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Inventiones math. 8, 98 -110 (1969) 

Invariants of Knot Cobordism 
J. LEVINE*(Waltham, Mass.) 

1. In [2] certain abelian groups, G + ~md G _, are introduced in order 
to study the cobordism groups Cn' of knotted n-spheres in (n+2)-space, 
for odd n. It is shown that C2n_l~G. for 8=(-1)" and n~3, C3 is iso­
morphic to a subgroup of G + of index 2 and Cl has G _ as a quotient 
group. In this work we shall construct a complete collection of numerical 
invariants on G •. As a consequence, for example, it will be shown that 
every element of G. has order 1,2,4 or 00, and there are elements of all 
these orders. In fact, G£ is a sum of an infinite number of cyclic groups of 
each of these orders. 

We will rely heavily on techniques and results of Milnor [4]. 

2. We recall the definition of G •. Let A be a square integral matrix 
satisfying: 

determinant (A + 13 AT) = ± 1 

where 13= ± 1; such matrices will be referred to as 8-matrices. The Alexander 
polynomial of A, L1 A (t), is defined to be determinant (tA+AT) - note 
this differs from [2]. We will say A is null-cobordant if A is congruent 
to a matrix of the form: 

where B, C and D are square matrices and 0 is the zero matrix. Two 
l::-matrices Al, A2 are cobordant if the block sum Al EB (- A 2) is null­
cobordant. Then cobordism is an equivalence relation and block sum 
induces the structure of an abelian group on the set G. of cobordism 
classes (see [2]). 

3. Consider now square matrices A, with entries in a field F satisfying: 

(A - AT)(A + AT) is non-singular. 

We will refer to such matrices as admissible. 

Defining cobordism as in § 2, it follows similarly that cobordism is an 
equivalence relation among admissible matrices (see [2, Lemma 1] -
the same argument works for matrices over a field) and the set GF of 
cobordism classes becomes an ahelian group under block sum. 

* This research was done while the author was partially supported by NSF Grant 8885. 



Invariants of Knot Cobordism 99 

There are obvious homomorphisms G.-+GQ, since A+eAT uni­
modular implies A - e AT has odd determinant. These are, in fact, mono­
morphisms, since, by the argument of [2, Lemma 8J, an integral matrix 
A is null-cobordant over the integers if and only if it is null-cobordant 
over the rationals. Thus, it will suffice to construct a complete set of 
invariants on GQ. 

We define, for any admissible matrix A, the Alexander polynomial 
L1A (t)= det(t A + AT). Note that L1 A (1) L1A (-1)+0. 

4. We will deal with several related notions of (algebraic) cobordism. 
From now on F will be a field of characteristic zero and < , > a non­
degenerate quadratic form on a finite-dimensional vector space V over F. 
We will add quadratic forms by orthogonal sum .l (see [5J). We will say 
< ,> is null-cobordant if V contains a totally isotropic subspace of half 
the dimension of V. Two quadratic forms < , ) and < , )' are cobordant if 
< , ).l ( - < , )') is null-cobordant. This is an equivalence relation. 

Precisely the same definitions can be made for Hermitian forms over 
a field with a non-trivial involution. 

5. Returning to <,) a quadratic form, determinant < , > is a well­
defined element in F/(F)2, where F is the multiplicative group of non­
zero elements in F (see [5J). Since determinant is multiplicative and a 
null-cobordant form of rank 2r has determinant (-1)', it follows that 
d«, »=( -1)' det<, > is a cobordism invariant for <, > ofrank 2r. 

If F is the real numbers, then the signature 0'«,») is defined and is 
well known to be a complete invariant of the cobordism class of < , ). 

If F is a local field (see [5J), the Hasse symbol S« , »)= ± 1 is well­
defined. To convert this to a cobordism invariant we define 

r(r+3) 

Jl« ,»)=( -1, -l)-Z-(det<,), -1)' S« ,») 

where (,) is the Hilbert symbol for F and < , ) has rank 2r. Using the 
additivity formula (see [5J): 

S « , ) .l < , ) ') = S « , » S « , ) ') (det < , ), det < , > ') 
and properties of the Hilbert symbol, it is a straightforward exercise to 
show that Jl is a cobordism invariant. Note that < , > is null-cobordant 
if and only if it is a sum of "hyperbolic planes" (see [5J). It follows from 
the classification of quadratic forms over local fields [5J that d and Jl are 
complete invariants of cobordism class. 

6. Let F be a field, < , > a non-degenerate quadratic form on a finite­
dimensional vector space V over F, and T an isometry of V. We shall 
refer to the pair « , ), T) as an isometric structure. We can add isometric 
8 Inventiones math .• Vo!. 8 



100 J. Levine: 

structures by orthogonal sum of the forms and direct sum of the iso­
metries. 

An isometric structure «,), T) is null-cobordant if V contains a 
totally isotropic subspace, invariant under T, of half the dimension of V. 
Two isometric structures «,), T) and «,), T') are cobordant if 
«,), T)..L (- <, )', T') is null-cobordant. This is readily checked to be 
an equivalence relation; cobordism classes form an abelian group. 

7. Let « ,), T) be an isometric structure; let AT(t) be the charac-
teristic polynomial of T. 

Lemma. (a) If d=rank<,)=degreeAT(t), then, for some aEF, 
AT(t)=atdAT(t- 1 ). If AT(I)=l=O then a=l; if AT(I)AT(-I)=l=O, then d 
is even. 

(b) If (C), T) is null-cobordant, then AT(t)=cte B(t)B(t- l ), where 
d = 2e, B(t) is a polynomial of degree e and CEF. 

(c) If AT(I) AT( -l)=l=O, then detC )=AT(l) AT( -1)EF/CF)2. 

Proof Let S, Q be matrix representatives of T and < , ) respectively -
then ST QS=Q. Now 

AT(t)=det(t- S}=det(t- ST)= det(t- Q S-1 Q-l) 

= det(t- S-l)= det( - t S-I(t-l- S») 

= td det( - S-l} AT(t-l). 

This proves the first statement of (a). Substituting t= 1, we have AT(I)= 
aA T(I); if AT(I)=l=O, then a=l. If we now substitute t= -1, we have 
AT( -1)=( _1)d AT( -1); if AT( -l)=l=O, then d is even. This proves (a). 

To prove (c), we first observe that, by a straightforward computation, 
Q(1 + S)(1- S)-l is a skew-symmetric matrix. It follows that 

det(Q(1 + S)(I- S)-l) = (det < , » AT( - 1)/ AT(I) 

is square, which implies (c). 
We now prove (b). Suppose « , ), T) is null-cobordant. Let VI' •.• , vn ; 

W1""'Wn be a "symplectic" basis of V i.e. <l';,uj)=<w;,wj)=O and 
<v;, wj ) =bij, such that the subs pace spanned by VI' ••• , Un is invariant 
under T. Then T is represented by a matrix of the form 

where A, B, C are square matrices. If A = (a;j)' then aij= <Tv;, wj) = 
<vi! T- l w), which is the (j, i)-entry of B- 1• Thus B- 1 =A l' and (b) follows 
easily. 
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8. Let GF be the group of cobordism classes of isometric structures 
«, >, T) satisfying AT(l) AT( -1)=1=0. Recall GF from § 3. 

Theorem. GF ~ G F' 

We first need: 

Lemma. Any admissible matrix with entries in any field F is cobordant 
to a non-singular admissible matrix. 

Proof We will show that a singular matrix A is cobordant to a 
smaller matrix. By elementary row operations on A, we may assume the 
first row is zero - the corresponding column operations can then be 
performed and the first row is still zero. By further elementary row 
operations, not involving the first row, we may assume that the first 
column is zero, except perhaps in the second row. The corresponding 
column operations will not change the first row or column. 

So we find A is congruent to a matrix of the form 

o ... 0) 
a b M 

! NI:, 
where, if A is an (n + 2) x (n + 2) matrix, then M, Nand B are, respectively, 
1 x n, n x 1 and n x n matrices and a, b are scalars. If A is admissible, it 
is easy to see that a +0 and B is admissible. 

Claim. A is cobordant to B. 
By forming the block sum with - B, it suffices to show that A is null­

cobordant if B is null-cobordant. Suppose P BpT has all zeroes in its 
upper left quadrant. Define 

It is straightforward to check that QAQT has all zeroes in its upper left 
quadrant. 

9. Let A be a non-singular admissible matrix. Define two new matrices 
B= _A-1AT and Q=A+AT. It is readily verified that BTQB=Q and 
the congruence class of A determines the congruence class of Q and the 
similarity class of B. It follows that (Q, B) are matrix representatives of a 
8" 



102 J. Levine: 

well-defined isometric structure « , ), T). Moreover if A is null-cobordant, 
so is «,), T). Notice that 

where cEF 

since tA+AT =A(t+A- 1A T)=A(t-B). Thus A admissible means 
AT(l) AT ( -l):j::O and « , ), T) defines an element ofGF . The correspond­
ence A -. (Q, B) is additive and invertible since we may solve for A by the 
formula: 

We also find: 
A-AT =Q(l-B)-I(l +B). 

Thus if AT(l)AT( -l):j::O, A is admissible. This establishes the desired 
isomorphism. 

10. We have reformulated our problem into an investigation of GF , 

and especially G Q • 

Let «,), T) be an isometric structure over F. Let A=F[t, t- 1] be 
the ring ofLaurent polynomials over F. We will consider the vector space 
on which ( ,) and T are defined as a A-module, defining the action of t 
by T. If A(t) is an irreducible factor of AT(t), we denote by V;. the A(t)­
primary component of V: 

V;. = Ker A(tf, for N large. 

Then V is the direct sum of the {V;.}. 

Lemma. Let A(t), p(t) be irreducible factors of AT(t). Then V;. is ortho­
gonal to ~ if A(t) and Jl(t-l) are relatively prime. 

See [4, Lemma 3.1] for a proof. 

11. It follows from Lemma 7(a), that A(t) is an irreducible factor of 
AT(t) if and only ifA.(t- 1) is. We will say A(t) is non-symmetric or symmetric 
as A(t) is, or is not, relatively prime to A(t- 1). Then, it follows from 
Lemma 10, that V splits into the orthogonal sum of two types of sub­
module: 

(i) V;., where A(t) is symmetric, and 
(ii) V;. Ef> V1 , wherd(t)is non-symmetric and X(t)isdefined to bd(t- 1). 

The restriction of « ,), T) to each of these summands gives an 
isometric structure, and it follows from Lemma 11 that those of type (ii) 
are null-cobordant. Furthermore « , ), T) is null-cobordant if and only 
if its restriction to each Vt is null-cobordant, since the restrictions of ( , > 
are non-degenerate and any submodule of V is a direct sum of sub­
modules of the {V;.}. 
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We may rephrase these observations as: 

Lemma. For every irreducible symmetric polynomial ..t(t), let G). be the 
subgroup of GFdetermined by «,), T)forwhich ,1T(t) is a power of ..t{t)­
note ..t{t)=t=t+ 1 or t-1. Then GF is the direct sum of the {G).}. 

12. We now prove: 

Lemma. Let «,), T) be an isometric structure with characteristic 
polynomial ..t(tt, where ..t{t) is symmetric and irreducible, e>O. Then 
« , ), T) is cobordant to an isometric structure with minimal polynomial 
..t{t) - or null-cobordant. 

Proof Suppose the minimal polynomial of T is ..t{t)a, where a> 1. We 
show that « , ), T) is cobordant to an isometric structure with minimal 
polynomial ..t{t)b, for some b<a. An iteration of this process will prove 
the lemma. 

Let W=..t{T)a-l V=t=O. Now W is totally isotropic since (A{Tt- 1 v, 
..t{T)a-l w) = <v, u..t (T)2a-2 w) = 0, where u is a unit in A, since 2a - 2 ~ a 
if a> 1. Let WJ.. be the orthogonal complement of W in V; then W.L is a 
submodule and Wc W.L. The quotient module WJ../W inherits an iso­
metric structure « , )" T') from « , ), T) and the minimal polynomial 
of T' is ..t{tt, where b<a. Now the lemma follows from: 

13. Lemma. Let «,), T) be an isometric structure on V and W a 
totally isotropic subspace of V, invariant under T If « , )', T') is the iso­
metric structure on WJ../W inherited from «,), T), then «,), T) and 
« , )', T') are cobordant. 

Proof Consider the subspace Vo of V EB (W J.. /W) consisting of all pairs 
(v, w), where v E W J.. and w is the coset of v in W.L /W It is readily checked 
that Vo is a totally isotropic invariant subspace, with respect to the 
isometric structure «,), T).l( -<, )', T'), of half the dimension of 
VEB(W.L/W). 

14. We may immediately deal with a special case: 

Proposition. Suppose «,), T) has characteristic polynomial ..t{t)e, 
where ..t{t) has degree two. Then « , ), T) is null-cobordant if and only if 
< , ) is null-cobordant. 

Proof Write ..t{t)=t2 +at+ 1; by Lemma 12, we may assume..t{t)is the 
minimal polynomial of T (if ),(t) were reducible, we could assume the 
minimal polynomial were of degree one I). Now, 

0= (..t{T)v, Tv)=(T2 v, Tv)+a(Tv, Tv)+(v, Tv) 

=2(Tv, v)+a(v, v) 
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for any ve V. Thus 
-a 

<Tv, v) =-2- <v, v). 

Since l(t) has degree two, it follows that any isotropic vector generates 
a totally isotropic submodule of V. It follows, from Lemma 13, that 
« , ), T) is cobordantto a "smaller" isometric structure if < , ) is isotropic. 
The proposition follows easily from this. 

15. Suppose « ,), T) is an isometric structure and T has minimal 
polynomial A.'(t), an irreducible symmetric polynomial. If l'(1)A.'( -1)=1=0, 
then A.'(t)=t2d A.'(t- I) - where 2d = degree l'(t) - by Lemma 7(a). Now 
define l(t)=t- d l'(t); then l(t}=A.(t- I). 

Let E be the quotient field A/(l (t)). Then E admits an involution e --+ ~ 
induced by t --+ t- I ; we also write f(t)= f(t- I), for any f(t)eA. Let Eo be 
the fixed field of e --+ e. If lo(x) is the irreducible polynomial defined by 
lo(t+ cl)=l(t), then Eo is isomorphic to the quotient field F [x]/(lo(x)). 

Milnor, in [4], associates to « , ), T) a Hermitian form [ ,] defined 
on V regarded as an E-module, satisfying: 

for IX, /3eV. 

Then « , ), T} is null-cobordant if and only if [,] is null-cobordant. If 
Vo is a totally isotropic (under <,») submodule of V, then Vo is also 
totally isotropic under [,]. For if [IX,/3] =1=0, rx.,/3eVo, and we set e= 
[IX, /3] -1, then [e IX, /3] = ~ [IX, f3J = 1 and <e IX, /3) = TraceE/F 1 =1=0 (F has 
characteristic zero). But ~ IX and /3 are both in Vo and so < ~ rx., /3) = O. 

Jacobson, in [1], defines a quadratic form { , } on V, regarded as an 
Eo-module (where Eo=F[t+ t-I]/(l(t))), by: 

{rx., /3} =t([rx., /3] + [/3, IX]) = TraceE/Eo [rx., /3]. 

Notice that <IX,/3)=TraceEo/F {rx.,/3}. Now the action T of t is an 
isometry of V with respect to {,} and the minimal polynomial (over Eo) 
of Tis t2 -xt+1, where x=t+t-1eEo_ By Proposition 14, ({,}, T) is 
null-cobordant if and only if { , } is null-cobordant. But it is easy to see 
that ({,}, T) is null-cobordant if and only if [,] is null-cobordant, since 
we can solve for [ , ] by: 

(t - t- 1) [IX, /3] = 2({t rx., /3} - t- I {rx., /3}) (l(1)l( -1)=1=0). 

16. We now apply a result proved by Milnor in [4] to obtain: 

Proposition. If F is a local field or the real numbers and « , ), T) an 
isometric structure over F with characteristic polynomial l(W, l(t) irre­
ducible symmetric, then « , ), T) is null-cobordant if and only if < ,) is 
null-cobordant and e is even. 
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Proof The necessity that e be even follows from Lemma 7 (b). 

We may assume, by Lemma 12, that the minimal polynomial of T is 
A (t). If A(t) = t ± 1, the proposition is obvious. Otherwise we may assume 
A(t)=A(t- l) - see § 15. 

In this case, Milnor proves that two isometric structures with iso­
morphic quadratic forms and the same irreducible minimal polynomial 
are isomorphic. The Proposition will now follow from the assertion that 
any E-module V of even dimension admits a quadratic form form ( , ) 
such that « , ), T) is null-cobordant, where T is defined by the action 
of t and is an isometry. Equivalently, we may construct a null-cobordant 
Hermitian E-form on V e. g. if {lXI' ... , IXn; PI' ... , Pn} is an E-basis, define 
[lXi' IXJ = [Pi' Pj ] =0, [CXi , Pj ] =bij · 

17. If(,), T) is an isometric structure over F and K is an extension 
field over F, then there is an obvious extension of( < , ), T) to an isometric 
structure over K. 

Proposition. An isometric structure over a global field F is null­
cobordant if and only if the extension over every completion of F is null­
cobordanl. 

Proof It suffices to consider an isometric structure «,), T) with 
minimal polynomial A(t) irreducible and symmetric. If A(t)=t± 1, then 
the Proposition follows from the corresponding fact about quadratic 
forms (see [5]). 

If A(t)=A(t- I ), we may consider the associated quadratic form {, } 
(see § 15) over the field Eo. Now { , } is null-cobordant if and only if the 
extension of { , } over every completion of Eo is null-cobordant, since Eo 
is, again, a global field. The completions of Eo are constructed as follows: 
let K be any completion of F and ..10 (x) = Al (x) ..12 (x) ... An (x) the decompo­
sition of ..10 (X) into irreducible factors over K; then each K[X]/(Ai(X)) is 
a completion of Eo (see [5, p.34]). Let p;(t)=Ai(t+t- I ); then A(t)= 
Pl(t) ... Pn(t) and p;(t) is either irreducible or of the form O(t) e(t-l), where 
e(t) is non-symmetric. The irreducible {Pi(t)} are all the irreducible 
symmetric factors of A(t) over K. It is easy to see that if we extend 
«,), T) over K and then restrict to the Pi(t) - primary component, the 
associated quadratic form is exactly the extension of {,} to K[X]/(Aj(X)). 
By § 11, the extension of «,), T) over K is null-cobordant if and only 
if all these extensions of { , } are null-cobordant. The Proposition now 
follows immediately. 

18. We now define a collection of cobordism invariants of an iso-
metric structure « ,), T) over a global field F. 

(a) Let A(t) be a symmetric irreducible factor of LlT(t) and define 
c .. J<,), T)=exponent of A(t) in Llr(t), mod 2. 
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(b) Let K be a real completion of F and let) a symmetric irreducible 
factor of AT(t) over K. Then define O"f « , ), T) = signature of the restric-
tion of < , ), extended over K, to the A(t)-primary component. 

(c) Let K be a non-archimedean completion of F (and, therefore, a 
local field) and A(t) a symmetric irreducible factor of AT(t) over K. Then 
define J1f«,), T)=J1 (restriction of <,), extended over K, to the A(t)­
primary component). 

Proposition. {e;., O"f, J1f} are cobordism invariants. 

Proof. For {e;.}, this follows from Lemma 7 (b). For {oD and {J1f}, 
this follows from the cobordism invariance of 0" and J1. 

19. It is clear that the {e;.} and {O";.} definehomomorphisms: e;.: GF --> Z2 
and O"f: GF --> Z, but the {J1f} are not additive. In fact they satisfy: 

Lemma. J1f(a+p)=J1f(a)J1f{P)((-lytl(I)A(-l), _1),.,t<lX)';'(P) where 
degree A(t)=2d and e;. = e(l; , where t1>(t) is the symmetric irreducible poly­
nomial over F which has A(t) as an irreducible factor over K. 

Proof. First observe the general formula: 

J1« , ).1 < , )')= J1« , » J1« , )')( -1, _1)rr' (A, -1)" (A', -1)'(A,A'), (*) 

where rank(,)=2r, rank(,)'=2r', A=det(,), A'=det(,)'. This 
follows from the definition of J1 and the additivity formula for S (§ 5). 

If«,), T) and «, )', T') are isometric structures over F representing 
C( and p, K is a non-archimedean extension of F and < , )0' < , )0 are the 
A (t)-primary restrictions of < , ), < , )' extended to K, then 

() ( )= rank<,)o (P)= rank(,)~ ( d2) 
a e;. a 2d' e;. 2d mo. 

(b) det(, )o=(A(I)A.( -1))';.('), det(, )~=(A(I)A.( -1))';.(/1) - see 
Lemma 7 (c). 

The lemma follows by substituting from (a) and (b) into formula (*). 

Notice that J1f(2a)=(( _1)d A(I)A( -1), _1)';'(lX), which is independent 
of J1f(a). 

20. If F = Q and K = R, the only archimedean completion of Q, then 
the symmetric irreducible factors A(t) of AT(t), over R, correspond to the 
roots of AT(t) of the form eiO• The invariant 0";. coincides with the invariant 
0"8 defined in [3]. It also may be verified that the invariants {a;.} are 
equivalent to the invariant 0" A (using the isomorphism GQ';:j GQ) defined 
in [2]. 

21. Theorem. {e;., O"f, J1f} form a complete set of cobordism invariants 
for isometric structures over a global field F, i.e., if a, PEGF , then a= P if 
and only if e;. (a) = e;. (P), O"f (a)= O"f (P), J1f (C() = J1f (P) for all A(t) for which 
these invariants are defined. 
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Proof We first point out that the invariants vanish on a - P if they 
are equal on a and p. This follows from the additivity of {e,t, af} and a 
straightforward exercise using Lemma 19, for Vtn. Thus, it suffices to 
show that a = 0 if and only if all the invariants are zero on IX. 

By Proposition 17, we consider IX on completions of F. On complex 
completions, every isometric structure is null-cobordant since irreducible 
polynomials have degree one and all quadratic forms are null-cobordant; 
now apply Lemma 12. On any completion, by Lemma 11, we need only 
look at the primary components. By Proposition 16, the {an are a 
complete system of invariants over the real completions. Similarly, the 
{Jlf}, together with the invariant d (see § 5) on the .l.(t)-primary compo­
nent, are a complete system of invariants over the non-archimedean 
completions. But the determinant of ( , >, on the .l.(t)-primary compo­
nent, is (.l. (1).l. ( -l))",,(a), by Lemma 7 (c). Since we are assuming e;.(IX) =0, 
it follows that d =( -1)', where 2r=K-dimension of .l.(t)-primary compo­
nent=(degree .l.(t)). (exponent of .l.(t) in L1r(t)). Since .l.(t) has even 
degree and exponent of .l.(t)=e,t(IX) (mod 2), r is even. Thus d=O. 

22. We now make a few general observations, based on Theorem 21, 
about the group GF for F a global field. 

Proposition. Suppose IXEGF • Then 

(a) IX has finite order if and only if every af(a)=O. 
(b) If IX has finite order, then 4a=0; therefore every element of GF has 

order 1,2,4 or 00. 

(c) IX has order 4 if and only if all af(IX)=O, but, for some .l.(t) over a 
non-archimedean completion K, BA(IX):f:O and ( _1)d .l.(I).l.( -1), -1)i=0. 

Proof Notice that B;.(21X)=0, for any IX, and Jlf (2 IX) =0 if B,,(IX)=O (see 
Lemma 19). Thus Jlf(41X)=O. If af(IX)=O, then all the invariants vanish 
on 41X; if af(IX):f:O, then af(klX)i=O, for any integer k. This proves (a) and 
(b). Finally (c) follows from (a), (b) and Lemma 19, since the stated 
conditions would imply Jlf(2 1X):f:0. 

23. Suppose IXEGQ is represented by an isometric structure «, >, T) 
where L1r(t)=.l.l(t)"' ... .l.K(WK and each .l.i(t) has degree 2. In this case 
many of the criteria of Proposition 22 simplify: 

Corollary. (a) If .l.i(l) .l.i( -1)<0, for all i, then IX has finite order. 
(b) If .l.i(l) .l.i( -1»0 and ei is odd, for some i, then IX has infinite order. 
(c) If IX has finite order, then IX has order 4 if and only if, for some i, and 

prime p, the following properties hold: 
(i) p= 3 mod 4. 

(ii) ei is odd. 
(iii) .l.i(l).l.i( -1)= pa. q, where a is odd and q is relatively prime to p. 
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Proof Write Aj (t) = t2 + a j t + 1; the discriminant is a; - 4 = 
- Ai(l)Aj( -1). ThusAj(t) is reducible over R ifand only if Aj(1)A;( -1)< 0 
(recall Aj(l)Aj( -1)=1=0); but then Ai(t)= t 8j(t) 8j(t- 1), where 8j(t) is un­
symmetric; and so O'.I,(a)=O. Now (a) follows from Proposition 22 (a). 

If Aj(l)Aj( -1»0, then theAj(t)-component has dimension 2e j and the 
restriction of <,) has positive determinant by Lemma 7 (c). But, in 
general, any real quadratic form with rank r and signature s satisfies: 

determinant=( _1)t(r-s) 

an easily verified formula. Thus, if ei is odd, the signature 0' A, (a) =1= 0, which 
proves (b). 

To prove (c), we apply Proposition 22(c). Since (- Aj(l)A;( -1), -1) 
=1=0, -1 must not be square in K. If K is the p-adic numbers, this means 
(i) (see [5, p. 159] and [1, p. 82]) - notice that p cannot be 2. Now condi­
tion (iii) implies that the discriminant of Ai(t) is not square in K, and, 
therefore, A-;{t) is irreducible. It remains to observe that ei=Ef,(a) mod 2 
and ( - Ai (1) Aj ( - 1), - 1) =l= 0 exactly when conditions (i) and (iii) hold (see 
[5, p. 166]). 

24. As a consequence of Propositions 22 and 23 we prove: 

Theorem. G. is the direct sum of cyclic groups of orders 2, 4 and 00, 

and there are an infinite number of summands of each of these orders. 

Proof It follows from Proposition 22 that every non-zero element of 
G. has order 2, 4 or 00. In fact the invariants {O'n induce a homomorphism 
of G. into a free abelian group and, by Proposition 22 (a), the kernel is 
precisely the torsion subgroup of G •. This implies that G. is the direct sum 
of its torsion subgroup T and a free abelian group. By Proposition 22(b) 
and [6, p.173] T is a direct sum of cyclic groups. 

It was proved in [2] that G. has infinite rank. To complete the proof 
it will suffice to construct elements {ai' PJ of G., i = 1, 2, ... , satisfying 

(i) a i is not the multiple of any other element of Ge , 

(ii) L: Ai aj = ° if and only if each Aj is even, 

(iii) L: Ai pj = 0 if and only if each Ai is divisible by 4. 

Recall (e. g., from [2]) the result that a polynomial .1 (t) can be realized 
as .1 A (t) for some E-matrix A (see § 2) if and only if: 

(1) .1 (t)=t2".1(t- 1), for some j1, 

(2) .1 (-1) is square, 

(3) .1(8)=(-8)/l. 

This is Proposition 1 and 2 of [2] - note the difference in the definitions 
of .1A(t). 
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Set 
L1i(t)=8 ai t2 -(1 +2ai) t+/lai 

where 
ai =i(9i -1). 

It may be checked directly that L1i(t) satisfies (1)-(3) above and so there 
exists (XiEG. with L1;(t)=L1A(t) for a representative A Ohio Now one may 
check, from Proposition 23 (a), (c) that (Xi has order 2. Moreover, (Xi 

satisfies (i), since otherwise L1i(t) would have to be decomposable. To 
prove (ii), we observe that, for a representative 8-matrix ofL Ai (Xi' one has 

L1A(t)= IT L1 i(t)i.,. 
i 

Since the {L1i(t)} are distinct irreducible symmetric polynomials, it 
follows from Lemma 7 (b), that L Ai (Xi = ° if and only if each Ai is even. 

To produce the desired {f3i} we proceed in a similar fashion. Set: 

for i~O 

where 
I';(t)=ai t 2 +8(1- 2ai) t+ai 

a i =i(1- 32i +1). 

Then L1i(t) satisfies (1)-(3) and so admits a corresponding element f3i. 
It follows from Proposition 23 (a), (c) that f3i has order 4. To prove (iii), we 
first observe, as we did in proving (ii), that L Ai f3i=O implies 

IT L1 i(t)i.,= IT I';(t)i.,H.-1 

has the form prescribed in Lemma 7 (b). Therefore, since the {I';(t)} are 
distinct irreducible symmetric polynomials, each Ai + Ai -1 is even; this 
readily implies each Ai is even. 

Now set Ai=2J1.i and consider LJ1.if3i=f3. If 13=0, it follows by the 
same argument that each J1.i is even and, therefore, Ai is divisible by four. 
On the other hand if 13 =1= 0, then 13 has order 2, since 213 = L Ai f3i. 

Now the polynomial associated with 13 is 

IT L1i(t)PI = IT I';(t)PI+Pl-I. 
i i 

Since I';(1)I';(-1)=-32i+1, it follows from Proposition23(c) that 
J1.i + J1.i -1 must be even, and, therefore, each J1.i is even. 

25. Theorem 24 also applies to Cn for n odd> 1 (see [2]). If n = 2, we 
must, in addition recall that C 3 is isomorphic to the inverse image, under 
a homomorphism G + -. Z, of the elements of 2Z. This implies that the 
torsion subgroup of C 3 is isomorphic to the torsion subgroup of G + ' 
and the result follows. 
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We cannot use Theorem 24 to say much about Cl except that it has 
infinite rank. It is known that Cl contains elements of order 2 e.g. the 
figure eight knot is amphicheiral, but is not a slice knot. I do not know 
whether Cl contains any element of order 4; the knot 77 ofthe Alexander­
Briggs knot table is the first candidate (it gives an element of G _ of 
order 4). 

Incidentally the knot 88 is the first knot determining the zero 
element of G _, but which I have not been able to show is a slice knot. 
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