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Exact octagons, i.e. circular eight-term exact sequences, have cropped up recently
in a few places in the literature. Papers of the author [11], and implicitly [10], the
book of M. Warshauer[14], and the notes [5], all contain exact octagons. The first three
references involve octagons of Witt groups of quadratic and other kinds of forms, the
last reference extending the octagons to the setting of L-groups, i.e. surgery obstruction
groups.

It is the purpose of this paper to show that the symmetry pattern displayed by the
octagons of [10], [11], and indeed the fact that they are octagons, arises out of the
eightfold periodicity of Clifford algebras viewed as algebras with involution.

While our octagons may be viewed as special cases of the i-group octagons of [5],
our construction uses only elementary algebra without any of the machinery of
algebraic topology as used in [5].

In § 1 we discuss Clifford algebras and give a periodicity theorem for such algebras
viewed as algebras with involution. In § 2 we construct an infinite sequence of Clifford
algebras out of which arises a long exact sequence of Witt groups, these being the Witt
groups of hermitian forms over Clifford algebras with involution. The eightfold
periodicity causes the long exact sequence to reduce to an exact octagon. The octagons
of [10], [11] arise from special cases of this.

Acknowledgements are due to C. T. C. Wall, who first suggested that the shape of the
sequences of [10] was reminiscent of Bott periodicity of Clifford algebras, and to
C. Riehm for helpful discussions on some of this work.

1. Clifford algebras and periodicity

Let K be a field of characteristic not equal to 2. Let q: V -> K be a non-singular
quadratic form defined on a finite-dimensional IT-space V. Let C(q) be the Clifford
algebra of q. See [8], chapter 5, or [6] for basic definitions and results on Clifford
algebras. For the standard results on periodicity see [1] and [8], chapter 5. Further
results on periodicity may be found in [2], [7], [12] but this paper requires no specific
knowledge of these.

The algebra C(q) has two involutions naturally defined on it. (The word involution
is used in this paper to mean an anti-automorphism of period 2.) These two involutions,
denoted Je for e = 1 or e = - 1, are defined by Je(x) = ex for all ze V. Note that the
composite map Jt o J_ls which will henceforth be denoted by a, is an automorphism of
period 2. The standard Z2-grading of C(q) is completely determined by a.

The notation (A, J) will be used to denote an algebra A equipped with an involution
J. The algebras with involution (C(q), Je) are those of interest in this paper.

The following is a standard result on Clifford algebras.
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PROPOSITION 1. Let qx and q0 be non-singular quadratic forms over K. Let q0 be of rank
2 and have determinant 8. Let qx j _ q0 denote the orthogonal sum of the forms ql and q0. Then
C(qx± q0) is isomorphic to C(q0) ®K C( — 8qx). (This is the usual tensor product, not the
graded product!)

Proof. For a detailed proof see [6], p. 233. Briefly it goes as follows:
Let q0 be the form (a, 6), a,bsK, and let {e,/} be an orthogonal basis of Vo such that

qo(e) = a, qo(f) = b, where qt: Vi -> K (i — 0,1). Identify Vo, resp. Vv with its image in
C(q0), resp. C( — SqJ. The universal property of Clifford algebras and also that of the
tensor product yields a natural map C(q0) ® KC( — SqJ -> C(q01 qx) such that y -> y
for all y e Vo, z -> dz for all z e Vlt where d = ef. (Here each Vi has been identified with its
image in VQ © Jj and thence its image in C(qo±_ qj.) This map is an isomorphism, its
inverse being the map C(q0 ± qj -»• C(q0) ®KC( — 8q^) specified by

y + z^-y® l+d-x®z for yeV0, zeVv

The following is the corresponding result for algebras with involution.

PROPOSITION 2. {C(qo±q1),Je) is isomorphic to (C(qo),Je) ® (C( —^i),«7_e) for e = 1
or e = — 1.

Proof. Examine the action of the involutions on basis elements of Vo ® Tj.

The above proposition is the key result needed for proving results on periodicity of
Clifford algebras viewed as algebras with involution. First some terminology is needed.
Cr>8 will denote the Clifford algebra of the (r + s)-dimensional form r( — 1)J_S<1). The
standard periodicity theorems [1], [8] for Clifford algebras, viewed either as ungraded
or as Zg-graded algebras, relate Cr> s and Cr+8> s. The following is the result for algebras
with involution.

PROPOSITION 3. Let the involution Je on any Clifford algebra be as defined earlier. Then
(Cr+8>s, Je) is isomorphic to (M16 C

r-8, *), where Mie C
r-" denotes the ring of 16 x 16 matrices

with entries in Cr-s and * is the involution on this matrix ring defined by, for X e Mn G
r-8,

X* = S~1(XJe)tS, S being an element of MnC
r-8 which is symmetric with respect to Je,

i.e. (*SJe)' = S. (In fact, S can be taken to be a symmetric matrix in MieK.)

Proof. By repeated application of Proposition 2,

((7'+8-«, Je) ~ (&>°,Jt) ® (O»-V_) ® (C*-o,Je) ® (C»-2, J_e) ® (C'-°,Je).

Also by repeated application of Proposition 2,

(C»-°, Je) ^ (0*°, Jt) ® (0».2, J_e) ® (C».o, Je) ® (Co- *, J_e).

Hence (Cr+s>s,Jc) ^ (Ca<°,Je) ® (Cr<8,Jc). But it is easy to check that C8-0 ^ MUK for
any K. Also, by calculating the dimension of the subspace of <78>0 fixed by Je it is easily
seen that Je is of orthogonal type, e = 1 or - 1, i.e. is the adjoint of a symmetric form.
This completes the proof.

Comment 1. There is always a full eightfold periodicity which does not degenerate
into a lower-order periodicity for any kind of field. This is in contrast to the ungraded
and Z2-graded cases, where the periodicity can reduce to order 4 or 2 for certain kinds
of field.

The periodicity of Clifford algebras from the viewpoint of algebras with involution
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does not seem to occur explicitly in the literature except for [13], which looks at the
special cases of the real and complex numbers.

Comment 2. From the viewpoint of hermitian form theory the above proposition
implies that (Cr+8-s, Je) and (Cr's, Je) are hermitian Morita equivalent. See [4] or [9]. In
particular, the Witt groups of non-singular hermitian forms over (Cr+8> s, Je) and
(Cr'",Je) will be isomorphic.

Another version of periodicity, which is important for the construction of exact
octagons, arises again from Proposition 2. Let aeK, a 4= 0 and q0 = < — a,a), a two-
dimensional hyperbolic form. Let q be any non-singular quadratic form over K.
Consider the following infinite sequence of quadratic forms qn{n — 1,2,3,...), given
by <7i = q, q% = ?2-L ( — a)> <Z«+2 = <7n-L ?o f°r a ^ n ^ I, n being a positive integer, i.e.
start with q and alternately add one-dimensional forms < — a) and (a) to obtain an
infinite sequence.

PROPOSITION 4. Let the involution Jeon a Clifford algebra be as defined earlier. Then
(C(qr+8),Je) is isomorphic to (M16C(qr), *), where * is the involution on M1QC(qr) given by
X* = S-1(XJ')tSfor an element SeM16C(qr) such that (SJ'Y = S. (8 may be taken to be a
symmetric matrix in M16K.)

Proof. Use Proposition 2 in the same manner as in the proof of Proposition 3 to get
that (C(qr+8), Je) £ (C{4qo),Je) ® (C(qr), Je), where 4q0 = (-a,a, -a,a, -a, a, -a,a).
It is easily checked that C(4^0) ~ M19 K and that Je is an orthogonal type involution on
C(4q0).

Comment. As earlier, it follows that (C(qr+a),Je) and (C(qr), Je) are hermitian Morita
equivalent. This implies that the infinite sequence of Witt groups of hermitian forms
over (C(qr), Je) (r = 1, 2,3,...) is a periodic sequence of period 8.

2. Exact octagons

Let C(qr) be as in § 1, and let W(C(qr), Je) be the Witt group of non-singular hermitian
forms over C(qr). (Briefly, the Witt group is defined by first taking the Grothendieck
group of isometry classes of non-singular hermitian forms and then defining a Witt
equivalence relation in such a way that the forms having Witt class zero are precisely
those which contain a submodule equal to its own orthogonal complement.) The Witt
group of non-singular skew-hermitian forms over C(qr) will also be considered and this
will be denoted by W_x{C(qr), Je).

There is, for each r, a natural homomorphism Ur: W(C(qr),Je)^- W(C(qr+1), Je)
defined as follows:

Given (j>: M x M -> C(qr), a non-singular hermitian form over (C(qr), Je), M being
a right C(q )-module, the form

): M ®C(ar)C(qr+1) x M ® c(9r,<7(?r+1) -• C(qr+1)
is defined by

UT{<j»){x®X,y®/i) = \J'(j){x,y)ii for x,yeM,

Note that because of the way the sequence (qr) is constructed it follows that C(qr)
embeds in C(qr+1) in a natural way and </>(x, y) e C(qr) can thus be identified with an
element of C(qr+1).
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PROPOSITION 5. There is a long exact sequence of Witt groups and group homomorphisms

• • • > mC(qr-i), J-i)-^ W(C(qr), J_x) - ^ W(C(qr+1), J_X)^X ....

Proof. For convenience write C — C(qr_x), C = C(qr), 0" = C(qr+1). Firstly, because
qr+1 = <2V_i± q0 and C(q0) — M2K, it follows, via Proposition 1, that

C" ̂ M2K ®KC^M2C.

The involution /_] on C" becomes J_x ® Jx on G(q0) ® G and J_x on C(q0) ̂  M2K is of
symplectic type, i.e. of the form X ->• 8~1XtS for XeM2K, where S* = —8. Thus, by
hermitian Morita theory, W(C", J_x) is isomorphic to W_X(C, Jx). (Similarly, it can be
shown that W(C", Jx) is isomorphic to W(C, J_x) since Jx on C(q0) is of orthogonal type.)

Now C" = C(qr), G = C(qr_x) and C is a kind of quadratic extension of C obtained
by the adjunction of an element e such that e2 = ( — l)ra. (e will be an extra basis
element adjoined to an orthogonal basis for qr in order to get a diagonalization oiqr+x.)
Each xeC' can be uniquely written in the form x = cx + ec2 for cx, c2 6 C. Define the map
T-.C-+C by T(cx + ec2) = c2. It is easy to verify that (zJ-i) = -T{x)J* for all xeC
I t then can be seen that if <j> is a hermitian form over (C, J_x) then T • <j> gives a skew-
hermitian form over (C, Jx).

Hence there is a map T: W(C', J_x) -> WL^C, Jx). It will be proved, in a lemma below,
that there exists an isomorphism 6: W(C",J_X) -+ W_X(C,JX) such that 6oUr = T, i.e.
the following diagram commutes:

W(C, J_x)
 Ur > W(C, J.x)

Thus Ur and T have the same kernel, and hence to prove exactness of the sequence at
the point W(C',J_X), it suffices to show that the kernel of T coincides with the image
of Ur_x. This can be shown as follows. Let i/r: M x M ->• G represent an element of
W(C, J_x). Then T o Ur_x{ijf) is a form M ®c C x M ® c C' -> C, given by

x ® A, y (g) [i -> T(\J-i(f>{x, y)fi)
for x,yeM, \,ju,eC'.

Let N = M ® 1, a C-submodule of M ®CC viewed as a C-module. Then the reader
may easily check that N is self-orthogonal with respect to the form T o Ur_x(r}r), i.e. that
TUr_x(i/r) (nx, n2) = 0 for all nx,nzeN and that TUr_x(rjr) (n,x) = 0 for all neN implies
that xeN. Thus the image of Ur_x is contained in the kernel of T.

Now suppose (p: M x M ->• C" represents an element of W(C',J_X) which lies in the
kernel of T. Then M, viewed as a O-module, must have a £7-submodule N which is self-
orthogonal with respect to the form T<p. Define a form ft: N x N -> C by

f(n,n') = <j>{n,n').

Then it is easily checked that N ®CC is isomorphic to M and that Ur_x^r is isometric
to <j>. All that is now left to complete the proof of Proposition 5 is the following lemma.
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LEMMA. Use the notation of the above proof. There exists an isomorphism

such that 6 oUT = T.

Proof. The isomorphism will be given by a hermitian Morita equivalence [3] from
(C, J_x) to (C, Jx). To obtain this equivalence it is necessary to have a C ' - C bimodule
progenerator B together with a form h: BxB-> C, h hermitian over (C, Jx), with h
admitting (C", J_x) in the sense that h(zu, v) = h(u, zJ-*v) for all u,veB, ze C". Given
a hermitian form ^ over {G",J_j), (j>: M xM -> G", M a right C"-module, then the
hermitian Morita equivalence gives a form over (C, Jx) defined on the right (7-module
M ®c.Bhy

(M ®C-B) x (M ®C-B) -> C; (a; ® u,y ® v) -> h(u,^>{x,y)v)

for all x,yeM, u,veB.
A suitable choice for B is to take B = C", which may be viewed as a free right

C-module of rank 2, with basis {l,e}, and which has a left C"-module structure defined
as follows, Regard C" as being contained in C" in the obvious way. Denote the C"-action
on C" by * and define A*c' = Ac' if AeC", c' eC (i.e. ordinary multiplication in C"),
and define/* c' = ey(c') for all c' e C, where y is given by yfa + ec'2) = c[ — ec'2 (writing
c' = c[ + ec'2 for c'^c^eC). Since any A e C" can be expressed in the form A = Ax +/A2 for
A1; A2 e C", the C"-action on C" is now defined in the obvious way.

[Comment-the motivation for this definition of the (7"-module structure on C
comes from using Proposition 1 to give an isomorphism of G" with G ®KC({—a,a))
and the isomorphism C(( — a, a)) -> M2 K given by

(0 -a\ (0 a\

C" is thus identified with M2C and acts on the free C-module C" taking {1, e} as the
C-basis of C". Beware that the component C in C ®K C({ — a, a)) does not correspond

to {\leM2G: AeC} but to !l .\eM2C: AeCj, a being the grading auto-

morphism of C defined earlier.]
The form h:C'xC'-+C is defined by h(u,v) = T(uJ-*v) forallw.weC". The map (9

of this lemma is the isomorphism arising from the hermitian Morita equivalence given
by C" and h.

To prove the lemma it must be shown that 6 o Ur = T. Let $: M x M -> C" be a form
over (C, J_i). Then T<j>: M x M ^ C is given by (a;,?/) -^ T($(x,y)) for x,yeM and

is given by
((x ® A) ® M, (y ® /i) ® v)

f, X,/ieC", u,veC'.
Consider now the map/ : M -+ (M ®C-C") ® c.G',f(x) = (a; ® 1) ® 1 for all xeM

and also the map g: (M ®C,C")® C-G'^-M, g((x ® A) ®u) = x(A*u) for zeM,
A e C, u e G'. I t is easily checked that /and g are each right C-module homomorphisms.
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Clearly gofis the identity map since 1*1 = 1. Also fog is the identity map because

(fog) ((z ® A) ® u) = f(x(\ * «))

= (x(A*«)® 1)® 1
= (x ® (A * «)) ® 1
= (*® 1) ® {A*u)
= (a; ® A) ® u.

Thus/is a C-module isomorphism. Furthermore

h(l,<P(x,y)) = T(<P(x,y))

so that / is an isometry of d{Ur{(j>)) and T</>.
This proves the lemma.

COROLLARY. Write G = C(q), C = G(q± ( — a)), q a non-singular quadratic form over
K. Then there is an exact octagon as follows, the mappings T and U being the appropriate
ones arising out of Proposition 5.

WiCJJ

Proof. Because of the comment at the end of § 1 the long exact sequence of Pro-
position 5 reduces to an exact octagon. By Morita theory the Witt groups in the long
sequence can be rewritten as those in the above octagon and the appropriate mappings
T, U are the natural ones described above.

Comment 1. Taking q = <a> yields G = K(Ja), G' = M2K and, using a Morita
equivalence of M2K with K, the above octagon becomes the first exact sequence of [10]
which is really a 'degenerate octagon', in fact an octagon with three zero terms.
Taking q = (b), where (a,b/K) is a quaternion division algebra so that C = K{^b),
C' = (a,b/K), yields the second exact sequence of [10] for (a,b/K) with maximal
subfield K(^jb). This, again, is a degenerate octagon, having one zero term.

The symmetry pattern of the sequences of [10] is thus seen to be that of Clifford
algebra periodicity for algebras with involution.

It should also be noted that if Jx is used on each Cr in Proposition 5, instead ofJ_v

then a similar long exact sequence arises which reduces to precisely the same octagon
as in the corollary.

Comment 2. In [11] exact octagons of Witt groups of equivariant forms are con-
structed, i.e. forms invariant under a finite group action. Such forms possess an
equivariant Clifford algebra, as in [3], which is like the usual Clifford algebra with a
group action defined on it in the obvious way. All that has been done should go through
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in the equivariant case so that the octagons of [11] also arise out of Clifford algebra
periodicity.
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