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UNKNOTTING SPHERES IN CODIMENSION TWO 

J. LEVINE? 

(Receked 16 January 1964) 

IT IS A CLASSIC PROBLEM to give a homotopy theoretic criterion for an imbedding of the 

n-sphere s” into a higher dimension m-sphere to be “equivalent” to the standard imbedding. 

To make the problem more precise, one usually chooses to work in one of three categories: 

differential, piecewise-linear or topological. Then, the concept of a (locally-flat) submanifold 

of S” and of isomorphism (i.e. diffeomorphism, piecewise-linear homeomorphism or 

homeomorphism) is well-defined and the problem may be stated as follows. Let M be a 

submanifold of S”, isomorphic to S”; is there an isomorphism h of S” such that 

h(M) = S” C S”? 

Many results are known. In the differential category, if 2m > 3(n + I), h always 

exists, while if 2m 5 3(n + l), it may not [l, 18 and 161. In the piecewise-linear and topo- 

logical categories, h always exists if m - n 2 3 [I 1, 12, 8 and 151. Finally, in the topological 

category, if m - n = 2 and n 2 3, h exists if and only if S” - M is homotopy equivalent to 

S’ [S]. It is the main aim of this paper to examine the case m - n = 2 in the piecewise-linear 

and differential categories and show that this criterion is the correct one here also; it is 

necessary to exclude a few low values of n and, in the piecewise-linear situation, impose a 

condition of semi-local flatness. 

The proofs will use the concept of spherical modifications [4, 51 and will follow almost 

identical lines. To avoid repetition, therefore, we will work, simultaneously, in the differen- 

tial and piecewise-linear categories. Unless stated otherwise, our manifolds, submanifolds, 

mappings, imbeddings and isotopies will be understood to be differential or piecewise-linear, 

consistently. All our statements will be treated, accordingly, as referring to the differential 

or piecewise-linear category. All manifolds will be orientable. 

52. 

Denote by Dk the unit k-disk or a k-simplex in the differential or PL category, respec- 

tively, and Sk-’ = aDk. Let X be a manifold and M a submanifold of X. We say M is 

collared if there is an imbedding h : M x Dk --f X, where k = dim X - dim M, such that 

h(x, 0) = x, for x E M. We say h is a collar of M. 

t The author is a National Science Foundation Postdoctoral Fellow. 
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The main theorem of this paper will be: 

THEOREM (1). Let n 2 4 ; suppose M is a homology n-sphere imbedded as a closed collared 

submanifold of S”’ 2. Then, if S”+ 2 - M is homotopy equirulent to S’, M bounds a contractible 

submanifold of S” ’ 2. 

s3. 

We will need to use the notion of transverse regularity in our proof. It is, therefore, 

necessary to devote some attention to the piecewise-linear situation. 

Let A be an unbounded PL-manifold, V a collared PL-submanifold. Let M be a com- 

pact PL-manifold and f : M--f A a PL-map such that f(M) n a V = a. We say f is trans- 

ret-se regular on V if f -l(V) = N, a collared PL-submanifold of M, with aN c dM and 

codim N = codim V = k, and there are collars h, of N, h, of V such that: 

(1) h,[dN x Ak is a collar of aN in aM, 

(2) fh,(N x A”) c h,(V x Ak) and 

(3) h; ‘f h, : N x Ak + V x Ak is level-preserving, i.e. 3 mapping fi : N x Ak -+ V so 

that h;‘fh,(x, t) = (fi(x, t), t). 

LEMMA (1). Let A, V, M as aboce andf: M + A a PL-map which is transcerse regular 

on V in a regular neighborhood B [lo] of lJM and such that f (M) n aV = @. Then f can 

be approximated by a PL-map f’ : M + A bvhich is transverse-regular on V and such that 

j-‘/B = f IB. 

Proof. First consider the case A = Rk, V = 0. A PL-map f: M --) Rk is transverse 

regular at 0 if and only if there exist admissible triangulations K of M and L of Rk such 

that 0 is an interior point of a k-simplex of L and f is simplicial with respect to K and L. 

That the existence of such K and L imply transverse regularity we leave to the reader, or see 

[ 141. Suppose f is transverse regular and h, : N x Ak --f M, h, : A” + Rk are collars as 

described above. Choose admissible triangulations K, of M, L, of Rk such that f is 

simplicial with respect to Kl and L, and the hi are simplicial with respect to Kl or L, and 

admissible triangulations of N x Ak or Ak. Let At be a rectilinear k-simplex such that 

0 E int A: c A: c int Ak; let N, be an admissible triangulation of N. Now define K and L 

as follows. On M - h,(N x A’) let K = K,; on Rk - h2(A.k), let L = L, . On h,(N x A:), we 

carry over the product complex N1 x A!; on h2(At), we carry over A:. Note that f is 

simplicial with respect to these partial triangulations; it is an easy exercise to extend these 

triangulations over M and Rk so that f is still simplicial. Note that we can choose L as fine 

as desired. 

Now consider triangulations K, of B and L of Rk such that 0 is an interior point of a 

k-simplex of L andfIB is simplicial with respect to Kl and L. We can extend Kl to a trian- 

gulation K of M. A theorem of [13] provides a simplicial map f’ : K-t L such that 

f ‘1 Kl = f j K, and, by choosing L fine enough, f ‘ may be made to approximate f as close as 

desired. 
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Now consider the general case. Letgz be a collar of Vin A such thatg,(d V x A”) nf(M) 

= @. Now f-‘(v) c intf-‘g,(A.’ x 5’); let E be a regular neighborhood of f-‘(v) in 

f -rg2(Ak x V). Consider g; ‘f = g’ : E --) Ak x V and let p : Ak x V-, Ak, p’ : A” x V-t V 

be the projections. Now pg’ : E -+ A’ is transverse regular at 0 on a regular neighborhood 

B’ofdE,whereEnBcB’;letcp:E + Ak be a transverse regular approximation to pg’, 

which coincides with pg’ on B’. Thus we have in E a collar gi of N = cp-‘(O), a PL-sub- 

manifold of M, and a collar $ of 0 in A’ such that qg,(f, X) = $(t) for t E D”. Now define 

g : E--f Ak x V by g(_x) = (q(x), p’g’(x)). Clearly g = g’ on B’ and pgg,(r, x) = $(t). Now 

definef’ : M -+ A byf’j E = g2g, f 'I M - E =fjM - E. To exhibit the transverse regularity 

off’, we define collars hi, h, of N, V by h, = g1 and h2(t, x) = gz(rC/t, x). 

We remark that the differential version of Lemma (1) is proved in [9]. 

LEMMA (2). Let M be a closed collared n-submanifold of Snf2. Then, if H,(M) = 0, 

A4 bounds a collared submanijold of S” “. 

Proof. Let g be a collar of M and X = ,S”+’ - g(D2 x M). Let f : 8X-+ S1 be defined 

by projection on the “fiber”. Note that f is transverse regular at every point of S’. The only 

obstruction to extending ,f over X is in H’(X, aA’; Z) z H,(M; Z) = 0. If we choose 

p E S’, it follows from Lemma (1) or [9] that we may choose an extensionf’ which is trans- 

verse regular at p. Now f ‘-l(p) is a collared submanifold of S”+’ with boundaryf -l(p). 

We can easily alter this to obtain the desired submanifold. 

Let V be a compact manifold and i. : V -+ I a mapping satisfying l-‘(O) = 3V. Define 

W c V x R as the set of points (x, t) satisfying ]t[ 5 1.(x); then W is a submanifold of 

V x R (with a “corner” at 8V x 0, in the differential case). Note that 8w = V, u VI, 

where V, consists of the points (x, (2t - 1)1(x)) and V, n V, = 3V, = aV, = 8V x 0. Let 

cpI : V--+ V, be the isomorphism defined by cp,(rr) = (x, (2t - l)).(x)). 

If V is a collared submanifold of an unbounded manifold A, of codimension one, then 

there is an imbedding i : W-t A satisfying i(x, 0) = x for x E V. Let Y = A - i(W); then Y 

is homotopy equivalent to A - V and d Y = i(a W). Define i, = icp, : I’-+ Y. 

Supposef: Sk x D”+l-’ -+ int V is an imbedding. We define 0,( V, f) = W u Dk+l x 

D “+lMk, where the “handle” is attached by the imbedding yJ(in the differential case, the 

corners are rounded at Sk x Snek); 0,(V, f) is a manifold (with a comer at dV x 0, in the 

differential case). Note that %,(V,f) = V, u V’, where s = t f 1, V’ is isomorphic to 

x(V,f), in the notation of [4] (extended, in the natural way, to the PL case), and 

dV’=dV,=dVxO. 

For the remainder of this paper, we assume A = Sn’2, V, a collared submanifold of 

n+Z, has dimension n + 1 and is (k - I)-connected where k 2 1, and 13 V is homology 

L-2)- connected. By Alexander duality and the van Kampen and Hurewicz theorems, it 

follows that Y is (k - I)-connected and, if k 2 2 and Hk_I(dV) = 0, xk( Y) M xk(V). 
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LEMMA (3). Suppose (i) n 2 2k + 1 or (ii) n = 2k or 2k - 1 and n 2 4. Then, if 

u E nk( V) and i,.(a) = 0, i can be elctended to an imbedding i’ : O,( V, f) 4 S”+2 where 

f:Sk x D"+'-' + int V is an imbedding representing ~1. 

Remark. Clearly i’( I”) will be collared in A and i’(ZV’) = d V. 

Proof. We begin by constructing an imbedding g’ : Dkf ’ + Y such that: 

g’(Dk+‘) n d Y = g’(Dkf’) n V, = g’(Sk), 

and the intersection is normal in the differential case, and g’lSk = i,f ‘, wheref’ : Sk -+ int V 

represents c(. 

In the PL situation we can apply the results of [3] to first construct f' and then extend 

i,f’ over Dk”. In the differential situation we can, in the same way, use the results of [l] 

but, unfortunately, this does not cover the case n = 5 under hypothesis (ii). Instead we use 

the following argument. 

Let ~1’ E nk(d Y) correspond to c1 under the inclusion V, c Y (identifying V, with V). 

Since i,.(a) = 0, Q’ is the boundary of an element p’ E rrk+ i( Y, IVY). Now Y and d Y are 

l-connected because k 2 2 in hypothesis (ii). Since (Sn+2, z(W)) is k-connected, it follows by 

excision that (Y, 3 Y) is k-connected. We can, therefore, apply Lemma (1) of [17] to obtain 

an imbedding g” : D”” -+ Y, representing p’, such that g”(Dkfl) meets 8 Y normally along 

g”(Sk)--we assume the corners at 8V, are straightened. But we also need that g”(Sk) c Vl 

representing c(. Now V, is l-connected and (V, 8V) is homology (k - 1)-connected; thus it 

follows by excision that (8Y, V,) is (k - 1)-connected. We can then apply ,Lemma (2) of 

[17] to isotopically deform g”(Sk) into V, to represent c(. An application of the isotopy 

extension theorem to g” yields the desired g’. 

We now would like to extend g’ to an imbedding g : Dk+’ x Dnfl-’ + Y such that 
g(Dk+’ x D”+‘-k) n aY=g(Sk x Dn+‘-k ) c i(int V,) (and, in the differential case, the 

intersection is normal). A tubular neighborhood of g’(Dk+‘) in Y will satisfy these require- 

ments in the differential case. In the PL case, choose a regular neighborhood X of g’(Dk+‘) 

in Y such that X n 8 Y = dX n 13 Y c i(int V,) and X n 8 Y is a regular neighborhood of 

g’(Sk) in 8X. It follows from [12] that (8X, g’(Sk)) is isomorphic to (8Df2, 8D’+‘). There- 

fore, by [lo], (X, X n 3 Y) is isomorphic to (Dkf’ x Dn+lek, Sk x D”+lmk). We may now 

definef by cpf = gISk x Dn+lmk, 

We will say i’(V’) is obtained by killing c(. 

LEMMA (4). Suppose (i) i,. : TC~( V) -+ xk( Y) is a monomorphism for t = 0, 1 and (ii) 

nk(int v) -+ zk(A - c?V) is zero. Then 7ck(v) = 0. 

Proof. Let CI E x~( V); by (ii) there is a mappingf : @” -+ A - d V such thatf (Sk) c int V 

and f IS’ represents c(. We may assume f is transverse regular on V; in fact, define f in a 

neighborhood of Sk first, using a collar of V, and then extend over Dk” and apply Lemma (I) 

or [9]. Thus f -l(V) is a, not necessarily connected, k-submanifold of D’+‘. We will show 

how to remove a component off -l(V) n int Dk+‘, whenever one exists, leaving f IS’ fixed. 

By a sequence of such modifications ofj; we will havef -‘( V) = Sk; by transverse regularity 

off, this implies i,.(z) = 0, for some t. By (i), we will have CL = 0. 
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Suppose f-‘(V) n int gk+’ # 0; choose an innermost component M, i.e. such that 

there exists a connected submanifold W of int Dk+’ such that SW = M and W nf-‘(V) = 

M. Consider fjM : M-, V; we first show that fiM extends over W. In fact, the only 

obstruction to such an extension is the primary obstruction p E Hk+‘( W, M; xk( V)) z 7ck( V), 

since V is (k - I)-connected. Now i,,(p) E rrk( Y) is the primary obstruction to extending 

i,f]M : M-t Y, since Y is (k - 1)-connected. Since W nf-‘(V) = A4 and f is transverse 

regular on V, it is clear that i,flM dces extend over W, for some t. Thus i,.(p) = 0; by 

(i), this implies p = 0. 

Let h, , h, be collars of M, V respectively, satisfying the conditions of transverse 

regularity (these also exist in the differential case), (2) and (3). Assume h;‘(W) = [ - 1, 0] x 

M. Letg:+x W++x Vbeanextensionofh;‘fh,:$xM++x V. Definef,: WI--+A, 

where W, = W u h,(D’ x M) c Dkf’, as follows: 

f,h,(t, x) =fh,(t, x) xEM,+~t~l 

foh(t, +u) =fh(+Tx) .YEM,o~tIJ- -_ 

f&) = Mt-, x) 5 E w. 

Note that fo( W,) n V = @ and f. = f on a neighborhood of a WI (fb will not be 

differentiable). It is clear that we may now define a map f’ : Dk+’ --f A such that 

f’lDk+’ - W, =flDk+’ - WI and f ‘I WI approximates f. closely. Obviously f’ is transverse 

regular on Vandf’-‘(V) =f(V) - M. 

Suppose n 2 2Fc + 1; we will show how to replace V by a X--connected collared sub- 

manifold of S”+’ whose boundary coincides with JV, under the assumption x~(.S”+~ - 8V) 

z n,(S’). 

First we treat the case k = 1. Let (c(r) . . , a,} be a set of generators of n,(V) and 

fi : D2 -+ S”+’ - ZV, i = 1, ,.. , r, be maps, transverse regular on V, such thatfi(S1) c int V 

represents CL~. The fi exist, as in Lemma (4), since cxi is null-homotopic in S”+’ - aV. We 

define N({a,}, {fi}) to be: 

c order rco(fi(D’) n V), 
i= 1 

and N(V) to be the minimum of the N({ai}, {fi}) f or all choices of {xi), {fi}. Note the 

following facts. 

(a) N(V) = 0 if and only if V is l-connected. 

(b) If an innermost component of fi(D2) n V is null-homotopic in V, N({ai}, {fi}) > 

N(V). 

To prove (b), we use the construction in the proof of Lemma (4) to replace fi by f; such that 

f ;(D’) n V has one less component than fi(D2) n V. 

We now show how to replace V by a new manifold V’ satisfying N(V) < N(V), if 

N(V) > 0. By (a), a finite sequence of such alterations will kill rcr(P’). 
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Choose {Yi}, {fi} SO that N({cc,}, {fi}) = Iv(V). Let x E xi(V) be represented by an 

innermost ccmpcnent cffi(D’) n V; then ct E Ker i,., for scme f, as is pointed out in the 

proof of Lemma (4). We now apply Lemma (3) to kill CL to obtain our new manifold V’. 

According to Lemma (?) of [5], nr( V’) is a quotient of x,( V) by a subgroup containing u. Let 

af E n,(V’) correspond to C(i. If we assume that the “handle” used in the construction of 

V’ meets none of thefi(D2)-including i = 1 -as we may by general position, then a slight 

deformation of thefi will yieldfj, for which N({&}, {fi}) is defined and equal to N({sci}, {fi}) 

= N(V). But an innermost ccmponent off;(D2) n V’ is null-homotopic in V’. Therefore, 

by (b), N(V) < N(V). 

Suppose k 2 2 and i,. is not a monomorphism. Let r be a non-zero element cf Ker i,.. 

Let V’ be obtained, according to Lemma (3), by killing a. Then V’ is (k - I)-connected and 

rrk( V’) is a proper quotient of nn( V). Since xk( V) is a finitely-generated abelian group, this 

procedure may be iterated only a finite number of times, after which i,. and i, , will both be 

monomorphisms. Then, by Lemma (4), V is k-connected. 

The above arguments, following an application of Lemma (2), have proved : 

THEOREM (2). Let n 2 2k + 1 and M be a closed collared n-dimensional submamfold of 

s “+*, such that H,(M) = 0 for i 5 max{l, k - 2). Then, if ni(Snf2 - M) zz ni(S’) for 

i 5 k, M bounds a k-connected collared submanifold of Snf2. 

Remark. The converse of this theorem is easy to prove, using the appropriate covering 

of S”+’ -M. 

To complete the proof of Theorem (I), we must show how to kill r+(V), when n = 2k 

or 2k - 1. We first treat the case n = 2k. Recall V is (k - I)-connected, and we assume 

k 2 2. 

LEMMA (5). Suppose V’ is obtained, as in Lemma (3), by killing u E Q(V). If a is non-zero 

and of finite order, the torsion subgroup of 7ck( V’) is strictly smaller than that of nk( V). 

Remark. If k is even, this is proved, more generally, in [4, $51. 

Proof. It follows from [4, Lemma (5.6)] (clearly valid in the PL case), that ~(v)/(a) z 

xk( V’)/(u), where (a) is the subgroup generated by c( and CL’ E rrk( V’). To prove Lemma (5), 

it suffices, by an argument in [4, p. 5191 to show Q’ has infinite order. Suppcse u is of order 

p # 0, CI’ is of order p’. 

Let g,(V,f) have a triangulation, which extends to one of Sn+’ under i’, and has, as 

subcomplexes, V x 0, V’ and disks D, D’ defined by D = Dkf ’ x y u C and D’ = y’ x 

D n+l -k, where C = “cylinder” betweenf(Sk) and fq,(S’) in W and y, y’ are interior points 
of Dn+l-k, Dkfl, respectively. Let z, z’ be cycles representing a, t(‘, respectively carried by 

I’D c V x 0 and aD’ c v’, respectively. Then pz = &z, p’z’ = ac’, where c, c‘ are chains 

carried by V x 0, V’, respectively. Also z = ac,, z’ = ac;, where cl, c; are chains carried by 

D, D’, respectively. Note that the intersection numbers c.c; = cr -c’ = c-c’ = 0, since 

VxOnD’=DnV’=VxOnY’=~,andc,~c~=fl,sincethelinkingnumberof 
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Sk x f and y’ x Dnilek in Dkf’ x Dn+lVk is i 1. Therefore the intersection number 

(c - pc,)*(c’ - p’c;) = kpp’. But the intersection number of two cycles in Snf2 must be 

zero ; since p # 0, p’ = 0. 

LEMMA (6). Let T c TC~( Y) be the torsion subgroup. If i,.lT is a monomorphism, ker i,, 

is generated by primitive elements (see [4, p. 5161 for definition). 

Proof. Let z E ker i,.; we shall show c( is a multiple of a primitive element of ker i,.. 

Suppose u =pcc’, where r’ is primitive; if /II = i!*(‘*‘), then p/? = 0. Since i,,lT is a mono- 

morphism and rrk( Y) z rrk(V), i,.jT is an isomorphism onto the torsion subgroup of 

rck( Y). Therefore, /I = i,.(y), where p’l = 0. Let u” = Z’ - y; clearly i,.(sc”) = 0 and 2” is 

primitive. Since ~2” = px’ = rl, this completes the proof. 

Suppose i,.jT is not a monomorphism, for some t. We will describe an alteration of V 

which results in a new (k - 1)-connected submanifold V’ of S”‘*, with dV’ = av, and 

satisfying: 

(i) The torsion subgroup T’ of rrk( F”) is strictly smaller than that of rtk( V), and 

(ii) Ker i,, (on V’) contains no primitive elements. 

By (i), after a finite number of such alterations, we shall have i,.jT’ is a monomorphism, for 

t = 0, 1. But, by (ii) and Lemma (6), this means x~( V’) = 0. We have only to describe the 

required alteration to complete the proof of Theorem (1), when n is even. 

Since i,.lT is not a monomorphism, we may, by Lemma (3), kill a non-zero element of 

ker i,.jT. By Lemma (5), this results in a manifold with strictly smaller torsion subgroup of 

rrk . Next we examine the primitive elements of ker i,.; if there is one, we may kill it and, by 

[4, p. 5161, this reduces the rank of rrk by one but does not alter the torsion. Thus we may 

kill all the primitive elements of ker i,.; the resulting manifold V’ clearly satisfies (i) and (ii). 

Now suppose n = 2k - 1; then V is (k - I)-connected and n,(V) is free abelian. 

Let ci E ker i,.; then ~1’ = pz, where u is primitive. Since rtk( Y) z rrk(V), u E ker i,. . Let 

v’ be obtained by killing CL, by Lemma (3); we shall determine nJ v). Note that Lemma (3) 

tells us that CI is represented by an imbedded collared sphere; in particular, the self-inter- 

section number u-3 = 0. Since u is primitive and the intersection pairing of V is non- 

singular, there exists p E rrk( V) such that u .fi = 1. Now, by an argument of [4, p. 5271 and 

L5, p. 541, %(v) = nk(V)/(a, ,8), where (a, p) is the subgroup generated by u and /?. 

We see that, whenever ker i,. # 0, we can reduce the rank of nk( V). Eventually i,. will 

be a monomorphism for t = 0, 1; by Lemma (4), nk( V) = 0. This completes the proof of 

Theorem (1). 

07. 

We conclude by proving the promised unknotting theorem. 

THEOREM (3). Let M be a homotopy n-sphere imbedded in SnC2 such that Sn+’ - M is 

homotopy equivalent to S’. Then, if n 2 5 there is an isomorphism h of S”’ onto itself 

such that h(M) is the standard S” c Snf2. If n = 4, the conclusion follows if we assume that 

M is already isomorphic to S”. 
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ProoJ By Theorem (l), M bounds a contractible submanifold V of S”+‘. By [2, 

Theorem (3. l)], we may assume V has a compatible differential structure; if n = 4, it follows 

from an unpublished result of Cerf, that M is diffeomorphic to S4. By a result of [7], V is 

now diffeomorphic to D”+‘, since dV is simply-connected and, if n = 4, is diffeomorphic 

to S4. Therefore V was already isomorphic to D”+‘. The theorem now follows from 

[fi Theorem (B)] and [l 1, p. 3541. 
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