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J.P. Levine*
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Introduction

In the study of knot concordance one of the more successful approaches makes
use of Seifert “surfaces” and the associated Seifert pairing (see e.g. [L1]). Similar-
ly, these methods apply to the study of link concordance, provided the link
components bound disjoint Seifert surfaces ([Ko]). Such links are called bound-
ary links. Alternative methods, using the Blanchfield pairing ([Ke]) or homology
surgery ([CS]), also require boundary links when applied to link concordance
([D], [CS1Y).

This restriction raises the question of whether every link may be concordant
to a boundary link. For one-dimensional links, there is the necessary condition
that the j-invariants of Milnor [M] must all vanish. In [G1] a proof that
every higher-dimensional link is concordant to a boundary link was announced,
but was found to contain errors. Since then, this problem has received some
attention. In [Sa] a new concordance invariant for n-dimensional links (n> 1),
which vanishes for boundary links, was defined. It turned out, however, that
this invariant always vanishes. The proof of this was tied to the construction,
in [O], of a sequence of related concordance invariants 6, (2<k=<oo0) which
live in the homotopy groups of spaces defined from the lower central series
quotients F/F,, when k< oo, or the nilpotent completion of F, when k=00 (F
is the free group whose rank is the number of link components). When n=1,
0, is defined only when all the f-invariants of degree <k vanish. But, as it
turned out (see [C]), 8,=0 for all k<oo if n>1, and exactly when all the j-
invariants vanish if n=1. Only 0 survives as a new and possibly non-trivial
invariant (but living in an uncomputed homotopy group). In [L] 6 was rede-
fined as a (possibly) stronger invariant — living in another uncomputed homotopy
group — but it was shown that any element of this group could be realized
by a link, at least for n=1.

An important step in a different direction was taken in [C] where it was
pointed out that certain classes of links, containing the boundary links, could
be useful. For example, homology boundary links or, even more generally, sublinks
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of homology boundary (SHB) links, have vanishing 6, and, when n=1, vanish-
ing fg-invariants. Thus the problem breaks into three pieces:

(i) is every link with vanishing 0, (and, if n=1, vanishing f-invariants)
concordant to an SHB link?
(ii) can 0, be non-zero?
(iii) is every homology boundary link concordant to a boundary link?

Another concept, that of a finite E-link, was also defined in [C]. It turns
out that every SHB link is a finite E-link and every finite E-link satisfying
a condition similar to, but ostensibly stronger than, 6_,=0, is concordant to
an SHB link (see [L]).

In the present paper we construct a further refinement 6 of the Orr invariant
0. . The definition makes use of a group-theoretic construction which we call
algebraic closure, used already in [L] and first considered in [G] in a somewhat
different manner. Then 6(L) is defined in H,(F) for 1-dimensional links L satisfy-
ing a condition (ostensibly) stronger than that of having vanishing fi-invariants.
F is the algebraic closure of F. Our main results are:

(a) 6(L)=0if and only if L is concordant to an SHB link.
(b) If xe H;(F) then there exists some L such that (L)=u«.

I would like to thank Kent Orr for many stimulating and valuable conversations during a
2 month visit to Brandeis. Many of the ideas of this paper arose from these discussions.

I. Algebra

1. We begin by recalling some notions from [L]. Let G be a group.

Definition. (i) An element w=w(x;, ..., x,,)€G * F will be called a monomial over
G (with indeterminates x,, ..., x,,), where F=F(x, ..., x,,) is the free group
with basis x,, ..., x,,. A monomial w over G is contractible if w lies in the
kernel of the obvious projection G F — F.

Obviously a monomial is contractible when it is a product of conjugates
of elements of G.

(i) A system S of equations over G:

X =wi(Xq, ooy Xp),  i=1,...,m

is contractible if each w; is a contractible monomial over G. G is algebraically
closed (AQC) if every contractible system of equations over G has a unique solution
in G. There are already several notions of algebraically closed occurring in the
literature (see [Ho], [N], [BDH]). These more classical notions demand solu-
tions of a larger set of equations, but omit any requirement of uniqueness.
Thus there is no associated notion of algebraic closure.

We gather some facts about AC groups, using the approach of [B].
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Proposition 1. (a) If {G,} is a family of AC subgroups of an AC group G, then
()G, is AC.

(b) If {G,} is any family of AC groups, then n G, is AC.
(c) If G is a central extension of H, then G is AC if and only if H is AC.
Remark. In general, inverse limits and direct limits of AC groups are AC.

Proof. (a) and (b) are immediate. We prove (c). Suppose H is AC and let x;
=w;(x;, ..., X,,) be a contractible system S over G. It projects to a contractible
system S over H with (unique) solution set x;=h;. Let g,eG be any lift of
h;.

We will show that x;=w;(g,, ..., g») is the unique solution set of S. Unique-
ness follows because any solution set x;=g;=g;7;, where 7;€ center of G, and,
since w; are contractible, this implies

Wilg1s oos Bm) = Wilgis -, 8m) =80
On the other hand, if we set g;=w;(g,, ..., &), the same argument shows
wi(g/la (R} g;n)=wi(g1> ey gm)zg:

Suppose G is AC and x;=w;(x,, ..., X,,) i1s a contractible system S over
H. We can lift S to a contractible system § over G: x;=W(xy, ..., x,,) and
a solution of § projects to a solution of S. On the other hand, if g, ..., gn
is any lift of a solution hy, ..., h,, of S, then, by the argument of the previous
paragraph, g/=w;(g,,...,&,) is a solution set of §. But g/ is a lift of
w;(hy, ..., h,)=h; and it follows that any solution set of S lifts to the (unique)
solution set of 3.

It follows from Proposition 1(c), since the trivial group is obviously AC,
that every nilpotent group is AC. Using the Remark, we can also conclude
that the nilpotent completion of any group is AC.

2.

Definition. A group homomorphism @: G — A where A is AC, is called a closing
of G. A closing @ is small if $G is contained in no AC proper subgroup of
A.

Proposition 2. Any closing ®: G — A “‘contains ” a unique small closing ®: G — A’
ie. PGS A' S A. Every element of A’ belongs to the solution set of a contractible
system over G. (More precisely, the image system over ©G.)

Proof. A’ is just the intersection of all AC subgroups containing ¢G. The second
statement is proved by exactly the same argument as Lemma 4 of [L].
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Definition. Let G be a subgroup of H. Then H is finitely normally generated
by G if:

(i) H is the normal closure of G and

(i) H is generated by G and a finite number of additional elements.

Note that if G, = G, < G, are subgroups and G, , is finitely normally generat-
ed by G, (i=1, 2), then G; is finitely normally generated by G,.

Lemma 1. If H is finitely normally generated by G and A is any AC group
then the natural map Hom (H, A) > Hom (G, A) is an injection.

Proof. Suppose hy, ..., h,,, together with G, generate H. Furthermore each h;
is a product of conjugates of elements of G. By substituting x; for each appear-
ance of h; in these words, we obtain a set of contractible monomials w;(x,, ..., x,,)
over G and {h;} is a solution set of the system S: x;=w;(xy, ..., x,). f ®: H— A4
is any homomorphism, then @ |G sends S to a contractible system S’ over A.
Clearly {®(h,)} is a solution set for §" and so, by uniqueness, {®(h;)} are deter-
mined by ¢|G.

Note that we can add the following easy addendum to Proposition 2.

A’ is the union of all subgroups of A finitely normally generated by @G.

It is clear that the solution set of any contractible system over &G generates,
together with @G, a subgroup finitely normally generated by @G. Conversely,
the argument of Lemma 1 shows that any subgroup finitely normally generated
by ¢ G is generated (together with ¢ G) by the solution set of some contractible
system over ¢ G.

3.

Definition. For any group G, an algebraic closure of G is a closing ¢: G— A
which satisfies the following universal property: for any closing ¥: G — B, there
exists a unique homomorphism p: A — B such that po ¢ =y.

Proposition 3. For any group G there exists an algebraic closure which is unique,
up to isomorphism, and is a small closing of G. (Two closings ¢: G- A, y: G- B
are isomorphioc if there exists an isomorphism o: A — B with oo p=1)).

Remark. It turns out that algebraic closure is the analogue of the (topological)
@-localization functor of Vogel (see [Le]). In fact, if X is a CW-complex and
X — E(X) the Vogel localization of X, then 7,(X)— =,(E(X)) is an algebraic
closure of 7,(X). Since we will not need to use @-localization in the present
work, we will give (in § 5) a direct proof of Proposition 3.

Proposition 4. An algebraic closure ¢: G — G is 2-connected i.e. ¢p,: Hi(G)— H,/(G)
is an isomorphism for i=1 and an epimorphism for i=2.

Proof. That H,(G)— H,(G) is onto follows from Proposition 2 (addendum) and
one-one follows from the universal property of algebraic closure applied to
the closing G — G/[G, G] (by Prop. 1(c)). To prove H,(G)— H,(G) is onto we
use an argument of Bousfield [B]. If H,(¢)=+0, then consider an element of
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H?(G; H,(¢)) corresponding to the natural epinlorphism H,(G) - H,(¢). This
determines a non-trivial central extension E—G and a lift of ¢ to ¢: G- E.
But this violates the universality of ¢, since ¢ is a closing of G. [

In particular, if F is a free group then H,(F)=0.

4.

Proposition 5. Suppose ¢: G— H is a 2-connected homomorphism of groups, G
is finitely generated, H is finitely presented and H is the normal closure of ¢G.
Then ¢: G — H is an isomorphism. (¢ is defined by the universal property applied

¢ N
to the closing G— H — H).

Remark. This proposition is false if G or H is not finitely generated since there
exist “super-perfect” groups G (i.e. H,(G)=0= H,(G)) with G non-trivial.

Proof. Since H is obviously finitely normally generated by ¢ G we see that,
for some contractible system S: x;=w;(x,, ..., x,,) over G, H is generated by
a solution set {h;} of ¢(S) — the system over H obtained from S by applying
¢ to the elements of G in the equations. S is constructed by choosing a set
of generators {h;} for H and writing each h; as a product of conjugates of
the form hgh™', where ge¢ G and he H. Each h can then be written as a word
in {h;} and by substituting x; for h; in this expression we obtain the required
Wi(X1, ooy X))

Let Gg be the group obtained from G by adjoining generators x, ..., X,,
and relations: x;=w;(xy, ..., X,). There is an obvious commutative diagram:

el

where (x;)=h;. Note that y is onto. Also 7 is 2-connected and, therefore,
so is . Furthermore, there is a homomorphism p: Gg— G defined using S,
and a commutative diagram:

Since p is obviously a small closing, we conclude that £ is an isomorphism
from:
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Lemma 2. Given a commutative diagram:

G——G
A\
A
where ¢ is a small closing, then s is an isomorphism.

Proof. By the universal property of G we obtain a homomorphism y: G — A4
such that yoy o @=. Since @ is a small closing, by Lemma 1 and Proposition 2
(addendum) we have yoyy=1. Also Yyoyoy o @=1) o @ and, since 1 - P is a small
closing, we have yoy=1. [

We return to the proof of Proposition 5.

Since, as has been noted, ¥ is onto and 2-connected we conclude from the
Stallings exact sequence [S] that [K, Gg]=K, where K =Kernel y. It also fol-
lows from the hypotheses on G, H that K is the normal closure of a finite
subset (i.e. K has finite weight in Gg). We now need:

Lemma 3. Suppose K is a normal subgroup of finite weight in G and [G, K]=K.
If @: G- A is any homomorphism, where A is AC, then K = Kernel .

Proof. Suppose K is the normal closure of {a,, ..., a,}. From [G, K]=K we
conclude that each g; can be expressed as a product of conjugates of commuta-
tors of the form [a;, g]°, where geG and ¢= + 1. If we replace each occurrence
of a; in these commutators by the indeterminate x;, we obtain a contractible
monomial w;(xy, ..., x,,) over G with the extra property w;(1, ..., 1)=1.

Now {q;} is a solution set of the system S: x;=w;(xy, ..., X,,) over G and
so {¢(a)} = A is a solution set of ¢(S). But in 4, ¢(S) has a unique solution
set and, because w;(1, ..., 1)=1 we see that x;=1 is already a solution set of

¢(S). Thus ¢(a)=1. [

We now return to the proof of Proposition 5. By Leplma 3, K<Kernel
{Gs— G4} and so we obtain a homomorphism H — Gg~G which is clearly a
small closing. By Lemma 2, ¢ is an isomorphism. []

Definition. Subgroups K satisfying the hypotheses of Lemma 3 will be called
invisible.

5. We now prove Proposition 3. The uniqueness is clear, and smallness follows
from Proposition 2. For existence consider the set % of all contractible systems
of equations over G ie. an element ae¥% consists of a positive integer m=m,,
and a sequence of m, contractible monomials w$, ..., w% in G = F, where F is
free on m indeterminants x, ..., x,,. Now construct the group ¢ by adjoining
to G generators x%,...,x% (m=m,), for each «e%, and relations x}
=wi(x$, ..., x%), | £i<m,. Clearly every contractible system over G has a (non-
unique) solution in ¥, and these solutions generate %. In fact, every element
of 4 belongs to a solution set of such a system (see Lemma 4 of [L]).

Now let N be the union of all the invisible subgroups of %. Then N is
itself a normal subgroup, since any two invisible subgroups normally generate
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a third. We will show that G=%/N is algebraically closed by proving the follow-
ing three assertions:

(a) every contractible system over G has a solution in G.

(b) G has no non-trivial invisible subgroups.

(c) If H is any group with no non-trivial invisible subgroups then a contract-
ible system over H has at most one solution in H.

Iiroof of (a). Let x;=w;(x,, ..., X,), 1Zi<m, be a contractible system S; over
G.

The monomials wy, ..., w,, involve a finite, number of elements h,, ..., h;
of G; Let hje¥% be a lift of h;. There is a contractible system S, over G: y;
=0;(yys ---» Vi), 1SiZk, for which y;=h], 1<i<k, is a solution set, allowing
for enlargement of {h;}. We now define a new contractible system of equations
S over G:ix;=WiX1, ooy Xms Vis -5 Vi) 1ZiSm; yi=0(yq, ..., ¥o), 1205k,
where w; is obtained from w; by substituting v;(y,, ..., y,) for h; Whefever it
appears in w;, for all 1<j<k. S has a solution in 4 and, therefore, in G. Since
S, is a subsystem of S, any solution of S includes a solution of S,. If we assume
(b) and (c), then solutions in G are unique and so, in any solution of S, y,=h,.
Substituting this into the rest of S shows that the {x;} will be a solution of
the original system S,.

Proof of (b). Suppose B is an invisible subgroup of G with a finite number
of normal generators b, ..., b,. Thus we can write b;=w;, where w; is a product
of conjugates of commutators [b;, g], geG. Choose b;e¥, a lift of b;, and lifts
of the other elements of G appearing in w;. This enables us to write b;=w,n
in ¢, where w; is a product of conjugates of commutators [b;, g], ge¥%, and
n;eN. Since N is the union of the invisible subgroups and any two lie in a
third, there is some invisible subgroup K containing all the {n;}. Now consider
the normal subgroup normally generated by {b;} and K. The equations b;=w;n;
show that this is an invisible subgroup of %. Therefore {b;} =N and so every
b;=1.
Proof of (c). Suppose S: x;=w;(x,, ..., X,,), 1 Si<m, is a contractible system
over H with two solution sets x;=g; and x;=h;. Then x;=1 and x;=g;h; !
are solution sets of the contractible system S": x;=wi(x,, ..., X,), 1 Li<m, where
Wi=wi(x; By, ..., Xy ) bt We will now show that w} is a product of conjugates
of commutators [x;, a], where a can be any monomial. This will show that
any solution set of S’ normally generates an invisible subgroup of H, and so
g:;=h;, for all i.

Since wi(l, ..., 1)=1, we can first write w} as a product of conjugates of

S
{x;}:wi=[]a xira "', where a,eH, g==+1 This can be rewritten w;
r=1

s
=([] b.la,, xi1 b, 1) byy 1, where b, =x{1, ..., xi-1(b; =1). But w} is contractible
=1

and so b, , =1, completing the proof.

We now have produced an algebraically closed group G. Let ¢: G— G be
defined as the composition of the obvious maps G —% — G. We show that this
is an algebraic closure. Suppose f: G — A is any homomorphism to an algebrai-
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cally closed group. There is obviously a unique extension to a homomorphism
F: % — A since the generators and relations that define % have unique solutions
in A. But NcKer F, by Lemma 3, and so F induces a unique homomorphism
G- A.

This completes the proof of Proposition 3.

6.

Example. Suppose L is an m-component based link of dimension >1 — ie. a
link with chosen meridian elements u,, ..., y,en,(S"*2—L)=n. If F is the free
group with basis x,, ..., x, and ¢: F > n defined by ¢(x;)=p;, then ¢ is 2-
connected and so, by Proposition 5, ¢: F — # is an isomorphism. If we perform
framed surgery on S"*? along the components of L, we obtain an oriented
closed manifold M with n,(M)~n. M represents an element of H,,,(n) and
so, using -t~ F, determines an element acH,,,(F) which one sees easily,
is a based concordance invariant of L.

Alternatively one can use the construction of Orr [O] and define a space
K to be the mapping cone of the map K(F,1)— K(F,1). Then the map
X - K(n,1)-» K(F, 1)» K, where X=5""?2—T (T a tubular neighborhood of
L) extends, in a canonical way, to a map "2 K. This gives an invariant
in 7, , ,(K) which determines o via the Hurewicz homomorphism.

We will be interested in an analogous construction for 1-dimensional links.

7. It will be useful to have an alternative description of G, when G is finitely
presented.

Proposition 6. Let G be a finitely presented group. There exists a sequence of
groups and homomorphisms :

G=Rh->PA->PB->.>FE->h, ..

such that:
(i) G=lim P, and G — G is the limit map.

(it) Each B, is finitely presented.
(iii) G — P, is 2-connected, for every n.
(iv) B, is the normal closure of G.

Remark. Under the correspondence between algebraic closure and @-localization
mentioned in §3, this proposition follows from Proposition 1.8 of [Le]. But
we give a direct proof.

Proof. We refer to the proof of Proposition 3 in §5. The set ¢ of contractible
systems over G is countable and so we can arrange them in a sequence. Define
%, by adjoining to G indeterminates for the first n systems in &, and the relations
defined by the equations. Clearly ¥, is finitely presented. There are natural
homomorphisms:
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and ¥~lim %,. Furthermore, G —» %, is a 2-connected homomorphism, as one

n

can see e.g. from a consideration of the 2-complexes corresponding to the presen-
tations. We will construct a sequence of invisible subgroups K, of G, (possibly
passing to a subsequence) such that

(a) in(Kn)gKn-#- 1-
(b) For any invisible subgroup K of ¢ there is some n so that j, ' (K)= K,,
where j,: 4, — % is the natural homomorphism.

Since the number of invisible subgroups of % is countable and any two
are contained in a third, we can find a nested sequence

Lcl,c..cL,cL,,{S...

of invisible subgroups of ¥ whose union is N. For each n we can find k=k,
such that j; *(L,) is contained in an invisible subgroup of 4,. In fact, if b,, ..., b,
is a set of normal generators of L, and we write b;=w;, where w; is a product
of conjugates of commutators [b;, g], ge¥, we can find k large enough, by
the definition of direct limit, so that every b; and other elements of % appearing
in {w;} lift to elements of ¥, and the equations b;=w; are true in ¥, after
substituting in these lifts. We can now define K (n)< %, to be the normal closure
of the lifts of {b;}. Clearly K(n) is invisible. Since k, can be chosen arbitrarily
large we may assume k, . , >k,. Now for each k=k, define K, to be the normal
closure in %, of the image of all K(i) in %,, for i<n, under the natural homo-
morphisms 4, — %, defined for all I <k. These obviously satisfy (a), (b).

We will show that B,=%,/K, satisfy the requirements of Proposition 6. The
homomorphisms i,: B,— B, , are induced by i,, using (a). Assertion (i) follows
directly from (b) and the fact, already noted, that ¥ ~lim ¢,,. Since ¥, is finitely-

presented, and K, is normally generated by a finite set, (ii) follows. Since G - 9,
is 2-connected and ¥, — B, is 2-connected by the Stallings exact sequence, (iii)
follows. Finally (iv) follows because %, is the normal closure of G — which
follows from the contractibility of the systems of equations defining the relations
of%,.

This completes the proof of Proposition 6.

8. We will need to consider certain automorphisms of F, where F is the free
group with basis x,, ..., x,,.

Proposition 7. For any elements a,, ..., a,eF, there exists a unique automorphism
¢ of F such that ¢(x)=a;x;a;7 !, i=1, ..., m. These automorphisms form a sub-
group of the group of all automorphisms of F.

Proof. The homomorphism @: F — F defined by @(x;)=a;x;a; ! is a closing
and so extends to a unique endomorphism ¢ of F. We must show that ¢
is bijective.

By Proposition 2 (addendum) any element aeF belongs to a subgroup G
which is finitely normally generated by F. We can also assume ay, ..., a,,€G.
Then ®F<=G and G is finitely normally generated by ®F. This implies that
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G is generated by the solution set {g;} of some contractible system S over
®F. Now S=¢(S') for some contractible system S’ over F. If the solution set
of §' is {g/} < F, then ¢(g)=g;. Thus aeG< ¢ (F) and we see that ¢ is an epi-
morphism.

We can now construct an inverse for ¢. Choose b;e F such that ¢(b)=a; !
and define ¥ by Y (x;)=b;x;b; *. Then ¢y(x;)=x; and so, by the uniqueness
property, ¢oy=1. On the other hand Yodoy=y and so Yyop=1 on y(F).
But y is surjective by the previous paragraph.

The proof is completed by the easy observation that the composition of
two such automorphisms is another.

Definition. Automorphisms of the type in Proposition 7 will be called special.

II. Topology

9. We now turn our attention to one-dimensional links.

Definition. A based link of multiplicity m is a collection L of m disjoint imbedded
circles (smooth) Ly, ..., L,, in IR3>=53— co with the components numbered and
oriented, and a collection of meridian elements u, ..., py,en=mn,(S>~L, o).
The i-th meridian p;, by definition, is represented by a circle in S*— L which
bounds an imbedded (oriented) disk intersecting L at exactly one point, on
L,;, with positive sign.

A based link has an associated homomorphism (a basing) ®@: F — IT defined
by ®(x;)=p;, i=1, ..., m. Since IT is finitely presented and normally generated
by {1}, ® induces an epimorphism &: F —I1.

Definition. An F-link is a based link L such that & is an isomorphism with
the (perhaps redundant) extra condition that the longitudes of L lie in Kernel
{I-M~F}.

Recall that an i-th longitude of L is an element of IT represented by a translate
of L; into S*—L along a normal vector field to L;, which is homologically
unlinked with L;. This latter condition is equivalent to demanding that longi-
tudes lie in the commutator subgroup [11, IT].

If &,, ®,: F —1II are different basings of a link L, then &,=d&, - ¢ for some
special automorphism ¢ of F. In fact, we have @,(x;)=g;®,(x;) g; ! for some
g.€Il. If we choose a,eF so that &, (a)=g;, then we can define ¢ by ¢(x),)
=a;x;a; ', i=1, ..., m (see Proposition 7). In particular, the property of being
an F-link is independent of basing.

Proposition 8. Suppose L is an F-link with basing ®: F — I1. Then:

(a) @ induces isomorphisms of lower central series quotients
¢, F/E,~II/lI,, for al' n{c0.

(b) Any link concordant to L is also an F-link.




Link concordance and algebraic closure, 11 581

Proof. (a) Since F — F/F, and IT - I1/II, are closings (Proposition 1), we have
homomorphisms IT— I1/I1,, F— F/F,. It is an easy exercise, to see that the
composite IT — [T~ F — F/F, defines an inverse for &,.

(b) Let V=1IxS? be a concordance from L to L. The induced homomorph-
ism IT— G=1I1,(I xS3>—V) is 2-connected and we can apply Proposition 5 to
see IT~ G-similarly for L. Since meridians of L and L are conjugate in I x §*—V,
we see that I is an F-link if and only if L is. Also notice that longitudes
of L and L are conjugate in G; thus, if one set is trivial in G then so is the
other.

Remark. A, perhap§ slightly stronger, but more concrete notion is what we
might call a strong F-link. We define this to be a based link L whose longitudes
lie in an invisible subgroup N of I1. It can be shown that H,(II/N)=0 and,

as a consequence F z(ﬁ/\N)zﬁ ; thus L is an F-link. Conversely, it can be
shown that every F-link is concordant to a strong F-link.

For a strong F-link it is obvious that the longitudes lie in IT, and so all
the j-invariants vanish. It is then of great interest to ask whether any link
with vanishing ji-invariants is a (strong) F-link.

10. Let L be a link, IT1=1I1,(S*—L) and IT the quotient of IT by the normal
closure of the longitudes. Recall the invariant #(L)e H;(fT) from [L]. If
S3—L—K(IT, 1)~ K(I, 1) is the obvious map, we can extend it uniquely to
a map f: M — K(f1, 1), where M is obtained from S* by doing surgery along
L with the O-framing. Note that IT=1IT,(M); we refer to M as the surgery manifold
of L. Since M is a closed oriented manifold, f defines an element #(L)e H, (7).

Now suppose L is a based F-link. By the definition, the homomorphism
I —-I1~F determines a homomorphism ¥:/T—F and we define 60(L)
=¥, 0(L)eH,(F). Any other basing of L determines an automorphism ¢ of
F and 6(L) is transformed into ¢, 0(L). So strictly speaking we obtain, as an
invariant of an unbased F-link, an orbit in H,(F) of the action of the group
& of special automorphisms of F. However the statement 6(L)=0 is independent
of basing.

Proposition 9. If L and L are concordant F-links, then 0(L)=0(L) in H,(F)/.%.

Proof. Let M, M' be the surgery manifolds of L, L' respectively, and 1, IT’
be IT,(S*—L), I1,(S*— L) modulo the normal closures of the longitudes. If V
is a concordance from L to L, let G=1IT,(I x §*— V) modulo longitudes. Then
one constructs from V a cobordism W between M, M’, with IT,(W)~G. The
canonical maps M — K(f1, 1), M’ - K(IT’, 1) extend to a commutative diagram
of maps:

M — T — M
K(1,1)—— K(G, 1) ——K(T, 1)

This shows (L) and 8(L) have the same image in H;(G).
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Now choose basings i: F - I1, i": F — II'. As usual we have isomorphisms:

~ ~

FallxG~I'~F.

The automorphism of F induced by these isomorphisms is special since the
images of corresponding meridians of L and L are conjugate in G. The result
follows. [

It is not known whether H;(F)=0. It is also not known whether F=F
where F (see [L]) is the image of the natural homomorphism F — lim F/F,.

11. We recall some special classes of links.
¢

Definition. A link L=(L,, ..., L,,) is a boundary link if there exist disjoint oriented
surfaces Vi, ..., V,, in S3 such that dV,=L,. These are referred to as Seifert
surfaces.

It is a theorem of Smythe [Sm] that L is a boundary link if and only
if there exists an epimorphism ®: I1,(S® — L)=II — F such that, for some choice
of meridians uy, ..., ft,, {@(1;)} generate F. In other words, some basing F — IT
of L admits a left inverse.

Definition. L is a homology boundary link if there exists an epimorphism IT — F.

This concept was introduced by Smythe [Sm]. It shares some of the pleasant
properties of boundary link (e.g. Seifert matrices) but its geometric interpretation
is more obscure. A homology boundary link admits “singular” Seifert surfaces:
Vi, ..., V., where {V}} are disjoint oriented proper submanifolds of X, the com-
plement of an open tubular neighborhood of L in S3, such that dV,=dX is
a union of longitudes but homologically equivalent to a single i-th longitude.

Note that any epimorphism ¢: IT — F contains all the longitudes of L in
its kernel. Let {y;, 4;} be a system of meridians and longitudes in IT satisfying
[, A4 ]=1. Then {®(u,;)} gives a basis for H,(F) while ®(4)e[F, F]. On the
other hand &(y;) and ®(4,) must be powers of a common element of F. The
only possibility is @(4;)= 1.

Definition. An SHB link is one which is a sublink of a homology boundary
link.

It is shown in [H] that any ribbon link is an SHB link and, more generally,
in [C], that an interior band sum of a boundary link is an SHB link. It is
an open question whether every slice link is an SHB link and, more generally,
Tim Cochran has posed the question: If L is concordant to an SHB link, is
L itself an SHB link?

Proposition 10. If L is an SHB link, then L is an F-link and 6(L)=0.
12. To prove this we recall some more definitions from [C].

Definition. (a) A group G is an E-group if there exists a 2-complex K satisfying:
(i) I,(K)~G.
(ii) H,(K) is torsion-free.
(i) H,(K)=0.
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If K is finite, then G is a finite E-group. These conditions can then be
expressed algebraically as follows.

(b) G is a finite E-group if H,(G) is torsion-free and G admits a finite presen-
tation of deficiency d =rank H,(G); the deficiency of a presentation is the differ-
ence between the number of generators and relations.

(c) A finite E-link is one which admits a homomorphism @: I — G, where
G is a finite E-group, satisfying:

(i) @(II) normally generates G
(ii) rank H,(II)=rank H,(G)
(iii) the longitudes of L lie in kernel &.

We will refer to @ as an E-calibration of L. It is pointed out in [C] that
every SHB link is a finite E-link. It is shown in [L] that any finite E-link
L with the extra property: ®,8(L)=0 in H;(G) is concordant to an SHB link.
Note that H4(G)=0 if the Whitehead conjecture is true.

Proof of Proposition 10. We first show that any finite E-link is an F-link. Consid-

er the homomorphisms F— IT 2, G where i is a basing of L and @ is an
E-calibration of L. We can apply Proposition 5 to @ and @i, since H,(G)=0,
to conclude F~IT~G. Thus L is an F-link.

Now suppose L is an SHB-link and ®: [T - G the E-calibration of L pro-
duced in Proposition 6 of [L]. We will show that ¢, #(L)=0. Let L be a homolo-
gy boundary link which contains L as a sublink and f°: X° - W a map, where
X° is the complement of a tubular neighborhood of I°, W a one-point union
of circles (one for each component of I°), such that f° induces an epimorphism
of fundamental groups. Now each component C; of d X° is identified with I x S?,
where L is the corresponding component of I°, by the tubular neighborhood
theorem. We may assume that f°|C;=f;op;, where p;: C;—S* is projection,
and f;: S’ - W some map. This follows because f°|L?x¢ is null-homotopic,
by (iii) above, since 1° is a finite E-link, (t€S!) and n,(W)=0. We now construct
a 2-complex P from W by using the { f;} corresponding to components of I’ — L
to attach 2-cells. It is clear that we can then extend f° to f: X —» P. Then ®=f,
and, by Lemma 9 of [L] (this implication does not require @ onto), it follows
that @, f(L)=0. Note that f extends to a map M — P, where M is the surgery
manifold of L. [

13. Our first main result will be:

Theorem 1. Let L be an F-link. Then 0(L)=0 if and only if L is concordant
to an SHB-link.

Proof. One direction follows from Proposition 9, 10. Before beginning to prove
the other direction, we present some more definitions and preliminary results.

Definition. A finitely presented group G is an F-group if H,(G) is torsion-free
and H,(G)=0.

Examples. (i} According to [K1], G is the fundamental group of the complement
of a link of dimension =3 if and only if G is an F-group with weight G =rank
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H,(G) — the weight is the smallest number of elements which normally generate
G.

(i) If G is an F-group, then so are the {B,} of Proposition 6.

(iti) Any finite E-group is an F-group.
Definition. (a) A calibration of an m-component link L is a homomorphism
&: n— G satisfying:

(i) G is an F-group and rank H,(G)=m.

(i) G is normally generated by & (n).

(iii) The longitudes of L lie in kernel &.

(b) If L is a calibrated link, with calibration &, then set O(L, ®)
=, 0(L)e H,(G).
Lemma 4. A link L admits a calibration if and only if it is an F-link. Furthermore
8(L)=0 if and only if 8(L, ®)=0 for some calibration .

Proof. If L is calibrated, consider F o 1-2.G where iisa basing, @ a calibra-

tion. We apply Proposition 5 to i and ®-i to conclude F~IT~G. Then 0(L)
can be identified with the image of f(L) under the composition [T -G - G~ F.
Since O(L, @) occurs during this passage we see that §(L)=0 if (L, #)=0.

To prove the converse we need Proposition 6. Consider the composition
1> IT~F. Since IT is finitely presented this homomorphism lifts to a homo-
morphism ¢: IT - P, (we use the notation of Proposition 6 with G=F). To see
this, first lift {®(g)} to some F,, where {g;} is a finite set of generators of I1.
If (g, ..., g)=1 is any relation in 1, then ®(r)eP, goes to 1 in the limit.
Therefore we can assume @(r)=1 by increasing n. Applying this argument to
a finite presentation of IT yields ®. We can, in fact, include some choice of
meridians among the generators and specify @ on these elements so that @oi
agrees with the given homomorphism F — B,, where i is a basing. Clearly @
gives the desired calibration.

Now 6(L, ®)—6(L) in the limit B,— F. Since H,(F)=lim H,(B), we can
arrange that (L, #)=0, if (L)=0, by increasing n sufﬁciently." ]

14. We will also need to use the geometric lemmas of [L] which we recall
here with a slightly more general formulation.

Suppose L= {L;} is any collection of disjoint m-dimensional closed submani-
folds of an (n+ 2)-manifold M and f: V- X is any map, where V is the comple-
ment in M of a tubular neighborhood T of L. We will say f is vertical on
L (via @) if f|0T is the composition of fiber trivializations @: 0T~ L x §*, fol-
lowed by projections L; x S* — S and maps S' — X, one for each L;.

Lemma A. Let L=(L,, ..., L,) be a collection of disjoint closed n-dimensional
submanifolds of a connected (n+2)-dimensional manifold M. Let X be any
space and p: M—L— X a map satisfying, where H=n,(X) and K=XKernel
{m (M~ L) > r (M)}

(i) H is finitely generated.

(ii) H is generated by Image p,, together with the normal closure of p,(K).

Then there is a concordance V=IxM from L to L and an extension of
ptop:(Ix M)—V— X satisfying:
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(@) py is onto.

(b) m,(M—L)->n,((I x M)—V) is onto.

(c) If p isvertical on L via @, then p is vertical on V via @ extending .

(d) If {u:} are meridians of L, there exist meridians {1} of L so that p,= U,
inm, (IxM)—V).

Lemma B. Let L, M, X, p be as in Lemma A and assume p, is onto. Suppose
K1, Ky are meridians of L,, L, and p,(u,) is conjugate to p,(u,) in H. Then
there exists a cobordism V<Ix M from L to L, where L=(L,, L,, ..., L,), L,=L,
SJor i23, L, is a connected sum L % L,, and V=(V3, ..., V,) where V/=1xL;
Jor i=3 and V, is a boundary connected sum Ix L, 1IxL,. Furthermore p
extends to a map p: (I x M)—V — X such that, if p'=p|M —L, then p, is onto.
If p is vertical on L, then p is vertical on V.

The proofs of these lemmas are identical to those in [L]. It is only necessary
to remark that the concordances in the proofs are constructed by adding handles
of index 1 and 2 and so extending maps in the present formulation is possible
exactly when homomorphisms of the fundamental group extend. By taking X
to be an Eilenberg-MacLane space, we see that the present lemmas generalize
those in [L].

15. We now start the proof of the theorem. By Lemma 4 we may assume L
has a calibration @ with 8(L, ®)=0. By Lemma A, L is concordant to a calibrat-
ed link (L, @') where @ is onto. Since the calibration extends over the comple-
ment of the concordance (L, ¢')=0. We now apply Lemma 9 of [L]. Changing
notation, we have a link L with calibration @: T —» G such that 6(L, #)=0
and @ is onto. Let K be any 2-complex with I1,(K)=G. If M is the surgery
manifold of L, then, because O(L, #)=0 we conclude from Lemma 9 that &
is induced by a map f: M — K. Let X be the complement in S* of a tubular
neighborhood of L. Then X <M and M —X is a tubular neighborhood of a
collection of circles in M (translates of meridian curves of L). Therefore if we
consider g=f|X, we may assume g is vertical on L and g(dX) lies in the
1-skeleton of K.

We will take K to be the 2-complex associated to a certain type of “pre-
abelian” presentation of G. Let {y;} be a choice of meridians of L and x;
=P(u)eG. Let yy, ..., y, be a finite set of generators for G. Since {g;} normally
generate IT and image @ normally generates G, we may write: y;=w;(Xy, ..., Xp,
Vis - W) i=1, ..., k, where w; is a formal product of conjugates of {x;'}.
In other words, if w; is viewed as a monomial over F, the free group on {x;},
with indeterminates {y;}, then w; is contractible over F. Define G to be the
group with generators X, ..., X,., Vi, -.., Vx and relations y,=w;(X,, ..., X,,,
V1s -5 V), i=1, ..., k. Note that G is a finite E group. The obvious epimorphism
p: G- G, defined by p(X;)=x;, p(¥;)=y; has kernel N and we can choose ele-
ments a,, ..., a, which normally generate N in G. If we choose a representation
a;=0(Xy, ...» Xm, V1> --- » Jx)» then the desired presentation of G is:

X1s eoes Xy V1o eves Vit Vi=WillX 15 ooy Xy V1o oo Vi i=1, ., K
1=0,X1, coes Xy Vs ooor Vi) i=1, .o,




586 J.P. Levine

If K is the 2-complex corresponding to this presentation, let P<K be the sub-
complex defined by omitting the 2-cells corresponding to {v;=1}. Clearly
IT,(P)~ G so that p is induced by the inclusion P K.

Returning to our map g: X — K, choose interior points {p;}, one in each
2-cell of K—P; we may assume {p;} are regular values of g. Let L;=g" '(p),
a collection of framed circles in S*—L, and set L={L;}, [’=LUL. Let X°
denote the complement of a tubular neighborhood of I°, so that X°< X and
we have commutative diagrams:

= ,p g2 .G
N
X —K nH—G

where the vertical maps are inclusions and their induced homomorphisms, g°
is the restriction of g, IT° is IT,(S*>—I°) modulo the parallels of I determined
by g° and &#° is induced by g° Note that g° is vertical on I° and we may
arrange that ¢°(ji) = X;, where ji;, is a meridian of L;.

We now apply Lemma A to change L by a concordance in S*—L so that
@° is onto. Hypothesis (ii) of Lemma A is satisfied because @ is already onto
— see the proof of Theorem 4 of [L] for more details. L is unchanged by this
step and g° is still vertical on L. Now we can apply Lemma B to make each
L, connected, as in the proof of Theorem 4 in [L]. Note that a meridian of
L; maps to a conjugate of g; in G.

16. We now construct a collection of disjoint circles L'={Lf, ..., L}, one for
each L;, with the following properties:

(i) In S3—L, an isotopy of L’ will make each L] a small meridian circle
of L;,

(i) In S*— L, the components of L’ bound disjoint disks.

(iii) The isotopy of (i) extends to an isotopy in S* of the meridian disks
bounded by L’ to the disks in (ii).

(iv) Each L] represents an element of Kernel ¢°.

Since the quotient homomorphism G — G is 2-connected, it follows from
the Stallings exact sequence [S] that [G, N]=N. Thus we may write g; as a
product of conjugates of commutators of the form [g, a;]°, e= +1, geG. Since
G is normally generated by {X;}, we may therefore write:

ai:n[o_‘isa B—is]es; 85=i1; i=1,...,r
s

where & is a conjugate of some X;, and B, is a conjugate of some a;. Since
@° is onto we can choose meridians {a;,} of L and {B;,} of L so that &@;,= ®°(«;,),
B:.=®°(B;,). Finally choose a meridian «; of L; so that ®°(x;)=a; and define:

ni=n[aiss ﬂis]as lzla e b

éizai—l ;.

We will choose L; to represent &;.
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C, inside N

Fig. 1

First note that each [a, f;;] can be represented by a circle C;, which lies
in a regular neighborhood N, of some arc A4;; connecting a component of L
with a component of L. Furthermore C;; bounds an imbedded disk in N;—L
and in N,;— L. These disks are isotopic, rel C;,, in N,,. In fact, there is a 3-ball
B;, inside N such that C;;<dB;, and separates 0B;, into the desired disks.
See Fig. 1.

We may certainly choose the {4} to be disjoint and, therefore, also the
{N,}. However, to keep track of the basepoint we choose a ball B in §*—L°
meeting each B;, in a sub-ball containing the basepoint of C;;. We now band
sum the {C,,} together, in the proper order, choosing the bands inside B, missing
the interior of every B, connecting the components of C;;n B containing the
basepoints. See Fig. 2.

The result is a collection of circles {C;} in $*—I° representing {#;} which
bound disjoint disks D; in S*—L and D} in S*— L. Furthermore there is an
isotopy of S? rel {C;} moving {D,} onto {D;}. To construct {L;} we now only
need band sum {C;}, again inside B, to meridian curves representing {a; '}.
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VARG -
N 4 /

These latter curves can be chosen to bound disks in $*— L which are disjoint
from each other, all the {B;;} and the bands used to construct {C;}. The resulting
L’ clearly satisfies (i)}iv).

17. We now perform surgery on S* along the components of L' U L. We specify
the O-framing on the components of L, while L' has the framing with respect
to which g° is vertical. Let X be the resulting oriented manifold and consider
LcX. We will prove:

(a) X is diffeomorphic to S3.
(b) L= X is concordant to L §3.
(¢) L=2X is concordant to an SHB link.

These assertions will, of course, prove the theorem. Assertion (a) follows from
(i) with an application of the Kirby calculus [Ki]. If we choose a projection
picture of L in which the components of L’ are small meridian circles, then
any crossing of L can be changed by a handle-slide over an appropriate compo-
nent of L’ — see Fig. 3.

Therefore L can be transformed into the trivial link by handle slides and
now {L;u L}} is a collection of Hopf links lying in disjoint balls. The components
of L’ still have the O-framing. But it is well-known that surgery on this link,
whatever the framing on L, produces S°. This proves (a).

To prove (b) consider the cobordism V between X and S produced by
adding handles to S* along the components of L' u L’ with the given framings.
There is a concordance C between L=S® and L= X defined by I x LSV, but
of course V=1 x S3 We will do framed surgeries on 2-spheres in V—C which
will transform V into I x $3. By (ii) the components of L’ bound disjoint disks
{D;} in $3—L. The desired 2-spheres are obtained by taking the union of {D;}
(pushed into the interior of V) with cores of the handles added along L’. Since
L’ has the O-framing these 2-spheres have trivial normal bundles. We denote
by W the result of surgery on V along these framed 2-spheres. Note that the
difffomorphism type of W is unchanged if we change the {D;} by an isotopy,
rel L, in S3. In particular, by (i) and (iii), we may assume that L'’ and {D;}
are meridian circles and disks of L. Furthermore the handle slides used above
to transform L' U L’ into a union of Hopf links do not change the diffeomorphism
type of Vor W.

We now have a representation of V as a boundary connected sum [] ¥,

13

where each V is obtained by plumbing together a trivial 2-disk bundle over
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§2 with some other 2-disk bundle over S2. W is then obtained from V by doing
surgery on the O-sections of the trivial bundle in each V,. We leave it to the
reader to convince himself that this gives I x S3.

Finally we prove (¢) by showing that L= X is a finite E-link, as defined
in [C], and invoking Theorem 4 of [L]. Recall the map g°: X°— P inducing
@°: [1° - G. We will show that g° induces a map Y — P, where Y is the comple-
ment of a tubular neighborhood of L in X, which is vertical on L, and the
induced homomorphism IT,(Y)— G is onto. Condition (ii) of Theorem 4 of [L]
is satisfied by Lemma 9 of [L]. In fact condition (ii) serves only to create a
map to a 2-complex realizing the given homomorphism, but in our situation
the map is already given.

We show that g° extends over the surgeries performs on S* to create X.
First of all, since g° is vertical on L, we have an obvious extension of g° over
the copies of S! x D? attached to 6X° along the components of L, since the
framing of L is the one with respect to which g° is vertical.

As for the surgeries along L', we can invoke property (iv) of L’ to extend
g° over the handles adjoined along L. We thus obtain the desired map g': Y — P
which agrees with g° on X®—L’. In particular, since IT,(X°—L")— IT,(X°) is
onto and $° =g is onto, we conclude that g, is onto.

This completes the proof of Theorem 1. []

18. As companion to Theorem 1 we have the following realization result:

Theorem 2. For any element acH,(F), there is a (based) F-link L such that
0(L)=a.

Proof. To prove this we must reinterpret (L) as an invariant similar to that
defined by Kent Orr [O] and then use an argument similar to that in the
proof of Theorem 2 of [L].

Consider the map i: K(F, 1)— K(F, 1), of Eilenberg-MacLane complexes,
inducing the canonical inclusion F — F. Let K be the mapping cone of i. Equiva-
lently, K is obtained by attaching 2-cells to K (F, 1) via attaching maps represent-
ing the basis elements {x;} SF<F. If L is a based F-link we are provided with
a homomorphism @: [T - F, where IT=1I1,(S®— L) modulo the normal closure
of the longitudes, inducing a map f: M — K(F, 1) where M is the surgery mani-
fold of L. We can then obtain S* from M by surgery along the meridians
which define the basing of L. By the definition of K, there is a canonical map
f':8% > K obtained by extending f over the surgery. Note that the trace V
of the surgery defines a cobordism between S* and M and f, /' extend to a
map V— K. Therefore, if 8 (L)elIl,(K) is the homotopy class of f”, then we
have (*) h0'(L)=j, O(L) where h: I1,(K) — H4(K) is the Hurewicz homomorph-
ism and j: K(F, 1) - K is the canonical cofibration.

Now K is l-connected since F normally generates F. By Proposition 4, the
2-cells of K are attached along a basis of H,(F) and so j,: H,(F)~ H,(K) for
i>1. Since H,(F)=0, again by Proposition 4, K is 2-connected. We conclude
that h and j, are both isomorphisms and so formula (*) identifies 6(L) and
g'(L).

19. Suppose acH;(F) and let o’ €Il5(K) be defined by h(a)=j,(x). Choose
f': 8% - K representing o« and interior points p,, ..., p,, one in each 2-cell of
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K—K(F,1). We may assume these are regular values of f' and define L,
=(f")"!(p,); then [’ restricts to a map f: S>— L— K(F, 1) which is vertical on
L. We may assume each L; is non-empty. Let M be the surgery manifold of
L-since L; may be disconnected, this means we do framed surgery on each
component of each L;, using the framing defined by the verticality of f. Note
that this is the O-framing if L; if connected. Then f has a canonical extension
over M, f": M —K(F,1) and a= « LM]. Also notice that for any meridian
p; of any component of L;, f,(u;) is conjugate in F to x;e FSF. It follows
that, if each L, were connected then L would be a link and 6(L)=a modulo
the action of &, the group of special automorphisms.

In order to make each L; connected we will apply Lemma’s A and B to
change (L, f) by a concordance or cobordism in I x S®. We point out now
that the resulting (L, g) with its associated surgery manifold M’ and extension
g’: M' - K(F, 1) satisfies go[M1=f/[M]=a and g, (u) is conjugate to x; for
any meridian yu; of I;. To see this first note that f, g extend to a map
F:Ix 83—V —K(F, 1) vertical on ¥, where V is the concordance or cobordism,
and meridians of L, and L; are conjugate in I x S*— V. Secondly, we will use
V to construct a cobordism W between M and M’ and extend f”, g over
W. Attach handles to I x S3 along L<c0x S3, L1 xS® using framings which
come from a framing of V. This defines a cobordism W’ between M and M’
but the maps f”, g” certainly do not extend over W’. Consider, inside W',
the submanifold 4 obtained by adjoining the cores of the handles to V<=1 x S°.
Since the components of V are surfaces of genus 0, A is a collection of 2-spheres.
By the choice of framings these 2-spheres have trivial normal bundles. The
map F together with f”, g" defines a map F': W — A — K(F, 1) which is vertical
on A. We now define W to be obtained from W’ by surgery on the components
of A. F' extends to F’: W— K(F, 1) giving the desired bordism between f"
and g”.

We now show how to apply Lemmas A and B to make each L; connected.
Suppose some L; is disconnected and p, v are meridians of two components
of L;. Then f,(1)=gf,(v)g~ ! for some geF. If gef, I1,(S*—L) we can apply
Lemma B immediately to replace L by a link with fewer components. If
gé¢f, I1,(S*— L) we first apply Lemma A. According to Proposition 3 and the
addendum to Proposition 2, there is some finitely generated subgroup HS F
which contains f, IT,(S*—L) and the element g and is normally generated by
F. Since the meridians of L all map to conjugates of {x;}, this implies that
the images of the meridians normally generate H. (Note that we need each
L; to be non-empty for this conclusion). H now satisfies the hypotheses of Lem-
ma A. We use condition (d) of Lemma A to choose meridians g/, v' of compo-
nents of L; so that g,(«)=gg,(V)g™ ', but now geg, I1,(S*—L) and we can
apply Lemma B to L as above.

20. To complete the proof of Theorem 2 we prove: If L is any based F-link
and ¢ is any special automorphism of F, then there is a based F-link L such
that O(L)= ¢, 6(L).

Let @: IT — F be the homomorphism associated to the basing of L and sup-
pose ¢(x;)=g; x; g ', g;ie F. If {g;} = Image @ then we can rechoose the meridians
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of L so that the associated homomorphism is ¢ o ®@. This gives the desired L.
If {g;} £Image @, we apply Lemma A. As above, it follows from Proposition 3
and the addendum to Proposition 2 that there is a finitely generated subgroup
H < F which contains Image @, {g;} and is normally generated by F. The basing
of L consists of meridians {;} such that ®(u;)=x; and so H satisfies the hypo-
theses of Lemma A. The resulting concordant link L comes equipped with
@': I[I' - F(IT' = I1,(S*— L)) and, by (d), meridians {y;} such that & (u})=x;. Fur-
thermore, the discussion above shows 6(L)=®, [M']=®,[M]=0(L). But now
{g;} =Image @' and we can change the basing of L so that 6(L)=¢, 0(L).
This completes the proof of Theorem 2. [

III. Conclusion

21. We point out some remaining questions.

(i) What is H,(F)?

(ii) Is every link with vanishing ji-invariants an F-link? This is closely related
to the question of whether F=F, the algebraic closure of F in its nilpotent
completion (F is used in [L]). This question, in turn, is related to the question
of whether H,(F)=0. There is a transfinite tower construction of the (transfinite)
lower central series of G similar to that used in [B] for the HZ-localization.
Then H,(F)=0 if and only if this tower, for F, terminates at the first infinite
ordinal and so F is the transfinitely nilpotent quotient of F.

(iii) Is every homology boundary link concordant to a boundary link? As
some slight positive evidence, it is not hard to show that any elements
Oy, ... &, €F which normally generate F can be realized as the image of meridi-
ans of some ribbon homology boundary link.

(iv) What is the situation in dimensions n>1? Every link is an F-link and
the analogue of O(L) is defined, as in §17, as an element of IT,,,(K). As in
Theorem 2 of [L], every element of IT,.,(K) arises from a link L in which
the components are connected but may not be spheres. The methods of [Le]
seem appropriate — it has already been points out in § 6 that F~ IT, (EW), where
EW is the Vogel localization of W= K(F, 1).
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