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A SIMPLIFIED APPROACH TO EMBEDDING
PROBLEMS IN NORMAL BORDISM FRAMEWORK
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Abstract. The purpose of this paper is to simplify the computations of the nor-
mal bordism groups (L(W;, M x P ;4] and £,(C;, 3W;0;) which Salomonsen
antl Dax introduced respectively to study the existence and isotopy classification
of differential embeddings of manifolds in manifolds in the metastable range. A
simpler space pair (Ky, M ® P™) is constructed to replace (W, M = ), It is
shown that (K, M x F*) is homotopy equivalent to (W, M » P*°) and homotopy
(n — 1)-equivalent to (Cy,dW). To demonstrate the efficacy of this simplification,
the isotopy groups |[M"™ ¢ RP™**| if n <2k -~ 4 and M" is a closed (n — k + 2)-
connected manifold, and [M™ C Lip;q1, . gm)]|, if 3n < 4m — 2, M™ is a closed
(2n — 2m <+ l}-connected manifold and L is a {Zm + 1)-dimensional lens space, are
specifically computed.

Key words. Normal bordism group, differential embedding, isotopy.

§1. Introduction

The existence and isotopy classification of differential embeddings of manifolds in
manifolds may be approached in a normal bordism framework by converting the prob-
lem into the study of normal bordism groups [3;( X, A; ¢) of a certain elaborate space
pair (X, A) ([1] and [2]). Partly owing to the complicated construction of (X, A), the
known such settings, however, are not very convenient for the computation of the con-
cerned bordism groups. In this paper, we introduce a simpler space pair (Ky, M x P™)
which simplifies Salomonsen's approach in [1]. We also compare our setting with Dax's
construction in [2| so as to unify the approaches in [1] and [2]. Our simplification
facilitates the computations and enables us to attack the embedding problems in the
metastable range on a larger scale. Applications in this respect with more concrete
computations will appear in |3|, [4] and other forthcoming papers. The purpose of the
present paper is to provide a proper setting for the computations and demonstrate the
efficacy by several isotopy classification results.

Throughout the paper we shall follow Salomosen's definition and notation of normal
bordism groups in [5|. Manifolds shall always mean differential smooth manifolds in
the C™ sense and emheddings shall always mean C* embeddings.

In §2 we recall Salomensen’s program for embedding problems in the normal bordism
framework, namely the construction of (Wy, M x P*) for a generic map f : M" —
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U™** of manifolds and the embedding obstruction e(f) in {,_x (W, M x P™;4). Our
simplified space pair (K, M x P™) is introduced in §3 and is shown to be of the same
homotopy type as (Wy, M x P™). In §4 we recall Dax’s construction of the space pair
(Cy,8W) and prove that there is an (n — 1)-equivalence between (K, M x P™) and
(Cy, 3W), which reveals the essential unity of the different approaches in the metastable
range. In §5 we compute, as examples, the group |M™ C U] of isotopy classes of
embeddings of an (n — k + 2)-connected compact n-manifold without boundary in
U = P"tE_ the real projective space, or U = L{p;q1,*++,qm), the {2m + 1)-dimensional
lens space. The main theorems are as follows. .

Theorem 1.1. Suppose that n < 2k — 4 and M™ 15 an (n — k + 2)- connected
compact manifold without boundary. Then M™ embeds in P*'* and

k
[M“ [ Pn'f' } = -ﬂ'zﬂ["+t_]j_k{vzp[n+k—]b+k_|I.|.|:.|,_j:}:|

where @(n 4 k ~ 1) is the number of m withO<m<n-+ k-1 and m=0,1,2,4 mod
8, and V, ¢ 15 the Stiefel manifold of orthogonal £-frames in RY.

Theorem 1.2. Suppose that 3n < 4m — 2 and M™ 45 a (2Zn — Zm + 1)-connected
compact mantfold without boundary. Then M embeds in Lip;q1,---,qm), and

[M™ € L(pigr, s qm)]

5 . .
EB Tan—2m if Bs ndd,
1£524(p-1)
— g o
Taetim)—gmsn—1(Vaeltm)  am n2mi1) B @L Tin-2m 1 P18 even,
l=j<op

where 'rrf 15 the k-th stable homotopy group.
In particular, we have

Corollary 1.3. Ifn > 2,

Z  if nisodd,

gn ~ I;I:I"H'l — { . .
' L Zy il niseven.

Corollary 1.4. Ifn > 4,

0 if n=0meod 4,
; Z ifn=1mod 4
1o - tny 4 3
(ST C PR =1 g, if n =2 mod 4,

Z;®Zs ifn=3mod4.

This result has been obtained by Larmore [B] using a different method based on
Haefliger's embedding theory [7].
Corollary 1.5. Ifn > 8,

Z:;52; ifn=0mod4,
i) ifn=1mod 4,
Zy ifn=2mod 4,
2By ifn=3mod4

[s™ c P =
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Corollary 1.6. fn=m+1,m > 5,

[S* < Lipiq1, -+ 1 qgm))

@%ir—l} 1, ifpis odd,
Z, ifn=0med 4,
0 ifn=1mod 4,
(D1, Ta)® y if n =2 mod 4,

z;@zg IfﬂEEmlﬂd“’:

if pis even.

Corollary 1.T. [fn=m+ 2, m > §,

[8™ € L(p;g1,-+ -, qm)l =0 if pis odd,

(Zs if n =0 mod 8.
0 if n =1 mod 8,
0 ifn=2mod8,
Z; ifn=3med8§, if p is even.
Zig if n=4 mod 8,
Lo ifn=>5mod8,
0 if n = 6 mod 8,
. Zy; ifn=7Tmod 8§,

(8" C L{pigr,* am)] = §

Remark. The special case of our Theorem 1.2 where p is odd and M™ is a sphere
has been recently proved by F. Al-Rubaee in the categary of PL-manifolds [10].

§2. Salomonsen’s Program for Embedding Problems
in Normal Bordirm Framework

Let M™ and U™** be manifolds and let f : M — [/ be a map. We define a space
EP(M) = (M x M x §%)/Z;, where 5% = | J72, §" is the infinite unit sphere and the
involution on M x M x S* is given by (z1,z12,8) = (22,21, —8). The space EP(U)
is defined in the same way and a map EP(f): EP(M) — EP(U) may be induced by
f x [ xid. The diagonal map U' — U % U induces an inclusion dy : U x P™ — EP(U).
Then W; may be defined as the following pull-back space in homotopy category:

Wf —E’—* = pe=
Im | du (2.1)
epM) ZY' gpw)

i.e. Wy consists of triples (u,v, p) with u € EP(M), v € U x P™, and p a path in
EP(U) from EP(f)(u) to dy(v). Note that M % P* may be identified with a subspace
of Wy which is the image of the injective map determined by a stationary homotopy of

EP[f]DdM:dUD[I Xtd:l
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Suppose that M is compact without boundary and that n < 2k — 1. Then the set
of generic map forms an open, dense subspace of C*(M,U) ([8] and [1]). Therefore
the problem of the existence of embeddings can be reduced to finding an embedding in
the homotopy class of some generic map.

For a generic map [ : M — U/, the union A'[]E of the double point set A’ and
the singular point set ¥ forms an (n — k)-dimensional submanifold of M. The free
involution T' naturally defined on A' may be extended to A = A'[[E with I as the
fixed point set. Then A = f(A) is an (n — k)-dimensional submanifold of U/ with
boundary dA = f(E). We have the following commutative diagram:

A E g
LS } (22)
A L ofa) & o pe

where 4 is a homotopy equivalence, ¢ a classifying map of the double covering f :
A' — f(A") and &' a Zz-equivariant map over . Then the Zz-equivaniant map A' —
M x M % 8% by z — (z,T(z),¢'(z)) induces a map f(A') = EP{M) which clearly
extends to some map a: A — EP(M). Another map b: A — I/ x P* may be defined
by z — (2, 5o (2)) so that EP(f)ca = dy ob. Therefore, by the universal property of
the pull-back diagram (2.1), the maps a and b together with the stationary homotopy
of EP(f)ca = dy o b uniquely determine a map &1 : (A,24) — (W, M x P™),
Consider the total space of the tangent bundle rM as a manifold and let w : 7 M —
M be the bundle projection. Then EP(x): EP(rM) —+ EP(M) is a vector bundle over
EP(M) of dimension 2n. To describe an obstruction to the existence of embeddings in

a normal bordism group, we define vector bundles 4. = p{ EP(r M) and ¢ = p3(rU/ ®
A) & "% over Wy, where A is the canonical line bundle over P and p; and p, are
maps defined in Diagram (2.1), and consider the normal bordism group of the space

pair (Wy, M x P™) with “coefficients” in the virtual bundle ¢, — 4. in KO (Wy;). It
is proved in Lemma 4.1 of [1] that there is a split exact sequence of vector bundles

0— rA — (5f) s — (6S) (p3(rU @ X)) —> 0.
The splitting of this sequence determines a stable bundle isomorphism

5 rA®(5f)y- — " T D (5f) ¢y

in the sense of [5].

Now the triple {i,ﬁf,m defines a y-manifold over (Wy, M x P*) in the sense
of [5), where ¢+ = ¢4 — y_. The normal bordism class of this triple is denoted by
e(f) € Mu_w(Wy, M x P%;4). Note that, if f : M — U is itself an embedding, then
g(f) = O since the corresponding A is an empty manifold.

Theorem 2.1(Corollary 5.2 of [1]). Let f : M™ — U™ be a generic map with
M compact without boundary, Suppose that n < 2k ~ 3. Then f is homotopic to an
embedding if and only if e(f) = 0 in Oy, (Wy, M x P%; 4]
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In [1] the obstruction e( f) is defined for every map f : M — U using isomorphism
of the bordism group induced by a homotopy of f to a generic map. Therefore the
above theorem holds for any map f: M — I/

£3. A Simplified Construction

Let f: M™ — U"** be a map. Define (I; as {(z,y,7)|f(z) = (1), f(y) = o(1)},
a subspace of the product M x M x U, where J = [-1,1]. The natural projection
g : Ny - M x M is a fibration with fibre (1(U), the space of based loops in U.
Furthermore, there is an involution (z,y,0) — (y,z,07 '), where 67 '(t) = o(—t). The
manifold M may be identified with the fixed point subspace {(z,z,0p;) )|z € M},
where g (:) is the constant path at f (z), of this Z;-action. We define an induced free
involution T" on the product space {15 x S by (z,y,0;8) — (v,z,071; —3), where
s and —s are a pair of antipodal points in S°. Denote by K; the quotient space of
{1y x §* by this free Zz-action. It is clear that M x P™ may be identified with the
subspace of K consisting of points {(z, x,0y(s); s}.

We shall show that the space pair (Wy, M x P*) in Salomonsen's program may be
replaced by (K;, M x P™) defined above.

The Zz-equivariant map ¢ ®x ¢d : {1y x §% — M « M x 5% induces a map § :
K; — EP(M), and the Zz-equivariant map rx id: {1y % §% — I % 8% induces a map
f: Ky = U x P™, where r : 1y — U is defined by r(z,y,0) = o(0). A homotopy
H:K;xI— EP(U) from EP(f) o4 to dy o f may be defined by ((z,y,0;5),t) —
[o(t—1),o(1 - t], 5|, where EP(f) and dy are as defined in Diagram (2.1) of §2. A map
£: Ky — Wy is thus determined uniquely by the universal property of the pull-back
diagram with pjof =g and prof=7:

g Wy « U x P
P dy (3.1)
EP(M) EPU) - EP(U)

The restriction of £ on M x P™ is the identity map via the respective identifications
of M x P in Ky and Wy.

Proposition 3.1. The map £ embeds the space pair (K, M x P™) into (W, M x
P™) as a deformation retract.

Proof. Define a Zj-action on the path space (S°)' via an involution T(a)(t) =
—a(t). We consider Ky as a subspace of Ky = (f1; x (§°)"}/Z, by identifying each
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point in §° with a constant path in (§°°)', so that §% is a Z;-equivariant deformation
retract of (S°°)!. It follows that K is a deformation retract of ‘Ii?f.

We shall show that £ can be extended to a homeomorphism L : K; — W and thus
complete the proof.

For {z,y,0;0) € Ky, define L: Ky — W; by

L({z,y,0;0)) = ([z,9,2(0)], (¢(0), 2(1)), #),

where a(1) € P® is the image of @(1) € 5%, and p : [ — EP(U) is a path given by
p(t) = [o(t — 1),0(1 — t),a(t)]. It is straightforward to verify that L is a well-defined
map and its restriction on K is the map £.

To show that L is a homeomorphism, we define its inverse as follows.

For a point ([z,y,s],(z2,8'),p) € Wy, take a lifting 7: | — U x I x § of the
path p : I — EP(U) so that 5(0) = (f(z), f(y),8). Denote by pr; the projection of
U x Il x P* on its i-th factor, 1 = 1,2,3. Since prjo P (1) = z = pra o 5(1) by the
definition of the path p, we may define a path ¢ : J — IJ by

a{t} — {prloﬁ{l +'t}: "litiﬂ:
~lpraep(l -t), 0<t=<1.

The correspondence L' : ([z,v,3],(z, &),p) — {(2,y,0;prs o §) is a well-defined map
Wy — f_f and, clearly, 13 the inverse of L.

Recall the “coefficient” bundle = ¢, — ¢_ in §2, and define a virtual bundle
¢=cy —¢_ over Ky by ¢ = ¢ EP(r M) and ¢_ = F*(1UDA) ® " *. It is clear that
£y = ¢. This, together with Proposition 3.1, implies

Proposition 3.2. The homotopy equivalence £: (K¢ M x P®) — (W, M x P™)
induces an 1somorphism £, : Oy (K, M x P®;¢) — Qu(Wy, M x P%; ) for eachn > 0.

For a generic map f : M™ — U™k £-1(g(f)) is clearly the embedding obstruction
in 2, _x( Ky, M x P=;¢). More precisely, the bordism class £, *(¢(f)) may be deseribed
as follows.

Observe that the correspondence z — (z, T(z),0(z); ©'(z)) defines a Zy-equivariant
map A' — [y x §%, where ' : A" — 5 is as defined in Diagram (2.2) in §2.
There is an induced map f(A") —+ K; which clearly extends to §'f : A — K. It is
straightforward to verify that, by definitions, § f = £08'f and, hence, there corresponds
a commutative diagram of vector bundles

0 — A — (8f)'¢ — @ENEEUBN) — 0
i o
il |= =
0 — A& — (§f)*% — (E)(p3(rU®A)) — 0,
which defines a stable bundle isomorphism in the sense of [3]

Ff:rA@(8'f)é. — " e (8f) s,

The bordism class '(f) of the triple (A, 5'f,57f) satisfies £.(¢'(f)) = e(f). We have
proved
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Theorem 3.3. Let [ : M™ — U™** be o generic map with M compact without
boundary. Suppose that n < 2k — 3. Then [ is homotopic to an embedding if and only
if '(f) = 0.

Let UM be the space of maps M — U and let E denote the subspace consisting
of all embeddings. Let [M < Uly denote the set of isotopy classes of embeddings
with a specific homotopy to f, ie. = (UM E, f). If f is homotopic to an embedding,
the set of isotopy classes of embeddings homotopic to f is the orbit set of [M < U]y
under the obviously-defined action of the group :n{UM,, f)(see [1] and [6]). Combining
Proposition 3.2 and the results in §6 of [1], we have

Theoremn 3.4. Let [ : M™ — U™E be ¢ map with M compact without boundary.
Suppose that n < 2k — 4. If f is homotopic to an embedding, then there s o bijection

0:Qn-pi1(Kyp, M x P®;¢) — [M C Uy
which induces a bijection
0 n-pe1(Kp, M x PP ¢)/n — M c Uly/r,

where # = m (UM, f).
4. Comparison with Dax’s Approach

Let (X, A) be a pair of spaces and let £¥ be an N-dimensional vector bundle over
X with N > 14 2. Dax’s version of a normal bordism group is an Abelian group
(X, A; £V consisting of bordism classes of triples (A, b, B), where A’ is a compact
submanifold of the disc DV** with A = AnNSN* -1 b (A, 8A) — (X, A) is a map and
B :u™(A) — £V is a vector bundle isomorphism over the map b of the normal bundle
of (A,8A) in (DNt §N11=1) We refer to Chap. I of 2| for the detailed definition and
properties of (;{X, A; £¥). Here we use the notation: {); for Dax's version to distinguish
it from Salomonsen's (3;(X, A; ¢4+ — ¢-). The following proposition may be obtained
by comparing the two definitions.

Proposition 4.1. Suppose that there 13 a k'-dimensional vector bundle ¢, over X
with k' > ¢ + 1 such that ¢, B ¢, = eFtE  Then TL(X, A; ¢ @ ¢',) is isomorphic to
ni{X1Ai¢+ - ¢—]

In Chap. IV of |2], the embedding problem is converted into the study of the groups
ﬁi[C;,&W;E;] for 1 > 0. We describe the construction of the space pair (Cy, dW ) briefly
as follows.

Let f: M™ — U"** be a map with M compact without boundary. Denote by T,
for £ > 0, the quotient space of S(rM) x [~£,¢| by the equivalence relation (s, u) ~
(—s, —u). The manifold W is defined as the adjunction space T, |J,(M x M — Apy)
for a sufficiently small € > 0, where e : T, — Top — M x M — Apy is an embedding given
by [s,u| — (exp(—-us),exp(us)). There is an obvious invelution T on W such that
T(z,y) = (y,z) when restricted on M x M x —Aps. The induced quotient manifold
W2" is compact with W identified with the fixed point subspace of T. Note that
T induces a Zo-action ':Fl on W = R with fll::,u] = {f{z},—u) sc that there 13 a
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unique line bundle w over W and a vector bundle isomorphism r; : ! — w over

the quotient map r : W - w, Eince < — ri(z,1) defines an embedding of W into
S(w), there is a map S(w) =+ W — M x M. Denote by 01(M;; M) the space of
maps ¢ : J — My of J = [-1,1] to the mapping cylinder with ¢({-1,1}) € M. The
natural projection QI(My;; M) — M x M given by ¢ — (¢(—1),¢(1)) is a fibration.
Finally, we consider the fibre product S(w) xarenr ((My; M) over M x M on which
there is a free involution (z,c) — (—z,¢”!), where ¢! denotes the inverse path of
¢. The space pair (Cy,dW) is then defined as the quotient space obtained from the
pair (S(w) X arxar (Mg M), 8(w|0W) % prepr M), in which M is identified with the
subspace of constant paths.

The following proposition reveals that the different approaches tn the embedding
problems in the metastable range are essentially the same.

Proposition 4.2. There exists an (n—1)-equivalence p : (C;, W) — (K, M x P*)
which induces an isomorphism p, : 0;(Cy,0W;0;) — (K, M x P, ¢, — ¢.) for
t=<n— L

Proof. We first observe that S(w) may be identified with the adjunction space
(S(rM) x [0,e]) Ua (M x M — Apy) Tor a sufficiently small € > 0, where d : S(rM) x
(0,e] —+ M x M — Ajpg is an embedding given by (s,u) — (exp(—wus),exp(us)). The
free involution on S(w) determines the double covering S(w) — W with classifying
map ¢ : W — P*. We also observe that the map o : Qi(My; M) -+ 1y defined by
a(e) = (e(=1),e(1),p, oc) is a Zs-equivariant fibre homotopy equivalence over M x M,
where p, : My — U is the projection. The diagrams of maps

(S(w) X pxar U My; M), S(rM)) F (S(w) %arxns Oy, §(r M)

L pny ) | pry (4.1)
(§(w), S(rM)) Sk (S{w), S(rM))
(S(w) Karsas O, S(1M)) pally (5% % 1y, §% x M)
Lpn lidxq (4.2)
(5(w),S(rM)) PXT (S x M x M, S x Ap)
and
(S(w) % prwnr UMp; M), S(rM)) 25 (5% x nr,sm M)
l (4.3)
(CsdM) £ {H;,P"‘* x M)

are commutative, where S(rM) = S(w|0W) % prunr M, and ¢ : S(w) — 5% iz the
Fq-pquivariant map over the classifying map @ : W — P,

We shall show that ¢ » « in (4.3) is an (n — 1)-equivalence so that u is an (n - 1)-
equivalence which we are searching for,

Diagram (4.2) is a pull-back diagram of fibration pair 1d x g. Hence, exploiting the
homotopy sequences and the Five Lemma, we know that ¢ x 1d is an (n - 1)-equivalence
if and only if ¢ x 7 15. Since ¢d x & is a homotopy equivalence, it remains to prove that
@ % mis an (n ~ 1) -equivalence.
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Observe that the composition g : M x M — Ap — S(w) 5 5= x M x M =
M x M is an inclusion. Since every map of a sphere of dimension < n -1 to a In-
manifold is homotopic to an embedding, it follows from the transversality theorem
that ¢ must be an (n — 1)-equivalence. The inclusion M x M — Ay — S(w) is a
homatapy equivalence because S(w) — (M x M — Ayuy) is just the boundary of S(w).
This implies that g xx : §(w) — §™ x M x M is an (n— 1)-equivalence. The restriction
@xn: S(rM) — 5% x M is also an (n — 1)-equivalence, for prye(pxx): S(rM) = M
is a fibration with fibre S™~'.

Take M as the n-dimensional normal bundle of M. Then EP(rM)@ EP(vM) is
a trivial vector bundle. It follows from Proposition 4.1 that, to complete the proof, we
need only to verify u* (P (rURA) @ e * & @ EP(vM)) = ;.

Recall from p.339 of [2] that 8; = P*(w@rlU & (¢(W)¥-2 x U)), where P =
Py« Pg:Cp— Wxl and N may be taken as 4n which is large enough for our purpose.
(Here P, is the map p defined in (2], which is the quotient of the Z;-equivariant map
prz : S(w) % pruas I My; M) — 5(w), and Py is the map g defined in (2] which may be
identified with pryofou, where pry 1 U x P® - Uandf: Ky =+ U x P* isas in
(3.1) of §3). It follows that P*(w®rU) = Plw @ P3rlU = Pl A@pu* oF oprirll =
pror oprid @ u' e F oprirl = p*(F*(rUB))), where @ is the classifying map of
the line bundle w. Denote by W' the submanifold of W which is the quotient of
S(w)—S(rM) x[0,€). The restriction ¥W |+ may be identified with (M x v M) /Za|w
since S(w) — S(rM) x [0,£) © M x M — Aps so that W' © (M x M = Apg)/Za. There
is a deformation retraction ' : W — W' such that rj"“yﬂ-f x UM)/Za|we) = vW |,
We observe that in

c, 2 w ow
ldop B LA . L1d (4.4)
EP(M) % (MxM)/Z, S w o,

the square is commutative while the triangle on the right is homotopy commutative.
Note that prF}(vM x vM)/Z,) = EP(vM), where pry : S x M x M — M x M is
the projection. Therefore, P*((¢+W)x U) = /W = B} cr"{vw we) = Py Gr"{[vM »
vM)/Zalwi) = Pfor® o ((vM x vM)/E3) = p* o § o pral(vM x vM)/&;) =
uog EP(vM).

The proof is completed.

§5. Computations of [M™ C P***| and |[M" C L(p;q1," **,qnm))

To demonstrate by examples the facilitation to computation resulting from the
simpler construction, we first discuss the relation between the fundamental groups of
the manifolds M and U and the set of path components of the space K.

The group m; (M) x x, (M) operates an 7, (') as a set in the way ¢ — f,(a™1)-c-f,(b),
where (a,b) € (M) x 71(M) and ¢ € r;(U). We denote by A the set of orbits of this
operation and define an equivalence relation on A by {(c) ~ (c7!).
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Proposition 5.1. There i3 a one-one correspondence between the set of equivalence
classes on A and the set of path components of the space K.

Proof. Take a base point zp in M. We observe that each path component of {1
contains a point of the form (zg, zp, ), where o isaloop in U at f(zg). Suppose that the
points (zo,20,0) and (2, 7o, 0') lie in the same component. There exist loops r; and 7-4
in M at zy and a homotopy F : J x I — U from o to o' such that F(-1,t) = for_,(t)
and F(1,t) = fory(t). This imples that f.([r-1]7")[e]- f.([n1]) = [¢'].

Conversely, if f.(a™")- o] f.(b) = [¢'] for some a,b € n,(M), then (zo,70,0) and
(%o, %0, 0') lie in the same component, Therefore, the set A corresponds one-one to the
set of path components of (1.

Consider the double covering [1y x S — K;. The points ((zo,zp,0);s) and
(%0, 70,07 1); —5) lie in the same fibre. This implies that {|o]} and ([#71]) corresponds
to the same path component of K.

Exarnple 5.2 (Embedding in real projective space). Let [ : M"™ — P™E be a null
homotopic map. Then

Kpo~ (M x M x lo(P™*) x §%)/Zs [[(M x M x Q,(P™**) x §%)/Za,

where {1(P™**) and 113 (P™**) are the two path components of the loop space [1( P™*¥).

Example 5.3 (Embedding in lens space). Let §*™*!'={(z2,2,,---,2,) € C™"*
| 1% = 1} and let gy, --,qm be integers relatively prime to p. The homeomor-
phism h : §2™+1 — §¥m+1 with period p by hlzo, 21, , 2m ) =[P 29, 20/ 5y oo
e*’""i‘m-’l’zm} determines a free Z,-action on S*™+1. the orbit space in the lens space
L(piqr, -~y qm). Let f: M™ — L(piq1,---,qm) be a null homotopic map. Denote by
{};L the path component of QL(p;q1,---,qm) consisting of the loops which represent
1 € &y, Then,

Q1 11 (M x M x ;L) if pis odd,
1£5< 4 (p-1)
QUM x M x QuppLox S%) /T[] I (M x M xQ;L) if piseven,

1<5<E

HIE

where @ = (M = M x QgL x §%)/Z,.

Proof of Theorem 1.1 and Theorem 1.2. First of all we observe that there exists
an embedding of M™ in R™"* by Theorem 4.1 of [8] and, hence, M" embeds in P™*¥,
Similarly, we know that M" embeds in L(p;q1, -, 4m).

Since M is simply connected, any map f : M™ — P*" % (or f : M™ — L(piq1, 1 qm)
is null homotopic. We need only to compute the (n = k + 1)-th normal bordism group
(resp. (2n—2m)-th normal bordism group) of the space pair (K¢, M x P*) in Example
5.2 (resp, Example 5.3) for a constant map.

It is clear that the inclusions

M x P® — (M x M x Qp(P"**) x §%)/Z,

and

D (P™*) /Ty — (M x M x ,(P™**) x §)/ T,
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are (n — k + 2)-equivalences. It follows that
Qi1 ((M x M x Q(P"7¥) x §%°)/Z3, M x P®;¢) = 0

and
i1 Dnoke 1 (U (P™HE) /Z2;618) = Qac ki (M x M x Q4(P™¥) x §%)/Zy; 9)

i3 an isomorphism.

We observe that 2;(P"t*) may be identified with P(S"™*; 85, —sp), the space of
paths in §™"¥ starting at sy and ending at the antipodal point —s5. Thus the equator
§n-k+1 g embedded in 01;(P™**) as a Zz-invariant subspace if one identifies each point
s in S"*E-1 with the path naturally defined along the great circle {s}';,.;?—‘.sn}. In this
way we obtain an (n — k + 2)-equivalence 15 : P"** 1 — (PR /2,

The composition o1, oy : PPl — EP(M) is the map induced from a Z;-
equivariant map S"**7! — M x M x §% by s — (zq,20,i(s)). Therefore,

(Foiroia) EP(rM) = (S"**" 1 « R™ x R")/Z,
= (Sl x R x RY)/Zz@--- @ (S™5 1 x R x RY)/Z,
= ('@ Ansk—1) BB (! B Ansi1) Ze" Bk,

where the action of Z; on R! x R! is defined by

[{31-"'r:n}:[y]:"'j!:‘n” H{[ylz"':yn]{{zh“'-zn}}

or, equivalently, by

{(Ihyljn{zﬂryﬂ” — [{ylril}f T r[ym't’l”'

The composition foiyofy : PrHE1 — PRtk y P may be identified with the product
map of the natural inclusions P"E-1 o, pntk 5pd pnté-1 ., p® Therefore,

(For l::u}]'lfrF""“‘H l;h A) = {TF'HJ'_I B Ansk-1)® Ansk_1.

It follows that (i} 0432)"($+ — ¢-) = (n + 1)Ansk-1 — "l in KO (P"*¥-1) and hence,
by Theorem 3.4,

[M™ c P"*¥) = Qpog 1t (P75 (n 4 DAngr-r — ™).

This bordism group may be identified with mouinsn-1)_p(Vopati-11,p_1 nye) by Propo-
sition 4.1 and a usual Thom-Pontrjagin procedure shown in Propesition 1.7.3. of [2].
The proof for lens spaces is similar. We need only to point out the following facts
(1) Qzn-z2m(M x M x Q;L;¢) = x5 _,.. by the corollary to Proposition 7.1 of 2]
because M x M x (1;L is (2n — 2m + 1)-connected.
(2) If p is even, q1,- - ,qm are all odd numbers. The composition of homeomor-
phisms h3P . GIm+l _, gIm+l g just the antipodal map. Therefore, ﬂ%pL may be

identified with P{S*™*!, sy, —s0) and hence we have a (Zn — 2m + 1)-equivalence
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iy = PI™ H;FL,«’Zg, The composition Foiyoiy : PP™ — L x P™ is the product
map of the standard immersion g : P*™ — L(p;q1,-++,gm) and the natural inclusion
P — P> where g is defined by [ap, 21, , 2] ~+ (a0, 21, , 2m) for {ao, 21, -+, 2m)
in 8 with ap the real part of z5. The normal bundle ! of the immersion g is iso-

morphic to Azm over P¥™ because the lens space 13 an orientable manifold and hence
wi(v') # 0. Thus,

(Foiyoiz) (rL & ) = (rP™ @ 1) @ Aam = (rP™™ & Azm) ® Aam.

The proof of the theorems will be completed after we prove the following lemmas.

Lemma 5.4. Let M be a compaet manifold without boundary.

(i) Ifdim(M) < 2m, the action of xy (LM, f) on ) (LM, E, f) = [M € L|; is trivial
for any map f: M — L(p;q1,- -+ ,qm).

(i) If dim{M) < 2m — 1,m((P*™)M, flacts on [M C P*™; trivially for any null
homotopic map f : M — P'™,

Proof. 1t follows from Lemma 1 of [9] that m (LM, f) = #,(L) = Z,. There is
a C*-flow & on L(p;q1, **,q¢m) such that, for any fixed z in L, the closed orbit
®,(z),t € [0,1], represents the generator of my (LM, f). For j = 0,1,--+,p — 1, define
!: : M x [U,l] — L bj" fij{m} = QJE{I{I}} Then IIEJT = f = .ftJ: and .flo:f!ir"'r f._l
represent all the elements of x;(LM, f).

The action of ﬁl[LM,_f} may be considered as transformations along flow lines,
More precisely, for a class & € m(IM, E, f) represented by a homotopy F: M x I — L

with Fy = f and F; an embedding, j - o, for any j € Z,, has a representative Fi .
MxI—1L :

— fj:{a:)y 0=t
Fi(z) = {Flzt—lfﬁ}, 3 <t

and there is a homotopy F = F/ by
K

Prjue(f(2)),  u =2,
Kz, t,u) = {@:u{Fgg_u{I}}u u < 2t

This implies j - @ = a and hence m; (LM, f) acts on [M C L|; trivially.

Suppose that dim(M) < 2m — 1 and f : M — P® is a constant map. The
homotopy F : M x I — P representing a class in [M C P?™|; is not onto because it
is also null homotopic. Then there is C®— flow ®; on P*™) {2}, where * is a point in
P and F(M x I} € P*™ )\ {+}, such that the closed orbit ®(f(z)), t € [0,1], represents
the generator of (w1 (P*™)M | f) = Z,. The rest of the proof is similar to that for lens
spaces.

Remark 5.5. If we replace P"** in Theorem 1.1 by ! x R" ¥ for [ > n, the’
same argument shows that

|M"™ C P x R"_Hk] = Mypii-1)_ b (Vawti—11 _p - L)
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For example,

(1]
(2]

3]
[4]

[5]

[8]
(7]

(8]
[9]

[S*c PP xR¥ =0 and [S®c P" x R*|=1Z,.
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