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The first author in [L] introduced the notion of "Poincaré trans-
versality" for an iV-dimensional spherical fiber space, n : ÇN -> X. If 
T(ÇN) is the Thorn space of <f, then we consider T(ÇN) = M4 u c(S(Ç)) 
where M$ is the mapping cylinder of n and S(£) is the total space of £N. 
A map f:AN+i-+ T(ÇN) is Poincaré transversal if ƒ is p.l. transversal to 
S({) c T(ö with (f-\Mç), /_1(S(£))) a codimension 0 submanifold of 
AN+i with the inclusion f~1(S(^)) cz f~1(M$ the spherical fibration 
induced by ƒ over ƒ _1(M^). This implies ƒ _1(M^) is a Poincaré duality 
space, (P.D. space), of dimension i with boundary f~1(M^)ndAi+N, 
and that (f~i(M^%f~1(S^)) is its normal tube. 

f-Ksp 

A p.l. manifold Mj mapping by ƒ : Mj -> T(£N) is Poincaré transversal 
to £N if and only if ƒ |(any simplex) is. If ƒ is Poincaré transversal then 
ƒ _1(M$) is a P.D. space with boundary ƒ _1(M^) n dM and of dimension 
; — AT. One of the main results of [L] is to develop a theory to study the 
problem of when a map ƒ : Mj -* T(£N) may be shifted to be Poincaré 
transversal. To do this one introduces the space W(ÇN\ of Poincaré 
transversal maps of A* -» T(ÇN) for all i In [L] and [J] it is proved that 
if F g* denotes the homotopy theoretic fiber of W(£N) -» T(ÇN\ then 
nflFfs) = nt-N(G/PL) for i - AT # 1,2, or 3. In fact a map of fiber spaces 

N —> FrN and this map is an isomorphism on nt for 
i - AT # 1,2, or 3. Also if/: MJ' -> T(^N), then homotopying ƒ until it is 
Poincaré transversal is equivalent to lifting ƒ up to homotopy to W(t;N). 
In this announcement we shall describe further results in this theory. 
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By a theory of transversality, T, for a spherical fiber space, n : <JN -» X, 
we mean an assignment to each ƒ : A* -• T(£) a deformation of ƒ until 
it is Poincaré transverse on A' and all its faces. These assignments are 
required to be compatible with inclusions of faces A1"1 <= A1. Two 
theories of transversality T0 and TX are equivalent (concordant) if there 
is a theory of transversality for ÇN x I -> X x I which, when restricted 
to X x Ï, is T; for i = 0, 1. In the language of [L], a theory of transver­
sality is exactly a section of W(ÇN) -> T(ÇN). 

A p.l. structure for ÇN is a p.l. block bundle (see [R-S]), n:EN ^ X, 
and a fiber homotopy equivalence of S(EN) to £N. 

Let PL(ÇN) denote the concordance classes of p.l. structures on £N, 
Clearly p.l. transversality in E provides a theory of transversality for ÇN. 
This defines a function from PL(ÇN) to concordance classes of theories 
of transversalities for ÇN. 

THEOREM A. Let n : ÇN -» X be a spherical fiber space with N ^ 3 
and X four connected, then the function PL(ÇN) -• {concordance classes of 
theories of transversalities for ÇN} is a bijection. In particular ÇN has a 
p.l structure if and only if it has a theory of transversality. 

This is the bundle analogue of Winkelnkemper's philosophy that 
"transversality unlocks the secret of a manifold." The homotopy theoretic 
formulation of Theorem A states that given X four connected and ÇN : X -* 
BSG(N) then <f lifts to E : X -» BSPL(N) if and only if W{£?) -+ T^ 
has a section. The latter in turn is equivalent to the existence of a lift 
in the following diagram: 

WSG{N) 
* I 

/ i 
T(ÇN) >MSG(N) 

The problem of lifting X -• BSG(N) to Z - ^ BSPL(N) involves the 
space G(N)/PL(N) = G/PL. The problem of lifting T(<f ) - MSG(N) to 
T(ÇN) -+ WSG(N) involves the space FSG(N). We now consider the relation 
of these two spaces. The results in [L] show that they have the same homo­
topy groups shifted by N dimensions (except for low dimensions). To 
actually compare these two spaces we need to extend GI PL to a connected 
spectrum. There are several ways of doing this. One is to use Sullivan's 
calculation of the homotopy type of G/PL as XO-theory at odd primes 
and cohomology at 2 (with one low dimensional twist), and then define 
G/PL(k} to be bo(k} at odd primes (feo<fe> is Q4'~~fc (4/ connected 
cover of BO)) and cohomology shifted k dimensions (with the twist) 
at 2; see [S]. Another approach is to define G/PL(k} to be Quinn's 
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space Lk(e). This is the semisimphcial complex of surgery problems 
shifted fe-dimensions; see [Q]. These approaches lead to the same results. 

THEOREM B. There is a map 0 : F^N -• G/PL(N} which is an isomor­
phism on iti for i # N + 1, N H- 2, and N + 3 provided only that N ^ 3. 

0 is a realization on the space level of the isomorphism on homotopy 
groups given in [L]. 

II. Homotopy theoretic reformulations. If n: ÇN -> X is a spherical 
fiber space, then we may form a connected spectrum J(f ). The ith space 
is T(ÇN ®8l'N) for i ^ N and the maps are the usual ones £ T(ÇN ® e*'1*) 
-> mN®si-N+l). In [L] it is shown that the spaces {W(ÇN®e*-N)} 
also form a spectrum, W(i\ and that there is a map of spectra 

Ft - WK) - ITO-

The spectrum fiber (or cofiber) F$ is made up of the spaces F^N® et-N. 
Let G I PL be the spectrum whose ith space is G/PL(i}. Thus we have 
</>:Fç -+ G J PL with </># an isomorphism on 7cf for i ^ 4. 

We can give another description of the spectrum F$. Let yl -+ BSG(i) 
be the universal i-dimensional spherical fiber space. Then T(y') = MSG 
p : Wiy1) - T(y) with W(y') = p~l(Myi) u p_1(c(S(y'))> L ^ Et = 
p~1(c(S(yi))). The {£J form a spectrum 8. 

PROPOSITION, C ^ F,. 

This follows from 

THEOREM C. 

p-W))-s(y') 
n n 

p-1(My0 -£ Myi 

is a homotopy equivalence of pairs in dimensions less than 2i. 

Thus e -+ W(y) -» J(y) (= MSG) is a cofibration of spectra. This 
proves a = Fy. 

III. Idea of proofs of Theorems A and B. The proof of Theorem A 
reduces inductively to the following. Let rj = Ç\ X{n) be given a p.l. 
structure, n ^ 5. 

E • <J | Xin) 

i i 
j^(«) _ j^(«) 
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Thus for any (n + 1) cell T„+1 in X we have £ | TM+1 with a canonical 
trivialization and £ | dzn+1 -• ^ | 3TW+1 a p.l. structure on the boundary. 
This is equivalent to a p.l. bundle, £ | 3T„+1 , and a fiber homotopy trivi­
alization, i.e., an element in nn(G/PL). This defines a cocyle <x whose 
class in Hn+ 1(X;nn(G/PL)) is the obstruction to extending the p.l. structure 
relative to Xin~l) over X{n+1\ 

The p.l. structure defines a theory of transversality for £ | X{n\ Again 
considering TM+1, we have ^ | t „ + 1 with a theory of transversality for 
£ | OT„+1. £ | TW+1 is canonically trivial as a spherical fiber space, and thus 
there is a map SN x SN -+ T(ÇN \zn+1\ Using the theory of transversality 
over the boundary, we get f~x(M^^ f~1(S^(lx) an n-dimensional 
G-framed P.D. space in Sn x SN. But G-framed P.D. bordism in dimen­
sion n is isomorphic to nn(G/PL) for n §: 4. The isomorphism assigns to 
(XZ:vy-•/?*) the surgery obstruction of the problem Z~1(0)^Y 
where Z is shifted p.l. transverse to 0. Thus we have a cocyle 
(T'eCN+n+l(T(ÇN))®nn(G/PL). Theorem A is proved by showing 
o' — 0(<r) where O is the Thorn isomorphism. 

To prove Theorem B, we need only calculate FeN since in [L] it is 
proved that all the fibers F^r are the same homotopy type. Using the 
characteristic homomorphism (with a shift of N dimensions) definition of 
G/PL<AT>, we need only assign to MN+i-+FEN a surgery problem 
between P.D. spaces. To define the homomorphism we take the usual 
surgery obstruction of the problem. We do not need to know that this is 
the only obstruction to doing surgery on P.D. spaces, only that it is 
an obstruction. A map MN+i -» FEN is equivalent to a transversal map 
f:MN+i^T(sN) together with a homotopy of ƒ to zero in T(eN\ 
F:MN+i x ƒ -• T(eN). Shift F slightly until it is p.l. transverse regular 
to p t e T ^ ) . Let Vi+1 be the pre-image. / _ 1 ( M £ N ) is an i-dimensional 
P.D. space and if we have not shifted F too much then Vi+l n MN+i x 0 
c ƒ " 1(M£N) is a degree one normal map. 

IV. Applications. 

COROLLARY 4.1. A stable spherical fiber space Ç -• X has a pi structure 
if and only if it has an MSPL orientation lifting its MSG orientation. 

PROOF. A p.l. bundle has a natural MSPL orientation. Conversely, 
MSPL -» MSG factors through W(y). Thus lifting the canonical MSG 
orientation to an MSPL orientation also lifts it to a W{y) orientation. 

COROLLARY 4.2. Let Mn be a 4-connected P.D. space, then Mn is 
homotopy equivalent to a closed pi manifold if and only if M" satisfies 
Poincaré duality for the homology and cohomology theories associated 
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to M S PL with a fundamental class which reduces to the MSG fundamental 
class. 

PROOF. Use S-duality and 4.1. 

COROLLARY 4.3. (THE INTRINSIC BROWDER-NOVIKOV THEOREM). Let AT 

be a 4-connected P.D. space. A necessary and sufficient condition for W 
to be the homotopy type of a closed pi manifold is that Mn have two regular 
neighborhoods R' a R cz Sn+K

9for some large K, with R triangulated so 
that for every simplex a{ (aj n R\ da n R') is a codimension 0 submanifold 
which is the tube of a P.D. pair of formal dimension] — K. 

Thus Mn is homotopy equivalent to a closed p.l. manifold if and only 
if Mn may be put in "Poincaré general position" with respect to the 
simplices of some triangulation of its regular neighborhood. See also [J] . 

COROLLARY 4.4. Let ƒ : Nn ~> Mn be a homotopy equivalence of 4-
connected manifolds and Jtj be the mapping cylinder off. Then {Jif, iVuM) 
is a Poincaré pair. If the section T(v(N u M)) -* W(v(N u M)) corres­
ponding to the natural manifold structure on N KJ M extends to a section 
T(y{Jif^) -* W(v(Jif)) then ƒ is homotopic to a p.l. homeomorphism. 
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