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INERTIA GROUPS OF MANIFOLDS AND DIFFEOMORPHISMS 
OF SPHERES. 

By J. LEVINE.* 

The inertia group of a closed smooth manifold M consists of those 
topological spheres which do not change the diffeomorphism class of 11l by 
connected sum. It is often non-zero; examples have been constructed by 
Tamura [27] and Brown-Steer [10]. On the other hand, limitations on the 
size of this group have been given by Wall [30], Browder [7], Kosinski [17] 
and Novikov [24]. 

Another inertia group can be defined as those diffeomorphisms of a disk, 
the identity on the boundary, which, when used to change a diffeomorphism 
of M, don't change its isotopy class. It is technically more practical to replace 
isotopy by concordance (see ? 1)-according to a result of Cerf [11], these 
concepts coincide if M is simply-connected and of large enough dimension. 
In case M is a topological sphere, this inertia group determines the group of 
concordance classes of diffeomorphisms of M. 

Our study will be based upon a general method of constructing elements 
of inertia groups-using a generalization of a construction of Milnor [10]. 
A special case of this result has been previously obtained by Munkres [21]. 
In some cases this will, enable us to completely determine inertia groups ;- 
also, most existing examples of non-zero inertia groups-and many more- 
will emerge. 

Some of these results have been obtained independently by A. Kosinski 
(unpublished) and R. de Sapio [33]. 

Two Inertia Groups. 

1. All manifolds are smooth and oriented; diffeomorphisms and em- 
beddings with codimension zero are orientation preserving. rn is the group 
of diffeomorphism classes of smooth topological n-spheres under connected- 
sum (see [28]). If a C rn, then X,, will be used to denote a representative 
manifold. Two other interpretations of rn will be used. They are: (1) the 
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group of concordance classes of diffeomorphisms of Sn-i (two diffeomorphisms 
of M are concordant if they extend to a diffeomorphism of I X M-see [31], 
where the term quasi-diffeotopy is used), under composition. (2) the group 
of concordance classes rel Dn-1 of diffeomorphisms of Dn-l which are 1 o01 
aDn-l (a coilcordance rel aDn-l is one which is 1 on I X aDn-1). 

In either case, if or C rn, let h,J be used to denote a representative diffeo- 
morphism. The correspondence between the interpretations is given as follows. 
Given ha, a diffeomorphism of Sn-1, which can be taken to be 1 on a hemi- 
sphere Do01, then h,, Dnl (the opposite hemisphere) is a corresponding 
diffeomorphism of Dn-1, and X,, can be defined as the union of two copies of 
Dn with boundaries identified by h,. See [28], [31] for more details. 

2. We will use Mn to denote a closed manifold of dimension n. We 
consider two subgroups 1o(M) C rn, 11(M) c rn+1 called the inertia groups 
of M. Io(M) consists of all u E rn such that the connected sum M # E is 
diffeomorphic to M (see [17]). I1(M) consists of all a E rn+1 such that the 
diffeomorphism of M which differs from 1 only on an n-disk D C M, and 
there coincides with h,,, is concordant to 1. These groups are obviously of 
importance in the classification of diffeomorphism classes of manifolds homeo- 
morphic to Ml and concordance classes of diffeomorphisms of M. 

We also define reduced inertia groups lo(M), 11(M). Let bPn+l C rn 
be the subgroup of those a- such that E, bounds a parallelizable manifold (see 
[16]). Then we define: 

Io (M) = Io (M) /Io(M) nbpn+:t Ii (M) = Ii (M) /1(M) n bPn+2 

-subgroups of rn/bPn+l = rn, and f'n+i, respectively. 

3. We relate the two inertia groups by: 

PROPOSITION 1. 11(M) =Io(M X S1). 

Recall the mapping torus M7 of a diffeomorphism h of M. This is the 
manifold obtained from M X I by identifying (x, 0) with (h (x), 1), for every 
xCM (see [8]). 

LEMMA 1. If r E rn+l and h is a diffeomorphism of M, let h' -be obtained 
from h by changing it on an n-disk D C M by h,. Then M^ is diffeomorphic 
to Mh # ., 

See [8] for a proof. 

LEMMA 2. If h is a diffeomorphism of M and n ? 4 then h is concordant 
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to 1 if and only if M7 is diffeomorphic to M1 = M X S1, by a diffeomorphism 
yielding a homotopy-commutative diagram: 

Mh >MX 

p p 
Si 

where p, pl are the natural fibrations. 

A more general fact is proved in [8] when M is 1-connected, n> 5. 
But the proof actually shows that if M7 is diffeomorphic to M X S', then 
there exists an h-cobordism V of M with itself and a diffeomorphism g of 
V which is h on one end and 1 on the other. In the cas-e n>_ 4, it is proved 
in [26] that V is invertible, i. e., there exists another h-cobordism W from 
M to M such that V U W-identified along the end of V where g = 1-is 
diffeomorphic to I X M. If we extend g to a diffeomorphism of V U W 
which is 1 on W, we get a concordance from h to 1. 

Now Proposition 1 follows easily. If n < 5, both groups are zero, since 
rn+1 0. When n> 4, it follows from Lemmas 1 and 2. 

Diffeomorphisms of Spheres. 

4. When M is a topological sphere, 1,(M) assumes added significance. 

PROPOSITION 2. If M is a topological sphere, I, (M) contains at most 
two elements and rn+,/I1(M) is naturally isomorphic to r(M), the group of 
concordance classes of diffeomorphisms of M. 

Define a homomorphism (p: rn+P- -> r (M) by changing 1 on a disk D C M, 
as described in ? 2. The kernel is clearly I1(M). Since the closure of the 
complement of D is a disk Do and any diffeomorphism of M is isotopic to 
one which is 1 on Do, ( is onto. 

We introduce the group r (M rel Do) of concordance classes rel Do of 
diffeomorphisms of M which are 1 on Do ([31]), and the obvious homo- 
morphism i: r (M rel Do) -- r (M). If n _ 3, it is proved in [31] that VI 
is onto and the kernel has order at most two. Moreover, a diffeomorphism 
of M represents the generator of Kernel q if and only if it is concordant to 1 by 
a concordance which restricts to the non-trivial bundle map I X Do -> I-X Do 
(bundles over I) which is 1 over AI-i. e., the one corresponding to the non- 
trivial homotopy class (I,, a) -> (SOn, e). 

There is a natural isomorphism rn+l - r (-M rel Do) obtained by asso- 
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ciating to any diffeomorphism of M, which is 1 on0 DO, its restriction to a 
diffeomorphism of D. Clearly 4 corresponds to VI under this isomorphism. 

This completes the proof of Proposition 2. 

5. I (Mll) also is related to a question of "rotational symmetry" of M, 
when it is a topological sphere. It follows from ? 4 that 11(M) = Kernel VI = 0 
if and only if the non-trivial isotopy from 1 to 1 on Do extends to a con- 
cordance-and therefore an isotopy, when n ? 6, according to [11]-from 1 
to 1 on M. This can be restated. 

PROPOSITION 3. If M is a topological sphere, then 1,(M) = 0 if and 
only if a non-trivial orthogonal action of St on any dislk in M extends to an 
action of S1 on MJ 

6. Defiae a funictioll y: Fn -> pn+l by: 

y(=) generator of I1(Zf). 

PROPOSITION 4. y is a homomorphism. 

We use the following characterization of y(or). Let {ft} be the non- 
trivial linear isotopy from 1 to 1 on Dn. Then a diffeomorphism hy(,) of 
Dn represents y (,) if and only if the isotopy {h, o ft o h.-1} of Sn-1 extends 
to a concordance from 1 to hy(,). This follows readily from ? 4. Suppose 
rC Fn also. We may assume ha I D+ -n-1 and h, i D n-1 1; then 
ho,J+,r- h h, oh agrees with hr on D+n1 and h, on D+n1, Since D+n1 and 
D-n-1 are invariant under ft, hy(o) may be chosen to be 1 on D+n C Dn 
(D+n is the "half-moon" defined by a coordinate being non-negative); also 
hey 1 on D_ . To construct hy (,g7-) we need an isotopy from 1 on Dn 
which extends h,+, o ft o hg+-1 on Sn-i. But this can be done by piecing 
together the isotopy from 1 to hy,(,) on D , and from 1 to h-y(T) on D+n. 
Then we see that hy (,g+T) hy ,(U) ohy(,), which says y(o0f+T) =y(O) +y(T). 

COROLLARY. I, (Z7,) 0 if ar = 2o' for some 9! C rn. 

The homomorphism y can be shown to coincide with the special case 
of the A2 of Munkres [20]: 

A2 Hn- (X; rn) -> Hn+l (X; rn+l) 

where X is the non-trivial (n - 1) sphere bundle over S2.2 

I The actions referred to are not group actions i. e. do not satisfy the formula 
gh(x) = g(h(x)). 

2Using the Hirsch-Mazur isomorphism r =ii, (PI/0), y corresponds to composi- 
tion with the generator X E fII,, (Sn) . 
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Construction of Some Inertial Spheres. 

7. Let nf and k be positive integers. Choose elements 

c E rn+l C rEr+', cS xEmru(SOk), 3Cvr 7(SOn). 

By a slight generalization of a construction of Milnor [19], we define an 
element 8 = S (a-, a T, 3) C rn+J+l. 

Let h,, h, be representative diffeomorphisms of Sn and Dk-we may 
assume h,- = 1 in a neighborhood N of Sk-l and h, 1 on a hemisphere 
D C Sn. Let f: (Sn, D) - (SO7k, e) and g: (Dk, Sk-1) > (SOn,e) represent 
a, 3 respectively-we may assume g maps all of N onto e. Now define 
diffeomorphisms d1, d, of Sn X Dk by: 

di (x, y) (h.q(x), f (X) * y) 

d2 (x, y) (g (y) x, hT(y) ), 

using the (suspended) action of SO, on Sn and the usual action of SOk on Dk. 

LEMMA 3. (a) d1I DX Dk=1 

(b) d2 SnXN=1l 

(e) d2(DXDk)=DXDk 

(d) d, extends to a diffeomorphism of DI'+l X Dk which is 
1 on Dn+l X N. 

One checks (a) and (b) immediately; (c) and (d) follow from the fact 
that the action of SO.. on S" preserves D and extends to an action on Dn+'. 

Now define d = d-1d2d1d,d2. It follows directly from Lemma 3 that 
d = 1 on a neighborhood of Sn X Sk-1 U D X Dk. Thus d 1 outside of an 
interior disk Do C Sn X Dk. Let S E rn+"'+l be the element represented by 
d I D; it clearly depends only upon a, r, a and /3. 

When . = T = 0, this agrees with Milnor's construction. When a = 0 
and T ==0, for example, it is related to a construction of Novikov [25], the 
twist-spinning operation of Hsiang-Sanderson [13], and a pairing of Bredon 
[32]. 

8. The following theorem is basic. 

THEOREM 1. Let 1 be a closed, smooth (n + k + 1)-manifold and 
suppose Ea is embedded in M with normal bundle associated to a C 7r, (SOO). 
Then, for any T C rk+l, / C 7rk (SOn), we have: 

A in c s n of Th m 1 P) Eo 1(M) . 

An immediate consequience of Theorem 1 and Proposition 1 is: 
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THEOREM 2. Let M be a closed, smooth (r + lo)-manifold, and suppose 
. is embedded in M with normal bundle associated to c C7r" (SOk1). Then, 
if S: 7rn(SOk-) -7r (SOk) is suspension, for any r-C V+1, /3C 7rk(SOn), we 
have: 

(rS(a; , /,3) C I, (M) . 

For example, in both theorems, lkL can be taken to be the sphere-bundle 
over Y,J associated with S(ca). See [33] for a similar result. 

Let T be a tubular neighborhood of .,, in M; then T is diffeomorphic 
to the disk bundle over X,r associated with ac. We will show that, if the 
connected sum M # Es is formed along a disk interior to T, then it is diffeo- 
morphic to M by a diffeomorphism which reduces to 1 on M -- T. Equiv- 
alently, we simply show that T is diffeomorphic to T # 16 (along an interior 
disk) by a diffeomorphism which is 1 near &T. 

Let d, be as in ? 7; then T can be described as the union of two copies 
of Dn+i X Dk identified along Sn X Dk by d. We denote this by X (di). 
Theorem 1 will now follow from the two facts: 

(1) X(d,) is diffeomorphic to X(d2-1d,d2) by a diffeomorphism which 
is 1 near the boundary-this makes sense since, by Lemma 1-(b), d1 = d2-1d,d2 
near Sn X S'-'. 

(2) X(d,d) is diffeomorphic to X(d,) # Es by a diffeomorphism which 
is 1 near the boundary (d = 1 near Sn X Sk-1). 

Since did = d2-'d,d2, Theorem 1 follows. 
To prove (1), we use the extension of d2 whose existence is asserted by 

Lemma 3- (d) to construct the required diffeomorphism on each copy of 
Dn+1 X Dk. 

Fact (2) is proven by an argument similar to that which proves Lemma 1. 

Some Invariants of Z. 

9. We now investigate various techniques for proving non-triviality of 

We will need the following alternative description of 8. Let X1 be the 
disk-bundle over Z(J associated with S (a) and X2 the disk-bundle over .- 
associated with S (,B). We then form X6 by the operation of "plumbing" 
X1 and X2: X3 is just the union of X1 and X2 with an identification of the 
sub-bundle in X1 over a disk in , with a similar sub-bundle in X,2both 
sub-bundles admit obvious diffeomorphisms with Dn+1 X Dk+1. Now :4 can 
be taken to be OX6. See [19] for more details in the case a v T = 0; the 
argument is precisely the same for general a-, v. 
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In the case of nl k even, 0 r = O and a ,f a desuspension of the 
tangent bundle of Sn+1, Y is just the Kervaire sphere [15]. In fact, even 
if a, 1 are unrestricted 22 is an n-connected parallelizable (2n + 2) -manifold 
with Arf invariant 1. By [16], 8 is the generator of bP2n+2, which is zero, 
if n 2 or 6, Z2 if n 0mod4, and 0 or Z2 otherwise (see [9]). 

As a consequence of Theorem 1 we, therefore, have: 

Example 1 (Brown-Steer [10]). IO(Vn+1,2) D bP2n+2 if n is even, where 
VY+1,2 is the Stiefel-manifold of 2-frames in (n + 1)-space. 

10. We now use the Eells-Kuiper invariant [12] to study 8 (a, c; T,). 
Suppose r, s 1 are integers. We define: 

=a,raSBrBs9(22r - 1) (22s -1) md 

16a,.(rs (22r+2s,91 - 1) 

where Br is the r-th Bernoulli number and a, = 1 or 2 as r is even or odd. 
For example l = 1/112; pt1,2 = 2,1 /3968; U2,2 = 1/32,512. 

Let rnspin be the subgroup of ar such that :,r bounds a spin-manifold. 
.It follows from [2], [3] that rn,pin = n unless n = 1 or 2 mod 8, in which 
case it is a subgroup of index 2. 

Suppose n=-4r -1, k l 4s - 1. The tt invariant of Eells-Kuiper [12] 
defines a homomorphism: 

J,: rn+k+l_> Q/Z 

since rn+k+l rn+k+l i 

If ac C Vr(SOk), then the suspension of ac into the stable group 7rn(SO) Z 
determines a unique non-negative integer, denoted I. If n 2kc + 1, 
a == 0 ( [19, Lemma 5] ). 

PROPOSITION 5. If 8 =(cr, c ;,/ ( 3), then: 

(X 0) 
~ 
p-.sl a I l I11 

This is proved in [12] for ar =i- =O, using the relation 

prQ(a) + ar(2r -1) ! I a I 

(see also [19]), where pr(ac) is the Pontragin class of ac. The more general 
case is proved identically. 

Example 2. Suppose s < 2r, n 4r -1, c 4s -1. If 

X E H,+1 (Mfn+k+l; Z) 

is represented by an imbedded sphere, then Io(M) has order a multiple of 
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the denominator of the fractions: vr, sPr, s(Pr (M) A)/ar(2r - 1) ! where Er,s 2 
if r s ==1 or 2 or r =3, s 4, and 1 otherwise. 

This follows from Theorsm 1 and the fact that M contains a copy of a 
disk bundle associated to a C 7r,(SOk), where I a I pr(M) A/ar(2r -1) ! 
and 3 can be chosen to satisfy I =A |Er,s (see [6]). For any given a C 7r,,(SOk), 
we can choose M as the sphere bundle over Sn+1 associated with S(a) to satisfy 
the hypotheses of Example 2. 

In the special case r = s = 1, if we choose I a 2, which is possible, 
we find that 10(M) = r7-a result of Tamura [27]. More generally, I a 
can be chosen to be Es,r, if r < 2s. 

COROLLARY. If s < 2r < 4s, there exists a Ic-sphere bundle M over Sn+l 

such that 1 (M) has order a multiple of the denominator of Er,S'ES,'rJ,P,s. 

The next non-tricial example is a 7-sphere bundle M over S8 with I10 (M), 
a subgroup of P15 of index < 2. 

Reduced Inertia Groups. 

11. In ?? 9, 10 we studied 3 by techniques which are particularly sensi- 
tive for distinguishing elements of bpn+k+2. We now examine the reduced 
inertia groups (see ? 2). It is possible to obtain some of these results using 
the Browder-Novikov theory [23], [24]. 

Recall the homomorphism: 

T: rn _Cokernel {hJ: 7rn (SO) -> 7rn (S)} 

defined by the Thom construction, where Jn is the Hopf-Whitehead homo- 
morphism (see [16]). The kernel of T is precisely bPn+l; the associated 
monomorphism, f8-n CokJn, will also be denoted by T. Recall that T is 
onto, unless n = 2, 6 or 14, when the image is a subgroup of index 2, or 
n 6 mod 8, when it is a subgroup of index < 2 (see [9] and [18] ). 

We determine T (S), when a or A is zero. If a C r", denote the corres- 
ponding element of rn by c. 

We use the bilinear anti-commutative composition pairing [29]: 

wr (S) X 7rj (S) 
- 

ri+j (S), (V, ) -> V 
? 

t. 

If v C 7+j (Si) , 0 C 7rj (SO), then the composition Oo v C 7ri+j (SO) is defined. 
Let E: 7rj+j (Si)-> + (+l(Si+') be the suspension homomorphism-then E? 
will denote suspension irLto the stable stem. The following formula holds [17]: 

Jj+j (-O ? v) =? Jj (O) ? Eo (v). 
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This implies the existence of an induced bilinear composition pairing: 

ri+j1(S ) X Cok Jj- Cok J+j. 
PROPOSITION 6. If S =( 8o(,x;r ) and J: rr(SOj) -->-ni+j(Si) is the 

(non-stable) Hop fi-Whitehead homomorphism: 

T(S) =EJ(ca)oT(r) if 3=0, 
+EJ(f3) oT(c() if a O. 

It follows from Proposition 6, the above formula, and consideration of 
suspension [17], that T (8) = O if n>l7 and / =0, or k >n and a==0. 

Proposition 6, and its proof, is closely related to [25, Lemma 6]. A 
similar fact has been proved by Milnor [21] and Bredon [32]. 

12. Since 8(, ; r,83) _=-8(r,,8;o, cx), it sufiices to consider only 3==0. 

It follows from the description of 8 in ? 9, that :s arises from a spherical 
modification ( [16] ) on OX2. In case ,=B 0, OXf = SI X ET and the modifica- 
tion is constructed from an imbedding: 

i: Sn X Dk+:'-- Sn X ET, 

defined by i(x, y) = (ha(x), f (x) y), where f represents S (a) C 7r,(SOk+1) 
and D+1 is identified with a disk in X Then: 

>d = SI X ET-i(Sn X D&+1) U Dn+1 X Sk 

where the boundaries are identified by i/Sn X Sk. 
,6 and Sn X Z-T are connected by the cobordism 

X2- I X SI X r U D+l X D&+l 

where the pieces are attached by the imbedding S4 X Dk+ 1 XS X -, 
corresponding to i. 

Snppose Sn C RN, N >>n, has a normal frame F0 obtained from the 
standard normal frame by a "twist" by a map representing 

-SN-n-k (ac) C 7rn (SON-n). 

Consider XT C JIM, M >> k, with a normal frame Fl. Then the product 
imbedding Sn X Z., C RN X Rm, with the product framing F0 X F, defines, 
by the Thom construction, a representative of + EJa o T (-) (see [14] ). The 
theorem will be proved by extending this to a framed imbedding of X in 
R X RN X RM. 
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An imbedding of X is defined by merely extending the composite 
imbedding: 

Sn X Dk+1 C RN X RM 

to an imbedding of 

Dn+' X Dk+l C [O, oo) X RN X RM 

which meets 0 X RN X R-' transversely along i(Sn X Dk+1). 
Now suppose i (5n X 0) - Sn X a, a E .,. The normal frame F, to 

Sn X a in Sn X Z induced by the differential of i, is obtained from the 
standard normal frame by twisting with S(a). To extend i to an imbedding 
of Dn+1 X Dk+1, we may first extend i I Sn X 0 to an imbedding il of Dn+1 X 0 
(transverse to 0 X RN X RM along i(S-a X 0) ) and then extend F, to a normal 
(lk + 1) -frame to il (Dn+1 X 0) in R X RN X RM. Therefore an extension of 
F0 >F1 to a normal framing of X is equivalent to an extension of 
Fo X F1 X F, (a normal frame to Sn X a in RN X RAI) to a normal framing 
of il(Dn+l X 0) in R X RN X RAm. 

But Fo X1 I Sn X a F0 X (F1 I a), and F1 I a is trivial. Since F0, 
F, are obtained from trivial frames by twisting by - a and a, respectively, 
it follows that F0 X F1 X F, is homotopic to a trivial frame on Sn X a, which 
will extend to a normal frame on an imbedding il of Dn+1 X 0. 

This completes the proof of Proposition 6. 

13. Proposition 6, together with Theorems 1 and 2, have obvious conse- 
quences about the reduced inertia groups. 

Example 4. (see [24, 13. 3]) If M1 contains an imbedded topological 
(n + 1)-sphere with normal bundle associated to a C 7r"(SOk), then T(0(M) ) 
contains, as a subgroup EJ (a) o T (iYk-). 

Example 5. If M contains an imbedded topological (n + 1)-sphere 
with normal bundle associated to a C 7r(SOk_1), then T ('1(M) ) contains, 
as a subgroup, E2J(a) o T(ik+1). 

Example 6. If M contains an imbedded (n + 1)-sphere :, with trivial 
normal k-plane bundle, then T(Io(M)) contains, as a subgroup 

J7ra(((SOndl ) c T( On 

and T (I1 (M) ) contains, as a subgro-up, EJ7rk+l (SO.) o T(r- 
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Example 6 follows by noticing that EJ7r* (SOj) = J7rj (SOj+,), when j > i, 
and, -when j i, their compositions with an element of the form T (ar) C rj,, 
are zero, according to remarks on ? 11. 

In Examples 4 and 5, a sample M is the sphere bundle over Snt+1 asso- 
ciated with S (a). In Example 6, we can take for M a manifold of the form 
Z, X V, where V is any k-manifold. 

If a is the non-zero element of 7r, (SOk) (k > 2) then there exist v C Erk+ 
such that EJ(a) o T(r) is non-zero for kI= 7, 13, 15 and k- 0 mod 8. This 
follows from [5] and [29]. Therefore, we have, as a consequence of Example 
4 (see [24, Lemma 13.4]) for similar results): 

COROLLARY 1. Suppose M is a manifold of dimension 9, 15, 17 or 
8t+2 (t?_ 1) satisfying: 

(a) M is not a spin-manifold. 
(b) H2(7ri(M) ;Z2) =- 0, e.g., 7r1(M) -O, Z, or finite of odd order. 

Then 1o(M) is non-zero. 

Condition (b) implies H2 (M; Z2) is entirely spherical. Then, (a) 
implies there is an imbedded 2-sphere with non-trivial normal bundle. A 
similar fact is proved in [21]. 

Similarly, we derive from Example 5: 

COROLLARY 2. If M satisfies (a), (b) of Corollary 1 and has dimrension 
8, 14, 16 or 8t+1 (t? 1), then I1(M) is non-zero. 

As an application of Example 6 we compute reduced inertia groups in 
some special cases (see also [33]). 

COROLLARY 3. If a C rn, - C PE, n > Ic, then 

I0 (Y4 X ET) ==J7rk(SOn) o T(o.). 

The inclusion Io (:,g X :-) D J7rk(SOn) a T (r) follows from Example 6. 
For the reverse inclusion we examine the subset -P of Cok Jn+k determined, 
from the Thom construction, by all possible normal framing of Ea X ET 

([16]). By the additivity of this operation ([16, Lemma 4. 4]), every 
element of Io (g X Yr) is the difference of two elements of P. 

It follows by obstruction theory that any normal frame to X,, X ., is 
homotopic to a product framing FX, X F, on the complement of a poifit, 
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where F,, FX are normal frames to Y., - respectively. Thus any element 
of P is represented by a composition a, o a,, where a, C T(tr), a, C T(-r). Now 
the difference of two such elements is a sum Jka, o a, + Jnc22 ? a,- where 
a,- C7 7fk(SO), a C Ern(SO). Since n ? -k, JJ2 aT ,oC ImageJ,+k-. We only need 
show that (Image A) aC J-rk (8n)oT (a). If nl>k+1, this is clear. 
When n =- k, the composition is zero, according to a remark in ? 11. 

As an application of Corollary 3, we notice that there exist 7r-manifolds 
1 with non-zero reduced inertia group 10(M). This disproves a conjecture 

of Novikov [24]. 

COROLLARY 4. If rC rn, then 11(ZT) == Jr, (SO) oT((). 

This follows from Corollary 3 and Proposition 1. 

Diffeomorphisms of Spheres (continued). 

14. We now study the homomorphism y: rn Prn+ defined in ?6. It 
follows from Corollary 4 that y induces a comutative diagram 

O - bPn+1 -- > rn > Cok Jn 

0 bpn+2 . r >n+1 > Cok J+,- 

where j(0) = y0o0, q the generator of 7r,(S). It follows from the non-zero 
compositions, mentioned in ? 13, that y 7?-0 when n 8, 14, 1.6 or n = 1. 
mod 8, n > 1. We point out a few more facts about y. 

PROPOSITION 7. y(rnsp,n) C rn+lspin and the induced homomorphism 
rn/rnSPin > n+/rn+lspin is an isomorphism for n = 1 mod 8 and zero other- 
wise. Recall ( 10) that rP/rnPph, Z2 for n =1 or 2 mod 8 and zero other- 
wise. 

If Er bounds a Spin-manifold M and ( 4 X S') # Yy is diffeomorphic 
to Zcr X S' we define a new manifold as follows. Consider the connected sum 
along the boundary of I X Y, X S' and I X >e. The boundary consists of 
three components (0 X Z,J X S') # (0 X y), 1 X y X S' and 1 X .. To the 
first two components attach copies of M X S'. The resulting manifold W has 
boundary y. 

That W is a Spin-manifold follows from a Mayer-Vietoris argument, 
as in [7], which proves that: 
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H2(W) -H2(M X S) H2(M X Si) (coefficients in Z2) 

is injective, while MX St is a Spin-manifold. 
Finally, it follows from [2], [3] that, if n 1lmod8, raC Jn and :IJ 

does not bound a Spin-manifold then X,, X S1 (S' has the non-trivial Spin 
structure) does not bound a Spin-manifold. It follows that -go T (a) cannot 
be represented by an element of r+1 spin; thus /(a) , ]n+l,pF . This completes 
the proof of Proposition 7. 

15. Of special interest is whether y (v) is zero, in view of Propositions 2, 
3. This is determined by y, when n is odd. For n even, we must consider 
whether -/(,a) can be non-zero in bpn+2. This is answered in some cases by: 

PROPOSITION 8. . Suppose U C pnsp_n n = 4t -2, and y (u) C bpn+2. If 
t_ 5 or t is odd, or, more generally, if: 

(8) order(Image J,+1) denominator Bt 

then 0(.) = 

That (*) holds for t odd is a theorem of Adams [1]. It is conjectured 
to hold for all t. 

If /y (.) C bPn+2, then y bounds a parallelizable manifold V. 
Suppose y ? 0; then, by Proposition 2, 2y = 0, and it follows from [1 6] that 
one may assume: 

index V I7 22t(22t-1 1) numerator t , for the given value of t. 
t 

Since a- C ]nspln, we can construct a Spin manifold W, as in the proof of 
Proposition 7. If we adjoin the manifold V along OW, we obtain a closed 
manifold X. Clearly X is a Spin-manifold, because W and V are. 

We now compute the A-genus of X [4]. Coefficients of cohomology are 
rational. First notice that all the decomposable Pontragin numbers of X 
are zero. In fact, we have the isomorphism: 

H'M Ya X S) IHX(M X Sl, Yu X S1) e fHi(M X Sl, Y, X S) 0 Hi(VT, Y). 
Any Pontragin class pi (X) pulls back to a class ac C H (X, X S1) -since 
H4t (, X S) 0. Under the above isomorphism ac *-> a. + ?s{" + a"', where 
?', <', cs"' are pull-backs of the Pontragin classes of 11M X S1, M X St and 
V. Thus a decomposable Pontragin number in Hn+2 (X) pulls back to 
(X C Hnt+2 (X g X H1) n 2 X + (/ + Y"', where a', a.", ae"' are products of the 
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z(*, a!s", respectively. But H* (M X St, 4,J X St) H* (M,u) EH *(Sl) 
and a/, a " are of the form f.'(2) 1, ,8j" 0 1. Thus, their products in TIn+2 
are all zero. Finally s-`" O, since V is parallelizable. 

Now, it is easily seen that the index of X is equal to the index of V, 
since the index of the pair (M X S1, X,u X S1) is zero and 

H2t (q X Sl) H H2t-1 (a X S') = 0. 

Using in addition the index theorem and the vanishing of the decomposable 
Pontragin classes of X, we have- the formula (['12]). 

-index V 4Bt A (X) 22t+ (22t-l = - 1numerator B 
22t+1 (22t-1 _~ 1) 2f 

using the calculation of index 1. It is a consequence of a theorem of von 

Staudt [22] that the 2-primary part of numerator 4Bt is 1, if t is even, and t 
2, if t is odd. But this violates the Atiyah-llirzebruch Theorem [4], which 
asserts that A (X) must be integral and, when t is odd, divisible by 2. 

16. In conclusion, we discuss y for n < 18 using the computations 
in [29], and our preceding results. For n ? 7 and n = 11, 12, 13, 15, y - 0. 
For n 8, 14 and 16, y (and, therefore, y) is a monomorphism. For n 10 
and 18, y J rnspi0n ?; pnspln is a subgroup of index 2 of Fr, and I do not 
know whether y O. For n =9, y(J'r9)y(i59) Z2 and Ker-y= 9spin- 
For n =17, y( 1-7) (7) IZ2+Z2 and Kery CJ'17spjn. 

BRANDEIS UNIVERSITY. 

REFERENCES. 

[1] J. F. Adams, "On the groups J(X)-IV," Topology, vol. 5 (1966), pp. 21-71. 
[2] D. W. Anderson, E. H. Brown, Jr. and F. P. Peterson, " SU-cobordism, KO- 

characteristic numbers, and the Kervaire invariant," Annals of Mat he- 
matics, vol. 83 (1966), pp. 54-67. 

[3] , "Spin cobordism," Annals of Mathematics, vol. 86 (1967), pp. 271-298. 
[4] -M. F. Atiyah and F. Hirzebruch, "Riemann-Roch theorems for differentiable 



INERTIA GROUPS OF MANIFOLDS. 257 

manifolds," Bulletin of the American Mathematical Society, vol. 65 
(1959), pp. 276-281. 

[5] M. G. Barratt, IHomotopy operations and homotopy groups, mimeographed notes, 
A.M. S. Summer Topology Institute, Seattle, 1963. 

[6] M. G. Barratt and M. Mahowald, "The metastable homotopy of 0(n)," Bulletin 
of the American Mathematical Society, vol. 70 (1964), pp. 758-760. 

[7] W. Browder, "On the action of 0" (07r)," Differential and combinatorial topology, 
Princeton University Press (1965), pp. 23-36. 

[8] , "Diffeomorphism of 1-connected manifolds," Transactions of the American 
Mathematical Society, vol. 128 (1967), pp. 155-163. 

[9] E. H. Brown and F. P. Peterson, " The Kervaire invariant of (8k + 2) -manfolds," 
Bulletin of the American Mathematical Society, vol. 71 (1965), pp. 190-193. 

[10] E. H. Brown and B. Steer, "A note on Shiefel manifolds," American Journal of 
Mathematics, vol. 87 (1965), pp. 215-217. 

[11] J. Cerf, Isotopy and Pseudo-isotopy, Mimeographed notes. 
[12] J. Eells and N. H. Kuiper, "An invariant for certain smooth manifolds," Annali 

di Math., vol. 60 (1963), pp. 93-110. 
[13] W. C. Hsiang and B. Sanderson, " Twist-spinning spheres in spheres," Illinois 

Journal of Mathematics, vol. 9 (1965), pp. 651-659. 
[14] M. A. Kervaire, "An interpretation of G. Whitehead's generalization of H. Hopf's 

invariant," Annals of Mathematics, vol. 69 (1959), pp. 345-364. 
[15] M. A. Kervaire, "A manifold which does not admit any differentiable structure," 

Comm. Math. Hfelv., vol. 34 (1960), pp. 357-370. 
[16] M. A. Kervaire and J. Milnor, " Groups of homotopy spheres: I," Annals of 

Mathematics, vol. 77 (1963), pp. 504-537. 
[17] A. Kosinski, "On the inertia group of 7r-manifolds," unpublished. 
[18] J. Levine, " Classification of differentiable knots," Annals of Mathematics, vol. 88 

(1965), pp. 15-50. 
[19] J. Milnor, "Differentiable structures on spheres," American Journal of Mathe- 

matics, vol. 81 (1959), pp. 962-972. 
[20] J. Munkres, "Higher obstructions to smoothing, Topology, vol. 4 (1965), pp. 

27-45. 
[21] J. Munkres and J. Milnor, " The action of r,, on concordance classes," unpublished. 
[22] N. Nielsen, Traite elementaires des nombres de Bernoulli, Paris, 1923. 
[23] S. P. Novikov, " Diffeomorphisms of simply-connected manifolds," Soviet Math. 

(Doklady) A.M.S., vol. 3 (1962), pp. 540-543. 
[24] , " Homotopy equivalent smooth manifolds, I," Izv. Akad. Nauk., S. S. S. R., 

Ser. Mat., vol. 28 (1964), pp. 365-475 (Russian); A. M. S. Translations, 
Ser. 2, vol. 48 (1965), pp. 271-396. 

[25] , " Homotopy properties of the group of diffeomorphisms of a sphere," 
Soviet Math. (Doklady) A.M. S., vol. 4 (1963), pp. 27-31. 

[26] J. Stallings, " On infinite processes leading to differentiability in the complement 
of a point," Differential and combinatorial topology, Princeton University 
Press (1965), pp. 245-253. 

[27] I. Tamura, " Sur les sommes connexes de certaines varietes differentiable," C. R. 
Acad. Sci., Paris, vol. 255 (1962), pp. 3104-3106. 

[28] R. Thom, "Les structures differentiables des boules et des spheres," Colloque de 
geometric differentielle globale, CBRM, Brussels (1959), pp. 27-35. 

[29] H. Toda, Composition methods in homotopy groups of spheres, Annals of Mathe- 
matical Studies, vol. 49 (1962), Princeton University Press. 

17 



258 J. LEVINE. 

[30] C. T. C. Wall, "The action of r, on (n - 1)-connected 2n-manifolds," Annals of 
Mathematics, vol. 75 (1962), pp. 163-189. 

[31] , "Classification problems in differential topology, II," Topology, vol. 2 
(1963), pp. 263-272. 

[32] G. Bredon, "A 7r*-module structure for O* and applications to transformation 
groups," Annals of Mathematics, vol. 86 (1967), pp. 434-448. 

[33] R. De Sapio, "Manifolds homeomorphic to sphere bundles over spheres," Bulletin 
of the American Mathematical Society, vol. 75 (1969), pp. 59-63. 


	Article Contents
	p. 243
	p. 244
	p. 245
	p. 246
	p. 247
	p. 248
	p. 249
	p. 250
	p. 251
	p. 252
	p. 253
	p. 254
	p. 255
	p. 256
	p. 257
	p. 258

	Issue Table of Contents
	American Journal of Mathematics, Vol. 92, No. 1 (Jan., 1970), pp. 1-292
	Front Matter [pp. ]
	Representative Functions of Discrete Groups and Solvable Arithmetic Subgroups [pp. 1-32]
	The Differentiability of the Riemann Function at Certain Rational Multiples of π [pp. 33-55]
	The Canonical Measures for a Separable C<sup>*</sup>-Algebra [pp. 56-60]
	Finiteness Theorems for Riemannian Manifolds [pp. 61-74]
	Galois Chomology of Cycles and Applications to Elliptic Curves [pp. 75-85]
	Topological Invariants of Isotopy of Links, I [pp. 86-98]
	On Quasi-Unmixed Local Domains, the Altitude Formula, and the Chain Condition for Prime Ideals (II) [pp. 99-144]
	Minimal Hypersurfaces in a Riemannian Manifold of Constant Curvature [pp. 145-173]
	On the Local Solvability of Linear Partial Diferential Equations in Two Independent Variables [pp. 174-204]
	Point-Distal Flows [pp. 205-242]
	Inertia Groups of Manifolds and Diffeomorphisms of Spheres [pp. 243-258]
	A Units Theorem Applied to Hopf Algebras and Amitsur Cohomology [pp. 259-271]
	n-Linking and n-Splitting [pp. 272-282]
	On Canonically Polarized Varieties (II) [pp. 283-292]
	Back Matter [pp. ]



