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UNKNOTTING SPHERES IN CODIMENSION TWO

J. Leving?

(Received 16 January 1964}

§1.

IT 1S A CLASSIC PROBLEM to give a homotopy theoretic criterion for an imbedding of the
n-sphere S" into a higher dimension m-sphere to be “‘equivalent” to the standard imbedding.
To make the problem more precise, one usually chooses to work in one of three categories:
differential, piecewise-linear or topological. Then, the concept of a (locally-flat) submanifold
of S™ and of isomorphism (i.e. diffeomorphism, piecewise-linear homeomorphism or
homeomorphism) is well-defined and the problem may be stated as follows. Let M be a
submanifold of S™, isomorphic to S"; is there an isomorphism h of S™ such that
AM)=S"<=S™?

Many results are known. In the differential category, if 2m > 3(n + 1), h always
exists, while if 2m < 3(n + 1), it may not [1, 18 and 16]. In the piecewise-linear and topo-
logical categories, h always exists if m — n = 3 [11, 12, 8 and 15]. Finally, in the topological
category, if m —n =2 and n 2 3, h exists if and only if S™ — M is homotopy equivalent to
S* [8]. It is the main aim of this paper to examine the case m — n = 2 in the piecewise-linear
and differential categories and show that this criterion is the correct one here also; it is
necessary to exclude a few low values of n and, in the piecewise-linear situation, impose a
condition of semi-local flatness.

The proofs will use the concept of spherical modifications [4, 5] and will follow almost
identical lines. To avoid repetition, therefore, we will work, simultaneously, in the differen-
tial and piecewise-linear categories. Unless stated otherwise, our manifolds, submanifolds,
mappings, imbeddings and isotopies will be understood to be differential or piecewise-linear,
consistently. All our statements will be treated, accordingly, as referring to the differential
or piecewise-linear category. All manifolds will be orientable.

§2.

Denote by D* the unit k-disk or a k-simplex in the differential or PL category, respec-
tively, and S*~' = dD* Let X be a manifold and M a submanifold of X. We say M is
collared if there is an imbedding A : M x D*— X, where k& = dim X — dim M, such that
h(x,0) = x, for xe M. We say A is a collar of M.

1 The author is a National Science Foundation Postdoctoral Fellow.
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10 J. LEVINE

The main theorem of this paper will be:

THEOREM (1). Let n = 4; suppose M is a homology n-sphere imbedded as a closed collared
submanifold of S"*2. Then, if S"** — M is homotopy equivalent to S*, M bounds a contractible
submanifold of S"*2.

§3.

We will need to use the notion of transverse regularity in our proof. It is, therefore,
necessary to devote some attention to the piecewise-linear situation.

Let A be an unbounded PL-manifold, ¥ a collared PL-submanifold. Let M be a com-
pact PL-manifold and f: M — A a PL-map such that f(M) n 3V = . We say f is trans-
verse regular on V if f~Y (V)= N, a collared PL-submanifold of M, with N < éM and
codim N = codim ¥ = k, and there are collars #; of N, h, of V such that:

(1) h,l6N x A* is a collar of N in 0M,
@) Fh(N x A% < hy(V x A%) and

(3) k3 'Yfhy 1 N x A*— V x A* is level-preserving, i.e. 3 mapping f; : N x A*—~ ¥V so
that A5 'k (x, t) = (fi(x, 1), 1).

Lemma (1). Let A, V, M as above and f: M — A a PL-map which is transverse regular
on V in a reqular neighborhood B [10] of M and such that f(M) n 0V = . Then f can
be approximated by a PL-map f': M — A which is transverse-regular on V and such that
f1B=f|B.

Proof. First consider the case 4 = R*, V' =0. A PL-map f: M — R* is transverse
regular at O if and only if there exist admissible triangulations K of M and L of R* such
that 0 is an interior point of a k-simplex of L and f is simplicial with respect to X and L.
That the existence of such X and L imply transverse regularity we leave to the reader, or see
[14]. Suppose f is transverse regular and h, : N x A~ M, h,: A*— R* are collars as
described above. Choose admissible triangulations K; of M, L, of R* such that f is
simplicial with respect to X, and L, and the A; are simplicial with respect to X, or L; and
admissible triangulations of N x A* or A*. Let A} be a rectilinear k-simplex such that
0 eint Af = A% < int A¥; let N, be an admissible triangulation of N. Now define K and L
as follows. On M — (N x A¥)let K = K;; on R* — hy(A¥), let L=L,. On k(N x Af), we
carry over the product complex N, x A¥; on h,(A¥), we carry over A¥. Note that [ is
simplicial with respect to these partial triangulations; it is an easy exercise to extend these
triangulations over M and R* so that fis still simplicial. Note that we can choose L as fine
as desired.

Now consider triangulations K; of B and L of R* such that O is an interior point of a
k-simplex of L and f|B is simplicial with respect to X; and L. We can extend K| to a trian-
gulation K of M. A theorem of [I13] provides a simplicial map f': K— L such that
f'|K, = fIK, and, by choosing L fine enough, /" may be made to approximate f as close as
desired.
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Now consider the general case. Letg, be a collar of ¥in A such that g,(¢V x A*) n f(M)
=gf. Now f~}(V) cintf~g,(A* x V); let E be a regular neighborhood of f~(¥) in
flg,(A* x V). Consider g;'f=¢ :E—A*x Vandlet p: A*x V> A, p' : A" x V>V
be the projections. Now pg’ : E— A* is transverse regular at 0 on a regular neighborhood
B’ of 0F, where En B < B'; let ¢ : E— A* be a transverse regular approximation to pg’,
which coincides with pg’ on B’. Thus we have in E a collar g, of N = ¢~!(0), a PL-sub-
manifold of M, and a collar  of 0 in A* such that @g,(t, x) = y(¢) for t € D*. Now define
g E— A" x V by g(x) = (p(x), p’g’(x)). Clearly g =g  on B’ and pgg,(t, x) = y(t). Now
define /' : M — A by f|E = g,9, f|M — E = f|M — E. To exhibit the transverse regularity
of /7, we define collars h,, h, of N, ¥V by h; = g, and h,(¢, x) = g,(Y1, x).

We remark that the differential version of Lemma (1) is proved in [9].

§4.

LeMMA (2). Let M be a closed collared n-submanifold of S"**. Then, if H\(M) =0,
M bounds a collared submanifold of S"*2.

Proof. Let g be acollar of Mand X = S™*? — g(D* x M). Letf:3X — S' be defined
by projection on the “fiber””. Note that f is transverse regular at every point of S*. The only
obstruction to extending f over X is in H*(X,0X;Z)~ H(M;Z)=0. If we choose
p e S, it follows from Lemma (1) or [9] that we may choose an extension f* which is trans-
verse regular at p. Now f'~!(p) is a collared submanifold of S"*? with boundary f ~'(p).
We can easily alter this to obtain the desired submanifold.

Let ¥ be a compact manifold and 4 : ¥ — I a mapping satisfying A7(0) = V. Define
W < ¥V x R as the set of points (x, t) satisfying }7| £ A(x); then W is a submanifold of
V x R (with a “corner” at 8V x 0, in the differential case). Note that dW =V, v V;,
where V, consists of the points (x, (2t — A(x)) and Vo n V|, = 0V, =6V, =3V x 0. Let
@,: V= V, be the isomorphism defined by ¢, (x) = (x, 2t — 1)i(x)).

If V is a collared submanifold of an unbounded manifold 4, of codimension one, then
there is an imbedding i : W — A satisfying i(x,0) =x forxe V. Let Y =4 — i(W); then ¥
is homotopy equivalent to 4 — ¥V and dY = i(6W). Define i, =ip,: V> Y.

Suppose f: S*¥ x D"*17¥ 5 int ¥ is an imbedding. We define 8,(V, f) = W D**! x
D"tk where the “handle” is attached by the imbedding ¢, f (in the differential case, the
corners are rounded at S* x $"7%); 6,(V, f) is a manifold (with a comer at 8% x 0, in the
differential case). Note that 30V, f)=V,u V', where s=1t+ 1, V' is isomorphic to
¥(V,f), in the notation of [4] (extended, in the natural way, to the PL case), and
oV' =8V, = dV x 0.

For the remainder of this paper, we assume 4 = S**2, V, a collared submanifold of
S"*2 has dimension 7+ 1 and is (k — 1)-connected where & = 1, and 0¥ is homology
(k — 2)-connected. By Alexander duality and the van Kampen and Hurewicz theorems, it
follows that Y is (& — 1)-connected and, if £ = 2 and H,_(0V) =0, n(Y) = m (V).
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Lemma (3). Suppose (i) nz2k+1 or (i) n=2k or 2k —1 and nz4. Then, if
aen (V) and i,(x) =0, i can be extended to an imbedding i’ : 0V, f)— S"*? where
f:18% x D17 int V is an imbedding representing .

Remark. Clearly i'(V") will be collared in 4 and i'(¢V") = V.
Proof. We begin by constructing an imbedding ¢’ : D**! — Y such that:
gD N Y =g(D) n ¥V, =g'(5h,

and the intersection is normal in the differential case, and ¢'|S* = i,/*, where f": S* > int ¥
represents «.

In the PL situation we can apply the results of [3] to first construct f” and then extend
i,f" over D**!. In the differential situation we can, in the same way, use the results of [1]
but, unfortunately, this does not cover the case n = 5 under hypothesis (ii). Instead we use
the following argument.

Let «' € n,(0Y) correspond to « under the inclusion ¥V, < Y (identifying V, with V).
Since i,.(«) = 0, ¢’ is the boundary of an element f’ e n,,,(Y,3Y). Now Y and dY are
I-connected because k¥ = 2 in hypothesis (ii). Since (S"*2,i{(W)) is k-connected, it follows by
excision that (Y, ¢Y) is k-connected. We can, therefore, apply Lemma (1) of [17] to obtain
an imbedding g” : D**! — Y, representing f’, such that g"(D**!) meets Y normally along
g"(S*—we assume the corners at 3V, are straightened. But we also need that g"(S¥) < ¥,
representing «. Now V, is l-connected and (V, V) is homology (k — 1)-connected; thus it
follows by excision that (0¥, V,) is (k — 1)-connected. We can then apply Lemma (2) of
[17] to isotopically deform g”(S*) into V, to represent «. An application of the isotopy
extension theorem to g” yields the desired g'.

We now would like to extend g’ to an imbedding g: D**! x D"*!~* ¥ such that
gD x D" A 3Y = g(S* x D"*1%) < i(int V,) (and, in the differential case, the
intersection is normal). A tubular neighborhood of g’( D¥*!) in Y will satisfy these require-
ments in the differential case. In the PL case, choose a regular neighborhood X of g'(D**1)
in Y such that X ndY=0XndY ci(int V,) and X n @Y is a regular neighborhood of
(8% in 8X. Tt follows from [12] that (8.X, g'(S¥) is isomorphic to (3.D"*2, dD**'). There-
fore, by [10], (X, X n 8Y) is isomorphic to (D¥T! x D"*17k Sk« pr+i=%) We may now
define £ by o,f = g|S* x D1 7%

We will say i’(V") is obtained by killing «.

Lemma (4). Suppose () i (V) — n{Y) is a monomorphism for t =0, 1 and (it)
n(int V) — (A — 8V) is zero. Then m (V) = 0.

Proof. Leta e m(V); by (ii) there isa mapping f: D**! — 4 — 0V such that f(S*) < int ¥
and f|S* represents «. We may assume £ is transverse regular on V; in fact, define fin a
neighborhood of S* first, using a collar of ¥, and then extend over D**! and apply Lemma (1)
or [9]. Thus f (V) is a, not necessarily connected, k-submanifold of D**!. We will show
how to remove a component of f ~!(¥) n int D**?, whenever one exists, leaving f]S* fixed.
By a sequence of such modifications of f, we will have f ~(¥) = S¥; by transverse regularity
of £, this implies i,.(«) = 0, for some ¢. By (i), we will have « = 0.
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Suppose f~1(V) nint D! # ¢F; choose an innermost component M, i.e. such that
there exists a connected submanifold W of int D**! such that W =M and W n f~1(V) =
M. Consider f|M : M — V; we first show that f|M extends over W. In fact, the only
obstruction to such an extension is the primary obstruction g e H**{(W, M; n (V) = n(V),
since ¥ is (k — 1)-connected. Now i,.(8) € m,(Y) is the primary obstruction to extending
i,fIM: M~ Y, since Y is (k — 1)-connected. Since W n f~ (V)= M and f is transverse
regular on V, it is clear that i, f|M dces extend over W, for some . Thus 7,.(f) = 0; by
(i), this implies § = 0.

Let h;, h, be collars of M,V respectively, satisfying the conditions of transverse
regularity (these also exist in the differential case), (2) and (3). Assume 47 (W) =[-1,0] x
M. Letg:4 x W—4x Vbeanextensionof h; fh; 1L x M —4 x V. Definefy: W, — A4,
where W, = WU k(D' x M) = D**?, as follows:

Sohi(t, x) = fh(t, x) xeM, +<t=1
So(t, ) =fh(},x) xeMO0=ts4
Jolx) = hy9(, x) xeW.
Note that fo(W,)n V= and f, =/ on a neighborhood of dW, (f, will not be

differentiable). Tt is clear that we may now define a map f': D**' > A such that

[ D" — W, = f|D*** — W, and f'| W, approximates f, closely. Obviously f” is transverse
regular on ¥ and /" ~'(V) = f(V) — M.

§s.

Suppose n = 2k + 1; we will show how to replace ¥ by a k-connected collared sub-
manifold of $"*2 whose boundary coincides with 8¥, under the assumption 7,(S"*? — éV)
~ m{Sh).

First we treat the case k = 1. Let {«;,...,«} be a set of generators of z,(¥V) and
fi:D?*— S"*2 _§V,i=1, ..., r, be maps, transverse regular on ¥, such that f(S') < int ¥
represents a;. The f; exist, as in Lemma (4), since «; is null-homotopic in S"*? — 3V. We
define N({«;}, {f;}) to be:

i order no(fi(D?) N V),
i=1

and N(¥) to be the minimum of the N({«,;}, {/;}) for all choices of {«;}, {f;}. Note the
following facts.

(a) N(V) =0 if and only if ¥ is l-connected.

(b) If an innermost component of f;(D?) n V is null-homotopic in ¥, N({a;}, {f;}) >
N(V).
To prove (b), we use the construction in the proof of Lemma (4) to replace f; by f{ such that
/1(D* n V has one less component than f,(D?) n V.

We now show how to replace ¥ by a new manifold ¥V’ satisfying N(V") < N(V), if
N(¥) > 0. By (a), a finite sequence of such alterations will kill =,(V).
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Choose {«;}, {f;} so that N({e;}, {fi}) = N(¥V). Let aen (V) be represented by an
innermost ccmpenent cf £;(D?) n V; then « € Ker {,., for scme 1, as is pointed out in the
proof of Lemma (4). We now apply Lemma (3) to kill « to obtain our new manifold V.
According to Lemma (2) of [5], n, (V) is a quotient of n,(¥) by a sutgroup containing «. Let
o; € T (V') correspond to «;. If we assume that the “handle” used in the construction of
¥’ meets none of the f;(D*)—including i = 1—as we may by general position, then a slight
deformation of the f; will yield f, for which N({e;}, { f}) is defined and equal to N({«;}, { fi})
= N(¥). But an innermost ccmponent of f{(D*) n ¥ is null-homotopic in ¥’. Therefore,
by (b), N(V') < N(V).

Suppose k£ = 2 and i,. s not a moncmorphism. Let z te a non-zero element cf Ker i ..
Let V' be obtained, according to Lemma (3), by killing «. Then ¥’ is (k — 1)-connected and
(V") is a proper quotient of n,(¥V). Since (V) is a finitely-generated abelian group, this
procedure may be iterated only a finite number of times, after which J,. and #;. will both be
monomorphisms. Then, by Lemma (4), V' is k-connected.

The above arguments, following an application of Lemma (2), have proved:

THEOREM (2). Let n =2k + 1 and M be a closed collared n-dimensional submanifold of
S"*2 such that H(M)=0 for i £max{l,k —2}. Then, if n(S"*? — M) =~ n(S) for
i £ k, M bounds a k-connected collared submanifold of S"*?.

Remark. The converse of this theorem is easy to prove, using the appropriate covering
of "t — M.

§6.
To complete the proof of Theorem (1), we must show how to kill n,(V), when n = 2k

or 2k — 1. 'We first treat the case n = 2k. Recall V is (k — 1)-connected, and we assume
k=2

LemMa (5). Suppose V' is obtained, as in Lemma (3), by killing a € n (V). If « is non-zero
and of finite order, the torsion subgroup of m (V") is strictly smaller than that of m, (V).

Remark. If k is even, this is proved, more generally, in [4, §5].

Proof. 1t follows from [4, Lemma (5.6)] (clearly valid in the PL case), that 7, (V)/(&) =
7, (V") /(«"), where () is the subgroup generated by « and «' € m,(V"). To prove Lemma (5),
it suffices, by an argument in [4, p. 519] to show &’ has infinite order. Suppese « is of order
p # 0, o’ is of order p’.

Let 6,(V,f) have a triangulation, which extends to one of S"*2 under i’, and has, as
subcomplexes, ¥ x 0, V' and disks D, D’ defined by D= D**! x yu C and D' =)' x
D"t 1 % where C = “cylinder” between f(S*) and fo,(S*) in W and y, ) are interior points
of D"*17k D**1 respectively. Let z, z° be cycles representing o, o', respectively carried by
0D <V x0 and 6D’ < V', respectively. Then pz = d¢, p'z’ = dc’, where ¢, ¢’ are chains
carried by ¥ x 0, V7, respectively. Also z = d¢,, z/ = dc}, where ¢, ¢} are chains carried by
D, D', respectively. Note that the intersection numbers c-¢] =c¢;¢’ =c¢-¢’ =0, since
VxO0nD=DnV =Vx0nV =, and ¢,-c¢]; = +1, since the linking number of
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S*x y and ¥ x D"TU7K in DYl x D"t is +1. Therefore the intersection number
(¢ = pe))-(¢’ = p'cl)=+pp’. But the intersection number of two cycles in S"*? must be
zero; since p # 0, p' =0.

LeEMMA (6). Let T < n (V) be the torsion subgroup. If i,.|T is a monomorphism, ker i,.
is generated by primitive elements (see [4, p. 516] for definition).

Proof. Let a € ker i,.; we shall show « is a multiple of a primitive element of ker i,..
Suppose o = pa’, where %’ is primitive; if § =/,.("), then pf =0. Since /,.|T is a mono-
morphism and m,(Y) =~ =(¥), i,.|T is an isomorphism onto the torsion subgroup of
n.(Y). Therefore, f§ = i,.(y), where py =0. Let «" = o’ — y; clearly /,.(x") =0 and 2" is
primitive. Since pa” = pa’ = «, this completes the proof.

Suppose i,4 T is not a monomorphism, for some ¢. We will describe an alteration of V
which results in a new (k — 1)-connected submanifold ¥’ of S"*2, with ¢V’ =&V, and
satisfying:

(i) The torsion subgroup 7" of n, (V") is strictly smaller than that of =, (¥), and

(i) Ker i, (on V) contains no primitive elements.

By (i), after a finite number of such alterations, we shall have /,.]7” is a monomorphism, for
t =0, 1. But, by (ii) and Lemma (6), this means 7,(}") = 0. We have only to describe the
required alteration to complete the proof of Theorem (1), when n is even.

Since i,.[T is not a monomorphism, we may, by Lemma (3), kill a non-zero element of
ker /,.]7. By Lemma (5), this results in a manifold with strictly smaller torsion subgroup of
7, . Next we examine the primitive elements of ker i,.; if there is one, we may kill it and, by
[4, p. 516], this reduces the rank of , by one but does not alter the torsion. Thus we may
kill all the primitive elements of ker /,.; the resulting manifold V" clearly satisfies (i) and (ii).

Now suppose n =2k — 1; then V is (k — 1)-connected and =, (V) is free abelian.
Let o € ker i,.; then o' = px, where « is primitive. Since m(Y)~ n(V), « € ker i,.. Let
¥’ be obtained by killing «, by Lemma (3); we shall determine n,(¥”). Note that Lemma (3)
tells us that « is represented by an imbedded collared sphere; in particular, the self-inter-
section number «-« = 0. Since « is primitive and the intersection pairing of ¥ is non-
singular, there exists 8 € m, (V) such that «-§ = 1. Now, by an argument of [4, p. 527] and
(5, p. 54], m (V") = 7 (V)/(«, B), where («, ) is the subgroup generated by « and S.

We see that, whenever ker i,. # 0, we can reduce the rank of =, (V). Eventually /,. will

be a monomorphism for ¢t =0, 1; by Lemma (4), n,(¥) = 0. This completes the proof of
Theorem (1).

§7.
We conclude by proving the promised unknotting theorem.
THEOREM (3). Let M be a homotopy n-sphere imbedded in S"** such that S"** — M is
homotopy equivalent to S'. Then, if n = 5 there is an isomorphism h of S"*? onto itself

such that h(M) is the standard S" < S"*2. If n = 4, the conclusion follows if we assume that
M is already isomorphic to S".



UNKNOTTING SPHERES IN CODIMENSION TWO

Proof. By Theorem (1), M bounds a contractible submanifold ¥ of S"*2. By [2,

Theorem (3.1)], we may assume ¥ has a compatible differential structure; if n = 4, it follows
from an unpublished result of Cerf, that M is diffeomorphic to S*. By a result of [7], V is
now diffeomorphic to D"*!, since ¢V is simply-connected and, if n = 4, is diffeomorphic

to

(6,

7.

E.
. E.

S*. Therefore V was already isomorphic to D"*!. The theorem now follows from
Theorem (B)] and {11, p. 354].
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