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In codimension two knot theory various signature invariants arise. We show that they all vanish
on double slice knots but only certain linear combinations vanish on slice knots. This is done in
the context of constructing complete sets of invariants of + hermitian torsion forms over any
Laurent polynomial ring F[z,¢~!] (F a field) to detect metabolic or hyperbolic forms. Finally a
precise formula relating two different versions of these signature invariants is given which shows
that one is strictly weaker than the other.

Introduction

In the study of codimension two knots, various bilinear forms arise as algebraic
invariants. These forms can be used to detect whether a knot is slice (null-cobordant)
or double slice (double null-cobordant), according to whether they are, respectively,
metabolic or hyperbolic (see [2,4,10]). In this note we study and compare these
latter properties for the Blanchfield pairing and the Seifert form over a field.

The Blanchfield pairing B, with coefficients in a field F, is classified in [5,7] by
certain associated Hermitian forms over finite extension fields of F. We will estab-
lish the precise conditions on these associated forms which corresponds to £ being
metabolic or hyperbolic, extending results of [1]. When F=RR, this condition is
expressed in terms of signature invariants gy ,.

The Seifert form S gives rise to a signature invariant ¢ : C — Z, where C is the unit
circle in the complex plane, which is an invariant of the congruence class of S over
R. In [4] it is shown that 6 =0 away from the roots of the Alexander polynomial,
when S is null-cobordant. We observe here that o =0 everywhere when S is double
null-cobordant. This gives a particularly easy way to detect slice knots which are not
double slice.

Finally, we make a precise comparison between the signature invariants ¢ and
0y~ As a consequence, we see that g gives a complete criterion for null-cobordism
over R, but not for double null-cobordism.
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1. The Blanchfield pairing

We will consider the following general situation. Let F be a field and A =
F[t,t™"] equipped with the involution induced by ¢~ "' — for any AeA, we
denote by 1 the image of 1 under this involution. We consider forms f:H X
H' - S(A)=0Q(A)/A where H,H’ are finitely-generated A-torsion modules and
Q(A) is the quotient field of A; the involution of A extends over Q(A) with the same
notation. We say g is bilinear (often called sesqui-linear elsewhere) if f(ix, y)=
B(x, Ay)=2AB(x,y) for all A\e A, xe H, ye H' and B is additive in both variables. If
H=H'wesay fis e-Hermitian (¢ = £1) if f(x, y) = ¢B(y, x). We say B is non-singular
if the adjoints H — H'* H’— H* are both isomorphisms. A denotes the A-module
obtained by changing the A-module structure on H via the involution; H*=
Hom ,(H, S(A)) with the usual A-module structure

(A9)(x) = ¢(Ax) = A9 (x).

A non-singular bilinear e-Hermitian form will be referred to as an e-form.
We will need some preliminary facts.

Lemma 1.1. The natural map H— H** is an isomorphism.

This follows easily from the fact that A is a PID and so S(A) is injective, and H
is finitely-generated torsion. Note that this lemma implies that a bilinear form is
non-singular if either adjoint is an isomorphism, or if both adjoints are injective
(i.e. B is non-degenerate).

If 8: Hx H,— S(A) is a bilinear form and KC H,, then K+ C H, consists of all
x € H, such that f(y,x)=0 for all ye K. Similarly, if K¢ H, we define K* c H;.

Lemma 1.2. Suppose f: H X H'— S(A) is a non-singular bilinear form and K C H,
then

(i) K=(K*)*
(ii) The induced pairings
KXH'/K*—> QA)/A and H/KxK*—Q(A)/A

are non-singular.

Proof. (i) Clearly KC (K*)*. If xe (K*)*, but x¢ K, choose ¢ : H— S(A), ¢(K) =
0 and ¢(x)#0. This uses the fact that A is a principal ideal domain and injectivity
of S(A). By non-singularity, dye H’ such that B(a, y)=¢(a) for all ae H. Then
yeK™* but B(x, y) = ¢(x)#0, contradicting xe (K *+)*..

(ii) This follows easily from (i) and the non-singularity of 8. O

Suppose £ is an e-form on H. We say B is metabolic if there exists a submodule
K C H (a metabolizer) such that K=K*. We say B is hyperbolic if there exists a
direct sum decomposition H=K; @ K, such that K;=K;* (i=1,2).
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If (H, f) is the Blanchfield pairing of a knotted (2¢ —1)-sphere K in S*7*! (so
e=(=1)7*1), then B is metabolic (resp. hyperbolic) if X is slice (resp. double slice)
(see [2,3,10]).

Let (H,B) be an e-form and pe A an irreducible polynomial satisfying p(¢) =
up(t™") for some unit ueA. (We say p is symmetric.) It is easy to see that either
p@)=t+1,t—1or p¥) =p(@t~"), after multiplication by a suitable unit.

If K, ;C H is the submodule of elements x satisfying p'x=0, we take

Ay T
K, i-1+DPKp i
Then 4,; is a vector space over A/(p)=F(&), where £ is a root of p(?), and 8
induces an e-Hermitian pairing f,; on 4, ; defined by the formula

B,.i(x, ) =P B(X )

where %, j are any lifts of x, y to K, ; and A/(p) is identified with a subset of S(A)
by the imbedding A — A/p (see [4,7]). Note that A/(p) has an involution induced
by that on A. It follows from Lemma 1.2 that §,; is non-singular.

x,yed,,;

Theorem 1.3. The isomorphism class of B is determined by the isomorphism classes
of all {B,,;: p symmetric, i=1}.

Proof. See [5,7]. O

We now establish the criteria on {8, ;} which correspond to B being metabolic or
hyperbolic.

Theorem 1.4. B is metabolic & @, 44 By, is metabolic for every symmetric p.

Theorem 1.5. If ch F#2 or p#t—1, then 8 is hyperbolic & B, ; is hyperbolic for
every i =1 and symmetric p.

To precisely compare these situations we need to understand the relation between
metabolic and hyperbolic for g, ;. Let y be any non-singular ¢-Hermitian form over
a field E with involution. The notions of metabolic and hyperbolic are defined ex-
actly as for e-forms.

Theorem 1.6. Unless ch E =2 and the involution is trivial, the notions of metabolic
and hyperbolic are coincident for e-Hermitian forms over E.

Thus in our situation, where E=A/(p), this excludes only the case chF=2,
p(®)=t+1, and this case does not arise in the context of knot theory. .
We take note of the particular case F=R. If the involution is non-trivial, B, ; is
a non-singular complex e-Hermitian form and so has a signature g, ; which is zero
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exactly when g, ; is metabolic. If the involution is trivial, then p(f)=¢—1 or t+1
(which cannot happen in the context of knot theory) and B,,; is an e-symmetric real
quadratic form. If ¢=+1, there is a signature gp,i» but if e=-1, Bp,i is always

metabolic. Note that the sign of a,,; depends upon the choice of p, not just the
roots.

Corollary 1.7. If F=R, then B is metabolic (resp. hyperbolic) iff Y iodd Gp,i=0
(resp. @, ;=0 for all i =0) for every symmetric p, except when p=t—1 or t+1 and
e=-1.

2. The Seifert form

A Seifert e-form over a field F is a bilinear form S on a vector space V such
that S—&ST is non-singular (ST = transpose of S). We will say S is metabolic if
there exists a subspace WCV (a metabolizer) such that W=W<, where W+ =
{xeV:B(x,»)=0=8(y,x) for all ye W}. We say S is hyperbolic if there exists a
direct sum decomposition V'=W; ® W,, where W, are metabolizers of S.

One associates to any Seifert e-form (S, V) an e-form (H, f) as follows: First de-
fine a non-singular bilinear form B on the vector space V= V&®gQ(A) by B(v,w)=
tS(v, w) — eS(w, v) for v, we V, and extending over V to satisfy B(Av, w)=B(v, Aw) =
AB(v, w), for any A€ Q(A). Let Vy=V®;ACV and V, = {veV: B(v,w)e A for all
we Vp}, both A-submodules of V. Then V,C ¥V, and we define H = Vi/Vy; let S be
the e-Hermitian form defined on H be the formula

B, y)=@"'-1)B(x ) for X, y € H with lifts x, ye V.

We note that H® ,F=0, since S—eST is non-singular. Thus #—1 is an automor-
phism of H, and so f is non-singular.

Proposition 2.1. S is metabolic (hyperbolic) if and only if B is metabolic (hyper-
bolic).

Recall that a knotted (2g —1)-sphere K in $29*! gives rise to a class of Seifert
(=1)?*'-forms over Q. In fact S is integral and S— &S is non-singular over Z. If
K is slice, then any associated Seifert form is metabolic. If X is double slice, then
there is an associated Seifert form which is hyperbolic — but not every associated
form is (see [4,10]).

Suppose F=RR and 4 is a representative matrix for S. Then, for any unit complex
number z#1, A(z)=(zA—¢€A")/(z—1) is an e-Hermitian form — let A(l)=
i(A—¢eA"). Then

A(z), &=+1,

Z) = signature
os(z) = sig iAQ), £=-1

Metabolic and hyperbolic forms 255

is an integer-valued function defined on the unit circle C in the complex plane which
is locally constant on the complement Cs of those roots of the polynomial A(¢) =
det(tA — eA") which lie on C (see [4]). Note that a5(1)=0. If S is metabolic, then
o5(z)=0 for all zeCs.

Proposition 2.2. If S is hyperbolic, then a5(z)=0 for all ze C.
We relate og to the signature o,,; associated to the e-form B associated to S.

Theorem 2.3. Let & be a root of A(t) on C, p the minimal polynomial of & (over
R), &, and &_ points of Cs such that & is the only root of A(t) lying on an arc of
C connecting them. Then, if we choose p(t) so that p(&,)>0, we have:

o5(é)—0s(E)=2 L opp,
rodd

05(&) = $(a5(E) +05(E) = X 0, p

reven
Compare this to the results of [1,6,9].

Corollary 2.4. (i) a3=0 on Cs if and only if B is metabolic (over R).
(ii) a3=0 on C if and only if
Y 0,;=0= Y o,; for all symmetric p.

odd i even i

Finally we give some examples.

. -1
Theorem 2.5. Let T;, ..., T, be any collection of integers, and let p=p(t)=t—1+1"".
Then there is a metabolic ‘Seifert form S such that

7, ifi=2,
9= 0 otherwise,
and g, ,=0 for any q#p.

In fact the Seifert forms produced correspond to knots i.e. S is integral satisfying
det(S—eST)=+1. Combining Theorem 2.5 with Corollary 2.4 we see that there
exist metabolic Seifert forms S with gg#0 on C, or even with gg=0 on C, .but
whose associated e-form is not hyperbolic over R, and these forms can be realized
by slice knots (which are, therefore, not double slice).

3. Proofs of results in Section 1.

We now begin the proofs of the theorems and propositions.



256 J.P. Levine

Proof of Theorem 1.4. This is indicated in [4] but we provide some more detail here.
First of all notice that H decomposes as a direct sum H= @ H,, where p ranges
over irreducible elements of A, and H, is the p-primary component of H. H, is
orthogonal to H, 4> unless p=ug, for some unit ue€ A, and H, 1 H, are dually palred
under B. Thus H decomposes as an orthogonal direct sum of terms of two types:
(i) H,® H,, if p, p are relatively prime,
(ii) Hp, ifp is symmetric.
Summands of type (i) are hyperbolic and so it suffices to consider the case of H
p-primary for some symmetric p. The next observation is that H,, can be further
decomposed as an orthogonal direct sum:

H,=H, ®H,,®---®H,,

where H,,; is a free module over A/(p') = see [7]. It is easy to see that a4,;=
Hp,i/pHp i
We need the following familiar lemma:

Lemma 3.1. Suppose f is a non-singular e-form on H and KC H satisfies KC K+
(i.e. B x =0). Then B is metabolic if and only if the non-singular form B’ induced
by B on K*/K is metabolic.

Proof. If L'C K*/K is a metabolizer for 8, then the lift of L' to K* is a meta-
bolizer for . Conversely, suppose L is a metabolizer for . Let L’ be the prolectlon
of LNK* into K*/K — we show that L’ is a metabolizer for #. Clearly Bl,=

so we need to show (L')*CL".

Now suppose xe K* such that xe (LN K*)*; we need to show that xe L + K.
Consider B(x, -) as a homomorphism K*/LNK* — S(A); since S(A) is injective,
this extends to a homomorphism H/L — S(A) which, by non-singularity of B is of
the form B(y,-). Thus yeL'*=L and x-ye(K‘) =K, as desired.

This proves the lemma. O

Now consider the submodule of H, given by

K= @pin,ZiG') @pi+1Hp,2i+l'
i i

It is easy to see that

t= @ Pin,zl‘@ @ pin,ZiH
and 50 K*/K=~ @), .44 4;,- The induced form on K*/K is easily seen to be iso-
metric to (), 44 B+ This proves Theorem 1.4. [J

Proof of Theorem 1.5. If f is hyperbolic, and H=K; ® K, is a hyperbolic splitting,
then H,=K,,®K,, and 4, =4, ,;®A4, ,;. This is clearly a hyperbolic splitting
for B, ;.
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Conversely, if g, is hyperbolic we show that B H,, is hyperbolic. We can trans-
late this into a matrix problem. Let

p A B>
_<£BT c

be a square e-Hermitian matrix over A/( p")=R where A, C are divisible by p and
B is non-singular over R — we must show that this matrix is congruent to one of
this form with 4 = C=0. Suppose, inductively that 4, C are divisible by ¥ — we
may also assume that B=1 after a congruence. Now consider a congruent matrix

I pkx I 0>
' = A _ .
4 <0 I > <p"XT I

The diagonal blocks in A’ are
A =A+plEex+X")+p*xcxT
and C’'=C. We now need:

Lemma 3.2. Let E be any field with involution. Unless char E=2 and the involu-
tion is trivial, there exist x€ E such that x+x=1.

Proof. If ¢+ &+0 for some &€ E, we may take x=¢/(E+ &). If char E#2, we may
choose £=1; if char E=2 and the involution is non-trivial, then choose ¢ so that

E+E O

From this lemma it follows that any e-Hermitian matrix over E can be written in
the form X +¢eX 7, for some matrix X over E. Now consider E=A1/(p); the condi-
tions on F, p imposed by Theorem 1.5 correspond to the conditions of E in Lemma
3.2. Thus we may choose X over A/(p') so that A= —pk(X+&XT)mod p**! and,
thus, A’ will be divisible by p**!. We can then change A’, by a congruence of a
similar type, to make both diagonal blocks divisible by p**!, completing the induc-
tive step. [

Proof of Theorem 1.6. The proof is a simpler form of the argument we just went
through. A metabolic form over E has a matrix representation

A 0 B>
—<aET c)

. oT
We may assume B =] after a congruence and use Lemma 3.2 to write C=X+¢&X ',
for the same matrix X over E. Then, the following congruence:

(o0 )(exr 1)-(ar o)

converts A to a hyperbolic form. U
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4. Proofs of results in Section 2

Proof of Proposition 2.1. We prove Proposition 2.1, using methods of [11] as sug-
gested by the referee.

Suppose, first of all that S is non-singular. Then we obtain an F-isomorphism
7:V— H defined by t(v)=(S—eST)"!-v. The action of # on H corresponds,
under 7, to the automorphism 7 of V defined by T=¢STS~!. To carry over the
form B, we use the ‘trace’ function : QO(A)/A - F, defined in [11], and consider
the non-singular e-symmetric form S’: Hx H— F defined by B’(v, w)=xB(v, w).
This corresponds, under 7, to the form B”: VXV — F with matrix representative
D=(S-¢eST)"!. Using the equation S= (I-T)™'D~!, we see that the metabolizers
of S correspond, under 7, to the metabolizers of f.

Now suppose § is singular. By a sequence of elementary reductions (see [11]D) S
can be changed into a non-singular form without changing the associated (H, B).
Thus it suffices to prove that a sequence of elementary enlargements of a non-
singular metabolic (hyperbolic) Seifert form is again metabolic (hyperbolic). As an
inductive hypothesis, we assume S has the form:

0 X
S= ,
(v )
where X is non-singular and square (Y and N are square). Then an elementary en-
largement of S has the form

00

S I
00

0 -0 01
¢ n 0 0

where &, n are row vectors of the same length. Using the non-singularity of X, this
is congruent to

0 0)

S Dol

0 0

0 -0 01

& 0 0 0

which is then congruent to
0 0
0 X - X : -~ N :
- |t X= =

[Y N] o ¥ 0
0 - 0 1 0 .- 0

Note that X is non-singular and N=0if N=0. An induction completes the argument.
The other type of elementary enlargement is handled by a similar argument. [J
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Proof of Proposition 2.2. S has a matrix representation

(2

where A, —¢A, is non-singular. Then

0 | B(z) Rz
A®R) = <‘B‘(7)T—‘_—Ov> where B(z) = _————z—l .

For any value of z#1, A(z) is a complex Hermitian matrix with zero signature; if
z=1, this is already observed above. [

Proof of Theorem 2.3. Given a Seifert e-form (S, V'), suppose we perform the con-
struction of (H, ) as in Section 2, except that we replace A by the discrete valuation
ring A, C Q(A) consisting of all fractions with denominator prifne toa symmetr}c
peA. If H, is the resulting A,-module and S, the s-forrfx, which takes values in
Q(A)/A,=S,(A), then there is a natural map H — H),, which corresponds to 8 fol-
lowed by the natural map S(A)— S,(A).

We now need:

Lemma 3.3. Let M be an e-Hermitian matrix over A,. Then M is congruent to a
block sum of matrices {p"M,:r=0,1,2,...} where M, is non-singular over A,.

Proof. Choose the largest r such that every entry of M is divisible by p’, and write
M=p'N. Let N be the (non-zero) e-Hermitian matrix over A/(p)=E defined b.y
N. By a congruence over E we can convert N to a block sum of a non-singular matrix
and a zero matrix. By lifting this to a congruence over A,, we represent N as a
block sum M, ® N’, where M, is non-singular over A, and N’ is divisible by p. An
induction completes the proof. [

Note that yg(Z)=sig B(z), where B({)=(tA - eAT)/(t—1) is unchanged by any
congruence of B(f) over A,, except at a finite number of values of z away from the
roots of p. Also note that the isometry class of 8, is unaffected by this congruence.
" Now B(¢), after a congruence over A, is a block sum of matrices p” M, (t), where
M,(t) is a non-singular matrix over 4,.

Suppose p is a divisor of A(¢), with root &. Let &,,£_ be values of z€ C near 14
such that p(&,)>0, p(¢_)<0. Then

Gs(f—) = Z (_l)r'[r,p’ os(&,) = E Trp> aS(é) =To,p»

where 7, , = signature M,(z), z=¢&,, E_ or € (this is well-defined if £, &_ are near
enough to ¢&).

Putting B(¢) in the above form also makes the structure of H, B, more trans-
parent. H, is the orthogonal direct sum of the free A,/p"A,-module H,, and
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By | H,, has representative matrix p~"M,. Thus Bp,» has representative matrix M,
and so o, , = signature M, (¢)=r1,, for r=1.
The formulae of Theorem 3.2 now follow. O

Proof of Theorem 2.5. Let Ay=(, ;) and recursively define

0 A,
Apir = A B
n n

where B, is to be specified. We also demand that 4, — A} be non-singular over Z,
and B,=B!. We consider the Seifert form S, defined by A, and the associated
+1-form B, which is defined on the A-module H,. Then H, is the cyclic module of
order p=p(f) and we would like to choose B, so that H, is the cyclic module of
order p¥'. It will then follow that

+1, if r=2" g=p,
Gq,r(ﬁn) :{

0, otherwise.

By taking block sums of arbitrary numbers of {+A,} we obtain Theorem 2.5. |
Suppose, inductively, that H, is cyclic of order p?". Since P,=tA,— Al is a
presentation-matrix of H, we have det P, =p?" and P, has a minor P,, obtained by |
eliminating say, the ith row and jth column, whose determinant 4 is prime to p.
Now define B, to have all entries 0 except the (i, j)-entry which is one. Consider the
minor P, obtained by eliminating the ith row and jth column of P,,,. One
checks that the determinant of P, is +(t—1)A4?%, which is prime to p. This now
implies that H,, ;| is cyclic of order pzn+1 (which is det P,, ;). O
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Let K be a number field and A4 an abelian variety over K. The K-rational points of 4 are known
to constitute a finitely generated abelian group (Mordell-Weil theorem). The problem studied in
this paper is to find an explicit upper bound for the rank r of its free part in terms of other in-
variants of A/K. This is achieved by a close inspection of the classical proof of the so-called ‘weak
Mordell-Weil theorem’.

1. Introduction

Let K be a number field and A4 an abelian variety over K. The K-rational points
of A are known to constitute a finitely generated abelian group (Mordell-Weil
theorem) and it is an interesting question to give an explicit upper bound for the
rank r of its free part in terms of other invariants of 4/K.

In case A is an elliptic curve and K= Q there are already some theorems in this
direction. For example, Tate proved the following (cf. [2, Chapter 6]):

““Let E be an elliptic curve over @ given by an equation y?=x3+ ax?+ bx with
a,beZ. Then r<s+t+1 where s and ¢ are the numbers of prime divisors of b and
a*—4b respectively. (Note that the discriminant of this model of E is 2*b%(a>—4b).)”’

A somewhat sharper bound for elliptic curves over @ having Q-rational (not
necessarily 2-) torsion points can be found in [5], and for elliptic curves over @ ha-
ving no rational 2-torsion points a similar bound is obtained in [1].

Under the assumption of very powerful conjectures (Birch and Swinnerton—Dyer,
Taniyama—Weil and the generalized Riemann hypothesis), Mestre proves in [6] and
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