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A Classification of Differentiable Knots®

By J. LEVINE

The classification, up to isotopy, of knotted n-spheres in m-space is an old
problem on which there has been much recent progress. The classical situation
of simple closed curves in 3-space is usually studied by means of the complement
of the knot and, in general, when m = n + 2, this seems the correct approach
(see [16] and [23]). Beyond this range, however, when m = n + 3, the comple-
ments all look alike and one has to search for other invariants. Inthe topological
and piecewise-linear case there are none, i.e., all knots are isotopic (see [23] and
[31]); but in the differential case, with which we are here concerned, this is not
usually true (see [3]).

It has been shown by Haefliger [3], using a result of Smale [22], that, if
n =5, m = n + 3, the isotopy classes of knotted n-spheres in S™ form a group
>m™", Moreover, Haefliger has succeeded in showing that %™" is trivial when
2m > 3(n + 1) (see [2]), but non-trivial when 2m = 3(n + 1) (see [3]).

Instead of considering only knotted copies of S™ in S™, we may more
generally consider knotted homotopy n-spheres in S™. This forms a larger group
®™" which contains ™" as a subgroup, and gives the additional information
of which homotopy n-spheres imbed in S™. It will be the aim of this work to
show that the calculation of these groups reduces to standard homotopy group
problems, about which a great deal is known. With only slightly extra effort,
this paper will be independent of the work of Haefliger [2] and [3], except for
a discussion of spherical modifications in [3, § 3], and will, in fact, recapture
almost all of his results on ®™",

The idea is to unknot gradually our knot in S™ by three stages. We look
first at the normal bundle; if this is trivial we may put on a normal frame. Then
we define an invariant of such framed knots which, as it turns out, is just the
obstruction to bounding a framed submanifold in S™. If the obstruction is zero
we can try to simplify the resulting submanifold in the hope of making it a disk.
This leads to a final obstruction in terms of certain well-known cobordism
invariants of framed manifolds. To determine which of the various possible
obstruction elements can actually be realized as obstructions is an exercise in
the use of spherical modifications.

* This work was supported by a National Science Foundation Post-doctoral Fellowship.

! For a more detailed discussion, the reader is referred to the paper Sphéres Nouées
by A. Haefliger, Atti del Riunions del Groupe. de Math. d’expr. latine, Firenze-Bologna,
1961, p. 139-144.
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The final results appear in what seems to be their most useful and elegant
form as an inter-related family of exact sequences which can be considered
non-stable versions of the (unpublished) exact cobordism sequences of Kervaire-
Milnor.

The organization of the paper is as follows. In§1 we fix certain preliminary
definitions and notation. Then, in § 2, we write down those exact sequences
whose derivation will be our main chore. The above referred to invariant of a
framed knot is defined, discussed, and interpreted in § 3. The techniques of
spherical modification which are needed are presented in § 4; and, in § 5, the
sequences of § 2 are actually defined and proved exact. In § 6, the groups @™"
and ™", as well as several other geometrically-defined groups of interest, are
studied with the aid of our results. Finally, in § 7, we present some tabulations
of the orders of these groups for n < 11. ’

1. Preliminary material

1.1. All manifolds will be (C*) differentiable and oriented; imbeddings will
be differentiable. A diffeomorphism or imbedding of codimension zero will pre-
serve orientation. A pair (V™, M") will denote a manifold V and a submanifold
M of dimensions m and n, respectively; in all cases the intersection of M and 8V
is normal (with respect to some riemannian metric) and M N @V is a submanifold
of oM. If m = n, the orientations of M and V agree. The normal bundle v to
M in V will be oriented by the equation

tM)+v=7V) M,

where 7(M), 7(V) are the tangent bundles of M and V. If M = 8V, the boundary
of V, then the orientation of M is prescribed by the equation

e+ (M) =V)| M,

where ¢ is a line bundle oriented positively by the vector pointing out from V.
Letint V=V —-20V.

1.2. A normal frame on a submanifold M of V is an ordered collection of
orthonormal vector fields & = (f,, - - -, f;) defined on M, spanning the normal
space to M in V at each point, and giving the positive orientation of the normal
bundle. We will say (M, ¥F) is a framed submanifold of V. We will say two
framed submanifolds (M, &) and (M,, F,) of V are isotopic if there is a continuous
family of diffeomorphisms A,, 0 = ¢ = 1, of V on itself so that A, is the identity,
A,| M is a diffeomorphism onto M, and dA,(¥) = &F,. We denote the isotopy
class of (M, &) by [M, F]. Similarly we define the notion of isotopy of pairs
(V, M) and (V, M,) and denote the isotopy class of (V, M) by [V, M].

We say that (M,, &) and (M,, F,) are cobordant if there is a framed subman-
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ifold (N, §) of I x V satisfying:

(i) NNtx V=t x M, t=0,1,

(ii) S|t x M, =t x &F,t=0,1,

(iii) 8N N ((int I) X V) is an h-cobordism (see [22] for a definition) between
oM, and 6M,, and

(ivy NN x 0V) is an h-cobordism between M, N8V and M, N V.
Similarly we define cobordism between pairs (V, M,) and (V, M,).

Let (M, F) be a framed submanifold of V and (M, &,) a framed submanifold
of V,. The connected sum (M, ¥) ¥ (M,, ¥,) is a framed submanifold of V £ V.
If V, V,, M and M, are closed, this is defined in [3, 1.2]. If M and M, are bounded
(V and V, still closed) we modify the definition in [3] by imbedding a disk D™
in ¥V such that D™ N M = D7 (in the notation of [3, 1.2])—similarly for V,. The
isotopy class, respectively, cobordism class of (M, F) # (M,, F,) depends only on
the isotopy classes, respectively, cobordism classes of (M, ¥) and (M,, F,).

Let M" be a submanifoldof V", m =n + k, and F = (f;, -+, fi_,) a field
of orthonormal vectors on M, normal to M in V. Then there exists a unique
normal frame &' = (f{, -+, fi) to M in V satisfying either f; = f;,,1 <1 <
k—1lorfl=/fi_,2=1=<k. Wewill say F is, respectively, the rear or front
extension of F.

1.3. Let D* be the closed unit disk in euclidean k-space E*, with the
natural orientation; let S*=* = 9D*. We denote by G, the space of maps S* ' —
S** of degree +1; this has an H-space structure by composition of maps. Let
SO, be the subspace of G, consisting of orthogonal maps. We may describe
7,(G,) as the group of homotopy classes of maps S* x S*¥~'— S*~ of degree +1
on the second factor. Addition in 7,(G,) is induced by the following addition.
Let A, Ayt S® x S¥1— S*=1, Then

O+ M), ) = M(2, M, 9)) xeS", ye S,

We may describe 7,(G,, SO,) in an analogous manner. Consider pairs of
maps (N, £&t), where \: D" x 'Sk-1—, §k1 and ¢ 8"t — SO, satisfy the equation
M, y) = t(x)-y forz e S,y € S*'. With the obvious definition of a homotopy
of such pairs, we may describe 7,(G,, SO,) as the group of homotopy classes.
Note that the correspondence (\, ££) — f induces the boundary homomorphism
TGy, SO,) — m,_(SO,).

It is a consequence of the homotopy extension theorem that any map
S* x S¥*— Sk of degree +1 on the second factor is homotopic to a map
A S™ x SE— Sk gatisfying Mx, ¥) = y forallxe D, ye S¥, Let h: D" —
D7 be a diffeomorphism; consider the pair (\', £t), where \': D™ x Sk—1— Sk-1
is defined by \'(x, y) = Mh(z), ¥) and p: S*~*— SO, maps S"~* onto the identity.
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Then the correspondence N — (A, ) induces the inclusion homomorphism
7.(G) — 7,(G, SO).

There is a natural inclusion S*~* < S*; let D% and D* denote the closures
of the complementary domains such that S*~! = §D* = —@D*. Then S*'c Sk
induces an inclusion G, C G+, defined by suspension on the last coordinate (see
[27, p. 206]).

Let F; be the subspace of G, ., of maps which preserve a base-point; then
G, C F, C Giy,. Recall [7, § 2] there is a fibre map G, — S** with F,_, as fibre.

1.4. Let (M™, ¥) be a framed submanifold of V such that M N8V = oM.
The Thom construction associates to (M, F) an element t(M, F)e x*(V)
(= homotopy classes of maps V— S¥); see [11, p. 346] for a definition. Conversely,
let »: V — S*be a differentiable map, y, € S* a regular value of A, and ¢, a positive
tangent frame at y,. Then \*(y,) = M is a submanifold of V with a normal
frame ¥ defined by d\(F(x)) = ¢, for each 2 € M which determines the orientation
of M. We will say & is the pull-back by ) of ¢, Then \ represents t(M, F). If
(M,, F,) is another framed submanifold of V, M, N8V = 0M,, then t(M,, F,) =
WM, F) if (M, F) and (M,, F,) are cobordant, and conversely, if M is closed.
Furthermore, if V = oW, then ¢(M, F) extends to a map W — S* if and only if
(M, F) extends to a framed submanifold of W, i.e., if there exists a framed
submanifold (N, §) of Wsuchthat NNV =0N = MandS|M = F. Theseare
all standard facts (see [11, 1.3]), except for the orientation properties, which are
trivial.

1.5. In (1.3) we identified 7 ,(G,) with a subset of 7*~*(S™ x S*%). Thus,
for certain framed submanifolds (M*, F) of S™ x S*!, we may regard
tM, ¥F) e m,(G,); we will see in (3.6) that the condition on (M, &) is that M
project onto the first factor of S™ x S*~! with degree + 1. Then t(M, F) = 0
in 7,(G,) if and only if (M, F) extends to a framed submanifold of D"+! x S*-1,

Suppose a € 7,(G,). As remarked in (1.3), we may choose a representative
i S" x Skt — Sk-1suchthat M, y) = v for x € D}, y € S**, where Dy is any
disk in S*. As a consequence, for any given x,€ S", there is a framed subman-
ifold (M", F) of S x S¥! such that M meets x, X S** normally in a single
point and (M, ¥F) = «.

The Thom construction may also be applied to the elements of 7,(G,, SO,).
If (A, p) is a pair of maps representing an element « € 7,(G,, SO,), \ is differen-
tiable and y, € S*' is a regular value of )\, then M = A "%(y,) has the property
that oM = M N (S"* x S¥7%) is the image of a differentiable cross-section of the
projection S*! x S*1— S"1, Note that the map S"*— S*! defined by
projecting this cross-section onto S*~* is described by  — g () - y,. Now a
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differentiable homotopy of the pair (A, £¢) induces a cobordism of the associated
framed submanifold (M, ¥), since, on S*! x S¥*! we will have a family of
cross-sections. Thus the cobordism class of (M, ¥) depends only on «a.
Suppose a, «’ € ,(G,, SO,) are represented by pairs (\, z), (\', ¢'), respective-

ly. Let D® = D U Dy, where the D} are the intersections of D" with the upper
and lower half-spaces of n-space; then D? N Dy = D"'. We may assume
N Dy x S*¥*and )| Dy x S*'are projections on the second factor. If (A", ¢”)
is defined by

N D x St = n\|Dr x Skt
and

N Dr x St =\ | Dy x S
then (A", ¢/"’) represents & 4+ a’. Suppose \, A\’ are differentiable with a regular
value y,€ S¥7%; then so is \"'. If (M, ¥F), (M,, F,) and (M,, F,) are defined, by
the Thom construction, from \,\" and \”, respectively, then M N (D} x S*7)
and M, N (D! x S*¥') are disks while

(M, F) N (D x S = (M, F) N (Dy x Sk

and
(M, ) N (Dy x 81 = (M, F) N (Dy x S¥7) .

1.6. Let M" be a submanifold of V™ and F a normal. frame defined on
the complement of a point of M, called the singularity of F. We define
oM, ¥)er,_(SO,), where k = m — n. Let A be an n-simplex imbedded in M
(orientation preserving), containing the singularity of & in its interior. Let ¥
be a normal frame to M in V defined on A. Then we define y: 8A — SO, by the
formula

Fx) = p2)F (x) ,
where SO, is identified with the (k x k)-orthogonal matrices with positive
determinant (using the standard unit basis of k-space), and the action of such
matrices on orthonormal k-frames is well-defined (see [11, 1.8]). Then O(M, F)
is the homotopy class of .

1.7. Let M be a submanifold of S* x S*~*; we say M is nuclear in S* x St
if the inclusion M — S™ x S*~*followed by the projection S* x S*'— S* defines
a map M — S” of degree + 1. Note that this depends only on the cobordism
class of (S" x S M).

A manifold K" is an n-sphere if K is homotopy equivalent to S*. If K is
a submanifold of V, we say K is a knotted n-sphere in V; if K is diffeomorphic
to S*, we say K is a knotted S* in V.
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2. Some exact sequences

2.1. Throughout this paper, let m, » and k be integers satisfying n = 5,
k=3 and m = n + k. The set of isotopy classes of knotted n-spheres in S™
will be denoted by @™"; the set of isotopy classes of framed knotted 7- Spheres
in S™ will be denoted by e

It follows from [22, Th.1.4] that ®™"and ®7'" can be, equivalently, described
as the h-cobordism classes of knotted spheres, respectively, framed knotted
spheres, in S™. As a consequence, the operation of connected sum imposes an
abelian group structure on ®™" and @7 (see [3, 1.3]).

We point out the following criteria for a knotted sphere K or a framed
knotted sphere (K", ) in S™ to represent the zero element in ®™" or @7,
respectively. [S™, K,] = 0 if and only if K, is the boundary of an (n + 1)-disk
imbedded in S™ or, equivalently, K, bounds an (n + 1)-disk in D™*!, [K,, ¥] =
0 if and only if there is a framed disk (D,, &¥)) in S™ such that 0D, = K, and &
is the front (or rear) extension of ¥, | K;. Also [K;, ¥] = 0if and only if (K, F)
extends to a framed (n + 1)-disk in D™+,

Let ®" be the group of diffeomorphism (or h-cobordism) classes of n-spheres
(see [14, § 2]) and let

o(n, k). @™ — @

be the natural homomorphism. We define=™" = Ker 6(n, k) and ®; = Cok 6(n, k);

™" is the group of knotted S in S™ and ®7 is a measure of the n-spheres which
cannot be imbedded in S™.

2.2. Let P, be defined for n = 5 by

A n = 0 mod 4
P,= 12, n = 2mod 4
0 nodd .

For each k = 3, we will establish three exact sequences, defined for n = 5:

0
@m,n ¢ @mmn ! ﬂn—l(SOk) L@}"—l,"”l__) cee

(2), 0P Gy P ey e (G ——

w1

(1), -+ —m(SOy)

(3)e o — @™ 5 7 (G, SO) 5 P, @n
ﬂ) T[n—l(Gk, Sok) —> e
These sequences, together with the exact homotopy sequence of the pair
(Gk’ Sok):

(4),  +or —> (S0 —25 1,(Gy) —2 1.(Gy, SO —2 7, (SO — + -+
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will be related by the following commutative diagram:

T[n(sok) — n—n(Gk) e an
/ N\ /"
(5) To1i(Gy, SO) eF" 7,(G, SO,)
N N
n+1 — @m,n E— ﬁn—l(SOk) .

The definitions of the homomorphisms of (1)—(3) will be carried out in (5.1),
and the commutativity (up to sign) of (5) will be verified in (5.2). Exactness of
(1)-(3) is then proved in (5.4) and (5.5).

3. An invariant of framed knots

3.1. Let (K", ¥) be a framed knotted sphere in S™. By the tubular neigh-
borhood theorem, there is an imbedding, unique up to isotopy, @: K x D* — S™
such that o(x, 0) = « for all x € K and dp(¢) = F, where ¢ is the normal frame
to K x 0in K x D* pulled back by the projection K x D* — D* from a positive
frame at 0e D*. Recall that the map S**— S™ — K defined by y — p(,, ¥),
for a fixed x,€ K, is a homotopy equivalence (see e.g. [17, p. 962]). Let
h: S™ — K — S*'be a homotopy inverse; then consider the map g: K x S*'—
S** defined by g = h- | K x S** It is clear that g has degree + 1 on the
second factor and its homotopy class depends only on [K, F]. We denote by
v(K, F) the element of 7,(G,) represented by g.

3.2. Let ¥’ be another normal frame on K in S™, and let p: K* — SO, be

defined by F'(z) = p(x)F(x). Let

w4(n7 k): ﬂn(sok) — ﬂn(Gk)
be the homomorphism induced by inclusion and « € 7,,(SO,) the homotopy class
of p.

LEMMA. v(K, F) — v(K, F) = wn, k) - a.

PrOOF. Let ¢': K X D*— S™ be the imbedding defined by ¢'(x,y) =
p(x, t(x) - y). Then ¢'(x, 0) = x and do’(c) = F'; therefore v(K, F') is repre-
sented by ¢’ = h-¢'| K x S**. Since ¢'(z, y) = g(z, 1(x) - y), the lemma is
immediate.

33. If K" is a knotted sphere in S™, we may define an invariant
v(S™, K") e 7, (G, SO,) analogous to (3.1). Let D,, D, be n-disks in M such that
D, N D, is an (n — 1)-sphere (see [22, Th. 5.1]). Let ¥, be a normal frame on
D,in S",t =1, 2, and let ¢*: D, X D* — S™ be imbeddings satisfying ¢(x, 0) =
x for xe D, and dpi(e)) = &F,, where ¢, is the pull-back by the projection
D, x D*— D* of a positive frame at 0e D*, Furthermore, by the tubular
neighborhood theorem, we may choose the ¢* so that @*(z, ¥) = @'(x, p(x) - y) for
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xeD, m‘ D,, ye D* and some p: D, N D,— SO,. It is clear that, if we orient
D, N D, by 0D,, p represents O(K, F,) € w,_,(SO,). Let h: S™ — K" — S1he a
homotopy inverse of y — @'(x,, ¥), ¥, € D;. By the homotopy extension theorem,
we may assume h - @'(x, y) = yforallz € D, y € S*-1. Now definex: D, X S¥**—
S¥'by N = h - @*| D, X S*7* then (A, ) defines an element of 7,(G,, SO,) which
we denote by v(S™, K™). That »(S™, K") depends only on [S™, K"]is a straight-
forward exercise. If
84(n’ k): ﬁn(Gk’ SOk) Ea— 7.['-n—l(‘s’ok)
is the boundary homomorphism, we have proved the following:
LeMMA 1. If F is any normal frame on the complement of a point of K™
in S™, then:
O(K™, F) = 04(n, k) - v(S™, K) .
Moreover, if (K", &) is a framed knotted sphere in S™ and
@4("; k): nn(Gk) B Tcn(Gk’ SOk)
is the usual homomorphism, then by taking &, = ¥ | D, in the above definition,
it is easy to see that the following is true.
LEMMA 2. v(S™, K") = @ n, k) - v(K", F).
3.4. LEMMA. (a) If (K!, F), (K, F,) are framed knotted spheres in S™,
then:
v((Kly F) 5 (K, ?z)) = (K, ) + v(K,, F) .
(o) If K, K" are knotted spheres in S™, then
v((sm, K,) % (S™, Kz)) = v(8", K)) + v(S™, K)) .
Proor. We prove (a) only. The proof of (b) is similar, and we leave it to
the reader as an exercise.
Let @' be an imbedding of K, X D*in S™ and %, a homotopy equivalence of
S™ — K,on S t =1, 2, used in the definitions, asin (3.1). Let D, be an m-disk
in S™, intersecting K, in a subdisk and A: D,— D, an orientation reversing
diffeomorphism such that A(K,N D) = —K,ND, and dA(F,|K,ND,) =
dA(¥,| K, N D,). Now we may assume that
h1l(Sm - Kl)m‘Dl: hz'A|(Sm - Kl)lev

by the homotopy extension theorem. If (K, F) = (K, F) # (K,, F,), using A to
form the connected sum, then there is a natural decomposition:
where S™ — K, and S™ — K, are identified on (S™ — K,) N D, and (S™ — K,) N D,
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by A. Also K = K, U K,, identified on K, N D, and K, N D,. With respect to
these decompositions we may define ¢: K X D*— S™ so that ¢ | K, x S** =
o' | K, x S** and h: S"— K— S*'sothat h |S"— K, =h,. Ifg=h-p|K xS*7,
g9: = h,+ @' | K, X S*!, then

gl (K, — D,) x 8 =g,|(K, — D;) x S¥*.
By one of the definitions of addition in 7,(G,), we have the desired result.

3.5. It will be useful to have another interpretation of v(K", ¥) in terms
of the Thom construction. A similar interpretation of »(S™, K") also exists,
but this will not be needed.

Recall the well-known decomposition:
S™ = (8" x D*) U (—1)"*{D"** x Sk1) .
This decomposition induces an imbedding of:
S* x Sk=1 = (D" x S = (—1)"a(S™ x D*)
into S™; we will, in this way, consider S* x S*! a submanifold of S™. Let f
denote the normal field to S™ x S*~'in S™, pointing out from S™ x D*, Note that,

if (M", F) is a framed submanifold of S x S*~! and ¥’ is the front extension
of ¥ to a normal frame to M in S™, then the first vector in ¥ is f| M.

LEMMA. Every framed knotted n-sphere in S™ is isotopic to one (K™, F),
where K™ s nuclear in S™ X S*, and ¥ is the front extenston of a mormal
frame to K™ in S™ x S**,

ProoF. Let & = (fi, *-+, f+), and suppose L** is a fibre of the normal
sphere bundle to K, oriented so that the linking number of K and L in S™ is
(—1)*+', Since L is unknotted, there is an isotopy of S™ which carries L onto
0 x S* . therefore we may assume L = 0 x S**. Let T be a tubular neighbor-
hood of K", disjoint from L; then L is a deformation retract of S™— T. Therefore,
by[15, Th.4.1], S* — T is a tubular neighborhood of L. Now (—1)*+D"+! x Sk-1
is also a tubular neighborhood of L; therefore, by the tubular neighborhood
theorem, another isotopy of S™ will insure that S™ — T = (—1)*"1D"+ x S,
Thus T = S" x D* and, since the linking number of K and L is (—1)"*!, K is
homotopic to S* X 0in T.

Now the normal field f, determines a trajectory along which we may
isotopically deform K, in S™ x D*, to S x S*¥~*, Clearly K is then homotopic,
in 8* x S*1 to S™ X ¥, Yo€ S*1, and f, = f| K.

3.6. Let (M",¥) be a framed submanifold of S” x S** then
HM, F)e m1(S" x St1).

LEMMA. M is a nuclear submanifold of S™ X S** +f and only if
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M, F)en . (G).

PRroOF. Suppose the intersection number of M and x, x S*!is a, x,€ S™.
We may then assume M intersects x, X S*~! normally in @ + 2b isolated points,
@ + b of them positively, and b of them negatively. Now look at the restriction
of t(M, F) tox, x S*'. We have a map which is constant outside a + 2bisolated
disks and wraps these disks around S*~, @ + b of them positively, and b of them
negatively. This demonstrates that ¢(M, F) has degree a on the second factor.
The lemma follows immediately.

3.7. We now relate the invariant v defined in (8.1) with the Thom con-
struction. Let (K", ¥) be a framed knotted nuclear sphere in S* x S*=%; then,
by (3.6), (K, ¥)e 7, (G,). Since S" x S**c S™, let F’ be the front extension
of ¥ to a normal frame in S™.

LeMMA. v(K*, ) + (K™, F)=0.

ProoF. Let (K, ¥7) be the framed knotted sphere obtained by isotopically
deforming (K, ¥’) radially into S™ x D*; then (K, F') is isotopic to (K,, F;). Now
S" x D*is a tubular neighborhood of K,, by [22, Th. 4.1], since K, is homotopic
in 8" X D*¥to S™ X y,. Thus there exists a diffeomorphism A: K, x D*— S" x D¥,
unique up to isotopy, such that A(x, 0) = «, for x € K,, and dA(e,) = F;, where
&, is the pullback by the projection K, x D* — D* of a positive tangent frame
at 0. Then K = A(K, X y,), for some y,€ S** and dA(e) = F, where ¢ is the
pull-back by the projection p: K, x S**— Sk-1 of a positive tangent frame at
Yo. Thus it follows immediately that the map g: S* x S**— S¥1 defined by
g =p-+A7*|S" x S represents ¢(K, F). In fact, y, is a regular value of g,
9 %(yo) = K, and ¥ is the pull-back by ¢ of a positive tangent frame at y,.

Let p': 8™ x S¥*'— S*~! be the projection and define ¢';: K, x St-1— Sk-1
by ¢’ = p’ - A| K, x S**. Since A preserves orientation and has degree +1 on
the first factor (this follows from K being nuclear) A | K, x S*~* has degree +1
on the second factor. Therefore ¢’ has degree +1 on the second factor. Now
it follows immediately that ¢’ represents v(K,, F;) = v(K, F').

We now use these representatives to compute (K, F) + v(K, F'). Let
h: 8™ — K, be a map of degree +1; it follows from the definition of addition in
7,(Gy), described in (1.3), that ¢(K, F) + v(K, F') is represented by the composite
map:

(x, y) — p'A(h(x), p - A7, y)) .
By the covering homotopy theorem, A-'|S* x S** is homotopic to a map
A 8" X St — K, x S** which carries # x S* into k(x) x S*, for every
x € S". Replacing A= by \ in the above formula, we see that t(K, F) + »(K, F)
is represented by the map:
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(2, y) = p'A\x, y) .
Since A +\ is homotopic to the identity, the proof of the lemma is completed.

3.8. Wemay now use the preceding results to show that v(K, F) represents
an obstruction to extending (K, F) to a framed (n + 1)-dimensional submanifold
of S™.

LEMMA. Let (K", ¥) be a framed knotted sphere in S™. Then v(K, F) =
0 ¢of and only if there is a framed submanifold (M™, S) of S™ such that
OM = K and & is a front extension of S| K.

PROOF. Suppose »(K, F) = 0. Let F’ be the field of (X — 1)-normal vectors
on K of which & is a front extension. Then we define a new framed knotted
sphere (K,, ,) in S™ by K, = (—1)**'K and ¥, = front extension of ¥ on K,.
Then v(K,, ¥,) =0, since if g: K x S*~*— S*~1is a representative map of v(K, F),
a representative map for v(K,, ¥,)is given by the composition » - g - ', where »
is a reflection of S*~*and r'": K, x S**— K x S*is given by the identity on
the first factor and reflection about the first coordinate on the second factor.
By(3.5) we may assume that K, is nuclear in S* x S*~% and ¥’ is a normal frame
to K, in S" x S**. By (3.7), #(K,, F') = —v(K,, F,) = 0. Therefore t(K,, F')
extends to D" X S** and, by 1.4, this means there is a framed submanifold
(M,, 8) on D*** x S** such that dM, = K, and §| K, = F. If we defined M =
(—1)"**M,, then (M, Q) is a framed submanifold of S™ and satisfies the desired
conclusion.

Conversely, suppose (M, §) exists as in the lemma. Let T be a tubular
neighborhood of K so that T' N Misa collar of K in M. Define M, =M — TN M,
8, = G| M, and K, = 8M,, F, = front extension of §,| K,. As in (3.5) we may
assume T = S" X D* and K is homotopic to S* x 0. Therefore K, is nuclear
in 8" x S** Now ((—1)"*'M,, Q,) is a framed submanifold of D**+' x St1
extending ((—1)""'K,, §,| K,). Thus t((—1)""'K,, S, | K,) = 0 and, by (3.7), if
¥, is the front extension of S, | K, on (—1)"*'K,, then v((—1)"*'K,, F,) = 0. As
in the preceding paragraph, this implies v(K,, F;) = 0. But (K, ¥) is isotopic
to (K,, ¥,), proving the lemma.

3.9. We conclude this section by determining the relation between the
Thom construction in S™ and the invariant v on a framed knotted sphere in S™.
Let

v(n, k): 7,(G,) — 7,,(S*)
be the homomorphism defined by applying the Hopf construction (see[27, p. 208])
to a map S* x Sk-t— Sk-1,

Let (K", ¥) be a framed knotted sphere in S™. Denote by ¢, the standard
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generator of 7,(S*)and let o denote the composition operation in homotopy groups.

LEMMA. (—1)"*%(K", F) = ((—1)**%¢,)o (¥(n, k) - v(K™, F)).

Proor. By (3.5) we assume K" is a nuclear submanifold of S™ x S**and
f is the front extension of a normal frame ¥’ to K in S* x S*~', Then (K, ) =
—t(K, J"). Let K, = (—1)*"*K and ¥, = rear extension of §’ on K,; this insures
that the last vector in ¥, is actually f| K, (see (3.5) for definition of /). Now
it is proved in [11, p. 348] that ¢(K,, ¥,) = (—1)"v(n, k) - t(K, F’). Since the first
vector of ¥ is f| K, we have the relation F(x) = p, - F(x) for all € K, where
! is the orthogonal transformation defined by:

(fl’ .“,fk—lyfk)—)(fkyflyfb '..7fk—1) .

Since the degree of z,is (—1)**, it follows that ¢( K™, F) = ((—1)**¢,) o U K", Fo).
This proves the lemma.

4. Simplifying a framed submanifold

4.1. The technique of spherical modifications will be essential in this work
(see [20], [14] and [3]). We first discuss the notion of Arf invariant (see [12, § 1]
and [14, § 8]) which will be needed.

Let (M*, F) be a framed submanifold of a 7-manifold V™, where oM is
empty or a sphere. Weassumen = 47 + 2, » = 1, and M is 2r-connected. Let
s C M be an imbedded S**!, null-homotopic in V. We will deseribe a slight
generalization of a construction in [3, 3.2]. Let § be a positive framing of
MV —yp, ¥V —-—M I£F =(f, -, f1), consider the subbundle of 7(V) | s
spanned by 7(s) and f;|s; this has a canonical framing ¢ = (e, -+ -, €,.1,), as
described in [3, 3.2(3)]. Now consider the vector framing

Sy = (€1, ***, Corin, S2 |8, ===, [1]8)
of a subbundle of 7(V') | s. Foreachx € s, thereis an ((m — 27 — 1) X m)-matrix,

with orthonormal row vectors, p(x), such that (considering G and §, as column
vectors),

Gy(x) = p(x)S(w) .
We can identify the space of such matrices with the Stiefel manifold V,,,,,_2_,
of orthonormal (m — 2r — 1)-frames in E™. Then g defines an element
(M, F)+8E€ T i(Vomar_) =~ L.

Suppose V = E™; let (4, 4'): S*+*— E™ be the E™*"~-immersion associated
with (s, | s) according to [4, Th. 3.3]. It is a direct consequence of the defi-
nitions that ¢(M, &) - s is the same as 7(+y’), defined in [4, p. 258].

Since s is null-homotopic in V — y,, (M, F) - s is independent of S, for any
two choices of G will be homotopic on s. Furthermore, o(M, ¥) - s depends only
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on the homotopy class of s. In fact, if s, C M is homotopic to s, it follows from
the arguments of [4, § 8] that s and s, are regularly homotopic in M, for their
self-intersection numbers are equal. But it is clear that (M, F) - s is invariant
under a regular homotopy of s.

Thus we have defined a function:

<P(M, g:) H, ..(M;Z)— Z,
which depends only on the isotopy class of (M, ¥).
4.2, We shall verify that o(M, ¥F) = @ satisfies the formula

pla + B) = p(a) + ¢(8) + (a-B),

for o, B € H,,,,(M), where (« - 8),is the mod 2 residue of the intersection number
of « and B. The argument is similar to one in [25, p. 167-8]. First note that
the construection in (4.1) may be carried out on an tmmersed sphere s. Let
B™c V be an imbedded m-disk such that B» N M = B" C B+, standard sub-
disks of B™, and f, | s is tangent to B"**. Let 4: S***— B" be an immersion with
self-intersection number one. Let s = +(S*+) and (v, ¥') be the E***-immersion
into B"*! associated with (s, f;|s). Then z(4r, ¥') coincides with the obstruction
to extending + to an immersion of D*+* into B*, which is non-zero, under the
isomorphism 7, (V,.0rt1) — Tortd( Viesr,zrrz). Furthermore, it is clear that
7(+p, ') — @(M, F) - s, under the isomorphism 7, 1( Vi rn2r42) = Torta Vinsmeszr—1)-
Thus, (M, ¥)-s # 0.

Now let s,, s, be imbedded (27 + 1)-spheres in M representing «, 3, respec-
tively. Then we can form the connected sum s, % s,, in M, to obtain an immersed
sphere s, representing a + 3, with self-intersection number (« - 8),. Now it is
clear that

(M, F)s =p(M, F) s+ p(M, F) s, .
By the above discussion it follows that, if s’ is obtained from s by locally

introducing (a - B), self-intersections and then removing them by a regular
homotopy, then

p(M,F)s" = p(M,F)-s + (a-B),.
Now the desired formula follows.
4.3. We define, in the usual way, (see [14, p. 535])
oM, F) = 22, p(@)p(B:)

where {«;; 8;} is any symplectic basis of H,,.,(M).
If » # 1 or 3, it follows from [3, 3.4] that (M, F) coincides with -, defined
in [14, p. 534], since the homomorphism 7, (V ., m—2r—1) — T2,(SOs+,) iS @ mono-
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morphism. Then, if » # 1 or 3, ¢(M, F) = ¢(M) [14, p. 535] and, therefore, is
independent of ¥ and the imbedding.

4.4. Let (M™, F) be a framed submanifold of V'™, as above, where (V' ™, Q)
is a framed submanifold of W?, If ¥ = (f, ++-,fr) and 8 = (g,, =+ +, g,_,.), We
may define a normal frame ¥’ to M in W by F = (fy, *+*, fe, 91, ***) Gp—m)-
Since the homomorphism 7y, 41( V., m—sr—1) = Tarta( V3,p—sr—1) is an isomorphism it
follows from the definitions that

c(M,F)y=cM, ).
As a consequence of this remark we may prove:

LEMMA. ¢(M, F) depends only on the cobordism class of (M, F).

PRroOF. Since V is a w-manifold, we may imbed it in a high-dimensional
sphere with a normal frame. Therefore, by the preceding remark, we may
assume V = S™ and m is large.

Suppose M is closed and (M, ¥) extends to a framed submanifold (N"+*, §)
of D™*+', We shall show ¢(M, F) = 0. By the arguments in [12, p. 260-1], we
may assume N is 27-connected and {«;; 5;} is a symplectic basis of H,,.,(M) such
that «; is null-homologous, and, therefore, null-homotopic, in N, for every 7. If
F=(fy -+, 0, let T =(f1, +++, fr, (—1)™*'f) be the rear extension of ¥ to a
normal frame to M in D™+, f is the inward pointing radial vector of D™** on M.
By the remark above, ¢(M, F') = ¢(M, F). Now define

F' = (f,fo oo, fro (D),
another normal frame to M in D™**; then "' is homotopic to ¥’ and so ¢(M, F') =
(M, ).

Let s be an imbedded sphere in M representing a;. Then s extends to a
mapping +: D¥**— N; we may assume + is differentiable, y(D***) meets M
only at s, and the inward pointing radial vector of D**** on 8D*** is mapped onto

f|s by dy. It follows from [30, Th. 7] that we may assume + is an immersion
(dim N = 2(2r + 2) — 1); let d = y(D***). Consider the framing
G = (31; cery Carin, Jal S, 00, fil S, (—1)"‘f1|8)

induced, asin (4.1), from ¥’ on s. Now ¢ is just the restriction to s of a tangent
framing of d. Furthermore (f3|s, «-+, fils, (—l)mflls) extends to a normal
framing over d because ¥ is defined on N. Thus G, extends over d, giving an
explicit null-homotopy of (M, F”)+s. This shows p(M, F”’) - a; = 0, for every
7, which implies ¢(M, F"') = 0.

Now suppose (M,, F,) is cobordant to (M;, F;). We may assume V' = D7 and

M, N 8™ = dM,, for m large. By an isotopy we may assume, furthermore,
that M, = M, and F,|0M, = F,|0M,, since (0M,, F,|0M,) is h-cobordant to
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(@M, F,|0M,) (in S™Y). Let (M,, F,) be the framed submanifold of D™ obtained
by reflecting (— M,, F,) across S™*, and let (M, F) = (M,, F,) U (M,, F,) be the
framed submanifold of S™ obtained by identifying boundaries. Then

oM, F) = co(M,, F) + c(M,, F) = e(M,, Fo) — e(M,, Fy) .

But it is easily seen that (M, &) extends to a framed submanifold of D™+!, using
a cobordism between (M,, F,) and (M,, F,) which is constant on the boundary.
Thus, by the preceding argument, ¢(M, F) = 0.

This completes the proof of the lemma.

4.5. Let (M", F) be a framed submanifold of a 7-manifold V™, where 6 M
is empty or a sphere. Let usimbed V as a framed submanifold (V, ) of S?, for
large p. Then (M, F’)is defined, as in (4.4), as a framed submanifold of S*. By
spherical modifications [20], (M, ¥’) is cobordant to (M,, F,), where M, is 2r-
connected (» = 4r + 2). We define

(M, F) = c(M,, F,) .

According to (4.4) this is a well-defined extension of our first definition. It also
follows that Lemma (4.4) is still true.

Let (M™, ¥) be a framed submanifold of a w-manifold V™, where oM is
empty or a sphere. We define an invariant v(M, F) € P, as follows:

(i) v(M, F) = 0if »n is odd.

(ii) (M, F) = 1/8 index M if n = 0 mod 4.

(i) (M, F) = (M, F) if » = 2 mod 4.

That index M is always a multiple of 8 follows from [18, Th. 1 and Lem. 3].

By Lemma (4.4) and a result of Thom, v(M, &) is an invariant of the
cobordism class of (M, ¥). We will also need the following additive property
of v(M, ).

Let (M, F,) be a framed submanifold of a 7-manifold V;*, for t = 0, 1.

LEMMA. Y(Mo, Fo)  (M,, F)) = v(M,, Fo) + 7(M,, F,).

PROOF. Supposen = 2r. If r is even, this is a well-known property of the
index.

Suppose 7 is odd; we may assume V, = S™, for large m, and M, is (r — 1)-
connected, since the desired formula is invariant under cobordism. But now
this formula is immediate if we notice that a symplectic basis of H (M, % M,) can
be obtained by the union of symplectic bases of each H,(,) and that

(M, Fo) § (M, F)) | H(M,) = p(M,, F) .

4.6. LEMMA. Supposek =2and v e P,. Then thereis a framed subman-
ifold (M, F) of S™ such that (M, F) = v and 0M s a sphere.
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PROOF. Suppose n = 4r. It follows from the results of [25] that there exists
a (2r — 1)-connected 7-manifold M, with 8M a sphere, such that index M = 8.
According to [5, 4.3], M imbkeds in S"**; consequently M imbeds in S™ with a
normal frame, and the lemma follows for » = 0 mod 4.

Suppose » = 4r + 2, r = 1, 3. It again follows from [25] that there exists
a 2r-connected 7-manifold M, 9M a sphere, such that ¢(M) = v. By [5, 4.3], M
imbeds in S™ with a normal frame ¥. Then ¢(M, F) = ¢(M), as remarked in
(4.3), and the lemma follows.

Suppose n = 27, r = 3 or 7. Consider the homomorphism

D: TASO,ry) — TAV s rk1) = 2y
induced by natural projection; since 7,(SO,.,) = 0, p is an epimorphism. Choose
&, &€ m(S0,,_,_,) so that p(&) =7, p(&.) = 1.
For t = 1,2, let (D;*, ¢,) be disjoint framed disks in S™. Let g,: 90D, —
SO,,_,_, represent &, and define a normal frame F; = (fY, « -+, fr_._,) ondD, by

Filx) = #t(x)et(x) .
By the tubular neighborhood theorem, there exists a submanifold M/ of S™
satisfying:

(i) M, meets D, normally along 8D,,

(ii) M, is a tubular neighborhood of 8D, (in M,),

(iii) (ft, -+, fi_,) are normal to M,.

Let ¥, be a normal frame to M, obtained by extending (fY, ---, fi_,) over M,
and then taking the front extension. Clearly we may orient M, so that the initial
vector of &, points radially into D,.

Since m > dim 8D, + dim 8D,, we may perform an isotopy on dD,, say, so
that the 8D, intersect at a single point at which the ¥, coincide. Then we may
assume M, N M, is an n-disk with corners, and M, U M, is a submanifold (with
corners) of S™. Let M be the result of straightening the angles of M, U M, and
let F be the normal frame on M induced by ¥, and &,.

Let «, 8 € H,(M) be the generators represented by 8D, 8D,, respectively;
clearly {a; 8} is a symplectic basis of H(M). It is straightforward, using the
definition in (4.1) and the details of the construction of M, to see that

p(M, F)-a=pE)="7; p(M,F)-B8=mp)=1.
Therefore ¢(M, F) = p(a)p(B) = 7.
This completes the proof of the lemma.
4.7. The main result of this section is:

THEOREM. Let (M*, F) be a framed submanifold of V where:
(i) V=81 and 6M is a sphere, or
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(i) V= 8" x S, and M s nuclear.
Then (M, ¥) is cobordant to a framed:

(i) disk vmbedded in V = S™*, or

(ii) knotted sphere in V = S" x Sk,
of and only ©f (M, F) = 0.

ProoF. Since (M, F) is an invariant of cobordism, ¥(M, F) = 0 is certainly
necessary. It remains to prove the sufficiency.

4.8. The technique for simplifying (M, F) will be, as to be expected, that
of framed spherical modifications, as presented in [3, § 3]. Let aen(M); we
slightly re-formulate the hypotheses of [3, 3.2].

(1) ais represented by an imbedded sphere s in int M,

(2) sboundsanimbedded disk d in V suchthat d N M = s, and f, | s points
radially into d,

(3) the frame (f;, « -+, f,_,) | s extends to a (partial) normal frame on d,
where F = (f, +++, fiy).

The proof of [3, 3.3] shows that, if these hypotheses are satisfied, (M, F) is
cobordant to (M,, F,), where, in the notation of [14], M, is diffeomorphic to
X(M, ©) for some imbedding i: S” x D""— M representing a. We will say
(M,, F,) is obtained from (M, F) by a spherical modification associated with «.

Let us assume that M is (r — 1)-connected, where 0 < 2r < n. In [14],
Kervaire and Milnor show how to kill 7,(M) by a sequence of spherical modifi-
cations on M. Thus, our task is to show that these spherical modifications can
be carried out on (M, F).

4.9. We first show that hypotheses (1) and (2) of (4.8) can be satisfied for
all e 7, (M). In fact, hypothesis (1) is a direct consequence of classical results
of Whitney (also see [20, Lem. 6]). By the same arguments (see [29]) hypothesis
(2) will be satisfied whenever s extends to a singular disk d’ in V, meeting M
only at 8d’, and V' — M is 1-connected. But this will follow if V — M is r-con-
nected, which we shall now verify.

If & = 4, then codim M = 3 and the 1-connectedness of V' — M follows from
the 1-connectedness of V by a general position argument. If k¥ = 8 and M is
bounded, then we can isotopically deform M into a small neighborhood of its
(n — 1)-skeleton (see e.g. [5, § 3]) and a general position argument will work
again.

Suppose k = 3 and M is closed. V — M is 0-connected, by general position,
but it is not a priors true that V' — M is 1-connected. We must arrange that
it be so by the following inductive procedure.

It is remarked in (1.5) that we may, initially, assume that, for some x, € S*,
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M meets x, x S* normally in a single point. We would like to preserve this
property throughout our modifications. But, from the deseription of a spherical
modification given in [3, § 3], we need only take care that s and d avoid z, x S?,
and this follows from general position ((r + 1) + 2 < n + 2).

We now check that 7 (V — M) = 0 if M satisfies the condition in the above
paragraph. Let £en,(V — M) be the element represented by a fiber of the
normal circle bundle to M. It follows from the van Kampen theorem, applied
tothe triad (V; U, V — M), where U is a tubular neighborhood of M, that the
extra relation £ = 0 will kill 7,(V — M). But ¢ is represented by a circle in the
contractible subspace (V — M) N (x, X S?); thus & already is zero.

It now follows that we may assume V' — M is 1-connected.

To complete the verification of hypothesis (2), we will demonstrate that
H(V— M)=0for2=1= r; anapplication of the Hurewicz theorem then shows
that V — M is r-connected. By Lefschetz duality, H(V — M)~ H™ -V, M).
Since M is (r — 1)-connected and 8M is empty or a sphere, H¥(M) = 0 for 7 >
n—r,j*n,also H(V)=0form —1>53>k—1,7# n. Whenj=n >
k — 1, the restriction homomorphism H*(V)— H"(M) is an isomorphism—if
V = 8™ and M is bounded both groups are zero, while if V' = S* x S*!, then
M 1is nuclear. Therefore, H/(V)— H?(M) is an isomorphism when m — 1 >
j > max{k — 1, n — r}. Now considering the following exact sequence

Hm—i—?( V) 5 H'm—l'—Z(M) Hm—~i-1( V, M)
R H‘m—'i—l(V) H'm—«i»«l(M) ,
we conclude that H(V —M)~H™ YV, M)=0 for 0<t<min {n—1, k+r—2}.
Thus, since k¥ = 3 and » = 2r, M is r-connected.

4.10. Now it remains to show that, by a sequence of spherical modifications
on (M, F) associated to elements a € «,(M) satisfying hypothesis (3) of (4.8), we
may kill z,(M). Clearly the obstruction to extending (f5, « -+, f;_,) | s over d is
represented by an element £ € n(V,_, 5,5 _.).

If n > 27, this hombtopy group is zero, so (3) is trivially satisfied for all
aem(M). Thus we may perform a spherical modification on (M, ¥) associated
with any « € (M), and the procedures of [14] can be carried out. In case n =
4t + 3, r = 2t + 1, the arguments of [14, p. 522-6] require that we be more
specific in choosing the imbedding ¢: S* X D™ "— M representing « in performing
the spherical modification. Thus a further argument is needed to be sure
that we may correspondingly modify (M, ¥). This point is dealt with in the
proof of Lemma 3.1 of [6] to which we refer the reader. Thus we may assume
M is r-connected for n>2r. If n is odd, Theorem (4.7) follows by duality.

Suppose n = 27, r is even and index M = 0. It follows from [20, Th. 4] or
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[14] that (M) may be killed by a sequence of spherical modifications on M
associated with elements of 7,(M) whose self-intersection number is zero. That
hypothesis (3) is satisfied for all such elements « follows from an argument in
[3, 3.5]. In fact, if

a: nr( Vm—T——-?,k—-?) I ﬂr~1(SOn—r)

is the boundary homomorphism of the fibration SO,,_,_,— V,_,_s,._s, then 8(&)
corresponds to the normal bundle of s, according to [3, 8.4]. Then, by [20, Lem.
7], (&) = 0. Since 0 is a monomorphism for & = 3, this implies & = 0. This
completes the proof of (4.7) in this case.

Suppose n = 27, r is odd, £k = 4 and ¢(M, F) = 0. It follows from the
arguments of [14] that, if a sequence of spherical modifications can be performed
on (M, ¥) associated to all the «; of a symplectic basis {«;; 8;} of H(M), we can
kill 7,(M). But, since ¢(M, F) = 0, it follows from the proof of [14, Lem. 8.4]
that there is a symplectic basis {«;; 5;} of H,(M) such that (M, F)-a; = 0 for
all 1. But if &, enm(V, _._,:_s) is the obstruction to satisfying (3) for «;, it is
easy to see [3, 3.3] that, under the natural homomorphism 7AV,_, s ) —
TV tmer1), & — (M, F) - a; = 0. Since this homomorphism is a monomor-
phism when k = 4, then &, = 0, and the necessary modifications can be carried
out. Thiscompletes the proof of (4.7), except in the case n =27, r odd and k& = 3.

4.11. When k = 3, the above argument shows that &; is an even element
of the infinite cyclic group 7,(S”). We will show that d may be replaced by a
new disk d, for which (3) is satisfied. Denote «; by « and &, by &£.

The orientations of d and V induce an identification of 7,(S") with Z which
allows us to identify & with an even integer 2a. Let s, be an (» + 1)-sphere
immersed in an m-ball in V — (M U d) with self-intersection number —a.
According to [15, Cor. 3.2] the obstruction to a normal field on s,is —2a (again
identifying 7,(S") with Z). Since V— (M U d U s,) is 1l-connected (V — M
is 1-connected by (4.9)) we may extend d and s, to an immersion of the connected
sum d, = d # s, such that the self-intersection number of d,is —a. The obstruc-
tion to satisfying (3) for d, is 2a + (—2a) = 0, but, unfortunately, d, is not an
imbedded disk.

Since « is a primitive element of H,(M), there exists 8¢ H,,,(V — M) such
that the linking number of « with Bis a. By [20, Lem. 6], let 8 be represented
by an imbedded sphere s,in V — M, since V — M is r-connected. We may assume
s; meets d, transversely; thus the intersection number of d, with s, isa. Now we
may extend d, and s, to an immersion of d, = d, # s, whose only self-intersections
are those of d, and s,, and the intersections of d, and s,. Thus the self-inter-
section number of d,is —a + 0 + @ = 0. Since all self-intersections in H, (V)
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are zero, it follows from [20, Lem. 7] that the normal bundle of s, is trivial.
Therefore the obstruction to satisfying (3) for d,is 0 + 0 = 0.
We now construct d, from d, by performing a regular homotopy on d, in
V — M which removes all the self-intersections; this uses the techniques of [29]
and the 1-connectedness of V' — M. Then d,is an imbedded disk satisfying (3).
The proof of Theorem (4.7) is now complete.

5. Verifications of exactness

5.1. Now we are ready to define the homomorphisms in the sequences
(1)—(3) of (2.2).
Let (K", ¢) be a framed knotted sphere in S™ such that [K, ¢] = 0 in @7",
Let p: K— SO, represent « € 7,(SO,) and define F, a new normal frame on K, by
Fla) = plx)e(a) .
‘We then define:

o, = wy(n, k): 7,(SO,) — Op"

by w(a) = [K", F]. Clearly w,is well-defined. Suppose «a, € 7,(S0,), t =1, 2,
and p,: K— SO, represents «, with the property that (D7) = identity element,
where D, is a disk imbedded in K such that D, N D, = 8D, = 8D, (orientation
not being considered) and K = D, U D,. Then @, + a, is represented by m: K—
SO, defined by p| K — D, = p,, s # t. Then ¥,|D, = ¢|D,, where (K, F,) rep-
resents w,(«;). It is easy to see that (K, ¥) is isotopic to (K, F,) £ (K, F,), where
¥ is defined from pg. Thus o, is a homomorphism.
Let (K", ¥) be any framed knotted sphere in S™. We define
P1 = @y(n, k): OF" — @™"
and
W, = wyn, k): Op" —> 1w (G)) .

by @[K, F]1 =[S™, K"] and w|K, F] = v(K, F). It is clear that ¢, and w, are
well-defined, and that ¢, isa homomorphism. That @, is a homomorphism follows
from Lemma 3.4 (a).

Let K™ be a knotted sphere in S™. We define
w; = 0y(n, k): ™" — 7, (G, SO,)
and
0, = 0,(n, k): @™ — m,_(S0,) ,

by @,[S™, K"] = »(S™, K*) and 9,[S™, K"] = O(K", F), where ¥ is any normal
frame on the complement of a point. Then w, and 8, are well-defined, since all
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such F are homotopic. By Lemma 3.4 (b), @, is a homomorphism. But this
implies 9, is a homomorphism, by (3.3, Lemma 1).
We now define:
P2 = @yn, k): 7,(G,) — P,
and
Py = @y, k): 7,(G,, SO,) — P, .
Let a e 7,(G,) and (M", F) a framed nuclear submanifold of S* x S*~*such that
M, F) = a. If ayem,(G,, SO,), we let (Mg, F,) be a framed submanifold of
D* x S*' derived by the Thom construction, as in (1.5), from «,. Since the
cobordism class of (M, F,) depends only on a,, according to(1.5), so does Y(M,, F).
Thus we may define p,(a) = Y(M, F) and p,(a)) = Y(M,, F,); it is clear that these
are well-defined functions. That ¢, is a homomorphism follows from (1.5) and
Lemma (4.5). It is a consequence of (1.3) that gu(n, k) = @y(n, k) - pu(n, k);
thus ¢, is also a homomorphism.
Let vy€ P,.,; by Lemma (4.6), v = v(M™+!, F) for some framed submanifold
(M, F) of S™, where M is a sphere. Let ¥ be the front extension of F|aM;
then we define
0, = 0,(n, k): Py, — O7"
0, = 0(n, k): P,,, — @™"

by 0,(v) = [0M, F'] and 9,(v) = [S™, 8M].

We must check that 8, and 8, are well-defined. It follows from Theorem
(4.7 (1)) that 8,(0) and 8,(0) are well-defined (and equal to 0), since (8, F') will
be h-cobordant to the boundary of a framed (n + 1)-disk. But now it follows
from the additivity of 3, and 8, with respect to connected sum (Lemma (4.5)) that
9, and 9, are well-defined on all of P,.,, and homomorphisms.

5.2. PROPOSITION. Diagram (5), of (2.2) is commutative up to sign.

ProoF. That wy(n, k)-w(n, k) = w(n, k) is a direct consequence of
Lemma (3.2). It has already been remarked that @y(n, k) = p,(n, k) - @dn, k),
and it is obvious from the definitions that 8,(n, k) = p,(n, k) - 8,(n, k). Further-
more, it follows from Lemma 1 of (3.3) that 8,(n, k) = 8,(n, k) - w,(n, k), and from
Lemma 2 of (3.3) that p(n, k) - w,(n, k) = wyn, k) - p,(n, k).

To complete the proof, we will show that

w(n, k)-8 (n + 1, k) = (—1)"8n, k) - p(n + 1, k) .

Let (A, ) be a pair of maps representing a € ,,,(G,, SO,), as in (1.3), such that
A is differentiable and has y,€ S** as a regular value. Let (M"*!, F ) be the
framed submanifold of D*** x S** derived, by the Thom construction, from N;
see (1.5). Then ((—1)"**M, F) becomes a framed submanifold of S™; note that



36 J. LEVINE

Y(—1)"'M, F) = (—1)"*'py(a). Therefore ((—1)"+*60M, F')is a framed knotted
sphere in S™, where &’ is the front extension of F|(—1)*+0M, and represents
(=1)"*9, - 7’3(“)-

Let K" = (—1)"*'0M; then K" is the image of the cross-section S™ —
S* x S**defined by * — p(x) - y,. If ¢ is a positive tangent frame to S*~* at
Y, then F(x, y) is the frame which projects to zero by S* x S**— S* and
projects to dp~'(x) - € by S* x S**— Sk!, We will write simply:

F)=dp(x)-¢.

Since &'’ is the front extension of ¥ to a normal frame to K in S* x D* (and,
therefore, in S™), then F'(x) = du~'(x) - ¢’, where €’ is the front extension of ¢
to a positive frame to D*. Now by pushing K radially toward the 0-section S™ —
S x D*, we see that (K, ¥') is isotopic to the framed knotted sphere (K7, &),
where K, is the image of the 0-section, and ¥, is defined by Fy(x) = dp~(x) - &,

for some positive tangent frame ¢, at 0 € D*. But since dp~'(x) = ¢ (x) at the
origin, we may write

Fo(x) = pr(x) - & for x € K{ ,
where ¢, is the pull-back of ¢, by the projection S* x D*— D*, and p,: K,— SO,
is defined by (=, 0) = p(x) for x € S*. Now (K,, &) is a framed submanifold of
S™ x D*, and ¢, pulls back from a positive frame on D*; it follows that K, =
+8" x 0. Therefore p* represents —o(«).

Since it is obvious that [K,, &,] = 0, it follows from the definition that
o (—0 @) = [K,, Fo]l = [K, F'] = (—1)"*'9, - pi(). This completes the proof of
the proposition.

5.3. It remains to prove the exactness of (1)—(3) of (2.2).

LEMMA. The exactness of the sequences (1),~(4); of (2.2) follows formally
from the exactness of (1), (2), and (4),, the relation p(n, k) - wy(n, k) = 0, for
all n = 5, and the commutativity (up to sign) of (5).

ProoF. This is just an exercise in diagram chasing. We must verify the
following additional facts:

(i) Ker @y(n, k) C Im wy(n,k),

(ii) Ker w,(n, k) = Im 0y(n, k),

(iii) Ker 9;(n, k) = Im @y(n + 1, k).

That w, - 8, and 8, - @, are zero follows from (5), and the assumptions that
w, 0, and @, - @, are zero.

Suppose @i(a) = 0. Then w, - 8,(«) = 0 and, therefore, d,(a) = 8,(8), for some
B. Now (¢ — w(B)) = 0 and, thus, @ = ©,(B) + @(7), for some 7. But @, (7) =
Py — @((B)) = 0 and, consequently, ¥ = @,(7), for some 7. It now follows that
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(B + P(1)) = 0(B) + @, (1) = a. This proves (i).

Suppose wy(@)=0. Thend,(«)=0and, therefore, «=op,(B). Since p,-w,(8)=
(@) = 0, 0(B) = 0,(7). Now @,(8 — @y(7)) =0 and so B — w,(7) = 8,(n). It
now follows that 8,(%) = (8 — (7)) = 9(B) = a. This completes the proof
of (ii).

The completion of the proof of (iii) follows similar lines, and we omit the
detalils.

5.4. THEOREM. Sequences (1),~(3), of (2.2) are exact, k = 3.

Proor. We will prove below in (6.1) that ¢,(n, k) - w,(n, k)=0, foralln = 5.
By Lemma (5.3), the theorem will then follow if we prove the exactness of
(1), and (2),, since (4), is already known to be exact.

Exactness of (1),. The exactness at @™ follows directly from the defini-
tions, since it is clear that Ker 8,(n, k) and Image @,(n, k) both consist precisely
of those isotopy classes [S™, K"] where K" has a trivial normal bundle in S™.
Exactness at ®7" is also immediate; Image w,(n, k) and Ker ¢,(n, k) consist
precisely of those isotopy classes [K", F] where [S™, K"] = 0.

We now verify exactness at 7,_,(SO,). Suppose « € Image 8,(n, k). Let K*
be a knotted sphere in S™ such that 8,[S™, K"] = «. We may choose K" so that
K" N D7 is an n-disk D7; let D = K" N D™. Let &, be a normal frame on D,
in S™. Then, according to [22, 1.4],

[0D,, ¥,10D,] = [8D,, F.|8D,] = 0 in @7,

By the definition of 9, we may write F,(x) = (x)F,(x) for all x € 8D,, where
1:0D,—S0, represents a. But, since[dD,, F,|6D,]=0, this means[6D,, F,|0D,]=
@(a). Thus w(a) = 0.

Suppose « € Ker w,(n — 1, k). Let (K", ¢) be a framed knotted sphere in
S™~'suchthat [K, ] =0, and F the normal frame on K defined by F(x)= pu(x)e(x),
x € K, where p: K— S0, represents a. Then [K, ¥] = w,(a) = 0. According
to [22, 1.4], there exist framed disks (D7, ¢,) in D7 and (DZ, F,) in D™ such that:

oD, = —oD,= K ,
&|0D, =€,
and
F.10D, = F .

If we now define K = D, U D,, then K is a knotted sphere in S™ and, by
definition, 0,[S™, K"l = a. This proves exactness at 7,_,(SO,).

5.5. Exactness of (2),. Exactness at @p" is precisely the content of
Lemma (3.8), according to the definitions of 8, and w,. Furthermore, it follows
from Lemma (3.5) and (3.7) that exactness at 7,(G,) is just the statement
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that a framed nuclear submanifold (", F) of S* x S*'is cobordant to a framed
knotted sphere in S* x S*!if and only if v(M, F) = 0. But this follows from
Theorem (4.7).

It remains to prove exactness at P,. Let a € 7,(G,) and (M", F) be a framed
nuclear submanifold of S* x S*~* such that & = (M, ¥). We may assume, as
in (1.5), that M n (D x S¥*) = D" x y,, for some y,c S**'. Let M,=
M N (D™ x S¥Y), F,= F| M,; note that (0M,, F,|0M,) may be extended to a
framed disk in D* x S*-%, sinceitis soin D* x S*-!, By identifying D% x S*—!
with D* x S*, (M,, ¥,) determines a framed submanifold (J, &F,) of D* x S*~*,
As usual, we may regard ((—1)"M,, ¥,) as a framed submanifold of S™~'. We
now define a framed knotted sphere (K", ¥') in S™* by K = (—1)"8M, and
F" = front extension of ¥ | K. Then

[K, F7] = 0, ¥((—1)* My, F) = (= 1), (M, F) = (=10, o) ;
since [K, '] = 0, it follows that 8, p, = 0.

Suppose 7Y€ P, and 8,(v) = 0. Then there exists a framed submanifold
(M, F) of S™* such that ¥(M, F) = v and 8M = K" is a sphere where, if F’
is the front extension of ¥ | K to a normal frame to K in S™, [K, '] = 0. Thus
there is a framed disk (D¢, F,) in S™* with D, = K and ¥,| K= F|K; in
particular, D, and M are tangent along K. As in (3.8), there is a tubular
neighborhood T of K suchthat T N M and T N D, are collars of K in M and D,;
moreover, it follows from the tubular neighborhood theorem that we may choose
Dysothat TN M=TNDyandF|TNM=5,|TnN D, Asin(3.5), we can now
assume T = S™! x D* and K is homotopic to S** x 0. Let (K, &,) be the
framed knotted sphere in S** x S*'defined by K, = (M — T ( M), and F, =
F| K,; then K, = 8(D, — T (1 D,) and F, = F,| K,. Identifying D" x S**, the
complement of int 7', with D* x S*-* determines a framed submanifold (},, &)
of D* x S** from (—1)"M — (TN M) and ¥. Identifying D" x S*! with
D" x S¥* determines a framed disk (D, F,)of D* x S*~*from (—1)"D, — (T N D,)
and ¥,. Then oM,= —6D,= K, and &,| K, = ¥,/ K,. Now (M, F,) is a
framed submanifold of S* x S* ! defined by M, = M, U D, and ¥, = F, U F..
Notice that

Y(M,, F) = (=1yv(M, F) = (=1)"r .

Therefore (—1)*y (and consequently ) is in Image @,(n, k). This completes the
proof of exactness at P,, and, thereby, of Theorem (5.4).

6. The structure of ™"

6.1. Recall the natural inclusions G, © Gy, SO, C SO, ., and the induced
homomorphisms
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T.(Gy) — ﬂn(G(c+1)7 7, (SO,) — 7, (SO,+,)
and
T(Gry SO) — 7, (Gri, SOpiy) 5

we refer to these as suspensions. There are also suspension homomorphisms
07" — 07" and ®™"— @™+ induced by the natural imbedding S™ — S™+* and
the rear extension of a normal frame.

These suspensions, together with the identity map P, — P,, define homo-
morphisms of sequences (1), — (1)4, (2); — (2) 441, (3 — (3)i+1, and (4),— (4) 4.
The necessary commutativity relations follow readily; we leave them to the
reader.

For any fixed value of n, the suspension homomorphisms are isomorphisms
when £ is large enough; this follows from classical results. If we define

G = limk_,m Gk: limk_.,, Fk y SO = limk_..x, SOk y @? = limk_..,‘, :rrn,n
and note that ®" may be identified with lim,_.. ®™", then the sequences (1),~(4),,
in passing to the limit £ — oo, define four new exact sequences:

Do -+ — 7,(50) 25 07 L o0 2 7, (SO)— -

w2 02

@) -~ O —5 1,(G) 2 P, e

@) +rr — @ 2 1(G, SO) -2 P, %, @

@ -or — 7, (S0) 25 7,(G) 5 7,(G, SO) -2 7, (SO) —> -+ -

and a commutative diagram (5),,. These are originally due to Kervaire and
Milnor (unpublished).

We denote w,(n) = lim,_.. @,(n, k), and similarly for the other eleven homo-

morphisms in (1).,—(4).. We also define

oy(n, k): ,(S0,) — 7,(SO) ,

oy(n, k): 7,(G,) — 7.(G) ,

oy(n, k): 7,(G,, SO,) — 7 (G, SO) ,
as the suspension homomorphisms.

At this point we prove the equation ¢y(n,k)-w,(n, k) = 0. Since
Ps(, k) - wi(n, k) = py(n) - @y(n) - 0(n, k), it suffices to prove @y (n) - w,(n) = 0.
Now it follows from (5). that @,(n)-w(n)-p(n) = @(n)-w,(n) = 0. But
according to [14, Th. 3.1], 8,(n) = 0 and, therefore, ¢,(n) is onto; this then
implies @,(n) « wy(n) = 0.

A direct proof that ¢, @, = 0 is also not difficult.

6.2. A useful tool in our considerations will be the following diagram, for
any k = 2:
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7.(S0,_)—-m,(S0,) 7,-(S0,_,)
v Jon N2 L
/ N/

P! > ! Pl
i S —— T (Fy_) = T(G) 2 T(S5Y) — 7, (Fy_y)

(6) lp ly/ ly lP lv’
TS5 B, B2, (S5 (SO — ot (S5 B, B ), ()
lh lh
T 12(S¥Y) T, (S%*1)

The top border is the exact homotopy sequence of the fibration SO,_,— SO, —
S*-1, and the first horizontal row is the exact homotopy sequence of the fibration
F,_,— G,— S**. The bottom horizontal row is the exact suspension sequence
(see [9, §1]) and h is defined as in [8, § 15]. The homomorphism @’ is induced
by inclusion, and v’ is a Hurewicz isomorphism as in [26, 2.10]; w, and v have
been defined elsewhere in this paper. We define:

P = P(n, k): 7,(S* " — 7,(S*; E,, E_)
by P(a) = {a, ¢,_,}, the triad Whitehead product [8, § 4], where ¢,_, is the canoni-
cal generator of 7,_,(S*?).

PropPosSITION. Diagram (6), is commutative, up to sign, and h - P(n, k) is
the k-fold tterated suspension, as in [27, p. 206].

ProoF. Since the homomorphisms w, and @’ are induced by a bundle map
SO, — Gy, covering the identity map of S*—?, the commutativity of the squares
and triangles involving these homomorphisms are immediate.

It follows from [8, 2.17 and 8.5] that P-p' = (—1)*-y. According to
[26, 3.2] and [28, § 3], V' - P'(a) = —|[a, ¢;_,], for all «; thus, by [8, 2.3], we have
A-P= —y.P,

Consider the following diagram:

T (Fiy) —— 7,(Gy)
\D/I

f i > 7.(F)

T (S s (S8

where v is induced by the inclusion and v; is a Hurewicz isomorphism. Accord-
ing to[26, 3.10]and [28], /- v' = —y{ - V" - 5'; and, by [26], v} - V"' = v. Therefore
E.y = —y.j.

Finally, the fact that & - P(n, k) is the k-fold iterated suspension is proved
in [10, 4.11].
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This completes the proof of the proposition.

We have, incidentally, also proved that the composition v’ - ": 7,(SO;_,) —
7,,_(S*Y) coincides with v(n, k — 1) - w(n, k — 1), a fact which relates diagrams
(6)x—, and (6),.

6.3. Let us denote by:

E(ny k): Tfn(Gln Sok) - ﬂn(Gk+19 Sok+1) ’
the suspension homomorphism.
LEMMA. The following sequence ts exact:
0 —— Cok v(n + 1, k) —— Cok &(n + 1, k) — Ker v(n, k)
2, Ker&(n, k)— 0
where @' is induced by @,+j + (V'), and o" is induced by ..
Proor. Consider the factorization &(n, k) = &” - &'(n, k):
E’ E”
ﬂn(ka SOk) — 7Z"n(livk, Sok) BE— ﬂ'.n(GkJrly Sok+l) .
We will show that &” is an isomorphism. Consider the following commutative
diagram:
Tpi1(Grary F2)

AN
T (F, SOy) T, (SOy11, SO)
‘ \56 Ez/
N
| T (Gis1, SOy) &|
| A4 |
& SN
T (Grtr, SO441) T(Grtsy F)
/
&

TS0y 41, SO)

consisting of segments of the homotopy exact sequences of (Gy+;, F, SO,) and
(Gyss, SOys1, SO,). Note that &, is an isomorphism since it is induced by a bundle
map SO, .+, — Gy, where SO, and F), are fibres, covering the identity map of the
base S*. As a consequence, &, is a monomorphism and &; an epimorphism. Since
this holds for all n, exactness implies that & is a monomorphism and &, is onto.
Now we do a little diagram chasing.

Suppose &”(a) = 0; then &(a) = &(B). But &(B) = ££4B) = &) =0,
and, therefore, B = 0. Since & is a monomorphism, this implies & = 0. Let
@ € T,(Gysr, SOy+y); then, since & is onto, a = &(B). Let &(7) = &(8); then
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&8 — &(7)) = 0. Therefore 8 — &(7) = &(7) and §"(1) = &8 — &:(7)) = &(B) =
«. This proves £” is an isomorphism.

Therefore Ker £(n, k) = Ker £'(n, k), and £” induces an isomorphism between
Cok &'(n, k) and Cok &(n, k).

Now consider the following commutative diagram:

7(Gy) =2 7,(Gy, SO,) (G
Y. N v
n SOk v ! n—1 S k
.(SO;) N l & /TL' (SO )\ l
7 (F})— ., (F, SO,) T, (F)

consisting of segments of the homotopy exact sequences of (G, SO,)and (F',, SO,).
It is a straight forward exercise to demonstrate that this diagram and its exact-
ness properties formally implies the existence and exactness of the sequence:

00— Coky(n + 1, k) — Cok &'(n + 1, k) — Ker v(n, k)
—— Ker&'(n, k) —> 0 .
The lemma now follows.
6.4. We are now ready to study ®&™".

THEOREM (Haefliger). 6(n, k): ®™™ — ®" is an epimorphism for 2m =
3(n + 1) and a monomorphism for 2m > 3(n + 1).

ProOF. Recall that 6(n, k) and o,(n, k), » = 5, induce a homomorphism
(3) — (3)». By the five-lemma it suffices to prove that gy(n, k):

(*) is surjective for 2k = n + 3 and injective for 2k > n + 3.

Clearly it is sufficient to prove that (x) is satisfied by &(n, k). By Lemma
(6.3), it suffices to prove (%) for v(n, k). Finally, by diagram (6) and the five-
lemma, it suffices to prove (%) for P(n, k).

The suspension theorem proves (x) for k- P(n, k). Now, according to
[9, 1.7], & is an isomorphism for 2k = n + 2, n  2k; if » = 2k, h is onto and
Ker h < Im P(n, k), by [9, 1.6 and 8.2]. It follows, then, that (x) is also satisfied
for P(n, k).

6.5. We now show that, in general, the computation of ®™", up to group
extension, has been reduced to the computation of 7,(G,, SO,), ®" and the
homomorphism ¢@,(n), when n = 2 mod 4, which we re-name:

e(n): 7 (G, SO) — Z, (n = 2mod 4) .
The computation of ¢(n) is a well-known problem, and the only information
known at present is that ¢(n) = 0 if » = 10 or 18; and ¢(n) # 0 if n = 6 or 14.}

1 It has recently been proved, cf. Brown, Peterson, The Kervaire iuvariant of (8k + 2)-
manifolds, Bull. A.M.S., 71 (1965), 190-193, that c¢(z) =0 when »n =8k + 2.
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It is conjectured that ¢(n) = 0 if n = 6, 14 (see [14, p. 536]).
LEMMA.

Ker 0,(n) - g,(n, k) wf m = 2mod 4

K 3 7k = .
er @y(n, k) Ker ¢(n) - g5(n, k) ifn=2mod4.

PROOF. Since @y(n, k) = @y(n) « 041, k), the lemma is obvious if n = 2 mod 4;
clearly to prove the lemma for n == 2 mod 4, it suffices to prove Ker ¢,(n) =
Ker 0(n). If n is odd, this fact is a consequence of a result of Adams (see [14,
p. 509]). If » = 0 mod 4, it follows from the Hirzebruch index formula (see[19,
p. 964-5]) that the index of a closed 7-manifold is zero and, therefore, @,(n) = 0.
Since 9,(n) = 0, as has been pointed out, it now is a consequence of a simple
argument, using diagram (5).., that Ker ¢,(n) = Ker 0,(n).

6.6. LEMMA. Ifn % 2mod 4 and 2m < 3(n + 1), then 8 (n) - g,(n, k) = 0.

PROOF. Suppose 7 = 47; then oy(n — 1,k) = 0 if k < 2r (see e.g. [32,
Lemma 1.1] and [19, Lemma 5]). Now Image 8,(n, k) C Image {j: 7,_,(SO;_,) —
7,_(SO,)}, since p -9,(n, k) = p" - ©®,+-9, = 0. Thus

Imageo,(n — 1, k) - 0(n, k) C Imageo,(n — 1,k —1) =0
fork < 2r + 1.

Since g,(n — 1, k) - 8(n, k) = 0.n) - 04(n, k), this proves the lemma, when
n = 4r. For n odd, a(n) = 0, as mentioned above.

COROLLARY. If n %= 2mod 4 and 2m < 3(n + 1), then py(n, k) = 0.

This follows from the two preceding lemmas.

Now the desired reduction of the computation of ®™" follows from theorem
(6.4), lemma (6.5) and Lemma (6.6).

6.7. It follows from theorem (6.4) that =™" = 0 for 2m > 3(n + 1). We
would like to compute ™" for 2m = 3(n + 1).
Let us define:
Smr = ™ N Image 8,(n, k)
S = IS
=" is the subgroup of knotted spheres which bound framed submanifolds of S™.
THEOREM. If 2m =< 3(n + 1), then:
P, tf n #= 1 mod 4
Image ¢(n + 1)/Image ¢(n +1)-0,(n + 1, k) tf n = 1mod 4
Smr ~ Ker oy(n, k) .

m,n
0

PROOF. Consider the following commutative diagram:
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T,11(Gy, SO,) om" 2, 7,(G, SOy)
\50\3‘ }s/' ! s
03 Pn ) 7 o3 Pn
J /N l J /
s 03\ s
7,+(G, SO) e — (G, S0)

where the upper row is a segment of (3), and the lower a segment of (3)... As
in (6.3), we derive from this an exact sequence.
( 0—— Cok 0(n + 1, k) — Cok gy(n + 1, k)
7 )n,k ’
2 Ker 6(n, k) — Ker a,(n, k) —— 0 .
Since ¢’ is induced by 8,(n, k) - @(n) and ™" = Ker 0(n, k), it follows
immediately that 5" = Image ¢, 3™" ~ Ker o4(n, k). Thus,

o" ~ Image @,(n + 1)/Image p,(n + 1, k) .
The theorem now follows by Corollary (6.6) and [14, Th. 4.1].

COROLLARY. =™" (and, therefore, ®™") is a finite group (recall n =5,
k = 3) unless m = 4r — 1, m =< 6r, in which case Z™" is finitely generated of
rank one.

ProoF. If 2m > 3(n + 1), this follows from Theorem (6.4). If 2m <
3(n + 1), it follows from Theorem (6.7) if we prove Ker g,(n, k) is finite.

We will prove «,(G,, SO,) is finite for 2m < 3(n + 1), by induction on k. If
k = 2, this is obvious. To show that 7,(G,_,, SO,_,) is finite implies 7,(G,, SO,)
is finite, we need to show that Cok &(n, k — 1) is finite. By Lemma (6.3), it suffices
to prove that Cok v(n, k — 1) and Ker y(n — 1, k — 1) are finite.

But 7,,_,(S*") is finite for m < 2n + 1, by [21, Prop. 5], and, therefore, so
is Cok v(n, k — 1). Furthermore 7, ,(S*?) is finite for 2m < 3(n + 1), and
7, «(Fy_,) is finite for m < 2n + 1 (also by [21]). Thus 7,_(G,_,) is finite (see
(6)x_,), and consequently so is Ker v(n — 1, k — 1).

This completes the induction step.

6.8. It follows from Theorem (6.4) that ®2 = 0 for 2m = 3(n + 1). We
would like to compute ®; when 2m < 3(n + 1).

Let us define the following homomorphisms:

c(n, k): Cok a,(n, k) — Cok ¢(n) - g(n, k) for n = 2mod 4

0i(n, k): Cok oy(n, k) — m,_(SO) forn=4r,k<2r +1.
Let ¢(n, k) be induced by ¢(n) and 8(n, k) by 8,(n), taking account of Lemma
(6.6).

THEOREM. If 2m < 3(n + 1), then:
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Cok g,4(n, k) n odd
07 ~ {Ker 9j(n, k) n = 0mod 4
Ker ¢(n, k) n=2mod4.

Proor. It follows from (7),_,,, that ®; is isomorphic to the kernel of the
map 6': Cok g4(n, k) — @™ *"~'induced by 8,(n — 1, k) - p,(n). By Corollary (6.6),
0s(n — 1, k) is a monomorphism if n = 2mod 4. Using Lemma (6.5), it is now
easy to see that Ker ¢’ is precisely as asserted in the theorem.

6.9. Let N(n, k) and N(n, k) be the subgroups of 7,_,(SO,) consisting of
normal bundles to knotted spheres, respectively, knotted S, in S™. Otherwise
stated:

N(n, k) = Image d,(n, k) ,
Ny(n, k) = 0,(n, k) - =™ .
The following generalizes [6, Th. 1.2].
THEOREM.
Kerw(n — 1, k)N Kero(n — 1, k) tf n %= 2mod 4

8,(n, k) - Ker (c(n) - oy(n, k) if m = 2 mod 4
Nyn, k) = 0n, k) - Ker o4(n, k) .

Proor. It follows from (5), that:
N(n, k) = Image 0,(n, k) - w(n, k) = 8,(Ker @y(n, k)) .

N(n, k) =

If » = 2 mod 4, the assertion about N(n, k) is immediate. If % % 2 mod 4, it
follows from Lemma (6.5) that:

N(n, k) = 8,(Ker o,(n — 1, k) - 8(n, k)) = Ker o, N Ker g, .
To compute Ny(n, k), we deduce from (7),,, that:
Ny(n, k) = 0,(Z™") = 8, - w,(Ker O(n, k)) = 0n, k) - Ker o(n, k) .
6.10. Let us define:
Oy(n, k): @™ —— @™+1n
to be the suspension homomorphism induced by the natural imbedding S™ — S™+2,

ProposITION. Ker 0y(n, k) < Ker 0,(n, k).
Proor. Suppose a€Kerfyn, k). It follows from the commutativity
relation:
&(n, k) - wy(n, k) = wy(n, k + 1) - 04(n, k) ,

that w,(a) <€ Ker &(n, k). But, by Lemma (6.3), Ker &(n, k) C Image ¢ (n, k).
Therefore:
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0y(n, k) - a = 0,(n, k) - wy(n, k) - ac Image d(n, k) - p(n, k) = 0 .
The geometric meaning of this proposition is that, if a knotted sphere in
S™ has a non-trivial normal bundle, then its suspension into S™+! is still non-
trivially knotted.
CoROLLARY (Kervaire). If 2m > 3n + 1, Ny(n, k) = 0.
Proor. This follows immediately from Theorem (6.4) and the proposition.

6.11. Let T(n, k) and T(n, k) be the subgroups of 7,(S*) of elements of
the form ¢ K", F), where (K", ¥) is a framed knotted sphere, respectively,
framed knotted S”, in S™. Let H(n, k) be the Hopf construction subgroup of
7, (S¥) (see [10, p. 76]). Let

o(n, k): 7,,(S8*) — 7,(G)
be the iterated suspension.

THEOREM.

H(n, k) 1f n %= 2mod 4
H(n, k) N Ker ¢(n) - a(n, k) tf n = 2 mod 4
Ty(n, k) = H(n, k) N Ker p(n)-o(n, k) .
Proor. It follows from Lemma (3.9) that
T(n, k) = ((—1)*'4) (Image v(n, k) - 0(n, k) ,

T(n, k) =

and

Ty(n, k) = ((— 1)) o (v - @,(Ker 0(n, k) - py(n, k) -
Since @y (1, k) = @y(n) - 0,(n, k) and p,(n) = 0 for » # 2 mod 4, as remarked in
(6.5), wy(m, k) is onto for » = 2mod 4. If n = 2 mod 4,

Image v - w, = v(Ker py(n, k)) = v(Ker ¢(n) - 6,(n, k))

= Image v N Ker ¢(n) - o(n, k) .
It follows from (5), and (5),, that
wy(Ker 0(n, k) - p(n, k)) = Ker ¢, (n) - 0,(n, k) .
Furthermore, it is easy to see that
v(Ker p(n) - 0,(n, k)) = Image v(n, k) N Ker @ (n) - o(n, k) .

Since Image v(n, k) = H(n, k), by [10, Th. 1.7] (the conclusion of this
theorem can be strengthened to read a map S™" x S*— S* of degree +1 on
the second factor, as is clear from the argument in the preceding paragraph),
it only remains to show

T(n, k) = ((—1)*'¢.) o T(n, k)
Ton, k) = ((—1)"¢,) o T(n, k) .
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In fact, if (K", ¥)is a framed knotted sphere in S™, where & = (f}, «* -, /)
and (K2, ¥F,) is defined by K, = (—1)*"'K, F, = (—1)***f,, f2, =+, [2), it is clear
that

HKy, Fo) = ((—1)*%) - 4K, F) .
From this the desired equalities are immediate.
It follows now from the theorem (or see [11, 1.8]) that, if we define
J(n, k): ©,(SO;) — (S,
by J(n, k) = v(n, k) - w(n, k), then Image J(n, k) C Ty(n, k). We define
Ty(n, k) = Tyn, k)/Image J(n, k)
T'(n, k) = 7,(S*)/T(n, k) .
COROLLARY. (a) If 2m = 3(n + 1), then
T'(n, k) ~ 0 'L.fn # 2mod 4
Image ¢(n) - a(n, k) tfn=2mod 4.

() If 2m > 3n + 1, then Ty(n, k) = 0 (see [11, Lem. 8.1]).

Proor. Itisprovedin(6.4)that v(n, k)is an epimorphism for 2m = 3(n + 1)
and &(n, k + 1) is a monomorphism for 2m > 3n + 1. Since Image y(n, k) =
H(n, k), (a) follows from Theorem (6.11).

To prove (b) we proceed by downward induction on k. In the stable range

this is clear. Suppose it true for & + 1. Consider the following commutative
diagram

T, (S — 7(G)) — 7,(Gy, SO
leli lel 16
(S < (Grors) —2 T(Grorry SO
where & and &” are suspensions. Given @€ Tyn, k), we wish to find
B e Ker o n, k) such that v(8) = a. Suppose a = v(8'), 8’ € 7, (G:), and, by
induction, &”’(a) = v(B”) for some 5" € Ker o (n, k + 1). Since
&Py — pB'eKerv(n, k+1),

it follows from Lemma (6.3) that o (&'(8') — B") = ép(B)c Keré(n, k + 1) =
0. Therefore p,(8’) € Ker &(n, k); by Lemma (6.3) again, ¢,(8) = @,(7) for some
v € Ker v(n, k). Now we may set 8 = ' — v and (b) is proved.

7. Computations in low dimensions

7.1. By strenuous use of Proposition (6.2), together with results of [1], [9],
[10], [13] and [24], computations of many of the geometrically defined groups
we have discussed can be carried out for low values of n. We present some
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tabulations of orders of such groups for n < 11.
7.2,
order of Ny(n, k)—(see (6.9))

n
\ 5 6 7 8 9 10 11
k
3 1 1 1 1 1 1 1
4 1 1 4 2 2 b 5
5 1 1 1 1 1 1 5
6 1 1 1 1 1 1 5
7 1 1 1 1 1 1 1
where b is either 1 or 3.
7.3.
order of S™"—(see (6.7))
n
\ 5 6 7 8 9 10 11
k
3 2 2 3 15 1 2 24
4 1 1 60 2 2 4b 840
5 1 1 4 4 8 96¢ 3360
6 1 1 1 1 2 1 5040
7 1 1 1 1 1 1 5040
8 1 1 1 1 1 1 1

where b is as in (7.2), and ¢ is 1 or 3 and satisfies ¢ =< b.
7.4.
order of ®;—(see (2.1))

n

8 9 10
k
3 2 2 3
4 1 1 b
5 1 1 c
6 1 1 1
7 1 1 1

where b and ¢ are as in (7.2) and (7.3).
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7.5.
order of T\(n, k)—(see (6.11))
n
\ 5 6 7 8 9 10 11
k
3 1 1 1 1 1 2 2
4 1 1 15 1 1 4 168
5 1 1 1 2 1 168
6 1 1 1 1 1 1 504
7 1 1 1 1 1 1 1
7.6.

order of T"(n, k)—(see (6.11))

n

5 6 7 8 9 10 11
k

3 1 1 15 2 2 2 84
4 1 1 1 1 2 8 4
5 1 1 1 1 1 c 6
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1

where ¢ is as in (7.3)
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