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A Concordance Classification of
p.l. Homeomorphisms of Real Projective Space*

Chao-Chu Liang

0. Two p.l. homeomorphisms f and g of a p.1. manifold M are called concordant
if there 1s a p.l. homeomorphism H: M x I— M x I, where I ={0, 1], such that
H(y,0)=(f(y),0) and H(y, 1)==(g(y), 1). The set of concordance classes of p.l.
homeomorphisms forms a group D(M) under the composition of maps. Let D(M)
denote the subgroup of D(M) consisting of the classes of those elements which
are homotopic to id, the identity map (our homotopy is free of base point).

Let P" denote the real projective space, which is the quotient space of the sphere
S™ under the antipodal map 4. We know that any p.l. homeomorphism of P*"
is homotopic to id, and any orientation-preserving p.l. homeomorphism of P2"*!
is homotopic to id [10]. In this paper, we will compute D(P") for n = 4. The main
result is the following

Theorem. D(P*)=D(P°)=1. For k0, D(P***?)=D(P***3)=D/P**%
=D(P***3)=kZ,, the direct sum of k copies of Z,.

The paper is organized as follows: in Section 1, we use some basic facts about
the surgery exact sequence to compute hT(P" x I, 9), and consider an onto homo-
morphism ¥ :hT(P"x I, ¢)- D{(P"). In Section 2, we use “equivariant coning”
(2.1)to show that there exists 2 homomorphism from D(P")to D(P"* !). In Section 3,
we show that except in one case n = 4k + 1, this homomorphism is onto. In Sections
4 and 5, we prove that D(P*) = D(P*) = (. An interesting byproduct is Theorem 5.2 :
any h-cobordism of P* to itself is diffeomorphic to P* x I; which is proved by using
an argument similar to the one in the proof of [ 12, Theorem 1.4.]. In Section 6,
we see that what makes the case 4k + | different from the others is the existence
of two non-concordant embeddings of P***! in P***2 [1] or [8]. In the final
section, we use the argument in [1] to prove the main theorem, and hence show
that for n = 5, the kernel of ¥ is Z, which is generated by equivariant suspending
the element in (5.1).

The author wishes to thank Professors G. R. Livesay and 1. Berstein for their constant help and
encouragement.

1. Let hT(P" x I, &) denote the set of equivalence classes of homotopy tri-
angulations of P" x I relative boundary [14]. An element y of hT(P"x I, ) has a
representative of the form (M"*!,g), where M is a p.l. manifold, g: M — P"x [
is a homotopy equivalence such that g: M —3(P"x I) is a p.l. homeomorphism.
(MM', g') determine the same element if and only if there exists a p.l.

* Partially supported by NSF grant MPS 72-05055 A02.



48 Chao-Chu Liang

homeomorphism h: M — M’ such that g is homotopic to g’ hrel boundary. Ifn = §,
then M is p.l. homeomorphic to P*x I by a p.l. homeomorphism G by the s-co-
bordism theorem. Thus (M, g)=(P"xI,g°G). Let f =g G|P"x0,and F=g G
o(f xid). Hence y=(M, g)=(P"x I, F). We define a map ¥ from hT(P"x 1, 0J)
to D(P"),n= 5, by ¥(y)= F|P"x 1. ¥ can be shown to be well-defined and onto as
in [15].

For n= 5, we have the following surgery exact sequence [14]:

[Z2P", G/PLYS L, ,(Z,. a)ShT(P"x 1,05 [ZP", G/PL]
> Ly (24, )5 hT(PYSP", G/PLY,

where a= +{-), if n is odd {even). For n=4, the part of the above sequence
from [2?P1, G/PL] to Ls(Z,, —) is exact also.
Ignoring odd torsions, we know that G/PL has the homotopy type of Yx []

jz2
(K(Z,,4j—2)x K(Z,4))), where Y=K(Z,,2)x s5,. K(Z,4), [8] or [14]. For
nz4, [ZP%, K(Z,4)]=0. Hence [ZPY, Y] =[ZP%, K(Z,.2)] = Z, as in [8, IV.2].
For nz4k+ 1, [ZP}, K(Z,, 4k +2)] = H**Y(P"; Z,) = Z,. [ZP", K(Z, 4k)]
=H* " Y(P")=0,ifnx4k—1; =Zforn=4k —1.Since [ZP", G/PL]=[ZP", Y]
x [T (2P}, K(Z,4j—2)]x[Z P, K(Z, 4j)]), we have the following
jz2
Proposition 1.1. For k20, [ZP4* G/PL)=kZ,, [P} G/PL)=[Z P42,
G/PL]=(k+ 1) Z,, [ZP**3 G/PL]=(k+ 1) Z, + Z.

L(Z,.a), hT(P") and [P", G/P L] have been computed in [8, 14]. Substituting
these into the surgery exact sequence, we have the following four exact sequences
fork=>1.

(1.2

Z, S hT(PYx I,V kZ,—0

ZyShT(PH I XL O D (k+ 1) Z,— Z, S h TP
Z,hT(PY** 2 1, )L (k+ 1) Z,—0

0B hT(P** 3% 1,0 (k+ 1) Z,+ Z—Z + Z— Z + torsion.

The map o' : Ly, 3(Z,, +)=>hT(P***Y) is trivial: Ly, ,(1)— L, 5(Z,, a)
is an isomorphism [ 14, p. 164]. Hence the action of the Wall group is given by
adding a Kervaire manifold to P***1 x I along the boundary P***! x 1, but the
Kervaire sphere is just the ordinary sphere in the p.l. category. For k=1, the
surgery obstruction is given by a “wrong” framing [9], and the action is trivial
also [12,p.348]. Similarly, w: L, ,(Z,, —)>hT(P*x1,0) is trivial. Hence
[Z2P{ G/PL]1 > L4y, »(Z,, —) is onto. But for k=1 we have the following
commutative diagram as in [8, p. 46]:

[22PEF+2, G/PL]
i g
[zzpi’”l, G/PL]— > Z,.

[Z2P* G/PL]
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Since the bottom map is onto, the other two maps are onto also. From the
surgery exact sequence, we see that w=0 in (1.2). Thus, we have proved the
following

Proposition 1.3. n: h T(P"x [,0)—[ZP},G/PL] is 1 —1 for n=4. For k=1,
RT(P** x I, 8)=hT(P**' x1, &)=kZ,, hT(P**2x I, &)=hT(P**3x1I, &)
={k+1)Z,.

We can define a group structure in hT{P"x I, 0) as follows: let (P"x I, F)
and (P"xI,G)e hT(P"x1,0) such that F|P"x 1 =id and G|P"x0=id. Write
F=(F,,F;) and G=(G,,G;). Then define (P"x I, F)* (P"x I, G)=(P"x I, F = G),
where F* G(y, 1)=(F,(y, 1), 3F,(y, 1)) for 0=t <% =(G(y, 1, 3G,(y, 2t — 1)) for
F<t<1. We can show that (hT(P"x1I,d),*) is a group and the map
Y hT(P"x I, 8)— D(P" is a homomorphism (for details, see [15]).

Proposition 1.4. For n= 5, D(P") is a finite abelian group.

Proof. Since [ZP},G/PL] is abelian and #n:hT(P"x1,0)—~[XP!,G/PL]
is an { — 1 homomorphism, hT(P" x I, 8) is abelian. ¥ is an onto homomorphism.
Hence D{P") is finite abelian by (1.3).

2. All the p.l. embeddings considered below are assumed to be locally flat.

Let P; and P, be the images of two p.l. embeddings of P* in P"*!; or equiva-
riantly, let S; and S, be the images of two A-equivariant embeddings of $” in $**!
such that S; covers P,.. By the Schoeflies theorem, each component B, {or B;_)
of the complement of §" in $"*! is p.l. homomorphic to the standard (n+ {)-
disk D"*! by a p.l. homomorphism h;, (h;_). Also, AB;, = B;_, where A is the
antipodal map.

Let f be a p.I. homomorphism from P, to P,. We will construct a p.l. homo-
morphism g of P**? to itself as follows:

Definition 2.1. Equivariant coning: Let f:S, S, be the 2-fold covering
of f. We define a p.l. homomorphism k: D"*' - D"*! by coning the p.l. homo-
morphism h,, - foh;}! on §"=0aD""!. Then we define g: $"*1—5"*! by §|B, .
=hylekoh,,, and G|B,_.=A>(G|B,;+)-A. G is an A-equivariant p.l. homo-
morphism. Degree§ = -+ 1. Since degree (4 : " — §")= — 1 for neven, we can always
make degree 7= + 1 by either replacing g by 47 or using A4 f instead of f in the
above construction. g induces a p.l. homomorphism g : P"** — P** 1, which is said
to be obtained from f by equivariant coning.

Suppose we replace h,, by another p.l. homomorphism A4}, in the above
construction to get g'. by, »hy}:D""1 > D" is concordant to id [6]. Hence ¢’
is concordant to g by composing the concordance between k' , and h, , with other
mapsin (2.1). If we replace f by a concordant map /', then we can apply equivariant
coning to the p.l. homomorphism F of W= §"*'x{0, 1}uS" x I to itself, defined by
FIS"" 1 x0=g,F|$"*'x 1 =7, and F|S"x I is the 2-fold covering of the con-
cordance between f and £, to get an equivariant concordance between g and g';
because the complement of Win "% x I consists of 2(n + 2)-disks.

Let P" also denote the image of the natural inclusion of P" in P"*'. Given a
p.l. homomorphism f of P" to itself, we may use (2.1) to construct a p.l. homo-
morphism of P"* ! to itself, denoted by Sf. Sf is well-defined up to concordance
and induces a map from D(P") to D(P"*1), which we also denote by S.
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Proposition 2.2. For n= 5, S: D(P")— D(P**') is a homomorphism.

Proof. We define a map S’ from hT(P"x1,9) to hT(P"*' x I, d) as follows:
an element x=(P"x I, F)e hT(P"x I, d) can be lifted to (S"x I, F) with degree
F=+1. Viewing S" as the equator of S"*!, we denote the northern (southern)
hemisphere by D% '(D"*'). We define G:S"* ! xI~S""!x] by G|S"xI=F,
G| north pole xI=id, then extend linearly on each D! xt for each te[; and
GID" ' x I =(Axid)o(G|D" ' x)o(Axid). G is (Axid)- equivariant, hence
induces a homotopy equivalence G: P**! x I » P"*! x I with G|d(P"** xI) a p.L.
homomorphism. We define §'x =(P"*' xI,G)e hT(P"*' x 1, d). Applying the
same argument again, we can show that §’ is well-defined.

Given x,ye hT(P"x I,d), we can choose x={P"xI,F) and y=(P"x1,G)
such F|P"x { = G|P"x0=id. By looking at the difinition of x*y in Section 1,
we see immediately that §'(x x y)={(5'x) = (S'y). Hence S’ is a homomorphism.

Consider the following commutative diagram

WT(P"x I, 0)—%—s hT(P"* ! x I, 9)

|

D(P")y —S— D(PY.

Commutativity follows from the definitions. Since S’ is a homomorphism and
¥ is an onto homomorphism, we see that § is a homomorphism. q.ed.

3. In this section, we will show that the homomorphism S: D(P")— D(P"*1)
defined in the last section is onto forn=2 6 and n+4k+ 1.
We also write P" for its image in P""! under the natural inclusion.

Lemma 3.1. Forn=1{.If xe D(P"* ') has a representative f satisfying f (P")=P",
then there exists y € D(P") such that x=3Sy.

Proof. For neven,let g= f|P" For n odd, if degree (f|P")=+1,let g=f|P";
ifdegree (f|P")= —1,letg=Co- f | P", where C, the double cover of C, is defined on
S"™ Y by C(Xy, vy Xpa2) ={(X1s ooes Xp» = Xpt 15 —Xn42)- C is concordant to id by
rotations invariant under A, Hence we may replace f by Ce f, and take g = f{P".
We define a concordance H: P" ! xI— P x] between f and Sg as follows:
H|P"* ' x0=f, HP""* x 1 =8g, H|P"xI=gxid; lifting it up, we see that the
domain on which H has not been defined is coverd by two disks D%*! and D"*!
such that (4 x id) D"* ! = D"*!, hence we may finish the definition of H by equiva-
riant coning as before. g.e.d.

Lemma 3.2. For n26 and n+4k+ 1, any element of D(P"*') has a repre-
sentative g satisfying g{P")= P".

Proof. Given a p.1. homeomorphism f of P"** to itself such that f is homotopic
to id, we know that P" and f(P") are concordant in P"*! for n2 6 and n=4k + 1,
[1] or [8]: there exists an embedding F: P"xI—P""' x I such that F(P"x 1)
= f(Pyx 1, F(P"x 0)=P"x 0. We identify P" with its image in P"*! under the
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natural inclusion, hence we may assume F|P"x 0=id by composing with some
homeomorphism as in Sectioni. Let H=F 1. F(P"x)-»P'xICP" 1 x I
We use (2.1) to construct h:P"*!'x 1P !x1 from H|F(P"x1)—P"x{.
h is concordant to id by a concordance G as follows: G| P"" ! x0=id, G| P"" ' x |
= h, and G| F(P" x I})= H; we then finish the definition of G by equivariant coning
as in (3.1). Since A(f(P"))= P", we take g=ho f. q.ed.
From (3.1) and (3.2), we have the following

Proposition 3.3. For n=6 and n+4k~+ 1, S: D(P)- D(P"*) is onto.

4. In this section, we are going to prove two lemmas which will be needed
in Section S.

We write S =1(x,,...,x,)| Y x7= 1} and S'=8%n{x;=x,=0}. We can
1gis4
also consider S* as parametrized Sy_z, 0=<z=2n Letj=(0,0,1,0)and k=(0,0,0, 1)
denote two vectors. Then j(z)=j and k(z)=k together form a framing for the
normal bundle of S* in §3. If we apply the Thom-Pontrjagin construction to S!
and this framing, then we get the trivial element in n5(S*)=2Z [7] or [11].

Let 4 denote the antipodal map. On S*, we have Az =z + 7 mod2n. P'=S/A.
Since P! and P? are parallelizable, the normal bundle of P! in P? is trivial. Given
an orthonormal framing (a}, a5) of this bundle, we can pull it back by the pro-
jection p:S*— P! to an orthonormal framing (a,, a,) of the normal bundle of
S' in §°. Let afz)=a;,(2)j+ai,(z) k. Since (a;,a,) covers (a},a,), we have
Aai=a;4, ie. —a,,(z2)=a,,lz+n)

Lemma 4.1. Let (4, a3) and {a,, a,) denote the framings as above. If we apply
the Thom-Pontrjagin construction to S* and (a,, a,) in S, then we always obtain
an odd integer in n;(S%) = Z.

Proof. The Thom-Pontrjagin construction gives us a homomorphism from
the framings of the normal bundle of $* in §> to 7;(S?)=Z by mapping (a,, a,)
to the degree of the map f,, where f,(z)=(a,,(2)) € S0Q2)=5" [7, 11].

Consider the framing {c,,c,) on § defined by c {z)=cos(z)j-+sin{z) k,
¢,{z)= —sin{z) j + cos(z) k. Since cos(z + n)= —cos(z) and sin(z+n)= - sin{z},
we see that Ac;=c;A. Thus (¢, ¢c,) induces a framing (¢}, ¢;) for the normal
bundle of P! in P°. Furthermore, the degree of the map f,, where f.(z) =(c,,(z))
€S0(2)=S, is 1.

Suppose (a,,a,) is another framing on S* covers a framing (aj, a5) on P*.
Aa;=a;A. We define a new framing (by,b,) on S' by b, (2) =) ¢,(2) ay,(2).

k

degree f,=degree f,+degree f,=degree f,+1. But b, (z+n)=Zc,(z+7)
Az ) =(—1)? b, (2)=b,,(z). Hence f,= §'—>S0(2) factors through P!
Since p: §' - P! =S is of degree 2, we see that degree f, is even. Thus degree f,
sodd. ged.

Let d denote the nontrivial element of n,(P?)=Z,. We may assume d is
transverse regular to P'. Then d™'(P')= U is a 2-dim submanifold of $%. Let F
denote the framing of U induced by an arbitrary framing G for the normal bundle
of P'in P® via d. Pontrjagin defined a cobordism invariant — the Kervaire invariant
(U, F) for such pair (U, F) in $* {11, p. 101].
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Lemma 4.2. The above Kervaire ¢(U, F) is not zero.

Proof. Lifting d to b: S*— S*, we see that b is transverse to 5.

SA b SB r SZ

N

P3

Let (S*, H)=p~'(P!, G), where G is an arbitrary framing on P as above. Then
(U,F)=d~'(P',G)=b"'(S*, H). If we apply the Thom-Pontrjagin construction
to (S, H), then the element r € 14(S?) = Z thus obtained is odd by (4.1). Since d is
nontrivial, b is nontrivial in ,(S*) = Z,. Hence b is the suspension of the generator
of m,(S?), and the composition r = b in 7,(S?) is non-zero [ 5]. Let y be the point in §?
such that r~}(y}=S8'. f=reb is transverse regular to y by construction, and
/Yy, the standard framing)= (U, F). Since the Kervaire invariant c¢(U, F) and
the Thom-Pontrjagin construction give an isomorphism of 7,(S?) with Z, [11],
we see that ¢{U, F) is non-zero. g.e.d.

5. Propositions (1.1) and (1.2) tell us that the map #n: hT{P*x1.0)
—~[2P{,G/PL]=Z, is 1 —1. We are going to find a homotopy equivalence
g; P*x I P*x I with g|0(P* x I)=1id, and #(g) %0 in [ZP%, G/PL].

We know that 7,(S*)=n,(P*)=2Z,. Let d denote the nontrivial element
of i (PY=m (PP x)=Z,byd:S*>P*xiCP¥x I

We choose a 4-disk D in P® x(1/4, 3/4) such that DA P*xi=@ and DnP!' x1
=@. Then we define a homotopy equivalence h: P?> x I - P? x I such that h=id
outside D and the obstruction of h toidrelP>x I —intD is de HHP3x 1, P3x 1
—intD;n, PY)=2Z,.

Considering P! x IS P*x I, P! x InP3*x1{=P!x}, we may assume d:S*
— P? x4 is transverse regular to P* x4. Then d™'(P' x )= U is a 2-dim submani-
fold of S*. If F is the framing of U induced by an arbitrary framing for the normal
bundle of P! in P? via d, then the Kervaire invariant c(U, F) is non-zero by (4.2).

The rest of the argument is almost the same as the one used in the proof
of [12, Theorem 1.4]. Without changing d~ *(P' x1)= U, we may alter d to make
d|D,—D a diffeomorphism on a small disk D, CS* Identifying D with the
complement $* —intD,, we may choose the above h: P*x I— P3x [ such that
(h|Dyu(dID,}=d. Then h will be transverse regular to P'x I, and h™ Y(P' xI)
=P'xIuU=W. Let f=h|W:W-P'xI, a map of degree 1 on P'x] and
degree 0 on U, because f factors through P' x L.

Now, we construct a homotopy equivalence g: P* x I - P* x I as follows: let
h:8%x1-8%x1 denote the double cover of h, we define g=h on S*xI and
g=1id on $*x dI. Viewing h as a p.l. map, we may complete the definition of §
by equivariant coning as in the proof of (3.1). Hence g covers a homotopy equiva-
lence g: P*x I—P*x 1 with g|d(P*x=1id and ¢  "(P' x)=h Y(P'x }=P!
xIuU=Wf=hW=g|W is a degree 1 map. Arguing as in p.350 of [12],
we have a induced surgery problem (W, f, H) and the Kervaire surgery obstruction
c(W, f,H)=c(U, F)= 1.
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Suppose n(g)=0. Since # is 1 —1, we see that g is homotopic rel boundary
to a p.l. homeomorphism. Making the homotopy transverse regular to P* x I rel
boundary, we get a cobordism of (W, f, H) to (W', f', H') such that f: W' — P! x |
is a homotopy equivalence, indeed a p.l. homeomorphism. But the Kervaire
invariant is a cobordism invariant [2], so this is impossible. Hence 5{g)+0.
Thus we have proved the following

Proposition 5.1. There exists a homotopy equivalence g: P* x I-—P*x I with
g =id on the boundary, and n(g) 0 in [ P%, G/PL].

We can deduce the following theorem from (5.1).
Theorem 5.2. Any h-cobordism of P* to itself is p.l. homeomorphic to P*xI.

Proof. Let W be an h-cobordism with 0W=P§UP} and f: W—-P*x] a
homotopy equivalence with /'~ }(P* x i) = P*. Since every homotopy equivalence
of P" is homotopic to a homeomorphism, we have a homotopy equivalence
[ W =P{x IOWUP] xI—P*x 1 such that f'|8W’ is a p.l. homeomorphism.
Thus (W', f)ehT(P*x1I,0), a set consists of two elements: {P*xI,id) and
(P*x I, g) constructed in (5.1). In either case, W', hence W, is homeomorphic
toP*x 1. qed.

Since n{PL/0)=TI;=0 for i £ 6, we have the following
Theorem 5.2. Any h-cobordism between P* to itself is diffeomorphic to P*x ].
Proposition 5.3. D(P*)=1.

Proof. Given a p.l. homeomorphism f of P*, we have a homotopy F between
fand id. As in (5.2), (P* x I, F) is equivalent to either the identity or (P* x I, g).
Ifit is equivalent to the latter, then we may replace F by F * g. Hence there always
exists a p.l. homeomorphism K : P* x I - P* x I such that id - K is homotopic to
F rel boundary. Thus K is a concordance between K,=1id and K, =f. q.ed.

Similarly, we have the following
Proposition 5.3". Any diffeomorphism of P* is concordant to the identity.

Proposition 5.4. Let T:S5°—5° be a differentiable involution with two fixed
points, then T is equivalent to an orthogonal action.

Proof. Around each fixed point, the action is orthogonal. Cut out two small
imvariant neighborhood of the fixed points from S°. The orbit space of the region
left is an h-cobordism of P* to itself, hence diffeomorphic to P*x I by (5.2).
Thus the action (T, $°)is equivalent to(A4, D®) | ] (4, D®), where f'is an A-equivariant

. 7
diffeomorphism of $* to itself. Hence (T, $%) is equivalent to (4, D)) (4, D*),
id

the standard action (x,, ..., xg) = (X;, =Xz, ..., —Xg), by (5.3). gq.ed.
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Proposition 5.5. S : D(P*)— D(P®) is onto, hence D(P%) = 1.

Proof. All we have to show is Lemma 3.2. is true for n=4 also. Let [ be a
p.l. homeomorphism of P35 homotopic to id. We know from Theorem 6.1. of [3]
that P* and f(P?%) are concordant. The concordance between them is an h-co-
bordism, which is a product P* x I by (5.2). Then we can carry out our proof as in
(3.2). By (3.1), we see that S: D(P*)— D(P%) is onto. q.e.d.

6. We always identify P" with its image in P**! under the natural inclusion.

Proposition 6.1. For each 4k+2, k=1, there exists a pl. homeomorphism
g of P***? to itself such that g, is non-concordant to id.

Proof. For k21, there exists an embedding f of P***! in P***2 such that
Q** 1 = f(P**1) is not concordant to P***! [1,8]. Let h be any p.l. homeo-
morphism from P***! to Q**¥*! We then apply equivariant coning (2.1), to h and
obtain a p.l. homeomorphism g, of P***? to itself. g, is not concordant to id:
if it were, then the image of the concordance between g, and id, when restricted
to P*** 1 x I, would be a concordance between P***! and Q*** !, a contradiction.

g.ed.

We will write {g,} for the concordance class which contains g,.

Proposition 6.2. 1o every xe D(P***2), there exists ye D(P***Y) such that
that x=Sy or {g.}° Sy.

Proof. Let h be a representation for x. h(P***!) is concordant to either
P+ 1 or Q***1in (6.1), [1] or [8]. In the first case, we can proceed as we did in
Section 3 to show that x = Sy. We also can reduce the second case to the first by
considering g; ' o h. q.e.d.

From (3.3), (5.5}, and (6.2); we know that any element of D(P"), n= 6, has a
representative of the following form: S§%(g, o S* gy, ,°---S"g,,)...), with
positive intergers a; and b; such that 4|a; for j<t, a,+4b,+2=n, and
bi=(a;,_ /A +b;_,.

Given an element (P"x I, Fye hT(P" x I, 0), we can make F transverse regular
rel boundary on P"x I, 4<m<n. For m*4k+ 1, F is homotopic rel boundary
to H such that H induces a homotopy equivalence H™ '(P™ x I} P™ x I, which can
be seen as follows: if n is even, then we can use theorems (10.5) and (8.1} of [4] to
show inductively that the above assertion is true for m=n—2,n—4,...; and
m=4k— 1 follows from this, the proof of [{, Theorem 1}, and the Theorem on
[8, p. 16]. The case n is odd can be reduced to the above case by Theorem 6.1.
of [3] and the theorem on [8, p. 16].

From (1.1) and (1.3), we know that the map c:

hT(P"x1,0)-[[[2P}, K(Z,,4k+2)]
K

induced by n, 2<4k+2<n, is 1—~1. Let ¢4, , denote the component of ¢ to
each summand. These values can be detected by the surgery obstructions: given
anelement y = (P" x I, F) as in the last paragraph, ¢, , ,(y)is the surgery obstruction
(Arf invariant) of the induced normal map H ™ '(P***! x I)— P*** 1 x ]
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C4x+2 can be related to the Browder-Livesay invariant for the uniqueness of
desuspension, [1] or [3] as follows: Let G, be a homotopy from id to the map g,
in (6.1) for k= {; and let G, be the map g in (5.1). Using S’ defined in (2.2), we see
that the element y = §(G,, > §'* (... G,,)...) satisfying ¢y, o (y) =1 for k=b;; =0,
otherwise. But ¢,,, ,(y), b=1, is the Browder-Livesay invariant for P***! and
gb(P4b+ I) in P4b+2.

7. We will compute D{P") for n = 6 in this section. As in the previous sections,
we identify P* with its image in P"*! under the natural inclusion.

Lemma 7.1. n=26, 1<4k+1<n. There exists a homotopy equivalence
F:P"xI—P'xI with F=id on the boundary and F~Y(P*"*'x )»P* ' x]
is of Arf invariant 1 for some r; if and only if there exists submanifolds V™* ! in
P'xI 1<dk+1<m<n for some k, with 6V™" " 1=P"x0uUP"x 1 such that
Vicytt vt lis pl. homeomorphic to P x I for m=+4k+ 1, but V**+2 = p4k+1
x I # K***2 where K***? is the Kervaire manifold.

Proof. Let k be the largest number among such r’s. The only if part has been
proved in Section 6 and in [1].

Conversely, consider U™ '=P"x] in P"x1I, 4k+1<m<n, and N***?2
is p.l. homeomorphic to P**! x4 K***2 with aU = P**1x10uQ**! x0,
where P***? and Q***' are two non-concordant embeddings in P***2 [1{].
Gluing two copies of of P"x I together to get another copy of P"x ], Let Y™+!
=Vt Um™ !t For m>4k+1, Y™ is pl. homeomorphic to P™x I, with
0Y=P"x¢l: and we may apply equivariant handle exchanges in the interior
of Y**3 to make Y***? pl homeomorphic to P***!x] with boundary
=PHE U@t T <0 [3].

Then we use the equivariant coning (2.1) repeatedly to construct a p.L. homeo-
morphism H:P"x 11— P"xI: we map Y***2? to P***! xJC P"x 1, and use (2.1)
to extend to P***2x 41, then we extend to a p.l. homeomorphism from Y#**3
to P*¥*2x I as in (3.2), and repeat the procedure. Consider the homotopy equi-
valence G,: P***2 x ] —» P***2 x| between g and id in Section 6. Let G=S"G,,
where t=m — 4k — 2. We define F = H = G as in Section {. q.ed.

Lemma 7.2. n26. Let F:P"xI->P"'x] be a homotopy equivalence with
F =1d on the boundary. We can make F transverse regular to P*"*! x I rel boundary
Jor 1 <4r+ 1 <n. Then the induced normal map F~ 1P xI)» P+ * 1 x I rel
boundary is of Arf invariant 0 for each r.

Proof. The proof is by induction. Proposition (6.1) and (7.1) showed that (7.2)
is true for n=6. We now assume the lemma is true for all t <n, but not n: there
exists certain r with 4r + 1 <n which doesn’t satisfy the assertion of (7.2). Let k
denote the largest of such r’s. There are four cases:

(@) n=4h. By using [t, Theorem 1] and [8, p. 16, Theorem] as in the last
section, we may change F through homotopy rel boundary to make F~'(P"~ ' x I)
Pl homeomorphic to P"~ ' x I. V, the double cover of F1(P*" ! x I),and $* " ' x I
are characteristic submanifolds for (8" x I, A x id) in the sense of [3]. By a similar
argument as in the proof of [3, Lemma 3.2], we assert that there is a characteristic
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submanifold W for (S"x I x I, Axid) with oWnNS"xIx 1=V x1,0WnS"xIx0
=8""1xIx0,and OWNS"x I xI=8""'xdIxI. Since dim W =4h+ 1 is odd,
we may apply equivariant handle exchanges in the interior of $"x I x I as in [3]
to make W equivariantly p.l. homeomorphic to S"~! x I x I. Hence there exists
a pl. embedding H: P" ! xIxI—=P"xIx1 with HP" 'xIxI)=W/(Axid).
HP  'xIx0) =P ' xIx0CP'xIx0, HP" 'xIx 1)=F (P !xI)x 1. As
in the proof of (3.2), we may compose H with a p.l. homeomorphism of P*~ ! x I x I
to itself to make H|P"* ' x I x 0 = the natural inclusion. Consider the homotopy
equivalence G=iduFuid: Y-Y, where Y=P'x I xIUP"xIx1uP"x0x]1.
Y is p.l. homeomorphic to P" x I. We define a homotopy equivalence K : P" ' x I
P ix by K=GoH on P Ix =P ' x{xJUP" 'xIx{1uP" 'x0x1.
Since we identify P"~! with its image under the natural inclusion i: P"~!'—P"
and H|P"~ ! x I x 0 = the natural inclusion, K = id on the boundary. The induced
map K~ '(P**!x ) P**1x [ is of Arf invariant 1, which contradicts the
induction hypothesis [we also can prove (a) by using (7.1) as in (d) below].

(b) n=4h+2.(6.1)and (7.1) tell us that k + h. Hence we can make F ~ 1(P" "' x I)
p.l. homeomorphic to P"~! x I. Then we can proceed as we did in the case (a)
for the dimensional reason [3].

(c) n=4h+1. We may change F through homotopy rel boundary to make
F~Y(P"~ ! x I) p.l. homeomorphic to P" ! x I by Theorem 6.1 of [3] and {8, p. 16,
Theorem]. As in (a), we have a characteristic submanifold W#4#*2 in S*** ! x [ x ]
such that (W /T)=P*"x Ix 0UP*" x 0l x IUF~}(P*"x I)x 1 ; where T=A x id.
We apply equivariant handle exchanges to make W 2h-connected. A reverses
the orientation in P*" hence T reverses the orientation in W. Since dim W =4h =2,
the bilinear form B(x,y)=x-T,y defined H,,, (W), modulo its torsion, is
symmetric. We can use the same argument as in [3] to show that the index of B,
denoted by c(W, T), is the Browder-Livesay invariant — the obstruction to get a
concordance between P*"xIx0 and F '(P*"xI)x1 in P*""1xIx[ rel
boundary. But by using exactly the same argument as the proof of Theorem I
of [ 1, pp. 58—63], we can show that ¢(W, T) is equal to the half of the difference
between ¢, and c,, where ¢, is the obstruction to get a concordance between
P 1x0x0and P*""!x1x0in P**xIx0 and c, is the obstruction between
P 1x0x1 and P** " 'x1x1 in F"'Y(P*"xI)x1-¢; =0 by [1, Theorem 1].
¢, =0 follows from the proof of [, Theorem 1]. Thus (W, T)=0. Hence we
may apply equivalent bundle exchanges to make W a product. Then we just use
the argument in the second half of (a) to finish the proof.

(d) n=4h+3% By (7.1) above, we may assume there exist submanifold
ym+lin P"x I satisfying the assertions in (7.1).

As in (a), we may assume the existence of a characteristic submanifold W"*!
for(S"x I x I, A x id)withWnS"x Ix0=5""'xIx0,0WNS"x I x 1 =V*+2x |,
OWnS"x I x I =8""'x 0l xI. We may make W (2h + {)-connected. T = A4 x id
reverses the orientation in W. Since dimW =n+ { =4h + 4, the bilinear form
B(x,y)=x- T,y defined on H,,,,(W) is skew-symmetric. Hence we are in the
Arf invariant case [3]. Let ¢(W, T) € Z, be the Browder-Livesay invariant defined
by this form B as in [3]. If ¢(W, T) =0, then we can make W a product, and we
may proceed as in (a).

! This is essentially the proof of the Corollary in [8, p. 83].
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We now suppose c(W, T)= 1. We have seen in Section | that the action
ofthe Wall group L, . ,(Z,, —)= Z,, which is given by the Arf-Kervaire invariant,
[13,14,p. 162], on hT(P*"*2x 1, 0) is trivial. Hence we have a map of triad
G (M;0_M, 0, My>(P*" 2 IxI; P 2 x I x QUP** 2 x 0l x I, P*"* 2 x Ix 1)
of degree 1 satisfying the assertions of [ 14, Theorem 5.8]. Then we use Lemma |
of [1] and the argument in the proofs of Lemma 8 and Theorem 3 of [ 1] to show
that M, the double cover of M, can be embedded as a characteristic submanifold
for (§*"*3 x I x I, A x id) with the Browder-Livesay invariant c¢(M, T) = i such that
MNP T3 Ix0=P*" 2% Ix0, OMAP* 3xdIxI=P*""2x3IxI Also
there exist concordance N™*! between P*x0x 1 and P x 1 x 1 for all r <4h +2,
N'CN™ land K*** 3 =U =M P*"*3 x I x {: which follows from the trivialily
of the action of the Wall group above.

Joining two copies of P*"*3xIx[I together along P***3x [x0 and re-
parametrizing the last factor, we obtain a characteristic submanifold R=Mu W
for (S***3 x I'x I, T) such that 3(R/T)NP*** 3 x Ix0=U, dR/T)nP*"*3x Ix 1
=F YP*¥ " 2x)x1, OR/T)NP*"*3x0IxI=P*"*2x9Ix]. The Browder-
Livesay Invariant ¢(R, T)=141=0¢e Z,; hence we may make R equivariantly
a product; there exists a p.l. embedding H; P***2 x I x I » P***3 x I x I with the
image of H =R as in the case {a), we may assume H|P*"*2x { x J = the natural
inclusion. For 4k + 1 £r <4h+ 2, the submanifolds H }{(N"TLUP x0Ox JuV'h)
in PP T =P 2 [ xQUP* 2 x 0 x TUP*"* 2 x [ x | satisfy the conditions
in (7.1); hence contradict the induction hypothesis by (7.1). q.e.d.

From (7.1) and (7.2), we see easily that a p.l. homeomorphisin of the form
S(gp, =S¥ (gy,_, °---)...) is not concordant to id; otherwise the element G=F
*(5"G, ), where F is the concordance, would contradict (7.2). From this, (1.4),
(2.2), and (5.5); we have the following:

Theorem 7.3. For h=1, D(P****)=D(P*"*3)=D(P*"**)=D(P*"*%)=hZ,,
the direct sum of h copies of Z 5.
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