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Forms Over Real Algebras and the Multisignature of a Manifold
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INTRODUCTION

This article gives a detailed account of the classification (up to equiv-
alence), of forms over simple real algebras with involution.
Let R be a ring with an identity. An inoolution I on R is an anti-

automorphism of period two.

i.e., writing xl for ](x),

(x +y)l = xJ+yI,

(xy)l = yJxl,

(xl)J = x,

for all x, y E R

Let (R, I) denote ring R with involution j. This will be an object in
a category whose morphisms are homomorphisms preserving involution.

A form over (R, ]) is a map

eP:M X M -+ R, M a right R-module

such that (i) eP(x,y) = eP(y,x)!
(ii) eP(xr,y} = rJ4>(x, y}
(iii) 4>(x1+ X 2 ,y} = 4>(x1,y} + 4>(x2 ,y)

(i.e. 4>is I-symmetric, I-linear in first variable and linear 10second
variable).

Forms 4>1:M1 X M1 -+ R, 4>2:M2 X M2 -+ R are said to be equiv-
alent if there is an R-module isomorphism y: M 1 -+ M 2 such that
4>1= 4>20 (y X y).
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There is a category whose objects are forms over (R, j) and whose
morphisms are commutative diagrams

M 1 x M 1� R ,f being an R-hornornorphisrn.

1X1l ;<
M 2 X M 2

Equivalence of forms is just equivalence of objects in this category. We
use the symbol ,....,to denote equivalence.
The sum of two forms rPl, rP2on M 1 , M 2 is the form denoted rPlEBrP2on

M1EBM2 given by (rPlEBrP2)(XEBx', y EBy') = rPl(X,y) + rP2(X',y').
The operation EBwill make the set S(R, j) of equivalence classes of
forms over (R, j) into a semigroup. In the usual way we can define a
Grothendieck group G(R, j) for the category of forms. There is a
natural homomorphism from S(R, j) to G(R, j) which will be injective
whenever a 'Witt cancellation theorem' can be proved for forms over
(R, j), (i.e. whenever rPlEBrP2,....,rPlEBrP3implies rP2"""rP3)'Such a
theorem, proved originally by Witt for quadratic forms over fields, holds
in particular when R is a division ring [6, Chapter 5].
A form rP:M X M -- R is nonsingular if the map from M to

HomR(M, R), m -- rP(m,-), is an isomorphism.
Note. A product of forms can also be defined and the concepts of

hyperbolic form and Witt ring can be developed. See [4] for details.
In Section I we describe how the category of R-modules and the

category of MnR-modules are equivalent (MnR being the ring of n X n
matrices with entries in R).
In Section 2 we show how forms over (R, j) correspond bijectively to

forms over (MnR,]') where J' = ] on restriction to R C MnR. In
Section 3 we list all the possible involutions on a semisimple real algebra
and then in Section 4 we show how forms over simple real algebras can
be classified up to equivalence. Section 5 gives a topological application
when we define the multi signature of an even dimensional nonsimply
connected manifold. This is a topological invariant which is useful in
the theory of surgery of manifolds. See Wall [8], who originated the
idea of the multisignature. .

1. MORITA EQUIVALENCE

Let CR denote the category of right R-modules. Rings A and Bare
said to be Morita equivalent if CA and CB are equivalent as categories. If
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M is an object in CR then M" is an object in CMnRin an obvious way.
Conversely if P is an object in CMnRthen Hom(Rn, P), the set of all
MnR-module homomorphisms Rn to P, is an object in CR'

LEMMA 1.1. If PE CMnR then P:::: (Hom(Rn, p»n.

Proof. Define tf;:M -+ (Hom(Rn, p»n by

if1(x)= (N",N',..·,fn"')
where fl(a l , a2 , ... , an) = x L;=Iajeij, eij being the matrix with lR in
the (i,j) place and zero elsewhere. The inverse if1-I:(Hom(Rn, p»n -+ M
is given by if1-I(f1 ,...,fn) = L::"lfi(ei), el ,... , en being the standard
basis for Rn as a free R-module.

LEMMA 1.2. If M is an R-module then M """Hom(Rn, Mn).

Proof. Define �� M -+ Hom(Rn, Mn) by ���� = fx where
fir l , r2 , ... , rn) = (xr l, xr2 , ... , xrn). The inverse ��� is given by

This is meaningful since, although ������ ei) E M", ����� eiA) =
������ ei)A for all A E MnR and taking A to have lR on top row and
zero elsewhere we get ������ ei) = (x, x, x, ... , x) for some x E M.

THEOREM 1.3. Rand MnR are Morita equivalent (i.e. CR and CM R
are equivalent). n

Proof. Define a functor F: CR -+ CMnR by F(M) = M" for objects
and the obvious definition for morphisms. Define a functor G: CM R -+ CR
by G(P) = Hom(Rn, P) for objects and G(h)(f) = h 0 f for mo;phisms
h: PI -+ P2 . To prove the theorem we must show that FG and GF are
each naturally equivalent to the identity functor.

FG(P) ,......,P by Lemma 1.1
PI " ' P2

�� ��
FG(P1) FOell) , FG(P2)
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This diagram commutes since

FG(h) ljJ(Jf)= FG(h)(N',N', ..·,fn"')

= (h 0/1"',h 0/2"'"",h 0 In"')
= U:("'),f������ ...,f ������

= ljJh(x)
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So FG is naturally equivalent to the identity functor. Similarly using
Lemma 1.2 it can be shown that GF is naturally equivalent to the
identity functor.

2. FORMS OVER RAND MnR

Given an involution] on R there is an involution], on MnR defined
by ],(A) = (AI)' for each matrix A. (AI = (atj )) . In particular if R is
commutative and] is the identity map then ]'(A) = A'. When R is not
commutative, transposition on MnR is not involution. Let S(R, J) be
the set of equivalence classes of forms over (R, J). We will show in this
section that there is a natural bijection from S(R, J) to S(MnR, ]') for
any ring R, not necessarily commutative.
Let r/J:M X M -+ R be a form over (R, J). Define r/J*:M» X Mn-+

MnR by
r/J*«x1 , ... , xn), (Yl ,..·,Yn)) = (r/J(x;,YJ))

(i.e, the matrix with .p(x; ,Yi) in (i,j) place)

It is easily checked that r/J*is a"form over (MnR, ]'). Conversely let
7): P X P -+ MnR be a form over (MnR, ],). We define a map denoted
7)* : Hom(Rn, P) x Hom(Rn, P) -+ R as follows:

forI,gEHom(Rn, P), 7J(It:le;,g tle;)= matrix (xu)

We will show xij = Xll for all i, j. Let A be the matrix with entries 1R
on the top row and zero elsewhere (as in Lemma 1.2). Then ����� ei)A =
���� ei , and AI' = A'.
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Hence the columns of (Xij) are identical. Similarly

implies that the rows of (Xij) are identical. So Xij = Xu for all i,j. We
define "7*(/,g) = Xu' It can be checked that "7*is a form over (R, J).
Further rp-+ rp*and "7-+ "7*each preserve equivalences (i.e. rp1,....,rp2�
rp1* ,....,rp2* and "71,....,"72� ("71)* ,....,("72)*). This can be seen by using the
functors F and G of Theorem 1.3.

THEOREM 2.1. S(R, J) and S(MnR, j') are in one-one correspondence.

Proof.
S(R, ]) - S(MnR, ])

1>-1>*

is well defined, as is

S(MnR, ]) - S(R, ])

We show that (1), (rp*)*,....,rp,and (2), ("7*)* ,....,"7

The map g of Lemma 1.2 gives the equivalence since

(1)*)*g X g(x,y) = �������������

= ��������������

= 1>(x,y)

(1)

(2)
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The map if;X if;of Lemma 1.1 gives the equivalence since

= matrix with entries TJ*(f/, ,/l)

277

Note 1. The correspondences rP---+-rP*and 71---+-71*can be viewed as
functors between the category of forms over (R, J) and the category of
forms .over (MnR, ],). The morphisms in the category of forms over
(R, J) being commutative diagrams

M1xM1--R

IXII ):2

where f is an R-module homomorphism. The theorem gives an iso-
morphism of Grothendieck groups. (as the correspondences preserve
sums)

Note 2. The previous theorem will follow from the more general
theory of Frohlich and McEvett [4], though they do not get the corre-
spondence explicitly in this way.
We can generalize theorem 2.1 slightly in the following way. Choose

a nonsingular form rPon Rn over (R, J). rPis nonsingular provided
Rn ---+-Hom(Rn, R), x ---+-rP(x,-), is an isomorphism. For A E MnR,
define the adjoint A* EMnR be-requiring rP(xA,y) = rP(x,yA*) for all
x, y in R", The mapping A ---+-A * is an involution on MnR which we
will denote by *. If C denotes the n X n matrix with entries rP(ei, ej )

then C" = C and C is invertible.

LEMMA 2.2.

A* = C-1AJ'C

Proof. rP(xA,y) = rP(x,yA *). Putting x = ei , Y = ej we will get

AJ'C = CA*

A* = C-1AJ'C
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LEMMA 2.3. If 'Y)ts a form over (MnR, *) then C'Y)is a form over
(MnR, ]').
Proof.

OY)(X,y) = C('Y](y,x))*

= CC-l'Y](Y,xY'C

= 'Y](Y,xY'C

= (C'Y](Y,x)Y' since C = CJ'

C'Y](xB,y) = CB*'Y](x,y)

= BJ'C'Y](x,y)

C'Y](x+ x',y) = C'Y](x,y)+ C'Y](x',y)

C'Y]is a form over (MnR, J')
LEMMA 2.4. If'Y) is a form over (MnR, ]') then C-l'Y)is a form over

(MnR, *).
Proof. Similar to previous one.

THEOREM 2.5. S(R, ]) and S{MnR, *) are in one-onecorrespondence.
Proof. Follows from Theorem 2.1 and the preceding lemmas. We

finish this section with some examples.

EXAMPLE 1. The only kind of form 'Y):Rn X R" -- MnR is a 'direct
sum' of n copies of the form

RxR-R

(x,y) - xlcy
for some C E R

i.e. 'Y)«x1 , ... , xn), (Yl ,... ,Yn)) is the diagonal matrix with entries X/CYi ,
'Y)* turns out to be the form

RxR-R

x,y_xlcy

EXAMPLE 2. Choose C E MnR, C = CJ'. Define 'Y):MnR X MnR--
MnR by 'Y)(A,B) = AJ'CB. This is a form over (MnR, ]') and 'Y)*is the
form on R" with matrix C.
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EXAMPLE3. If T): M x M -+ MnR then trace T) is a form over
(R, ]' IR) and trace T) is equivalent to a 'sum' of n copies of T)* (ifr 1 of
Lemma 1.1 gives the equivalence).

3. INVOLUTIONSON SEMISIMPLEREALALGEBRAS

Any simple real algebra is MnK up to isomorphism where K = IR,C,
or IHI(reals, complex numbers or quaternions). First we look at involu-
tions on MnK.
MnlR The map X -+ X' is clearly an involution. The composite of

two involutions is an automorphism and every automorphism is inner by
Skolem-Noether theorem so any involution on MnlRmust be of the form

and

since the map must have period two.
MnC The maps X -+ X' and X -+ XI are both involutions. So we

get that any involution on MnC is either

(i) X -+ A-IX'A where A' = ±A,
or (ii) X -+ A-IX'A where A' = ±A.

In case (ii) if A' = -A then (iA)' = iA so we can always take A
hermitian symmetric.
MnlHl The map X -+ X' is an involution (- being the usual involu-

tion on IHI).(Note that X -+ X' is not an involution on MnlHl.)Every
involution on MnlHlis of the form X -+ A-IX'A where A' = ±A. See
Albert [1]. We can not -put iA in place of A to remove the skew sym-
metric case as iA =1=Ai in MnlHl, i.e. we have two distinct types of
involution.
In all we have, up to equivalence, seven types of involution (2 on MnlR,

3 on MnC, and 2 on MnlHl)and each one of the seven could be interpreted
as being of the form * of section 2.
If R is a semi-simple real algebra then R = ���� Ri where each Ri

is of the form MnK up to isomorphism. Any involution of Reither
preserves components Ri or else swaps pairs of them (being of period
two). Hence all the possible types of involution on R could be listed.
In section 5 we will construct a form over (1R7T,J), 1R7Tbeing the real
group ring of a finite group 7T,and] being the involution induced by
mapping each element of 7Tto its inverse. We can describe how] behaves
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on simple components of 1R17as follows. An involution J on a real
algebra R is said to be positive if for each non-zero a E R the linear
map R -+ R which sends x to aa/x has positive trace. This definition
is due to Weil [10].

LEMMA 3.1. The above mentioned involution J on 1R17is positive.

Proof, Let 17= {gl ,g2 ,..., gn} and gl be the identity of 17.
n

X E 1R7T=> X = L rig i, (ri E IRfor each i)
i=1

We want to find the diagonal entries in the matrix, with respect to the
basis gl ,..., gn , of the map x -+ aa'x, So we want the coefficient of gi in
aalgi . This is, for each i, the same as the coefficient of gi in aa! i.e., if

then each diagonal entry of the matrix is ���� ai
2 i.e. positive trace.

Weil proves that a positive involution preserves simple components
and also that on MnK, K = IR, C, or rr1Ithere is a unique positive
involution (namely X -+ X' for K = IRand X -+ X' for K = Cor rr1I).
So J on 1R17is precisely determined.

4. FORMS OVER SIMPLE REAL ALGEBRAS

A simple real algebra is, up to isomorphism, a matrix ring MnK where
K = IR,C or rr1I.The possible involutions on MnK have been listed in
the previous section. We will show now that forms over (MnK, J) can
be classified up to equivalence in the same way as forms over K (the
type of form over K depending on J).
First we define a skew form over (MnK, J) to satisfy the same con-

ditions as a form over (MnK, J) except that we require et», y) = -ep(y,x)
(i.e. epis skew-symmetric with respect to J). Equivalence, sums, etc., are
all defined as before, and Theorems 2.1 and 2.5 give a correspondence
between skew forms over (MnK, J) and skew forms over K.
For a form epover (MnlR, J) where XI = A-IX'A and A' = -A we

get that Aepis a skew form over (MnK, ]') where X" = X', Similarly
for the involutions on MnC and M nrr1lwhen ifl = -A we get skew
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forms. Thus we can classify, up to equivalence, forms over (MnK, ])
by using Theorem 2.5.

Involution Form over K Invariants

1. K = JR,XJ = A-IX'A, A' = A quadratic rank and signature
2. A'= -A alternating rank

3. K = C, XJ = A-IX'A, At = A quadratic rank
4. A'= -A alterna ting rank

5. K = iC.XJ = A-IXtA hermitian rank and signature

6. K = 1Hl.XJ = A-IX'A, A'=A hermitian rank and signature
7. At= -A skew-hermitian rank

Nonsingular forms over K are determined up to equivalence by rank
alone, or by rank and signature, as indicated in the above table. The
routine argument for the classification would go in the following way.
Each of the seven types is represented by a square matrix with respect

to an ordered basis (if A and B represent the same form but with respect
to two different bases then B = PIAP or PIAP, depending on type).
The rank of a form is defined to be the rank of its matrix. This is

easily seen to be independent of choice of basis.
A form 1>of type 2 or 4 will have a skew-symmetric n X n matrix

representing it. Clearly n must be even and 1>(x,x) = 0 for all x. It is
easy then to find a symplectic basis for 1>,i.e., a basis such that the
matrix of 1>is the block matrix ��� ���� (There exists a 2 dimensional
subspace U such that 1>I U has matrix el ��� U is a direct summand
and we can repeat the process till we get a basis for the whole space.
After re-ordering this basis we get the above block matrix). Hence rank
alone classifies forms of type 2 or 4.
For each of the other five cases 1>(x,x) = 0 Vx implies 1>= O. Hence

we can find a basis with respect to which 1>is given by a diagonal matrix.
(For case 1, as 1>(x,x) 7'=0 Vxwe can represent 1>by a matrix of the form
�� 1;;)where a E K, a 7'=0, L is an (n - 1) X 1 matrix, and N an
(n - 1) X (n - 1) matrix.)

�� �� - �� ������ using P � �� -;L')
The result follows by induction. Similarly for the other four cases.
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The diagonal entries we get will be in the set of nonzero real numbers
for cases 1, 5, 6, nonzero complex numbers for case 3, and {z E IHJ:
Z = -Z, Z =1=O}for case 7. Multiplying the basis elements by scalars
we can reduce the diagonal entries to ± 1 for cases 1, 5, and 6 and to +1
for Cases 3 and 7, (all non-zero elements of iCand IHJhave square roots).
Thus two forms of type 3 or 7 are equivalent if and only if they have the
same rank. See also [3] for more on type 7. For types I, 5, 6 we define
the signature of the form to be p - q where p (resp. q) is the number of
appearances of +1 (resp. -I) on the diagonal. For each type the fact
that the signature is independent of choice of basis follows by the usual
argument (i.e. by showing that p is the dimension of the maximal
subspace on which the form is positive definite). The two invariants,
rank and signature, determine the form up to equivalence.
We are now able to define the rank, (for all types), and the signature,

(for types I, 5, 6 only), of a form over MnK to be that of the corre-
sponding form over K.
Next let R be a semisimple real algebra and] the unique positive

involution on R.
n

R =L: R; and each R; � Mn,K;
;-1

for some K, , ni .

A form c/>over (R, ]) is easily shown to split into a sum of forms c/>i
over (R; , ] [Ri) since Ri = e.R, ei being the central idempotents of R.
Since] I Ri is positive it follows that c/>iwill have a signature and a rank.
We could define the multi rank (resp. multi signature) of rP to be the
collection of rank c/>i(resp. signature rPi)'Non-singular forms c/>would be
classified up to equivalence by multirank and multisignature.

5. MULTISIGNATURE OF A MANIFOLD

Let M2k be a closed (i.e. compact without boundary), connected,
oriented topological manifold of dimension 2k, with finite fundamental
group. Let 7T= 7T1M2k be the fundamental group. Let JClIbe the uni-
versal covering space of M. This will be a closed oriented manifold of
dimension 2k. 7Tacts on JClIas a group of transformations and thus
induces an action on H*JClI,the cohomology of JClI.(We use cohomology
with coefficient group IR.)Hence H*JClIis an 1R7T-moduleand in particular
HkJClIis an 1R7T-module.
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We define a form cPby

�� HkJiiI X HkJiiI--+ lR'lT

c/>(x,y) = L (x .yg-l)g,
gE."
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the' denotes the cup product in H* JCf,and x . yg-l may be viewed as a
real number since x . ss:' E H2k JCf"-' IR. (More precisely we get a real
number by evaluating x . vs:' on the fundamental homology class of
M.) Hence we get that cPis a form over (lR7T,j), ] the unique positive
involution on lR7T,when k is even, and cPis a skew form when k is odd.
So cPhas a multisignature for k even (cPalso has a multirank but since cP
is nonsingular this is not of great value). It is a collection of integers
indexed by the irreducible real representations of 7T.For k odd, cPis a
skew form and so we get a signature for cPionly when the corresponding
R i is of the form MnC, i.e. we get a multi signature which is a set of
integers indexed by the irreducible real representations p such that p
and pare inequivalent. This index set may of course be empty, depending
on 7T.We define the multisignature of the manifold M2k to be the
multisignature of cPo
This is a topological, (in fact bordism), invariant and is of use in

surgery of manifolds. When 7T= 1, it reduces to a single integer which
is the signature (or index) defined in [5, p. 84]. The multi-signature can
be interpreted in terms of the Atiyah-Singer signature [2, p. 578-579].
See [7] for details. It can be defined for manifolds with boundary (and
is of more value here since for closed manifolds it turns out to be almost
trivial). Also a multisignature can be defined for non-orientable manifolds
(the involution on lR7Thaving to be modified to allow for nonorientability).
See [8] for all this. - -

REFERENCES

1. A. ALBERT,"Structure of Algebras," Revised ed., A.M.S. Colloquium Publications,
1961.

2 M. F. ATIYAHAND1. SINGER,Index of elliptic operators III, Ann. Math. 87. (1968),
546-604.

3. J. DIEUDONNE,On the structure of the unitary group, Trans. Amer, Math. Soc. 92
(1952), 367-385.

4. A. FROHLICHANDA. M. McEVETT, Forms over rings with involution, ] Algebra
12 (1969), 79-104

5. F. HIRZEBRUCH,"Topological Methods in Algebraic Geometry," Springer-Verlag
1956.



284 D. W. LEWIS

6. N. JACOBSON,"Lecture in Abstract Algebra II," Van Nostrand, 1953.
7. D. W. LEWIS, The multisignature, the Atiyah-Singer signature, and covering spaces
of manifolds, (to appear).

8. C. T. C. WALL, "Surgery of Compact Manifolds," Academic Press, New York, 1970.
9. C. T. C. Wall, Surgery of non-simply connected manifolds, Annals 84 (1966),217-276.
10. A. WElL, "Discontinuous Subgroups of Classical Groups," University of Chicago

Lecture Notes, Chicago, Ill., 1958.

Printed by the St Catherine Press Ltd., Tempelhof 37, Bruges, Belgium.


