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THE EXISTENCE OF COMBINATORIAL FORMULAE
FOR CHARACTERISTIC CLASSES

BY

NORMAN LEVITT AND COLIN ROURKE

Abstract. Given a characteristic class on a locally ordered combinatorial

manifold M there exists a cocycle which represents the class on M and is

locally defined, i.e. its value on o E M depends only on the ordered star

st(or, M). For rational classes the dependence on order disappears. There is

also a locally defined cycle which carries the dual homology class.

For some time it has been known that there is a simple combinatorial

representation for the homology duals of the Stiefel-Whitney classes of a

combinatorial manifold (Whitney [8], cf. Cheeger [1], Halperin and Toledo

[2]). It is natural to ask whether there is an analogous result for other

characteristic classes. For instance, can one give a simple combinatorial

formula for the Pontrjagin classes or for their homology duals? What is being

sought is a formula which depends only on the local structure of the

combinatorial manifold K (as a simplicial complex).

In this paper we prove a theoretical result. We establish that formulae of

this type exist for all characteristic classes and for their homology duals. But

the method of proof makes it extremely difficult to actually give such a

formula explicitly. Our formulae depend, in general, on local ordering of the

complex, but for rational classes (such as the rational Pontrjagin classes) this

dependence disappears. Miller [4] has shown that the rational characteristic

numbers of K are in fact the only numerical invariants of K which admit

formulae in terms of the local (unordered) structure of K. Thus, for a general

characteristic class, some other datum such as our local ordering is necessary.

One corollary to the existence of local formulae is that any manifold which

can be triangulated so that the links of o-simplexes admit orientation revers-

ing simplicial isomorphisms has all cohomology rational characteristic classes

of dimension n — q zero.

Cheeger has communicated to us that he has a proof of existence of
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formulae for real Pontrjagin classes of smoothly triangulated smooth mani-

folds. His method of proof is quite different from ours.

The first author would like to acknowledge a helpful conversation with R.

MacPherson, and we would refer the reader to MacPherson's Bourbaki

seminar [3] on Gelfand's work towards an explicit local formula for the first

Pontrjagin class.

A word about the method of proof. We shall construct a classifying space

Q„ which is natural for ordered triangulated block bundles. (I.e. there is a

!zztz'c7ize classifying map for such a block bundle.) Given an ordered combina-

torial manifold K, then its tangent bundle tk is such a block bundle and

hence we have a unique map /: K -» Q„ which depends only on the local

structure of K. Our "combinatorial formulae" then come from pulling back

representatives on Q„.

1. Definitions. A total ordering or partial ordering of a simplicial complex K

is a total or partial ordering on the vertices.

A local ordering of A" is a partial ordering on K which restricts to a total

order on each (closed) star st(a, K) for a E K. We regard two local orderings

as equivalent if the total order on each star is the same.

An s-ball (ordered simplicial ball) is an ordered complex K s.t. \K\ is a ball.

An s-cell complex is a partially ordered simplicial complex K together with

a family of subcomplexes {L¡) such that

(1) each L¡ is totally ordered and is an 5-ball of some dimension;

(2) the polyhedra \K\, {|L,|} satisfy the usual conditions for a cell complex

(Rourke and Sanderson [5, p. 3]).

Another way of thinking of an 5-cell complex is that it is a cell complex

with a partially ordered triangulation wherein each cell is triangulated by a

totally ordered subcomplex.

An isomorphism h: Kx-* K2 between 5-cell complexes is a simplicial iso-

morphism which is also an isomorphism of cell complexes and preserves the

total ordering in each cell.

For instance if K is a locally ordered combinatorial manifold then the dual

complex K* is an 5-cell complex, since the local ordering on K induces a

partial ordering on the first derived Kw, such that each cell of K* is totally

ordered. Equivalent local orderings on K give isomorphic dual complexes.

An s-block bundle %/K of fibre dimension n, where K is an 5-cell complex,

is a partially ordered complex Q d K together with totally ordered subcom-

plexes {/?,} (one for each cell L, c K) such that each R¡ is an 5-ball and \Q\,

{\R¡\) form an «-block bundle over the underlying cell complex \K\, {\L¡\).

An isomorphism of 5-block bundles is a simplicial isomorphism which is also

an isomorphism of block bundles and preserves the total order on each block.

For example if K c L are locally ordered combinatorial manifolds and \K\
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is locally flatly embedded in \L\, then the normal bundle v(K, L)/K* (see [5,

p. 1]) is an 5-block bundle, since the blocks are cells of L*. Equivalent local

orderings give rise to isomorphic normal bundles.

Now suppose K is a locally ordered combinatorial manifold, then the

simplicial product K X K is also locally ordered and has the diagonal AK as

a subcomplex. Then the tangent bundle of K, rK, which is defined to be

v(AK, K X K) is again an 5-block bundle, and equivalent local orderings of

K give rise to isomorphic tangent bundles.

2. The classifying bundle. We are goint to construct a universal 5-block

bundle (of fibre dimension n). We need to use a "semi-simplicial" category

appropriate to 5-block bundles.

An s-cell is an 5-cell complex with a single top dimensional cell of which

the other cells are all faces. The model category S-cell has for objects

isomorphism classes of 5-cells, and for morphisms face inclusions. An S -cell-

set is a contravariant function from S-cell to the category of sets. An

S-cell-set Q possesses a geometric realisation \Q\ which is defined by gluing

together representatives for the cells, via the face maps, in the usual way [6, p.

325].
Observe that A the model category for A-sets (with objects the standard

ordered n-simplexes, for each n, and morphisms order preserving face inclu-

sions) is a full subcategory of S -cell. Hence given a A-set Q we can define an

S-cell-set by mapping the other objects to the empty set. We denote this

S -cell-set by Q as well. Thus we have a functor

{A-sets} -» { S -cell-sets}.

There is also a functor which goes the other way. Given an S -cell-set Q then

the realisation | Q | is made of 5-cells glued together. Now each 5-cell is made

of ordered Simplexes so \Q\ has a natural subdivision which makes it the

realisation of a A-set Qà. I.e. \Q\ = \Q¿¡\. Notice that if Q is already a A-set

then c?A = Q.

It now follows from the A-approximation theorem [6, 5.1] that there is an

approximation theorem for S-cell-sets and that the homotopy category of

{S-cell-sets} is naturally equivalent to the homotopy category of CW com-

plexes. There is also a good theory of "Kan" S -cell-sets, which we will not

need to use.

We now define the classifying space for 5-block bundles of fibre dimension

«.

The S -cell-set Q„ associates to an 5-cell K the set of isomorphism classes of

5-block bundles with base K of fibre dimension «. Face maps in Q„ are

defined "by restriction" (cf. [5, p. 10]).

Given any 5-block bundle £/K there is a canonical S -cell-map it: K-*Q„
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given by associating to the cell L, c K the class of the block R¡ in £ and given

any S -cell-map/: Ä"-> Q„ we can construct an 5-block bundle £//sT by taking

representatives for the images f(L¡) for each z and gluing them by means of

the face maps in Q„ which correspond under / to the face inclusions of K.

(Notice that any such map has a unique geometric realisation since it is an

order-preserving simplicial isomorphism.)

In fact, we can define the notion of 5-block bundle over an S -cell-set as in

[7, §2] and glue the cells of Q„ together to form the classifying bundle

y/Q„. Then the construction of £ in the last paragraph is just the pull-back

f*(y)-

Proposition. y/Q„ is a classifying bundle for n-dimensional block bundles.

In particular |QJ has the homotopy type of \BPL„\.

Proof. We need to show that concordance classes of «-block bundles over

a polyhedron P correspond via the pull back of y to homotopy classes of

maps P -» |Q„| and then the result follows by a formal argument.

Given Ü/P we can form an 5-block bundle by triangulating all the blocks

and cells and ordering arbitrarily. There is then the natural map i^: P -» |Q„|;

Notice that if(y) = £. Given two such 5-block bundles, we form an exten-

sion over P X / by putting a common subdivision at level { \ } and starring

at levels { \ ) and {\ ) and then ordering compatibly with the ends. Thus we

have a function

(concordance classes of block bundles over P } -*[P, |Q„|]-

Now given a map P -> |Q„| we can approximate by a A-map and pull back y

to obtain a block bundle, and by the relative approximation theorem the

result is unique up to concordance. These two processes are inverse, and the

proposition is proved.

3. The existence of combinatorial formulae. For simplicity we deal first with

unoriented characteristic classes.

A class p in H*(\BPLn\, G), where G is an abelian group, is an G-character-

istic class for «-dimensional block bundles. Using the homotopy equivalence

| BPLn | « |Q„| of the proposition, we can represent p by a cochain on |Q„|.

Here we remark that |Q„| has two natural cell structures.

(A) we can regard the semicells as cells,

(B) we can regard the Simplexes in the semicells as cells (i.e. we are using

the natural cell structure of |(Qn)A|)-

Choose representatives pA and pB for p as cochains corresponding to each

cell structure. Then given an 5-block bundle £,/K, the canonical map /:

K -» Q„ gives us two cochains f*pA and f*pB which carry the characteristic

class p on £.
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Now let K be a combinatorial manifold. By the characteristic class p on K

we mean the characteristic class p on the tangent block bundle of K.

Theorem 1. Let K be a locally ordered combinatorial manifold. Then there is

a cochain pK on 7C(1) (with coefficients in G) which represents pon K and which

is locally defined. In other words its value on a simplex o E Kw depends only

on the isomorphism class of the ordered complex st(r, K) (where o starts with f ).

Proof. Let /: K* -> Q„ classify the 5-block bundle tk. Then / induces

Pk — J*Pb a simplicial cochain on Kw which represents the characteristic

class p on K. It remains to observe that/ and hence pK, depends only on the

local structure of AT as a locally ordered combinatorial manifold.

Corollary 1. Let p be a rational characteristic class then there is a

representative pK for p on Km which depends only on the local (unordered)

structure of K.

Proof. Let pK¡,..., pKbe the representatives given by all possible local

orders on K. Define pK to be the average of pK,..., pK. Then pK has value

on a G Km the average of the values corresponding to the possible orders of

st(r, K). Hence pK depends only on the local unordered structure of K.

Theorem 2. Given K oriented, there is a simplicial chain p% on K which

represents the dual to p on K and which is locally defined, i.e. it is of the form

2 g(o)o where g(o) depends only on the (ordered) complex st(o, K).

Proof. Consider 7*0,4. This is a cochain on K* which represents p on K. Its

dual is the required chain p*K on K.

Corollary 2. Rational homology characteristic classes have representatives

which are locally defined and independent of order.

Proof. Average, as in the proof of Corollary 1.

Remarks. (1) We can think of one of our "combinatorial formulae" as a

function.

{isomorphism classes 1      Í cochains on 1

of stars st(r, K)      j ~* [ st(r, K)m   J

and the cochains fit together to give the required cocycle. For the homology

representatives the situation is rather more simple. We in fact have a func-

tion.

g: {isomorphism classes of stars} -» G

such that 2g(T)T|r G K™ is the required representative.

(2) In the context of Theorem 2 we may want to deal with oriented classes

which are not pullbacks of unoriented classes. (Note that stable rational
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classes, e.g. Pontrjagin or L-classes, do arise from unoriented classes.) Consid-

er the orientation double cover

R„~BSPLn

Q„ ~BPLn

Then the orientation of K determines a lift/of the classifying map/: K-> Q„

in R„. If we now represent our oriented class on R„ as a cochain p then/*(p)

is a representative on Kw or K* which depends both on the local structure of

K and its orientation.

(3) Our results work equally well for homology manifolds (either rational or

integral): The idea is to do all the constructions in the homology category, i.e.

replace the notion of 5-ball by 5-homology-ball, 5-cell-complex by 5-homol-

ogy-cell-complex, and block-bundle by homology block-bundle. We then get a

space hQ„ which classifies homology block-bundles. The arguments of this

section then give local formulae for arbitrary characteristic classes (of homol-

ogy manifolds), which are independent of order for rational characteristic

classes (e.g. Pontrjagin classes).

(4) It remains to prove the corollary stated at the beginning of the paper.

Suppose \K\ = M, that a E K is a ^-simplex and that i: lk(a, K) -> lk(a, K)
is an orientation reversing simplicial isomorphism. Then i induces an isomor-

phism z'*: a* -» a*. We use the representation of p on the dual complex K*.

Recall that the value on a* is obtained by averaging pK(o*) over all possible

local orders for K. Now if u is an order for a* then u ° i is another order, and

the corresponding values of p% are the same but opposite in sign (both

correspond to mapping to the same cell of Q„ and the one map is the other

map composed with i, which reverses orientation). It is not difficult to see

that the local orderings can be paired off in this way and hence the average is

zero on a*. So if all the cT-links admit such orientation reversing isomor-

phisms, then the cochain representing p is identically zero. Note that the

proof does not use orientability of M.
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