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n-Borromean links are nontrivial links in which n rings, n > 3, are combined in such a way 
that any two component rings form a trivial link. The symmetry of links with n = 3 is discussed, 
and it is shown that such links form a variety of series whose members are different isotopy 
types. Examples are adduced of 3-Borromean links that are topologically chiral/ Novel 
constructions are described of n-Borromean links with and without at least one nontrivial 
sublink. 

1. Introduct ion  

The Borromean (or Ballantine) link (fig. 1 (a)) is among the most fascinating of 
topological constructions: three mutually disjoint simple closed curves form a link, 
yet no two curves are linked. Thus, if any one curve is cut, the other two are free 
to separate. An "elementary proof" has recently been published [1]. Though this 
classic link is of ancient provenance, to our knowledge its curious characteristic 
was first explicitly noted by Tait [2], who also showed that this link is the first mem- 
ber in a series of links that "are formed by three unknotted closed curves, no two 
of which are linked together", and in which "the number of crossings is a multiple 
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(a) (b) (c) 

Fig. 1. Reduced diagrams of Borromean links in Tait 's series. (a) The Ballantine link, with 6 crossings 
(fig. 15 in Plate XV of [2], denoted 63 in [3a]). (b) The link with 12 crossings (fig. 18 in Plate XV of 

[2]). (c) The link with 18 crossings. 
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of six". The members of Tait's series are not mutually interconvertible by continu- 
ous deformation; that is, they are different isotopy types. Figures 1 (a)-(c) depict 
reduced diagrams of the first three members of the series. 

The Ballantine link (623 in Rolfsen's notation [3a]) is one of three 3-component 
prime links with six crossings, but the other two (6] in fig. 2(a) and 6~ in fig. 2(b)) do 
not share the peculiar features described above. Given its unique construction, it 
comes as no surprise that realization of the Ballantine link in molecular form is con- 
sidered a synthetic goal well worth achieving. As Martin Gardner put it, "Who 
can guess what outlandish properties a carbon compound might have . . ,  if its mole- 
cules were joined into triplets, each triplet interlocked like a set of Borromean 
rings?" [4]. More than 30 years have passed since Wasserman expressed the view 
that molecular Borromean links "require a minimum string of 30 carbons" in each 
of the three rings [5], and since van Gulick discussed the 3-braid approach to the 
synthesis of such a link [6], yet the synthetic goal remains elusive. Assuredly, "the 
synthesis of the Borromean ring system is still a challenging problem to chemists" 
[7], and "certainly one day molecular Borromean rings will be created by a directed 
approach" [8], but at present that day still lies in the future. The closest that chem- 
ists have come so far is the synthesis of [3]-catenanes, molecules whose structure 
corresponds to the 4-crossing product link in fig. 2(c) [9,10]. 

The present paper was motivated by the continuing interest of chemists and 
mathematicians in this remarkable construction. 

2. Symmetry  of  3-Borromean links 

We define a n-Borromean link as a nontrivial link in which n rings, n > 3, are com- 
bined in such a way that any two component rings form a trivial link. By "ring" 
we mean an unknotted closed (smooth or polygonal) curve. According to this 
definition, all the members of Tait's series, including the Ballantine link, are 3- 
Borromean links. 

It is easily shown that Tait's links can all assume rigidly achiral presentations 
with Sm symmetry, where m is the number of crossings in the reduced diagram. 

(a) (b) (c) 

Fig. 2. (a) 6] (fig. 26 in Plate XVI of [2]) and (b) 6~, the other two 3-component prime links with six 
crossings [3a]. (c) The 3-component product link 22#23. 
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Fig. 3. Reduced diagrams of rigidly aehiral (S,, symmetry) presentations of the links in fig. 1. 
(a) m = 6, (b)m = 12,(c)m = 18. 

Thus all the members of Tait 's series are topologically achiral (amphicheiral [11 ]). 
Amphicheirality is rare among reported links: all but three (22, 62, 82) of the 91 
prime links with two component rings and with 9 or fewer crossings listed by 
Rolfsen [3a], and all but three (63, 834, 8 3) of the 35 3-component prime links with 9 
or fewer crossings [3a], are topologically chiral. 

Figure 3 depicts S,, diagrams of the first three members of Tait's series. The 
Ballantine link (figs. l(a) and 3(a)) is the only member of the series that can addi- 
tionally assume a rigidly achiral presentation with Th symmetry, in which the 
three rings lie in three mutually perpendicular planes. This geometry had pre- 
viously been recognized by van Gulick [6]. Shortly thereafter, Tauber [12] pointed 
out that the achirality of the Th presentation persists even when all three rings 
are oriented; this is in contrast to the achiral 2-component link 22, which famously 
acquires topological chirality upon orientation of both rings. It is of interest to 
note that three golden rectangles in mutually perpendicular planes (whose twelve 
vertices are the twelve vertices of the regular icosahedron) [13] also constitute a 
Th-symmetric Ballantine link (fig. 4(a))! In addition to presentations with Th sub- 
symmetries (including $6), the Ballantine link can also assume DEd symmetry 

(a) (b) 

Fig. 4. Additional rigidly aehiral presentations of the Ballantine link. (a) Th symmetry: golden rect- 
angles in mutually perpendicular planes [13]. (b) DEa symmetry. 
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(fig. 4(b)). It remains to be noted that Ballantine links composed of  metric circles 
are impossible [14], and that Ballantine links composed of  squares have inspired 
sculptures [15] whose highest attainable symmetry is $6. 

While all the members of Tait 's series are 3-Borromean links, the converse is 
certainly not  true. For example, figs. 5(a)-(c) display the second, third, and fourth 
members in a series of 3-Borromean links whose first member  is the Ballantine 
link; while topologically achiral like Tait 's links, however, the members of  this 
new series have 4m + 2, m --- 1, 2, . . . ,  instead of 6m crossings. As another kind of  
example, figs. 5(d)-(f) display the second, fourth, and sixth members in a series 
of  3-Borromean links with m + 12 crossings, m = 0, 1 , 2 , . . . ,  whose first member  
is shown in fig. l(b). By analogy with alternating knots [11], the alternating links 
with an odd number  of  crossings are conjectured to be topologically chiral, unlike 
the links in Tait 's series. From these examples it becomes evident that there must  
exist numerous series of n-Borromean links, and that members of  these series can 
be topologically chiral as well as achiral, as illustrated in fig. 5. 

3. Genera l ized  n -Bor rom ean  links 

In principle we can distinguish between two kinds of n-Borromean links: those 
in which every sublink is trivial, and those with at least one nontrivial sublink. The 

(a) Co) (c) 

(d) (e) (f) 

Fig. 5. Reduced diagrams of 3-Borromean links. Members of the 4m + 2 series are shown with 
(a) 10, (b) 14, and (c) 18 crossings. All the members of this series have attainable rigid C~ symmetry. 
Members of the m + 12 series are shown with (d) 13, (e) 15, and (f) 17 crossings. All the members of  

this series with m = odd are conjectured to be topologically chiral. 
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first kind are called [3b] Brunnian links and are said to have the Brunnianproperty, 
in honor  of  an early contr ibution by Hermann  Brunn to knot  theory [16,17]. 

3.1. BORROMEAN LINKS WITH THE BRUNNIAN PROPERTY 

Construct ion of  n-Brunnian links (Brunnian links composed of  n rings) was 
begun by Tait  [2], as described above, and additional methods for constructing 
such links were described by Brunn [16]. Here we suggest a simple construct ion that  
yields n-Brunnian links with attainable rigid D2d symmetry.  

Figure 6(a) shows a generalized n-Brunnian link with n > 3; for n = 3 this corres- 
ponds to fig. 4(b). The two adjacent rings at one end, 1 and 2, are topologically 
equivalent, and so are the two adjacent rings at the other end, n and n - 1. Under  
D2d symmetry ,  rings 1 and n, 2 and n - 1, etc., are pairwise symmetry-equivalent .  
Therefore  rings 1, 2, n - 1, and n are pairwise topologically equivalent. It follows 
that  all the rings in 3- and 4-Brunnian links are pairwise topologically equivalent, 
and that  four of  the rings in n-Brunnian links with n > 4 are pairwise topologically 
equivalent. Finally, as shown in fig. 6(b), when rings 2 and n - 1 of  the construct ion 

n-I n-2 . . . . . .  3 2 

(a) 

( ) 
) 

Co) 

Fig. 6. Construction of n-Brunnian links with (a) attainable rigid D2a symmetry; (b) attainable rigid 
Cnh symmetry (C6h in this example). 
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in fig. 6(a) are linked without end rings 1 and n (fig. 11 of[16]), the result is a cyclic 
Brunnian link with attainable rigid Cnh symmetry. 

The algorithm implied in fig. 6(a) transparently leads to the generation of a 
series of  n-Brunnian links whose first member  (n = 3) is the Ballantine link. This 
algorithm is incapable, however, of generating any of the higher members of the 
series with 6m or with 4m + 2 crossings. 

3.2. BORROMEAN LINKS WITHOUT THE BRUNNIAN PROPERTY 

The distinction between Borromean links with and without the Brunnian prop- 
erty can be quantitatively expressed in terms of  Brunn's Zerschneidungszahlen 
(cutting numbers) [16]. Consider a set of cuts that are successively applied to the 
rings of  a link, and in which each cut separates the cut ring from the link. The mini-  

m u m  cut t ing number  # is the smallest number of cuts that suffice to unlink all the 
remaining (uncut) links, while the m a x i m u m  cut t ing number  M is the largest num- 
ber of cuts that can be applied to unlink all the remaining (uncut) rings provided 
that  none of the cuts are applied to a freed (unlinked) ring. For  example, # --- 1 and 
M = 2 for the 3-component product  link in fig. 2(c), and # = M = 1 for all 2-com- 
ponent  links. Thus the distinction between Borromean links with and without the 
Brunnian property is that # = M -- 1 for the former and M > 1 for the latter. 

We recognize two methods for constructing n-Borromean links with at least 
one nontrivial sublink. In the first method,  which involves duplication of  one or 
more rings, the duplicate rings are interchangeable by continuous deformation,  
whereas in the second method they are not. The first method is illustrated by the 4- 
Borromean link in fig. 7(b), which is constructed by duplicating one of  the rings in 
the Ballantine link of  fig. 7(a). The second method, which is somewhat less 
obvious, and which at this stage of development is still highly empirical, is illu- 
strated by the 12-crossing 4-Borromean link in fig. 7(c). If either one of  the a rings 
is cut, an intact Ballantine link remains, whereas cutting either one of  the two rings 
labeled/3 frees the three remaining rings. Hence # = 1 and M = 2 for both of  the 
4-Borromean links shown in this figure. 

(a) (b) (c) 

Fig. 7. (a) Ballantine link in Ci presentation. (b) 4-Borromean rink, with a-rings interchangeable by 
continuous deformation. (c) 4-Borromean link, with a-rings not interchangeable by continuous 

deformation. 
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(a) (b) (c) 

Fig. 8. Top: 5-Brunnian link in Ci presentation. Addition of one ring by the second method (see text) 
affords different types of 6-Borromean links without the Brunnian property. Three such links 
are shown (added ring emphasized) with cutting numbers (a) # = 1, M = 2; (b) /z = 1, M = 2; 

( c )#=  1, M = 3 .  

Different  modes  of  ring addit ion by the second method  yield different types of  
links. This is i l lustrated in fig. 8 with the addit ion of  one ring to a 5-Brunnian link 
and in fig. 9 by the addit ion of  two rings to a 4-Brunnian link. The 6-Borromean 
links shown in these two figures represent five of  many different i sotopy types. 

The unlinking pa thway for a n-Borromean link with M > 1 depends on the order 
in which the rings are cut, as illustrated in fig. 10 for the link in fig. 8(c). Cutt ing 
ring 1 disconnects the five remaining rings, hence /~ = 1. A Ballantine link is 
obta ined by cutting ring 3, a 4-Borromean link without  the Brunnian proper ty  by 
cutt ing ring 4, and a 5-Brunnian link by cutting ring 2; cutting any one ring in the 

J 
Fig. 9.4-Brunnian link in Ci presentation. Addition of two rings by the second method (see text) 
affords different types of 6-Borromean links without the Brunnian property. Two such links are 

shown (added ring emphasized), both with cutting numbers/z = 1, M = 3. 
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t cut ring 3' 

D 3' cut any other ring 

Fig. 10. Unlinking pathways for the 6-Borromean link in fig. 8(c). The minimum cutting number, 
# = 1, is obtained by cutting ring 1, which frees all the remaining rings. The maximum cutting num- 
ber, M = 3, is obtained by following the path marked with heavy arrows: first cut ring 4, then ring 3' 

of the resulting 4-Borromean link, and then any ring in the resulting Ballantine link. 

Ballantine or 5-Brunnian links, or any ring other than the one labeled 3' in the 4- 
Borromean link, disconnects all the remaining rings. The only pathway with a max- 
imum cutting number, M = 3, is indicated by heavy arrows in fig. 10. 

Brunn [16] had noted that, in general, minimum and maximum cutting numbers 
for chains and links must be determined by trial and error. This is certainly the 
case also for the maximum cutting number of Borromean rings constructed by the 
second method. Further work is required for the development of a systematic algo- 
rithm. 
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