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A Concordance Classification of 
p.1. Homeomorphisms of Real Projective Space* 

Chao-Chu Liang 

0. Two p.t. homeomorph i smsf  and g ofa p.1. manifold M are called concordant 
if there is a p.1. homeomorphism H : M x I - ~ M x I ,  where I = [ 0 ,  1], such that 
H(y,O)=(f(y),O) and H(y, 1)=(g(y), 1). The set of concordance classes of p.1. 
homeomorphisms forms a group/~(M) under the composition of maps. Let D(M) 
denote the subgroup of D(M) consisting of the classes of those elements which 
are homotopic to id, the identity map (our homotopy is free of base point). 

Let P" denote the real projective space, which is the quotient space of the sphere 
S" under the antipodal map A. We know that any p.l. homeomorphism of pZn 
is homotopic to id, and any orientation-preserving p.1. homeomorphism of p2, + I 
is homotopic to id [10]. In this paper, we will compute D(P") for n > 4. The main 
result is the following 

Theorem. D(P 4) = D(P 5) = 1. For k > 0, D(p4k+ 2) = D(p4k+ 3) = D(p4k+4) 
= D(P 4k+5) = kZ2,  the direct sum of k copies of Z 2. 

The paper is organized as follows: in Section l, we use some basic facts about 
the surgery exact sequence to compute h T(P" x I, t?), and consider an onto homo- 
morphism q' : h T(P" x I, ~3)-~ D(P"). In Section 2, we use "'equivariant coning" 
(2.1) to show that there exists a homomorphism from D(P") to D(P" + 1). In Section 3, 
we show that except in one case n = 4k + l, this homomorphism is onto. In Sections 
4 and 5, we prove that D(P 4) = D(P 5) = 1. An interesting byproduct is Theorem 5.2 : 
any h-cobordism of p4 to itself is diffeornorphic to/94 x I; which is proved by using 
an argument similar to the one in the proof of[12, Theorem 1.4.]. In Section 6, 
we see that what makes the case 4k + t different from the others is the existence 
of two non-concordant embeddings of p4k+ 1 in p4k+Z, [1] or [8]. In the final 
section, we use the argument in [1] to prove the main theorem, and hence show 
that for n > 5, the kernel of 7 j is Z 2 which is generated by equivariant suspending 
the element in (5.1). 

The author wishes to thank Professors G. R. Livesay and I. Berstein for their constant help and 
encouragement. 

1. Let h T(P"x I, t?) denote the set of equivalence classes of homotopy tri- 
angulations of P" x I relative boundary [ !4]. An element y of h T(P" x 1, ~) has a 
representative of the form (M "+1, g), where M is a p.1. manifold, g : M ~ P n x  I 
is a homotopy equivalence such that g : M-~ 0(P" x I) is a p.1. homeomorphism. 
(M, g) and (M', g') determine the same element if and only if there exists a p.l. 
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h o m e o m o r p h i s m  h: M-*  M' such that  9 is h o m o t o p i c  to g'o h tel boundary .  If n > 5, 
then M is p.l, h o m e o m o r p h i c  to P" x I by a p.l. h o m e o m o r p h i s m  G by the s-co- 
bord ism theorem,  Thus (M, g) = (P" x I, ,q o G). Let f = g ,: a l P" × 0, and F = g G 
,, ( f  x id). Hence  y = (M, g) = (P" x I, F). We define a m a p  7 j f rom h T(P" x I, 0) 
to D(P"), n > 5, by 7qy) = FIP" x 1. ~P can be shown to be well-defined and onto as 
in [15]. 

For  n > 5, we have the following surgery exact sequence [141: 

[~y2 p.~, G/PL]--% L.+ 2(Z2, a)-~h r ( e "  x I, c~) ~-G[L'P~., G/PL] 

-¢4 L,  + ~(Z 2, a)-% h T(P") ~-~ [P", G/PL] ,  

where a = + ( - ) ,  if n is odd  (even). Fo r  n = 4, the par t  of the above  sequence 
f rom 2 , [X P+, G/PL] to Ls(Z2, - )  is exact also. 

Ignor ing odd torsions,  we know that  G/PL has the h o m o t o p y  type of Yx I~  
j > 2  

(K(Z2, 4 j -  2) x K(Z, 4j)), where Y =  K(Z2, 2) × 6 s q 2  K(Z, 4), [8] or [14]. For  
n > 4, [22P~, K(Z, 4)] = 0. Hence  [2P~, Y] = [ZP~ ,  K(Z  2, 2)1 = Z2 as in [8, IV.2]. 
Fo r  n > 4k + 1, [XPg, K(Z2, 4k + 2)] = H 4k+ a(p, ;  Z2 ) = Z2" [XP~_, K(Z,  4k)] 
= H 4 k  - l(pn) -= 0, i fn  # 4k - 1 ; = Z for n = 4k - 1. Since [22P~_, G/PL] = [XP~, Y] 
x l~ ([XP"+, K(Z,  4 j -  2)] x [ZP+, K(Z,  4j)]), we have the following 

j__>2 

Proposit ion 1.1. For k >= O, [2P4+ k, G/PL] = kZ2, [vp+4k+ ~, G/PL] = [XP4+ k+ 2 

G/PL] = (k + l) Z 2, [ZP4+ k + 3 G/PL] = (k + t) Z 2 + Z. 

L.(Z 2, a), hT(P") and [P", G/PL] have been compu ted  in [8, t4]. Subst i tut ing 
these into the surgery exact sequence, we have  the following four exact sequences 
for k_> 1. 

(~ .2) 

Z2 r-% h T(P4k x I, c~)d-* kZ2---*0 

Z2.~hT(p4k+ 1 x I, O) ~--,(k + 1) Z 2 - - ~ Z 2 ~ h T ( P  4k+ 1) 

Z 2 ~ h T ( P  4k+2 x I, t ? )~ (k  + 1) Z2---,0 

0-% h T(P 4k+ 3 x I, 0)'-+ (k + 1) Z 2 + Z - *  Z + Z - - ,  Z + torsion. 

The m a p  co':L4k . ~(Z2, + ) - - + h T ( P  4k+ 1) is trivial: L~k+2(I)--*L4k+2(Z2, a) 
is an i somorph i sm [14, p. 164]. Hence  the act ion of the Wall group is given by 
adding a Kervai re  manifold  to p4k+l X I a long the bounda ry  p4k+l X 1, but the 
Kervai re  sphere  is just the o rd ina ry  sphere in the p.l. category. For  k = I, the 
surgery obs t ruc t ion  is given by a "wrong"  f raming [9], and the act ion is trivial 
also [12, p. 348]. Similarly, co: L,~k+2(Z 2, - ) - - *hT(p4kx  I, 0) is trivial. Hence  
[Z2P4+k,G/PL]-Z*L4k+2(Z2,--) is onto.  But for k > l  we have the following 
commuta t ive  d i ag ram as in [8, p. 46] : 

[Xz p4+k + 2, G/PL] 

L~rr2p4k+--+ 1, G/PL] ¢' Z 2 

, J [z2 p~+ k, G/eL] 
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Since the bottom map is onto, the other two maps are onto also. From the 
surgery exact sequence, we see that co = 0 in 0.2). Thus, we have proved the 
following 

Proposition 1.3. tI:hT(P~xI,~)~[XI~+,G/PL] is i - 1  Jor n>4. For k> l, 
hT(P 4kx I ,  ~?)=hT(P 4k+1 x l ,  O)=kZ2, hT(P 4k+ExI, ~?)=hT(P 4k+3xI, g) 
= ( k +  t ) Z >  

We can define a group structure in hT(P"x I, ~?) as follows: let (P"x  I, F) 
and (P"xI ,  G)ehT(P"x I ,  g) such that F l P " x l = i d  and G t P " x 0 = i d .  Write 
F = (F 1, F2) and G = (G l, G2). Then define (P" x 1, F) • (P" x 1, G) = (P" x 1, F * G), 
where F • G(y, t)= (Ft(y, t), ½Fi(y, t)) for 0 _< t _<½, =(Gl(y  , t), ½Gz(y, 2 t -  1)) for 
½ < t <  1. We can show that (hT(P"xl ,  t?),,) is a group and the map 
~P: hT(P"x I, (?)-,D(P") is a homomorphism (for details, see [15]). 

Proposition 1.4. For n ~ 5, D(P") is a finite abelian group. 

Proof. Since [XP"+, G/PL] is abelian and ~/:hT(P" x I, (?)-+[EP~, G/PL] 
is an t - 1 homomorphism, h T(P" x I, ~) is abelian, g is an onto homomorphism. 
Hence D(P") is finite abelian by (1.3). 

2. All the p.1. embeddings considered below are assumed to be locally flat. 
Let PI and P2 be the images of two p.1. embeddings of P" in P"+ ~ ; or equiva- 

riantly, let $1 and S z be the images of two A-equivariant embeddings of S" in S "+ 1 
such that S~ covers P~. By the Sch6eflies theorem, each component B~+ (or B~_ ) 
of the complement of S" in S" +~ is p.1. homomorphic to the standard (n + t)- 
disk D "+1 by a p.l. homomorphism hi+(hi_ ). Also, ABi+ =Bi_, where A is the 
antipodal map. 

Let f be a p.l. homomorphism from P1 to P2. We will construct a p.1. homo- 
morphism 9 of P"+ 1 to itself as follows: 

Definition2.1. Equivariant coning: Let f:S1--+S z be the 2-fold covering 
o f f .  We define a p.1. homomorphism k: D"+I--+D "+1 by coning the p.1. homo- 
morphism h2+ .f~, h ~  on S"=  (?D "+1. Then we define ~: S"+I~S  "+1 by ~[BI+ 
=h~l+~'kohl+, and -OIBI_=A~(-OIBI+)~A. -9 is an A-equivariant p.1. homo- 
morphism. Degree~ = _+ 1. Since degree (A : S"--+ S") = - t for n even, we can always 
make degree ~ = + I by either replacing ~ by A~ or using A f  instead of f in the 
above construction. ~ induces a p.1. homomorphism 9 : P"+ 1 _+ p,+ 1, which is said 
to be obtained from f by equivariant coning. 

Suppose we replace h~ + by another p.l. homomorphism h',+ in the above 
construction to get 9'. h'l + ~ h~+ "D"+I-+D"+I is concordant to id [6]. Hence 0' 
is concordant to 9 by composing the concordance between h'~ + and h~ + with other 
maps in (2. l). If we replace f by a concordant map f ' ,  then we can apply equivariant 
coning to the p.l. homomorphism F of W = S" + ~ x {0, 1 } v0 S" × I to itself, defined by 
FIS "+1 x 0 = ~ , F [ S " + l x l = ~  ', and f f l S "x I  is the 2-fold covering of the con- 
cordance between f and f ' ,  to get an equivariant concordance between ,~ and ~'; 
because the complement of W in S "+ ~ x I consists of 2(n + 2)-&sks. 

Let P" also denote the image of the natural inclusion of P" in P"+ 1. Given a 
p.l. homomorphism f of P" to itself, we may use (2.1) to construct a p.1. homo- 
morphism of P"+ * to itself, denoted by Sf.  S f  is well-defined up to concordance 
and induces a map from D(P") to D(P"+~), which we also denote by S. 
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Proposition 2.2. For n > 5, S" D(P")--* D(P "+ i) is a homomorphism, 

Proof. We define a map S' f rom h T ( P " x l ,  O) to h T ( P  "+1 x l ,  O) as follows: 
an element x = (P" x I, F) ~ h T(pn x I, O) can be lifted to (S" x I, if) with degree 
F =  + 1. Viewing S" as the equator  of  S "+ ~, we denote  the nor thern  (southern) 
hemisphere by D"++ a(D"_+ a). We define (~ :S  "+1 x I - , S  "+1 x I  by G f S " x I = P ,  
GI nor th  pole x 1 = id, then extend linearly on  each D~ + 1 x t for each t ~ I ;  and 
(~l D "-+ t x I = (A x id) o ((~I D~ + 1 x I) o (A x id). (~ is (A x id)- equivariant,  hence 
induces a h o m o t o p y  equivalence G : P  "+1 x I--* P"+I x I with G] o(Pn+ ~ X I) a p.l. 
homomorph i sm.  We define S' x = (Pn+ 1 x 1, G) ~ h T ( P  "+ ~ x 1, ~3). Applying the 
same argument  again, we can show that S' is well-defined. 

Given x, y E h T(pn x I, O), we can choose  x = (P" x I, F) and y = (P" x I, G) 
such FIP" x t =  G}P" x 0 =  id. By looking at the difinition of  x , y  in Section 1, 
we see immediately that  S'(x • y ) =  (S'x) • (S'y). Hence S' is a homomorph i sm.  

Consider  the following commuta t ive  d iagram 

h T ( p n x I ,  O) s' ~ h T ( p n + l x I ,  O) 

D(P") ~--~ D(P "+ ~). 

Commuta t iv i ty  follows from the definitions. Since S' is a h o m o m o r p h i s m  and 
~u is an onto  homomorph i sm,  we see that  S is a homomorph i sm,  q.e.d. 

3. In this section, we will show that  the h o m o m o r p h i s m  S: D(P")-~D(P "+~) 
defined in the last section is on to  for n > 6 and n 4: 4k + 1. 

We also write Pn for its image in Pn+~ under  the natural  inclusion. 

Lemma 3.1. For n > i. l f  x ~ D(P "+ 1) has a representative f sarisfying j'(P") = P", 
then there exists y ~ D(P") such that x = Sy. 

Proof. For  n even, let g = f l  P". For  n odd,  if degree ( f [  P") = + 1, let g = f l  P"; 
if degree ( f l  Pn) = - 1, let g = C o f ]Pn, where (7, the double  cover of  C, is defined on 
S "+~ by C(xl  . . . . .  x , + 2 ) = ( x l  . . . . .  Xn,- -X,+ 1, --Xn+2)- C is concordan t  to id by 
rotat ions invariant under  A. Hence we may replace f by C o f ,  and take g = J'l Pn. 
We define a concordance  H : Pn + 1 x 1 - ,  P" + a x I between f and Sg as follows: 
H I P  "+~ x 0 = f ,  H I P  "+~ x 1 = S o ,  H j p n x l = g x i d ;  lifting it up, we see that the 
domain  on which H has not  been defined is coverd by two disks D~_ + 1 and D "+ 
such that (A x id) D~ + 1 = Dn+ ~, hence we may finish the definition of  H by equiva- 
riant coning as before, q.e.d. 

Lemma 3.2. For n > 6 and n 4: 4k  + t, any element of  D(P "+ 1) has a repre- 
sentative g satisfying g(P") = Pn. 

Proof. Given a p.1. h o m e o m o r p h i s m  f of P" + ~ to itself such that f is homotop ic  
to id, we know that  Pn and f (Pn) are concordan t  in Pn+ ~ for n > 6 and n + 4k + 1, 
[1] or [8] :  there exists an embedding F : p n x I ~ P  "+~ x l  such that F ( P " x  1) 
= f ( P " ) x  1, F ( p n x  0 ) =  P " x  0. We identify Pn with its image in p , + l  under the 
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natural inclusion, hence we may assume F IP"x 0 = id by composing with some 
homeomorphism as in Sect ionl .  Let H = F  -~ :F(P"x I ) - - ,P"x l c=P  "+~xI. 
We use (2.1) to construct h : P  ~+~ x 1-~P "+~ x 1 from HIF(P"x  l ) - * P " x  1. 
h is concordant to id by a concordance G as follows: GIP  "+ ~ x 0 =  id, G I P  "+ 1 x 1 
= h, and G tF(P" x I) = H;  we then finish the definition of G by equivariant coning 

as in (3.1). Since h(f(P"))=P ", we take g = h o f ,  q.e.d. 
From (3.1) and (3.2), we have the following 

Proposition 3.3. For n > 6 and n # 4 k + 1, S: D(P")-~ D(P~ + 1) is onto, 

4. In this section, we are going to prove two lemmas which will be needed 
in Section 5. 

We writeS3={(xl'""x4)l~<_~<_4 ~ x 2 = l }  and S~=S3 c~{x3=x4=O}" We can 

also considerS ~ as parametrized by z, 0 _< z _< 2r~. Let j  = (0, 0, 1,0) and k = (0, 0, 0, 1) 
denote two vectors. Then j ( z )=j  and k(z)= k together form a framing for the 
normal bundle of S ~ in S 3. If we apply the Thom-Pontr jagin construction to S ~ 
and this framing, then we get the trivial element in ~3(S z) = Z [7] or [11]. 

Let A denote the antipodal map. On S a, we have Az = z + rc mod2rc. P~= S~/A. 
Since P~ and p3 are parallelizable, the normal bundle of P~ in p3 is trivial. Given 
an or thonormal  framing (a'a, a~) of this bundle, we can pull it back by the pro- 
jection p : S ~ P 1  to an or thonormal  framing (al, a2) of the normal bundle of 
S 1 in S 3. Let ai(z)=ail(z)j+ai2(z)k.  Since (al,a2) covers (a'l,a'2), we have 
Aai = aiA, i.e. -apq(z) = apq(z + ~). 

Lemma 4.1. Let (a'l, a'2) and (al, az) denote the framings as above. I f  we apply 
the Thom-Pontrjagin construction to S 1 and (a 1, a2) in S 3, then we always obtain 
an odd integer in ~3(S 2) = Z. 

Proof. The Thom-Pontr jagin construction gives us a homomorphism from 
the framings of the normal bundle of S 1 in S 3 to ~3(S z) = Z by mapping (a 1, a 2) 
to the degree of the map fa, where fa(z)=(apq(z))s S0(2)=S  1 [7, 11]. 

Consider the framing (q ,  cz) on S defined by cl(z)=cos(z) j+sin(z)k ,  
c z(z) = - s i n  (z)j + cos (z) k. Since cos(z + r0 = - c o s  (z) and sin (z + n ) =  - sin(z), 
we see that Aci=ciA.  Thus (c 1, cz) induces a framing (c'~, c~) for the normal 
bundle of p1 in p 3  Furthermore,  the degree of the map f~, where J~(z) = (cpq(z)) 

S0(2) = S 1, is I. 
Suppose (al, a2) is another  framing on S 1 covers a framing (a~,a~) on pl .  

Aai=aiA. We define a new framing (bl, b2) on S 1 by bpq(Z)=~ Cpk(Z ) akq(Z ). 
k 

degree fb = degree f~ + degree f~ = degree J~ + 1. But bpq(Z + re) = ECpk(Z + re) 
"akq(Z + rC)=(-- 1) 2 bpo(z ) = bpq(z). Hence J; = S 1--*S0(2) factors through P~. 
Since p : S ~ -~ p1 = S t is of degree 2, we see that degree fb is even. Thus degree £ 
is odd. q.e.d. 

Let d denote the nontrivial element of ~c4(P 3) = Z2. We may assume d is 
transverse regular to p1. Then d -~(P~)=  U is a 2-dim submanifold of S 4. Let F 
denote the framing of U induced by an arbitrary framing G for the normal bundle 
ofP 1 in p3 via d. Pontrjagin defined a cobordism invar ian t -  the Kervaire invariant 
c(U, F) for such pair (U, F) in S 4 [11, p. 101]. 
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L e m m a  4.2. The above Kervaire c(U, F) is not zero. 

Proof. Lifting d to b : $ 4 ~ S  3, we see that b is transverse to S 1. 

S 4 .... b S 3 r ) S 2 

p3 

Let (S :, H) = p -  ~ (P~, G), where G is an arbitrary framing on P as above. Then 
(U, F) = d-  1(p1, G) = b-  1($l, H). If we apply the Thom-Pontr jagin construction 
to (S ~, H), then the element r e  ~3(S ~) = Z thus obtained is odd by (4.1). Since d is 
nontrivial, b is nontrivial in 7r4(S 3) = Z 2. Hence b is the suspension of the generator 
o f g 3 ( S 2 ) ,  and the composit ion r o b in n4(S 1) is non-zero [5]. Let y be the point in S 2 
such that r - l ( y ) = S ~ ,  f = r o b  is transverse regular to y by construction, and 
f - ~ ( y ,  the standard f raming)= (U, F). Since the Kervaire invariant c(U,F) and 
the Thom-Pontr jagin construction give an isomorphism of zr4(S 2) with Z 2 [I 1]~ 
we see that c(U, F) is non-zero, q.e.d. 

5. Propositions (l.1) and (1.2) tell us that the map 17: h T ( p 4 x l ,  c3) 
--*[2P~+, G/PL] = Z z is l - 1 .  We are going to find a homotopy  equivalence 
g; p4 x I ~ p4 x I with g l 0(P 4 x I) = id, and r/(g) 4:0 in [SP4+, G/PL]. 

We know that rr4(S3)=~z4(P3)= Z z. Let d denote the nontrivial element 
of ~z4(P 3) = ~4(P 3 x I) = Z 2 by d" S 4 ~ p3 × 1 C p3 x I. 

We choose a 4-disk D in p3 x (i/4, 3/4) such that D c~ p3 x ~ = 0 and D c~ PI x I 
= ~1. Then we define a homotopy  equivalence h: p3 × 1_~ p3 x I such that h = id 
outside D and the obstruction of h to id r e l P 3 x I - intD is d e  H4 ( P 3 x I, p3 × I 
- int D; rc4P 3) = Z 2 . 

Considering P l x l = C p 3 x i ,  P ~ x l n P  3 x 1 = P l x 1 ,  we may assume d ' S  4 
_~ p3 x ½ is transverse regular to p1 x ½. Then d-  ~(P~ × ½) -- U is a 2-dim submani- 
fold of S 4. If F is the framing of U induced by an arbitrary framing for the normal 
bundle of p1 in p3 via d, then the Kervaire invariant c(U, F) is non-zero by (4.2). 

The rest of the argument is almost the same as the one used in the proof  
of [t2,  Theorem 1.4]. Without changing d-  l (pl  x ½)= U, we may alter d to make 
d I D ~ D  a diffeomorphism on a small disk D~c=S 4. Identifying D with the 
complement S 4 - i n t D ~ ,  we may choose the above h : p 3 ×  I - ~ p 3 x  I such that 
(h[D)w(dlD1)=d. Then h will be transverse regular to P~x  I, and h - l ( p l x  I) 
= P l x l w U = W .  Let f = h [ W :  W - ~ p l x I ,  a map of degree 1 on pl  x l  and 
degree 0 on U, because f factors through P1 x ½. 

Now, we construct a homotopy  equivalence 9 : p4 x I--* p4 x I as follows: let 
h : S  3 x l -~S  3 x l denote the double cover of h, we define ~ = h  on S 3 x l and 
9 = id on S 4 x c~l. Viewing h as a p.1. map, we may complete the definition of ,~ 
by equivariant coning as in the proof  of (3.1). Hence ~ covers a homotopy  equiva- 
lence 9 : P 4 x I ~ P  4 x l  with 91~(P ' ~ x l ) = i d  and 8 - 1 ( P l x l ) = h  l ( P l x l ) = p  ~ 
x I u U = W f = h I W = 9 t W  is a degree 1 map. Arguing as in p. 350 of [t2]~ 
we have a induced surgery problem (IV, f ,  H) and the Kervaire surgery obstruction 
c ( W , L  H) = c(C,  F) = i. 
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Suppose t/(g)= 0. Since q is 1 - l ,  we see that g is homotopic tel boundary 
to a p.1. homeomorphism. Making the homotopy transverse regular to p1 x I rel 
boundary, we get a cobordism of (W, f ,  H) to (W' , f ' ,  H') such that f :  W'-~P  ~ x I 
is a homotopy equivalence, indeed a p,1. homeomorphism. But the Kervaire 
invariant is a cobordism invariant [2], so this is impossible. Hence ~/(g)+0. 
Thus we have proved the following 

Proposition 5.1. There exists a homotopy equivalence g : p 4  x I -~ P 4 x I with 
g = id on the boundary, and ~t(g) 4:0 in [ZP4+, G/PL]. 

We can deduce the following theorem from (5.1). 

Theorem 5.2. Any h-cobordism of p4 to itself is p,1. homeomorphic to PAx t. 

Proof. Let W be an h-cobordism with c3W=P~wP~ and f :  W - ~ P 4 x l  a 
homotopy equivalence with f -  ~(p4 x i)= Pi 4. Since every homotopy equivalence 
of P" is homotopic to a homeomorphism, we have a homotopy equivalence 
J" " W' = P~ x l w  W w  P~ x 1 ~  p4 x I such that f ' I t? W' is a p.1. homeomorphism. 
Thus ( W ' , f ' ) e h T ( P 4 x l ,  t?), a set consists of two elements: (P4xI ,  id) and 
(P4x I, g) constructed in (5.1). In either case, W', hence W, is homeomorphic 
toP4x I. q.e.d. 

Since rci(PL/O ) = Fi = 0 for i < 6, we have the following 

Theorem 5.2'. Any h-cobordism between p4 to itself is diffeomorphic to p4 x I. 

Proposition 5.3. D(P 4) = I. 

Proof. Given a p.1. homeomorphism f of p4, we have a homotopy F between 
f and id. As in (5.2), (Pax I, F) is equivalent to either the identity or  (p4 × I, g). 

If it is equivalent to the latter, then we may replace F by F • g. Hence there always 
exists a p.1. homeomorphism K : p4 x I-~ p4 x I such that id o K is homotopic to 
F rel boundary. Thus K is a concordance between K 0 = id and Ka = f. q.e.d. 

Similarly, we have the following 

Proposition 5.3'. Any diffeomorphism of p4 is concordant to the identity. 

Proposition 5.4. Let T : S5-~ S 5 be a differentiable involution with two fixed 
points, then T is equivalent to an orthogonal action. 

Prooj\ Around each fixed point, the action is orthogonal. Cut out two small 
invariant neighborhood of the fixed points from S 5. The orbit space of the region 
left is an h-cobordism of p4 to itself, hence diffeomorphic to p4 x I by (5.2'). 
Thus the action (T,S 5) is equivalent to(A, D s) U (A, Ds), wheref is  an A-equivariant 

f 
diffeomorphism of S 4 to itself. Hence (T, S 5) is equivalent to (A, D s) U (A, Ds), 

id 
the standard action (xl . . . .  , x6)~(xl ,  - x z  . . . .  , -x6),  by (5.3'). q.e.d. 
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Proposition 5.5. S : D(P4)--* D(P 5) is onto, hence D(P5) = 1. 

Pro@ All we have to show is Lemma 3.2. is true for n = 4 also. Let f be a 
p.1. homeomorphism of ps  homotopic  to id. We know from Theorem 6.t. of [3] 
that p4 and f (p4)  are concordant. The concordance between them is an h-co- 
bordism, which is a product P'~ x I by (5.2). Then we can carry out our proof as in 
(3.2). By (3.1), we see that S : D(P4)~D(P 5) is onto. q.e.d. 

6. We always identify 19, with its image in pn+l under the natural inclusion. 

Proposition 6.1. For each 4 k +  2, k >  1, there exists a p.1. homeomorphism 
gk of p4k+2 to itse~" :such that gk is non-concordant to id. 

Proof. For k >  1, there exists an embedding f of p4,+1 in pak+2 such that 
Q4k+l =f(p4k+l)  is not concordant  to p4k+l, [1,8]. Let h be any p.1. homeo- 
morphism from p4k+ 1 to Q4k+ 1. We then apply equivariant coning (2.1), to h and 
obtain a p.1. homeomorphism g, of p4k+2 to itself, gk is not concordant to id: 
if it were, then the image of the concordance between g, and id, when restricted 
to p*k+ 1 × I, would be a concordance be tween/~k+ I and Q4k+ 1, a contradiction. 

q.e.d. 
We will write {9k} for the concordance class which contains gk" 

Proposition 6.2. To every x~D(p4k+2), there exists y e D(P 4k+1) such that 
that x = Sy or {gk} ° Sy. 

Proof. Let h be a representation for x. h(P 4k+t) is concordant to either 
p4k+l or Q4k+I in (6.1), [1] or [8]. In the first case, we can proceed as we did in 
Section 3 to show that x = Sy. We also can reduce the second case to the first by 
considering g~- 1 o h. q.e.d. 

From (3.3), (5.5), and (6.2); we know that any element of D(P"), n > 6, has a 
representative of the following form: S"'(gbOS a  ̀ '(gb,_ o...S"lgb,)...), with 
positive intergers aj and bj such that 41a i for j < t ,  a t + 4 b t + 2 = n ,  and 
bi = (ai- 1/4) + bi_ x. 

Given an element (P" x I, F) e h T(P" x I, c~), we can make F transverse regular 
rel boundary on P"  x I, 4 _< m _< n. For m + 4k + 1, F is homotopic rel boundary 
to H such that H induces a homotopy  equivalence H -  l(p,, x I)--* P"  x 1, which can 
be seen as follows: if n is even, then we can use theorems (10.5) and (8.1) of [4] to 
show inductively that the above assertion is true for m = n - 2 ,  n -  4 . . . .  ; and 
m = 4 k - t  follows from this, the proof  of [1, Theorem 1], and the Theorem on 
[8, p. 16]. The case n is odd can be reduced to the above case by Theorem 6.t. 
of [3] and the theorem on [8, p. 16]. 

F rom (1.i) and (!.3), we know that the map  c: 

h T(P" x I, ~)~  [ I  [XP~_, K(Z2, 4k + 2)] 
k 

induced by t/, 2 = < 4 k + 2 ~ n ,  is 1 - 1 .  Let C4k+2 denote the component  of c to 
each summand. These values can be detected by the surgery obstructions: given 
an element y = (P" x I, F) as in the last paragraph, c4k+ 2(Y) is the surgery obstruction 
(Aft invariant) of the induced normal map H -  1 (p4k+ 1 X I)--* p4a+ 1 x I. 
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c4k+ 2 can be related to the Browder -Livesay  invar iant  for the uniqueness of  
desuspension, [1] or [3] as follows: Let  Gk be a h o m o t o p y  from id to the m a p  gk 
in (6.1) for k > 1 ; and let Go be the m a p  g in (5.1). Using S' defined in (2.2), we see 
that the element y = S'"'(Gb, o S '"~-' (... Gbo)...) satisfying C~k + 2(Y) = I for k = b~; = 0, 
otherwise. But C4b+2(y ), b > l, is the Browder -Livesay  invar iant  for p4b+~ and 
gb(P4b+ I) in pgb+2. 

7. We will c o m p u t e  D(P") for n > 6 in this section. As in the previous sections, 
we identify P" with its image in P"+ 1 under  the natural  inclusion. 

Lemma7.1. n > 6, 1 < 4k + l < n. There exists a homotopy equivalence 
F : P " x I - ~ P " x l  with F = i d  on the boundary and F - 1 ( P 4 " + l x I ) ~ P  4~+1xl  
is of A t f  invariant 1 jbr some r; if and only if there exists submanifolds V "+ 1 in 
P " x I ,  l < 4 k +  l < m < n  for some k, with ~ ? V " + ~ = P " x O u P " x l  such that 
V' c= W + 1, V~+ 1 is p.l. homeomorphic to P" x I for m #: 4k + l, but V 4k + 2 = p4k + 1 
X t4~ K 4k+2, where K 4k+2 is the Kervaire maniJbld. 

Pro@ Let k be the largest n u m b e r  a m o n g  such r's. The  only if par t  has been 
proved in Section 6 and  in [1]. 

Conversely,  consider U m + t = P " x I  in P " x I ,  4 k + l < m < n ,  and N 4k+z 
is p.1. h o m e o m o r p h i c  to p4k+lx i4~K~k+2  with O U = P  4 k + l x l w Q  4k+IxO, 
where p4k+~ and Q4k+~ are two non-concordan t  embeddings  in p4k+2 [-1].- 
Gluing two copies of  of P" x I together  to get another  copy of P" x I. Let ym+ 1 
= V " + l w U  ''+1 For  m > 4 k + l ,  ym+l  is p.t. h o m e o m o r p h i c  to P " x l ,  with 
c ? Y = P " x  0I: and we m a y  app ly  equivar iant  handle exchanges in the interior  
of y4k+3 to m a k e  y4k+2 p.1. h o m e o m o r p h i c  to P4k+~xI  with bounda ry  
= p 4 k + l  x l w Q  4k+~ x 0  [3]. 

Then we use the equivar iant  coning (2.t) repeatedly to construct  a p.1. homeo-  
morph ism H : P " x I - - - , P " x I :  we m a p  y4k+Z to p4k+~ x l C = P " x I ,  and use (2.1) 
to extend to p4k+2 X ~I;  then we extend to a p.1. h o m e o m o r p h i s m  from y4k+3 
to p4k+z x I as in (3.2), and repeat  the procedure.  Consider  the h o m o t o p y  equi- 
valence G k : P 4 k + 2 x I ~ P  4k+2 x l  between g and id in Section 6. Let G=S'tGk,  
where t = m - 4k - 2. We define F = H • G as in Section t. q.e.d. 

Lemma 7.2. n > 6. Let F : P" x I-~ P" x I be a homotopy equivalence with 
F = id on the boundary. We can make F transverse regular to p4r+ 1 x t re t  boundary 
Jbr ! < 4 r +  1 < n .  Then the induced normal map F -  I(P 4~+ ~ x I ) - * P  4r+1 x l r e l  
boundary is of  Ar f  invariant 0 for each r. 

Proof. The p roof  is by induction. Propos i t ion  (6.1) and (7.1) showed that  (7.2) 
is true for n = 6. We now assume the l e m m a  is true for all t < n, but not  n: there 
exists certain r with 4r  + 1 < n which doesn ' t  satisfy the assertion of (7.2). Let k 
denote the largest of  such r's. There  are four cases: 

(a) n=4h.  By using I t , T h e o r e m  13 and [8, p. t6, Theo rem]  as in the last 
section, we may  change  F th rough  h o m o t o p y  rel boundary  to make  F -  ~ (P"-  1 x I) 
p.l. h o m e o m o r p h i c  to P " -  i x I. V, the double  cover  o f F -  l ( p , -  1 x I), and S"-  1 x I 
are characterist ic submanifo lds  for (S" x I,  A x id) in the sense of [33. By a similar 
argument  as in the p roo f  of  [3, L e m m a  3.2], we assert that  there is a characterist ic 
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submanifold W for (S" x I x I, A x id) with ~ W ¢~S" x I x 1 = V x 1, OWenS" x I x 0 
= S  " - l x l x 0 , a n d 0 W c ~ S " x 0 I x I = S  " - l x O I x I . S i n c e d i m W = 4 h + l  is odd, 
we may apply equivariant  handle exchanges in the interior of S" x I x I as in [3] 
to make W equivariantly p.1. h o m e o m o r p h i c  to S"-  1 x I x I. Hence there exists 
a p.1. embedding H : P" -  1 x I x I --*P" x I x I with H ( P " -  1 x I x I) = W/(A  x id), 
H ( P  "-1 x l x O ) = P  "-1 x l xOC=P"x l x O ,  H ( P  "-1 x l x  I ) = F - I ( P  "-1 x l ) x  1.As 
in the p roof  of(3.2), we may compose  H with a p.1. h o m e o m o r p h i s m  of P" -  ~ x I x I 
to itself to make H [ P " -  ~ x I x 0 = the natural  inclusion. Consider  the h o m o t o p y  
equivalence G = i d w F w i d : Y - * Y ,  where Y = P " x l x I u P " x l x l u P " x O x l .  
Y is p.1. homeomorph i c  to P" x I. We define a h o m o t o p y  equivalence K • P" -  ~ x I 
, _ . p , - l x l  by K = G o H  on P " - ~ x I = P  " - I x l x l w P  " - ~ x l x l ~ P  " - l x 0 x l .  
Since we identify P"-1  with its image under  the natural  inclusion i: P" l o p ,  
and H I P " -  x x I x 0 = the natural  inclusion, K = id on the boundary .  The induced 
map K - ~ ( P 4 k + I x l ) - - - , P  4k+1 x l  is of  Arf invariant 1, which contradicts the 
induction hypothesis  [we also can prove (a) by using (7.1) as in (d) below]. 

(b) n = 4h + 2. (6.1) and (7.1) tell us that k 4= h. Hence we can make F -  1 ( p , -  1 x I) 
p.1. homeomorph ic  to P"-1  x I. Then we can proceed as we did in the case (a) 
for the dimensional  reason [3]. 

(c) n = 4h + 1. We may  change F th rough  h o m o t o p y  rel boundary  to make 
F -  ~ (P"- ~ x I) p.l. homeomorph ic  to P" -  ~ x I by Theorem 6.1 of [3] and [8, p. 16, 
Theorem].  As in (a), we have a characterist ic submanifold W 4h+2 in S 4h+ ~ x I x I 
such that O(W/T)  = p4h x I x Ow p4h X ~?I X I U  F -  l ( p 4 h  × 1) × 1 ; where T = A × id. 
We apply equivariant  handle exchanges to make  W 2h-connected, A reverses 
the orientat ion in p4h, hence Treverses the orientat ion in W. Since dim W = 4h = 2, 
the bilinear form B ( x , y ) = x . T , y  defined HZh+I(W), modulo  its torsion, is 
symmetric. We can use the same argument  as in [3] to show that the index of  B, 
denoted by c(W, T), is the Browder-Livesay invariant - the obstruct ion to get a 
concordance  between P 4 h x l x 0  and F - ~ ( P ~ h x I ) x l  in P 4 h + ~ x l x l  rel 
boundary.  But by using exactly the same argument  as the p roof  of Theorem 1 
of  [1, pp. 58- -63] ,  we can show that c(W, T) is equal to the half of  the difference 
between c~ and c2, where c~ is the obstruct ion to get a concordance  between 
p4h- 1 × 0 X 0 a n d  p4h- 1 × I × 0 in p4h x I x 0 and c 2 is the obstruct ion between 
p 4 h - l x O x l  and p 4 h - l x l x l  in F - ~ ( P 4 h x I ) x l . c  1 = 0  by [ l ,  Theorem l]. 
c z = 0  follows from the p roof  of  [ l , T h e o r e m  1]. Thus c(W, T ) = 0 .  Hence we 
may apply equivalent bundle exchanges to make W a product .  Then we just use 
the a rgument  in the second half of  (a) to finish the proof. 

(d) n = 4 h + 3 1 .  By (7.1) above, we may  assume there exist submanifold 
V m+l in P " x  I satisfying the assertions in (7.1). 

As in (a), we may assume the existence of  a characteristic submanifold W "+ 
for(S" x l ×  I , A  x i d ) w i t h 0 W ~ S "  x I x 0 = S  "-1 x I x  O, OW¢~S" x I x  1 = V '*h+2 x 1, 
O w ~ s n  X Ol X I = S"-  ~ x ~I  x I. We may make  W (2h + l)-connected. T =  A x id 
reverses the orientat ion in W. Since d im W =  n + I = 4h + 4, the bilinear form 
B ( x , y ) = x .  T . y  defined on Hzh+2(W ) is skew-symmetric.  Hence we are in the 
Arf  invariant case [3]. Let c(W, T)  ~ Z z  be the Browder-Livesay invariant defined 
by this form B as in [3]. I f  c(W, T ) =  0, then we can make W a product ,  and we 
may proceed as in (a). 

This is essentially the proof  of the Corollary in [8, p. 83]. 
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We now suppose  c(W, T ) =  1. W e  have  seen in Sect ion I that  the ac t ion  
of the Wal l  g roup  L~h + 4(Z2, - ) = Z 2, which is given by the Arf -Kerva i re  invar iant ,  
[13, 14, p. 162], on h T ( P 4 h + Z × l ,  cg) is trivial.  Hence  we have a map  of  t r iad 
qb: (M; d_ M, 8 + M)--*(P4h+ 2 x l x I; P4~'+ 2 x l x O ~ P 4 a +  Z x OI x I, P4h+ 2 x l x 1) 
of degree t satisfying the asser t ions  of [14, T h e o r e m  5.8]. Then we use L e m m a  1 
of [1]  and  the a rgumen t  in the proofs  of  L e m m a  8 and T h e o r e m  3 of  [1]  to show 
that M, the doub le  cover  of  M, can be e m b e d d e d  as a charac ter i s t ic  submani fo ld  
for (S 4h+ 3 x I x I,  A x id) with the  Browder -L ivesay  invar iant  c()V/, T) = 1 such that  
~ M ~ P 4 a + 3 x l x O = P 4 h + 2 x l x O ,  c ~ M c ~ p 4 h + 3 x c ~ l x I = p 4 h + 2 x c ~ l x l .  Also 

there exist conco rdance  N r+ 1 between P~ x 0 x I and U x I x t for all r < 4h + 2, 
NrC Nr+ 1 and  K '*h + 3 = U = 0 M  r~P 4h+ 3 x I x 1 : which follows from the t r ivial i ly  
of the ac t ion  of  the  Wal t  g r o u p  above.  

Jo in ing  two copies  of  P 4 h + 3 x l x I  toge ther  a long  P 4 h + 3 x l x O  and re- 
paramet r iz ing  the last factor,  we ob ta in  a charac te r i s t ic  submani fo ld  R = / f 4 u  W 
for (S 4a+ 3 x I x I,  T) such tha t  ~ ( R / T ) ~ P  4a+ 3 x I x 0 = U, c~(R/T)~P 4h+ 3 x I x l 
= F - I ( P 4 h + Z x l ) x l ,  c 3 ( R / T ) ~ P 4 h + 3 x c ~ l x l = p 4 h + Z x c ~ I x l .  The Browder-  

Livesay invar ian t  c(R, T ) =  i + I = 0 e  Z2; hence we may  make  R equ iva r i an t ly  
a p roduc t ;  there exists a p.1. e m b e d d i n g  H;  p4h+ 2 X I X I - *  p,~a+ 3 x I x I with the 
image of  H = R as in the case (a), we may  assume HI p4h+ 2 x i x I = the na tu ra l  
inclusion. F o r  4k + f < r _< 4h + 2, the submani fo lds  H -  1 (N~+ 1 u U x 0 x I ~  V ~+ 1) 
in p4h+ 2 X I = p4h+ 2 X I X O~ p4h+ 2 X 0 X I U  p4h+ 2 X I X I satisfy the cond i t ions  

in (7.1); hence con t r ad ic t  the induc t ion  hypothes i s  by (7.t). q.e.d. 
F r o m  (7.1) and  (7.2), we see easily that  a pA. h o m e o m o r p h i s m  of  the form 

S"~(gs,.. S ..... (gb,-,° "")- ' -)  is not  conco rdan t  to id; o therwise  the e lement  G = F 
* (S'"'G5~), where F is the concordance ,  would  cont rad ic t  (7.2). F r o m  this, (1.4), 
(2.2), and  (5.5); we have the fol lowing:  

Theorem 7.3. For h >= 1, D(P 4h+ 2) : O(p4h+ 3) = D(p4~+ 4) = D(p4h+ 5) = hZe ,  

the direct sum o f  h copies o f  Z 2. 
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