contains D, we also get this extension property.

Lemya 2:21. Let x € DY, Then for all 0 € Ry, (T), Ocv, extends to a U (k) representa-
tion of T (N).

Proof. We have seen in the proof of Proposition 2-8 that ¢.(x) is Z-torsion for
x € D*. Then there exists n € Z such that 0 = ni,(z) = i.(nz) in H{(N;A). Thus,
nx € D, and so oy, extends to a homomorphism o/: 7 (N) — T" based on the
Blanchfield style pairing on N, defined as in Definition 2:12. Thus, the composite
representation fa,, extends to the representation 6o’ of (V).

Recall that 7 (N) is finitely generated and let {g, . . ., gn } be a generating set. Then
a(g;) = (pi,m;) € T = ST'A/A x Z. Under 6, these are elements h; - u™ € U(k),
a generating set for the image of 7((N) in U(k), with each h; € Hy.

As shown in Lemma 2-19, Hy is a torsion abelian group whose elements are diag-
onal matrices in U(k) with entries that are roots of unity. Thus, we can write

exp {2miq, }
h; =
exp {2mige }
forO0<gq;...qpn <1in Q.
In general, for p € ST'A/A, O(np) = (O(p))™ in U(k). Thus, we define the represen-
i/n

tation x:m(N) — U(k) by x(g:) = h /M. um where

exp{2miq,/n}
B/ =
exp {2miqx/n}

Note that by the linearity of the Blanchfield pairing, and the use of the generating
set {g:}, x extends Oa,. However, it does not factor through T, since S™'A/A does
not admit division over Z.

3. Representations and special subvarieties

To use the n invariant as a concordance invariant, we compose the representations
of the previous two sections in order to miss the special subvariety associated with
the chain complex C. (N, M;; ZG) (see Section 1). This section develops the required
machinery.

Definition 3-1. A group Il is called Z-primary if I = P xZ for some finite p group
P and the projection II —— Z is an isomorphism on first homology.

Notation 3-2. Throughout this section, we assume II is a Z-primary group. Then
the commutator subgroup of I1 is the p-group P. Thus, a ZI1 module A is also a ZP
module. Similarly, a choice of splitting Z —— II of the abelianization of Il makes
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A a Z|Z] module. For a ring R, R ®z A is an RII module which we will denote RA.
Note that if R is a field, RA is a module over the p.i.d. R|Z].

We begin with a finitely presented ZI1 module A.

Prorosition 3-3. If A is a perfect ZI1 module (see Definition 1-5), then for any
splitting Z — 11, QA is a torsion Q|Z] module.

The proof of Proposition 3-3 is delayed; the idea is to show that if QA is not a
torsion Q[Z] module, then A has an infinitely generated free summand as a Z module.
Lemma 3-5 shows Z, A is a finite module and thus can have no infinitely generated
free summand over Z,,. Thus QA is a finite dimensional vector space and is therefore
Q|Z] torsion. Lemma 3-4 is used to prove Lemma 3-5.

LemMA 3-4 (cf. lemma 1-4-3 of [11]). If P is a finite p-group and B a Z,| P| module
with Z, @z, p| B finite, then B is finite.

Proof (Case 1). Let P = Z,, generated by x. Then
B/(.If — 1)B = Zp ®ZP[P] B
and so B/(x — 1)B is finite. Now consider the map
(- DF'B % (z— )EB/(z — 1) B.

This map is surjective and factors through (z — 1)*~'B/(x — 1)* B. Induction then
gives us (z — 1)*B/(z — 1)**' B finite for all k.

The exact sequence

(x — 1)*B/(x — 1)*"'B —— B/(x — 1)*"'B — B/(z — 1)*B

gives us another inductive step; for if the first and last terms are finite, the centre
term shall be and so B/(z— 1) B is finite for all k. Now, in Z,| P| & Z,|Z,|, (x—1)P =
a? —1=0andso B/(xz — 1)’B = B is finite.

(Case 2). Let |P| = p*, i > 1. Then we can find P’ normal in P with |P'| = p*~!.
Let B' = Z,| P/ P'| ®z,p) B. Since P/P’" = Z,. we get

Zy @z, 1p/p B' = Ly ®z,1p B,

which is finite. Case 1 implies B’ is finite.

Since P’ < P, the Z,|P| module B is also a Z,|P'] module. As Z,| P'| modules,
Zp ®ZP|P’] B =~ ZP[P/P/] ®ZP|P| B = B’ and this is finite when Zp ®ZPIP| B is.
Jontinuing this inductive process along the composition series for P shows B is
finite.

Levmma 3-5. If A is a perfect ZI1 module, then Z,A is finite.

Proof. First recall that for a perfect ZII module A (Definition 1-5), €(A) is unimod-
ular over Z, where ) is the ZII presentation matrix for A. Since Z,A has presenta-
tion matrix A" = idz, ® A over Z,II, (\') = £(A)(mod p) is also unimodular and so
Zp Qz,1 ZpA ~ (.

Since I1 >~ P xZ, Ais a Z| P| module and a Z|Z] module. Let A" = Z,, ®z p) ZpA.
Then A’ is a Z,[Z] module where t'(x ® y) = x @ t'y. We get

Zp Qz,/z| A= Zp ®z,/z| (Zp ®z,(P] ZPA) = Zp @z,1 ZpA = 0.
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This implies that A’ is a torsion module over the p.i.d. Z,|Z], since a free Z,|Z|
summand of A" would not vanish in Z, ®z,z; A’

Since A is a finitely generated ZIT module and [Z: 1] = |P| is finite, A’ is a finitely
generated module over Z,[Z]. Since A’ is Z,|Z] torsion, A" = @I Z,|Z]/(p:(t)) for
some n and some set of monic polynomials {p;(t)} C Z,|Z], where t is a generator of
Z. Thus, A" is a Z,, vector space with dimension >_} deg(p;) and so is finite.

Since A’ = Z,, ®z,p) ZpA is finite, Lemma 3-4 completes the proof.

Proof of Proposition 3-3. Since A is finitely presented, A is finitely generated over
ZII. Since [Z:T1] = | P| is finite, A is a finitely generated Z[Z]| module and so QA is
a finitely generated Q|Z] module.

If QA is not a torsion Q|Z] module, then QA has a free Q|Z] summand, since
Q|Z] is a p.i.d. Then there exists a nonzero Q[Z] homomorphism f: QA — Q|Z].
Let f’ be the restriction of f to A. Then f’ is a nonzero Z|Z] homomorphism into
Q[Z]. Since A is finitely generated as a Z|Z] module, we can find n € Z such that
nf’ is a nonzero Z|Z] homomorphism into Z|Z|. Then the ideal nf'(A) C Z|Z] is
infinitely generated over Z. Thus, A has a split free summand as a Z|Z] module,
and so Z,A = Z, ®z A has a split free summand as a Z,|Z] module, contradicting
Lemma 3-5. Thus, QA is a torsion Q|[Z] module.

COROLLARY 3-6. Given A as in Proposition 3-3, there is a polynomial p € Q|Z] such
that p annihilates QA.

The corollary follows immediately, upon observing that such modules are finitely
generated.

We now show how Z-primary groups allow us to avoid the special subvarieties
associated with particular chain complexes.

Definition 3-7. Let G be a group such that H,(G) = Z. A transcendental Z-primary
representation §: G —— U (k) is a non-abelian representation satisfying:
(i) Z-primary — There exists an epimorphism G —» II, where Il is a non-abelian
Z-primary group, such that 6 factors through IT;
(ii) transcendental — For some g € G such that g generates H(G), 0(g) has eigen-
values which are transcendental over Q.
We denote these representations by 2, (G) C Ri(G).

Remark 3-8. Note that an epimorphism G — IT will induce an isomorphism on
H,, since the induced map will be an epimorphism of Z onto itself.

We will see in Section 5 that Z-primary transcendental representations of knot
groups are quite easy to construct.

ProrositioN 3-9. Let v:II —— U (k) be a transcendental representation of a Z-
primary group I Then for any perfect ZI1 module A, C* ®., A = 0.

Proof. Note that CF®, A =~ C*®.,QA, so it will suffice to show that z®,y = 0 for
r € CF and y € QA. Since A is a perfect ZIT module, QA is a torsion Q[Z] module,
by Proposition 3-3. By Corollary 3-6, we are able to find a nonzero polynomial
p(t) € Q|Z] that annihilates QA, i.e. p(t) - y = 0 for all y € QA.

Let g € II be such that g generates H(II) and y(g) has transcendental eigenvalues
{g:}. Let h € U(k) be such that hy(g)h™" is diagonal. Then hp(y(g))h~" = p(hy(g)h™"),
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which is a diagonal matrix with entries p(g;). Since each g; is transcendental, this
diagonal matrix is nonsingular, implying that p(y(g)) is nonsingular.

Let 6 = p(7y(g)). Since the action of g on the Q[Z] =~ Q[t,t~!| modules is multipli-
cation by t, p(g) annihilates QA. Thus, for any z @ y € C* @, QA4,

0=6"2@p@y=0""r)Qy=2®y.
The result follows.

COROLLARY 3:10. Let 0 € 21(G), i.e. 0 is a Z-primary transcendental representation
of a group G. Then for A a perfect ZG module, CF @4 A = 0.

Proof. Since 0 is Z-primary and transcendental, it factors as vy, where 7y is tran-
scendental, and the following diagram commutes. Thus, CkegA ~ C* @4 (ZIRzc A).,
and so ZI1 ®z¢ A is a perfect module over ZI1. Proposition 3-9 finishes the proof.

IT

G U(k)

The main result of this section demonstrates that such representations lie outside
of the special subvariety X associated with a connected homology cobordism N with

ON = M, I M,.

THEOREM 3-11. Let N be a connected homology cobordism with M one of the bound-
ary components. Let G = w((N) and let £ be the special subvariety associated with
C.(N, M;ZQG) (see Section 1). If 0 € P(G), then 0 ¢ Z.

Proof. Since H,(N, M) = 0, there exists a chain contraction on C,(N, M). Since
Z @76 Co(N,M;ZG) = C.(N,M), this chain contraction lifts to a chain homotopy
on C,(N, M;ZG) between a chain homomorphism v, and the zero homomorphism,
as in the proof of Proposition 1-7. Note that e(¢,,) = I,,, the identity on C, (N, M),
for all n.

Let A,, = cok (1,,). Then A, is a perfect ZG module. Since § € 21,(G), C* @y A = 0
by Corollary 3-10. Thus, 8 lies outside the special subvariety X,, for all n and so @ lies
outside the special subvariety X = J,, Z,, of R(G) associated with C,(N, M;ZG).

4. Main Theorem
Definition 4-1. Define n,.: H{(M; A) x R.(I') — R by
77K(55a 9) = p(Mv Oéx) 0= ﬁQQw(M)’
for any 8 € Ry (I') and for any k.

LEMMA 4-2. Let Mo be zero-framed surgery on the trivial knot O (the unknot), i.e.
Mo = 8" x S%. Then for any group G and any oa:7(Mo) = Z — G, p(Mo,a) = 0.
In particular, n,(x,0) =0 for all x € H{(Mo; A) and all § € Ri(I).
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Proof. Let N = S' x D3 Then N = My. Since N is homotopy equivalent to S,
Hy(N) = 0 = Hy(N:0a) for any 6 € Ri(G). Thus, sign (N) = 0 = sign,_ (N). and so
p(Mo,a) = 0 on all of R(G) by Theorem 1-1.

THEOREM 4-3 (Main Theorem). Let M be zero-framed surgery on a slice knot K.
Then there exists P C H{(M;A) such that P = P*, and for all x € P and 0 € R, (T)
such that O, € Pi(m((M)), n,(z,0) = 0.

Note that the self annihilating submodule P is the module D+ of Section 2-1.

Proof. We have seen in Lemma 2-21 that for an homology cobordism N between
M and Mo = S' x S? (zero-framed surgery on the unknot O), there exists a unitary
representation 3 extending fa,.. We need to show that g is in 2 (m((IV)) and so lies
outside the special subvariety £ of Ry (m(N)) associated with C. (N, M;Zm(N)).
Since K is concordant to the unknot O, Proposition 1-7 and Lemma 4-2 imply
Ny (2,0) = g (2, 0) = 0.

Let N be as above, obtained by zero-framed surgery on a concordance, and suppose
x € D = im{0: Hy(N,0ON;A) —— H,(ON;A)} C P (see Section 2-1). Since ON =
M 1T (S' x §?%), we have H{(ON:;A) = H{(M;A) ® H,(S' x §*; A). Since the Z cover
of 8" x S? is R x S*, H{(ON; A) is just H,(M;A). By Corollary 2-9, a,: m(M) — T
extends to a homomorphism o’: 7 (N) — T.

Since N is compact, () is finitely generated, and so L = im (a’) is a finitely
generated subgroup of Hy x Z = im (f). The inclusion of L into Hy x Z is a first
homology isomorphism, and so the commutator subgroup [L,L| < Hy. Hp is a
torsion abelian group by Lemma 2-19, so [L, L| = F'is a finite abelian group. Thus,
L~ FxZ.

By our choice of 8, 8a, € Py (m(M)) and so factors onto a group of the form
P % Z for some nontrivial p-group P. Then in the following diagram, all solid arrows

commute.
7]
T (M) PxZ
i r— . uw e
/ ¥ :
o v
T (N) L~ FxZ

Since im (fa,) C im (fa’), there exists a homomorphism &P xZ —— F x Z
(the dashed arrow above), making the whole diagram commute. Since ¢, and both
surjections ¢ and ¢’ are isomorphisms on first homology, £ is as well. Since P and F
are the kernels of the respective abelianizations, £(P) C F.

Let P’ be the Sylow p-subgroup of F containing the image of P. Since
o, € Py, (71'. (M)), it is a non-abelian representation. Thus the image of P under ¢ is
nontrivial and so P’ is nontrivial. Since F is finite abelian, the inclusion of P’ into F’
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splits. Since the action of Z preserves the order of the elements of F, it restricts to an
action on P" and so P’ xZis a subgroup of F'XZ. Let j: P' X7 — F XZ be this inclu-
sion. The splitting FF —— P’ of P’ C F determines a splitting o: ' xZ — P’ X Z.
This gives the following non-commutative diagram, which can be added to the dia-
gram above.

’ ’

m(N) —— F xZ —— U(k)
o J
\4
P'xZ

Let 8 = ~'jog¢’. Then Gi, = v jo'i. = v jo€p. Since im (§) C im (j), Gi. = V' &p,
and by the commutativity of the diagram, 3i, = fa,. Note that as a representation,
B is Z-primary since it factors through P’ x Z for the p group P’. To see that [ is
transcendental, let 1 be a meridian of the knot K. Then u generates H; (M) under
abelianization and so 7. (u) generates Hy(N). Thus, Bi. (1) = O, (p) has transcenden-
tal eigenvalues and so 8 € 2 (m((IV)). This implies 3 ¢ X, the special subvariety of
Ry(m((N)) associated with C. (N, M; Zm(N)). Thus, n,.(x,0) = 0.

To deal with the case where € P but is not in D, we consider nx € D, as in
Lemma 2-21. So the representation fa, can still be extended to x, by extending
Qi to @' as above and taking the n'™ roots of the generators of the image of 6o/
in U(k), as we did in the proof of Lemma 2-21. Although this extension does not
factor through I' anymore, the image of x is still of the form F' x Z, with F' a finite
subgroup containing P. The large diagram above becomes the diagram below, and
0 can be constructed as before, extending fa, and contained in 2 (m((IV)).

m (M) 5 PxZ
i F— . ) i
=2 :
X !
».'.'J' ¥
?T|{.EV} L= Fxri

5. Examples

Notation 5-1. We shall use the ordered pair notation for elements of a semi-direct
product (see e.g. [8]). We also let Hy and u be defined as they are in Section 2-2 and
assume Hy C T% in Ul(k).

0o -7
-8 5
{e(, €2} for H{(F), where F' is the Seifert surface of K. Such a knot is algebraically

Consider a genus 1 knot K with Seifert pairing A = over some basis
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slice. We compute representations such that the associated 7 invariants vanish if
such a knot is slice.
By [9], the Blanchfield pairing is given by

Ty t—1 5t—1) 8t -7

A=A = G m =y ( -8 0 )
over the A module basis { fi, f2} of Hi(X.) = H{(S*— K; A), where X, is the infinite
cyclic cover of the knot complement S* — K. The generators f; are the Alexander
duals to the basis elements e; in H;(S® — F), lifted to a fixed fundamental domain
in the Z cover of S* — K. Note that H,(S® — K;A) = H{(M;A), since the addition
of the two-handle in our zero-framed surgery bounds a parallel to the knot, which is
already null-homologous. Thus, the above pairing is also the Blanchfield pairing on
H,(M;A).

A calculation shows that the self annihilating submodules for this pairing are Py,
generated by x = f5, and P», generated by y = —3f, + fo. Then the homomorphisms
O, oy Hi (M A) © Z —— T are determined by the images of the generators (fi,0)
and (f5,0). We get

t—1

aa:(fbo) = (875—770> a:r(f270) = (070)

atho = (7750) a0 = (M=),

We now begin the construction of a set of representations 2 C [], Ri(I') such
that if K is slice then either n, (z,0) = 0 for all 0 € 2 or n,.(y,0) = 0 for all § € 2.
We will concern ourselves only with irreducible representations, since the value of
an 7 invariant defined by a reducible representation is determined by its irreducible
constituents. Though we only compute representations for £ = 2 and 3, higher dimen-
sional representations are computed analogously.

We will show by example that such representations are not hard to construct. The
general technique is given in the following paragraph, with the details for k£ = 2 and
3 following.

One first observes, using the arguments of Lemma 2.19, that if § € Ryi(I') is
irreducible, then wu,, the action generated by w, is the action of a k-cycle. Then
0: ST'A/AXZ — U (k) factors through a representation 8": S™' Ay /A xZ — U (k).
By Lemma 2-14, S~'Aj /Ay is a subring of a sum of group rings. Fixing u, the possible
representations 6’ are then computed.

and

22 %‘) where |¢;| = 1.
The representation is transcendental if and only if the eigenvalues of v, +1/(,(s, are
transcendental over Q. This is equivalent to det(u) = —( (s being transcendental
over Q.

6 factors through S™'Ay/As x Z. By Lemma 2-14, this is isomorphic to a subgroup
of Ro|Zs| X Z, where Ry = Z)/Z. A representation 6': S™'Ay /Ay x Z —— U(2)

For irreducible 8 € Ry(I'), u, is a 2-cycle, and so u = <

restricts to a Z, equivariant homomorphism S™'Ay/Ay —— T? C U(2) where Z,
acts on T? via conjugation by u, which permutes the diagonal entries. Clearly such
a homomorphism extends to a Z, invariant homomorphism R,[Z;] — T% and any
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Zs invariant homomorphism p: Ry[Zy] — T? together with a choice of u as above,
determines an irreducible representation 6": S™'Ay /Ay X Z — U(2), and thus an
irreducible representation 8 € Ry(I').

Note that Z, invariant homomorphisms p: Ry[Zy] — T? =~ (R/Z)? lie in one-to-
one correspondence to commuting diagrams of Z[Z,] homomorphisms

Z|Zo| — Z|Zs)

L) Zy] —— R|Zs]

and these lie in one-to-one correspondence to Homgz,((Z|Zs |, Z| Z>|) and are given by
multiplication by a polynomial g(t) = qo+qit € Z|Zs]. The representation determined
by gy + qit is given by

) <at+ b) _ <exp{2m’(qoa/m+q1b/n)} 0 > ‘

m  n 0 exp {2mi(qia/m + qob/n)}

In the group Ry[Z,], (7t — 8)~' = —(7t +8)/15, and (8¢ — 7)~' = (8¢ + 7)/15.
Thus, the image of a,(fi,0) = (1 — )/15,0) and a,(f2,0) = (0,0) and the image of
ay(f1,0) = ((t —1)/15,0) and ay(f,0) = ((t — 1)/5,0) in R[Zs| x Z.

Then

(1=t N\ _ [exp{—2mi(q — q:)/15} 0
Oo(f1,0) =0 < T ,0> —( 0 exp{zm(qﬂ—ql)/m})

H(Xm(fz,()):el(o,()): ((1) (1)>

and
it oy _ [ exp{2mi(q — q1)/15} 0
Oavy(f1,0) =0 ( [ ’O) - 0 exp{—2mi(qo — q1)/15}
_ (=1 ) - [ expi2mile —a1)/5} 0
Oy (f2,0) =0 ( 5 70) - 0 exp{—2mi(q — q1)/5} )

Clearly for ' x Z, the image of 6 composed with one of either a, or oy, F' = Zy;, Z;5
or Zs, depending on our choice of ¢(¢). Thus, the representations 6 that have either
O, or Ooy, in Py(m (M) are the ones such that gy — ¢, is a multiple of either 5 or 3.

The computations are similar for U(3) representations. Without loss of generality,
let

0 0 ¢
u = Cz 0 0 s
0 ¢ 0

so that u, is the 3-cycle (12 3). Again, if det (u) = (1(2(3 is transcendental over Q, 0
will be a transcendental representation.

The group S™'A3/As is isomorphic to a subgroup of R3[Zs], where Ry = L)L,
and in this group (7t — 8)~! = (—49¢* — 56t — 64)/169. Then the image of a, becomes
(15— 8t —T7t%)/169,0) and (3(15— 8t — 7t*) /169, 0) for (f;,0) and (f2,0), respectively.
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Since the automorphism @’ is multiplication by g = gy + ¢/t + g2t in Ry[Z;], we get
P p A\ g

(15g0 — 8q2 — Tq1) + (15q; — 8qo — Tqe)t + (15g2 — 8q; — Tqo)t?
169

and

3(15g) — 8g> — Tq1) + 3(15q; — 8qy — Tgo)t + 3(15¢> — 8¢y — Tqo)t*
169

respectively. The simplest example, where ¢(t) = 1, gives us the result
it Y p p q g

exp {2mi(—7/169)} 0 0
By (f1,0) = 0 exp {2mi(—8/169)} 0
0 0 exp {27i(15/169)}
and
exp {2mi(—21/169)} 0 0
Oay(fs,0) = 0 exp {2mi(—24/169)} 0
0 0 exp {2mi(45/169)}

Clearly, the image is isomorphic to Z3 X Z and so 0o, € Py(m((M)). Similar com-
putations give, for g(t) = 1,

exp {2mi(—8/169)} 0 0
Oa (f1,0) = 0 exp {2mi(—7/169)} 0
0 0 exp {27i(15/169)}

and

1
Gaz(fQ, O) = 0
0

S = O
- o

The computations are left to the reader.
As a final example, we give an interesting U(6) representation of the knot with
Seifert pairing

0 —6 0 0

Note that this can be thought of as the connected sum of two genus one knots, each
having Seifert pairing given by the obvious 2 x 2 diagonal blocks. Our interest in
such a knot stems from the fact that we have 13-torsion in both the U(2) and U(3)

: 0 —6
irreducible representations. The knot with Seifert pairing ( 7 1) > has 13-torsion

0 -5
appearing in its U(2) representations and the knot with Seifert pairing (—6 1)

has both 7-torsion and 13-torsion in its U(3) representations.
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The Blanchfield pairing for this knot is given by

(1 —t)? 1—t

0 0
(6 —Tt)(T—6t) 6— Tt
Ll 0 0 0
7— 6t
0 (1 —t)? 1—t
(5— 6t)(6 —5t) 5— 6t
1=t
0 0 _ 0
6 — bt

with respect to the A module basis {fi, fo, f3, fa} of H{(M;A). One obvious self
annihilating submodule is P = span{ fs, fi} (there are several others). We shall look
at the representations fa, where x = f5 + f; € P. Since both f> and f; vanish when
paired with z, We need only concern ourselves with the images of the generators

(f1,0) and (f3,0) of Hi(MA) x Z. We get

ax(fl’o) = <71__6tta0> aa:(fibo) = <61—_5tt’0> .

Let 6 € U(6) be irreducible, with u, a 6-cycle. Without loss of generality, let

0
0
0
0
0

Cﬁ

So oo
ScSoofHh oo
ScofHrooc o
ofhrooc oo
oo oo o

where |(;| = 1. Again, if det(u) = — [ ( is transcendental, then the representation
will be transcendental. Now 6: ST'A/A xZ — U (6) factors through S™'Ag/A¢ X Z
and ST'Ag/Ag is isomorphic to a subgroup of Ry[Zy| ® Ry[Zs], by [6]; so the image
of a, in (Ro[Zz] © R3[Zs]) x Z is

((1—t 13—7t—6t2> ) ((1—1& 11—6t—5t2> )
, ,0 and , ,0

13 127 11 91

for (fi,0) and (f3,0), respectively.

Note that an automorphism 6’ on Rs|Zs| & Rs[Z;]| can be represented by a
pair (q(t),r(t)) € Z[Zs] ® Z[Z;3]. For simplicity in our example, we will assume
q(t) =r(t) = 1.

The Chinese Remainder Theorem allows us to find an element in Z[Zg] that
projects to both 127(1 — t) € Z[Z] and 13(13 — 7t — 6t*) € Z[Z3], and another that
projects to both 91(1 —t) € Z[Zs] and 11(11 — 6t — 5t%) € Z[Zs]. Letting R = Zs)/ Z,
where Zg) = Zs N L), we get the image of o, in Rg|Zg| X Z is

205 — 91t — 78t% — 36t° 146 — 66t — 55t% — 25¢3
,0 and , 0
13 x 127 7x 11 x 13
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for (fi,0) and (f3,0), respectively. Thus, since €’ is the identity, we get

10 0 0 0 0
' 0( | 0 0 0
2w (—36
0 il Wl 0 0 0
eXp{ 1651 }
0 0 0 0 2mi(—78) 0 0
= e —_—
x(f1,0) A 1651
2mi(—91) ,
0 0 0 0 0
{ 1651 }
27 (205
0 0 0 0 0 exp{ mi(2 )}
1651
and
10 0 0 0 0
1 0 0 0 0
0 0 2mi(~25) 0 0 0
P 1001
, 27i(—55)
277 (—66)
0 0 il s 0
0 0 eXp{ 1001 }
27i(146)
0 0 0 0 0 2=
eXp{ 1001 }
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