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AN ALGEBRAIC CLASSIFICATION OF
SOME LINKS OF CODIMENSION TWO

CHAO-CHU LIANG!

ABSTRACT. For g > 2, J. Levine proved that two simple (2g — 1)-knots are
isotopic if and only if their Seifert matrices are equivalent. In this paper, we
will prove the analogue of Levine’s result for simple boundary (2q — 1)-
links; we will show that: “For ¢ > 3, two simple boundary (2q — 1)-links
are isotopic if and only if their Seifert matrices are /-equivalent (defined by
some algebraic moves).”

An n-link of multiplicity m, denoted by L =K, U --- U K, is an
embedding of m disjoint copies of the n-sphere (or homotopy spheres) K; into
the (n + 2)-sphere S”*2 L is called boundary if it extends to an embedding
of m disjoint orientable compact (n + 1)-manifolds M,, called the Seifert
manifolds, with 0M; = K,. Let X denote the link complement. Gutiérrez [1]
showed that an n-link of multiplicity m is boundary if and only if there is an
epimorphism from 7,(X) onto F,, the free group in m generators, sending
meridians to generators. An (2¢ — 1)-link L is called simple if =,(X) =
m(\/,,S') for i < g; in case L is a boundary link, we require that the
meridians be sent to generators.

For g > 2, Levine [5] proved that two simple (2¢q — 1)-knots are isotopic if
and only if their Seifert matrices are “equivalent” (defined by certain
algebraic “moves” in [5], also called S-equivalent in [7]). In this paper, we will
prove the analogue of Levine’s Theorems 1-3 for simple boundary (2 — 1)-
links, g > 3: two simple boundary (2¢q — 1)-links are isotopic if and only if
their “Seifert matrices™ are related by certain algebraic “moves”.

Since our proofs are almost the same as those of [4] and [5], we will only
give the outlines here.

1. For simplicity, we will consider only the (2¢ — 1)-link of multiplicity 2.
Everything considered here is in the smooth category.

Let L = K, U K, be a boundary (2q — 1)-link. According to [1], there exist
two disjoint 2g-dimensional Seifert manifolds M, and M, for L, that is,
0M, = K, and dM, = K,. Let A, be the corresponding Seifert matrix for the
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knot K, (in $?¢*") with respect to the basis {a, ..., a,} of the torsion-free
part of H (M), and A4, the Seifert matrix for K, with respect to the basis
{by, ..., b,)} of H(M,)/Torsion.

A linking from 8: (H,(M,)® H,(M))® (H,(M,) ® H, (M) Z is
defined by letting § (a ® B) be the linking number L(z,, z,) (in $?*"), where
2y, a cycle in M, (or M,), represents a and z, represents i, 3, the translate in
the positive normal direction off M, (or M,) into S**! — M, — M, of a
cycle representing 8. With respect to the basis {ay, ..., a,, by, ..., b,) of

s Uy

the torsion-free part of H,(M,) ® H (M,), the matrix § has the following

form:
D= A, P
\—eP 4,)

also written as D = [A4,, A,, P], where ¢ = (—1)? and P’ denotes the trans-
pose of P. We call D a Seifert matrix for the boundary link L. It is obvious
that D + eD’ is unimodular. Algebraically, we will call D =[4,, 4,, P] a
Seifert matrix of type 2 if 4, + ed}, A, + ed5 and D + D’ are unimodular.
Here A’ denotes the transpose of 4.

Actually, D is a Seifert matrix for the link L corresponding to the manifold
M, # M, with d(M, # M,) = K, U K, in the sense of [6, Theorem 3.2]. The
(n X m)-matrix P = (p;) in D can be obtained as follows: let {c,, . . ., c,} be
a basis for H (S**' — M,)/Torsion, which is the Alexander dual of {a;},
thatis, L(a;, ¢;) = §;. In §?*! — M|, we have b, = S p, c,, hence

L(a;, i+bj) = L(a, b) = ZL(a,-, k) Pij = Py
J

Following [5], we now define certain algebraic “moves” for Seifert matrices
of type 2. Let D = [4,, A,, P] be one. Then any matrix of the form (which is
again a Seifert matrix of type 2):

0 0 0 0 0 1 0 0
1 0 0 x 0 0 y x
0 A A, P 10 0 A, Py
0 —ex’ —eP A, 0 —ex' —¢eP A,
A4, P x 0 A, P x 0
—€eP" 4, v O —eP” 4, 0 O
—ex 0 0 1/ —&ex y 0 0 ’
0 0 0 O 0 0 1 0

where x, y are row vectors, and A, 7 are column vectors, will be called an
elementary /-enlargement of D; D is an elementary /-reduction. Let C be a
unimodular matrix having the same dimension as Ay, and E a unimodular

matrix having the same dimension as 4,. Then each of the operations below
will be called an /-congruence:
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c 0 c 0 I, O)D(I,, 0)

D—)(O Im)D(O Im) o (0 el "\o £/
Two Seifert matrices of type 2 are called /-equivalent if they can be connected
by a chain of elementary /-enlargements, /-reductions, and /-congruences

(with C or E having the appropriate dimension).
2. We first prove the analogue of [5, Theorem 1].

THEOREM 1. Seifert matrices of isotopic boundary (2q — 1)-links are I-
equivalent.

PROOF. Suppose L, = K, U K, and L, =J, U J, are isotopic boundary
links with Seifert manifolds M,, M, and N,, N,, respectively. Then the
argument in [S, p. 186] gives us two disjoint (2¢ + 1)-dimensional manifolds
V,(i=1 or 2) in §%*' X I meeting S**' X 0 along M, and S**' x 1
along N, with oV, = M, U X, U N; = Y,.

After rearranging the level of the critical points for the “height” functions
®,: V, > I as in [, p. 187], we need only consider the case where @, has only
one critical point and ®, has none. Then we use the argument in [S, pp.
187-188] to conclude that the Seifert matrix D for L, = J, U J, with respect
to an appropriate basis has the following form:

0 0 0 0 0 1 0 0
1 u v x 0 u v x
0 A A, P| °T |0 A 4, P
0 —ex’ —¢eP A, 0 —ex' —eP A,

where [4,, A,, P] is the Seifert matrix for L, = K, U K, associated with M,
and M,. D is [-congruent to an elementary /-enlargement of [4,, 4,, P] as in
[S, Theorem 1]. Q.E.D.

3. Let g denote an integer and recall that e = (—1)7.

THEOREM 2. Let q > 3, and D = [A,, A,, P] a square integral matrix such
that A, + €A}, A, + €A}, and D + €D’ are unimodular. Then there is a simple
boundary 2q — 1)-link L = K, U K, with D, A,, A, the Seifert matrices of L,
K,, K, respectively.

PrOOF. Let B,, B, denote two disjoint (2¢ + 1)-balls in $?¢*!. We know
from [2, pp. 255-257] that there exist two handlebodies M, = D*? U h,
U-++Uh, M,=D¥y h,uU--- U h,, where each h, h is a handle of
index ¢; and two embeddings g;: M, — B, C S**! such that g;(dM)) = J,
represents a simple knot with Seifert matrix 4;,. Let {a,, ..., a,} be a basis
for H,(g,(M))) and {b,, ..., b,} a basis for H,(g,(M,)); each represents the
core of a handle in M, or M,. As in [2, p. 257] we may choose n g-spheres
Sy, ..., S, in B, such that L(S,, b) = §; and L(S;, S;) = 0. Since S; C B,,
L(a;, S;) = 0. Then we define a new embedding f for M, such that f = g,
near D%, f(y) = g(v) # = p;S;, where P = (p;) and v, denotes the core of
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the handle 4. Let ¢, € H,(f(M,)) represent f(,). Since f(M,) and g,(M,) are
(q — 1)-connected, the link L = K, U K,, where K, =0f(M,) and K,
=0g,(M,), is a simple boundary link [1]. Furthermore, with respect to the
basis {c,, ..., ¢, by, ..., b,}, the Seifert matrices of L, K, K, are D, A, 4,,
respectively. Q.E.D.

4. A Seifert matrix of a simple boundary (2¢ — 1)-link L obtained from
two disjoint (¢ — 1)-connected Seifert manifolds will be called special.

LEMMA 1. Let L = K, U K, be a simple boundary (2q — 1)-link with a
special Seifert matrix D = [A,, Ay, P). If E is an elementary I-enlargement of
D, then E is also a special Seifert matrix of L.

PRrOOF. The proof is essentially the same as [5, Lemma 2].

LEMMA 2. For q > 3, two simple boundary (2q — 1)-links admitting identical
special Seifert matrices are isotopic.

Proor. Let L, =K, U K, and L, =J, U J, be two simple boundary
(2g — 1)-links bounding (¢ — 1)-connected Seifert manifolds M,, M, and N,,
N,, respectively, with M, N M, = @ = N, N N,. Suppose also that there
exists an isomorphism ®: H (M, U M,)— H,(N, U N,) preserving the
linking form with ®|H, (M) —» H (V) an 1somorphlsm

Lemma 3 of [5] showed that M, , and N, are isotopic submanifolds of S27*'.
Hence we may assume that M, = N,. According to [8], M,, M, and N, have
handle decompositions:

M|=D02"Ua1U"'Ua,,, M2=D2‘Iuﬁlu...uﬁm’
N2=D2qU'Y]U"‘ U Yoo
where each a;, B, v; is a handle of index g. By a further isotopy keeping M,
fixed, we may assume that the base disks D7 in the handle decompositions of
M, and N, coincide as imbedded in $%7*".

We connect the boundaries of DZ? and D?@ with a path 7 and then
thickening 7 to 7 X 2! = Q avoiding all handles, and meeting D and D,
transversely in two (2¢q — 1)-disks. But M, U Q U M,, with appropriate
orientation, is just M, § M,, the boundary connected sum of M, and M, [3].
Moreover, M, 8 M, is a Seifert manifold for the (2¢ — 1)-knot K| # K,.
Similarly, M, 5 N, is a Seifert manifold for K, # J,. The special Seifert
matrix for L, and L, is just a special Seifert matrix for both K, # K, and
K, #J, Let D,=D% H{ D¥=DyuU Q U D. Then M, § M, and M, §
N, have the following handle decompositions:

M8 My=DiUea- - UaUB - UB,,
M8 Ny=DiUa,---UaUy - U,
According to [S, p. 192), we can move one handle ,B (onto y,) at a time by an

isotopy in $**' — (DU, - Ua,UB,U---UpB_,) Thus we can
map M, j M, diffeomorphically onto M, q N2 by an isotopy in §29*! —
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(D, U a; - * * U a,). Since the thickened path @ C D,, we see that L, = K,
U K, isisotopicto L, = J, U J,. Q.E.D.
The next theorem follows from Lemmas 1 and 2 exactly as in [5, p. 189].

THEOREM 3. Let L, = K, U K, and L, = J, U J, be two simple boundary
(2q — 1)-links, q > 3, with l-equivalent Seifert matrices. Then L, is isotopic to
L,

5. A (2¢ — I)link L = K; U K, in S?*! is splittable if there exist two
disjoint (2¢ + 1)-balls B, and B, in S***' such that K, C B, and K; C B, [6,
p. 110]. The next theorem follows immediately from Theorems 1-3.

THEOREM 4. A simple boundary (2q — 1)-link L = K, U K,, q > 3, is split-
table if and only if it has a Seifert matrix of the form [A,, A,, 0].
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