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Preface

The origin of this book is a set of notes for a course that I taught, years
ago, in the Brazilian Mathematical Colloquium and, several times after
that, to beginning graduate students at IMPA, Rio de Janeiro. Later on,
the notes were revised and appeared as a book in the collection “Projeto
Euclides,” published by IMPA. Since then the book has been used as an
introduction to algebraic topology in many Brazilian universities and in
other Latin American countries.

The subjects discussed here in, fundamental group and covering spaces,
are well suited as an introduction to algebraic topology for their elemen-
tary character, for exhibiting in a clear way the use of algebraic invariants
in topological problems and also because of the immediate applications to
other areas of mathematics such as real analysis, complex variables, differ-
ential geometry and so on.

This is an introductory book, with no claims of becoming a reference
work. The appeals to facts of analysis and algebra that are made in the text
are very few and their aim is to show connections with other disciplines. If
the reader so wishes, these appeals may be skipped without harm to the
understanding of the text.

It is a pleasure to extend my warmest thanks to Jonas Gomes, a very
dear friend and colleague, who suggested the translation of the book into
English and, to my great surprise and contentment, undertook the job
himself with his habitual competence, recommending a few changes and
additions, which I made with satisfaction.

Rio de Janeiro, January 2003
Elon Lages Lima
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Fundamental Groups

“Quant & moi, toutes les voies diverses ou je m’étais engagé succes-
sivement me conduisaient a 'Analysis Situs. Javais besoin des donnés
de cette Science pour poursuivre mes études sur les courbes définies par
les équations différentielles et pour les étendre aux équations différentielles
d’ordre superieur et, en particulier, d celles du probléme de trois corps.
Jlen avais besoin pour U'étude des fonetions non uniformes de deuz vari-
ables. J'en avais besoin pour U'étude des périodes des intégrales mulliples
et pour application de cette élude au developpement de la fonction per-
turbatrice. Enfin, j'entrevoyais dans l'"Analysis Situs un moyen d’aborder
un probléme important de la théorie des groupes, la recherche des groupes
discrets ou des groupes finis contenus dans un groupe continu donné.”

H. Poincaré (Acta Mathematica, vol. 38 (1921) pp. 101.)

Henri Poincaré (1854-1912), the extraordinary French mathematician, was
considered “the last universalist,” that is, a contributor to the progress of
all important areas of mathematics. We owe to him the notion of funda-
mental groups and the creation of homology theory, which are fundamental
concepts of topology.

The above quotation, from his scientific autobiography (“Notice sur les
travaux scientifiques de Henri Poincaré” ), was published for the first time
nine years after his death, in a special issue of the journal “Acta Mathe-
matica,” dedicated to him.







Chapter 1
Homotopy

Note: throughout this book, the symbol I will denote the compact interval
[0, 1] of real numbers.

In this chapter, we introduce the basic notions about homotopy that will
be used throughout the book. Homotopy is, indeed, the most important
idea of algebraic topology and the fundamental group—which we study in
this book—is probably the simplest algebraic invariant associated to this
idea. The fundamental group will be presented in the next chapter. We
cover in this chapter general results related with homotopy, illustrating
these concepts with applications and elementary examples. In particular,
we show the connection between homotopy and the problem of extending
a continuous map defined on a closed subset of a topological space.

1.1  Homotopic Maps

Let XY be two topological spaces. Two continuous maps f,g: X — YV
are said to be homotopic when there exists a continuous map

H: XxI—-Y

such that H(z,0) = f(z) and H(z,1) = g(x) for all z € X. The map H
is called a homotopy between f and g. We use the notation H: f ~ ¢, or
simply f ~ g.

For each t € I, the homotopy H: f ~ g defines the continuous map
Hy: X =Y, with Hy(x) = H(z,t). This means that defining a homotopy
H turns out to be equivalent to prescribing a continuous one-parameter
family (Hy)ier of maps from X to Y. We have Hy = f and H; = g;
therefore, the family (H});cs starts with f and ends at g.
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Intuitively, the parameter ¢ can be interpreted as being the time. The
homotopy is considered a continuous deformation process of the map f.
This deformation occurs during the unit of time. In the instant ¢ = 0, we
have f, and for ¢t = 1, we get g. In the intermediate times, 0 < ¢ < 1, the
maps H; provide the intermediate stages of the deformation.

Example 1.1. Two constant maps f,¢g: X — Y, f(z) = p,g(z) = q, are
homotopic if, and only if, p and g belong to the same pathwise connected
component of the space Y. Indeed, if there exists a path a: I — Y with
a(0) = p and a(l) = ¢, we define a homotopy H: X x I — Y between
f and g by H(z,t) = a(t), for all (z,t) € X x I. Conversely, if H is a
homotopy between the constant maps f(z) = p and g(z) = ¢, by fixing
arbitrarily xp € X, we define a path a: I — Y connecting p to g by setting
a(t) = H(Z‘(},ﬁ). <]

Example 1.2. Let Y C E, where E is a normed vector space. Given the
continuous maps f,g: X — Y, suppose that for all x € X, the line segment
[f(z),g(x)] is contained in Y. Then f ~ g. Indeed, we just have to define
H(z,t) = (1—t)f(z)+tg(x) to obtain a homotopy H: X x I — Y between
f and g. This is called a linear homotopy. For each = € X fixed and ¢
varying from 0 to 1, the point H(z,t) moves (with uniform velocity) on the
line segment connecting f(z) to g(z). As particular cases, we obtain the
statements A and B below.

A, Any two continuous maps f,g: X — E which take values on a normed
vector space E are homotopic.

In particular, every continuous map f: X — FE is homotopic to the
constant map 0, by the homotopy H(z,t) = (1 —t)f(x).

B. (Poincaré-Bohl) If f,g: X — E — {0} are two maps satisfying
[f(x) = g(z)| < |f(z)| for allz € X, then f ~g.

Indeed, if 0 belonged to the segment [f(z), g(z)] for some z € X, we
would have

[f(®) = g(@)| = [f(x)] + |g(z)] = [f ()]

Therefore, [f(z),g(x)] € E — {0} for all © € X; hence, f is linearly homo-
topic to g. <

From Chapter 3 on, we will be able to exhibit interesting examples of
non homotopic maps. At present, we will be contented with this remark:
If f,g: X — Y are continuous maps whose images f(X) and g(X) are
contained in distinct connected components of Y, then f and g are not
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Figure 1.1. When |f(z) — g(z)| < |f(z)|, the line segment [f(z), g(x)] does not
contain the origin 0.

homotopic. This example is not very interesting because, in the theory of
homotopy, it is usual to consider mostly pathwise connected topological
spaces, as we will see in the chapters to follow.

The range Y plays an important role in the homotopies. It is the space
where the deformation takes place. By increasing Y, we can allow new
homotopies. If Y € Y’ it may occur that two continuous maps f,g: X —
Y are not homotopic but, considered as maps from X to V', they are. For
example, any two maps f,g: X — E, taking values in a normed vector
space, are always homotopic but the same does not occur for all f, g: X —
E — {0}. We just have to take f,g: R — R — {0} constant maps, with
f(z) = 1 and g(x) = —1 for all z. Since 1 and —1 belong to distinct
connect components of B — {0}, it follows that f and g are not homotopic.

Proposition 1.1. Censider two topological spaces X and Y. The homotopy
relation [ =~ g is an equivalence relation in the set of continuous maps from
X toY.

Proof. For every continuous map f: X — ¥, the map H: X xI = Y,
defined by H(z,t) = f(z), is a homotopy between f and f, hence ~ is
reflexive. Now consider the homotopy H: X x I — Y between f and g.
By defining K': X x I — Y by K(z,t) = H(z,1 — 1), it is easy to verify
that K is a homotopy between g and f. Hence, f ~ g = g ~ f; that is,
the homotopy relation is symmetric. Finally, if H: f ~ g and K: g ~ h,
then we define L: X x [ — Y by L(z,t) = H(x,2t) if 0 < £ < 1/2 and
Lz, t) = K(z,2t—1)if 1/2 <t < 1. The map L is a homotopy between f
and h. Hence, f ~ g,g ~ h = f ~ h; that is, the relation ~ is transitive.

0
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The equivalence classes of the homotopy relation are called homotopy
classes. The homotopy class of a continuous map f: X — Y is represented
by the symbol [f]. The set of the homotopy classes of the continuous maps
from X to Y is represented by the symbol [X,Y].

Remark. Consider the topological space C(X;Y'), of all continuous maps
from X to Y, with the compact-open topology. (When Y is metrizable,
this is the topology of uniform convergence on the compact subsets of X.)
To each map H: X x I — Y there corresponds a path in C(X;Y); that
is, a map H: I — C(X;Y) defined by H(t) = Hy, Hy(z) = H(t, ). When
X is Hausdorff locally compact or metrizable then H is continuous if, and
only if, H is. Hence, for X metrizable, or Hausdorff locally compact, there
exists a natural bijection between the homotopies H: X x I —+ Y and the
paths H: I — C(X;Y). If H is a homotopy between f and g then the path
H starts in f = Hp and ends in ¢ = H,. It follows that two continuous
maps f,g: X — Y, with X locally compact Hausdorff or metrizable, are
homotopic if, and only if, f and g belong to the same pathwise connected
component of the space C(X;Y). Therefore, for such spaces X, the homo-
topy classes of maps f: X — Y are the pathwise connected components
of the space C(X,Y). For additional information about the compact-open
topology, see Bredon (1993), page 437.

Proposition 1.2. Let f,f': X =Y and g.¢': Y — Z be continuous maps. If
f=fandg~¢g, thengo f~g of. In other words: map composition
preserves homotopies.

Proof. Let H: X x I — Y be a homotopy between f and f’, and K: Y x
I — Z a homotopy between g and g'. We define a homotopy L: X xI = Z,
between go f and ¢’ o f', by L(zx,t) = K(H(z,t),t). ]

By Proposition 1.2, we can define the operation of composition between
homotopy classes. Given f: X — Y and g: Y — Z, we define [g] o [f] =
[g o f]. The class [g e f] does not depend on the representatives g, f of the
classes [g] and [f], respectively.

1.1.1 Vector Fields on Spheres

In this section, we will use the concept of homotopy to investigate the
existence of non-null tangent vector fields on the unit sphere S™ ¢ R™ 1,

Proposition 1.3. Given two continuous maps f,g: X — S”, if f(z) # —g(z)
for all x € X (that is, if f(z) and g(x) are never antipodal points), then

f =g
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Figure 1.2.

Proof. Indeed, under these conditions we have (1 — ) f(z) + tg(x) # 0 for
all t € I and all x € X. Hence, we obtain a homotopy H: X x [ — S™,
between f and g, by taking the radial projection

When ¢ varies between 0 and 1, H(x,t) describes the shortest arc of the
great circle that connects f(z) to g(z) (see Figure 1.2). D

The condition that f(z) and g(z) are never antipodal can be expressed
by |f(z) — g(z)] <2 for all z € X.

As particular cases of the proposition, we obtain:

A If f: 8" — 5™ has no fixed points (that is, f(z) # z for all z), then
f is homotopic to the antipodal map a: S™ — 5™, a(z) = —=z.

B. If f: §™ — S™ satisfies f(z) # —x for all z € S™, then f is homotopic
to the identity map of S™.

Proposition 1.4. Ifn is odd, then the antipodal map a: §™ — S™, a(z) = —z
is homotopic to the identity id: S™ — S™.

Proof. Let n = 2k — 1. Then S™ C R** and we may consider each point

in S™ as a list 2 = (z1,...,2x) of complex numbers z; = z; + i - y; such
that
2 2
lz1]" 4+ -+ |z|” = 1.
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For each complex number v € 8!, of modulus 1, and each vector z =
(z1,...,2k) € S" wedefine u-z€ S" by u-z = (u-21,...,u-z). With
this notation, H: 8" x I — S™, defined by

H(z,t) =e™. 2

is a homotopy between the antipodal map a(z) = —z and the identity map
of §™. |

The converse of Proposition 1.4 is true, as stated next

Proposition 1.5. If n is even, the antipodal map o: S™ — S”, a(x) = —x is
not homotopic to the identity map of S™.

Proof. We will only sketch the proof. It does not use any of the previous
results about homotopy, but is based on some analysis concepts.
When n = 2k is even, we have $™ C E?**! and the antipodal map

a(@y, . waprr) = (—21, 0 —Takg)

has determinant equal to —1, so it reverses orientation (the concept of
orientation will be studied in detail in Chapter 8 of this book). If we had
a homotopy a ~ Id: S™ — S™, then, considering the volume element dV'
in S™, we would have

/ a*dV = f (Id)"dV = [ dV = Volume of S™.
gn gn Jgn

Since, however, « is orientation reversing, we have
/ a*dV = —/ dV = —(Volume of S™).
k£ T S\'\

For more details, see Bredon (1993), page 265. O

Proposition 1.6. If there exists a non-null continuous vector field on S™,
then the antipodal map o« S™ — S™ is homotopic to the identity.

Proof. Given v: S™ — R™"! continuous, tangent, and non-null at every
point, we define f: 5™ — 5™ by the radial projection

_ ozt v(z)
T o)

f(=z)
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Figure 1.3.

Then f is continuous and f(z) # x for all . Hence, f ~ «. On the other
hand, the map H: 5™ x I — 5", defined by

z+t-v(z)

Hw, ) = |z +t-v(z)]

.

is a homotopy H between the identity map of S™ and f. By transitivity it
follows that a ~ identity. D

When n = 2k — 1 is odd, there exists a non-null continuous tangent
vector field v: S™ — S™, defined by

V(1 s Ty Y1, ey k) = (—Y1s e, =Yk, X1, oo, Tk )

In this way, we reobtain the result in Proposition 1.4: n odd = o =~
id: S™ — S™.

The results proven in Propositions 1.3, 1.4, and 1.6 are indicated by =
on the diagram in Figure 1.4. The implication on the diagram indicated

n is odd
There exists a non-null The antipodal map
continuous vector field p— o: 8" — §"
tangent to the sphere §” is homotopic to the identity

Figure 1.4. Vector fields and homotopies on the sphere.
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by —+ is the statement of Proposition 1.5 (of which we have just sketched
the proof here). If follows that all three statements on the diagram are
equivalent, and we have the following proposition.

Proposition 1.7. There exists a non-null continuous vector field tangent to
the unit sphere S™ if, and only if, n is odd.

1.2 Homotopy Type

A continuous map f: X — Y is called a homotopy equivalence when there
exists a continuous map g: ¥ — X such that go f ~idy and fog ~idy.
‘When this happens, we say that g is a homotepy inverse of f and that the
topological spaces X and Y have the same homotopy type. In this case, we
will write X =Y or f: X =Y.

It is easy to see that the homotopy type defines an equivalence relation:
X=X X=Y=sY=Xandaso X=Y,Y=7=X=~Z2.

Example 1.3. The unit sphere S™ has the same homotopy type of R™ " —{0}.
In fact, considering the inclusion map i: ™ — R™™' — {0}, i(z) = z, and
the radial projection r: R"*1 —{0} — S™, r(y) = y/|y|, we have roi = idgx.
Moreover, i o r: R™"! — {0} — R — {0} is homotopic to the identity
map of R"™! — {0} using the linear homotopy, because every point y # 0
in R"*! can be connected to y/|y| by a line segment that does not contain
the origin. <

The same argument used in example above shows that if B™"! is the
closed ball of center 0 and radius 1 in R™** then B! — {0} has the same
homotopy type of the sphere 5™.

If h: X — Y is a homeomorphism, it is evident that X and ¥ have the
same homotopy type. The previous example shows that the converse is far
from being true. In fact, homotopy type is a weaker topological invariant
than homeomorphism. Intuitively, some points may get collapsed during
the homotopy deformation that establishes the homotopy equivalence.

Example 1.4. Let T = S x S! be the bidimensional torus and p € T an
arbitrary point. T — {p} has the same homotopy type of the union of two
circles with a point in common. Indeed, the torus T is the image of a square
() by a continuous map ¢: () — T that transforms the boundary 9Q of the
square in the union ¥ = S U S’ of two circles with a point in common, and
it is a homeomorphism of the interior of @ onto the complement 7' — Y.
We may assume that the point p € T is the image by ¢ of the center py
of the square. Since the square is homeomorphic to a closed unit disk, it
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2Q .

Figure 1.5.

follows that @ — {pp} has the same homotopy type of the boundary 9Q.
The deformation of @ — {pg} into dQ takes place along the rays that start
at pg. During the homotopy, the points of 8Q do not move. By composing
this homotopy with y, we obtain a deformation of T'— {p} into Y, which
givesus T — {p} =Y. <

Example 1.5. If X = X' and Y = Y’ then [X,¥] and [X’, Y] possess the
same cardinal number. More precisely, if p: X’ = X and ¢: Y = Y’, then
[f] = [¥ o f o] is a bijection between [X,Y] and [X',Y]. <

1.3 Contractible Spaces

A topological space X is called contractible when it has the same homotopy
type of a point.

Proposition 1.8. X is confractible if, and only if, the identity map id: X —
X is homotopic to a constant map X — X.

Proof. If f: X — {p} is a homotopy equivalence and g: {p} — X is a
homotopy inverse of f then go f ~idy and g o f is a constant map. Con-
versely, if idy ~ constant, then idy and the constant map are homotopy
equivalences, one being inverse of the other. O

Corollary 1.1. A contractible space X s pathwise connected.
Indeed, if H is a homotopy between idx and the constant map X —

{p},p € X, then, for each point = € X, the correspondence t — H(x,t)
defines a path connecting x to p.
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Proposition 1.9. If either X or Y is contractible, then every continuous map
f: X =Y is homotopic to a constant.

Proof. If X is contractible and H: X x I — X is a homotopy between idx
and a constant, then, forany f: X — Y, themap foH: XxI — Y willbea
homotopy between f and a constant. If ¥ is contractible and K: Y xI —» Y
is a homotopy between idy and a constant, then L: X x I — Y, defined
by L(z,t) = K(f(z),t), is a homotopy between f: X — Y and a constant
map. O

Corollary 1.2. If X is contractible and Y is pathwise connected then any two
continuous maps f,g: X — Y are homotopic. If Y is contractible then, for
any space X, two continwous maps f,g: X = Y are always homotopic (see
Example 1.1).

Example 1.6. (Stars) A subset X of a normed vector space F is called a star
with vertex p when, for all z € X, the line segment [p,z| is contained in
X. If X is a star with vertex pthen H: X xI — X, H(x,t) = (1—t)z+1tp
is a homotopy between idx and the constant map X — {p}. Hence, every
star is contractible. <

Example 1.7. (Convex sets) A subset X < E of a normed vector space £ is
said to be conver when, for any two points z,y € X, the line segment [z, y]
is contained in X. A convex set can be considered as a star with vertex at
any of its points, and therefore, it is contractible. In particular, a normed
vector space £ is convex and therefore contractible. This explains (see
Example 1.2) why any two continuous maps taking values on E are always
homotopic. An open ball B = B(a;r) C E is also convex. Indeed, if x,y €
Band 0 <t <1then |[1-txa+ty—a|l = |(1 —1t)(x—a)+tly—a)| <
(L—t)|z—a|+tly—al < (1 —t)r+t-r=r; hence, (1 - t)xz +ty € B.
Therefore, z,y € B = [z,y] C B. In the same way one shows that a closed
ball Bla;r] is also convex. <

Example 1.8. If the space X is contractible, then, for every Y, the Cartesian
product X x Y has the same homotopy type as Y. In order to prove this
fact, consider a homotopy H hbetween idx and the constant map X —
{ph,p € X. Then the maps f: X x ¥V — Y, f(z,y) = yand g: ¥V —
X x Y, g(y) = (p,y) are homotopy equivalences, because f o g = idy and,
moreover, K (z,y,t) = (H(z,t),y) defines a homotopy between the identity
map of X xY and the map go f: X x¥ — X x Y. In particular, if X and
Y are both contractible, the Cartesian product X x Y is also contractible.

<]
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1.4 Homotopy and Map Extension

One of the most important problems of topology is that of extending con-
tinuous mappings. Given a continuous map f: A — Y, defined on a closed
subset A of a topological space X, this problem consists of investigating
the possibility of extending continuously f to X, that is, of the existence
of a continuous map f: X — Y such that f|A = f.

The well-known Extension theorem of Tietze and Urysohn provides an
affirmative answer to this problem when X is a normal space and Y is an
interval of real numbers.

The extension problem is strongly related with the concept of homo-
topy, as we will show. In particular, we will show that the Tietze-Urysohn
Theorem is still valid if, instead of a line interval, ¥ is a contractible space
of the type ENR, to be defined later.

One of the simplest connections between homotopy and the extension
of continuous maps is given by the proposition below, which, although
elementary, is very useful.

Proposition 1.10. A continuous map f: S™ — X extends continuously to the
unit closed ball B™1 if, and only if, it is homotopic to a constant.

Proof. Consider the continuous map ¢: S® x I — B"*! defined by
p(z,t) = (1 — t)x. We have p(z,0) = z and ¢(x,1) = 0, for all x € S™.

Now suppose that f: B"*! - X is a continuous extension of f: S™ —

X. Consider the map H = fop: 5" x I =+ X
H
S — X

@

]

Bﬂ+l

The map H provides a homotopy between f and the constant map
S™ = f(0).

Conversely, suppose that H: §™ x I — X is a homotopy between f
and a constant map: H(z,0) = f(z) and H(z,1) = 2z € X. Each point
y € Bt — 10} can be uniquely written as y = (1 — t)z, with z € S", and
t €[0,1). Define f: B"t! — X by

F) = {f((l —t)) = H(z,1) i y#0
To ity=0.
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For € 8", we have f((1 — 0)z) = H(x,0) = f(z); thus, f is indeed an
extension of f.

It remains to show that f is continuous. The reader can prove that if
K, L C R™ are compact sets and ¢: K — L is continuous and surjective,
then a map ¢g: L — X is continuous if, and only if, go ¢: K — X is
continuous. Since H = f o ¢ is continuous, it follows that f is continuous,
which completes the proof. |

It follows from the proof that if H: ™ x I — X is a homotopy between
f and a constant p € X, the extension f: B"*!' — X of f to the unit ball
is given by
_ H(%,1—|m|) if z € B! — {0}
fly) = |

p if z = 0.

Remarks. 1. The above proposition will be used in the following chapters
with n = 1: A continuous map f: S' — X is homotopic to a constant
if, and only if, it can be continuously extended to the closed unit disk of
the plane.

2. When n = 1, we will use the proposition with a rectangle I x J
instead of the disk B2, and the boundary d(I x .J) instead of the circle S1.

1.4.1 Euclidean Neighborhood Retracts

We will now show that, under certain conditions, the possibility of con-
tinuously extending f: A — Y depends only on the homotopy class of f.
For this, we will first introduce some concepts related with the notion of
retract, due to K. Borsuk.

Let X be a topological space and Y a subspace of X. A continuous map
r: X — Y is called a retraction when r(y) = y for all y € Y'; that is, when
r|Y = idy. Therefore, a retraction r: X — Y is a continuous extension to
X of the identity map ¥ — Y. Every retraction is surjective.

We have Y = {y € X;r(y) = y}. It follows that, when X is a Hausdorff
space, every retract Y C X is a closed subset of X.

When there exists a retraction r: X — Y, the subspace Y is called a
retract of the space X.

Example 1.9. Every point is a retract of any space that contains it. For
every xg € X, the subspace {xg} x Y is a retract of the product space
X x Y. If X is connected and Y is a disconnected subset of X, then Y is
not a retract of X. If X = X, UX5 is the union of two closed subsets with a
single point in common, then X; and X5 are both retracts of X. The radial




1.4. Homotopy and Map Extension 15

projection r: R"*1 — {0} — 8™, r(x) = x/|x], is a retraction. We will see
in Chapter 3 that a circle in the plane is not a retract of the disk of which
it is the boundary. It is true, more generally, that a sphere S™ C R**! is
not a retract of the closed ball B"+! which has the sphere as the boundary.
This will be proved here for n = 1 (see Chapter 3, Section 2). For the
general case, see Spanier (1966), page 194. <

A continuous map r: X — X such that r or = r is a retraction of X
onto the subspace Y = r(X), as can easily be verified.

Let Y C R™. We will say that V is a Euclidean neighborhood retract, or
that Y is of type ENR, when there exists a retraction r: V — Y, where V
is a neighborhood of ¥ in R"™.

Example 1.10. If ¥ C R™ is a retract of B™, then Y is a retract of any of
its neighborhoods in R™. On the other hand, the sphere $™ C R"*! is not
a retract of R™™! but it is a retract of its neighborhood V = R™™ — {0}.
Hence, S™ is of type ENR. <

Example 1.11. Every differentiable surface M < R" is of type ENR. To
see this, consider a tubular neighborhood V' of M in R™. The projection
7: V — M is a retraction. Every polyhedron P < R™ is also of type ENR.
(See Eilenberg & Steenrod (1952), page 70.) These two classes are enough
to indicate how numerous the spaces of type ENR are. <

Proposition 1.11. Let Y C R™ be a compact space of type ENR. There exists
e = 0 such that any two continuous maps f,g: X — Y. satisfying the
condition |f(z) — g(x)| < & for every © € X, are homotopic.

Proof. Let r:V — Y, a retraction of a neighborhood V" 2 Y. Since
Y is compact, we have ¢ = dist(Y,R® — V) > 0. This means that if
ye€ Y ze R and |y —z| < ¢, then z € V. Under these conditions, the
points of the line segment [y, z] belong to V. Given f,g: X — Y with
|f(x) — g(z)| < e for any x € X, we have therefore (1 —t)f(z) +tg(z) € V
for every x € X and every t € I. It follows that H: X x I — Y, defined
by H(x) = r[(1 —t)f(z) + tg(x)], is a homotopy between f and g. D

Corollary 1.3. Let M, N be differentiable compact surfaces. Every continu-
ous map f: M — N is homotopic to a differentiable map.

Indeed, take the £ > 0 that is attributed to N by Proposition 1.11.
Applying the approximation theorem of continuous maps by differentiable
ones, we obtain g: M — N differentiable, with |f(z) — g(x)| < e for every
z € M. Then f and g are homotopic.
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Remarks. 1. By Proposition 1.3, for Y = §"~1, the number ¢ of the above
proposition is equal to 2.

2. The compactness hypothesis in Proposition 1.11 can be eliminated.
In this case we obtain, instead of a constant £, a continuous functione: ¥ —
R*, such that if f, g: X — Y satisfies | f(z) — g(x)| < &(f(x)) for every z €
X then f ~ g. It is enough to define £(y) = dist(y, R™ — V). The Corollary
continues valid without assuming that either M or N is compact. We just
have to approximate f by g differentiable, with |f(z) — g(z)| < 2(f(z)) for
every x, which is possible.

Proposition 1.12. Let Y C R" of type ENR and A C X be a closed subset
of a normal space. FEuvery continuous map f: A — Y can be ertended
continuously to a neighborhood of A in X.

Proof. Let r: V — Y be a retraction of a neighborhood V of Y. By
the Extension theorem of Tietze and Urysohn, the map f, considered as
a map from A into R™, has a continuous extension p: X — R". Hence,
U = ¢ (V) is a neighborhood of A in X and the continuous map f =
ro(p|U): U —Y is an extension of f to the neighborhood U. m|

The proposition below is the main result from this section.

Proposition 1.13. (Borsuk) Let Y C R"™ be a space of type ENR, A be a closed
subset of a metric space X and f,g: A =Y be two homotopic continuous
mappings. If f has a continuous extension f: X — Y then g also admits
an extension. More precisely, every homotopy between f and g extends to
a homotopy between f and an extension of g.

1+ - Xx1
O AxI
oL Xx0
{ | b
A / X
L I
u

Figure 1.6.
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Proof. Let H: A x 1 — Y be a homotopy between f and g. Define the
continuous map f1: (X x 0)U (A x I) = Y by fi(x,0) = f(z) for every
z € X and f1|(4 x I') = H. By Proposition 1.12, f; extends continuously
to a neighborhood W of its domain in X x I. Since I is compact, there
exists an open set /' D A in X such that W D (X x 0)U (U x I). Therefore
f has a continuous extension fo: (X x0)U(U xI) =Y. Let A: X — [0,1]
be a Urysohn function of the pair (A, X — U); that is, { is a continuous
function equal to 1 at every point of A and equal to zero in X — U. The
extension H: X x I — Y of the homotopy H is then defined by H(z,t) =

falz, Alz) - £). 0

Corollary 1.4. Let Y < R™ be a contractible space of type ENR. Every
continuous map f: A =Y, defined on a closed subset of a metric space X,
has a continuous extension f: X — Y.

Corollary 1.5. Let Y C R™ be a space of type ENR and A C X be a closed
contractible subset of a metric space X. Every continuous map f: A =Y
admits a continuous extension f: X — Y.

As an example, if Y < R" is a differentiable surface or a polyhedron and
A C R™ is a closed convex subset, then every continuous map f: 4 —» Y
has a continuous extension f: B™ — Y.

Corollary 1.6. Let X be a contractible metric space, A C X be a closed
subset and Y < B™ be a space of type ENR. A continuous map f: A —Y
has a continuous extension f: X — Y if, and only if, it is homotopic to a
constant.

Note that this corollary contains Proposition 1.10 in the case where the
image space Y is of type ENR.

1.5 Trees

In this section, we will show that a connected graph without circuits is
contractible.

An edge J C R™ is a subset homeomorphic to the interval [0,1]. The
images of the points () and 1 by this homeomorphism are called the vertices
of the edge. The interior of an edge .J, int. J, is called an open edge. Thus,
an open edge is an edge without its two vertices.

A graph X < R™ is a union of edges that satisfies the following condi-
tions:

1. The intersection of any two distinct edges is either empty or it consists
of one or two common vertices;
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Figure 1.7. Graphs: The one on the left is the oldest and most famous of all.
It was used by Leonard Euler in the problem of the Kénisberg bridges. The two
graphs on the right are trees.

2. A subset § C X is closed (respectively, open) in X if, and only if,
its intersection S N J with each edge J C X is closed (respectively,
open) in the edge.

A subset Y < X is called a subgraph when it is the union of edges of X.
Every subgraph is a graph.

Condition 1 implies that two open edges are either disjoint or they
coincide. It follows from Condition 2 that the open edges are open subsets
of X and that the set of vertices is discrete and closed in X.

Let X be a graph. A map f: X — Z, taking values on an arbitrary
space Z, is continuous if, and only if, its restriction to each edge J C X
is continuous. This results immediately from Condition 2 and it is a very
important remark for constructing continuous maps defined on X.

A graph is compact if, and only if, it is finite; that is, it has a finite
number of edges (and therefore vertices). This results from the fact that
the set of vertices is closed and discrete.

A graph X is connected if, and only if, any two of its vertices x,y can
be joined by an edge path; that is, a finite sequence of edges such that z is
a vertex of the first edge, y is a vertex of the last edge, and two consecutive
edges of the sequence have at least a vertex in common.

A graph X is a free when it is connected and X — int..J is disconnected,
for every edge J C X.

A circuit is a finite sequence Jy, Js, ..., J, of distinct edges such that,
indicating the vertices of .J; by u; and v;, we have u;1, = v;(i = 1,2,...,
n—1) and v, = u;. A circuit remains connected when we remove from it
the interior of one of its edges. Therefore it follows that a connected graph
X is a tree if, and only if, it does not contain circuits.

If X is a tree, then every connected subgraph ¥ € X is also a tree.

A vertex in a graph is called free when it belongs to a single edge.




1.5. Trees 19
Lemma 1.1. Every finite tree has a free vertex.

Proof. Consider an edge J;, with vertices u;,vy. If v1 is not free, it will
belong to another edge Jo, with vertices us(= v1) and ve. In case vy is not
free, it will belong to a new edge .J3, whose vertices we will call uz(= vs)
and v3. And so on. Since the graph is finite, we must get to a free vertex
or to an edge J,, in which the vertex v, coincides with one of the wu;
obtained previously. This would give us a circuit, which is not possible in
a tree. O

Proposition 1.14. Every tree is contractible.

Proof. Consider, the case of a finite tree. We use induction on the number
of edges. If the tree has only one edge, it is evidently contractible. Suppose
the proposition is valid for every tree with n edges and consider a tree X,
with n+1 edges. By Lemma 1.1, there exists in X one edge .J, with vertices
u, v, such that v is not a vertex of any other edge of X. We can therefore
deform X, contracting the edge J to the point u and leaving the other
points of the tree X fixed. This gives us an homotopy equivalence between
X and a subtree with n edges, which is contractible, by the induction
hypothesis. Therefore X, is also contractible.

Let’s consider now an infinite tree X. We construct a homotopy between
the identity map and the constant map. More precisely, we take zp € X
and define a continuous map H: X x I — X, such that H(x,0) = z and
H(z,1) = z for every x € X. First, we define H on the vertices and then
we extend it to X.

Definition of H on the vertices: In order to define H, we take, for each
vertex v € X, a path a,: { — X such that a,(0) = v and a,(1) = zp.
(Note that the image of a,, being compact, is contained in a finite number
of edges and therefore in a finite subtree of X.) Let V' C X be the set of
vertices of X. Define H: V x I — X by H(v,t) = a,(t).

Extension of H to the edges: Let the vertices of J be wand v. H is already
defined on the sides {u} x I, {v} x I, J x {0} and J x {1} of the rectangle
J x I, by H(u,t) = ay,(t), H(v,t) = a,(t), H(z,0) = z and H(z,1) = zg.
Let Y be a finite subtree of X containing the images by H of these four
sides. Since Y is contractible, the map H: d(J x I) — Y, defined on the
boundary d(J x I) of the rectangle J x I, is homotopic to a constant and
therefore, it has a continuous extension to J x I, by Proposition 1.10.

Finally, taking such an extension for each edge J C X, we obtain the
homotopy H: X x I — X that we need. O
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1.6 Homotopy of Pairs and Relative Homotopy

We say that (X, A) is a pair of topological spaces when A is a subspace
of X.

Given the pairs (X, A) and (Y, B), a continuous map f: (X, 4) — (Y, B)
is a continuous map f: X — Y such that f(A) C B.

Given two continuous maps f,g: (X, A) — (Y, B), a homotopy of pairs
between f and ¢ is a continuous map

H: (X xI,AxI)—(Y,B)

such that H(z,0) = f(z) and H(z,1) = g(z) for every z € X. Therefore,
we must have H;(A) C B for every t € I.

The case where B is reduced to a point yy will be used frequently in the
following chapters. The point yq is called the base point of the pair (Y, yn).
In this case, during a homotopy between two maps f,g: (X, A) — (Y, yo),
the map H, must be constant on the subspace A.

Example 1.12. The identity map id: I — I is homotopic to a constant. But,
considering the subspace I = {0,1} C I, the map of pairs id: (I,0I) —
(I,8I) is not homotopic to a constant. This means that the interval I
can be continuously contracted to a point but, during the deformation, at
least one of its endpoints must pass through the interior of I. Indeed, any
homotopy H between two maps of pairs f,g: (I,dI) — (I, dI) must satisfy
H,(0) € 8T and Hy(1) € OI for every t € I. Since dI = {0, 1} is discrete,
it follows that H;(0) and H¢(1) do not depend of ¢; that is, the extreme
points of I are fixed during the entire homotopy. <

Given two continuous maps f,g: X — Y, we say that f is homotopic
to g relatively to a subspace A C X, and we write f ~ g(rel. A) when there
exists a homotopy H: f ~ g such that H(z,t) = f(z) = g(z) for every
e A

Certainly, in order to have f ~ g (rel. A) it is necessary that f(z) =
g(z) for every x € A.

Example 1.13. The identity map of R™ — {0} is homotopic to the radial

projection r: R — {0} — R™— {0}, r(z) = z/|z|, relatively to the subspace
Sm—L 4

1.7 Exercises

1. If the homeomorphisms f, g: X — Y are homotopic, their inverses f—1!,
g~ 'Y — X are also homotopic.
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2. Let F: B2 — B? be a continuous map such that F/(S!) ¢ S!. Define
f: 8 — S8Y by f(z) = F(z). Prove that F' is surjective or f is homotopic
to a constant (the two possibilities might oceur).

3. An isotopy between the homeomorphisms f, g: X — Y is a homotopy
H: f ~ g such that H;: X — Y is a homeomorphism for every ¢ € [I.
Prove that every homeomorphism h: B — B of the unit ball B = {z €
R**1 x| < 1}, such that h(x) = z for every x € S", is isotopic to the
identity map of B. Conclude that if the homeomorphisms h, k: B — B
are defined in such a way that h|S™ and k|S™ are isotopic then h is isotopic
to k. (Suggestion: take H; = identity. For 0 < ¢ < 1 take H; = identity
outside of the ball of center O and radius 1 — ¢ and, within this ball define
H; as a concentrated version of h.)

4. For each A € L, let X, and Y), be spaces with the same homotopy type.
Prove that the Cartesian products

X=HXA e Y=HY)\

AL AL

have the same homotopy type.

5. Let E = {(0,0,z) € R% 2z € R} be the vertical axis of R?. Show that
R? — E has the same homotopy type as the circle S!.

6. The Mobius strip has the same homotopy type as the cylinder S* x I
but is not homeomorphic to it.

7. Consider a compact, orientable two-dimensional surface M of genus g
and a point p € M. Prove that M — {p} has the same homotopy type of
the union of 2¢ circles with a point in common.

8. Let GL™(n) > SL(n) D SO(n), respectively, the groups of n x n ma-
trices with positive determinant, with determinant 1 and the orthogonal
matrices with positive determinant. Prove that these three spaces have the
same homotopy type. (Suggestion: Show that GL™(n) is homeomorphic
to BT x SL(n) and to P x SO(n), where P is the convex set of the positive
matrices.)

9. If p < n, R™ — RP has the same homotopy type of the sphere §™ 71,

10. Let X be the space obtained from the sphere S2 by gluing the north pole
to the south pole, let Y = R*— 5, where S* = {(z,7,0) € R*; 2% +¢* = 1},
and let Z be the union of a torus of revolution with a disk whose boundary
is the smallest of the parallels of the torus. Prove that X, Y and Z have
the same homotopy type.
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11. A proper subset of 5! is a retract of S if, and only if, it is an arc of a
circle.

12. A subset Y C X is a retract of X if, and only if, every continuous map
f:Y — Z has a continuous extension f: X — Z.

13. Consider an ENR space X. Prove that for every point z; € X and
every open set U 5 zy there exists an open set V', with 2y € V' C U such
that the mappings i, ¢: V — U, i(z) = =, ¢(x) = 2y, are homotopic. (We
say then that V' is contractible in U.)

14. Consider an ENR space X and a closed subset A C X. Define an equiv-
alence relation in X by declaring that each point z € X — A is equivalent
only to itself and that the points in A are all equivalent to each other. In-
dicate by X/A the quotient space of X by this equivalence relation. Prove
that X/A is Hausdorff. Suppose that A is contractible and prove that
there exists a continuous map f: X — X, homotopic to the identity, such
that f(A) = point. Then show that X and X/A4 have the same homotopy

type.

Gwen a compact and convex set C - R", we have the disjoint union
(“' Cu aC, where the relative interior C is the set of pomts x € C with
the following property: for every y € C there exists ¥ € C such that z
belongs to the open line segment (y,y'). The boundary of C' is the set

aC = C — €. Prove:

a) Every homeomorphism h: 8C' — 9C extends to a homeomorphism

h:C—C.

b) A continuous map f: C — X has a continuous extension f: C' — X
if, and only if, it is homotopic to a constant.

c) ¢ = int.C in the affine variety of R™ generated by C.

16. Let C' be a compact and convex subset of the Euclidean space, dC' its
boundary and €' its relative interior. Take X = C' x [ and Y = (Cx0)uU
(8C x I). Fix a point a € ¢ and write p=(a,2) € C x R. Show that, for
every point (x,t) € C x I, the half-line ﬁ cuts ¥ at a unique point r(z)
and that the map r: X — Y, thus defined, is a retraction of C' x I over
(C x O)U (8C x I). Moreover, show that r is a deformation retraction;
that is, ior ~id: X — X, where i: ¥ — X is the inclusion map.

17. Let P be a polyhedron and A C P a sub-polyhedron. Use the previous
exercise to prove that (P x 0) U (A x I) is a retract of P x I. Conclude
that, given any topological space Z and continuous mappings f: P — Z,
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g: A — Z, every homotopy between f = f|A and g extends to a homotopy
between f and an extension of ¢. In particular, if a continuous map A — Z
(with values in an arbitrary space Z) has a continuous extension to P, every
map homotopic to it also admits a continuous extension.

18. Consider two metric spaces X | Y, with X compact, and the following
statements:

i) The mappings f, g: X — Y are homotopic;

ii) For each £ > 0, there exist continuous mappings fo, f1,..., fr: X —
Y such that fo = f, f = g, and d(fi(z), fi—1(x)) < e forevery z € X
and i =1,2,...,k.

Prove that i) = ii). If YV is compact of type ENR, show that the
converse is also true. When X is not compact, the implication i) = ii) may
be false.

19. The Gram-Schmidt orthonormalization process provides a retraction,
r: GL(n) — O(n), from the set of n x n invertible real matrices onto the
set of orthogonal matrices n x n. Show that r is a deformation retraction.
By restrictions of r, show that each of the spaces below is a deformation
retract of the next space in the sequence:

SO(n) C SL(n) € GL*(n).
(We recall that a retraction r: X — Y is called a deformation retraction
when ior ~id: X — X, where ¢: Y — X is the inclusion map.)

20. Prove that the following statements with respect to a set ENR, Y C B™,
are equivalent:

a) Y is contractible;
b) Y is a retract of B"™,

¢) Y is a deformation retract of R™.

21. Prove that every finite graph G contains a maximal tree A (a subgraph
that is a tree not properly contained in another tree in ). Show that a
maximal tree contains every vertex of G. Use Zorn lemma, or something
equivalent, to relax the hypothesis of finiteness.

22. Every finite graph has the same homotopy type of a point or of a graph
without free edges.

23. Let p= (1,0,...,0) and ¢ = (—1,0,...,0) be the north and south poles
of the sphere S™. Prove that S™ — {p, ¢} has the same homotopy type as
the {(n — 1)-dimensional sphere S™~1.







Chapter 2
The Fundamental Group

2.1 Path Homotopy

From now on, we will consider a particular case of the general concept of
homotopy, that of path homeotopy. First, we give some preliminary defini-
tions.

A path on a topological space X is a continuous map a: J — X, defined
on a compact interval J = [sg, 81].

The points a(sp) and a(s;) are called endpoints of the path, a(sp) is the
initial point (or origin), and a(s,) is the final point of the path. Geomet-
rically, the image set a(.J) defines a continuous curve on the space X: as s
moves from sy to sp, the point a(s) moves along the curve from the initial
to the final point.

Let ¢: K — J, K = [t1,2] be a continuous function such that ¢(0K) C
dJ. The pathb=aocy: K — X is called a reparametrization of the path
a. This is illustrated by the following commutative diagram:

J X

@
b=aoy
K
Unless we state explicitly to the contrary, we will suppose that a path
is defined on the unit interval 1 = [0,1]. This is not a major restriction

because a path a: [sp,s1] — X can be reparametrized to obtain a path
aop: I — X, using the increasing linear homeomorphism ¢: I — [sg, 51].

25
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Figure 2.1.

Example 2.1. Consider the two paths a,b: I — R? — {0}, which are sketched
in Figure 2.1. These paths are naturally described by the maps a,b:[—1,1] —
R? — {0}, defined by a(t) = (t,v1 —12) and b(t) = (t,|t| — 1). In order
to consider the paths defined on the interval I = [0, 1], we have to repara-
metrize them. A simple reparametrization is obtained using the linear
homeomorphism ¢: I — [~1,1], p(s) = 2s — 1, which gives

(a0@)(s) = (25— 1,\/T— (25— 12),

and (bop)(s) = (2s —1,|2s — 1| — 1). <

A path a: J = [sg, s1] — X is said to be closed when the two endpoints
coincide; that is, a(sg) = a(s;). We give special attention to closed paths.
Since the interval I is contractible, every path a: I — X is homotopic

to a constant. Therefore, in order to provide substantial content to the
concept of path homotopy, we must impose some restriction. We shall
require that, during the homotopy, the endpoints of the path remain fixed
(see Figure 2.2). This means that we will consider the boundary 9 = {0, 1}
of the interval, and the path homotopies will be relative to the subspace 1.
Therefore, we say that a,b: I — X are homotopic paths when a ~ b
(rel. 9I). We abbreviate this statement with the notation a = b. Thus,

o

a homotopy H: a 22 b between the paths a and b is a continuous map

H: I xTI— X such that

H(s,0) = a(s), H(s,1) = b(s),
H(0,t) = a(0) = b(0),
H(1,t) = a(l) = b(1),

for every s,t € 1.
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It b '
1 > a(l) =b(1) = x,
= =z a
| IxI l
g g i
7 = b
= =z
o] =
5 e a
P - ) a0y =b(0) = x
0 > . A) { (! 0
Figure 2.2.

Therefore, in order to have a = b, it is necessary that both paths a and
b have the same endpoints: a(0) = b(0) = z¢ and a(1l) = b(1) = z1.

In particular, the closed paths a,b: I — X are homotopic (that is,
a 22 b) when there is a continuous map H: I x I — X such that, by taking
a(0) = a(l) = zp € X, we have

H(s,0)=a(s), H(s,1)=>b(s), H(0,t)=H(1,t)=uxp
for every s,t € I (see Figure 2.3).

Example 2.2. Consider a convex subset X of a normed vector space. If
a,b: I — X are any two paths with the same endpoints, then @ = b. In
fact, we just have to define /: I x I — X by H(s,t) = (1 —1t)a(s) +1-b(s).

It is easy to see that H is a homotopy between a and b. <
i
(0 1 > (1,1
% - X
; Ix1
(0. 0} b R

Figure 2.3.
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Figure 2.4, Free homotopy between two closed paths @ and b on the torus.

Example 2.3. The two paths a and b in Example 2.1 are not homotopic
(with fixed endpoints) in R? — {0}. This will be proved in next chapter.
Intuitively, any attempt to obtain a continuous deformation from a to b
would force the deformed path to pass through the origin which does not
belong to the space R? — {0} where the paths take their values. <

Sometimes we will also consider free homotopies between closed paths,
by allowing the endpoints to move, but requiring that the intermediate
paths be closed. More precisely, two closed paths a,b: I — X are said to
be free homotopic when there exists a continuous map H: I x I — X such
that H(s,0) = a(s), H(s,1) = b(s) and H(0,¢) = H(1,t) for any s,t € I.
The last equality means that, for every ¢ € I, the path H;: I — X, Hy(s) =
H{(s,t), is closed. Figure 2.4 shows a free homotopy between two closed
paths on the two-dimensional torus.

Both path homotopy, a = b, and free homotopy are equivalence relations
(that is, they are reflexive, symmetric and transitive).

We denote by a = [a] the homotopy class of the path a: I — X; that
is, the set of all paths in X that have the same endpoints of @ and that are
homotopic to a, with the endpoints fixed during the homotopy.

2.1.1 Operations with Paths

Our purpose in this chapter is to introduce a group structure associated
with the space of paths. For this purpose, we introduce the product and
inverse operations below.

Consider two paths a,b: [sg,s1] — X such that a(s;) = b(sg) that is;
the final point of a coincides with the origin of b (Figure 2.5). The product
ab is the path ab: [sg, 51] — X defined by

ab(s) = a(2s — sp) if s € [sg, 205
| b(2s —s1) if s € [B52, 5]
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a
T
Figure 2.5, The product path ab.

Geometrically, the product ab consists of first moving along the path a,
and then along the path b. Since the time at our disposal to move along
the path ab is equal to 51 — sg, we must double the velocity in a and in b.

Since a(s1) = b(sg), the above definition provides a well defined map
ab: [sg,81] — X, whose restrictions to the intervals [sq, (so + $1)/2] and
[(s0 + $1)/2, 51] are continuous. It follows that ab is continuous; therefore,
it is a path that starts in the initial point a(sp) of the path a, and ends in
the final point b(s,) of the path b.

If @o,¢1: [s0,81] — [s0,s1] are the linear homeomorphisms ¢q(s) =
2s — sp, and ¢ (s) = 2s — s1, then the product ab coincides with the path
a o @y on the interval [sq, (sg + s1)/2], and with the path a o ¢, on the
interval [(sq + s1)/2, 51].

When the domain of both paths is I, we obtain

ab(s) = 1929 Hze01/2]
U bes 1) ifxe[i/2,1].

The inverse path of a: [sp,s1] — X is, by definition, the path

a=t: [sp, s1] = X, given by

a Ys) =al(s; —s), s€[sg,51]

The path a~! starts at the final point and ends at the initial point of the
path a. If j: [so,s1] — [s0, 51] is the function j(s) = s; —s, then a=!
When the path domain is I, we have a=!(s) = a(1 — s).

= aoj.

We will denote by e, the constant path, such that e.(s) = z for every
S € [80, 51]. Its homotopy class is denoted by £, = [e.].

The set of all paths in a topological space X, with the product and the
inverse defined above, does not satisfy any of the group axioms. Indeed,
the product ab is not defined for arbitrary pairs a, b of paths but only for
the pairs that satisfy a(1) = b(0).

Also, the associativity (ab)c = a(be) is not valid. In fact, consider three
paths a,b,e: I — X such that a(l) = b(0) and b(1) = ¢(0). From the
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a(4s) b(ds=1) c(2s-1) a(2s) b(4s-2) c(4s3)
0 14 12 1 0 112 344 1
(ab)c a(be)

Figure 2.6.

definition of the product, we have:

~ Jab(2s)  ifsel0,1/2]
(abje(s) = {c(:zs —1) ifsef1/2,1]
a(2(2s)) if s €[0,1/4] a(ds)  if s €[0,1/4]
={b(2(2s —1/2)) if s € [1/4,1/2] = { b(ds — 1) if s € [1/4,1/2]
(25— 1) if 5 €[1/2,1] e(2s — 1) if 5 € [1/2,1].

A similar computation gives

o a(2s) if s €[0,1/4]
a(be)(s) = {a@s) s €l0.1/2 _ Jpus 0y sseqi/a1/2

be(2s — 1) if s € [1/2,1] cl4s —3) ifse[1/2,1],

hence (ab)c # a(be).

The result of the above computations is summarized in the diagrams of
Figure 2.6 that show how the paths (ab)c and a(bc) operate.

Also, there is no neutral element for path multiplication. If a(0) = z
and a(l) = y, we do not have e, - @ = a or a - ¢, = a. Finally, aa"l # e,
and a™!-a# e,

The desired properties for the composition law ab are found when we
consider homotopy classes of paths. We will start by observing that if
a,b: I — X are two paths satisfying a(1) = b(0), then we have the following
proposition

Proposition 2.1. a =~ a/, b=V = ab=a't, and a=! = (a’)7L.

Proof. If H: a = o’ and K:b = b’ are homotopies, define L: I x I — X
by
H(2s,t if0<s<1/2, tel
Loy {1000 iz, i
K(2s—1,1) if1/2<s<1, tel.
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Since H(1,t) = K(0,t) = a(l) = b(0) for every t € I, it follows that L is
well defined. Since L | ([0,1/2] xI) and L | ([1/2,1] x I) are continuous, we
conclude that L is continuous. Also, it is easy to prove that L is a homotopy
between ab and o'b’. Now define G: I x I — X, by G(s,t) = H(1 — s,1).
It is easy to verify that G is a homotopy between a~! and (a’)~!. O

In a topological space X, consider the homotopy class a of a path that
has the origin at the point x € X and the final point at y € X, together
with the homotopy class [ of a path that starts at y € X and ends at
z € X. We define the product a3 by taking the paths a € a,b € 3 and
letting o3 = [ab]. Thus, by definition, [a][b] = [ab]. Proposition 2.1 shows
that the product a3 does not depend on the choices of the representative
paths a € a and b € 3; therefore, it is well defined.

In a similar way, we define o ! = [a~!], where a € . The second part
of Proposition 2.1 shows that the homotopy class ™! = [a7!] is the same
for any path a that we choose in . The class a™! is called inverse of a.

A parametrization ¢: I — I is called positive when ¢(0) = 0 and ¢(1) =
1, negative when ©(0) = 1 and (1) = 0, and trivial when ¢(0) = ©(1).

Proposition 2.2. Let b = a o p be a reparametrization of the path a: [ — X.
If the parametrization @ is positive, then b = a; if it is negative, we have
b= a1 if it is trivial, then b= constant.

Proof. According to Example 2.2, two paths in I are homotopic (with fixed
endpoints) if, and only if, they have the same initial and final points. Define
i,j: I = I by i(s) = s and j(s) = 1 — 5. We have therefore v =2 i, p =2 j,
or ¢ = constant, provided that ¢ be, respectively, a positive, a negative, or
a trivial reparametrization. It follows easily that a o = aci =a,ao0p =
aoj=a"' oraoy = constant, respectively. O

The proposition below is the result we have been looking for.

Proposition 2.3. Consider the paths a,b,c: I — X such that each one of them
ends where the next one starts. Let o = [a],3 = [b], and v = [c] be their
homotopy classes, x = a(0) the origin of a,y = a(l) its final point, e,, e,
the constant paths on these points, and €, = |e4], ey = [ey] the homotopy
classes of these constants. We have then:

-1 _ . .
1. oo™ = g,
2. a la =¢g,;
Joe 0= =agy,;

4. (af)y = a(By).
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Proof. Consider the parametrizations @1, @2, @3, @4, wa: I — I, defined
by:

() 2s if0<s<1/2 (s) 1-2s if0<s<1/2

s) = ol §) =

oL 225 iflj2<s<1 1 2s—1 if1/2<s<1
0 ifo<s<1/2 2s if0<s<1/2

“"“(s)"{qu if1/2<s<1 Hp“(‘@)"{l if1/2<s<1

and

2s fo<s<1/4
pa(s)={s+1/4 ifl/a<s<1/2
s/2+1/2 if1/2<s<1.

Straightforward computations show that aop; = aa™!,aops = a"ta, ao

Y3 = €,a,a 0 @y = aey, (ab)c = a(be) o ps. Now, by observing that the
parametrizations ¢ and o are trivial, while @3, ¢}, and ¢4 are positive,
the proposition follows from Proposition 2.2. m]

The set of homotopy classes (with fixed endpoints) of the paths in a
topological space X, with the composition law above defined, is called the
fundamental grupoid of X and sometimes it is represented by II(X).

Although it is evident, it is convenient to state explicitly that, in a
homotopy a = be, the final point of b (= origin of ¢) is allowed to move
during the process. Only the endpoints of be (equal to those of a) must
remain fixed.

2.1.2 Homotopy and Path Decomposition

‘We prove now that the decomposition of a path as a product of subpaths
does not alter its homotopy class. This is a simple but useful result.
Consider a path a: I — X. Take intermediate points 0 = sp < §1 <
--- < 8 = 1, which determine a decomposition of I into k consecutive
subintervals [s;_1, s;]. Foreach i =1,2,... k, we obtainapath a;: I — X,
defined by a; = (a | [si—1,8:]) © @i, where ¢;: I — [s;_1, s;] is the unique
linear function such that ¢;(0) = s;_; and ¢;(1) = s;. The paths a; are
therefore reparametrizations of the restrictions a | [s;_1, s;], so as to endow
them with the standard domain . Each path a; is called a partial path of a.
Because a;(1) = a;11(0) = a(s;), i = 1,..., k—1, we may take the prod-
uct b = ajag...a,, which defines a path b: I — X. Since path multiplica-
tion is not associative, it is necessary to specify the order in which the mul-
tiplication is performed. We adopt the convention b = (((ajaz)as)...)ax.
‘We remark that, by Proposition 2.3, any other distribution of parentheses
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in this product would give as a result a path homotopic to b (with fixed
endpoints).

How does the path b = ajas ... a; operate?

It operates as follows: We use the points 0 =ty < t; < ... <t =1,
with #; = 1/2%7%, to subdivide the interval I into k consecutive subinter-
vals [t;_1,t;]. For each i = 1,2,...k, consider the increasing linear home-
omorphism &;: [t;_1,t;] — [si_1, 8], and define a (“polygonal”) increasing
homeomorphism &: I — I, by £ | [ti—1,1;] = &. It follows that b = a o &,
Therefore b is a positive reparametrization of a, hence b = ¢. In sum, we
have the following proposition.

Proposition 2.4. Given a path a: I — X and points 0 = sy < 57 < ... <
s = 1, consider, for each i = 1,... k,a;: I — X the “partial” path,

defined by a; = (a | [si—1, 8:]) 0 ¢, where wit I — [s;_1, 8] is the increasing
linear homeomorphism. Then, by defining b = ayas . .. ap, we have b = a.

2.2 The Fundamental Group

We will consider pairs of the type (X, zq), where zg € X is called the base
point of the topological space X. The closed path a: (I,81) — (X, zq) is
called a closed path based at the point xy. The homotopies (unless stated
explicitly to the contrary) will always be relative to 91.

It follows from Proposition 2.3 that the subset 71(X, o) of the fun-
damental grupoid, which consists of the homotopy classes of closed paths
based at xzq, is a group. It is called the fundamental group of the space
X. The neutral element of this group is the homotopy class € = £, of the
constant path at the base point xg.

How does the choice of the base point affect the structure of the fun-
damental group? The answer to this question is given by the following
proposition.

Proposition 2.5. If zy and x, belong to the same pathwise connected compo-
nent of X, then m(X,zp) and m1(X, z1) are isomorphic. More precisely,
each homotopy class v of paths that connect xy to x, induces an isomor-

phism F: (X, 1) = m (X, x0), defined by F(a) = yay™ .

Proof. Let v = [¢] be the homotopy class of a path ¢ that connects zg to
x1 (see Figure 2.7). If @ = [a] € m1(X, 1), then yay ™! € 71 (X, zp). More-
over, y(afB)y™! = (yay 1)(48y71). Hence, 7: m(X,z1) — m(X,z0),
defined by F(a) = yay~1, is a homomorphism. Since a + v lay is a
bilateral inverse to ¥, we conclude that 4 is an isomorphism. O
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Figure 2.7.

Corollary 2.1. If X is pathwise connected then, for any two base points
xg,x1 € X, the fundamental groups m1(X, zp) and m (X, z1) are isomor-
phic.

In spite of the result of Corollary 2.1, we should remark that in general,
there does not exist a natural isomorphism (that is, one defined without ar-
bitrary choices) between the groups 7 (X, zg) and 7 (X, z;). By changing
the class v, the isomorphism 7 in general will also change.

The case when 71 (X, zg) is abelian is an exception. When this happens,
any two classes ~,d, connecting z; to xy, define the same isomorphism:
~ = 4. In fact, in this case, for every a € m1(X, @), we have:

F(@) = yay ™' = (yad )6y =
= (07 (™) = dad ™ = d(a),
because yad ! and 5y}
group 71 (X, zp).
The group (X, zo) depends only on the pathwise connected compo-
nent of the point xy in the space X. For this reason, it is natural to consider
only pathwise connected spaces when studying the fundamental group.

commute since they both belong to the abelian

2.3 The Induced Homomorphism

A continuous map f: X — Y induces a homomorphism

Ja: T (X, z0) = m1(Y,00),  vo = f(2o),

defined by fg(a) = [f oa], where o = [a]. Since a = a’ = foa = fod,
fy is well defined. Moreover, it is easy to see that fo (ab) = (foa)(f ob),
hence fy(afB) = fu(a)fy(0); therefore, fy is indeed a homomorphism.
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Given two continuous maps, f: X — Y and g: ¥ — Z, we obtain the
induced homomorphisms

Jo:m(X,xo) = m(Y,y0) and gg:m(Y,y0) — 71(Z, 20),
with yo = f(zo) and zp = g(yo). It is easy to show that
(g 0 f)#_ =g4 0 f#_ Trl(X._.:I,‘g) — TTI(Z,Z{)).

Finally, if id: X — X is the identity map, then idy: m (X, z0) —
m1(X, zy) is the identity homomorphism.

It follows from the above considerations that if h: X — Y is a home-
omorphism, then the map hy: m (X, z0) = m(Y.y0),y0 = h(zp) is an
isomorphism. Or, in a less precise form: homeomorphic spaces have iso-
morphic fundamental groups.

If two continuous maps f,g: (X,zg) — (Y, yo) are homotopic relative
to the base point zy then, for every closed path a: I — X, based at the
point xg, we have foa = go a; therefore, fg([a]) = g4([a]). Thus, f and
g induce the same homomorphism between the fundamental groups.

In order to examine what happens when the image of the hase point
moves during the homotopy between f and g, we will study the relation
between free homotopy and homotopy with a fixed base point.

Proposition 2.6. Consider two closed paths a,b: I — X with bases at the
points xo, yo respectively. The paths a and b are free homotopic if, and only
if, there exists a path c: I — X, connecting xy to yo, such that a = (cb)c™?
(see Figure 2.8).

Figure 2.8.
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Figure 2.9.

Proof. (Necessary.) Consider a free homotopy H: I x I — X between a and
b. Define ¢: I — X by ¢(t) = H(0,t) = H(1,t). Let ¢: Ix I -+ I xIbea
continuous map that transforms the boundary of the square I x I into itself
as follows (see Figure 2.9): ¢(0,t) = (0,0).¢(1,t) = (1,0),4(s,0) = (s,0)
for any s,t € I; finally,

(0, 45) if0<s<1/4
@(s, 1) =< (45 —1,1) ifl1/4<s<1/2
(1,2-2s) if1/2<s<1.

The map ¢ does exist, because every continuous map ¢: d(IxI) — IxI
from the boundary of the square to I x I extends continuously to a map
w from I x I to I x I (since I x I is contractible, ¢ is homotopic to a
constant). By defining K = H o ¢, it is easy to prove that K: a = (ch)c™!.

(Sufficient.) Suppose a = (cb)e™!. Define H: I'xI — X by H = ((cb)c™1)o
i, where ¢: I xI — I is a retraction from the square onto its base, as shown
in Figure 2.10: ¢ is the identity in the base, and it transforms linearly each
horizontal segment indicated in the figure into the segment [1/4,1/2] of the

0 14 12 1

Figure 2.10.
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base, each segment of origin 0 in the segment [0, 1/4] and each segment with
endpoint 1 in the segment [1/2,1]. We have ¢(0,t) = t/4, o(1,1) =1—1/2
hence H(0,t) = c(4p(0,t)) = ¢(t) and H(L,t) = ¢ 1(2¢(1,) — 1) = c(t).
Thus H(0,t) = H(1,t) for every t € I and H is a free homotopy between
(cb)c™! and b. It follows that a is free homotopic to b. O

Corollary 2.2. If a closed path a: I — X, based at xq, is free homotopic to
a constant then a = eg,. That is, a is homotopic to a constant without
moving the point xg during the homotopy.

o)

Indeed, suppose a is free homotopic to ey,: then a = (cey,)c™!

Sl

-1 ~

cc = ey,

Corollary 2.3. Consider two closed paths a,b: I — X based at xg.Let o = [a]
and § = [b]. Then a and b are free homotopic if, and only if, a and 3 are
conjugate elements of the group = (X, o).

Indeed, we just have to remark that, in this case, the path ¢ of Propo-
sition 2.6 is closed and based at xp; hence, v = [¢] belongs to m1 (X, xo).

From Corollary 2.3, we conclude that if @ and b are closed paths with
the same base point xp, in an arbitrary topological space X, then the closed
paths ab and ba are free homotopic. In fact, the homotopy classes [ab] and
[ba] are conjugate in the group m (X, zg), since [ab] = [b] ~![ba][b].

We should remark, however, that not every fundamental group 7 (X, z¢)
is abelian. Examples will be given in the chapters to follow.

Corollary 2.4. Consider two homotopic continuous maps f,g: X — Y. The
homomorphisms

fy:m(X,z0) = m(Yyo) and gy: m(X,z0) = m(Y, 1),

Yo = f(xo), y1 = glxo), are related by fy =7 o gy, where J: m (Y, y1) —
71(Y, yo) is an isomorphism defined as in Proposition 2.5. This is illus-
trated by the following commutative diagram:

m1(Y, yn)
fi
:'Tl(X!:I"U) FY
94
T
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We just have to observe that if /: X x I — Y is a homotopy between
f and g then ¢: I — Y, defined by c(t) = H(zp,t), is a path connecting
yp = f(zo) to y1 = g(zg). For every closed path a: I — X, based at xp, the
map (s,t) — H(a(s),t) is a free homotopy between f o a and g o a. From
Proposition 2.6, we have foa = ¢(goa)c™!. By defining v = [c] and o = [a],
we have: f4(a) = [f o] = [c(g 0 a)e~ 1] = 1(gp(@))7~! = T(gu ().

In the following proposition, we suppose that the spaces considered are
pathwise connected in order to avoid any ambiguity concerning the choice
of the base points.

Proposition 2.7. If two pathwise connected topological spaces XY have the
same homotopy type, then their fundamental groups are isomorphic.

Proof. Consider two continuous maps f: X — Y. g: Y — X such that
gof ~idx and fog ~ idy. Take a base point x5 € X, and define
vo = f(zo),z1 = g(yo),y1 = f(z1). Let fﬁ.: m (X, z0) = 7 (Y y0)
fb: m(X,x1) = m1(Y,y1), and gy : m(Y,y0) — (X, 21) be the homo-
morphisms induced by f and g, respectively. From Corollary 2.4, using
the homotopy g o f = idx, we conclude that gy o fi}c =7 m(X,xg) —
71(X, x1), where ¥ is the isomorphism defined in Proposition 2.5 by means
of the homotopy class v of a path in X, joining x; to zg. In a similar way,
from fog = idy, we conclude that fia ogy = 3 m(Y.ye) — m1(Y, 1),
where 8 is the conjugation by the homotopy class d of a path in Y, joining
y1 to yp. These relations express the commutativity of the diagram below.

Ty
ﬂ'l(X.‘ ﬂ?(}) - ﬂl(ya y(})

)

5 93

(X, @) — 71(Y, 1)
fa
From gy o f;i = 7 = isomorphism, we conclude that gy is surjective.
From f;l,c ogy = § = isomorphism, it follows that g4 1s injective. Hence,
g4 is an isomorphism and therefore f‘g and f‘b are also isomorphisms. In
particular, 71 (X, zp) = m1 (Y, yo). ]

Corollary 2.5. The fundamental group of a contractible space has only one
clement.

We remark that this corollary also follows from Corollary 2.2.
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Proposition 2.7 is very useful in practice because it allows us to perform
some simplifications when computing the fundamental group. For example,
the fundamental groups of R — {0}, R? — [ball], and §*, are isomorphic to
each other (and isomorphic to Z, as we will show in the next chapter).

A more precise formulation of Proposition 2.7 would be: If f: X — Y is
a homotopy equivalence, then the induced homomorphism fy: m (X, z0) —
T (Y, y0), yo = f(xo), is an isomorphism.

2.4 Other Descriptions of the Fundamental Group

2.4.1 Spaces with Abelian Fundamental Group

Consider a pathwise connected topological space, with 7 (X, zy) abelian,
for some xy € X. We know from Corollary 2.1 that, in this case, w1 (X, ;1)
is also abelian, for any choice of the base point ©; € X. Moreover, from
the considerations that follow the corollary, we know that, for any two ar-
bitrary points xy, 1 € X, there exists a natural isomorphism m (X, ;) —
71 (X, zp); that is, to each & € 7 (X, z1) there corresponds a unique class
@ € m (X, zp), defined without ambiguity and independent of arbitrary
choices.

We will now show that, in the present case, we may consider the fun-
damental group of X as the set of free homotopy classes of closed paths
in X and, therefore, we may represent this group by m; (X), without any
explicit reference to the base point.

In fact, consider the set 71 (X)) of free homotopy classes of closed paths
in X. Fix a base point zg € X and let the map £: 7 (X, zg) — m1(X) be
such that £(a) = free homotopy class that contains «. For any pathwise
connected space X, the map £ is always surjective because every closed path
a in X, based at zy, is free homotopic to a closed path b based in xp: we just
have to take a path ¢ connecting xy to ; and define b = (ca)c‘l. When
71(X, xg) is abelian, £ is also injective because if o = [a] and 3 = [b] in
71(X, xo) satisfy £(a) = £(3), then a and b are free homotopic. Hence v and
3 are conjugate elements in the commutative group (X, zp); therefore,
a = 3. In sum: £ is a bijection from (X, zg) to m (X).

2.4.2 The Fundamental Group and Maps from S’ to X
There exists a natural continuous surjection £y: I — S*, defined by
Eo(t) = e®™ = (cos 27t sin 2mt).

Since I is compact and S! is Hausdorff, & is a quotient map. This means
that a map @: S' — X is continuous if, and only if, a = @0 &: I — X
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Figure 2.11.

is continuous. A path a: I — X can be written in the form a = @ o & if,
and only if, it is closed. It follows that the correspondence @ +— a =@ o &
defines a bijection between the closed paths in X and the continuous maps
from the circle S* to the space X.

Analogously, considering the continuous surjection ¢: I x I — S x I,
defined by

C(s,t) = (Sols), 1),

we conclude as above that there exists a bijection between the homotopies
H: S'xI — X and the free homotopies of closed paths H = Ho(: I xI —
X. The closed paths a = @o & and b = bo & are free homotopic if, and
only if, the corresponding maps @,b: S! — X are homotopic.

Finally, considering the point e; = (1,0) € S! as a base point, with
xg € X fixed, the closed paths a,b: I — X, based at z, satisfy a = b
(homotopy with fixed endpoints) if, and only if, @ b: (S, e;) — (X, z0)
are homotopic maps between pairs (or, equivalently, the image of e; is
maintained fixed during the homotopy).

When we describe 71(X, zg) as the set of homotopy classes of maps
a: (St e)) — (X, zp), the homotopies have the cylinder S x I as domain,
instead of the square I x I (see Figure 2.11).

2.5 Simply Connected Spaces

A topological space X is said to be simply connected when one (hence all)
of the following conditions hold:
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1. X is pathwise connected and (for every zp € X)) we have m (X, zq) =
{0}.

2. For every closed path a: I — X, based at the point xy, we have
a=egp,.

3. X is pathwise connected and every closed path a: I — X is free
homotopic to a constant path (see Corollary 2.2).

4. Any two continuous maps f,g: St — X are homotopic.

5. X is pathwise connected and every continuous map f: S! — X ex-
tends continuously to the disk D = {z € R%;|z| < 1}.

Readers should convince themselves that the above statements are in-
deed equivalent.

Every contractible space is simply connected. In particular, the space
R™ and balls, open and closed, are simply connected.

The necessary and sufficient condition for a pathwise connected space
X to be simply connected is that any two arbitrary paths in X with the
same endpoints be homotopic (with fixed endpoints). This condition is
obviously sufficient because a closed path and a constant path onto its
base point have the same endpoints. Conversely, if X is simply connected
and a,b: I — X are two paths with zg = a(0) = b(0) and a(1) = b(1), then
ab t'=~e, . s0a=(ab )b2e, b2b

We prove now that, when n > 1, the unit sphere S™ is simply connected.
This follows from the lemmas below.

Remark. In the proof of the next lemma we will make use of the stereo-
graphic projection, which we deseribe now. Given any point p € S", the
stereographic projection p: S™ — {p} — R"™ is the homeomorphism that as-
signs to each x € S™ — {p} the point y = w(x), obtained as the intersection
of R™ with the ray ﬁ that stems from p and goes through . Here we have
S™ C R"T!, of course, and consider R™ as the subset of R*T! that consists
of those points (y1, ..., yn,0) whose last coordinate is zero. If [a,b] C R"
is any line segment, then ~!([a,b]) is an arc of the circle in S™ given as
the intersection S™NII, Where II is the two-dimensional plane in R™*! that
contains a, b, and p.

Lemma 2.1. Let a: I — S™ be a path such that a(I) # S™. Then a = e,,
if a(0) = a(l) = xg and a = ¢, where ¢: I — S™ is an injective path, if

a(0) # a(1).

Proof.  Take a point p € S™ — a(I). Let ¢ — {p} — R"™ be the
stereographic projection. Since R™ is simply connected, woa: I — R
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is homotopic (with fixed endpoints) to a constant or to a line segment
(injectively parametrized), according to whether a is closed or not. The
same happens with a = ¢~ 1o (poa). |

Remarks. 1. There exist paths a: I — S™ (called “Peano curves” or “space
filling curves”) that are surjective. More precisely, a Peano curve in a
topological space X is a path a: I — X such that a(I) = X. When
X = I x I is a unit square, the first surprising example of such a path was
given by the Italian mathematician Giuseppe Peano in 1890 (see Peano
(1890)). A theorem of Hahn and Mazurkiewickz says that there exists a
Peano curve in X if, and only if, X is a compact, connected, and lacally
connected Hausdorff space (see Hocking & Young (1961)).

2. The above lemma says that the only difficulty in proving that
S™(n > 1) is simply connected is getting rid of the Peano curves on the
sphere S™.

3. When a(0) # a(1), the injective path homotopic to a is indeed an
arc of circle in the sphere S™.

In the proof of Lemma 2.2 below, by an open ball B (of center z and
radius 7) in S™, we mean the set B = {y € S™;|y — x| < r}. When
0 <r < 2, B is homeomorphic to a ball in R™.

Lemma 2.2. Let n > 1. If the path a: I — S™ is injective, its image is a
closed subset with empty interior in S™.

Proof. Since I is compact, a([l) is compact, so it is closed in S™. Moreover,
being injective, a is a homeomorphism from I onto its image a(I). If a(])
had a non-empty interior it would contain an open ball B, with center
x = a(s). We must have B = a(J), where J is an open interval containing
§. The path a would be a homeomorphism from .J onto B, a contradiction,
because J — {s} is disconnected while B — {z} is connected forn > 1. O

Lemma 2.3. Every path a: I — S™ is homotopic (with fized endpoints) to a
path b: I — S™ such that b(I) # S™.

Proof. By the uniform continuity of @, we can obtain points 0 = 55 < §; <
... < s = 1 in such way that, by setting I; = [s;_1, s;], we have a([;) # S
for every i = 1,..., k. By Proposition 2.4, we have a = ajaz...ar, where

each a;: I — S™ is a reparametrization of a | I;, with a;(f) = a(Z;). From
the previous lemmas, we have a; = b;, where the image b; (/) is a closed set
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with empty interior in S™. By taking b = bybs ... by, we have
a = ajas ... gblbz...bk =b

and the image

b(I)=br(I)U...Ubx(I)
is a finite union of closed sets with empty interior in S™. It follows that
b(1) has empty interior. In particular, b(I) # S™. (Note that b(I) is a finite
union of arcs of circles.) D

We are now able to prove the following proposition.
Proposition 2.8. If n > 1, the sphere S™is simply connected.

Proof. By Lemma 2.3, every closed path in S™ is homotopic to a closed
path whose image does not cover all of the sphere S™. This last path, by
Lemma 2.1, is homotopic to a constant. O

Example 2.4. If n > 2, then R™ — {0} is simply connected. In fact, R™ — {0}
has the same homotopy type of the sphere 5™ !, k|

Remarks. 1. The statement that S™ is simply connected when n > 1 is
equivalent to stating that every continuous map f: S' — S™ is homotopic
to a constant. More generally, it is true that for 0 < k < n, every continuous
map f: S* — S is homotopic to a constant. Indeed, given f, we can
obtain g: S¥ — S™ of class C* such that |f(z) — g(z)| < 2 for every z € S*.
Therefore f ~ g (cfr. Proposition 1.3). Now we observe that a map of class
C! from a manifold of smaller dimension into one of greater dimension is
never surjective (in fact, from Sard’s theorem, its image has measure zero!).
Hence, g(S*) # S™ and from this g ~ constant. Therefore, f ~ constant.
The proof for k = 1, given above in Proposition 2.8, is longer but has the
advantage of being elementary.

2. For n = 1, we have the circle §', which is not simply connected, as
we will see in next chapter.

3. Although the sphere S™ is simply connected for n > 1, it is not con-
tractible. In fact, no compact surface (without boundary) is contractible.
This can be seen in many ways. If one uses homology theory, the high-
est dimensional homology group mod 2 of a compact surface is Z», hence
# 0, so it cannot be contractible. If one wishes to use analysis, one recalls
that if dV' is the volume element of a compact orientable surface M and
f.g: M — M are homotopic maps, and then

/f”dV:/ g dv.
M M
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By taking f = Id (identity map) and g a constant map, this would give
vol. M = 0, a contradiction, so M is not contractible. The case of M non-
orientable follows from Chapter 8 of this book, since contractible surfaces
are simply connected and therefore orientable.

2.6 Some Properties of the Fundamental Group

Proposition 2.9. The fundamental group of a Cartesian product X x Y is
isomorphic to the Cartesian product of the fundamental groups of X and
Y. More precisely, if p: X xY — X and q: X xY — Y are natural
projections, then o: m (X XY, (zo, yo)) = m1(X, zo) x (Y, yp), defined by
w(a) = (pg(a), g4 (a)), is an isomorphism.

Proof. A closed path ¢: I — X x Y, based at the point (zg, yo), has the
form c(s) = (a(s),b(s)), where a = pocis a closed path in X, based in g,
and b = goc is closed and based in yg € Y. Also, given¢’: I —+ X x Y, with
c'(s) = (a'(s),b'(s)), we have ¢ = ¢ if, and only if, @ = @’ and b = ¥'. In
fact, a homotopy K: ¢ = ¢ can be written as K(s,t) = (G(s,t), H(s,t)),
where G: a = a’ and H: b= V. From this, the proposition follows. O

Corollary 2.6. If X and Y are simply connected, then the Cartesian product
X xY is simply connected.

If f: X — Y is a homeomorphism, then the induced homomorphism
f4 is an isomorphism. But if f: X — Y is only injective, even if it is the
inclusion X C V, the homomorphism fz may not be injective. We just
have to consider, for example, the inclusion f: S' — R%. Also, if f: X —
Y is a continuous surjective map, this does not imply that the induced
homomorphism fg is surjective, as we can show by taking f: R — S',
f(t) = e = (cost,sint).

The next proposition shows that if Y is a retract of X, then the inclusion
Y — X induces an injective homomorphism in the fundamental groups
and if r: X — Y is a retraction, then the induced homomorphism ry is
surjective.

Proposition 2.10. If r: X — Y is a retraction, then the induced homomor-
phism ry: (X, yo) = m(Y.yo). w0 € Y, is surjective and the homomor-
phism iy m(Y,y0) = 71(X, yo), induced by the inclusion map i: Y — X,
is injective. Hence, m1(Y,yo) is isomorphic to a quotient group and to a
subgroup (X, yo).
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Proof. Since r oi = idy, we have
Ty oiy =id: m(Y,yo) — m (Y, yo).
It follows that ry is surjective and that iy is injective. O

Corollary 2.7. If the fundamental group of X is finitely generated, the same
is true for the fundamental group of any retract of X.

Corollary 2.8. If X is simply connected, every retract of X is also simply
connected.

Proposition 2.11. Let X = UUV be the union of two open pathwise connected
sets, with UNV pathwise connected. Leti: U — X, j: V — X be the inclu-
ston maps and xo € UNV a base point. The fundamental group m (X, xq) is
generated by the images of the homomorphisms iy : mi(U, xg) — m1(X, o)
and jy: mi(V,zo) = m1(X, z0).

Proof. Given an arbitrary closed path a: I — X, based at zy, we will show
that a = b, where b = bybsy ... by is the product of a finite number of closed
paths b;, based at xp, such that each of them is entirely contained in UV or in
V. In fact, since I is compact, we obtain points 0 = s < §1 < ... < s =1
such that, for each i = 1,2,...,k, we have a([si—1, si]) contained in U
or in V. If two consecutive intervals, [s;—1,s:] and [si, s;+1], have both
of their images contained in U or both contained in V', we eliminate the
intermediate point s;. This being done, we may suppose that a(s;) € UNV
fori =0,1,...,k. Since U NV is pathwise connected, we may consider
paths ¢j,ca,...,cp: I — UNV, such that ¢;(0) = z¢ and ¢;(1) = a(s;)
(see Figure 2.12). By Proposition 2.4, we have a = ajas...ax, where

a(sy) q,

a,
Figure 2.12.
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a;(I) = a([si—1, s;]) for every i. Therefore,
a= alcl_l(clagc;l)(r,’ga;;c;l) .. (epag) = biby .. by,

and this completes the proof. O

Corollary 2.9. Let X = U UV, with U,V open and simply connected. If
U NV is pathwise connected, then X is simply connected.

Remark. A more precise statement than that of Proposition 2.11 is pro-
vided by the theorem of Seifert and Van Kampen that describes mi(X)
from the viewpoint of group theory, using the homomorphisms iy and j.
(See references Bredon (1993), Godbillon (1971), Massey (1986) or Seifert
& Threlfall (1980).)

Example 2.5. Using Corollary 2.9, we will reobtain the result that the sphere
5™ of dimension n > 1 is simply connected. Let p = (0,...,0,1) and
g = (0,...,0,-1) denote the north and south poles of S™ respectively.
Take U = S™—{p} and V' = S™— {q}. Stereographic projections show that
U and V' are homeomorphic to R™; therefore, they are simply connected.
Moreover, U NV = S™ — {p, ¢} is homeomorphic to R™ — {0} therefore it
is connected for n > 1. Corollary 2.9 shows that S™ = U UV is simply
connected. Note that for n = 1, U NV is disconnected, which explains why
S1 is not simply connected. |

Example 2.6. It is possible to apply Proposition 2.10 (and Corollary 2.9)
in cases where we have X = X; U X,, with X; N X, pathwise connected,
without demanding that X; or X, be necessarily open in X. We just need
the condition that there are open sets U O X,V D X5 in X such that
U NV is pathwise connected and the inclusions i: X7 — U and j: Xo =+ V
are homotopy equivalences. For example, let X = S™ U S", where S™
and S™ are spheres of dimension greater than 1, with S™ N S™ = {p}, a
point. Take a € S™ and b € S™, both distinct from the point p, and let
U=X-{b}and V = X —{a}. The inclusions i: S™ — U and j: S™ = V
are homotopy equivalences; hence, I/ and V' are simply connected. Since
UNV is connected; Corollary 2.9 shows that UUV = X is simply connected,
that is, the union 5™ U 5™ of two spheres of dimension > 1 with a point
in common is simply connected. <

Example 2.7. It is not true, however, that the union of two simply connected
spaces with a point in common is always simply connected. A counter
example is given now. For each n € N, let Y,, and Z,, be circles of radius
1/n and centers at the points (0,0, —1/n) and (0,0, 1/n) respectively, in
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N)

=)

Figure 2.13.

the plane = = 0 in R? (see Figure 2.13). Define Y = JV,, Z = |J Z,. We
denote by YV the cone of base ¥ and vertex at the point p = (—1,0,0) in
R?, and by 7 the cone whose vertex is the point g = (1,0,0) and whose
base is Z. Both Y and Z are contractible spaces (because they are stars)
therefore, they are simply connected. Moreover, the intersection Ynz
reduces to a point: the origin in B*. But the space X = Y U Z is not
simply connected. In fact, a closed path, based at the origin, that consists
of an infinite number of circles Y, and also an infinite number of circles Z,,
is not homotopic to a constant in X. 4

2.7 Topological Groups

A multiplication in a topological space X isamap m: X x X — X. We use
the notation m(x,y) = z - y. An element i € X is called a neutral element
for the product when i -z = z - i = z for every x € X.

When the space X has a continuous multiplication with neutral element,
it is possible to define a new composition law between paths a,b: I — X.
We define a - b: I — X by setting

(a-b)(s) = a(s)-b(s),se I

The path multiplication previously defined will continue to be denoted
by ab.

If @ and b are closed paths with bases at the neutral element i € X,
then the product a-b is a closed path based at the point i. Moreover, if the
closed paths a,a’, b, in X, based at the neutral element i, satisfy a = o
and b= b, thena-b=a" V.
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When X is endowed with a continuous multiplication, it is possible to
define a new operation between the elements of the fundamental group
m1(X,i): Given o = [a] and 3 = [b], define - 3 = [a - b]. From the
above results, the definition of « - 3 does not depend on the choice of the
representative paths a and b in the homotopy classes of o and /3.

An important particular case of a space with a continuous multiplication
and neutral element is that of a tepelogical group G. In this case, besides the
continuous multiplication (which is associative) and the neutral element,
each x € (G has an inverse z~!, and the map = — =~ ! is continuous.

The plane R? and the unit circle S = {(z,y) € R% 22 + y? = 1} are
topological groups with respect to complex numbers multiplication. Several
nontrivial examples of topological groups will be given later on, in Chapters
3 and 4.

Even when the multiplication defined on the space X is not commu-
tative, the fundamental group = (X, %), based at the neutral element i, is
abelian. We will prove this now.

Lemma 2.4. Consider a topological space X with a continuous multiplication
whose neutral element s 1. Ifa,b: I — X are closed paths based at i, then

ae; - e;b = ab, e;a-be; = ba,

where e; is the constant path based at i.

Proof. We will use the notation s’ to denote a point in the interval [0, 1/2]
and s” for the interval [1/2,1]. We have ae;(s") = a(2s'), ae;(s") = i, while
e;b(s’) =i, e;b(s"”) = b(2s"” — 1). Therefore,

(ae; - e;b)(s') = ae;(s") - e;b(s") = a(2s") - i = a(2s") = ab(s)

(ae; - e:b)(s") = aei(s") - eb(s") = i-b(25" — 1) = ab(s").
Hence, ae; - e;b = ab. A similar argument proves the other assertion of the

lemma. O

Proposition 2.12. Let X be a topolegical space with continuous multiplication
and neutral element i. The fundamental group w1 (X, ) is abelian and, for
arbitrary e, 3 € m (X, i), the products a3 and o - 3 coincide.

Proof. Let e; be the constant path onto the neutral element of i. For any
closed paths a,b: I — X, based at the point i, we have

ab=ae;-e;b=a-b=ea-be; = ba.

This proves all of the statements of the proposition. ]
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Corollary 2.10. The fundamental group of a topological group is abelian.

2.8 Exercises

1. In a topological group G, denote temporarily by g* the inverse of
g € G and by a*: I — G the path that we obtain from a: I — G by
defining a*(s) = a(s)*. Prove that, for every closed path a: I — G, based
in the neutral element of G, we have a* = a~!, where a=1(s) = a(1 — s),
as usual.

2. In the metric space X, let C(X, ) be the set of paths a, b: I — X that
start at the point zo, with the metric d(a,b) = sup{d(a(s),b(s)),s € I}.
Prove that the metric space C(X, zg) is contractible.

3. Consider the subspace Q(X,zg) C C(X,xp) whose elements are the
closed paths based at the point zy. Prove that the maps m: Q(X, zq) x
QX zg) = QX, zg) and i: QX, zg) — UX, zy), defined by m(a,b) = ab

and i(a) = a~!, are continuous.

4. Let C be the connected component of the point &y in the space X. Prove
that the inclusion i: ¢ — X induces an isomorphism ig: 7 (C zg) —

KIS (X': 'l‘u)-

5. Let r: X — Y be a retraction and i: ¥ — X be the inclusion map.
If iy [71(Y,yo)] is a normal subgroup of 1 (X,yg) (in particular, if X has
abelian fundamental group), then 7 (X, yy) is isomorphic with the Carte-
sian product of the kernel of ry by the image of iy.

6. Let X = CyU..-UCy be a finite union of convex open sets in the
Euclidean space R™. Prove that the fundamental group of X is finitely
generated. (Suggestion: In each non empty intersection C; N C; choose a
point z;; = xj; and, for each pair (z;;, ;) take the line segment L;;, that
connects them. Show that every closed path in X, based in one of the
points z;;, is homotopic to a polygonal path whose edges are some of the
line segments L,;,.)

7. The fundamental group of a polyhedron is finitely generated.

8. The fundamental group of a compact differentiable surface in R™ is
finitely generated.

9. In Exercise 6, suppose that C; NC; # @ if, and only if, j = ¢+ 1 or
{2,7} = {1, k}. Prove that X has the homotopy type of a circle.

10. In Exercise 6, show that 7 (X) = {0} if £ < 2 and m1(X) = 7;(S!)
or m(X) = {0} if k > 3.
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Figure 2.14.

11. Give an example of a compact topological space whose fundamental
group is m,(S1)", hence it does not have a denumerable set of generators.

12. Let r: X — Y be a retraction and i: ¥ — X the inclusion. VY is
called a deformation retract of X (and r is a retraction by deformation)
when i or ~ id: X — X. Show that the union of a circle with one of its
diameters is a deformation retract of the plane minus two points. The same
happens with the union of two circles with a point in common. Conclude
that these three spaces have isomorphic fundamental groups.

13. Let f:[0,1/7] — R be the function defined by f(z) = sen(1/z) if 0 <
x < 1/m and f(0) = 0. Represent by X the graph of f and by ¥ a simple
arc whose endpoints are the points (0,0) and (1/m,0), its other points
have positive ordinates and do not belong to X. Define Z = X UY (see
Figure 2.14). Prove that Z is simply connected but not locally connected.

14. Let [X] be the set of homotopy classes (with fixed endpoints) of the
paths in the simply connected space X. Define a bijection between [X] and
X xX.

15. Let M be a differentiable surface of dimension n, which is a closed
subset of R*, where k > n+2. Prove that R* — M is connected. If k > n+3
then R* — M is simply connected.
16. Let X = |J U, be a covering of the space X by open sets U, with
AeL

the following properties:

a) For any arbitrary A, i1 € L, there exists v € L such that U\UU, C U,.

(Particular case: L=Nand U, C---C U, C---.);
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b) For each A € L, Uy, is pathwise connected and the homomorphism
ing: T (Un,zy) — mi( X, 20),

induced by the inclusion iy : Uy — X, is null. (Particular case: Every
Uy is simply connected.)

Prove that X is simply connected.







Chapter 3

Some Examples
and Applications

3.1 The Fundamental Group of the Circle

We prove here that the fundamental group of the circle S! is infinite cyclic.
This result is obtained by associating to each closed path a in the circle a
number n(a), called the degree of a, in such a way that two closed paths
in the circle are homotopic if, and only if, they have the same degree.
Also, every integer n is the degree of some closed path in S!. Moreover,
n{ab) = n(a) + n(b), so the correspondence a ++ n(a) induces an isomor-
phism between the groups 71 (5') and Z.

Initially, we observe that complex number multiplication defines a topo-
logical group structure in S'. Hence the fundamental group of 5! is abelian;
therefore, two closed paths in S! with the same base point are homotopic
(with the base point fixed) if, and only if, they are free homotopic.

As a starting point to compute 71 (S'), we look at the ezponential map

£:R — 51 £(t) = e = (cost,sint).

The equality e+t = ¢'*.¢% which expresses in a simple and elegant

way the classical formulas for cos(s + t) and sin(s + ¢), tells us that the
continuous surjection £ is a homomorphism of the additive group R onto
the multiplicative group S' (complex numbers of modulus 1). The kernel
of £ is the group 27Z = {27n; n € Z}, of the integral multiples of 2x. Thus,
given u € S, we have £ *(u) = {t + 2mn;n € Z}, where t € R is a (any)
real number such that {(t) = u. Note that £{(f) = u means that ¢ is a
determination, in radians, of the angle between uw and the positive r-axis.

53
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Remark. Sometimes we define £(t) = €™, This has the advantage of
simplifying the kernel of £, which becomes equal to Z. On the other hand, ¢
does not represent any longer the measure, in radians, of the angle between
£(t) and the positive z-axis. Certainly, the two definitions are equivalent.

Lemma 3.1. £: R — S' is an open map.

Proof. Given an open set U C R, we must prove that its image &(U) is
an open subset of §'. It is enough to prove that the set F' = §' — ¢(U) is
closed in S*. The set £~ (4(U)) = U,z (U + 27n) is open in R; therefore,
its complement {~1(F) is closed in R. Since the restriction ¢|[0,2n] is
surjective, for each x € R, there exists ' € [0, 2] such that {(z') = £(x).
Therefore F' = £(£~1F)) = £(€-YHF)N[0,2x]). But the set £~1(F)N[0,2x]
is compact, hence its image by £ is also compact; that is, I is compact,
and therefore it is a closed subset of S'. m|

Proposition 3.1. The restriction of £ to any open interval (t,t+27) of length
27 is a homeomorphism onto S* — {£(t)}.

Proof. The restriction &|(t, #+27) is a continuous bijection onto 5 —{£(#)}.
By Lemma 3.1, £ transforms open sets in the interval (¢,¢+ 27) onto open
sets of S1; therefore, the inverse of &|(¢,¢ + 27) is also continuous. O

Corollary 3.1. Every point uw = £(t) € S has an open neighborhood V =
St —{u*},u* = —u, whose inverse image £~1(V) is the disjoint union of
open intervals I, = (t+m(2n — 1),t + w(2n+1)),n € Z, each one of which
is mapped homeomorphically by £ onto V.

Consider a path a: I — S§'. For each s € I, since the image of £
covers S', there exists some 5 € R such that a(s) = £(3) = €*; 3 is a
determination, in radians, of the angle between a(s) and the positive -
axis. The problem is that 5 is not determined in a unique way from s. We
show in what follows that, for each s € I, it is possible to choose s in such

a way that a(s) = ™ and the real map s ++ s is continuous.

Proposition 3.2. Given an interval J = [sg, 51, a continuous map a: J — S*
and a real number ty with a(sq) = €', there exists a unique continuous
map a: J — R such that a(s) = €' for every s € J (that is, a = £ 0 @)

and a(sg) = to. This is illustrated by the following commutative diagram:

R

Srl

[s0, 51]
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Proof. The proposition is true when a(J) C S' — {y} for some y € St
Since a(sp) # y, there exists a unique x € £ ~1(y) such that to € (z, z + 2m).
In this case, ¢, = £|(x, 2 + 27) is a homeomorphism onto S' — {y} and, by
defining @ = ¢! o a, we obtain the desired map.

Suppose now that .J = J;U.J; is the union of two compact intervals with
a common endpoint s,, and that the proposition holds for the restrictions
a1 = al|J1 and az = alJo. We choose @1: Ji — R in such a way that
d1(so) = to and £ 0@ = ai. Then we choose Gz: Jo — R such that
£oay = ag and aj(s.) = as(s,), which is possible because {(a;(s.)) =
ay(s.) = az(s.). Finally, we define a: J — R by alJ; = a; and a|Js = as.

The existence of a in the general case follows from the two special
cases above because, by the compactness of .J, for every continuous map
a:J — 5! there exists a decomposition J = J; U--- U .J; as a union of
consecutive intervals, in such a way that a(J;) # S fori =1,2,... k.

To prove the uniqueness, we observe that if a,a: J — R are continuous
maps such that e@05) = ¢4() for every s € J, then f(s) = [a(s) —a(s)]/2n
is, for every s € J, an integer that depends continuously on s. It follows
that f(s) is constant. In particular, if a(so) = a(so), then a = a. O

The continuous map e in the above proposition is in fact a path on
S and, from the proposition, to this path is uniquely associated the path
a in B. We say that a is a lifting of a by the exponential map, and the
exponential map has the unique path lifting property.

The function a: J — R is also called an angle function of the path a.
From the above results, by fixing tg with a(sg) = &(tg), and defining an
angle function @ with @(sg) = #p, the other angle functions a for the path
a, which must begin at the points tg + 2k, k € Z, are related to a by
a(s) = a(s) + 2kw.

If a: I — S is a closed path, then for every angle function a: I — R
of the path a, the number

a(1) — a(0)

na) = o

is an integer (positive, negative, or null). It does not depend on the choice
of the angle function, since any two of them differ by some constant and
this constant disappears when we take the difference a(1) — a(0).

The integer n(a), associated to the closed path a: I — S! defined above,
is called the degree of the path a.

The degree of a closed path a: I — S! measures the “net” number
of turns that the moving point a(s) performs, along the road S*, when s
varies from 0 to 1. The qualification “net” means the number of positive
turns (in the counterclockwise sense) minus the number of negative turns.
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Proposition 3.3. Let a,b: I — S be two closed paths. Then:
1. If a and b have the same base point, then n(ab) = n(a) + n(b).
2. If a and b are free homotopic, then n(a) = n(b).

3. If n{a) = n(b), then a and b are free homotopic. Moreover, a = b
when a and b have the same base point.

4. For any point p € S and any integer k € Z, there exists a closed
path a: I — S' with a base point p, such that n( ) =k.

Proof. 1. Let a, b I — R be angle functions for a and b respectively,
with @(1) = b(()) Then ab: I — R makes sense and it is easy to see that
@b is an angle function for the path ab. Now, we just have to remark that
21 -n(ab) = ab(1) — ab(0) = b(1) — a(0) = [b(1) — b(0)] + [a(1) — @(0)] =
2n[n(a) + n(b)].

2. Consider first the case where |a(s) — b(s)| < 2 for every s € I;
that is, the points a(s) and b(s) are never antipodal. In this case, we define
a(0) = e*0 and b(0) = e'o. We may suppose that |so — ty| < 7. Take angle
functions @, b with a(0) = s and b(0) = ty. Since a(s) and b(s) are never
antipodal, we must have @(s) — b(s) # « for every s € I. This fact, along
with [@(0) — b(0)| < , gives us |a(s) — b(s)| < & for every s. Now we have
2m|n(a) —n(b)| = [a(1) —a(0) — b(1) +b(0)] < [a(1) —b(1)|+[a(0) —b(0)| <
7 + 7 = 27, Hence, |n(a) — n(b)| < 1, so n(a) = n(b)

The general case of any two free homotopic closed paths a,b: I — S!
reduces to this one. In fact, since the homotopy H: I x I — S! is uniformly
continuous, there exists § > 0 such that |t —t'| < d= |H(s,t)— H(s,t')| <
2 forevery s € I. Consider 0 =ty < #) < ... <ty = lsuchthatt; . ,—¢t; <4
and define the closed paths ag = a,a1,...,a; = bin S, by a;(s) = H(s,t;).
Then |a;(s) — a;41(s)| < 2 for every s € I. As we have just proved, this
implies that n(a) = n(a1) = ... = n(ax- 1) = n(b).

3. Consider the angle functlons a, b: I > Rfora and b respectively.
Our hypothesis n(a) = n(b) assures us that @(1)—a(0) = b(1)—b(0). Define
a homotopy H: I xI — R, between @ and b, by H(s,t) = (1—)al: )+tb( ).
Then, for every t € I, we have H(1,t) — H(0,t) = (1 — t)[a(l) —a(0)] +

t[b(1) — b(0)] = (1 —t)-27n + t-27-n = 27-n, where n = n(a) = n(b). From
this, by taking K = £ o H, we obtain a continuous map K: I x I — S!,
with K(s,0) = a(s), K(s,1) = b(s), K(0,t) = K(1,t) for any s,t € I. It
follows that K is a free homotopy between the closed paths a and b. If a
and b have the same base point, we take @(0) = b(0), hence a(l) = b(1),
and we have K:a =b.
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4. Let 59 € R such that £(sg) = p. The closed path a: I — S, defined
by a(s) = (cos(sq+2mks),sin(sg+2mks)) is based at the point p and admits
an angle function d(s) = sg + 2wk-s. Hence n(s) = [a(1) —a(0)]/2n = k.
0

Proposition 3.3 allows us to define the degree of a homotopy class o =
[a] of a closed path a in §'. In fact, from item 2 of the proposition, the
degree n(a) depends only on the class @ but not on the closed path a that
we choose to represent it. Thus, we can define a map n: m1(S1) — Z by
n{a) = n(a).

Proposition 3.4. The fundamental group of the circle S is isomorphic to
the additive group Z of the integers.

Proof. Consider the map n: 71(S') — Z that associates to each homotopy
class its degree. Item 1 of Proposition 3.3 tell us that n is a homomorphism,
item 3 states that n is injective, and item 4 provides the surjectivity. There-
fore, n is an isomorphism between 1 (S!) and Z. D

Corollary 3.2. The degree defines a natural bijection of the set [S*, S'] of
homotopy classes of continuous maps f: S' — 8§ onto the set Z of integers.

In fact, since 71 (S 1) is abelian, there exists a natural bijection between
its elements and the free homotopy classes of closed paths in S* which, in
turn, correspond to homotopy classes of continuous maps f: St — 51,

Corollary 3.2 may be restated by saying that each continuous map
f: 8 — S!' is homotopic to one, and only one, map of the type z +
z* k € Z (multiplication of complex numbers of modulus 1).

Corollary 3.3. The fundamental group of the torus T = S' x S' is free
abelian with two generators.

In fact, from Proposition 9, Chapter 2, m1(T) = m (S*) xm(S?) = Zx Z.

One of the generators of 7;(7") is the homotopy class of a parallel a
and the other is the class of a meridian b. A closed path ¢ in the torus is
homotopic to ma + nb if n is the net number of times that the path ¢ cuts
the parallel a and m is the net number of times that ¢ cuts the meridian
b. (Net here means that we count only when ¢ crosses from one side to
the other of @ or b: it is not enough to touch. Moreover, we must count
positively the crossings from one side and negatively from the other side.)
For example, the path ¢ shown in Figure 3.1 is homotopic to a + 3b.

The solid torus S' x D is the product of the circle S* by the unit closed
disk D < R2. It can be represented in R® by the set X, which consists
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Figure 3.1. Closed path on the torus.

of the torus T with its interior. Note that the fundamental group of the
solid torus is Z, because it has the same homotopy type of the circle S*.
(See Example 1.8.) In the torus S' x §' a meridian b and a parallel a are
topologically indistinguishable, since the homeomorphism (w, z) — (z,w)
from S! x S! to itself transforms the meridian wy x S' on the parallel
St x wq. Thus, considering the subset T C R?, which gives us a geomet-
ric representation of the product S x S, there exists a homeomorphism
h:T — T that transforms the meridian b on the parallel a. Nevertheless,
we should remark that h does not extend to a homeomorphism h of the
space R? because h would have to take the solid torus X into itself. But,
in the solid torus X, the meridian b is homotopic to a constant. Hence, it
could not be transformed by h: X — X in the parallel a, which defines a
generator of m1(X) = Z, so it is not homotopic to a constant in X.

The nonexistence of a homeomorphism of R* that transforms 7" onto T'
and takes parallels onto meridians may justify the difficulty that we have in
accepting that parallels and meridians are topologically indistinguishable
in the torus.

Corollary 3.4. The fundamental group of the eylinder C' = S* x R is infinite
cyclic.

In fact, C' has the same homotopy type of the circle S1. A generator of
71(C) is the central circle a(s) = (', 0). A closed path ¢ in the cylinder is
homotopic to n times the generator a, where n is the net number of times
that the path crosses the generating line u x R,u = (1,0) € S*.

Next, we take a closer look at the set [S1, S1] of homotopy classes [f]
of continuous maps f: §* — St
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We recall that [S, '] is in a one-to-one correspondence with Z as
follows: To each ¢ = [f], we assign the number n(fo&), where &: I — St
is given by &y(s) = €2™*. We saw that n(f o &), the degree of the path
foé&y: I — 8, depends only on ¢, so we call it the degree of ¢ and write
n(f o &) = n(p). The mapping [S!,S1] — Z, given by ¢ — n(y), is
bijective.

Lemma 3.2. Given a continuous map f: S1 — 81, there exists a continuous
map f: 1 — B such that the diagram below is commutative.

/

—

R

€o 3
f

gt ——— 5t

Proof. In fact, the commutativity of the diagram means that {o f = fo&.
The map f is nothing else but an angle function for the closed path f o &.
0

We should remark that f is determined up to an additive constant of

the form 2km, k € Z and we have 27-n([f]) = f(1) — £(0).

Proposition 3.5. A continuous map f: S' — @'vl is homotopic to a constant
if. and only if, there erists a continuous map f: S' — R such that f = £of.
This is illustrated by the commutative diagram below.

R
K
st g
Proof.  If there exists }'H: S — R then f is homotopic to a constant

(because R is contractible). It follows that f = £ o f is also homotopic to
a constant.

Conversely, suppose that f is homotopic to a constant. Then n([f]) = 0.
Thus, the map f from Lemma 3.2 satisfies f([]) = f(l) By passing to the
quotient (see Section 2.4.2) we obtain a continuous map f: S — R such
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that fo & =~f therefore £ o f o &g = o f = fo&. Since & is surjective,
we have o f = f. |

3.2 The Isomorphism 7;(S1) ~ Z

In this section, we prove several statements that are consequences of the
isomorphism 7, (S1) = Z.

c1. S is not simply connected. In particular, S' is not contractible.
(This is the first non trivial example that we obtain of a space with this
property.) The same happens with the torus T = St x §1.

C2. S! is not a retract of the disk D = {(z,y) € R%; 2% + ¢y < 1}.

Proof. In fact, D is simply connected; therefore, all of its retracts inherit
this property. |

C3. (Brower fixed point theorem) Every continuous map f: D — D, from
the disk into itself, has a fized point.

Proof. Suppose, by contradiction, that f(z) # z for every z € D. Then
we define a continuous map g: D — S! by

NCEE
95 = i) ==

for every z € D. It is easy to see that g does not have fixed points. In
particular, the restriction g|S? is a map from S! to S!, without fixed points.
Since S! is a sphere of odd dimension, we conclude that g|S? is homotopic
to the identity id: S — S'. (See Proposition 1.3.) Hence n(g|S!) = 1. On
the other hand, since g|S! extends to D, it follows that g|S! is homotopic
to a constant, which gives us n(g|S!) = 0, a contradiction. O

In the following two consequences (and only then), we use results from
differential equations without providing additional comments.

C4.  (An application of the fixed point theorem) If a vector field v of class
C in the plane has a closed orbit then there exists a singular point of v in
the interior of this orbit.

Proof. The closed orbit, along with its interior region, is a set F, home-
omorphic to the disk. The orbit, of each point z € E is contained in E
because it cannot cross the boundary dF, which is another orbit.
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For every £ > 0, let ¢.: E — E be the continuous map that translates
each point by some time e along its orbit. If the vector field v has no
singular points in E, it is possible to choose € > 0 in such a way that ¢,
does not have any fixed points, but this contradicts the Brower Fixed Point
theorem (Consequence C3). m

C5. (Poincaré) Every continuous vector field tangent to the sphere S has
a singularity.

Proof. If v: §% — R® were a continuous vector field tangent to the sphere,
with v(z) # 0 for every = € S2, then there would exist ¢ > 0 such that
lu(x)| = 2¢ for every = € S%. Let u: S? — R* be a vector field of class C!
such that |u(z) — v(x)| < € for every x. Then u(z) # 0 at every point. Fix
zg € §2. By the Poincaré-Bendixon Theorem, since there exists no singular
point of u in the closure of the orbit of xp, this orbit spirals around a closed
orbit. Then, by the previous case, u has a singular point inside the closed
orbit. A contradiction. O

C6. If the continuous map f: S' — S is homotopic to a constant, then
there exists z € S* such that f(—2) = f(z).

Proof. By Proposition 3.5, there exists a continuous map f: St o R
such that f = £ o f It is enough to prove that f takes the same value in
some pair of antipodal points. Take zp € St If f(zg) = f(—z0), we have
nothing to do. Otherwise, the continuous real map g: S* — R, defined by
g(z) = f(z) — f(—=2) takes values with opposite signs at the points zy and
—zg. Since S! is connected, there exists z; € S! such that g(z1) = 0; that

is, f(z1) = f(—=). L
C7. (Borsuk-Ulam theorem) For every continuous map f: S* — R?, there
exists ¢ € S? such that f(z) = f(—x).

Proof. Suppose, by contradiction, that f(x) # f(—z) for every z € S°.
The continuous map g: S% — S*, defined by the radial projection

_ @) - iCa)
1= Tf@ 1o

is odd; that is, g(—x) = —g(z) for every z € S?. Restricting g to the
equator
St = {(z1, 22, 23) € %23 = 0},

we obtain a continuous map h = g|5*: ' — S', homotopic to a constant
(because it extends to a hemisphere containing S*, which is a contractible
set), with h(—x) = —h(z) # h(zx) for every * € S'. This contradicts
Consequence C6. D
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The Borsuk-Ulam theorem implies, in particular, that the sphere $? is
not homeomorphic to a subset of the plane R2.

A curious interpretation of this theorem is the statement that, at each
moment, there exists on the surface of the earth two antipodal points where
the temperature and atmospheric pressure are equal.

Analogously, consequence C5 above says that at each moment there
exists a point on the earth’s surface where the wind does not blow. (Or, in
other words, that we cannot comb a hairy ball.)

In Chapter 4 (see Proposition 4.4), we provide another proof of
Poincaré’s theorem about the tangent vector fields on S2, this time us-
ing only results that have been proven in this book.

3.3 Real Projective Spaces

The n-dimensional real projective space is the quotient space P* = S™/E
of the unit sphere S™ by the equivalence relation defined as follows: Each
point x € 5™ is equivalent to itself or to its antipode —z. Each point
p € P" is therefore a non-ordered pair p = {z, -z}, © € ™.

We represent by w: S™ — P™ the natural projection, which associates
to each point = € S™ its equivalence class #(z) = {z, —z}.

The topology of P™ is the quotient topology; that is, a set A C P" is
(by definition) open if, and only if, its inverse image 7~ !(A) is an open
subset of the sphere S™.

This is the topology that we will consider in P™. In this topology, the
quotient map 7 is continuous and the space P" is a Hausdorff space, which
is compact, because it is the image of the compact S™ by the continuous
map .

We can express the fundamental property of the quotient topology in
this case, in the following way: If f: S™ — Y is a continuous map such
that f(z) = f(—z) for every x € S™, then there exists a unique continuous
map f: P =Y such that form = f.

The map f is said to be obtained from f by passing to the quotient.
It is usual to illustrate the fundamental property with the commutative
diagram below.

Pﬂ
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Given a subset X C 5™, we indicate by —X the set of the antipodes of
X. Then, for any open set U < 57, the set —U is also open, because the
antipodal map is a homeomorphism.

The quotient map m: S™ — P™ is open. In fact, if I/ C S™ is open,
then 7= Y(n(U)) = U U (-U) is open in S™; hence, 7(U/) is open in P™.

Moreover, m: S™ — P™ is locally injective. In fact, for any arbitrary
point & € S™ we just have to obtain an open set ¥V C S™ such that z € V
and VN(—V) = @. There are many choices for V; we can take, for example,
V ={y e S" {y,x) = 0}. Then 7|V is injective.

Using the last two remarks, we conclude that every point of S™ has an
open neighborhood which is mapped homeomorphically by w: §* — P™
onto an open set of P". A more precise statement is provided by the
following proposition.

Proposition 3.6. FEuvery point p € P™ has an open neighborhood V' whose
inverse image 7~ (V) = V U (=V) is the union of two open sets, each one
of them is mapped by © homeomorphically onto V.

Proof. Let p = {x,—x} € P™. Take an open neighborhood Vozin
S™ such that V N (—V) = @; that is, V does not contain the antipode of
any of its points. Since w is open, the set V = 11'(17) is an open neighbor-
hood of p, with 7= (V) = V U (V) and the restrictions 7|V, 7|(~V) are
homeomorphisms onto V. O

The neighborhood V' with the above property is called a distinguished
neighborhood of the point p € P™.

As in Proposition 3.2, we now show that the quotient map «: S™ — P"
has the unique path lifting property.

Proposition 3.7. Consider a path a: [sp, $1] — P™ and a point x5 € S™ such
that w(zg) = a(sg). There exists a unique path a: [sg,s1] — S™ such that
a(sg) = zp and a = woa (see Figure 3.2).

Proof. The result is valid in the particular case when the image of the path
a is contained in a distinguished neighborhood V' C P", with 7~ 1(V) =
Vu (—f:’) In fact, we choose the notation in such a way that zq € V.
Let h = :"r|f;r Then h is a homeomorphism from V to V. Now take
a=h"loa:[sg, 8] > V.

We now consider another particular case, in which the interval J =
[s0,51] can be subdivided as the union J = J; U .J5 of two compact inter-
vals with a common endpoint s, and that the proposition is valid for the
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Figure 3.2, Path lifting property of the quotient map.

restrictions alJ; = a; and a|J: = ay. We obtain @;: J; — S™ such that
a(sg) = xo and wo @, = ay, and ay: Jo — S™ such that # 0 @ = as and
as(s.) = @i(s.). Now we define a: J — S™ by a|J; = a1 and a|Js = Gs.
The existence of a in the general case reduces to these two particular
cases. In fact, given a: J — P™, the compactness of J provides a decompo-
sition J = J;U- - -UJ}, of J into compact consecutive intervals such that, for
every i = 1,2, ..., k, a(.J;) C Vi, where V; is a distinguished neighborhood.
The uniqueness of @ can be proved as follows: Suppose that a,a: J —
S™ are two paths such that moa = 7 o a. Then, for every s € J, we must
have a(s) = a(s) or a(s) = —a(s). Taking the inner product, we obtain
{a(s),a(s)) = 1 for every s € J. Since J is connected, this inner product
must be constant. If a(sy) = d(sy) then we must have a(s) = a(s) for all
se.J O

The path a is called a lifting of the path a. Note that, given a: J — P™,
there exist precisely two liftings a,a: J — S™. We have a(s) = —a(s) for
every s € J.

We now show that the topology of P™ can be defined using a very simple
and natural metric.

Define the distance between the points p = {z, —z} and ¢ = {y, —y} in
P" by:

d(p,q) = min{|z —yl, |z + y[}.

Geometrically, d(p, q) is the smaller side of the rectangle whose vertices are
x,—z, Yy, —y (see Figure 3.3). The reader may verify that, thus defined, the
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Figure 3.3.

distance d(p, q) satisfies the axioms of a metric space. We use the notation
(P™,d) to represent the real projective space with the metric d. We still
denote the quotient topological space P™ = 5™ /E by P™.

Proposition 3.8. The metric d, introduced above, defines in P™ its usual
topology.

Proof. The map m: 8" — (P™, d) satisfies the condition d(w(x), 7(y)) <
|& — y|; hence, it is continuous. Passing to the quotient, we obtain the
continuous map 7: P* — (P",d), which is nothing more than the identity
map. Since P" is compact and (P",d) is Hausdorff, we conclude that 7 is
a homeomorphism; that is, d defines in P" its own topology. O

The metric space (P", d) has diameter equal to V2. In fact, the greatest
value of the distance d(p,q) between the points p = {z,—z} and g =
{y, —y} is attained when the rectangle of vertices {x, —z,y, —y} is a square.
In this case, we have |z — y| = |z + y| = /2; therefore, d(p, ¢) = v/2. When
this happens, we say that p and g are opposite points in P*. We remark
that if d(p, ¢) = v2 then z € 7 (p), y € 7~ Hq) = |z — y| = V2.

Now we compute the fundamental group of the projective space P™.
We just have to consider the cases where n > 2 because the case n = 1 is
singular, as we show next.

Proposition 3.9. The projective space P! is homeomorphic to the circle S*.

Proof. The continuous map f: S' — 5%, given by f(z) = 22, (multiplica-

tion of complex numbers) is such that f(z) = f(w) < w = +z. Hence, by
passing to the quotient, f induces a continuous bijection f: P! — S such
that for = f. Since P! is compact and §! is Hausdorff, it follows that
the continuous bijection f is a homeomorphism of P! onto S?. O
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From the above result, we have m(P!) =~ Z. Now we examine 7 (P")
for n > 2.

Our analysis is based in the following remark: The lifting a: I — S*
of a closed path a: I — P™ is not always a closed path. (We should recall
that @ has two liftings, @ and —a. One of them is closed if, and only if,
both are closed.)

In order to clarify this point, consider a path @: I — 5™ on the sphere.
Let a = woa: I — P™ be its projection in the projective space P™. Then
a is a lifting of a. If @ is closed, the closed path a has a closed lifting.
However, if the endpoints of @ are antipodal points, a is a closed path in
P™ whose lifting is not closed.

two closed paths a,b: I — P", with base pp, and let E,Fl;: I — S™ be their
liftings with origin xo. Then a(1) = b(1) if. and only if. a = b.

Proposition 3.10. For n > 2, let zp € S™ and py = w(zp) € P". Consider

Proof. 1If @(1) = b(1), then @ and b are paths in S™ with the same origin
and the same endpoints. Since S™ is simply connected, we have a = b It
follows that a = moa=mob=h. N

To prove the converse, suppose that a = b. Note that a(0) = b(0) = 2y
and (1) = g, b(1) = +zq. Thus, a(1) = b(1) < [a(1) — b(1)| # 2.

First, we consider the particular case in which d(a(s),b(s)) # v/2 for
every s € I, that is, the points a(s) and b(s) are never opposite. Then
|a(s) — b(s)| # v/2 for every s, which prevents that we have [a(1) — b(1)] =
2, because @(0) = b(0).

Now we prove the general case. Given a homotopy H: I x I — P"
between a and b, its uniform continuity vields the existence of points 0 =
to < t; < --- < tp = 1 such that d(H(s,t;_1), H(s,t;)) < V2 for every
sel, i=12... k. Define the closed paths ay,ay,...,a, with base py,
by ai(s) = H(s,t;). From the particular case that we have proved above,
we have @;(1) = @;11(1), because the points a;(s) and a;11(s) are never
opposite. Hence @(1) = @p(1) = a1(1) = -+ = ax(1) = b(1). O

Corollary 3.5. For n = 2, the fundamental group of the real projective space
P™ has two elements,; therefore, it is isomorphic to Zs.

In fact, there are only two classes of homotopy of closed paths in P™
with a base at the point py: the class of the paths whose lifting is closed
and those which have an open lifting.

In order to exhibit explicitly the generator of the group mi(P"), let
e;1 = (1,0,...,0), ea = (0,1,0,...,0) and consider the path a: I — 8™,
a(s) = cosws-e; + sinws-e;. The image of this path is an arc of great
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circle connecting the antipodal points e;, and —e; of S™. The closed path
a = moain P™ is not homotopic to a constant; hence, its homotopy class
« = [a] generates 71 (P™). We have 2 = 0 in m;(P") and this reflects the
fact that the path aae has a closed lifting in 5™.

The reader may have noticed the analogy between the methods used
in this chapter to determine the fundamental groups of the circle ' and
of the projective space P™(m > 2). The essential instruments were the
maps &: B — S' (exponential map) and 7: §™ — P™ (quotient map).
Both are local homeomorphisms with simply connected domains and with
the property of unique path lifting. £ and « are examples of universal
coverings.

The general theory of covering spaces will be studied in the second part
this book. The particular cases that we have just considered with ad hoc
arguments are useful as motivation for this future study.

In the remaining examples of this chapter we use rather different tech-
niques. Instead of covering spaces, we use the more general notion of a
locally trivial fibration, which constitutes one of the basilar concepts of
topology and its different applications.

3.4 Fibrations and Complex Projective Spaces

The (real) unit sphere S2"*! may be considered as a set of (n + 1)-lists of
complex numbers z = (21, 29, ..., Zp4+1) such that

1212+ -+ |2msa|? = L.

The multiplicative group S* of the complex numbers of modulus 1 acts on
S$2nLin a natural way: For each u € S* and each z € S, we define

-z = (u-zy, ... U2y ) € §FFTL

The orbit of a point z € §2"! with respect to this action of S is the set
{u-z;u e St} c §¥FL

The complex projective space CP™ is defined as the quotient space of
the sphere $2"*1 by the equivalence relation according to which two points
w,z € §2FL are equivalent if, and only if, there exists u € S! such that
w = u-z. That is, two points are equivalent if, and only if, they belong to
the same orbit. Therefore, for z € $2"*1, its equivalence class is the orbit
{u-z;u € S'} of 2.

Each of these equivalence classes is homeomorphic to the circle S*. The
relation we just defined decomposes the sphere §2"*! as a union of pairwise
disjoint circles, and each one of them is a point of the complex projective
space CP™,




68 3. Some Examples and Applications

We denote by m: §2"+! — CP™ the natural projection, which associates
to each z € §2"*! its equivalence class 7(z) € CP". We endow CP™ with
the quotient topology, according to which a subset A € CP™ is open if,
and only if, 77 1(A) is open in S?"*!, This makes 7 continuous. The
fundamental property of the quotient topology for this particular case can
be stated as follows: For any continuous map f: S*"T' — Y such that
flu-z) = f(z) for every u € St and every z € 82+ there exists a unique
continuous map f: CP™ — 'Y such that fom = f.

We say that f is obtained from f by passing to the quotient.

The natural projection from a space to its quotient space is not nec-
essarily an open map. But, in this case, 7: §?"*t! — CP" is open. In
order to prove this, take A C 5§?"*! open. For each u € S!, the set
w-A={u-zz € A} is open, because z — u - z is a homeomorphism of
S2ntl Hence, m~1(m(A)) = Uyegiu-A is open. From the definition of the
quotient topology, it follows that m(A) is also open in CP™.

The complex projective space CP™ is compact, because it is the image
of the compact space 52" by the continuous map . It is also a Hausdortf
space, as the reader can easily prove.

The decomposition of §2**! in circles has a structure, called fibration,
that occurs in several other geometrical situations. We define this impor-
tant concept now.

A locally trivial fibration, with total space E, base B and typical fiber
F'| is a continuous map w: E — B with the following property: For every
point x € B, there exists a neighborhood U 3 « and a homeomorphism

wu: Ux F— o YU)

such that m oy = 7y, where 7y U x F' — U is the projection in the first
coordinate. That is, the diagram below is commutative.

U x F 2% 7-)

U

U

The equality m(py(z,y)) = x means that, for each z € U, ¢y takes
& x F homeomorphically onto 7 !(z). Thus, the inverse image 7 !(z) of
each point of B is homeomorphic to the typical fiber F.

Each one of the neighborhoods U above is called a distinguished neigh-
borhood and the homeomorphism g is called a local trivialization. If we
denote by ¢y 7 1(U) — U x F the inverse homeomorphism of ¢p, we
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have 7oty = 7 and ¢y transforms homeomorphically 7 =1 (z) onto z x F',
for each z € U. In certain situations (as the one we will see now), it may
be more convenient to use Yy as a local trivialization. Obviously, this does
not make any difference.

Every locally trivial fibration is an open map.

The simplest example of a locally trivial fibration is the product fibra-
tion, where E = Bx Fand n =wp: Bx F — B.

The next stage, in a scale of simplicity, is the trivial fibration. Here,
7: E — B does not appear as the projection in the first factor of a product
but there exists a global trivialization; that is, a homeomorphism p =
¢p: B x F — E such that w(p(z,y)) = z for every (z,y) € B x F.
An example of trivial fibration is given by 7: R® — {0} — S"~ 1 n(z) =
z/|z|. In this example, the typical fiber is R and the global trivialization
w: S R - R™ — {0} is p(x,t) = et-z.

We should remark that the fibration m: £ — B is called locally trivial
because it induces, over each distinguished neighborhood ' € B, the trivial
fibration 7': #~}(U) — U, where 7' is the restriction of = to #(U).

The locally trivial fibrations play a relevant role in topology, geometry
(differential and algebraic), analysis, physics, and many other areas of pure
and applied mathematics.

In order to compute the fundamental group of CP" we first show that
this space is the base of a locally trivial fibration.

Proposition 3.11. The quotient map w: S?"*1 — CP" is a locally trivial
fibration, with typical fiber ST

Proof. For j = 1,2,...,n+ 1, the sets V; = {z € §?""1;2; # 0} are
open in S?"7! therefore the sets U; = m(V;) are open in CP™. The sets
U; cover the complex projective space. Moreover, it is easy to see that

V; =« 1(U;). Define the maps ;: V; = U; x St by

Ui(z) = (m(z), —&), j=1,2,....n+L
e
We have, evidently, 7y, o ¢; = 7. In order to prove that each v; is a

trivialization, we only need to verify that it is a homeomorphism. The
continuity of ¢; is evident. Define its inverse w;: U; x ST — V; by setting,
for each m(z) € U; and each u € S*,

Uz
pi(z)u) = Loz

|31

The right hand side of the above equation remains the same when we change
z by v -z, with v € S%; hence, y; is well defined. The fact that ¢; is the
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inverse of 1; can be seen as follows:

@v;(2) = ¢; ("T(z) Z—J) R R

jEn ERREA

On the other hand,

bieitrlh = vy (22 = (a(2) 0,
In fact, v = uZ; /|z;| € St hence, 7(v - z) = m(z) and, by defining w = v -2
(hence w; = vz;), an easy computation shows that w; /|w;| = u.

In order to prove that ¢;: U; x S — V; is continuous, we consider
o;: U; — V;, defined by o;(n(z)) = (Z;/|2;]) - 2. The right hand side
of this equality does not change if we replace z by u - z, u € S'; Hence,
o; is well defined. Moreover, o; o w: V; — V; takes z into (Z;/|z]) - 2,
hence it is continuous. Thus, o;: U; — V; is continuous. Finally, since
w;(w,u) = u-o;(w), we conclude that ¢; is continuous. O

The following proposition states that a locally trivial fibration has the
path lifting property.

Proposition 3.12. Let #: E — B be a locally trivial fibration, a: J — B a
path, with J = [sp, 1], and z5 € E a point such that w(zo) = a(sg). There
ezists a path a: J — E such that moa = a and 4(s) = zp.

Proof.  Suppose, initially, that the image a(J) is contained in a distin-
guished neighborhood U. We have the local trivialization ¢p: U x F —
a1 (U), with 2o = pp(a(so), %), Yo € F. We define the path a: J — E by
a(s) = pulal(s),yo), for every s € J.

Now we consider the particular case in which J = J1 U Jz is the union
of two adjacent compact intervals, with an endpoint 5, in common, in such
a way that, by setting a; = alJ; and as = a|Ja, the proposition is valid
for a; and as. Then there exists a path a;: J; — E, with @;(sg) = zp
and moa = a;. Let z. = @1(s,) and z. = 7w(z,) = a(s,). There is a
path @s: Js — E, with @s(s.) = z, and 7 o @y = as. We define the path
a:J — E by dlJ; = a; and alJs = as.

The general case reduces to the repeated use of the particular case above
since, by virtue of the compactness of J, there exists a decomposition
J = JyU---U.J; in consecutive intervals such that each image a(.J;) is
contained in a distinguished neighborhood. ]

The path a is called a lifting of the path a beginning at the point zp.
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Remark. The initial condition @(sg) = zp does not assure us that the lifting
a of the path a is unique, unless the fiber F' is totally disconnected.

Later on, we will use the following corollary to Proposition 3.12:

Corollary 3.6. Let m: E — B be a locally trivial fibration. If the base B and
the typical fiber F' are pathwise connected, the total space E is also pathwise
connected.

In fact, given x, y € E, there exists a path in B connecting w(z) to
7(y). The lifting of this path from the point = connects this point to a
point z € 7 *(m(y)). Since the typical fiber is pathwise connected, the
same happens with 7= *(m(y)); hence, z can be connected to y by a path
in this fiber over 7 (y). By composing, we obtain a path in E, connecting
x to y.

In the following proposition, we have zp € E and zg = 7(20).

Proposition 3.13. Let w: E — F be a locally trivial fibration. If the typical
fiber F' is pathwise connected, the induced homomorphism ny : mi(E, z) —
m1(B,zg) is surjective.

Proof. For each z € B, the fiber #71(z) over x is homeomorphic to the
typical fiber I'; therefore, it is pathwise connected. Let a: I — B be an
arbitrary closed path with base zy. Using Proposition 3.12, we obtain a
path b: I — E| contained in 7~ 1(xzy), connecting a(1) to the point z5. We
have that mo b = e, is a constant path onto zy. The path ab is closed in
FE, with base z;, and it satisfies

my([ab]) = [m o (ab)] = [aea,] = [a].
Therefore, 7y is surjective. O

Corollary 3.7. For every n = 1, the complex projective space CP™ is simply
connected.

In fact, in the fibration w: §?"+! — CP", the total space 5*"*! is
simply connected and the typical fiber §! is pathwise connected.

3.5 Exercises

1. An open set of R? cannot be homeomorphic to an open set of R™ if
n > 2.
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2. For any two continuous maps f, g: 8 — 9!, the degree of f o g is the
product of the degrees of f and g.

3. Amap f: S' — Sliscalled odd when f(—z) = — f(z) for every z € S'.
Prove that the degree of a continuous odd map is an odd number.

4. Let T? = §' x §' be the torus, and m, n, p, ¢ be integers. Consider
the continuous map f: T? — T2, defined by

f(f_’,ir._. eiy) — (ei{m:1:+ny) , ei(p:z:+py) )

Determine the homomorphism fy: 71(7?) — m1(T?), induced by f. Prove
that f is a homotopy equivalence if, and only if, it is a homeomorphism.

5. Every retract of a contractible space is contractible. Conclude that the
circle S? is not the retract of the disk B2.

6. Let n > 1. For every continuous map f: S™ — R?, there exists € S™
such that f(—z) = f(x).

7. Every 3 x 3 matrix with positive elements has a positive eigenvalue.
(Suggestion: Let A be the given matrix. Consider the set P of the elements
of 52 whose three coordinates are non-negative. Find a fixed point of the
map f: P — P, f(z) = A(z)/|A(z)].)

8. Consider two continuous maps f, g: S? — R such that f(—z) = —f(z)
and g(—z) = —g(z) for every z € 52 Prove that there is some point
xp € §? for which we have f(zg) = g(zg) = 0.

9. Let w: £ — B be a locally trivial fibration. If the base B and the
typical fiber F' are connected, then the total space E is also connected.

10. Let a: I — P™ be a closed path such that d(a(s),a(0)) < /2 for every
s € I. Prove that [a] = 0.

11.  Let f, g: B2 — S? be continuous maps, such that (z,y) € St =
flz,y) = (z,y,0), g(z,y) = (—y,x,0). Prove that there exists (z,y) € B?,
with f(z,y) = £g(z, y).




Chapter 4
Classical Matrix Groups

In this chapter, we study the classical matrix groups SO(n), SU(n), and
Sp(n). We prove some homotopy results related to them, and compute
their fundamental groups.

4.1 Rotations in Euclidean Space

Let SO(n) be the group of rotations of the Euclidean space R™; that is, the
set of all linear transformations T': R™ — R™ such that

(T(z), T(y)) = (z,y)

for any z,y € R™; and detT = 1. The elements of SO(n) can also be
interpreted as real n x n orthogonal matrices with the determinant equal
to 1.

The multiplication (composition) of linear transformations turns SO(n)
into a group, and its natural topology provides a topological group struc-
ture. The fact that the determinant of each of its elements is positive
implies that SO(n) is pathwise connected. This is proved right after Propo-
sition. 4.5

Note that the matrices X € SO(n) are solutions of the system of
quadratic equations X- X7 = I. From this, we can prove, using the Im-
plicit Function Theorem, that SO(n) is a compact surface of dimension
n(n — 1)/2. This is the content of the following proposition.

Proposition 4.1. The group SO(n) is a compact surface of dimension n(n —
1)/2 in the space R"™ of the n x n matrices.

73




74 4. Classical Matrix Groups

Proof. One form of the Implicit Function theorem says that if f: U — R™
is a smooth map defined in an open subset U of Euclidean space R™ and
¢ € R™ is a regular value of f (that is, f'(x): R* — R™ is surjective for
every z € f~!(c)), then f~!(c) is a smooth surface of dimension n — m in
R™. (See Bredon (1993), page 84.).

Now let U < R"™ be the open set of all invertible n x n matrices with
a positive determinant. Identify the set of symmetric n x n matrices with
R +1/2 Consider the smooth map f: U — R™™F1/2 given by f(X) =
XXT. Then SO(n) = f~Y(I), where [ is the n x n identity matrix. To
prove that SO(n) is a smooth surface of dimension n? — n(n + 1)/2 =
n(n— 1)/2, it suffices to show that the derivative f/(X): R"" — Rn(n+1)/2
is surjective for each X € SO(n). Clearly, for every n x n matrix V, we
have f'(X).V = VXT+XVT. Given any symmetric matrix § € R*(n+1/2,
take V = SX/2. Then, since XX T = I and ST = S, we have

fi(X)V=8XX"2+4+XXTS/2=5/2+5/2=385,

so f'(X) is surjective. The surface SO(n) is clearly a closed subset of R
It is also bounded since all columns of an orthogonal matrix have length 1.
Therefore, SO(n) is compact. O

For n = 1, we have SO(1) = {1}, a group with only one element. When
n = 2, each element of SO(2) is a 2 x 2 matrix, whose columns, in the
natural order, constitute a positive orthonormal basis of R%. To determine
it, we just have to know the first column, a complex number 2 € S (since
the other must be -2, with i = /=1). Thus, SO(2) is isomorphic to S*,
the multiplicative group of complex numbers of modulus 1. In particular,
m1(SO(2)) = Z.

A geometric interpretation of the above isomorphism can be obtained
as follows: A positive rotation of the euclidean plane is completely defined,
in a unique way, by a point z € §'. This point z is a complex number of
modulus 1, thus z = cos(2nf) + isin(2nf), 6 € [0,1). The matrix of the
rotation is given by

cos(2wf) — sin(2n0)
R(0) = (sin(?ﬂ'ﬂ) cos(276) ) '

For a given point x = (z1,72) € R?, its image under the rotation can
be obtained by a matrix multiplication R(#) - x, or by a complex number
multiplication zzx.

For every n > 3, we prove in what follows that m1(SO(n)) = Z2 is a
group of two elements. In this section, we compute the particular cases
71(SO(3)) = Za and 71(SO(4)) = Zs. This is done by proving that SO(3)
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is homeomorphic to the real projective space P®. This is an exceptional
fact. There is no relation between P™ and SO(n) when n > 3. (Note the
coincidence of the dimensions: n(n — 1)/2 = 3 if, and only if, n = 3.)

In order to relate SO(3) with P%, we use the algebra of quaternions,
created by the Irish mathematician Sir William Hamilton.

The set of quaternions is simply the Euclidean space B* in which we
introduce a multiplication with interesting properties.

Each quaternion (element of B*) will be represented in the form

w=1t+xi+yj+ zk

instead of w = (t,z,y,z). The basic vectors 1, i, j, k are called the unit
quaternions. 1 = 1404+ 05+ 0k is the real unity; the others are imaginary
units. The operations of vector space are the usual ones in R*.

In the space of the quaternions R, we single out two special subspaces:
R and R?. R is the set of real quaternions t 4 0-i 4+ 0-j + 0-k and R? is the
set of pure imaginary quaternions zi + yj + z-k. We also say, in accordance
with the traditional Hamiltonian vector calculus, that R is the set of scalars
and E? is the set of vectors. With respect to the standard inner product of
R* (which we will always adopt), R? is the orthogonal complement of R.

Quaternion multiplication is defined, by bilinearity, when we define the
products of the unit elements. This is shown in the following table:

| | =
=] LUE P,
|
Eol
|
[
=

The above multiplication has the properties of distributivity (seen by
brute force) and associativity (tedious verification). Nevertheless, commu-
tativity does not hold, as shown by the table itself.

On the other hand, every non-null quaternion w has a multiplicative in-
verse w—!. To prove this fact, we introduce the conjugate W of a quaternion
w:

w=t—zi—yj—zk if w=t+zit+yj+zk

We have w- = @-w = |w|* where |w|” = 12 + 22 + y2 + 22. Therefore, if
w # 0, the definition

yields w-w™! =w tw = 1.
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The modulus of a quaternion behaves well with respect to the operation
of quaternion multiplication: |w-w’| = |w|-|w'|.

From this, it follows that the sphere §* C R*, the set of quaternions
of modulus 1, is a group with respect to quaternion multiplication. The
multiplication R* x R* — R*, being bilinear, is continuous. Hence, 5% is a
topological group. (When |w| = 1, we have w™! = @.)

Lemma 4.1. If the quaternion w commutes with every pure imaginary
quaternion then w is real. If, moreover, w € 8%, then w = *1.

Proof. If w = a+ bi + ¢j + dk then iw = —b+ ai — dj + ck, and wi =
—b + ai + dj — ck. From wi = iw, we conclude that ¢ = d = 0; that is,
w = a + bi. Hence, wj = aj + bk and jw = aj — bk. From this, we have
(using wj = jw) that b = 0; therefore, w = a is real. |

Proposition 4.2. There exists a continuous and surjective homomorphism

w: 8% = S0(3), whose kernel is {1, —1}.

Proof. To each u € S* we associate the linear transformation ¢, : R? —
R3, defined by @, (w) = u-w-u~!. First we prove that ¢, is well de-
fined. Considered initially as defined in R? ¢, is evidently linear and,
since |u-w-u~l = |w|, p,: RY — R it is orthogonal. Moreover, since
wu(1) = 1, the subspace R of the reals is invariant by . Therefore, its
orthogonal complement R?, the set of pure imaginaries, is also invariant by
. In other words, when w = i + yj + zk is a pure imaginary, the same
holds for uwaw~!. Thus, the orthogonal linear transformation ¢, : R* — R?
is well defined.

The columns of the matrix of ¢, are the vectors w-i-u™!, w-j-u~! and
u-k-u~!, which depend continuously on u € S%. We have det(p,) = +1 for
every u € S3. Since S? is connected and, for u = 1, we have det(p,) = 1,
it follows that det(y,) = 1 for every u € S®. Therefore, p, € SO(3) for
every u € S which gives us a continuous map

©: 5% =5 50(3), uwr o, = p(u).

Evidently, w,. = @,0p,, 80 @ is a group homomorphism. The kernel of ¢ is
the set of all quaternions u € S§* such that ww-u~! = w; that is, vw = w-u,
for every w € R?. By Lemma 4.1, we conclude that the kernel of ¢ contains
only the quaternions 1 and —1. In other words, ¢(x) = ¢(y) < y = L=
In particular, ¢ is locally injective.

In order to conclude the proof, we need to prove that ¢ is surjective.
Since S* is compact and SO(3) is connected, it is enough to show that ¢ is
an open map. (In fact, it follows from this that ©(S?) is a closed and open
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subset of SO(3).) With this in mind, we appeal to differential calculus.
We start by observing that ¢ is a map of class C*°. (For each u € S?,
the elements of the matrix of ¢, are infinitely differentiable functions of
u.) Since ¢ is a group homomorphism, its rank is constant. From the rank
theorem, since ¢ is locally injective, its rank is maximum, that is, it is
equal to 3. In particular, y is a local diffeomorphism and therefore an open
map. D

For information about the rank theorem, used in the above proof, the
reader should consult Dieudonné (1960), page 273. A simpler proof can be
found in Lima (1999), page 300 (in Portuguese).

For a purely algebraic proof that ¢ is surjective, see Exercise 6 at the
end of this chapter.

Remark. Let f: M — N be a smooth map between surfaces. At every point
x € M, the derivative of f is a linear map f'(z): .M — T,N, y = f(z).
The rank of this linear map, i.e., the dimension of its image space, is called
the rank of f at the point x. When the surfaces have a group structure,
with smooth multiplication and inversion, and the map between them is a
smooth homomorphism ¢: G — H, then the rank of ¢ is the same at all
points x € G. To see this, let 21, 22 € G be any two points, with y1 = ¢(x1)
and y; = @(xs). The left translation by zox7 ! in G and by yey; ' in H
are diffeomorphisms A: G — G, p: H — H such that oo A = po g
hence, ¢'(z1).N(x1) = p'(y1).9'(z1). Since XN(z1): T, G — T,,G and
wzy): Ty H — T, H are isomorphisms, it follows that the linear maps
(1) Ty, G — Ty, H and ¢'(x2): T,,G — T, H have the same rank. In
the case of the above lemma, the homomorphism ¢: §% — SO(3) is locally
injective, since ¢(x) = ¢(2') = 2’ = —z. By the rank theorem, a map of
constant rank can only be locally injective when its derivative is injective at
each point. Since §% and SO(3) have the same dimension, this means that
¢'(x) is an isomorphism at each point # € S? so, by the Inverse Function
theorem, ¢ is a local diffeomorphism; hence, it is an open map.

Corollary 4.1. The group SO(3) of rotations of Euclidean space R® is home-
omorphic to the projective space P3.

In fact, since the kernel of ¢ is {+1, ~1}, we have p(w) = p(w') &
w' = 4w. By passing to the quotient, we obtain a continuous bijection
7: P3 — SO(3). Since P? is compact and SO(3) is Hausdorff, 7 is a
homeomorphism.

It follows from Corollary 4.1 that 71(SO(3)) & m1(P?) = Zs.
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Remark. Define a map h: S — 52 by setting, for each v € S%, h(u) = u~
i-u = @, (i). The map h is continuous, surjective, and h(u) = h(v) < wv™
commutes with i, which means that w = u-v™! = a + bi is a complex
number. The result from this is the equivalence relation induced in S? by
h is the same that defines CP! as a quotient space. By passing to the
quotient, we obtain a homeomorphism h: CP' — S§%. Another result from
this is & is a locally trivial fibration with typical fiber S!.

The map A, introduced in the above remark, is known as Hopf ftbration,
in honor of the topologist Heinz Hopf, who introduced it. It is a classical
object and constitutes an outstanding mark in the history of topology.

In order to exhibit explicitly a closed path whose homotopy class is the
non-null element of 7, (SO(3)), it is enough to consider a path in 53, such
as a: I — S% defined by a(s) = cosms + sin ws-k, with antipodal endpoints
a(0) =1, a(l) = —1. Then a = ¢poa: I — SO(3) is a closed path non
homotopic to a constant. For each s € I, the columns of the matrix of the
linear transformation a(s) = @g(s) are the images of the unit quaternions
i, j, k € R® which are

a(s)(i) = (cosms +sinws-k)-i-(cosws — sinws-k) =
= (cos® ms — sin® 75)-i + 2sin TS oS WS- j =
= cos2mws-1 + sin 27ws- 7,
a(s)(j) = —sen2ws-i + cos2ws-j and
a(s)(k) = k.
Therefore, the generator of #1(SO(3)) is the homotopy class of the

closed path a: I — SO(3) such that, for each s € I, the transformation
a(s): R* — R3 has the matrix

cos2ws —sin2ms 0
sin2ws  cos2ws 0
0 0 1

Remark. An intuitive explanation for the fact that aa is homotopic to a
constant (that is, a = a™!), can be given as follows: For each s € I, the
columns of the matrix a(s) form a positive orthonormal trihedron whose
two first vectors are on the horizontal plane and the third is the vector
k =(0,0,1). (See Figure 4.1.)

When s varies in I, the two first vectors of a(s) describe the equatorial circle
and the third remains fixed. The homotopy between a and a~! consists of
turning the equatorial plane by an angle of 180° around an axis E. For each

instant ¢ we have a path analogous to a but made up of trihedra whose first
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Figure 4.1.

two vectors are on the plane that passes through the axis F and makes an
angle of wt radians with the horizontal plane. At the end of the homotopy
we have the path a—!, which consists of a trihedron whose two first vectors
describe the horizontal equatorial circle in the opposed sense of the initial
one and the third vector remains fixed, equal to —k.

The computation of the fundamental group of SO(4) is based in the
following proposition.

Proposition 4.3. The topological space SO(4) is homeomorphic to the Carte-
sian product of SO(3) and the sphere S*.

Proof. Let h: SO(4) — SO(3) x S? be the continuous map that associates
to each orthogonal operator T: R?* — R* the pair h(T) = (T',w), where
w = T(1) is the quaternion of modulus 1, image of the quaternion 1 by T,
and T": R* — R? is defined by T"(v) = T(v)-w~! (quaternion multiplica-
tion) for every v € R*. The map 7" is, by its definition, an operator of k*
but, since 77(1) = 1, its restriction to R® takes the pure imaginary v into
another pure imaginary 7"(v). It is easy to prove that h is bijective; hence,
it is a homeomorphism. O

Corollary 4.2. The fundamental group of SO(4) is Zs.

In fact,
m1(SO(4)) = m(SO(3)) x m1(S*) = m1(SO(3)) = Zo,

because the sphere S? is simply connected.
From the above homeomorphism and the identification of a generator
of w1(SO(3)), it follows that the fundamental group of SO(4) is generated
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by the homotopy class of the path b: I — SO(4) where, for every s € I,
the operator b(s): R* — R* has the matrix

1 0 0 0
0 cos2ws —sin2wxs 0
0 sin2ws cos2ws 0
0 0 0 1

Using the fundamental group of SO(3), we provide below a self-contained
proof of the theorem of Poincaré, according to which every continuous tan-
gent vector field to the sphere 52 has a singularity; that is, a point zy € $2
where the vector field is null. We remind the reader that v(z) tangent to
S? at the point x means that v(z) is orthogonal to x.

Proposition 4.4. (Poincaré) There is no continuous map v: S2 — R* such
that v(z) # 0 and (x,v(x)) = 0 for every x € 52,

Proof. Suppose, by contradiction, that v exists. By replacing v(z) with
v(x)/|v(z)|, we obtain a continuous map v: S? — S? such that {z,v(z)) =0
for every z € S?. Then, taking w(z) = z x v(x) (vector product) we
have, for each z € 52, an orthogonal matrix M(z) = [z, v(z), w(z)], whose
columns z, v(z),w(z) depend continuously on z. We have M(z) € SO(3).
Let’s consider SO(2) C SO(3) using the identification

1 0 0
a b
(C d) — [0 a b
0 ¢ d
Now we define a continuous map

h: §? x SO(2) — SO(3)

by h(z, L) = M(z)L. The map h has an inverse T + (z, M (x)~'T), where,
for every T € SO(3), we define x = T'(e;) = first column of 7. Then h is
a homeomorphism. But, since m1(5? x SO(2)) = Z and m(SO(3)) = Zs,
these spaces cannot be homeomorphic. This contradiction completes the
proof. ]

4.2 The Groups SU(n) and Sp(n)

The results of this section will not be used in the chapters that follow.

Based on the cases where that we have studied in the previous section
n < 4, we now compute the fundamental group of SO(n) for every value
of n. The method used also allows us to compute the fundamental group
of other classical matrix groups, namely: SU(n), U(n), and Sp(n).
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The main tool to compute m1(SO(n)) is the map
m: SO(n) — S™ 71,

which associates to each linear transformation T' € SO(n) the unit vector
7(T) = T(e1), image by T of the first vector e; of the standard basis of
R™. Identifying T with its matrix relative to this standard basis, w(T") is
simply the first column of the matrix 7.

The most important property of the map 7 is the following proposition.

Proposition 4.5. The map 7 @5 a locally trivial fibration, with typical fiber
SO(n — 1).

Proof. Consider initially the open set ¥V < S™~!, which consists of the
unit vectors x = (x1,...,x,) such that ®; > 0. This means that the
matrix [z,ez,...,€,], whose first column is z, has a positive determinant.
The classical orthonormalization process of Gram-Schmidt, applied to the
column vectors of this matrix, furnishes an orthogonal matrix with positive
determinant, denoted by o(z), which depends continuously on the vector
z. In this way, we have defined a continuous map o: V — SO(n). Since z
is a unit vector, the Gram-Schmidt process does not change it; therefore,
the first column of the matrix o(z) is . Hence, we have

o: V= a (V)

and o is a local section of m; that is, we have m oo = idy. From o, we
define a local trivialization

ov: V x80(n—1) = x 4V)

vz, M) =a(x) M.

Here, we are considering SO(n — 1) C SO(n), where each linear trans-
formation M € SO(n — 1) operates in R™ by leaving the vector e; fixed.
In terms of matrices, this corresponds to identifying each matrix M €
SO(n — 1) with the n X n matrix obtained from it by inserting the first row
(1,0,...,0) and the first column also equal to (1,0,...,0).

In the definition of v, o(z)-M is a product of matrices. As we can
easily prove, the first columns of o(z) and M being respectively z and e,
the first column of o(x)-M is z. In other words, we have w(pv(z, M)) = x;
therefore, pyv is, indeed, a local trivialization, whose inverse homeomor-
phism is ¥y : 7= H(V) — V xSO(n— 1), defined by ¢y (T) = (z,a(z)~1-T),
where z = 7(T').
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The open set V is a neighborhood of ¢; in §"~!. In order to obtain
a local trivializations over neighborhoods of the other points, we take for
each y € S"7!, a transformation T € SO(n) such that T'(e;) = y. Then
W = T(V) is an open neighborhood of y. We define the local trivialization

ow: W xS0(n —1) - 7~ HW)

by setting, for every w € W and every M € SO(n — 1), pw(w, M) =
ToT=(w)-M. O

The fibration « allows us to conclude, by induction, starting with
SO(1) = {1}, that SO(n) is pathwise connected. (See Corollary 3.6.)

Remark.  Given S, T € SO(n), we have 7(S) = «(T) if, and only if,
S71T(e1) = ey, that is, T71S € SO(n — 1). This means that the fibers
7 Yz), z € S"7!, are the cosets T-SO(n — 1), relative to the subgroup
SO(n — 1). By passing to the quotient, we obtain a continuous bijection
7: SO(n)/SO(n — 1) — S™~!, which is a homeomorphism, because 7 is
open. Thus, the sphere §"~! can be considered as the homogeneous space
SO(n)/SO(n — 1). This is not a quotient group because SO(n — 1) is not
a normal subgroup of SO(n).

In order to establish an analogous fibration for complex matrices, we

recall that, in the vector space C™, whose elements are lists z = (z1, ..., z,),
w = (wy,...,wy,), of n complex numbers, the hermitian inner product is
defined by

(z,w) = 21W1 + - - + 2, Wh.

The unitary group U(n) is formed by the linear transformations T': C™* —
C™ which preserve this inner product; that is, which fulfill the condition
(T(2), T(w)) = (z,w) for any z, w € C™. Identifying T with its matrix
relative to the standard basis of C™, we can consider U(n) as the set of
complex n X n matrices whose columns (and rows) have length 1 and are
pairwise orthogonal (unitary matrices).

If we use the notation T for the transpose matrix of the conjugate of
T, we can easily prove that T € U(n) <> T T* = T*T = I (where I denotes
the identity matrix of order n). By taking determinants of both sides, we
have

T e U(n) = det(T)-det(T') = det(T T*) = det I = 1,

hence, det(T') € St for every T' € U(n).
The description by matrices shows that U(n) is a bounded and closed
subset of € (or of ]RQ”Z); hence, it is compact.
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The special unitary group SU(n) is the subgroup of U(n) that consists
of the unitary matrices which have determinant equal to 1. As a closed
subset of U(n), the group SU(n) is compact.

We define, as before, a continuous map

m: SU(n) — §*1,

by w(T) = T(e1). That is, w(T) is the first column of the matrix of T
relative to the standard basis of C™.

In order to prove that 7 is a locally trivial fibration, we consider the open
set V' < S?"~! formed by the unit vectors z = (z1,..., z,) such that z; # 0,
hence {z,€3,...,e,} C C" is a basis. We apply the Gram-Schmidt process
to this set, to obtain an orthonormal basis {z,vs,...,v,}. Let A be the
determinant of this system of vectors. Then z, vy /A, v, ..., v, are columns
of a unitary matrix o(z), with determinant 1, which has first column z and
depends continuously on z. This defines, therefore, a continuous map

oV —=a 1(V),

with 7 o ¢ = idy; hence, ¢ is a section of 7 over V. From this, we define
the local trivialization

ey VxSUm—1) =7 HV)

by ov(z, M) =a(z)- M.

Here, we are considering SU(n — 1) < SU(n), identifying each matrix
M € SU(n—1) with the matrix of SU(n) obtained by inserting in M a first
row and a first column, both equal to (1,0,...,0).

The continuous map

v N (V)= V x SU(n — 1),

defined by

Yy (T) = (z,0(2)"1-T),
where z = T'(e;), is the inverse of ¢y; hence, gy is a homeomorphism.
Obviously m(pv(z, M)) = z; therefore, ¢y is a local trivialization. As in
the case of SO(n), for each point y € S?"~! we consider a transformation

T € SU(n) such that T'(e;) = y. Then W = T(V) is a neighborhood of y
in §2*~! and we define the local trivialization

ew: W xSU(n —1) = =~ }{(W)

by ww(w, M) = ToT~ (w)-M. The verification of the details is easy, so
we may state that the map o: SU(n) — S$2"~1 is a locally trivial fibration.
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By Corollary 3.6, we conclude, using induction, that SU(n) is pathwise
connected. In fact, SU(1) = {1} is pathwise connected. The base and
typical fiber (equal to SU(1)) of the locally trivial fibration w: SU(2) — S
are pathwise connected. (In fact, 7 is a homeomorphism between SU(2) and
S? since the fiber has only one element.) Now, the fibration w: SU(3) — S°
has base and typical fiber (equal to SU(2)) connected; hence, SU(3) is
pathwise connected. And so on.

As to the group U(n) of the unitary n x n matrices, we remark that we
have a homeomorphism

U(n) = S' x SU(n).

In particular, U(n) is pathwise connected.

The above homeomorphism is the map f: S x SU(n) — U(n), defined
by f(u,T) = R, where R is the matrix obtained from 7' multiplying the
first column by u. The inverse of f is the continuous map ¢g: U(n) —
St % SU(n), given by g(R) = (u,T), where u = det. R and T is obtained
from R by dividing the first column by wu.

There exists a fibration 7: U(n) — $?"" !  defined in a similar way as
the previous ones, but it is not necessary to consider it in order to compute
the fundamental group of U(n) because m;(U(n)) = m(SU(n)) x Z, by
virtue of the above homeomorphism.

The computation of the fundamental group of SU(r) is based on the
following proposition.

Proposition 4.6. Let w: E — B be a locally trivial fibration. If the base B is
simply connected and the typical fiber F is pathwise connected, then the fun-
damental group of E is isomorphic to a quotient group of the fundamental
group of F.

Corollary 4.3. For every n, SU(n) is simply connected and 71(U(n)) = Z.

In fact, SU(1) = {1} and SU(2) = S? are simply connected. By its
turn, the fibration SU(3) — S®, with a simply connected base, shows that
m1(SU(3)) is a quotient group of 71 (SU(2)), hence it is equal to zero. And
so on. Since U(n) is homeomorphic to the product of S by the simply
connected space SU(n), it follows that =1 (U(n)) = Z.

The computation of 7;(SO(n)) is based on Proposition 4.7, where the
hypothesis contains the statement wa(B) = 0. The assertion wa(B) = 0
means that every continuous map f: S% - B is homotopic to a constant.

Taking into account that the sphere $? is homeomorphic to the quotient
space of the square I x I by the equivalence relation that identifies all of the
boundary 8(1 x I') to a single point, we can express the condition m3(B) =0
by saying that, for any given continuous map g: I x I — B with g|d(I x I)
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constant, there exists an homotopy H: (I x I) x I — B, between g and
a constant map, such that, for each ¢ € I, Hy(8(I x I)) = b, reduces to a

single point (see Figure 4.2).

85

In this definition, the base point H,(&({ x I) = b; can move during
the homotopy. Nevertheless, as we prove now, given the continuous map

g: (I xI,0(Ix1I))— (B,by) satisfying the above conditions, it is possible
to modify the homotopy H so that the base point b; remains fixed, equal

to bg, for every value of t.

Hoy(I x I)
b,
b, b, b
Ke=H,o o K, K,,
4}
0=<r=1)2

b, b, b,

[~ L1

b, b, by b, b, b,

ZARN

b, b, b,

Figure 4.3.
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The new homotopy Ky, between g and the constant map I xI — by, with
K (8(I x I) = by for every t, is illustrated in Figure 4.3. For 0 <¢ < 1/2,
the continuous map K;: I x I — B takes each of the radial segments into
the path that goes from by to bs; and, in the square of face 1— 2, concentric
with I x I, Ky reproduces, in scale, the map Hy;. Thus, K, transforms
all of the square I x I in the image of the path described by the points
by = H¢(9(I x I)), in such a way that on each ray that starts in the center
of I x I, Ki2, it moves along the same path.

For 1/2 <t < 1, K, simply contracts the path that goes from by to
by(1_+), back to by, maintaining by as fixed.

Proposition 4.7. Let w: E — B be a locally trivial fibration such that the
typical fiber F' is pathwise connected, the base B is simply connected, and,
moreover, ma(B) = 0. Then the fundamental group of E is isomorphic to
the fundamental group of F.

Remark. The hypothesis m3(B) = 0 in Proposition 4.7 is necessary, as
evidenced by the Hopf fibration §% — 52, whose base is simply connected,
and the fiber ! is pathwise connected but w1 (S5%) # m(S1).

Corollary 4.4. Forn > 3, we have m1(SO(n)) = Zs.

In fact, we know that m1(SO(3)) = Zs and that SO(n) is a locally
trivial fiber space with base S™"~! and typical fiber SO(n — 1). Moreover,
for n > 3, the sphere 57! is simply connected. We just have to prove
that m2(S™) = 0 for n > 3. For this, we observe that every continuous
map f:S? — S™ is homotopic to a differentiable map, whose image has
measure zero (Sard’s theorem) when n > 2. In particular, a differentiable
map S2 — S™ is never surjective if n > 2; hence, it is homotopic to a
constant.

In order to complete the computation of 7;(SO(n)), m(SU(n)) and
71(U(n)), it remains to prove Propositions 4.6 and 4.7.

The proof of Proposition 4.6 uses the lemma below. We say that a
homotopy H: X x I — Y starts with f: X — Y when H(x,0) = f(x)
for every *x € X. For an arbitrary fibration 7: E — B, we say that
H: X x 1 — FEis a lifting of the homotopy H: X xI — BwhenwoH = H.

Lemma 4.2. (Homotopy lifting for paths) Let w: ' — B be a locally trivial
fibration. Given a path a: J — E, every homotopy H: J x I — B that
starts with a = moa has a lifting H: J x I — E that starts with a.

In general, Lemma 4.2 is used in a seemingly stronger version, where
we impose to the lifting H not only that it starts with @ but also that it
satisfies the additional conditions that are specified in the next lemma.
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Let J = [sg,s1], s0 8J = {sp,s1}. In the lemma below, X represents
one of the sets (J x 0) U (&J x I) or (J x0)U(s1 x I), that is, the base
and the vertical sides of the rectangle J x I or the base and the vertical
left side of the rectangle.

Lemma 4.3. Let w: E — B be a locally trivial fibration and f X —» FE
be a continuous map. Every homotopy H: J x I — B that coincides with
f=mo f in X has a lifting H: J x I — E that coincides with f in the
same set X.

In spite of their appearances, Lemmas 4.2 and 4.3 are equivalent since
there exists a homeomorphism  from the rectangle J x I onto itself that
takes the set X in the set .J x 0.

To prove this, we start by observing that it is enough to define a homeo-
morphism ¢ from the boundary of the rectangle to itself and extend it radi-
ally to the interior of the rectangle. In fact, if a is the center of the rectangle,
every point x € .J x I can be written, in a unique way, as ¢ = (1 —#)a + ty,
with y € 8(J x I') = the unique point of the boundary of J x I on the ray
ai. The radial extension of ¢ is defined by p(z) = (1 — t)a + t3(y), where
we suppose that ¢(y) is known since y € 8(J x I).

Now, we define the homeomorphism ¢: 8(J x I) — 9(.J x I) that takes
X =(Jx0)u(aJ xI)ontoJx0.

Figure 4.4 illustrates how the above homeomorphism ¢ operates: the
points A, B, C', D, E, F are transformed respectively in A, B', C', D',
E', F'. Each line segment in the boundary of the rectangle connecting two
of these points is transformed by ¢, linearly, into the line segment that
connects the corresponding image points.

The case X = (J x 0) U (51 x I) is analogous.

Proof of Lemmas 4.2 and 4.3. Case 1. Suppose initially that E = B x F
and 7: B x F' — B is the projection onto the first factor. We have a(s) =

A B C D B o

.

Figure 4.4,
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(a(s),b(s)). We define H: Jx I — Bx F by H(s,t) = (H(s,t),b(s)). This
proves Lemma 4.2 (and therefore 4.3) in this case.

Case 2. Now, suppose that there exists a global trivialization; that is, a
homeomorphism ¢: B x F — E, with w(¢(z,y)) = z. From the previous
case, there exists a lifting K:JxI— BxF of the homotopy H, starting
with ¢! oa. Then H= po K:JxI—FEisa lifting of H, starting with
@, which proves Lemma 4.2 (and hence, Lemma 4.3) in the present case.

Case 3. (General) In the general case, we use the compactness of .J x I
to obtain a decomposition J = JyU...UJy, I = L U... U, in consecutive
intervals in such a way that each rectangle R;; = J; x I; has its image
H(R;;) contained in a distinguished neighborhood V;; C B, base of a local
trivialization g;;: Vij x F — Tr_l(V,;j).

The map His already specified on the left vertical face and the hori-
zontal bottom face of R11. From Case 2, we can extend it to the rectangle
R11 in such a way to satisfy the condition m o H = H. We use a similar
argument with 212, 13, and so on until Ry, and, successively, in the fol-
lowing horizontal rows. (In the last rectangle of each horizontal row, H is
already specified in the base and in the two vertical faces.) O

Proof of Proposition 4.6 Let =y € E, yo = w(xo), and F = n~1(yy). The
inclusion map i: F' — F induces a homomorphism

iy m(F, xp) = m(E, xg),

and we must show that it is surjective. For this, consider an arbitrary
closed path a: I — E, with base point zg. Then a = moa is a closed path
in B, with base y. Since B is simply connected, there exists a homotopy
H: a = e,,. Define a continuous map f: X — E, with X = (I x0)U(9IxI)
by

f(s,0) =a(s), f(0,t) = f(1,t) = zo, t € I.
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Figure 4.6. Three possible forms for X in Lemma 4.5.

The homotopy H coincides with 7o f in X. By Lemma 4.3 there exists a
homotopy H: I xI — E such that e H = H and H coincides with f in X.
This means that H is a homotopy between @ and a closed path b:1 > E
such that b(s) = H(s,1) satisfies the condition (7 o b)(s) = (7 o H)(s,1) =

H(s,1) = yq, for every s € I, hence b is a path in the fiber F' = 77 1(yp).
Therefore, every closed path @ in E is homotopic to a path in F', which
proves the surjectivity of the homomorphism . O

Now we prove Proposition 4.7. The proof is based on Lemmas 4.4 and
4.5 below, which are analogous to Lemmas 4.2 and 4.3 used in the proof of
Proposition 4.6.

In the statements that follow, R = .J x L is a rectangle, R x I a rectan-
gular block and X is a subset of the boundary d(R x I'), which can be the
base R x 0, or the union of this base with one, or more than one, vertical
faces (see Figure 4.6).

Lemma 4.4. (Homotopy lifting in rectangles) Let m: E — B be a locally trivial
fibration. Given g: R — E continuous, every homotopy H: R x I — F
that starts with g = wo g has a lifting H: R x I — E that starts with g.

Lemma 4.5. Let m: E — B be a locally trivial fibration. Given f: X = FE
continuous, every homotopy H: Rx 1 — B that coincides with f = o f in
X has a lifting H: R x I — E which coincides with f in the same set X.

As in the previous case, Lemmas 4.4 and 4.5 are equivalent because
there exists a homeomorphism ¢ from the rectangular block R x I onto
itself that transforms the set X onto the set R x 0. In order to obtain ¢,
we define a homeomorphism ¢ from the boundary d(R x I') onto itself and
extend it radially, by defining o((1 — t)a + ty) = (1 — t)a + t¢&(y), where
a is the center of the block R x I, z = (1 — t)a + ty is an arbitrary point
of this block, and y is the point where the ray at intersects the boundary
(R x I).

For X = (R x O)U (dR x I) (that is, the base and the four verti-
cal faces), the homeomorphism ¢ is described in Figure 4.7. Each point
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A;(1 < i < 12) is transformed by ¢ in the point A.. The quadrilaterals, in-
dicated in the figure, which have the points A; as vertices, are transformed,
by obvious homeomorphisms, in the quadrilaterals whose vertices are the
corresponding points A%. The other options for X are handled in a similar
way.

The proof of Lemma 4.4 (and hence of 4.5) is completely analogous to
that of Lemimas 4.2 and 4.3, and for this reason we omit it.

Proof of Proposition 4.7. Let zy € E, yo = w(xo), F = 7 (y) and i: F —
E' the inclusion map. It is enough to prove that the induced homomorphism
iy mi(F,zq) — m(E, xzp) is injective. Let @: I — F be a closed path,
with base in the point zy. Suppose that, considered as a path in E, @ is
homotopic to a constant. (This means that ig([a]) =0.) Let K: Ix] —+ E
be the homotopy between a and the constant e;,. We use the notation R =
IxI, X =(Rx0)U(0RxI) and define the continuous map f:X 5 E by
f(s,1,0) = K(s,t), f(0,t,u) = f(1,t,u) = f(s,Lu) = xo, f(s,0,u) = a(s)
for s, t, w € I. X consists of the base and the vertical faces of the block
R x I. In the base, f coincides with & . In the lateral and posterior faces,
f is constant, equal to xg. In each horizontal segment of the previous face,
f reproduces a.
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The map K = 7o K: R —+ B satisfies K(OR) = yp. Since wa(B) = 0,
there exists a homotopy H: R x I — B between K and the constant map
K — yg, such that H is constant, equal to yg, on every lateral face of the
block R x I (therefore, H = yy on every faces of R x I, except the base).
Thus, H coincides with f = wo fin X. It follows from Lemma 4.5 that H
has a lifting H: Rx I — E that coincides with f in X. Since H (s, t,1) = yq
for any s, t € I, it follows that FI(S,t,l) € F. Therefore, we can define
a homotopy Hy: I x I — F by Hy(s,t) = H(s,t, 1). It is not difficult to
prove that Hy: @ = e,, in F, hence [a] = 0 in m(F, z) and iy is injective.

O

In order to finish these considerations about the fundamental group of
some groups of matrices, we study now the simplectic group Sp(n). We
show that it is simply connected.

Let H be the field of quaternions. In the vector space H", whose el-
ements are ordered lists v = (vq,...,v,) of n quaternions, we define the
inner product

i

(v, w) = Z Uy Wy,

r=1

where the conjugate of the quaternion w =t + xi+yj+zkisw =t — xi —
yj — zk. The quaternions v and w are called orthogonal when (v, w) = 0.
The elements of the group Sp(n) are the n x n matrices whose columns
(and rows) are pairwise orthogonal unit vectors in H". For each n € N,
Sp(n) is a bounded and closed set in H™ = R*", hence it is compact.
As in the cases of SO(n) and SU(n), the map

w: Sp(n) — S

which associates to each simplectic matrix T' its first column «(7"), is a
locally trivial fibration, with typical fiber Sp(n — 1), if n > 2.

When n = 1, we have the group Sp(1) = $*. It follows from Proposi-
tion 4.6 that Sp(n) is simply connected for every n > 1. For a description
of Sp(n) without using quaternions, see Exercise 15.

4.3 Exercises
1. A quaternion commutes with w = a + bi + ¢j + dk if, and only if, it
commutes with w’ = bi + ¢j + dk.

2. Determine all of the quaternions that commute with v = 4+ 3i+2j+k
and, from this, describe the rotation axis of ¢, in R®.
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3. With the exception of the negative real numbers, every non-null quater-
nion has two square roots. The square roots of the real quaternion —a,
where a € R™, fill up the sphere S = {zi + yj + zk; 22 + y? + 22 = a}.

4, Let ' = ai + bj + ck and v' = xi + yj + zk be the vector parts of
the quaternions u = d + ai + bj + ¢k and v =t + zi + yj + zk. Show that
u-v—v-u = 2u xv', where v’ x v/ represents the classical vector product.

5. Determine the matrix of the linear transformation ¢, : R?* — R® for
the quaternion v = a + bi + ¢j + dk € §3.

6. Let p: S* — SO(3) be the homomorphism defined in Section 7. Show
that, if u = cosa + sina - i and v = cosa + sina - k, then ¢, and ¢, are
the rotations with angles 2a around the axis i and k, respectively, in R?.
Also, show that every rotation in R? is the composition of at most three
rotations, each one of them around one of these axes. Conclude from this
a new proof that  is surjective.

7. The Hopf fibration h: 5% — $? does not have a section 7: 52 — S%.
(Suggestion: Suppose, by contradiction, that 7 existed. Then (z,u) —
u - 7(z) would be a homeomorphism between S? x S! and §9.)

8. Prove that a continuous map f: S2 — 52 either has a fixed point or it
has a point which is transformed into its antipode.

9. A homogeneous system of two linear equations with three variables:

arx+bhy+cz=0
s + bay + 92 = 0,

where the row vectors £; = (a;,b;,¢1) and €5 = (ag, by, ¢3) are both non-
null, always admits non trivial solutions w = (z,y, z) # 0. Is it possible to
choose, for every pair of non-null vectors £, f3 € R*, a non trivial solution
w that depends continuously on the rows £, and £57

10. The matrices in the group SU(2) have the form

a —b

b al’
where a, b € C and |a|® + |b|® = 1. Conclude that SU(2) is homeomorphic
to S°.
11. Let G be a Lie group, H C G a closed subgroup, and 7: G — G/H the
standard projection. Prove that 7 is a locally trivial fibration. Conclude

that if G and H are connected, then the fundamental group of G/H is
abelian.
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12.  Let X be a simply connected space. Show that mo(X) = 0 if, and
only if, the space (X, zy) is simply connected. (See Exercise 3, Chapter
2.) In general, we define the second homotopy group of the space X by

m2(X, xo) = m1 (X, 20), To).

13.  Show that the projective space P? admits no non-null continuous
tangent vector field.

14. Let B = B[0,n] C R? be the closed ball with center O and radius
7 in R, Define a continuous surjection ¢: B — SO(3) by associating to
each x € B the rotation ¢(x) of |z| radians around the axis determined by
z. Show that ¢(z) = ¢(y) if, and only if, |z| = |y| = 1 and y = —z. By
passing to the quotient, obtain again a homeomorphism Z: P? — SO(3).

15. Every quaternionic matrix W can be represented by W = X + Y.j,
where X and Y are complex matrices.

a) Prove that the correspondence W+ f(W), where

on =% %

is an isomorphism of the algebra of quaternionic n x n matrices onto
a subalgebra of the complex 2n x 2n matrices.

b) Prove that W € Sp(n); that is, W - W* = I (where W* is the
conjugate of the transpose of W), if, and only if, f(W)- f(W)* = I;
that is, f(W) is unitary.

c¢) Prove that a complex 2n x 2n matrix Z is of the form f(W) if, and
only if, ZTJZ = J, where

J=B ﬂ.

Conclude that Sp(n) can be identified with the group Z of 2n x 2n
complex matrices such that Z7JZ = J.

16. Determine the fundamental group of the set of all n x n real matrices
with determinant 1.







Chapter 5
The Winding Number

In this chapter, we use our results from the computation of the fundamental
group of the circle S? in order to study the homotopy of closed plane curves
in more detail.

5.1 The Winding Number of a Closed Plane Curve

We consider the paths ¢: J — X, defined on a compact interval J = [sq, 51],
not necessarily the unit interval I = [0, 1].

Let p be a point of the plane R?. Since R* —{p} has the same homotopy
type of the circle S', its fundamental group is Z. In particular, since Z
is abelian, each element of the fundamental group 71 (E* — {p}) may be
considered as a free homotopy class of closed paths in R? — {p}. Any of
these classes, v = [¢], is determined by an integer which measures the net
number of turns of the path ¢: I — R? — {p} around the point p.

Let ¢: J — R?2—{p} be a path in the plane whose image does not contain
the point p. As we know, there exists a continuous function ¢: J — R such
that
ic(s)

e(s) =p+p(s)e for every s € .J,

where p(s) = |¢(s) — p|. The function € is an angle function of the path

c(s) —p
le(s) = p

in S'. It is determined up to an additive constant, which is an integral
multiple of 2.

95
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Suppose that the path ¢ is closed; that is, ¢(sp) = ¢(s1). Then, for every
angle function ¢, the difference ¢(s;) — ¢(sg) is an integral multiple of 2m,
which does not depend on the choice of ¢.

The winding number of the closed path ¢: J — R? — {p} around the
point p is the integer

_ E(S]_) - E(Sg)

nie,p) = —————=.

2

In other words, n(c,p) is the degree of the path a: J — S!, defined by
the radial projection
e(s) —p
a(s) = ———
le(s) — pl
of the path a onto the circle S!.
The most important properties of the integer n(c, p) are summarized in
the proposition below. (As usually happens with propositions with long
statements, its proof is very easy.)

Proposition 5.1. The integer n(c, p) has the following properties:

C(SQ):

1. Let e: [sg, s2] — B2 — {p} be a path such that e(sy) = e(s1) =
$1,82]. Then

where sq < 81 < 82. Define 1 = ¢|[sg, 81] and c3 = ¢||
n(c,p) = nlcr.p) + n(ez,p).

2. The closed paths c,c': [sg, 51] — R? — {p} are free homotopic if, and
only if, n(c,p) = n(c, p).

3. If the points p and g can be connected by a path in the complement
of the image c(J) of the closed path c: J — R® — {p}, then n(c,p) =
n(e, q). In other words, n(c,p) is, as a function of p, (keeping c fized)
constant in each connected component of R? — ¢(.J).

4. Given the closed path c: [sg,s1] — R? — {p}, let p,v: [to,t1] —
[so,s1] be continuous functions such that ¢(tp) = ¥(t)) = sp and
¢(t1) = ¥(to) = s1. Then n(cop,p) =n(c,p) = —n(co,p).

n

For every k € Z and every p € R2, the closed path c: [0,27] —
R? — {p}, defined by c(s) = p + €**, satisfies n(c,p) = k.

6. Let c¢,c': J — R® — {p} be two closed paths such that, for every s €
J, the line segment [c(s),c'(s)] does not contain the point p. Then

n(e,p) = n(c,p).

7. Let c,c’: J — R2 — {0} be two closed paths. If |c(s) — ¢'(s)] < |e(s)]
for every s € J, then n{¢,0) = n(¢',0). (Theorem of Rouché.)
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Proof. 1. Let €: [sg,s2] — R be an angle function for ¢. Then the
restrictions ¢ = €|[sp, s1] and ¢ = ¢|[s1, s2] are angle functions for ¢; and
¢z respectively, and the result follows.

2. Since the map h,: R? — {p} — S', defined by

—p
hy(z) = ,
' |z = pl
is a homotopy equivalence and (h, o ¢)(s) = ), we have n(c,p)
=n(hpoc). Hence, c = ¢/ 3 hyoc = hyoc < n(hyoc) =n(hpod) &

71-(C,p) - n(“:j!p)'
3. Let a: I — R? — ¢(J) be a path such that a(0) = p and a(1) = gq.
Define H: J x I — S* by

e(s) — a(t)
le(s) = a(t)]”

Then H(s,0) = hp oc and H(s,1) = hg o ¢ for every s € J. (We are using
the notation from the previous item.) Hence H is a free homotopy between
the closed paths hyoc, hgoc: J — S*. It follows that n(c,p) = n(hpoc) =
n(hg o ¢) = n(c, q).

. This results from Proposition 2.2.

. Obvious.

. This follows from item 2 above, and Example 1.2.

. This follows from the previous item. O

H(s t) =

S I

=~1 &

Example 5.1. Let p: C — C be the complex polynomial

p(z) =ap+arz+---+ apz*,

of degree k > 0. For every real number r > 0, p transforms the circle of
center 0 and radius r (which degenerates in a point when r = 0) into a
closed curve of the plane. Suppose that p does not have any root z with
|z| = r. How many times does this closed curve turn around the origin?
More precisely, let ¢r: [0,27] — € — {0} be the closed path defined by
¢-(s) = p(r-e'*). The problem consists in determining n(¢,,0). In general,
this number depends on r.

We prove now that, for all sufficiently large r, n(c,,0) = k. (By the
way, this is the origin of the name degree of a closed path in S!.) This
is easy when the polynomial p reduces to a monomial p(z) = azzF. In
the general case, we write p(z) = a; 2" + q(z), where g(z) is polynomial of
degree < k — 1. Hence,

Ip(2) — aiz"| = |axz"|-£(2),
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with )
_ A=)
f(z) - {lkzk"
therefore;
lim f(z) = 0.

Hence, there exists a positive real number ry such that
lz| =7 > 1p = |p(2) = ar2®| < |arz").

Then, from Rouché’s theorem, for every r > ry, the closed path ¢, turns &
times around the origin. <

Later on, in Section 5.4 of this chapter, we will prove a sharper result
than the one in the above example. Now we use the result from the example
to give a proof of the famous Fundamental Theorem of Algebra. This is a
very interesting application of the concept of winding number.

Theorem 5.1. (Fundamental Theorem of Algebra) FEvery complex polynomial
of degree k > 0 has at least one complex root.

Proof. Suppose, by contradiction, that p(z) # 0 for every z. Then
cr: [0,27] = C — {0} is defined for every r > (. Note that for any
two non-negative real numbers r,r’ we have ¢, ~ ¢, using the homo-
topy H(s,t) = p(((1 — t)r + tr')e**). Therefore n(c,,0) does not depend
on r. Now, n(eg, 0) = 0 because ¢y is constant. As we have just proved in
Example 5.1, n(e,,0) = & for r sufficiently large. This is a contradiction;
therefore, we must have p(z) = 0 for some z. |

The proof given above is the third of the four proofs devised by Gauss for
the Fundamental Theorem of Algebra. (The first was his doctor’s thesis.)

5.2 The Graustein-Whitney Theorem

In this section, we introduce the concept of regular homotopy and use the
winding number in order to provide a necessary and sufficient condition for
the regular homotopy of two closed regular paths. This problem is closely
related with the well-known problem of sphere eversion.

We say that a path a: [sp, s1] — R? is regular when it is of class C !
and a’'(s) # 0 for all s € [so,s1]. A regular path a: [so,s1] = R? such that
a(sg) = a(sy) and a'(sg) = a’(s1) will be called a regular curve. Since it is
a closed path, a regular curve a: [sq, 1] — R? defines an immersion of S!
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a(sy) = als)) a'(sy) = a'(s)

5o 5

Figure 5.1. A regular curve.

into R2; therefore, although it may have self intersections, for each value of
the parameter s, it has a well defined (unique) tangent line at a(s) whose
direction is given by the nonzero vector a’(s) (see Figure 5.1).

The rotation number of the regular curve a: [sq, s1] — R? is, by defini-
tion, the winding number n(a’) = n(a’, 0) of the derivative path a":[sq, s1] —
Rk? — {0} around the origin 0 € R?.

More explicitly, let @: [sp, s1] — R be an angle function for a’; that is,

a'(s) = |a’(s)]e®)

for all s € [sg, s1]. Then the rotation number of the regular curve a is the
integer

n(a;) — 9(81)2';;9(8(]) .

If @: [to,t1] — [s0,51] is a C! homeomorphism with positive derivative,
and ¢ (tg) = ¢'(t1), then b = a o ¢: [tg, 1] — R? is again a regular curve,
which we call a reparametrization of a. The reparametrized curve b = aoyp
has the same rotation number as a. To see this, observe that for all t €

lto, 1],
b (t) = (a0 9)'(t) = ¢ (1)d'(p(t) = ¢ ()a (p(2)) [ = |t/ (1) [,
so 0o [tp, t;] — R is an angle function for &'. Thus,

0(¢(t1)) — B(p(to)) _ 0(s1) — 0(s0)

! —
n(b) - 2m 2w

=n(a").

In particular, if we parametrize the regular curve a hy arc length, its ro-
tation number will not change. In this case, we have a: [0, L] — R?, with
la'(s)| = 1 for all s € [0, L], where L is the length of a.

Let a,b: [so,s1] = R? be regular curves. We wish to define the concept
of regular homotopy H (s, t) between a and b. It is natural to demand H to
be a free homotopy between the two closed paths a and b and, moreover,
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e )

\ —n
“f/ \ l 'm/
'\E_L ,/ {\h P \

Figure 5.2. Non regular homotopy.

that each intermediate path H;(s) of the homotopy also be a regular curve.
Consider the homotopy between the figure eight and the circle shown in
Figure 5.2. Note that the derivative 9H /0s(s,t) is discontinuous at the
point (sq, 1) where a(sg) is the highest point on the figure. Thus, this should
not be considered a regular homotopy between the two regular curves.
Now we state precisely the concept of regular homotopy. Let
a,b: [sg,51] — B? be regular curves. A regular homotopy between a and b
is a C' map H: [sg,s;] x I — R? such that, for all s € [sy,5,] and t € I

1. H(s,0) = a(s), H(s,1) = b(s);
2. s 1) #0;
3. H(S(},t) = H(Sl,f) and %(S(},t) = %(‘Ql,t).

Condition 1 is the usual free homotopy property; Condition 2 guarantees
the regularity of each intermediary path H;, and Condition 3 guarantees
that each intermediary path H; is in fact a regular curve. Figure 5.3 shows
two examples of regular homotopies.

POPoO
O YV X

Figure 5.3. Regular homotopies.
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Now we state the main result of this section:

Theorem 5.2. (Graustein-Whitney) Twe regular curves in the plane are reg-
ularly homotopic if, and only if, they have the same rotation number.

In the proof, we need the following lemma.

Lemma 5.1. Let f: [0,L] — S be a path. If its mean value

1 [k
m= = f(s)ds
I/ (s)

belongs to S, then f is constant.

Proof. Let g: [0,L] —+ R? be a primitive of f; that is, ¢'(s) = f(s) for all
s € [0,L]. Since |¢'(s)] = |f(s)| = 1 for all 5, g is a C'! path parametrized
by arc length. Now |m| = 1 implies |g(L) — g(0)| = L, so the length

L
L=/ lg'(s)|ds
Jo

equals the distance from the initial point g(0) to the endpoint g(L). The
definition of arc length as the supremum of the lengths of the polygons
inscribed in the path implies then that the image of ¢ is the straight line
segment from g(0) to g(L). If w is the unit vector on this segment, we
have then g(s) = g(0) + ¢(s).u. Since |¢'(s)] = |¢'(s)| = 1, we must have
¢'(s) = £1. In fact, ©'(s) = 1 s0 f(s) = g'(s) = w. In other words, f is
constant. O

Proof of the Graustein-Whitney Theorem. The “only if” part is easy: If H
is a regular homotopy between the regular curves a, b then 0H /s is a free
homotopy between the paths a’,b': [sq,s1] — R? — {0}. Hence, o’ and ¥’
have the same winding number; that is, a and b have the same rotation
number.

Now we prove the “if” part. In order to set the stage, we observe that,
by means of a regular homotopy, we may alter the length of a regular curve
to an arbitrary value. Hence, there is no loss of generality in assuming that
we have two regular curves a, b: [0, L] — R? with the same length L, with
n(a') = n(t') = n and |a'(s)| = |V'(s)| = 1 for all s € [0, L], that is, both
curves are parametrized by arc length.

Moreover, we may assume that a(0) = b(0) = 0 and a'(0) = b'(0) = e;
(the unit vector of the z-axis). Therefore,

a'(s) = e and V(s) =P,
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where o, 3: [0, L] — R are angle functions, with «(0) = 3(0) = 0 and
afL) = B(L) = 27n.

We define a linear homotopy K : [0, L] x I — R between o and 3, given
by K(s,t) = (1—t)a(s)+tG(s). With the help of K, we define a homotopv
H: [0,L] x I — R? between the curves a and b by setting

s L
H(s,t) = / K ) g % [ G t) g,
w0 Jo

The negative summand above is introduced in order to guarantee that all
paths H;, 0 <t < 1, are closed. Next, we verify the details.

Since . .
a(s) = / Wy and  b(s) = f P qy,
Jo 0
it is clear that H(s,0) = a(s) and H(s,1) = b(s) for all s € [sp, s1]. More-
over, it is easy to verify that H(0,t) = H(L,t) = 0 and

H H
% (Ut)wa (L,t)

for all t € I.
It remains to show that 22 (s,t) # 0 for all s € [sg, s1] and all t € I.
‘We have

OH - S
Z(s.1) = iK(s,t) _ — ,'.I.I((‘u,t)d )
s (s,t) =e )/ e u

The question we face is this: Given a path A: [0,1] — S, A(s) = 'K (st

can its mean value
1 L
— AMu)d
Lfn (u)du

be a point in the circle $'? By Lemma 5.1 this can only happen when A is
constant.

In our case, we conclude that # is a regular homotopy between a and b,
provided it does not happen that, for some t € I, the path A(s) = e (* t)
or (which means the same) the function p(s) = K(s,t) be constant. Since
1(0) = 0, such constant should be zero, so that 0 = p(L) = K(L,t) =
2mn. Hence n = n(a') = n(b') = 0 and, for some t € [0_ 1], the equality
(1 —t)a(s) +tB(s) = 0 holds; that is,

for all s € [o,L]. (Note that 0 < t < 1 because o and (3 cannot be
identically zero.)
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Summing up: If the regular curves a, b have the same rotation number
then the map H defined above is a regular homotopy between them, except
when the following holds:

1. The rotation numbers of @ and b are equal to zero;

2. a'(s) = ) b/(s) = @) for all s € [0, L], where o, 3: [0,L] - R
are continuous functions both equal to zero at the endpoints 0 and
L, with a = t3/(t — 1) for some t € (0,1). (That is, o is a negative
constant multiple of 3.)

To dispose of this remaining case, we take any continuous function
v: [0, L] — R which is zero at the endpoints 0 and L and is not a constant
multiple of 3 (nor of & = t3/(t—1), of course). Then we redefine K': [0, L] x

I - R as
K(s,t) = (1 —t)a(s) + t3(s) + t(t — a)y(s).

(:
Since the last summand above is zero for t = 0 and t = 1, K is still a
homotopy between « and 3. However, for no value of ¢ € [0, ] 1] the function
u(s) = K(s,t) vanishes identically.
This concludes the proof of the Graustein-Whitney theorem. ]

Example 5.2. The circle and the figure eight (see Figure 5.2) are not regu-
larly homotopic. In fact, the circle has rotation number £1 (depending on
the orientation) and the rotation number of the figure eight is zero. |

The rotation number (Umlaufzahl) of a regular curve is a classical no-
tion. It is the object of a famous theorem, known as the Umlaufsatz, ac-
cording to which the rotation number of a simple (i.e., non-self-intersecting)
regular curve is +1. This theorem has a very elegant proof, given in 1935
by H. Hopf, Hopf (1935), which can be found in doCarmo (1976), page 396.
Two years after Hopf’s proof, H. Whitney published the paper, Whitney
(1937), in which he proved that two regular curves in the plane are reg-
ularly homotopic if, and only if, they have the same rotation number. In
that paper, Whitney states that this result, with a simple proof, had been
communicated to him by his colleague W. Graustein. Besides proving that,
Whitney gave a method for computing the rotation number, by counting
the algebraic number of times that the curve intersects itself. Note that,
by using Hopf’s theorem and the Graustein-Whitney theorem, we conclude
that every simple regular curve is regularly homotopic to the circle 5.

5.2.1 About Eversions

Consider a regular curve a: [sp, $1] — R? in the plane, and assume that it
is stmple (i.e., it has no self-intersections) and parametrized by arc length.
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Thus, a is an embedding of the circle S into the plane such that the velocity
vector a’(s) has norm 1. A normal vector field to a is a continuous nonzero
vector field n: [sq, s1] — B2, such that (n(s),a’(s)) = 0 for all s € [sg, s1].
The simple regular curve a always admits two unit normal vector fields.
The choice of one of these unit normal vector fields is called an orientation
of the curve. The orientation for which the basis {a'(s), n(s)} has the same
orientation of the Euclidean plane is called positive, and the other is the
negative orientation. The curve a with positive orientation is denoted by
a’, and a~ denotes the curve with negative orientation. An eversion of a
is a regular homotopy from a™ to a=. Thus an eversion of a simple regular
curve has the effect of turning the curve inside out.

Example 5.3. (Circle eversion) In the case of the circle §' ¢ R2, an eversion
is a regular homotopy between the standard inclusion map i: §' — R?,
i(p) = p, and the antipodal map a: §* — R? a(p) = —p. The theorem
of Graustein-Whitney shows that this eversion is impossible because the
circle with positive orientation has rotation number +1 and the circle with
negative orientation has rotation number —1. Figure 5.4 shows a natural
attempt to obtain such an eversion. Note the sudden change (discontinuity)
of the two horizontal normals at the end of the homotopy. As in the case of
Figure 5.2, this indicates discontinuities of 9H /s at t = 1, so the homotopy
is not regular. <

After the results from Hopf and Whitney, the subject of regular homo-
topies was studied again, twenty years later, by S. Smale in his Ph.D. the-
sis. Note that there are two possible ways to obtain generalizations of the
Graustein-Whitney theorem: by taking instead of the plane R? an arbitrary
Riemannian manifold, or by replacing the regular curves a,b: S' — R? by
immersions a,b: §% — R™. Smale studied both possibilities.

In the first case, he showed that the regular homotopy classes on a
Riemannian manifold are in a 1 — 1 correspondence with homotopy classes
of loops in the unit tangent bundle of the manifold, Smale (1958).

In the second case, Smale extended his methods in order to study regular
. Kl
[ ﬁ [ /J\K\ _ r,/ \-

C - el >
—1 I N r,/

(4

4

Figure 5.4. Attempt to evert the circle.
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homotopies of immersed spheres into the Euclidean space Smale (1959). A
consequence of his fundamental result is that any two immersions of S? in
R? are regularly homotopic. In the early days of his career (1957), Smale
spoke of his work at a meeting at the University of Chicago. In the audience
was the renowned topologist S. Eilenberg, who remarked:

“This cannot be right because it implies that the antipodal map
a: §? — R3 is regularly homotopic to the natural inclusion
i: 52 — R3. In other words, according to you one can evert a
sphere in 3-space, which is absurd”.

Smale just smiled and replied:

“] do not know how to figure geometrically the deformation.
But I know that it can be done because my proof is correct”.

Soon afterwards, A. Shapiro and B. Morin showed, by means of different
ingenious devices, how to exhibit an explicit geometric regular deformation
that turns the sphere S? inside out. The episode of Neptune’s discovery
was repeated. Morin's construction is particularly impressive because he
is blind. For a detailed description of Shapiro’s eversion, the reader should
consult Francis & Morin (1979) or Phillips (1966). A more detailed history
of the problem can be found in Chapter 6 of Francis (1987). Another good
source is Levy (1995).

More recently, a new technique to construct an eversion of the sphere
S? was described by W. Thurston. This technique provides more geomet-
ric insight than the others cited above. Its description can be found in
Levy (1995). Thurston’s eversion has been beautifully illustrated in the
computer graphics video “Outside In”, Levy et al. (1995), which was pro-
duced at the Geometry Center in 1994.

5.3 The Winding Number as a Curvilinear Integral

A differential form (of degree 1) in an open set U C R? is an expression of
the type
w = fdr + gdy,

where f,g: U — R are functions of class C! in U; that is, they have
continuous partial derivatives at every point of U.

The symbols dx and dy are interpreted as follows: Whenever we restrict
the form w to a path ¢: J — U, of class C!, with ¢(t) = (x(t),y(t)), we
substitute dr by z'(t)dt and dy by y'(t)dt.

Two forms, w = fdz + gdy and w; = fidz + g1dy, defined in the same
open set U C R?, are equal when f = f; and g = g;. The sum of the forms
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w and wy is the form
w4 w = (f + fl)d.l' -+ (g 4 gl)dy

The product of the form w by the function h: U — R is the form hw =
hf-dz + hg-dy. We do not define multiplication of differential forms.

An example is provided by the differential de of a function ©: U — R,
of class C2. In this case, we have the form

dy dp
dp = &rdm + 3y dy,
still defined in the open set U/ which is the domain of .

Suppose that w is a form in U. If there exists ¢: U — R, of class C2,
such that w = dy, we say that ¢ is an exact form.

Let w = fdx + gdy be a differential form in the open set /' € R? and
c:J — U a path of class C' in U, defined by ¢(t) = (z(t),y(t)),t € J,
where z, y: J — R are continuous differentiable functions.

The (curvilinear) integral of the form w along the path ¢ is defined by

Jeo= [ 1@).50)+/0) + o0, y0)-5 0)dt.T = to. 1]

In the above expression, the integral on the right is the usual integral of a
continuous function defined on the compact interval [tg, ¢1] of real numbers.

Consider a differential form w defined in an open set /' € R? and a path
c: J = U, of class C, where J = [ty, t;]. The two following properties are
easy to prove.

1. Let J = J;U.J5 be the union of two compact intervals with a common
endpoint. If ¢; = ¢|J; and ¢ = ¢|J; we have

/w:/w-}-/w.
[ oy Co

2. Let ¢, v [s0,51] — [to,t1] be functions of class C', with (sg) =
Y (s1) = to and @(s1) = ¥(so) = t1. Then

fw:fw and / w:—/w.
coy o co Je

We represent the path coy by —ec.

It is possible to define fcw even when the path ¢:.JJ — U is only
piecewise of class C!; that is, we have J = J; U Jy U... U Ji, where each
J; is a compact interval that has exactly one point in common (one of the
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two endpoints) with J;+1, and, taking ¢; = ¢|J;(i = 1,...,k), each ¢; is of
class 'L, In this case, we define:

[w:/w+/w+---+/ w
Je <3} s} Ch

As an example, we compute the integral j; w in the case where w = dyp
is an exact form, differential of the function ¢: U — R, of class C2, and
c:J — U is a path of class C''. The derivative of the composite function
woc: J— R, by the chain rule, is:

(p00/(0) = ole(t) y(2) = Goa' + 52"

It follows that

fiom fo= [, (52 5w
- ff{, (g oe) (t)dt = p(c(tr)) — (c(to)).

In particular, it follows from the above computations that if w = dy is
an exact form, the integral fc w does not depend on the path ¢ but only on
the endpoints ¢(tg) and e(t;).

The statement that fcw depends only on the endpoints of the path ¢
in IJ is equivalent to stating that f.: w = () for every closed path ¢ in U.

A straightforward use of the definition shows that the above results
hold, more generally, for paths c that are piecewise C*.

A differential form w = fdx + gdy, in an open set U C R2, is called
closed when

of _9g
dy Ox
inU.
For example, if w is exact, say w = di, then

Oy dy
= — d = —_—,
/ oz e g dy
hence, ,8._-{ B Py B 9y  dyg

Jy  Oydr  dxdy Oz
Therefore, every exact form is closed.

But not every closed form is exact. In fact, consider the differential

form y -
= d
2 + y? Tt +y

>4y,
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defined on the open set U = R? — {0}. We have

= — — and =
f=27 )7 g

a2 4y

Hence,

of g y*-a®

oy Oz (224 y2)?
Therefore, w is a closed form. Nevertheless, w is not exact in /. More
precisely, there does not exist ¢: U — R, of class C?, such that w = dyp. In
fact, if this were true, the integral of w along any closed piecewise C'* path,
contained in U, would be zero. But this does not happen, as we prove in
the proposition below.

Proposition 5.2. Let c: J — R? — {0} be a closed piecewise C' path. Then

d.
2 + 32 x+.r2+y

1
n(e,0) = o /w, where w = Sdy.

;T .

Proof. We suppose that ¢ is of class C'' and leave to the reader the general
case. Let 8: J — R be an angle function f01 c. B} taklng c(t) = (z(t),y(t)),
we have x = pcosfl, y = psin@, where p? = x* + y*. (We are abbreviating
x = z(t), y = y(t), p = p(t), 0 = 6(t).) Taking derivatives, we obtain

&' =p cos® — psing-'
y' = p'sinf+ pcosf-0'.

Making obvious substitutions, we have:

w = P ap———
j /:n L2+y 224 y2?

- / 0 (t)dt = 0(t1) — O(to) = 27-n(c.0),
Jig

which concludes the proof. ]

The above proposition expresses the winding number of a closed piece-
wise C'! path around the origin of R? as the integral of a certain differential
form w.

The admiration the reader might have for the person who guessed the
form w will decrease substantially if he notices that, if 6(z,y) is a deter-
mination of the angle between the vector v = (z,y) # 0 with the positive




5.3. The Winding Number as a Curvilinear Integral 109

z-axis, then

T
cosf) = ———ro:
vt +y?
hence,
0(x,y) = arccos

X
NoEe

An elementary computation shows that

&

We remark emphatically that this does not mean that w is exact in
U = R? — {0}, because the “function”

T
Vi

is not well defined in U. Two determinations 8,(z,y) and 6y(z,y) of the
angle between v = (z,y) and the semi-axis Oz differ locally by a constant
(an integer multiple of 2m). This is why the differential w = d# is well
defined, although # is not.

The differential form w, defined in R? — {0}, is called the angle element
of the plane.

f(x,y) = arccos

5.3.1 The Winding Number as a Complex Integral

The number of turns n(ec,0) of a closed piecewise C! path ¢: .J — R* — {0}
around the origin can also be expressed by a complex integral:

1 dz
ﬂ-(C_, 0) = % ?

In the above integral, we have

1 1 T—1
dz =dr+idy and - = — = y
z  rHiy x4 y?
Hence,
d —iy)(d id
dz _ (x iyz)( x + idy) — w0, + iwy
x? + g
where
€T Y

Wy = 5y

dx +
x? + y? 24y




110 5. The Winding Number

and
Wy = — dx + dy.
27 2y Y2 22 + 32 y
As it can be easily proved, w1 = d(log /22 + 32) is an exact form in R? —
{0}: therefore, [ wy = 0 for every closed piecewise C'* path ¢, in R* — {0}.

On the other hand, w; is the angle element of the plane. Hence,

dz .
/— =1 fu.:z = 2mi-n(c,0).
[ z [

5.4 Winding Number and Polynomial Roots

In this section, we use the winding number to obtain information about
the roots of a complex polynomial. In fact, we prove a sharper result than
the one in Example 5.1:

Given the polynomial p, for each v > 0 such that p does not have a root of
modulus v, the number n(c,.,0) is equal to the number of roots of p within
the disk of center O and radius r, each root being counted according to its
multiplicity.

We start with the change of variable formula for line integrals in the
plane.

Let U,V C R? be open sets and F: U — V be a C! map, that is,
F(z,y) = (f(z,y),9(x,y)), where f and g are continuously differentiable
functions. If w = adx + bdy is a differential form in V', with coefficients
a,b: V — R, and ¢: J — U is a piecewise C! path, then Foc: J =V isa
piecewise C'! path in V and the change of variable formula is

f adx + bdy = /(QOF)df+(bOF)dg.
Foc Je

If we write F*w = (a o F)df + (b o F)dg, the above formula becomes

f w:fF"w.
Fae e

For instance, when ¢(s) # 0 and F(c(s)) # 0 for all s € J, the change of
variable formula for the angle element reads

[ xdy—ydx_/fdg-—gdf
Jroe 24y J. fPig?

The proof of the change of variable formula is straightforward, so we omit
it.
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Let a € U be such that F(a) = 0 but F(z) # 0 for all z # a in a disk D
of center a and radius r contained in I7. Then we say that a is an isolated
zero of the map F. The path c: [0,27] — U, given by c(s) = r + r.e™, is

such that g J
(Foao - [ s
Q?T‘ Foc & +y

is the net number of turns of the path F o c¢: s+ F(c(s)) around 0. The
change of variable formula says that this number equals

1 [ fdg — gdf
2n J. fi4g%

It is called the local degree of F' at the isolated zero a.

Let us look at the special case in which F': C — C is given by F(z) =
(z — a)™. We claim that the local degree of F' at a equals m.

In fact, if ¢(s) = a + r.e™ then F(c(s)) = r™.e"™* so, when s varies
from 0 to 2, the point F(¢(s)) covers m times, in the positive sense, the
circle of radius r™ and center 0.

In the same fashion, we see that, if b is any non zero complex number,
the local degree of F(z) = b.(z — a)™ at a is again m.

Now let p(z) be an arbitrary polynomial. The complex number a is
called a root of multiplicity m of p(z) when

p(z) = (2 —a)™.q(2),

where ¢(z) is a polynomial such that g(a) # 0.

When a is a root of multiplicity m of the polynomial p(z), we claim
that, considered as a map p: C — C, the polynomial p(z) has local degree
m at a. In other words, when z = r + e“, 0 < s < 2, describes once, in
the positive sense, the boundary of a disk with center @ and radius r that
contains no other root of p(z) but a, then p(z) runs m times around 0 in
the counterclockwise.

To see this, we let ¢(a) = b, so g(z) = b+ ¢(z), with ¢(a) = 0. Take
r > 0 so small that |b.¢(z)| < 1 for all z such that |z — a| < r, Then

|z —a|=7r=p(z)=(2—a)"q(z) =b(z—a)™ + b.p(z).(z —a)™,

with
|b.p(z).(z —a)™| < |b.(z —a)™|.

If we write py(2) = b.(z — a)™, this means that

|z —al =r = |pi1(2) = p(z)| < |pr(2)].
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Figure 5.5.

By Rouché’s theorem, it follows that p(z) has, at the point z = a, the same
local degree as p;1(z), which equals m.

Proposition 5.3. Let p(z) be a polynomial that has no root z with |z| = r.
Let ¢, [0,27] = C — {0} be defined by c,(z) = r.e**. The winding number
of the path poc, around 0 equals the number of roots of p(z) inside the disk
D = {z € C;|z| < r}, each of these roots being counted according with its
maultiplicity.

Proof. Let z,...,z, be the roots of p(z) that lie in the interior of D,
each z; having multiplicity m; (j = 1,...,k). By drawing straight line
segments from a certain point P € int. D, we decompose the disk in a union
of adjacent slices Sy, ..., Sy (like a pizza pie) so that the root z; lies in the
interior or S;, for j = 1,...,k (see Figure 5.5(a)). We treat the boundary
of S; as a path 95; = aj.bjaj_jl ifl<j<k-—1anddS; = ak.bkal_l (see
Figure 5.5(b)). Here a; is a linear path that starts at P and runs along the
j-th line segment used to decompose D; b; covers an arc of circle, so that
¢r = b1.by - - by. (See Corollary 2.1.)

For any differential form w defined on an open set of the plane that

contains D, we have
k
[-$i
cr i=1 by

nd
/ w=/w+/w—/ w (ajyr1 =a1 if j=k).
aB; aj bj Vil

.
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Figure 5.6.

Therefore,

k k
)3 S 3 Iy i
i=1/9B; =1 e

Now if we let ¢;: [0,27] — S; be a path that parametrizes a small circle
of center z; in the usual manner, it is clear that 9.5; is freely homotopic to
¢; (by a linear radial homotopy with center z;, as illustrated in Figure 5.6).
Therefore, by item 2) of Proposition 3.6, n(p 0 8S;,0) = n(p o ¢;,0), since
p(z) # 0 at all points of 5; that are spanned by the homotopy.

Next, we take

oo vle sy
2+ y?

The equality n(p o dS;,0) = n(p o ¢;,0) means that

1 1
o s, prw = > /; prw =m; (= multiplicity of the root z;).
Therefore,

’ k k
1 . 1 N
n(crﬁ[])=%‘/‘; pw= Elg/cpw= -Elﬂl-j.
" i= i=

o

This completes the proof of the proposition. O
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5.5 Exercises

1. Consider a continuous map f: S' — C — {0}. There exists g: S* = R
continuous such that f(z) = |f(z)[e’d*) for every z € S* if, and only if,
the path ¢: I — C — {0}, defined by ¢(s) = f(e2™%), satisfies n(c,0) = 0.

2. Let f: U — C — {0} be a continuous function in the open set U C C.
Prove that there exists a continuous function g: U — C such that f(z) =
e92) for every z € U if, and only if, for every closed path ¢ in U, we have

n(foec,0)=0.

3. For every n € Z, draw a regular curve in the plane whose rotation
number is n.

4. Show that the regular curve c: [0, 27| — S2, given by ¢(t) = (cost,sint, 0)
1

is regularly homotopic in S? to its inverse ¢~ 1.
5. Show that the figure eight is regularly homotopic in $? to the regular
curve ¢zt [0, 27] = S2, ea(t) = (cos 2t,sin 2¢, 0).

6. Prove that, with the notation of the two previous exercises, the regular
curves ¢ and ¢; are not regularly homotopic in $2. (Hint: A regular curve
in S2, parametrized by arc length, is equivalent to a closed path in SO(3).
A similar remark holds for regular homotopies.)

7. Show that there are precisely two regular homotopy classes of regular
curves in S2.

8. An orthogonal couple in R? is an ordered pair (u,v) of non zero vectors
such that (u,v) = 0. Prove that there is no continuous field of orthogonal
couples (u,v): D — R3 on the unit disc D = {(z,y,0); 2% + y* < 1} with
the property that w(z,y,0) = (z,9,0), v(z,y,0) = (—y,2,0) whenever
2?4 yf =1

9. Let w = fdx+ gdy be a differential form on an open convex set I/ C R2.
Fix an arbitrary point a € I/ and define a function F': U — R? by taking,
forevery z € U, F(z) = [, w, where ¢: I — U is given by ¢(t) = (1—t)a+tz.
Prove that dF = w. As a consequence, prove that a differential form on
an arbitrary open set V' C R? is closed if, and only if, it is locally exact.
(That is, every point a € V' is the center of a disc, restricted to which the
form is exact.)

10. Let w be a closed differential form on the open set U ¢ R2. Given
a piecewise C'! path ¢: J — U, with J = [a,b], let P = {a = sy < 51 <
-+ < 8§, = b} be a partition of J such that, for each i = 1,...,n, the image
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¢([si—1,si]) is contained in a disc D; C U. Let g;: D; — R be such that
dg; = w|D;(i = 1,...,n). Show that

fﬂv‘ = Z[Q‘:‘(C(Si)) = gi(ce(si-1))]-

11. In the context of the previous exercise, now let ¢: .J — U be a contin-
uous (but not necessarily piecewise C'') path. Use the same construction
as above to define

o= lonteloe) — gu(elsi-)]

Prove that this sum neither depends on the partition P nor on the choices
of the primitive functions g;. (So the integral of a closed differential form
can be defined along a path that is only continuous.)

12. Let ¢,c': J — U be continuous paths with the same endpoints and
such that, for each s € J, the line segment [c(s), ¢/(s)] is contained in U.
Let w be a closed differential form in V. Prove that fcw = fc, w. Asa
consequence, prove that if ¢,¢': J — U are two continuous paths such that
¢~ ¢ and w is a closed differential form in U, then fc w = fc, w.

13. Let U C R? be simply connected. Prove that every closed differential
form on U is exact.

14. Let v: U — R? be a continuous vector field. A singularity of v is
a point p € U such that v(p) = 0. The indezx of the vector field v at an
isolated singularity p is the local degree of v at p. Let ¢:JJ — U be a
simple closed path whose interior contains a finite number of singularities
of v. Prove that the winding number n(v o ¢, Q) equals the sum of the
indices of v at the singularities that lie in the interior of c.

15.  Let ¢j,c2: J — B2 — {0} be closed paths of class C!. If, for every
s € J, the tangent vectors ¢} (s), ¢4 (s) are linearly independent, prove that

n(ecy, 0) = nlcq, O).

16. Let w = fdx + gdy be a closed differential form on an open set
U C R* — {0}. Suppose that there exists a disc D with O € D C U, and a
constant k such that z € D = |f(2)| < k and |g(2)| < k. Prove that w is
exact.
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Covering Spaces

“Celui qui s’occupe beaucoup des mathématiques remarque, s'il a quelque
expérience, que c’est une science trés pauvre en pensées. Il n'y a en
mathématiques pas plus d’idées primaires gque de touches @ un clavecin.
Il n’est pas donné a un simple mortel d’augmenter ¢ son gré le nombre
de ces touches. Toute la joie d'un mathematicien c’est de jouer sur son
clavecin. Le théme musical que nous voulons évoquer ici c’est la notion
de recouvrement, et nous lui donnerons une ertension assez générale pour
qu’elle puisse servir de base d trois des plus belles théories mathématiques:
a la théorie des fonctions de Riemann, au probléme des formes spatiales et

i la théorie des groupes continus”.
W. Threlfall - La notion de recouvrement.

[L’Enseignement Mathématique vol. 34 (1935) pages 228-254.]

W. Threlfall co-authored, along with H. Seifert, two of the most beaufi-
ful and inspiring topology books ever written: Lehrbuch der Topologie and
Variationsrechnung im Grossen.
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Chapter 6

Covering Spaces

6.1 Local Homeomorphisms and Liftings

Consider two topological spaces X, Y. A map f: X — Y is called a local
homeomorphism if each point z € X is contained in an open set U such
that V = f(U) is open in Y and the restriction f|U is a homeomorphism
from U onto V.

Every (global) homeomorphism is, evidently, a local homeomorphism.
A local homeomorphism f: X — Y is a continuous and open map. In
particular, the image f(X) is an open set in Y. It follows that if X is
compact and Y is a connected Hausdorff space, every local homeomorphism
f: X = Y issurjective. When we have a local homeomorphism f: X — Y,
the space X inherits all of the local topological properties from Y such
as, for example, local connectivity, local compactness, and so on. If f
is surjective, then Y also inherits the local topological properties of X.
Given a local homeomorphism f: X — Y and an open subset A C X,
the restriction f|A is also a local homeomorphism from A onto f(A). A
surjective local homeomorphism f: X — Y is a quotient map; that is,
g: Y — Z is continuous if, and only if, go f: X — Z is continuous.

If f: X = Y is a local homeomorphism, then f is locally injective; that
is, every point € X has a neighborhood U such that f|U is injective. But
a continuous locally injective map, even when it is surjective, may not be
a local homeomorphism. An example is given in Figure 6.1, where X is a
segment, Y is a loop, and f is the obvious map from X onto Y. In this case,
f is locally injective, we have f(zg) = f(x1) = yo, but no neighborhood
of g (or of ;) is transformed homeomorphically by f onto a
neighborhood of yg.

119
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N

y o

X X, X Y

0

Figure 6.1. A locally injective map that is not a local homeomorphism.

Another example is given by f: [0,27) — S, f(t) = (cost,sint). Here,
f is (globally) injective but it does not map any neighborhood of 0 (in the
space [0,27)) onto a neighborhood of f(0) in S

A continuous locally injective map is a local homeomorphism if, and
only if, it is open.

Example 6.1. The following maps are local homeomorphisms:
a. £ R — S £(t) = e = (cost, sint)
b. ¢(:R* 5 T = 8" x S ((s,t) = (e, e™)

c. f1R?2 5 R% f(x,y) = (e cosy, e” siny) or, using complex notation,

fl) = o
d. m: 8™ = P" w(z) = {z, —x}
e. f: 8% —=80(3), f(x)(w) = z-w -z~ ' (See Chapter 4, Section 1.)

With the exception of Case c, in all of the items above, the local home-
omorphism is surjective. In Case ¢, we have f(R*) = R? — {0}.

A more geometric version of Case a above can be obtained by consider-
ing an infinite spiral, say X = {(1 + ¢")e"*; ¢ € R}, which turns around the
unit circle S! (see Figure 6.2), and by defining f: X — S! as the radial
projection from the origin; that is, f(z) = z/|z|, or, f((1 + €")e't) = €. «

In Case c, each vertical line passing through the point (z,0) is trans-
formed by f onto a circle with center at the origin and radius e*. The
horizontal line through the point (0, y) is transformed by f homeomorphi-
cally onto an open ray that starts at the origin and makes an angle of y
radians with the positive z-axis. The inverse image f~'(b) of each point
b € R? — {0} is a countable set of points, all contained in the same vertical
line, each one of them at a distance of 27 from the two other closest points.
Every open horizontal strip with width 27 is transformed by f homeomor-
phically onto the complement of a ray ¢ which starts at the origin 0 = (0,0).
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Figure 6.2. A local homeomorphism.

The inverse image f~!(R% — /) is the countably infinite disjoint union of
open horizontal strips of width 27. Each one of these strips is transformed
homeomorphically by f onto R? — £.

Example 6.2. Let U < R™ be an open set and f: UV — R™ he a map of
class C'' whose derivative, f'(z): R™ — R™, is an isomorphism at each
point z € U. The Inverse Function theorem guarantees that f is a local
homeomorphism. Most examples of local homeomorphisms arise in this
context, or in its global version, which can be stated as follows: Let M™,
N™ C R™ be two differentiable manifolds, and f a map of class C' whose
derivative f'(x): T,M — Ty,)N is an isomorphism at each point x € M.
Then [ is a local homeomorphism. The five items in Example 6.1 are
special cases of this situation. <

Proposition 6.1. If the map f: X — Y is continuous and locally injective
(in particular, a local homeomorphism), then the inverse image f~1(y) of
each point y €Y is a discrete subset of X.

Proof. Each point z € f~1(y) has a neighborhood U, where z is the only
point in U such that f(z) = y. Then U N f~(y) = {z}. So, every point
x € f~1(y) is isolated in f~1(y). O

Corollary 6.1. Let X be a compact space, Y a Hausdorff space, and f: X —
Y a continuous locally injective map. Then f~1(y) is finite for cachy € Y.

Remark. Even if f~!(y) is finite for each y € Y, the continuous map
f: X — Y may not be locally injective. For example, the closed curve X,
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Figure 6.3.

sketched in Figure 6.3, projects radially onto the circle S* in such a way
that the inverse image of each point of S* contains exactly two elements,
but the radial projection of X onto S* is not locally injective.

Let f: X =+ Y, g: Z =Y be two continuous maps. A lifting of g (with
respect to f) is a continuous map g: Z — X such that fog = g. This is
illustrated in the diagram below.

X

9

z Y

One of the basic problems that we study in this chapter is the existence
and uniqueness of the lifting, in terms of the properties of the map f. We
show now that if f is locally injective then the lifting of g, if it exists, is
unique, provided that Z is connected, X is Hausdorff and we fix a value
g(z0). Note that not every continuous map g has a lifting, even when f is
a local homeomorphism. (See Proposition 3.5.)

Proposition 6.2. Let X be a Hausdorff space and f: X — Y be a continuous
and locally injective map. If Z is connected and g: Z — Y is continuous,
then two liftings g, §: £ — X of g, which coincide at one point z € Z, are
equal.

Proof. The set A = {z € Z,g(z) = §(z)} is not empty, because zp € A.
Since X is a Hausdorff space, A is closed in Z. In order to conclude that
g = g, we just have to prove that A is open in Z. For this, let a € A. There
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exists a neighborhood V of §(a) = g(a) such that f|V is injective. By the
continuity of § and §, there exists a neighborhood U of e with g(U) c V
and g(U) C V. Hence, for all z € U we have fg(z) = g(z) = fg§(z) and,
from the injectivity of f in V, §(z) = §(z). Therefore U C A. D

Let f: X — Y be a continuous map. A section of f is a continuous
map o: Y — X such that f oo = idy. In order to provide a section o we
must choose continuously, for each y € Y, a point o(y) belonging to the
inverse image (or fiber) f~*(y). This is not always possible. First of all, f
must be surjective but this necessary condition is far from being sufficient,
as we will see in what follows.

If 0: Y — X is a section of f then the restriction of f to o(Y) is a
homeomorphism onto Y.

The following corollaries show some consequences of Proposition 6.2
with respect to the sections of a locally injective map.

Corollary 6.2. Let X be a connected Hausdorff space. A continuous locally
injective map f: X — Y that admits a section o: Y — X is a homeomor-
phism and its inverse is o.

In fact, in this case the maps o o f, idx: X — X are liftings of f
(relatively to f), as illustrated by the diagram below.

Since o o f coincides with idy in the set o(Y"), from Proposition 6.2 we
conclude that ¢ o f = idx, hence o = f~ 1.

It follows from Corollary 6.2 that a continuous, locally injective and
non-injective map, whose domain is Hausdorff connected, does not admit
a section. An example of such a map is f: §* = S*, f(z) = 2%

Corollary 6.3. Let X be a Hausdorff space, Y connected and f: X — Y a
continuous, locally injective map. If oY — X is a section of f then o(Y')
is a connected component of X .

In fact, let C be a connected component of X which contains the con-
nected set o(Y’). By Corollary 6.2, f|C is a homeomorphism from C onto
Y. Since f|a(Y) is already a homeomorphism onto Y, we have o(Y) = C.




124 6. Covering Spaces

Corollary 6.4. Let A, B be open and connected subsets in the Hausdorff space
X=AUB and f: X =Y a continuous map such that f|A and f|B are
homeomorphisms onto Y. Then ANB =& or A =B,

In fact, f is locally injective, ¥ = f(A) is connected and (f|4)~1: Y —
X is asection. By Corollary 6.3, A = (f|A)~1(Y) is a connected component
of X. In a similar way we show that B is also a connected component. It
follows that A =B or ANB = @.

Remark. Corollary 6.4 would be false without the hypothesis that A and
B are open sets. This is shown by the function f: S' — [~1,1], defined
by f(z,y) = z, and the sets A = {(z,y) € St;y > 0}, B = {(x,y) € §Y
y <0}

6.2 Covering Maps

The Inverse Function Theorem is usually employed to prove that a certain
map f: X — Y is a local homeomorphism, but a natural question remains
open: Is f a (global) homeomorphism from X onto f(X)? Since f is
already an open map, this is equivalent to ask if the map f is injective.
This is a global question, of topological nature, whose answer cannot be
given by Differential Calculus theorems, which are essentially local. We
will discuss this problem here.

A local homeomorphism f: X — Y can be interpreted from the fol-
lowing viewpoint: given a € X and b = f(a) € Y, the equation f(z) =y
has, for each y sufficiently close to b, a unique solution z, close to a, which
depends continuously on y. It remains to be known the conditions under
which this locally unique solution is globally unique in X.

The classical (and the most adequate) instrument to investigate if a
given local homeomorphism is global and, more generally, to obtain re-
gions where the homeomorphism is injective, is the method of analytic con-
tinuation, which we briefly describe now. Given a local homeomorphism
f: X =Y letye f(X). For each x € X with f(z) = y, there exist neigh-
borhoods IV’ 2 z and V' = y such that f: U — V is a homeomorphism;
g = (fIU)"': V = U is a local inverse of f, known classically as a “branch
of f~1.7 The problem consists of extending this branch g to a region larger
than V. Given another point 3y’ € f(X), we connect ¥’ to y by a path a
and we try to extend g along this path. This is possible provided that the
path a has a lifting; that is, there exists a path @ in X, with initial point
x, such that f(a(s)) = a(s) for all s € I. Then, since y' = a(1), we define
g(y’) = a(l). The existence of the lifting @ cannot be guaranteed, as the
example below shows. The concept of covering, which we introduce below,
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Figure 6.4.

provides additional conditions that will enable the use of the method of
analytical continuation.

Example 6.3. Let f: (0,37) — S! be the surjective local homeomorphism
defined by f(t) = (cost,sint). It is easy to obtain, in the circle S, paths
that cannot be lifted relatively to f. We just have to take, for example,
a closed path in S* whose degree is > 2. For another example, consider
the set X = {(1 +t)e’/*;0 < t < +oc} and define g: X — S* as the
radial projection, g(z) = z/|z|. By taking ¢ = 2/7, we see that the point
(0,1+ 2) belongs to X. Let a: I — S* be a path with origin (0,1),
which describes homeomorphically the semicircle > 0, and ends at the
point (0, 1) (see Figure 6.4). There is no path a: I — X with a(0) =
([], 1+ %) € X such that goa = a, even though we have ¢g(a(0)) = a(0). «

A map p: X —» X is called a covering map (or, simply, a covering)
when each point z € X belongs to an open set V' < X such that

P_l (V) = U Ua

is a union of pairwise disjoint open sets U, such that, for each a, the
restriction p|U,: U, — V' is a homeomorphism. The open set V' satisfying
the above condition is called a distinguished neighborhood. The space X
is called a covering space of X and, for each z € X, the set p~!(x) is called
a fiber over x. Sometimes, X is called the base of the covering. _

A covering map p: X — X is a local homeomorphism from X onto X.
Example 6.4 shows that not every local homeomorphism is a covering map.




126 6. Covering Spaces

The local homeomorphisms in Example 6.1 are covering maps. When the
space Y is discrete, the projection p: X x Y — X is a covering map.

Every open subset of a distinguished neighborhood is itself a distin-
guished neighborhood. Thus, when X is locally connected, locally com-
pact, etc., we may choose the distinguished neighborhoods in such a way
to be connected, with compact support, and so on.

If X is a locally connected and locally Hausdorff space, each distin-
guished neighborhood V' can be chosen to be connected and Hausdorff.
Thus we do not need to suppose that, in the decomposition

_p—l(v) - U'Ua.‘

where p|U, is, for each a, a homeomorphism onto V| the open sets U, be
pairwise disjoint. (See Corollary 6.4.) In this case, the sets U, are the
connected components of the inverse image p~* (V).

When p: X > Xisa covering, the condition that X be a Hausdorff
space can be omitted from Proposition 6.2. We have the following propo-
sition.

Proposition 6.3. Let p: X+ Xbea covering map and Z a connected space.
Ifg, §: Z — X satisfypog = po g = g, then either g(z) # g(2) for all
zEZL org=4g.

Proof. Since p is locally injective, we use the proof of Proposition 6.2 in
order to see that the set A = {z € Z;4(z) = g(2)} is open. In order to
show that A is closed, without using that X is a Hausdorff space, choose
z € Z such that g(z) # §(z). The image of these two points by the map
p is the same point g(z) € X. Let V be a distinguished neighborhood of
g(z). Then

'p_l(vj = UUG:.‘

the disjoint union of open set which are mapped homeomorphically by p
onto V. Therefore, there exists o # 3 such that g(z) € U, and §(z) € Us.
By taking an open neighborhood W 3 z in Z such that g(W) C U, and
g(W) C Us, we see that g{w) # g(w) for all w € W. Hence, 2 ¢ A = z €
W with W N A= @. Thus, A is closed. ]

Proposition 6.4. If the base X of a covering p: X — X is connected, then
each fiber p~Y(z) x € X, has the same cardinal number, which is called the
number of leaves of the covering.
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Proof. For every point x of a distinguished neighborhood V', the cardinal
number of the fiber p~!(z) is the same. Hence, the set of the points z € X
such that p~1(z) has a prescribed cardinal number is open. This determines
a decomposition of X as the union of disjoint open sets, where in each of
them the cardinal number of p~!(z) is constant. Since X is connected, this
family of disjoint open sets has only one set. O

Remarks. 1. By Corollary 6.1, when X is compact and X is a connected
Hausdorff space, every covering map p: X — X has a finite number of
leaves. In this case, X = p(X) is necessarily compact.

2. A covering map p: X —» X whose base X is connected is a locally
trivial fibration whose typical fiber F' is discrete (and whose cardinality is

equal to the number of leaves of p).

Example 6.4. Let f: X — Y be a local homeomorphism, where Y is con-
nected and each inverse image f~!(y), y € Y, is finite. Given any x € X,
the restriction fy = f|(X — {x}) is still a local homeomorphism. But at
least one of the maps, f or fp, is not a covering map. In fact, either the
number of elements of f~!(y) is not constant or the number of elements of
fo ' (y) is not constant. q

It is important to recognize when a local homeomorphism f: X — ¥
is a covering map. Now we characterize the coverings with a finite number
of leaves. Other sufficient conditions will be studied later on.

A map f: X — Y is called closed when the image f(F') of every closed
subset F' C X is a closed subset of Y.

In order that a map f: X — Y be closed, it is necessary and sufficient
that, for every y € Y and every open set U = f~!(y) in X, there exists
an open set V' 3 y in Y such that f=%(V) C U. (See the Appendix at
the end of the book.) Note that this condition suggests something like the
continuity of the correspondence y +—+ f~1(y), which is not a function.

A continuous map f: X — Y is called proper when it is closed and, for
every y € Y, the inverse image f~!(y) is compact. In the Appendix, we
prove some basic properties of proper maps.

Proposition 6.5. Let X be a Hausdorff space and f: X — Y a local homeo-
morphism. Each of the following statemenits implies the next one:

1. There exists n € N such that each inverse image f~*(y), y € Y, has
n elements.

2. f is proper and surjective.
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3. f is a covering map whose fibers f~1(y) are finite.

If Y is connected, then the three statements are equivalent.

Proof. 1 = 2. We just need to prove that f is closed. Let y € Y and
A D f7Yy) be an open set. Since f~1(y) = {zy,...,z,} is finite and X
is Hausdorff, there exist pairwise disjoint open sets Wy 3 z1,..., W, 2 x,,
such that Wy U ... UW,, C A. Hence,

V= ﬁ F(W3)

=1

is an open neighborhood of y. For each i = 1,....n, U; = W, N f~1(V) is
open and, by setting U = UU;, we have f~1(V) > U. We claim that we
must have f~}(V) = U. In fact, if w € f~}(V)—that is, f(w) =v eV =
N f(W;)—then there exist wy € W1,...,w, € W, such that f(w;) = v for
every i. Since f~!(v) has n elements and the sets W; are pairwise disjoint,
we must have w = w; for some i, thus w € U; = f~1(V) N W, that is,
w € U. Hence, f~1(V) = U C UW; C A, which proves that f is closed,
because of the criterion about closed maps mentioned above and proved in
the Appendix.

2 = 3. Given an arbitrary point y € Y, its inverse image is a com-
pact discrete set, therefore, it is finite: f='(y) = {z1,...,z,}. Let W} 3
x1,... W, 2 z, be pairwise disjoint open sets in X, which are mapped
homeomorphically by f onto open sets of Y. Then f(Wy)n...nN f(W,)
is an open neighborhood of ¥ and, since f is closed, we can obtain an
open set V with y € V' Nf(W;) and such that f~1(V) € UW;. For every

so.,m, we take U; = f~HV)NW;. Then f~1(V) = (UW)NFHV) =

U(fH(V)NW;) = UU; and, since V C f(W;), f maps each one of the open
sets U/; homeomorphically onto V.

Finally, when Y is connected, 3 = 1 by Proposition 6.4. ]

Corollary 6.5. If X is a Hausdorff compact space and Y is Hausdorff, then
cvery surjective local homeomorphism f: X — Y is a covering.

In fact, f is proper.

Corollary 6.6. Let X, Y be Hausdorff spaces. If A C X has compact closure
and the local homeomorphism f: A — Y extends continuously to a map
f: A = Y such that f(OA) C 8f(A) (that is. f maps the boundary of
A into the boundary of f(A)), then the restriction flA: A — f(A) is a

CcOoveTing.

In fact, under these conditions, f is a proper map from A onto f(A).
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Remarks. 1. Let f: X — Y be a covering map. If YV is a Hausdorff
compact space and each fiber f~!(y) is finite, then X is compact. The
proof is easy (even in the general case where f is a locally trivial fibration,
with compact base and fiber). By supposing that X is Hausdorff and Y is
connected, it follows as a corollary of Proposition 6.5, because f is proper
and X = f~H(Y).

2. In order to prove that 1 = 2 we used only the fact that f is open and
continuous. Therefore, we can state that if f: X — Y is a continuous open
map, and there exists n € N such that all of the inverse images f~!(y),
y € Y have n elements, then f is a covering map. About the necessity that
f be an open map, see Figure 6.3.

3. In the Appendix, Proposition A.4, we show that if X and ¥V are
metric spaces without isolated points, a local homeomorphism f: X — Y
which is also a closed map is necessarily a proper map.

Example 6.5. The maps in the items a), b), and ¢) in Example 6.1 are not
proper maps; the maps in items d) and e) are proper. The map f: S! — S!,
defined by f(z) = z", is a local homeomorphism (by the Inverse Function
theorem). Since S! is a Hausdorff compact space and f is surjective, we
see that it is a covering map with n leaves. <

Example 6.6. Let p: C — C be a non constant complex polynomial and
I C the finite set whose elements are the roots of p'(z). By setting X =
C—p Y (p(F))and Y = C — p(F), we see that the restriction p|X: X — YV
is a local homeomorphism and a proper map; p|X is surjective because Y
is connected. Hence, p|X is a covering with n leaves, where n is the degree
of p. In particular, the map p: C— {0} — C— {0}, p(z) = =", is a covering,.

<

6.3 Properly Discontinuous Groups

Important examples of covering maps are obtained when we consider prop-
erly discontinuous groups of homeomorphisms, which we study now.

The set of homeomorphisms of a topological space X is a group with
the operation of composition. A subgroup G of this group is called a group
of homeomorphisms of X. Therefore, we must have:

1. idx € G;

2. g, heG=ghedG,

3. g7teq.

(Here, gh is the composition of g with h.)
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For the sake of simplicity in the notation, the image of the point x by
the homeomorphism ¢g: X — X is denoted by gz.

The orbit of a point = € X relative to a group of homeomorphisms G
is the set G-z = {gz; g € G}. The relation “there exists g € G such that
gxr =y’ is an equivalence relation on the set X. The equivalence class of
a point z € X according to this relation is the orbit of the point G - z.
Therefore, given x, y € X, either G2 =G -yor G-xNG-y = &.

A group G of homeomorphisms of a space X is said to be properly
discontinuous when every point x € X has a neighborhood V' such that, for
every g € G different from the identity, we have g- VNV = @. Equivalently:
Ifg+# hin G, then g- VN h-V = @. We say that V is a convenient
neighborhood of the point .

If (¢ is a properly discontinuous group of homeomorphisms of a topo-
logical space X, then for every ¢ # idy in GG and every z € X, we have
gz # x. That is, with the exception of the identity, the homeomorphisms
that belong to G do not have fixed points. This is equivalent to stating
that g # h in G = gz # hx for all x € X. We also say, in this case, that
(G operates freely in X.

Given a properly discontinuous group G of homeomorphisms of a space
X, the orbit G-z of each point of X is a discrete set. In fact, if V' is a
convenient neighborhood of the point x then each set ¢ -V, g € G is a
neighhorhood of gx which contains only this point of the orbit G - x.

A neighborhood V' is convenient with respect to a properly discontinu-
ous group G if, and only if, it contains at most one element of any orbit of
. In fact, let V' be a convenient neighborhood. If there exist y, gy € V
then gy € V N gV hence, g = idy and from this, gy = y. Conversely, if V/
does not contain two distinct elements of any orbit of G then, for all y € V'
and ¢ # idx in G, we have gy ¢ V; that is, VNg-V = @.

If the points of the space X are closed sets (for example, if X is a
Hausdorff, or locally Hausdorff, space), then the orbits G-z relative to a
properly discontinuous group G of homeomorphisms of X are closed subsets
of X. In fact, if y ¢ G-z, then a convenient neighborhood of y contains, at
most, one point gz of the orbit G - x. Since {gz} is a closed set, a smaller
neighborhood of y will be disjoint of G-x.

In particular, when X is a compact Hausdorff space, every properly
discontinuous group ¢ of homeomorphisms of X is finite. In fact, by fixing
xp € X, the map g — gxg is a bijection from G onto the orbit GG -z which,
being a discrete and closed subset of the compact space X, is finite.

The condition that the points of X he closed is essential in order that
the orbits of a properly discontinuous group of homeomorphisms of X be
closed. This can be easily seen by considering the group G = {idx}.
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Example 6.7. For each m € Z, let T;,,: B — R be the translation T}, (z) =
z + m. The set G = {T},,;m € Z} is a properly discontinuous group
of homeomorphisms of B. More generally, let Z™ C R™ be the additive
subgroup that consists of the vectors whose coordinates are integers. For
each v € Z", let T,,: R™ — R™ be the translation T),(z) = = + v. The set
G = {T,;v € Z"} is a properly discontinuous group of homeomorphisms of
K™, Any neighborhood whose diameter is smaller than 1 is a convenient
neighborhood for this group. <

Example 6.8. Let ar: S™ — S™ be the antipodal map. The set G = {id, ar}
is a group of homeomorphisms of S™ since v o @ = id. G is properly
discontinuous because if V' is an open set contained in a hemisphere, then
a-VnV =2 <

Example 6.9. Let G he a finite group of homeomorphisms of a Hausdorff
space X such that, with the exception of the identity, no element g € G
has fixed points. Then G is properly discontinuous. In fact, given z € X, if
g # hin GG, we have gz # hz. By Hausdorff axiom it is possible to obtain,
for each g € GG, an open set V, containing gz, such that g # h implies that
VoV, = @. By the continuity of the homeomorphisms ¢ € GG and the fact
that (& is finite, we can take a neighborhood V = V,; of x so small that
g-V CV, for every g € G. Then g- VNV = & for every g € GG. Note that
Example 6.8 is a particular case of this one. <

Example 6.10. Let G be a topological group. For each subgroup H C G
we may consider the group £(H) of homeomorphisms of G, whose elements
are the left translations {,: G — G, £p(x) = h - x, defined by elements
h € H. (See Example 6.7 where G = R™ e H = Z".) The group of
homeomorphisms f£(H) is properly discontinuous if, and only if, H is a
discrete subgroup of G. One part of the statement is obvious: if £(H) is
properly discontinuous, the orbit of each element of GG is a discrete set.
In particular, H is discrete because it is the orbit of the neutral element
of . Conversely, suppose that H C ( is discrete. Then there exists a
neighborhood U of the neutral element ¢ € G such that U N H = {e}.
Since the map (z,y) + zy~ !, of G x G into G, is continuous, there exists
a neighborhood V' 3 e such that =, y € V = zy~! € U. We assert that,
for every h € H, with h # e, we have (¢, - V)NV = @. In fact, if there
existed z € (£,-V)NV then there would exist y € V with = = hy and from
this h = zy~' € U N H, hence h = e. Note that the orbits of the group of
homeomorphisms ¢(H) are the cosets H -z, determined by the subgroup
H C G. Example 6.7 is a particular case of this situation. 4
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Example 6.11. Let X = R? — {0}. The homeomorphism f: X — X, defined
by f(z,y) = (ax,a”'y), where a > 1 is a constant, generates a group G of
homeomorphisms of X, whose elements are the powers f", n € Z, where
fr=fofo---of (ntimes)ifn >0, f*= flto...of"! (|n]) times) if
n < 0 and f° = idx. The group G is properly discontinuous. In fact, for
every n € Z, we have f*(z,y) = (a™-z,a™™ -y). If G were not properly
discontinuous, there would exist a point z = (x,y) € X, a sequence of
points z, = (z,,y,) € X and a sequence of integers k, # 0 such that
lim z, = z and lim f*+(2,) = 2. In order to fix ideas, suppose that z # 0.

Then, from the hypothesis lim(z,,,y,) = (z,y) = lim(a*" -z, a *-y,), it
would result that lim a*» = 1, which contradicts k,, € Z — {0}.
il

Figure 6.5 shows the orbit of a point z = (0, y), whose elements are the
points z, = (0,a™"-y), and the sets f*V, n € Z, where V is a disk with
center z. <

Given a group G of homeomorphisms of X, we denote by X/G the
quotient space of X by the equivalence relation whose equivalence classes
are the orbits Ga, € X. The canonical projection p: X — X /G associates
to each point x € X its orbit p(x) = G-z. The open sets of the topology
of X/G are the sets A C X/G such that p~*(A) is open in X. Thus, the
open sets of X/G are the images p(U) where U C X is an open set which
is a union of orbits.




6.3. Properly Discontinuous Groups 133

The continuous map p: X — X/G is open because if V C X is open,
then p~H(p(V)) = |J ¢-V is open in X.

geG

Proposition 6.6. Let G be a group of homeomorphisms freely operating in
the space X. The following statements are equivalent:

1. G is properly discontinuous.
2. The canonical projection p: X — X/G is a covering map.

3. p: X — X/G is locally injective.

Proof. 1 = 2: Let y = p(z) be an arbitrary point in X/G. Take a
convenient neighborhood U 3 z. Since p is an open map, V = p(U) is an
open neighborhood of y. We have that

P v)y=gU

geEG

is the union of pairwise disjoint open sets (because U is a convenient neigh-
borhood), and the restriction of the continuous map p to each of these open
sets is injective; therefore, it is a homeomorphism onto p(g-U) = p(U) = V.
Hence 1 implies 2.

2 = 3: Obvious.

3 = 1: From 3, we conclude that each point x € X belongs to an open
set [ in which there are no two points in the same orbit. Then U is a
convenient neighborhood of = and this proves that 3 = 1. O

Corollary 6.7. Let f: G — H be a surjective continuous homomorphism
between two topological groups. In order that f be a covering map, it is
necessary and sufficient that it be a local homeomorphism or, equivalently,
that f be continuous, open, and its kernel be a discrete subgroup.

In fact, under these conditions, denoting by K = f~!(e) the kernel
of f, the group ¢(K) of left translations by elements of K operates in a
properly discontinuous mode in G (see Example 6.10). Hence, the quotient
map 7: G — G/K is a covering. By passing to the quotient, there exists a
homeomorphism f: G/K — H such that for = f. Hence, f is a covering,
The converse is obvious.

The quotient space X /G of a Hausdorff space X by a properly discontin-
nous group of homeomorphisms G is locally Hausdorff because it is locally
homeomorphic to X. But, globally, X/G may or may not be a Hausdorff
space. Since p: X — X/G is open, the necessary and sufficient condition
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in order that X/G be Hausdorff is that the set I' = {(z,gz);z € X, g € G},
graph of the equivalence relation determined by G, be closed in X x X,
When G is finite, then I' is the union of a finite number of closed subsets of
X x X (the graphs of the homeomorphisms ¢g € G). Hence, X/G is Haus-
dorff. In particular, when the Hausdorff space X is compact, the quotient
space X/G of X by a properly discontinuous group of homeomorphisms is
Hausdorff because G is necessarily finite.

In Example 6.11 above, the quotient space X/G is not Hausdorff. In
fact, the points w = (0,1) and z = (1,0) do not belong to the same orbit.
Nevertheless, for any disks I/ 3 w and V' 3 z, we have that f*U is, for
large values of n > 0, a long flattened oval, close to the z-axis. (On the
other hand, for large n < 0, f™U is a long vertical oval, close to the y-axis.)
This forces f*UNV # @ for n > 0 sufficiently large. From this, it follows
that the points G-w and G -z in X/G do not have disjoint neighborhoods.

Another way to verify that X/G is not a Hausdorff space is to consider
the sequences w, = (a™",1) and z, = (1,a™"). For each n € N, w,, and z,
belong to the same orbit because z, = f"w,. But limw, = (0,1) = w and
limz, = (1,0) = z belong to distinct orbits of G. This says that, in the
quotient space X/G, the sequence p(w,) = p(z,) has two distinct limits
p(w) and p(z). Hence, X/G is not Hausdorff. The reader may imagine the
quotient space X/G as the union of four cylinders and four circles in R?,
with a topology different from the usual.

In Example 6.7, the quotient space R" /G = R™/Z" is the n-dimensional
torus. For n = 1, we obtain the circle S! and, in general, R"/Z"is home-
omorphic to the Cartesian product S x ... x S* of n copies of the circle.
Thus, even with G being infinite, the quotient space is Hausdorff.

In Example 6.8, the quotient space S™/G is the n-dimensional projective
space.

6.4 Path Lifting and Homotopies

A continuous and surjective map f: X — Y is said to have the path lifting
property when, for any arbitrary path a: J — Y, with J = [sq,s;], and
each point € X such that f(z) = a(sp), there exists a path a: J — X
such that a(sp) = z and foa = a.

We know that not every local homeomorphism f: X — Y has the path
lifting property but, when X is a Hausdorff space, the lifting a: J — X
of a path a: J — Y is completely determined by a and the initial point
r = a.'(S(]).

When f is surjective and, for any arbitrary path a: J — Y and any
point z € X with f(x) = a(sp), there exists a unique path @: J — X such
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that fod = a and a(sg) = z, we say that f: X — ¥ has the unique path
lifting property. _ _

Even when X is not Hausdorfl, a covering p: X — X has the unique
path lifting property. This is the content of the proposition below, accord-
ing to which the analytic continuation of the local inverse of p along a path
is always possible when the local homeomorphism p is a covering map. The
reader should not forget that the unique path lifting property requires, first
of all, that f be surjective, by definition.

Proposition 6.7. Let p: X - X be a covering map. Given a patha: J — X,
J = [sg,s1] and a point T € X such that p(Z) = a(sg), there exists a unique
path @: J — X with a(sg) =T and poa = a. (In other words: p has the
unique path lifting property. )

Proof. Assume initially that a(J) C V, where V' is a distinguished neigh-
borhood. Then, since T € p~1(V), there exists an open set U/ 3 ¥ which
is mapped homeomorphically by p onto V. Let f = (p|U)~: V — U, and
set @ = foa. Next, consider the case where .J = J; U J5 is the union of two
compact intervals with an endpoint s, in common, in such a way that the
proposition holds for the restrictions a; = a|J; and ay = a|.JJo. We choose
ay: J1 — X in such a way that @;(sp) = T and pod; = a;. After this,
we obtain @y: Jo — X such that poas = az and as(s.) = @1(s.), which is
possible because p(@; (s.)) = ay(s.) = az(s.). Then we define @: J — X by
a|J; = a; and @|Js = a@z. The existence of @ in the general case reduces to
the two particular cases considered because, by the continuity of a: J — X
and the compactness of .J, there exists a decomposition J = J; U... U J,
of J as the union of consecutive intervals, in such a way that a(J;) C V;,
a distinguished neighborhood, for ¢ = 1,2,...,n. The uniqueness results
from Proposition 6.3. O

Now we prove that if a local homeomorphism has the unique path lifting
property then the lifting @ depends continuously of a and the initial point
z = a(0). For this purpose, we present an appropriate description of the
compact-open topology for paths.

Let X be a topological space and C(I; X) be the set of paths a: I — X.
Given the open sets Uy, ..., U, in X and a partition 0 = t5 < £; < ... <
t, = 1, we use the notation

Alto,tr, - s Us, -, Us)

to represent the set of all paths a: I — X such that a([t;—1,¢;]) € U; for
i = 1,...,n. These sets constitute the basis for a topology. From now
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on, the symbol C(I; X) means the topological space obtained by taking
this topology in the set of paths a: I — X. We remark (but we will not
use this fact) that if the topology of X comes from a metric d then the
topology that we have just defined in C(I; X) is induced by the metric
d(a,b) = supg< <, d(als), b(s)).

The following remark can be easily verified: If B is a basis of open
sets in X then the open sets A(tg, t1,...,t,;Ur, ..., U,), comprised only of
open sets U; belonging to the basis B, also constitute a basis for C(I; X).
This fact is used in the proof of the proposition below.

Proposition 6.8. Let f: X — Y be a local homeomorphism with the unique
path lifting property. Given a path a: I — Y and a point x € X with
f(x) = a(0), there exists a unique path @: I — X such that a(0) = = and
foa=a. The lifted path a depends continuously on a and the initial point
x. More precisely: let @ C C(I;Y) x X be the subspace whose elements
are the pairs (a,z) such that a(0) = f(z). Then the map L: Q@ — C(I; X),

given by L(a,z) = @, is continuous.

Proof. Consider in X the basis B whose elements are the open sets U
which are homeomorphically mapped by f onto open sets V C Y. Let
A= A(to,t1,...,tn;Ur,...,Us) be an open set of the corresponding basis
in C'(I; X), containing the path @, and set V; = f(U;) and ¢; = (f|U:) 7 .
Then the set A(tg,t1,...,tn; V1,..., V) is a neighborhood of the path a =
f oa. We state that if the path b: I — Y belongs to this neighborhood
and if 2’ € U, then b = L(b,z") belongs to A. In fact, for i = 1,2,...,n,
we have b([t;_1,¢]) = @:b([ti_1,t:]) C U;, by the uniqueness of the lifting
of the restriction b|[t;_1,t;] from the initial point E(tg_l). This concludes
the proof. ]

We will obtain the homotopy lifting property as a consequence of Propo-
sition 6.8. In Chapter 1, we interpreted a homotopy H: Z x I -+ Y asa
path in the space C'(Z;Y). Now we use a dual interpretation. To each
homotopy H: Z x I — Y we associate a map h: Z — C(I;Y) which asso-
ciates to each point z € Z the path h.: I — Y, defined by h.(t) = H(z,1).
Imagining Z x I as a cylinder, union of vertical line segments, the path h.
is the restriction of H to the vertical segment z x 1.

Proposition 6.9. H: ZxI — Y is continuous if, and only if, h: Z — C(I,Y)
15 continuous.

Proof. Suppose that A is continuous. Given (zp,tg) € Z x I, let V be
a neighborhood of H(zp,tp) in Y. We must obtain a neighborhood U of
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zg in Z and in interval J C I, containing t; as an interior point (in /),
such that H(U x J) C V. B} the continuity of the path h,,, there exists
a closed interval J C I, containing ¢y as an interior point (in I), such that
H(zp,t) = hy,(t) € V for all t € J. Let A the set of all paths a € C(1;Y)
such that a(J) < V. It is obvious that A is a neighborhood of h,, in
C(1;Y). By the continuity of h, there exists a neighborhood U of z5 in Z
such that h. € A for every z € U; that is, H(z,¢) € V for all z € U and
teld

Conversely, let H be continuous. To prove the continuity of b, let z; € Z
and consider the basic neighborhood

A(tu,...,tn;Vl,...,Vn)

of h,,. We must find a neighborhood U of z; in such a way that z € U
and t;_; <t < t; imply H(z,t) € Vi(1 <4 < n). Now, HY(V;) is a
neighborhood of zg x [t;—1,%] in Z x I. Since [t;—1,t;] is compact, there
exists an open set I; C Z, containing 2, such that U; x [t;_1,t;] € H=1(V;).
We set U = Uy n...NU,. This concludes the proof. ]

Proposition 6.10. Let o: X — Y be a local homeomorphism with the unique
path lifting property. Given a homotopy H: Z x1 —'Y between two contin-
uous maps f,g: Z =Y, if f has a lifting f: Z — X, then g also admits a
lifting g: £ — X, which is homotopic to f. More prcczsca’y the homotopy
H admits a unique lifting H: Z x I — X such that H(z,0) = f(z) for
every z € Z; § is then defined by §(z) = H(z,1).

Proof. Let h: Z — C(I; Y) be obtained from H as in the previous proposi-
tion. Foreach z € Z, let h. = L{h-, f(z)) be the unique path lifting A with
origin at the pomt f ( ). Since L is continuous, we see that z h, defines a
continuous map h:Z = C ({; X') and therefore a homotop} H:ZxI X,
satisfying H(z,0) = h.(0) = f(z) and oH(z,t) = ph.(t) = h.(t) = H(z,1).
This concludes the proof. O

Proposition 6.11. Let f: X — Y be a local homeomorphism with the unique
path lifting property. If the paths a,b: I — Y, with the same endpoinits
Yo, Y1, are homotopic then their liftings E,Fbw: I — X, starting at the same
point xg, end at the same point r; and, moreover, they are homotopic.

Proof. Let H: I xI — Y be a homotopy between a and b and H:IxI—
X be the lifting of H such that ff(s,()) = a(s) for every s € I. Since
FH(0,1)) = H(0,t) = yo and f(H(1,t)) = H(1,t) = y do not depend on
t, it follows that H(0,t) = zo and H(1,t) = z; also do not depend on t
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because the fibers f~1(yo) and f~1(y1) are discrete. The path s +—» H(s, 1)
in X is a lifting of b starting at z. It follows from the unique path lifting
property that H(s,1) = b(s) for all s € I. Thus, we have H: @ = b. O

Corollary 6.8. Let f: X — Y be a local homeomorphism with unique path
lifting property. If the closed path a: I — Y is homotopic to a constant,
any lifting a: I — X s closed and homotopic to a constant.

Note that in Proposition 6.11, nothing prevents the paths a and b from
being closed. Also note that the fact that @ is closed does not imply that
¢ is homotopic to a constant. (See Proposition 7.2.)

Example 6.12. Now we use Proposition 6.11 to exhibit an example of a space
whose fundamental group is not abelian. Our space X is the union of two
circles with a point zg in common. It is convenient to think of X as the
union of the great parallel of the torus and a meridian of the same torus,
which cuts the parallel at the point zy5. We denote by a a closed path that
covers the parallel homeomorphically with the exception, of course, of the
endpoints that are mapped onto zg; b denotes an_analogous path defined
over the meridian. We introduce a covering space X, which is the subset of
the plane sketched in Figure 6.6. To obtain X we take on the rectangular
axis, starting from the origin, four segments of length 1. From the free
endpoint of each of the four segments, we take three segments of length
1/2, parallel to the axis. From the free endpoint of each of these twelve
segments, we take three segments of length 1/4, and so on. The covering
space X is the union of the segments (an infinite number) thus constructed.
The covering map p: X —+ X sends each horizontal segment onto a and
each vertical segment onto b in such a way that the increasing order of

X
a
——

P

— -

[
Cly

AN

Figure 6.6.
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Figure 6.7.

the coordinate that varies in each one of these segments agrees with the
orientations of the paths a and b respectively and that the endpoints are
mapped onto xo. <

Now we show that the closed paths ab and ba, with bases at the point x,
are not honlotOPlc in X. For this, we just have to consider their respective
liftings @b and ba in X, with origin at the point 0. The final point of ab is
(1,1/2), while ba ends at the point (1/2,1). If ab and ba were homotopic
in X, their liftings from the point O would end at the same point of X,
because of Proposition 6.11.

The space X above is known as the figure § space because it is homeo-
morphic to the graphical sign of the digit eight. Now we can exhibit other
spaces with non-abelian fundamental group. For example, the union of a
list (finite or infinite) of circles, each one of them with a point in common
only with the previous and the following circles in the list. If the number
of circles is > 2, such an space has the figure eight as a retract, hence its
fundamental group is not abelian. (See Proposition 2.10.) Also, a compact
non-orientable surface of genus g > 2 has a non abelian fundamental group
because it admits as a retract a union of g circles with ¢ — 1 points of
tangency. (In Figure 6.7, g = 3.)

We should also mention the complement of a set of two points in R2.
This space has the same homotopy type of the figure eight space, so its
fundamental group is nonabelian.

Example 6.13. The fundamental group of the figure eight space is generated
by the homotopy classes o = [a] and 3 = [b]. This follows from Propo-
sition 2.11. In fact, by denoting the figure eight space by X, we have
X = X1U X5, where X7 and X» are circles with a point zp in common. We
cannot directly apply the mentioned proposition because neither X; nor
Xs are open sets in X. But, if we take the points ©; € X; and x5 € X5,
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both different from zg, and set U = X — {a1}, V = X — {22}, we see that
the inclusions Xo — U/ and X; — V are homotopy equivalences. From this,
it follows that the homotopy class of a is a generator of the infinite cyclic
group 71 (V) and the class of b generates the infinite eyclic group m (U).
The same proposition, applied to X = U UV, states that 7 (X, zq) is gen-
erated by a and 3. In fact, we may state a sharper result: The generators
« and 3 are free; that is, no monomial of the type a™3"a® ..., product of
a finite number of alternating powers of a and 3, can be reduced to the
neutral element of 7 (X, zg) except when the exponents m, n,p,... € Z are
all null. This fact will be proved in the next chapter. <

Example 6.14. It follows from Example 6.12 that a compact orientable
surface of genus > 1 does not admit a topological group structure. In fact,
from Proposition 2.12, the fundamental group of a topological group is
abelian. It remains to consider the compact orientable surfaces of genus 0
and 1. The torus T = S! x S! = R?/Z? has genus 1, and it is obviously
a topological group; the sphere S2 has genus 0, and it does not admit a
structure of topological group, but for a completely different reason, which
can be explained as follows: Suppose that S? is a topological group, with
neutral element e. By fixing a point a € S2, close to ¢ but satisfying
a # e, we would have a -z # —x and a -2 # z for all x € §2. Then, by
defining v: S? — R? by setting v(z) = (z,a - z)xz —a-x, the map would be
continuous, with v(z) # 0 and {x,v(z)) = 0 for all € 52, in contradiction
with Proposition 4.4. Thus, we conclude that the torus is the only compact
orientable surface that admits a topological group structure. In Example
7.18, we show that no compact surface (orientable or not), except the torus,
can be a topological group. |

Proposition 6.12. Let f: X — Y a local homeomorphism with the unique
path lifting property. If X is pathwise connected and Y is simply connected,
then f is a homeomorphism.

Proof. We just have to prove that f (which is already continuous, open,
and surjective) is also injective. Consider xzg,z; € X such that f(zg) =
f(x1). Now take a path @: I — X whose initial point is zg and final point
is #;. The path @ = f o @ is closed in Y, therefore it is homotopic to a
constant. By Corollary 6.8, its lifting @ is closed; hence, zy = 2. O

Corollary 6.9. Let f: X — Y be a local homeomorphism with the unique path
lifting property. If Y is simply connected and locally pathwise connected,
then f maps each connected component of X homeomorphically onto Y.
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Since the space X is locally homeomorphic to Y, it is locally pathwise
connected. Thus, every connected component ¢' C X is pathwise connected
and open. Hence, p|C is a local homeomorphism and, as can be easily
proved, p|C: C — Y has the unique path lifting property. It follows from
Proposition 6.12 that p|C is a homeomorphism from € onto Y.

It follows from Proposition 6.12 that every pathwise connected covering
of a simply connected space is a homeomorphism.

For example, let U C R™ be an open connected and bounded set. Given
a class C! map f: U — R", suppose that f'(z): R® — R" is, for all
z € U, an isomorphism. By the Inverse Function theorem, f is a local
homeomorphism. It may happen that f is not a covering of the open set
V = f(U). But if f is such that z;, = = € 9U = f(zp) — y € V, then f
extends to a continuous map f: U — V such that f(@U) < dV. The map
f is, in this case, proper, and therefore, it is a covering f: U — V. If we
know that V' is simply connected (for example, V' convex), then we may
conclude that f is injective and therefore, it is a C'! diffeomorphism from
U onto V.

Analogously, let f: M™ — N™ be a class C'' map where M™ and N™
are differentiable surfaces (without boundary) of dimension m. Suppose
that the derivative f'(z): To M — T, )N is an isomorphism at each point
xz € M. If M is compact and connected and NV is simply connected, then
f is bijective and therefore, it is a diffeomorphism from M onto N. The
case where M is not compact will be covered in Section 5.

Example 6.15. A local homeomorphism from a connected space onto a sim-
ply connected space may not be injective (if it is not a covering map).
For example: Let X = C— {1,—-1}, ¥ = C and define f: X — Y by
f(z) = 2% — 3z. Since f'(z) # 0 for all z € X, we see that f is a local
homeomorphism (Inverse Function theorem), that it is surjective because
the values 2 and —2, of the polynomial z* — 3z at the points 1 and —1,
are also attained at the points 2 and —2, which belong to X. But f is not
injective, even though its image Y = C(= R?) is simply connected. In fact,
£(0) = f(+/3) = f(—/3) = 0. Therefore, f: X — C is a non-injective local
homeomorphism onto a simply connected space. <

Corollary 6.10. Let f: X — Y be a local homeomorphism with the unique
path lifting property and V. C Y an open connected and pathwise locally
connected set, such that every closed path contained in V' is homotopic to a
constant in Y. Then each connected component of U = f~Y(V) is mapped
homeomorphically by f onto V',

If V' were simply connected, we would have a particular case of Corol-
lary 6.9. In the general case, we just have to observe that, with the assumed
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hypothesis on V, the lifting of every closed path contained in V is a closed
path. This is enough to assure that f|U is injective in each connected
component of U = f~1(V) and the proof of Corollary 6.9 applies, word by
word.

Corollary 6.10 says that in every set V' to the above type we can de-
fine several “branches” of the inverse of f, one branch for each connected
component of f~1(V). For example, if we take f: B2 — R? — {0} given by
f(z) = €*, we reobtain the well known fact that in each simply connected
region V' < R? — {0} it is possible to define an infinite number of branches
of the logarithm.

Corollary 6.11. Let p: X — X be a covering map. If an open set V C X
is connected and locally pathwise connected and, moreover, every closed
path in V' is homotopic to a constant in X, then V is a distinguished
neighborhood.

A topological space X is called semi-locally simply connected when every
point # € X has a neighborhood V such that every closed path in V is
homotopic to a constant in X.

Important cases of semi-locally simply connected spaces are the topo-
logical manifolds and the polyhedra. In fact, in these spaces, every point
has a simply connected neighborhood, so these spaces are actually locally
simply connected.

Example 6.16. We give now an example of a space Y that is semi-locally
simply connected, but contains a point that does not have any simply
connected neighborhood.

We start with a space X, pathwise connected, which is not semi-locally
simply connected: For each n € N, let X, be the circle of center (0,1/n)
and radius 1/n, in the plane. (X, is tangent to the z-axis at the origin.)

Figure 6.8.
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We take X = |JX,,. The space Y is obtained by taking the cone with base

T
X and identifying the vertex of this cone with the origin (, the tangency
point of the circles X, (see Figure 6.8). q

Proposition 6.13. Let X be a locally pathwise connected and semi-locally
simply connected space. A map p: X — X is a covering if, and only if, it
is a local homeomorphism with the unique path lifting property.

Proof. The “If” part is the Corollary 6.10 above. The “Ounly if” part is
Proposition 6.7. O

Corollary 6.12. Let X be a locally pathwise connected and semi-locally simply
connected space. If p: X — X and g: X = X are covering maps, the
composite map p o q: X - X is also a covering map.

In fact, it is obvious that if the maps p and ¢ have the unique path
lifting property, then the composite map p o ¢ also has the property.

Remark. If p has a finite number of leaves then, as we can see from the
definition, its composite map p o ¢, with another covering map g, is still a
covering map, even without imposing to one of the spaces (and therefore
to all of them) the condition of being semi-locally simply connected.

6.4.1 An Application

Let G, H be topological groups. A local homomorphism from G to H is
a continuous map f: U — H, defined in a neighborhood U of the neutral
element e € G, such that if z, y,x -y € U, then f(x-y) = f(z)- f(y). As
an application of Proposition 6.12, we prove the following.

If the group G is simply connected and locally pathwise connected, then
every local homomorphism f: U — H, from G into a topological group H,
extends to a continuous homomorphism f: G — H.

In fact, restricting f, if necessary, we may suppose that its domain U
is pathwise connected. Let A C G x H be the subgroup of the product
G x H generated by the graph of f. We define on A the topological group
topology according to which a fundamental system of neighborhoods of the
neutral element is given by the sets V = {(z, f(z));z € V}, where V C U
is a neighborhood of the neutral element. Let p: A — G be the restriction
of the projection mg: G x H — (. The continuous homomorphism p maps
the graph U of f homeomorphically onto /. Since G is connected, and
therefore generated by U, p is surjective (and a local homeomorphism).
By Corollary 6.10, p: A — G is a covering. Now, G is simply connected
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and A is connected, because it is generated by the connected neighborhood
U = graph of f. Hence, p is a homeomorphism from A onto . The
inverse homeomorphism p~': G — A is given by p~!(z) = (z, f(z)). The
continuous homomorphism f: G — H, thus defined, is the extension of f
that we have been searching for.

6.5 Differentiable Coverings

First, we examine what happens when a surjective local homeomorphism
f:+ X — Y does not have the path lifting property.

This means that there exist x € X and a path a: I — Y such that
a(0) = f(z) but a cannot be lifted to a path in X starting at the point
x. We suppose that X is Hausdorff, which gives us the uniqueness of the
liftings that might there exist.

Since f is a local homeomorphism, for € > 0 sufficiently small the
restriction a|[0, ] has a lifting starting at the point x. Therefore, there
exists a number r, 0 < r < 1, such that, for all v with 0 < v < r, the
path a|[0, 7] has a lifting starting at the point = but a|[0, r] does not have.
This means (because of the uniqueness of the lifting) that a|[0,r) has a
lifting a@: [0,7) — X but, when s — r, @(s) does not have an adherence
value (hence no limit) in X. (In fact, if 2’ € X were an adherence value of
@(s) when s — r, the continuity of f would imply that f(z') would be the
adherence value for a(s) when s — r and therefore f(z') = a(r). Then,
by taking a neighborhood of z' mapped homeomorphically by f onto a
neighborhood of a(r), we would conclude that a|[0, 7] would have a lifting.)
The non-existence of an adherence value of a(s) in X when s — r, results,
in particular, that the set {a(s);0 < s<r} is closed in X, while its image
by f, that is, {a(s);0 < s < r}, is not closed in Y. Hence we can state the

Proposition 6.14. Let X be a Hausdorff space. If a surjective local home-
omorphism f: X — Y is a closed map then f has the unique path lifting
property. In particular if, moreover, Y is locally pathwise connected and
semi-locally simply connected, then f is a covering map.

Remark. Under very general conditions, if a local homeomorphism f: X —
Y is a closed map, then f is proper; that is, f~*(y) is a finite set, for all
y € Y. (See Proposition A.6 in the Appendix.)

We provide now a sufficient condition in order that a map be a covering
within the scope of the differential calculus.

Proposition 6.15. Let f: R™ — R™ be a map of class C, whose values
are contained in a open connected set Y C R™. Suppose that there exists
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a covering of ¥ by open sets V', and to each of these sets is associated a
number ey > 0, in such a way that f(z) € V implies |f'(z) - u| = ey - |u
for allu e R™. Then f(R™) =Y and f: R™ — Y is a covering map.

Proof. First we show that if a: [0,1] —+ Y is a path of class C'! in ¥V and

b: [0,1) — R™ is such that f(b(s)) = a(s), 0 < s < 1, then b is of class C*

and there exists lin} b(s) in R™. The fact that b € C" follows easily from
s—+

the fact that f is a local diffeomorphism of class Ct. Next, let y; = a(1)
and consider V' 3 y;, ey > 0 as in the statement of the proposition. There
exists d > 0 such that 1 — d < s < 1 = f(b(s)) = a(s) € V and therefore
|f'(b(s))-b'(s)] = ey - |b'(s)]. On the other hand, f'(b(s))-¥'(s) = a'(s),
hence [b'(s)| < |a'(s)|/ev when 1 —§ < s < 1. Since the interval [0,1] is
compact and a if of class C'!, there exists A > 0 such that [a/(s)| < A -y
for all s € [0,1]. Therefore, if 1 — § < 51, s < 1, we have:

s2
1b(s3) — b(s1)| = |/ ¥ (s)ds| < |3 — 51|-A.

By the Cauchy criterion in the complete metric space R™, it follows that
the limit 12& b(s) exists.

Now we prove that every rectilinear path contained in Y, starting at
an arbitrary point yo € f(R™), can be lifted from any point zo € f~1(yp).
In fact, it this were not true, there would exist a rectilinear path a(s) =
(1 — s)yo + sy in Y such that the restriction al[0,1) would have a lifting
b: [0,1) — R™, with b(0) = zp, and such that the limit sll_r)l} a(s) would not

exist. But this contradicts what we have proved above.

Now we verify that f(R™) is a closed subset of the open set Y. In
fact, every y; that belongs to the closure of f(R™), relatively to ¥, can
be connected to a point yo € f(R™) by a rectilinear path contained in Y,
which can be lifted to R™, in such a way that y; € f(R™). Since Y is
connected and f(R™) is obviously open, it follows that f(R™) =Y.

Therefore, every rectilinear path in Y can he lifted, and the proposition
follows from Lemma 6.1 below. O

Lemma 6.1. Let Y < R™ be an open set. In order to verify the path
lifting property relative to a local homeomorphism f: X — Y, it suffices to
consider the rectilinear paths in 'Y, that is, the paths a: I —'Y defined by
a(s) = (1 - s)yo + sy1.

Proof. Suppose initially that Y is convex. If every rectilinear path a in
Y has a lifting @ in X, starting at an arbitrary point = in f~1(a(0)) then,
naturally, @ is unique and depends continuously on a. (See Propositions 6.2
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and 6.8.) Therefore,ifa: [ —+ Y isany pathin ¥ leta,;: I - YV, 0<¢t <1,
the rectilinear path that connects a(0) to a(t); that is, a:(s) = (1—s)a(0)+
sa(t), 0 < s < 1. Given x € f~(a(0)), let @; be the lifting of a; that starts
at the point . We define a path @: I — X by setting @(t) = @;(1). Then
a is a lifting of @ starting at the point .

In the general case, ¥ can be covered by open balls and the above
argument shows that every path contained in one of these balls can be
lifted to X. Now we observe that any path in Y can be decomposed in a
finite sequence of smaller paths, such that each one of them is contained in
an open ball and therefore, it can be lifted. It follows that the whole path
can be lifted, which proves the lemma. |

Corollary 6.13. Let f: R™ — R™ a map of class C. If there exists a > 0
such that |f'(z) - v| > a|v| for all z and every v in R™, then [ is a bijection
and therefore, it is a diffeomorphism from R™ onto itself.

In fact, take ¥ = V = R™ and ey = « in the proposition. Then
f is a covering of R™. Since R™ is simply connected, it follows from
Proposition 6.12 that f is a bijection and therefore it is a diffeomorphism.

Corollary 6.14. Let f: R™ — R™ be a map of class C' such that
|f'(x)-v|] = |v| for all z and every v in R™. Then f is an isometry;
that is, |f(z) — f(y)| = |z — y| for any z,y € R™. (As we know from lin-
car algebra, this implies that there exist a linear orthogonal transformation
T: R™ — R™ and a vector ¢ € R™ such that f(z) = T - x + ¢ for every
zeR™.)

In fact, by Corollary 6.13, f is a diffeomorphism. The Mean Value
theorem applied to f gives us |f(z) — f(y)| < |z — y| for any x,y € R™.
The same theorem applied to f~1 gives us |z — y| < |f(z) — f(y)|. Hence,
f is an isometry.

Proposition 6.15 can be stated in a global scope, by considering Rie-
mannian manifolds instead of open sets in Euclidean space. The proof
follows precisely the same argument, substituting the rectilinear paths by
geadesics and the convex subsets of R™ by geodesically convex sets. Corol-
lary 6.13 is valid only for complete, simply connected manifolds (same
proof) and Corollary 6.14 is false (see £: B — S, £(t) = e™). The state-
ment of the global version of Proposition 6.15 follows:

Proposition 6.16. Let M™, N™ be Riemannian manifolds of the same di-
mension m, with M™ complete and N™ connected. Suppose that there
exists a map f: M — N, of class C', and a covering of N by open sets
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V. and to each of these open sets it is associated a number ey > 0 such
that v € M, f(z) € V = |f'(z)-u] = ev-|u| for every w € T, M. Then
fi M — N is a covering map.

This proposition, with the same proof, is still valid for Banach mani-
folds, by omitting the sentence “of the same dimension m” and by requiring
that the derivative f'(z): ToM — TyN, y = f(z), be an isomorphism, for
every x € M.

6.6 Exercises

1. Give the following examples:
a) A continuous bijection which is not a local homeomorphism;

b) A continuous surjective map f: R — R such that f~1(y) is discrete
for every y € R but f is not locally injective;

¢) A counter-example to Proposition 6.2 with Z disconnected.

2. Ifp: X — X and q: Y — Y are coverings, then the map pxgq: X xY -
X x Y, defined by (p x q)(z,y) = (p(z),q(y)), is also a covering.

3. Consider the covering map p: X: — X, and let Y © X be an arbitrary
subset. Set Y = p~!(Y) and ¢ = p|Y. Show that ¢: ¥ — Y is a covering.

4. Let p: X > X bea covering where the base X is connected and locally
connected. For every connected component C' C X, we have p(C) = X.
Conclude that p|C: C — X is a covering.

5. Contrary to the function f: §* — 5, f(z) = 2*, there does not exist
a continuous map ¢: R — R such that ¢~ *(y) has exactly two points, for
every y € R.

6. Given the polynomial p(z) = 22% — 922 + 12z + 1, obtain two finite
subsets F} C C e Iy C T such that p: C— F} — C — F is a covering with
three leaves.

7. Let X be a connected space and G a properly discontinuous group of
homeomorphisms of X. Suppose that a continuous map f: X — X has
the following property: For every x € X, there exists ¢ € G such that
f(x) = gz. Prove that f is a homeomorphism.

8. Let F be an equivalence relation in the Hausdorff space X, such that
the quotient map p: X — X/E is open. Prove that X/E is a Hausdorff
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space if, and only if, the graph T = {(z,y) € X x X;xzEy} is a closed set
in X x X.

9. Let G be any homeomorphism group of the space X. Consider in G
the discrete topology and show that the map ¢: G x X — X, ¢(g,2) = gz,
is a covering.

10. Let f: X — Y be a local homeomorphism with the unique path
lifting property. Suppose that ¥ is simply connected and locally pathwise
connected. Show that, for every zo € X with f(zg) = yo, there exists a
section o: Y — X such that o(ys) = zo. Derive from this again Proposi-
tion 6.12.

11.  Consider the neighborhood U = {e'; =7 < t < 7} of the neutral
element of S', and define the local homomorphism f: U — S*, f(e') =
¢'*/?. Show that f does not extend to a continuous homomorphism f: S —
St

12. Let p: X — X be a covering and a, b: I — X be freely homotopic
closed paths. If b, has a closed lifting b, then a also has a closed lifting a,
which is freely homotopic to b.

13.  Let & be a simply connected and locally pathwise connected topo-
logical group. If a connected topological group K is locally isomorphic
to &, then K is isomorphic to a quotient of ¢ by a discrete subgroup H
(necessarily contained in the center of G).

14. A compact and connected hypersurface M™ € R™**! of class O™ whose
Gaussian curvature is different from zero at every point is diffeomorphic
to the sphere S™. (The Gaussian curvature is the Jacobian determinant of
the normal map M™ — S™.)

15. Given the covering p: X — X and the continuous map f: Z — X, let
Z ={(2,7) € Zx X; f(z) = p(Z)}. Prove that the map ¢q: Z — Z, defined
by ¢(z,%) = z is a covering. Prove also that f admits a continuous lifting
g: Z — X if, and only if, there exists a continuous section ¢: 2 — Z
for q.

16. Show that Exercise 3 follows from Exercise 15.

17. Let U be the set of quaternions w = t + zi + yj + zk where £ > 0
and X the set of real quaternions < 0. By setting V = R* — X, prove
that the map f: U — V, defined by f(w) = w?, is a surjective proper local
diffeomorphism, and conclude that f is a diffeomorphism (global) from U
onto V.

18. Let H he a locally pathwise connected, closed subgroup of the con-
nected group G. If G/H is simply connected, prove that H is connected.
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(Suggestion: Consider Hy, a connected component of the neutral element.
Observe that Hy is the normal subgroup of H, H/H, is a discrete subgroup
of G/Hjy, and the natural projection from G/ Hy onto its quotient by H/H,
induces a covering G/Hy — G/H; hence, H = Hy.)

19. Let p: X 5 X bea covering with X connected and p~1(z) finite, for
every z € X. If there exists a continuous map f: X — R, injective in each
fiber p~!(z), then p is a homeomorphism.







Chapter 7

Covering Maps and
Fundamental Groups

7.1 The Conjugate Class of a Covering Map

Given a covering map p: X - X, take z € X and set z = p(T). We use the
notation H(x) to represent the image of the homomorphism py: m; (f ,T) —
71(X, ), induced by the covering projection p.

The subgroup H(Z) C m1(X, z) is, as we show in this chapter, the most
important algebraic tool to characterize the covering p: X 5 X.

If X is simply connected, then H(z) = {0} for all & € X. The converse
is also true and follows from Proposition 1 below.

First we should recall that, by fixing an element g in a group G, the
map x — g-x-g~ ' is an automorphism of G, called conjugation by g. If
H is a subgroup of &, its image by this automorphism is the subgroup
g-H-g7' = {g-z-g” "z € H}, isomorphic to H, called a conjugate subgroup
of H. The conjugate class of H in G is the set of all subgroups ¢g-H-g™!,
conjugate of H, obtained when we vary g in G. The subgroup H is said to
be normal when g-H-g~! = H for every g € G; that is, when its conjugate
class has only one element, namely, the group H itself. This happens, for
example, when G is abelian.

Proposition 7.1. Let p: X 5 X bea covering. For any zqg € X, Ty €
p~Y(xp), the induced homomorphism py: 771{55,-3?0) » (X, zg) is injec-
tive. Ifi’ is pathwise connected, then, when T varies in the fiber p=(z0),
the image H(T) = p;,r?.'l{)?,ﬁ?) describes all conjugate classes of the sub-
group H(Zp).

151
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Proof. By Corollary 6.8, the induced homomorphism py: m; ()FE Tp) —
71(X, o) is injective. Given any other point z € p_l(:m) there exists in
X a path ¢, with origin = and final point z5. Then ¢ = po ¢ is a closed
path in X, with base at the point xz,. By Proposition 2.5, every element
a € m(X,Z) has the form o = [chc~!], where [b] € "rl(X Zp). Hence,
pu() = ypy([b)y~!, where v = [¢]. From this, H(Z) = v-H(Zo) - v .
Conversely, let H = v-H (Zg) -y~ ! be any conjugate subgroup of H(Zp)
in w1 (X, zy), and set v = [c]. By lifting the closed path ¢~! from the point
Zp, we obtain a path ¢! in X , Whose final point we denote by . Then
T € p~!(z) and the path ¢, in )Ff, begins at T and ends at Ty, with pee = c.
From what we just saw, this gives us H(Z) = v-H(Zy)-7~! and therefore
H = H(Z). O

Proposition 7.2. Consider a covering p: X —+ X. Let a,b: I — X be paths
that start at the same point x and end at the same point y, and a, bl X
their liftings from a point T € X. In order that a(1) = b(1), it is necessary
and sufficient that [ab~'] € H(Z).

Proof.  Assume that [ab~'] € H(¥). Then the lifting ¢ of the path ab™"
from the point 7 is closed. The paths @, b: I — X, defined by a(s) = ¢(s/2)
and b(s) = &(1 — s/2), start at the point #, end at the same point c(1/2)
and are, respectively, liftings of a and b. The converse is obvious.

The following corollary will be important later on.

Corollary 7.1. Let p: X X bea covering. Given a closed path a: I — X,
with base at the point z, its lifting a: I — X, from a point T € p~(z), is
closed if, and only if, [a] € H(T).

This follows from Proposition 7.2 by taking b = e,.

Corollary 7.2. Let p: X +Xbea covering, with X simply connected. A
closed path a: I — X is homotopic to a constant if, and only if. some of
its lifting a: I — X is closed. (And then all of its liftings are closed.)

More generally: Still supposing that X is stmply connected, consider the
paths a, b: I — X with the same endpoints xg, 1. Let @, b: I — X be
their liftings from the point Zo € p “Yzp). We have a = b if, and only if, a
and b end at the same point X.

Corollary 7.3. Let p: X 5>Xbea covering, with X pathwise connected. By
fizing a point xo € X, the following statements are equivalent:
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1. For some Ty € p~Yxp), the subgroup H(Zy) C m1(X, o) is normal;

2. The subgroups H(Z) C m (X, z0), when T varies in p~1(xg), are nor-
mal and they are all the same;

3. Given a closed path a: I — X, with base at xy, either all of the
liftings of a from the points T € p~'(xy) are closed or none of them
is closed.

In fact, by Proposition 7.2, Condition 3 above is equivalent to stating
that [a] € H(Z,) < [a] € H(z) for all T € p~!(zp). This means that all of
the groups H(Z) are equal, when T varies in the fiber p~!(zg). But these
groups constitute a conjugate class; hence, they are equal if, and only if,
one of them is normal, and therefore all of them are normal.

When X is pathwise connected and one of the conditions in the above
corollary is satisfied (and therefore, all of the conditions are satisfied), we

say that p: X Xisa reqular covering.
Remark. When X and X are pathwise connected, the reader can easily
prove that the regularity of the covering p: X — X does not depend on

the point zg € X fixed above.

When the covering p: X — X is regular, we may use H(xg), instead of
H(Z,), in order to identify the image pym (X, ), Ty € p~* (o).

Example 7.1. If the fundamental group of X is abelian, then every covering
p: X = X, with X pathwise connected, is regular. <

Figure 7.1.
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Example 7.2. Let’s consider now the two coverings of the figure eight space
shown in Figure 7.1. Each one of them is a covering with three leaves.
(We will see in what follows that every covering with two leaves is regular;
therefore, this example is the simplest possible.) <

In each of these examples, the space X is a union of circles. In the
example on the left, the circles on the extremities are applied homeomor-
phically onto the two circles that form the figure eight space, in the manner
indicated by the letters and arrows, while each one of the circles in the mid-
dle covers twice the corresponding circle of the base. In the example on
the right, the central circle of the space ¥ covers three times the circle b
of the base, while each one of the three outside circles is mapped homeo-
morphically onto the other circle of the hase. The covering p: X — X on
the left is not regular. In fact, the lifting of the closed path «a is open if it
starts at the point Z; and it is closed if its initial point is Zp. On the other
hand, the covering g: ¥ — Y on the right is regular. In fact, the liftings of
a are always closed and the liftings of b are always open. Since m (Y, yo) is
generated by [a] and [b], Condition 3 of Corollary 7.3 holds.

Example 7.3. Let G be a properly discontinuous group of homeomorphisms
of the pathwise connected topological space X. (See Section 6.3.) The
quotient map 7w: X — X/G is aregular covering. In fact, choose zg, 21 € X
such that w(zg) = n(x1). Then x; = gxy, g € G. By the uniqueness of
the lifting, the paths @, a: I — X, with a(0) = xq, @(0) = z,, are liftings
of the same path in X/G if, and only if, a(s) = g(da(s)) for every s € I.
Hence, @ is closed if, and only if, @ is closed. |

Before stating the next proposition, we recall some concepts
from algebra.

Let S be an arbitrary set and G a group. A right action of the group
G on the set S is a map S x G — S, which maps each pair (z,g) € S x G
to an element zg € S, in such a way that the following conditions hold:

1. z(gh) = (xg)h;
2. x-e = x, for any x € S; e = neutral element of (.

In this case, we say that the group G operates on acts on the right in
the set S. A left action is defined in a similar way.

If G acts on the right in the set S, the orbit of an element x € S is
the set G = {zg;9 € G}. The group G is said to operate transitively in
S when the orbit of an element of S (and therefore of all elements of S) is
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the set S itself. This means that, given any two elements z, y € .9, there
exists g € G such that y = zg.

When G acts on the right in S, given an element = € S, the set H(z) =
{g € G;zg = z} is a subgroup of G, called isotropy group (or stabilizer)
of the point z. If y = zh then yg = y < x(hgh™') = x; that is, H(z) =
h-H(y)-h~!. In sum: If two elements x, y € S belong to the same orbit of
(G then their isotropy groups are conjugate.

Suppose that G acts transitively on the right in the set 5. By fixing a
point 2y € S, the map ¢: G — S, given by ¢(g) = zgg is surjective and
satisfies p(g) = @(h) < hg~' € H(xo), where H(x) is the isotropy group
of xzg. Therefore, by passing to the quotient, ¢ induces a bijection

B G/H(zp) — S.

In particular, the cardinal number of S is equal to the index [G: H(zo)] of
the subgroup H(zg) in G; that is, the cardinal number of the set G/H (xg)
of the cosets H(zp) g, g € G.

Proposition 7.3. Let p: X 5 X bea covering, with X pathwise connected.
For each x € X, the fundamental group m,(X,z) acts transitively on the
right in the fiber p~'(z). The isotropy group of each point T € p~'(z) is
Proof. Given a € m(X,z) and T € p~!(z), we define Ta € p~ () as
follows: we choose a € a, lift the path a from the initial point z, take the
final point ¥ of this lifting and set zav = y. It is easy to verify that this
procedure defines (without ambiguities) an operation of 71(X,z) on the
right in the fiber p~!(z). We have Za = 7 if, and only if, the lifting of
the path a, from z, is closed. By Corollary 7.1, this oceurs if, and only
if, @ € H(Z). The transitivity results from the fact that X is pathwise
connected: Given 7, y € p~1(z), let @ be a path in X starting at =z and
ending at y. Then a = poa is a closed path in X with base at the point x.
Let a = [a]. It is obvious that ¥ = Za. 0

Corollary 7.4. Iff is pathwise connected then, for any T € X. andzx = p(T),
the number of leaves of p is equal to the index of the subgroup H(Z) C
T (X, z).

Corollary 7.5. Ifjf is pathwise connected, every covering p: X — X with
two leaves is reqular.

In fact, every subgroup of index two is normal.
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Corollary 7.6. Let X be pathwise connected. The covering projection p: X -
X is a homeomorphism if, and only if, the induced homeomorphism py is
an tsomorphism.

In fact, this is the condition we should have in order that the number
of leaves be one.

Corollary 7.7. If)? is simply connected, then the number of leaves of the
covering is equal to the number of elements of m (X, x). When these two
numbers are finite, the equality between them implies that X is simply con-
nected.

Remark. The permutations of the fiber p~!(z) of the form 7 ++ 7 o, where
a € m(X,z), form a group M (z), called the monodromy group of the
covering p: X — X at the point @. For all z € X, M(z) is a homomorphic
image of 71 (X, z). More precisely, we have

M(z) = m(X,z)/Hy,

where

Hy= () H@).

p(E)=z

If the covering is regular, we have Hy = H(Z) for all 7 € p~*(x).

7.2 The Fundamental Lifting Theorem

In this section, we show how the fundamental group allows us to give an
algebraic answer to the topological problem of knowing whether a contin-
uous map f: Z — X, taking values at the base of a covering, admits a
lifting f: Z — X. It is convenient here to use pairs (X, z(); that is, spaces
with a base point.

Proposition 7.4. Let p: X 5 Xbea covering, of the pathwise connected
space X. Let Z be a connected and locally pathwise connected space (hence
pathwise connected) and f: (Z,zy) — (X,z0) a continuous map. Given
To € p~Y(xo), in order that f have a lifting f: (Z,20) — (f,-’.fn), it is
necessary and sufficient that fym (Z, zo) C H(Zo).

Proof. If there exists f: (Z,z0) — (X, z0) continuous such that po f=f,
then, considering the homomorphisms induced by f, p and f, we see that
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the diagram below is commutative:

TTl(XsX(})

fu Py

m1(Z, Zy) &" (X, Xo)

From fy = py o f#, it follows that the image of fy is contained in
the image of pg, which is H(Zp). Hence the inclusion is necessary for the
existence of f

Conversely, suppose that f,m(Z, z) C H(Zy). We define f:Z X,
by setting f(zu) = Ty and, for an arbitrary z € Z, we take a patha: I — Z,
from zp to z, we denote by a: I — X the lifting of foa: I — X from the
point Zo and we set f(z) = @(1). Now let us show that f is well defined.
In fact, if b: I — Z is another path from 2y to z, then ba™! is a closed path
with base zg. From this, (fob)(foa)™! = fo(ab™!) is a closed path, with
base zp, whose homotopy class belongs to the image of fy and therefore
(because of the hypothesis) to H(Zy). From this it results that the paths @
e E, liftings of foa and f ob, respectively, from Zg, end at the same point.
(See Proposition 7.2.) Evidently, we have po f = f. It remains to prove
only that fis continuous at an arbitrary point z € Z. Here we use the fact
that Z is locally pathwise connected. Let V' be a neighborhood of f(z) in
X. We may suppose that p|V is a homeomorphism onto a neighborhood
U of f(z) in X. Let W be a pathwise connected neighborhood of z in
Z such that f(W) C U. We claim that f(W) < V. This will prove the
continuity of f at the point z. We know that f ( ) is the final point of a
path @ in X that starts at Zp, with poa = foa, where ¢ is a path in
Z, starting at zp and ending at z. Given w € W, we take a path b in W,
starting at z and ending at w. Since p|V is a homeomorphism onto U,
there exists a path bin V, starting at f( ) and endmg at a certain point
v eV, with p ob= fob. Then abis a path in X, that starts at Zg, such
that po (ab) = (poa)(pob) = (foa)(fob) = [ o(ab). Since ab connects
2o to w in Z, it follows from the definition of f that f(w) = (ab)(1) = v;
therefore, f(w) € V. 0

Second Proof of Proposition 7.4. The experienced topologist, faced with
an argument where, in order to define a map, he has to make arbitrary
choices that turn out to be irrelevant, always suspects that such map might
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somehow be obtained by passing to the quotient. In the present case, the
suspicion is true, as we show now.

Let C(Z;zy) € C(I;Z) be the subspace (in the compact-open topol-
ogy) whose elements are the paths with origin at the point z;. A similar
interpretation is given to the notations C'(X;xp) and (1()? Zo). The follow-
ing three maps are continuous: f.: C(Z;z) — C(X;zo), L: C(X; :1:0)
C(X?Ig), and v: C(XTI‘U) - X, given by f.(a) = foa, Lic) = € =
lifting of ¢ from ¥, and v(a) = a(l). Therefore the composite map
f =wvolLo f.: C(Z;z) — X is also continuous. On the other hand,
the surjection u: C(Z;zy) — Z, defined by u(a) = a(1), is continuous and,
moreover, it is open (which follows from the fact that Z is pathwise locally
connected). Hence u is a quotient map. Now we observe that the hypoth-
esis on the image of f, gives us: u(a) = u(a’) = fla) = f(a'). Thus, f is
compatible with the equivalence relation defined by u. By passing to the
quotient, there exists therefore a unique continuous map f Z — X such
that fou = f The map f is the lifting of f we have been locking for. O

Corollary 7.8. Let X be pathwise connected and Z be simply connected and
locally pathwise connected. Every continuous map f: (Z,z0) — (X, )
admits a lifting f: (Z,20) — ()? Ty), where Ty € p~(zp) is chosen arbi-
trarily.

The above corollary explains why it is always possible to lift a path: 1
is simply connected.

As an application, we use Proposition 7.4 to establish the conditions
under which a continuous complex function has a continuous logarithm.

Example 7.4. (Logarithm of a function) Let /' € C be an open connected
set and f: U — C — {0} a continuous map. In order that there exists
g: U — C continuous such that f(z) = €93} for all z € U, it is necessary
and sufficient that, for every closed path a: I — U, the number or turns
of the closed path foa: I — C — {0} around the point 0 be equal to
zero. When f is holomorphic, the function g is necessarily holomorphic.
In fact, the condition on the number of turns of the path f o a means
that the induced homomorphism fg: m (U, ug) — 71 (C — {0}) is null.
Considering the covering map p: C — C — {0}, given by p(z) = e*, we see
that the induced homomorphism py : 71 (C) — m1(C — {0}) is null because
m1(C) = {0}. Thus, f has a lifting relatively to p if, and only if, fy = 0.
Now, the fact that g is a lifting of f relatively to p means that f(z) = e9?)
for all z € U. Since g is continuous, and p, f are holomorphic, with
p'(z) # 0, it follows from the Inverse Function Theorem that f(z) = p(g(z))
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for every z implies that g is holomorphic. Note, in particular, that when
U is simply connected, fy is always null; hence, every continuous function
(respectively holomorphie) that is non-null in a simply connected domain
always admits a continuous logal ithm. (It is usual to call every continuous
function g such that f(z) = e¢9*) a “branch of log f(z)".) 4

In an analogous way, we study the existence of the k-th root of a map
in the example below.

Example 7.5. Considering the covering map p: C—{0} — C—{0}, p(z) = 2*,
k € N, (Example 6.6), we show that, given a continuous function f: U —
C — {0}, defined in an open, connected set U C C, there exists g: U —
C — {0} continuous (called a “branch of /f(z)”) such that f(z) = g(2)*
for every z € U if, and only if, every closed path a: I — U is mapped by
fin a path foa: I — C — {0}, whose number of turns around the origin
0 is a multiple of k. (Again, if f is holomorphic, g is also holomorphic.)
We just have to observe that, for the covering p(z) = z*, the image of
the homomorphism pyg is the subgroup of 7 (C — {0}) = Z formed by the
multiples of k. The condition on the number of turns of the path fca
means that the image of the homomorphism fy: 71 (U, ug) — 71 (C — {0})
is contained in the image of py. Hence, such a condition is necessary
and sufficient in order that f have a lifting relative to p. Now, g is such
a lifting if, and only if, f(z) = g(z)* for all k € U. Again, we remark
that, in particular, if IV is simply connected, for every continuous function
f: U — C— {0}, there always exists a branch of +/f(z) defined on U. <«

The following proposition, which is also a direct application of Proposi-
tion 7.4, expresses, grosso modo, that every covering of a topological group
is still a topological group.

Proposition 7.5. Let G be a locally pathwise connected topological group, with
neutral element e. Given a covering p: G — G, with G connected, and a
point € € p~l(e), there exists a unique topological group structure in G,
such that € is the neutral element and p is a homomorphism.

Proof. Let p-p: (G x G, (¢,€)) — (G, e) be the continuous map defined
by (p-p)(z,y) = p(Z)-p(y). The essential point consists in proving that
p-p has a lifting m: (G x G, (¢,¢)) — (G,€). The image of the induced
homomorphism (p - p)4 is the set of homotopy classes of all paths in G
of the form a-b, where [a] and [b] belong to the image of py. Thus, the
lifting m: G x G- G, with m(&,&) = & and p(m z,¥)) = p(Z)-p(y), exists.
For the sake of simplicity, we write m(z,y) = Z-y. Therefore, we have a
continuous multiplication in G, which turns p into an homomorphism. It
remains to verify that it turns GG into a group, in which € is the neutral
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element. First, the continuous maps & + Z-¢ and T +— Z, of G into G,
are liftings of the same map p, which have the same value at the point
¢. Hence, they coincide; that is, we have 2-¢ = Z for all 7 € G. In
an analogous way, we see that ¢ -7 = I, therefore, € is neutral element
for the multiplication of . The associativity is proved by observing that
the maps (£,74,2) — (Z-7)-Z and (Z,9,Z) ~ Z-(§ - Z) are liftings of the
map (Z,7,2) + p(T)-p(y) -p(Z), which coincide at the point (€, ¢, €). By
virtue of Proposition 2.12, the map T ++ p(z)~! has a lifting i: G > G,
such that i(€) = € and p(i(z)) = p(z )_1, so p(i(T)-T) = e, and from this
i(%)-Z € p~Ye) for all T € G. Since G is connected and the fiber p~1(e)
is discrete, the product i(#)-Z is constant when Z varies in G. Now we
observe that i(¢)-€ = €. Hence, i(T)-7 = €, which gives us i(Z) =z"'. O

Let p: G — Gbea homomorphic covering; that is, a covering map that
is also a homomorphism between the topological groups G and G.

When G (and therefore, G) is pathwise connected, the covering p: G —
G is regular, because 7, (G) is abelian. Moreover, the following proposition

holds.
Proposition 7.6. Let K = p~!(e) be the kernel of the homomorphic cov-

ering p: G - G, where G is pathwise connected. There exists a natural
isomorphism 71 (G)/m(G) = K

Proof. Above, we are identifying (5) with its image H(€) using the
induced homomorphism py. In order to obtain the isomorphism, we define
w: m(G) = K by setting ¢(«) = a(l), where @ is the lifting, from €, of a
path @ € a. (In the notation of Proposition 7.3, ¢(a) = €-a.) We claim
that ¢ is a homomorphism. In order to verify this, we consider operation
of the group m;(G) as being « - 3. (See Proposition 2.12.) If @ and b are
liftings, from €, of the paths a € a and b € 3 respectnel} the fact that
pisa homomorphlsm gives us a-b = a-b. Hence ola - B) = (@-b)(1) =

a(l)-b(1) = ¢(a)e(F). The homomorphism g is suljectwe_, because m, (G)
acts transitively in the fiber p~!(e) = K. The kernel of ¢ is the set of
elements & = [a] € m;(G) such that a is closed. By Proposition 7.2, this
kernel is ?Tl(é). By passing to the quotient, we obtain an isomorphism

7 m(G)/m(G) — K. O

Corollary 7.9. Let p: G — G bea homomorphic covering. If G is sim-
ply connected, then m (G) is isomorphic to the kernel K = p~'(e) of the
homomorphism p.

Example 7.6. The covering map p: B — S, given by p(z) = 2™ is a
homomorphism of the (additive) group R over the (multiplicative) group
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S, with kernel Z. Since R is simply connected, we reobtain the fact that
71(S1) = Z. Analogously, we may consider the homomorphic covering
p: R - Tm = S§tx- - xS p(ay, ..., x,) = (2™ ... 2™ ) whose ker-
nel is Z™, and find that the fundamental group of the n-dimensional torus
T™ is isomorphic to Z". Finally, the homomorphism ¢: S* — SO(3), de-
fined in Section 1 of Chapter 4, has kernel {—1,1} = Z, and it is surjective.
Therefore, it is a homomorphic covering. Since S* is simply connected, it
follows that m1(SO(3)) = Za. q

Example 7.7. We can compute again 71 (SO(4)) by taking a homomorphic
covering whose base is SO(4) and whose domain is simply connected. For
this, we define p: §* x §% — SO(4) by associating to each pair (z,y) €
5% 53 the linear transformation p,. ,,: R* — R?*, given by p, ,(w) = zwy~!
(quaternion multiplication). Since |x| = |y| = 1, the linear transformation
Pz,y Preserves norms; since x and y may be connected to 1 by paths in
S3 pg.y can be connected to the identity transformation by a path formed
by linear transformations that preserve norms. Hence p,, € SO(4). It is
obvious that p: % xS% — SO(4), thus defined, is an infinitely differentiable
homomorphism. If (z,y) belongs to the kernel of p, then z-w-y ™! = w
for all w € R*. In particular, 2 - 1-y7! = 1, so 2 = y. It follows that
z-w-z~! = w for all w € R*. As in Section 4.1, we conclude that = = +1.
Thus, the kernel of the homomorphism p: §% x §% — SO(4) consists of two
elements (1,1) and (—1, —1). Finally, since dim(S® x §%) = dim SO(4) = 6
and the kernel of p is discrete, the rank theorem, from analysis in Euclidean
space, tells us that p has rank 6 and therefore, it is an open map. Since
S3 x §% is compact and SO(4) is Hausdorff connected, this implies that
p is surjective. The surjective homomorphism p is a covering because it
has a discrete kernel. Its domain, §% x $ is simply connected. Hence,
71(SO(4)) has two elements and therefore, it is isomorphic to Zz. q

7.3 Homomorphisms of Covering Spaces

Let py: )?1 — X and ps: Xz — X be two coverings with the same base
space X. A homomorphism between them is a continuous map f: X; — X5
such that ps o f = p;. This means that the following diagram is commuta-
tive.

% f . %,

P D2
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_ If ps: f;; —» X is another covering with base space X and g: )?2 —
X3 is a homomorphism, the composite map go f: X; — X3 is still a
homomorphism. We say that f: X; — Xy is an isomorphism when f is
a homeomorphism such that p; o f = p1. Then f~': X5 — X, is also an
isomorphism. In this case, the coverings p; and ps are said to be isomorphic.

An endomorphism is an homomorphism of a covering into itself. Given
a covering p: X — X, an endomorphism is, therefore, a continuous map
f: X — X such that po f = p.

When the endomorphism f is a homeomorphism of X onto itself, we
say that f is an automorphism. The set G()? |X) of the covering automor-
phisms p: X 3 Xisa group under the operation of map composition.
Sometimes automorphisms are called covering transformations or covering
translations.

The condition ps o f = p; means that f maps each fiber -pl_1 (z) into the
fiber -p;l(.'r). In particular, an endomorphism f: X 5 X maps each fiber
p~Y(z) into itself. An isomorphism f induces, for each z € X, a bijection
of the fiber p;'(z) onto the fiber p; '(z). An automorphism, therefore,
determines a permutation of each fiber p l(a:).

Note that a homomorphism f: X: > Xsisa lifting of the continuous
map p;: X, — X with respect to the covering ps: X, = X. Thus, when
X, is connected, two homomorphisms that coincide at a point z; € X, are
equal.

Example 7.8. Consider the covering maps p; : B2 — T2, from the plane onto
the torus and py: S' x R — T2, from the cylinder onto the torus, given by
pi(s,t) = (¥ ™) and py(z,t) = (z,e*™*). The map f: R? — S! x R,
from the plane onto the cylinder, given by f(s,t) = (e*™*,t), satisfies the
condition ps o f = p1; hence, it is a covering homomorphism. Note that
the subgroup Hi = {0} C m1(T?) is associated to the covering pi, and the
subgroup Hy = Z & {0} of m(T?) = Z® Z is associated to the covering ps.
We have H; C Hs. It is this inclusion that makes it possible the existence
of f. <

Example 7.9. Let G be a properly discontinuous group of homeomorphisms
of the connected topological space X. We claim that the group of covering
automorphisms of the covering p: X — X/G is precisely the group G. In
fact, if g € G then, for all x € X, we have p(gz) = G-gr = G-z = p(x),
hence pog = p and from this ¢ € G(X|X/G). Conversely, given an
automorphism f: X — X, we fix xp E X and take 1 = f(zg). Then z;
belongs to the same fiber that zg, hence there exists ¢ € G with gzo =
x1. Therefore f and g are liftings of p that coincide at the point xg.
Since X is connected, we have f = g, so f € . Thus, for example, the
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automorphisms of the covering p: B2 — T2, of the torus by the plane,
pls,t) = (e2™=,¢?™1), are translations (s, t) + (s +m,t +n) where m, n €
Z. Another example, that generalizes this one of the torus, is the following:
let p: G — G a homomorphic covering of the connected topological group
G onto G. The kernel K = p~1(e), being a normal and discrete subgroup
of the connected group G, is central, that is, their elements commute with
every other element in G. The automorphisms of the covering p: G — G
are translations fr.: G — G, fr(z) = k-z = -k, k € K. In fact, the
set of the translations fr, & € K, is a properly discontinuous group of
homeomorphisms of G, isomorphic to K, and the quotient space G/K is
homeomorphic to G. <

Proposition 7.7. Let pli,jzl — X and po: X, —» X be coverings with the
same base space X. If Xy is connected and locally pathwise connected, every
homomorphism f: X1 — Xo is a covering. In particular, f is surjective.

Proof. Take 7, € X;. Let 7 = f(z1). Ifa: I — X, is any path starting at
T, we set ag = pooa and consider a: I — )?1_, the lifting of ag with respect
to the covering p;, starting at the point z;. Then foa: I — X, is a lifting
of ap with respect to ps, starting at the point . If follows that foa = a.
In particular, f(a(1)) = a(l). Since X, is pathwise connected, any one
of its points is of the form a(l), for some path a starting at Z,. Hence f
is surjective. The same argument also shows that f has the unique path
lifting property. Since the relation p; o f = p; implies that the continuous
map f is a local homeomorphism, the proposition is already proved in the
case where one of the spaces X, X5, X is semi-locally simply connected
(and the same happens with the other two).

In the general case, let 75 € jg be an arbitrary point. Take a connected
neighborhood U of the point zy = ps(Fs2), which is dlstlngmshed with
respect to the coverings p; and p;. (Observe that the spaces X1, Xo, and
X are locally homeomorphic; hence, they are locally connected.) Let V' be
the connected component of p_l(U) that contains the point ;. We claim
that V' is a distinguished neighborhood of Z5, relative to f. We have

-
A

a union of disjoint open sets where, for each A, pﬂﬁk is a homeomorphism
onto U. If, for some A, we have f{( fj ANV # @&, then, since the connected set
f(U») is contained in the set p; *(I), of which V' is a connected component,
it follows that f(Uy) C V and from this, f|Uy = (p2|V) ™o (p1|Ua); hence,
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[ is a homeomorphism from U, onto V. Therefore, by setting
Lo = {\f(U)NV # 2},

we see that Ly # @ (because f is surjective), that

- U

AELy

and that f |f:r » i8 a homeomorphism onto V, for all A € Ly, thus concluding
the proof. m]

Corollary 7.10. Let p;: X —+ X and pa: Xo = X be coverings over the
same base space X, with X1 and Xy connected and locally pathwise con-
nected. A homomorphism f: X1 — Xo is an isomorphism if, and only
if, fu: m(X1, 1) = m1(Xa, f(Z1)) @s surjective (and therefore an isomor-
phism between the fundamental groups).

In fact, this results from Corollary 7.6, by taking into account Proposi-
tion 7.7.

In the following proposition, we have the coverings p; : X, - X P2t X, —
X. Given the points T; € X; and 5 € X, with p; (%) = p2(%2) = zg, we
denote by H; (%) and Hs(Zs), respectively, the subgroups of w1(X, zq)
which are images of the induced homomorphisms (p;)y: m ()Fi; 1,21) —
m1(X, xo) and (pa)y: m(Xoe, o) — (X, zg).

Proposition 7.8. Let X1, X, be connected and  locally pathwise connected. In
order that there exists a homomorphism f: X1 — X with f(z,) = T it is
necessary and sufficient that Hy(T1) C Ha(Zs).

Proof. This follows from Proposition 7.4, because a homomorphism f is a
lifting of p; relatively to the covering ps. |

Example 7.10. Consider the coverings p;: S' — S! and py: S* — 81,
given by pi(z) = z'? and ps(z) = 2®. The corresponding subgroups are
H, = 127 and Hy = 3Z. (Since the fundamental groups are abelian,
we write H instead of H(Z).) Evidently, we have H; C H,. Hence, by
taking any z1, z2 € S* with p1(z1) = p2(22), there exists a homomorphism
f: St — 5! such that f(z1) = zo. We choose z; = z9 = 1. Then f(z) = z*

is the homomorphism hetween the given coverings. This is illustrated by
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the commutative diagram below.

st ! st

YUl P2
ql
<]

Corollary 7.11. Let p: X 5 X bea covering whose domain X is simply
connected and locally pathwise connected. For every covering q: Y + X
with ¥ connected, there exists a covering f: X =Y such that qof =p.
This is illustrated by the commutative diagram below.

X

X

In fact, for any Z € X and § € Y with p(z) = q(y) we have {0} =
pumi(X, ) C qupm (Y, 7). N B
Because of the above corollary, a covering p: X — X with X simply

connected and locally pathwise connected is called a universal covering,
since X covers any other covering Y of the space X .

Corollary 7.12. Under the hyphotesis of Proposition 7.8, the homomorphism
[ Xy — Xo, with f(T1) = Tz, is an isomorphism if, and only if, H1(T,) =
Hs(Zs).

The “Only if” part is obvious. We just have to prove the “if” part.

In fact, in this case, Proposition 7.8 guarantees the existence of a ho-
momorphism g: Xo — X; with g(73) = Z;. Thengo f: X; — X; is an
endomorphism such that Z; is a fixed point, so it coincides with the identity
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map of X1. In a similar way we prove that fog: X — X, is the identity,
hence f is a homeomorphism.

Corollary 7.13. Two simply connected coverings of o locally pathwise con-
nected path are isomorphic.

The above propositions can be summarized as follows:

A. Let X be a connected and locally pathwise connected space and
xp € X. To each covering p: X — X, with connected domain X there
corresponds a conjugate class H(zg), of subgroups of m1 (X, xq), that con-
sists of the subgroups H(%) = pymi(X,%), ¥ € p~*(x). Two coverings,
p1: X; — X and Ppa: X, =+ X , with connected and locally pathwise con-
nected domains, are isomorphic if, and only if, the corresponding conjugate
classes H1(zo) and Ha(xo) are equal.

_ B. Under the same conditions, there exists a homomorphism f: X1
X, if, and only if, every subgroup H; € Hi(zg) is contained in some
subgroup Hs € Ha(xg).

These two results show how the coverings can be classified by means
of the subgroups of the fundamental group of the base space. It remains
to establish an important complement, according to which, if X is semi-
locally simply connected, every conjugate class of subgroups in (X, zg)
is the class of some covering p: X —+ X. This will be proved later.

Example 7.11. What are all the coverings p: X — S, of the circle S, with
X connected? If we identify the fundamental group of S! with Z, their
subgroups take the form nZ, n = 0,1,2,.... The coverings p,: S* — S!,
pn(z) = 2" determine the subgroups nZ with n > 0, while pg: R — S,
po(t) = €2™ determine the subgroup {0}. Any other covering p: X — S!,
with X connected, is isomorphic to one of these. Analogously, we prove
that a covering of the real projective space P™, with connected domain,
must be a homeomorphism or is isomorphic to the covering of two leaves
p: S™ — P", since the fundamental group 7;(P™) = Zs has only two
subgroups. <

7.4 Covering Automorphisms

The discussion of the previous section will now be restricted to the case of
only one covering p: X — X.

We assume, in all of this section, that X is connected and locally path-
wise connected.
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Let Zg LT.r'l Em-p_l(;rg). As we proved above, there exists an endomor-
phism f: X — X such that f(Z,) = z, if, and only if, H(Zy) C H(Z,). We
also know that H(Z,) = a 'H(Zy)a, where a € 7(X, zy) is the homotopy

class of @ = poa and @ is a path in X that starts at T and ends at ;.

Example 7.12. Consider the nonregular covering p: X 5 X presented in
Example 7.2, and the points zp, ¥1 used in the same example. There does
not exist an endomorphism f: X — X such that f(To) = T1. In fact, if f
existed, by letting @ be the lifting of the path a from the point Zy, f oa
would be the lifting of a from the point ;. Now, we observe that, since a
is closed, f oa also would be closed, but we saw in that example that the
lifting of a starting at r; is open. <

It also follows from the previous discussion that the endomorphism
f: X — X, with f(Zy) = T1, is an automorphism if, and only if, H(Zg) =
H(Z,). Again, H(Z,) = a 'H(Zy)a, a € m1(X,xp) being the homotopy
class of a path a = p o @, where the path a starts at Ty and ends at 7, in
the space X. N

If the covering p: X — X is regular, it follows that, given any two points
Tp, 11 € X belongmg to the same fiber p~*(z0), there exists an endomor-
phism f: X — X such that f(To) = T,. Besides this, every endomorphism
of a regular covering is an automorphism. (See Corollary 7.12.)

In order to express the fact that, given any two points of the same
fiber of a regular covering p: X — X, there exists an automorphism that
maps one onto the other, we say that the automorphism group G(X|X) of
a regular covering acts transitively in the fibers. This transitivity, besides
being necessary, is also sufficient in order that p: X — X be regular because
it implies that if @ is a lifting of the closed path a, the other liftings of a
have the form f oa, with f € F(X|X) therefore, thev are all open or all
closed, according whether @ is open or closed.

Another case where every endomorphism is an automorphism is the
one of a covering p: X — X, with a finite number m of leaves. In fact,
by Proposition 7.7, every endomorphism f: X — X is a covering, with a
number n of leaves, necessarily finite. The equality p o f = p implies that
p~Yx) = f~Yp~!(z)) for all x € X, which gives us m = nm; hence, n = 1
and f is an automorphism.

Example 7.20 shows the existence of an endomorphism that is not an
automorphism.

The normalizer of the subgroup H in a group G is the set N(H) of
all elements g € G such that g 'Hg = H. The normalizer N(H) is the
largest subgroup of GG that contains H as a normal subgroup. # is a normal
subgroup of the group G if, and only if, N(H) = G
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In Proposition 7.13, it was established that, given the covering p: X -
X, the fundamental group 7, (X, zg) acts transitively on the right in the
fiber p~!(xg), the isotropy group of 7 € p~!(zy) being equal to H(Z). The
action of an element o € m1(X,z0) on T € p~Y(zp) is denoted by 7-a. We
recall that Z-a = a(1) where @: I — X is the lifting, starting from Z, of a
path a: I — X such that a = [a].

In terms of these notions, the existence of an endomorphism f: X=X
with f(Zp) = 71, where T = ZFg-a, is equivalent to the statement that
H(Ty) € o 'H(Fp)a. Moreover, f is an automorphism if, and only if,
H(Ty) = a= H(Zy)a; that is, if, and only if, o« € N(H(Zg)).

In particular, for each o« € N(H(Zp)), there exists a unique automor-
phism f: X — X such that f(Zg) =3 - a.

This is the crucial remark in order to prove the following proposition,
which establishes an isomorphism between the group G(X|X) of the cover-
ing antomorphisms p: X — X and the quotient group N (H (%o))/H (Zo).
In order to prove it, it is convenient to start with the following lemma.

Lemma 7.1. Let f: X — X be an endomorphism of the covering p: X X.
For any T € X and o € m (X, p(Z)), we have f(T-a) = f(Z) - a.

Proof. Let a = [a] and @ be a lifting of a starting at the point . Then
T-a=al(l),so f(Z-a)= f(a(l)). On the other hand, f oa is a lifting of
a that starts at the point f(Z). Hence

(@) - a=(fea)l) = f(a(l)) = f(z-a),

which proves the lemma. |

Proposition 7.9. Let p: X > Xbea covering, with X connected and locally
pathwise connected. For each Ty € X, there exists a group isomorphism
G(X|X) = N(H(Zo))/H(Zo)-

Proof. We define a map ¢: N(H(%,)) — G(X|X) by setting, for each
o € N(H(Z)), ¢(a) = f, where f: X — X is the automorphism such
that f(Zg) = Zo-a. If pla) = f e ¢(3) = g, we have Tg - o = f(Tg) and
To - B = g(zg). By the above lemma,

(fog)(@o) = flg(To)) = f(zo-B) = f(xo) - B = x0- 3.

Therefore, f o g = ¢(af3) and ¢ is a group homomorphism. We have
w(a) = idg; that is, Tg - a = Ty, if, and only if, o € H(Zg). Thus, H(zp) is
the kernel of . We claim that ¢ is surjective. In fact, given f € G()?|X),
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let f(Zo) = Z1. Since (X, zp) acts transitively on p~!(xp), there exists
a € m(X,z) such that Z; = Ty - . Since f is an automorphism, we
have o« € N(H(Zp)). Since f(Zo) = Zp - «, it follows that f = @(a).
The isomorphism theorem for groups yields, by passing to the quotient an
isomorphism §: N(H(Zy))/H(Zo) = G(X|X). O

Corollary 7.14. Iff is connected, locally pathwise connected, and the cov-
ering is regular, we have an isomorphism G(X|X) = m1(X,zy)/H(Zy) for
each Tp € p~*(zg).

Corollary 7.15. If )z is simply connected, and locally pathwise connected
then the group G(X|X) of automorphisms of the covering p: X — X is
isomorphic to the fundemental group m (X, zq).

The isomorphism 7 (X, 25) — G(X|X) mentioned in Corollary 7.15 is
defined by choosing a point &g € X. It maps the element o € 71 (X, z¢) into
the automorphism f: j(. - X , thus described: Given = € X , we connect T
to Zp by apath bin X. Let b=pob, a € a and = = p(z). Then bab™! is
a closed path with base at the point z. The lifting of bab™! from the point
7 ends at a point y € p~1(z). We set f(Z) =y.

Example 7.13. (Klein bottle) Let (¢ be the group generated by the homeomor-
phisms f, g: R? — R2, where f(z,y) = (z,y+1) and g(x,y) = (z+1,1—y).
Since gf = f~lg, we can write the elements of G in the form f™-g",
where m, n € Z. Now, fmg"(z,y) = (z + n,y + m) if n is even and
fmg™(z,y) = (x+n,1 —y+m) if nis odd. G is a properly discontinuous
group of homeomorphisms of R?. In fact, given z = (x,y), let V be the open
square with center z, with sides of length 1, parallel to the axes. Then, for
every h # id in G, we have V N hV # @. The quotient space K = R2/G is
called the Klein bottle. The quotient map p: B2 — K exhibits the plane as
a universal covering of the Klein bottle; therefore, the fundamental group
of K is isomorphic to the group G of the automorphisms of this covering,.
Thus, the fundamental group of K has two generators, f, g, that satisfy
the relation gf = f~'g. (For other descriptions of the Klein bottle, see
Examples 8.10 and 8.11, and Section 7 in this chapter.) 4

Example 7.14. Now we give an example of a space whose fundamental group
is Z, (integers mod n). For this, we just have to consider a Hausdorff
simply connected space Y which is also locally pathwise connected, and
a group G de homeomorphisms of ¥, isomorphic to Z,, such that none
of them, with the exception of idy, has fixed points. (Being finite, G is
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properly discontinuous.) The quotient space Y /G will have fundamental
group isomorphic to Z,. Let D = {z € R?%|z| < 1} be the unit disk
of the plane and X = {(z,i);z € D,i = 1,2,...,n} be the union of the n
horizontal disjoint disks D x {1},...,D x{n}. Y is the quotient space of X
by the equivalence relation that identifies the points (z,4) and (z, j) when
|z| = 1. If n = 3, Y is homeomorphic to the union of the sphere $? with its
equatorial disk. For n > 3, we need n — 2 curved “equatorial disks,” all of
them having in common the circle §*. If n = 2, Y is homeomorphic to the
sphere §2. The space Y is simply connected, as we can see by induction,
using Corollary 2.9. In order to define the homeomorphism ¢: ¥ — VY, we
denote by [z,i] € Y the equivalence class of (z,i) € X. Let u = ¢>™/™. Set
wlz,i] = [u-z,i 4+ 1] if ¢ < n and @[z,n] = [u-z,1]. Note that ¢ does not
have fixed points and the group generated by ¢ is G' = {idy,¢,...,¢" 1},
isomorphic to Z,. Therefore, the quotient space ¥Y/G has fundamental
group isomorphic to Z,. When n = 2, ¢ is the antipodal map and Y/G is
the real projective plane. <

Now we give an example, simpler than the previous one, of a space with
fundamental group Z,, in dimension 3.

Example 7.15. Again, let u = ¢?™/™. The s%here S§? is the set of pairs
(z, w) of complex numbers such that |z|2 + |w|” = 1. The homeomorphism
p: 8% — 5% defined by ¢(z,w) = (u-z,u- w), generates the group G =
{id, 0, %, ..., " !} of homeomorphisms without fixed points in S3. G is
a properly discontinuous group, isomorphic to Z,, so the quotient space
X = S§?/G has fundamental group isomorphic to Z,. When n = 2, X is
the real projective space P3. For any n € N, X is known as the lens space
L‘n.,l- <]

Example 7.16. Let X be the figure eight space, that is the union of two
circles with a point in common. In Example 6.12 we showed a covering
p: X — X. In that example, X is a tree; that is, a graph without cycles.
We know that every tree is a contractible space. In particular, X is simply
connected. Therefore, the fundamental group of X is isomorphic to the
group of automorphisms G()? |X') of the covering p: X — X. Now, by tak-
ing the origin g as base point, an automorphism f: X - Xis completely
determined by the image Z; = f(%p), which must be one of the “crossing
points” of 55! and it can be any one of them. (Such points form the fiber
over the point xg € X, intersection of the two circles.) Now, the crossing
points in X arein1—1 correspondence with the words a™b™a? . .., because
there exists a unique way to go from Zp to any other crossing point, along
the segments of X, without moving along the same segment twice. We
conclude from this that the fundamental group of X is isomorphic to the
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free nonabelian group with two generators; each one of these generators
is the homotopy class of one of the circles that form the space X. Con-
sidering a construction analogous to that of Example 12, Chapter 6, in
three dimensions, we can show that the fundamental group of the union of
three circles with one point in common is a free group with three genera-
tors. More generally, using the same method, it is possible to prove that
if X = X7 U...UX, is the union of n circles with a point xp in common,
then m1(X, o) is a free group with n generators. <

7.5 Properly Discontinuous Groups
and Regular Coverings

We have seen that if G is a properly discontinuous group of homeomor-
phisms of a topological space X, then the quotient map n: X — X/G,
onto the space of orbits of G, is a covering (Section 6.3) and when X is
pathwise connected this covering is regular. (Example 6.3 of that chap-
ter.) We now show that, conversely, every regular covering is essentially
the quotient map onto the space of orbits of a properly discontinuous group
of homeomorphisms.

Proposition 7.10. Let X be a connected space. The automorphism group of a
covering p: X — X is a properly discontinuous group of homeomorphisms
of the space X.

Proof. Given 7 € X, let U be a distinguished neighborhood of z = p(Z)
and V a neighborhood of T such that p|V is a homeomorphism onto U. If
the automorphism f: X — X is different from the identity, then f(v) # v
for every v € V. Since v and f(v) belong to the same fiber of the covering
p and p|V is injective, it follows that f(v) ¢ V. Hence, V N f(V) = @,
which proves that G(X|X) is properly discontinuous. D

Given the covering p: X = X, with X connected, consider the covering
7: X = X/G, where G = G(X|X) is the propeﬂv discontinuous group
whose elements are the automorphisms of the covering p.

Proposition 7.11. Let X be a connected and locally pathwise connected space.
If the covering p: X — X is regular, there erists a homeomorphism
&: X /G — X which makes the diagram below commutative.

X
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Proof. Given Z, j € X, we have that p(Z) = p(§) < Z,7 belong to the
same fiber of p <> there exists f € @, such that f(Z) = ¥ (because the
covering is regular if, and only if, G is transitive in the fibers) & G-7 =
G-y« 7(Z) = 7(y). Hence, the equivalence relations determined by p and

in X coincide. This gives us a continuous bijection £: X/G — X such
that &om = p. Since p is open, the same happens with £. Hence, £ is a
homeomorphism. ]

7.6 Existence of Coverings

We start with the following question: Which topological spaces have a
simply connected covering? It is easy to obtain a necessary condition. If
p: X — X is a covering with X simply connected, then X must be semi-
locally simply connected. In fact, if V' C X is a distinguished neighborhood,
then every closed path a, contained in V', has a closed lifting a. Since X
is simply connected, @ is homotopic to a constant in X and from this we
conclude that @ = p oa is also homotopic to a constant in X.

We show below (for locally pathwise connected spaces), that this condi-
tion is also sufficient for the existence of a “universal” covering p: X - X,
that is, a covering with X simply connected. Moreover, we prove that if
X is locally pathwise connected and semi-locally simply connected then,
for every subgroup H C m1(X, zg) there exists a covering p: X — X such
that p#frl()z' ,Tp) = H. This will complete the discussion we started at
the end of Section 3. Given a connected, locally pathwise connected and
semi-locally simply connected space X, we fix 2y € X. To each covering
p: X — X, with X connected, corresponds a conjugate class H(zg) of sub-
groups of m1(X, zp). Two connected coverings with base X are isomorphic
if, and only if, to them corresponds the same conjugate class. Now we
see that such correspondence between classes of isomorphic coverings with
base X and conjugate classes of subgroups of m (X, zg) is surjective and
therefore bijective, under these topological hypothesis on X.

Proposition 7.12. Let X be a connected, locally pathwise connected, and
semi-locally simply connected space. Given zg € X and a subgroup H C
m1(X, xg), there ervists a coaermg P X — X, with X connected, and a
point Ty € X such that p#ﬁl(X Zg) = H.

Proof. Let a, b be two paths in X, starting at the point 5. We say that a
and b are equivalent, and we write a = b, when a(1) = b(1) and [ab™!] € H.
We use the notation (@) to represent the equivalence class of the path a.
Let X be the set of all equivalence classes {a) of the paths a in X that
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start at the point zo. We define a map p: X — X by setting p((a)) = a(1).
In order to introduce a topology in X , we consider the basis of X formed
by all pathwise connected open sets ' C X such that every path in U is
homotopic to a constant in X. For each point {a) € X and each open set
U € U such that a(1) € U, we set

Ula)y = {{ab); b(I) C U}.

The sets Tjr(a} form the basis for a topology in )F(;, according to which
p: X — X is continuous and open. Besides this, p|5r(a) is a bijection (and
therefore, a homeomorphism) onto U/. For each U € U, the inverse image
p~Y(U) is the union of the sets ﬁ(a), where a varies among the paths in
X with origin xg and final point in U. Two of these sets either coincide
or are disjoint. It follows that p: X — X is a covering. Given a path
a: I — X, with origin xy, for each ¢ € I let a;: I — X be the path given
by a:(s) = a(st). Then a: I — X, defined by a(t) = {a;), is the lifting of
a starting at the point Tp = {ey,), where e,, is the constant path in X,

at the point zy. Note that every point (@) € X can be connected to the

point Zo by the path £+ (a;}. Hence, X is pathwise connected. We have
la] € pgmi(X,Z0) & @ is a closed path < {(a) = {(a1) = {es,) & [a] € H.
This completes the proof. O

Corollary 7.16. Every connected, locally pathwise connected, and semi-locally
simply connected topological space X admits a covering p: X — X, with X
simply connected. Any two of these coverings are isomorphic.

Example 7.17. By Corollary 7.16, the group SO(n) has a covering p: X -
SO(n), with X simply connected. Since 7;(SO)(n) = Z,, this covering
has two leaves. (See Corollary 7.7.) By Proposition 7.5, there exists a
group structure in X which turns the projection p: X = SO(n) into a
homomorphism. This group X is called the group of spinors of order n and
it is denoted by Spin(n). We have Spin(3) = S*, and Spin(4) = §* x S%.
The group structure in Spin(n), obtained by means of the requirement
that p: Spin(n) — SO(n) be an homomorphism, is unique, provided that
we choose one of the two elements that are mapped by p in the identity
matrix to be the neutral element. 4

7.7 Fundamental Group of a Compact Surface

In order to finish this chapter, we shall determine, in terms of generators
and relations, the fundamental group of a compact surface. By “surface,”
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Figure 7.2. Some identification schemes for surface construction.

we mean a topological manifold of dimension 2; that is, a Hausdorff topo-
logical space that is locally homeomorphic to the Euclidean plane R2.

It is proven in combinatorial topology (see Seifert & Threlfall (1980))
that every compact surface is the quotient space of a plane polygon by
an equivalence relation according to which the sides that make up the
boundary of the polygon are identified two by two, according to schemes
such as those illustrated in Figure 7.2.

There are three identifying schemes. The first is the one of the orientable
surface of genus zero, which is homeomorphic to the sphere S2, in which
the “polygon” has two sides, which must be glued one to the other, as
indicated in the leftmost picture in Figure 7.2(a).

The second type of scheme is that of an erientable surface of genus
g = 1. The polygon has 4g sides, labeled a;,b1,a1,b1,...,a4, by. Each of
these sides is oriented by means of an arrow. Moving along the boundary
of the polygon in the clockwise sense, the directions of the arrows provides
a “word” w = arbia; 'by tasheay 'hy ... ag_lbg_l, which represents a closed
path in the surface. This is again illustrated for ¢ = 1 and ¢ = 2 in
Figure 7.2(a). (middle and right pictures). The picture on the left in
Figure 7.3 illustrates the general scheme.

The third type of identifying scheme is that of a nonerientable surface
of genus g = h — 1. The polygon has 2h sides, labeled e, ¢y, c9,¢9,...,

¢h, cy. These sides are oriented by arrows in such a way that, by moving
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along the boundary of the polygon in the clockwise sense, the arrows point
in our direction. This gives us the word A = ¢f¢3 ...}, which represents a
closed path in the surface. This is illustrated for g =0, g =1 and g = 2 in
Figure 7.2(b). The picture on the right in Figure 7.3 illustrates the general
scheme.

Note that, both the image (by the quotient map) of the path w of the
second scheme as well as the one of the path A of the third scheme are
homotopic to constant paths in the corresponding surfaces, because w and
A are homotopic to a constant on their polygons.

a
/'“d_— T
\ .
— b
torus
a

a, — ™~

[ b

(O

double torus

Figure 7.4.
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If #: P — S is the quotient map of the polygon P onto the surface S,
the boundary of P is transformed by 7 into a union of circles with a point in
common. The number of circles is 2¢ for an orientable surface of genus g > 1
and h = g + 1 for a nonorientable surface of genus g > 1. The interior of
the polygon P is mapped by 7 homeomorphically onto the complementary
set of this union of circles on the surface. This is illustrated in Figure 7.4
for the orientable surfaces of genus 1 (torus) and genus 2 (double torus).

Proposition 7.13. The fundamental group of a compact orientable surface
of genus g = 1 has 2g generators ai, 31, az, 32,...,a4, 34 and only one
relation,

q —lg—1_ 3 —1p-1 q o —1a-1
ay oy B s fBaag G, ...agﬁgag ﬂg =1.

The fundamental group of a compact nenorientable surface of genus g has
h =g+ 1 generators v1,%a, ..., v, and only one relation,

Vy: ..k =1

The above proposition is a particular case of the following situation: we
have a space X, a closed subset A € X, and a continuous map f: D — X,
of the wnit disk D = {(z,y) € R% 2% + y? < 1} on X, satisfying the
following conditions:

1. f(SY) c 4
2. f|int. D is a homeomorphism onto X — A.

In this case, we say that X is obtained from A by the adjunction of a

two-dimensional cell. Let e = f(D), a = f|S!. We then write X = AJe.

By choosing base points u, € S! and zq = f(ug) € A, the homotopy class
[a] is an element of the fundamental group m (4, zg). When X is a compact
surface, the subset A is the union of a finite number of circles with a point
in common and [ is the quotient map.

More generally, suppose that we have a family of continuous maps
ay: St — A, A € L, all of them taking values in a topological space A,

and consider the disjoint union Z = AU( |J D,), where each D} is a copy
AeL
of the disk D. We consider in Z the “sum” topology, in which A and each

D, are open and closed. We introduce in Z the equivalence relation that
identifies each point z € S} (boundary of D)) with its image a)(z) € A.
Let X be the quotient space of Z by this equivalence relation. We set

X = AU{eA},
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where e, is the image of D)y by the quotient map f: Z — X. Let fy = f|D,
and éy = fi(S3) = axn(S}) = ex N A. We say that X is obtained from A
by the adjunction of the 2-dimensional cells ey. The following properties
hold:

1. For each A € L, f is a homeomorphism of the interior of the disk
D)y, onto the open set ey — é,, of the space X;

2. If A # p then ey — &y and e, — ¢, are disjoint;

3. The set § < X is closed (respectively open) if, and only if, for each
A € L, the intersection S M ey is closed (respectively open) in €.

In the proposition helow, which contains Proposition 7.13, we suppose
that A is pathwise connected, so that the fundamental group w(A, zy) does
not depend essentially of the base point xg.

Proposition 7.14. Given a pathwise connected and semi-locally simply con-
nected space A, let X = A|Je be the space obtained from A by the adjunc-

tion of the 2-dimensional cell e, by means of the continuous map a: S* —
A. By setting xg = alug), up € S, the fundamental group w (X, xg) is
isomorphic to the quotient group of m1(A, zo) by the normal subgroup gen-
erated by [a].

Proof. Let j: A — X be the inclusion map. We must show:
A. The induced homomorphism jg: m1(A, xo) — 7m1(X, zg) is surjective;

B. The kernel of j4 is the normal subgroup generated by [a].

Proof of A. Let y € X — A (for example, the center of the cell e). Set
U=X-Aand V = X — {y}. Then U and V are open sets in X,
U NV is homeomorphic to the open disk minus a point (and therefore it
is pathwise connected) and X = U U V. It follows from Proposition 2.11
that 7 (X, zg) is generated by the images of w1 (U) and 7, (V'), induced by
the inclusions U — X and V' — X. Now, U is contractible because it is
homeomeorphic to an open disk, and the inclusion A — V is a homotopy
equivalence: Its homotopic inverse V — A is the retraction that projects
each point of V' — A radially from the point y and leave fixed the points of
A. Hence, w1(U) is trivial and the homomorphisms (A, zg) — 71 (V, xp)
and 7w (V,zp) — m1 (X, xzg), induced by inclusions, are surjective; hence,
the composite homomorphism jy is also surjective.

Proof of B. Let N be the normal subgroup of m1(A4, zp) generated by the
class [a]. By Proposition 7.12, there exists a covering p: A — A such that

pum1(A,Ty) = N, for all Ty € p~Y(zp). Since [a] € N, the map a: S* — A4
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has a lifting @y: S1 — A, with @x(ug) = A, for each A € p~'(x). Let X be
the space obtained from A by adjunction of two-dimensional cells through
the maps @,. There exists a covering map ¢: X — X such that ¢/4 = p.
(In order to see this, note that the covering p: A Ais regular: hence,
A = A/G, where G = G(A|A). Now, every g € G extends in an evident
way to a homeomorphism of X and G becomes a properly discontinuous
group in X, with )?/G = X.) Now we take, arbitrarily, a closed path b in
A, with base at the point xy, such that b is homotopic to a constant path in
X (this means that [b] € 7y (A, zq) is in the kernel of j). Then the lifting b
of the path b, from any point A € p~*(xp), is a closed path. But b is a path
in A. Since it is closed, this means that [b] € N. (See Corollary 7.1.) Thus,
the kernel of the homomorphism jy: mi(A, o) — 71(X, z0) is contained
in the normal subgroup N, generated by [a]. But it is obvious that [a]
belongs to the kernel of ju, which is a normal subgroup; hence, such a
kernel contains N. This concludes the proof. m]

Proposition 7.13 follows from Proposition 7.14 by virtue of Example 7.16,
according to which the fundamental group of the space that consists of n
circles with a point in common is a free subgroup with n generators.

Remark. With the exception of the sphere and the projective plane, the
universal covering space of a compact surface is the plane 2. This follows
from the fact that the fundamental groups of these surfaces are infinite;
hence, their universal covering spaces are not compact. Since the covering
map is a local homeomorphism, each covering space of a surface is also a
surface. But, the only noncompact simply connected surface is the plane
R2. The proof of this fact is surprisingly nontrivial. (See Seifert & Threlfall
(1980), page 332. Another proof can be given as a consequence of the Koebe
uniformization theorem for Riemann surfaces.)

Example 7.18. Completing the discussion that we started in Example 14
of Chapter 6, we see that, with the exception of the torus, no compact
surface admits the structure of a topological group. In fact, the fundamen-
tal group of a compact surface is nonabelian, with three exceptions: the
sphere, the projective plane and the torus. We have already seen (in the
example mentioned above) that the sphere is not a topological group. By
Proposition 7.5, it follows that the projective plane also is not a topological
group, because it is covered hy the sphere. The torus is a group, so all the
cases are now covered. <

Example 7.19. As a consequence of Proposition 7.13, the fundamental group
of the Klein bottle has two generators, say ¢, d, that satisfy the unique
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relation ¢2d? = 1, which is equivalent to ¢d = ¢~ 1d~!. By setting a = ¢ and
b = dec, we see that the same group admits the generators a, b, which satisfy
the unique relation ab = b='a (because ab = cdc = ¢~ 'd~tc = b~'a). This
takes us back to the description of the same group given in Example 7.12
and illustrates the fact that the presentation of a group by using generators
and relations can, in general, be done in different ways, apparently distinct.

<

Example 7.20. By virtue of Proposition 7.8 and its Corollary 7.12, one
obtains an endomorphism f: X — X which is not an automorphism when
the covering p: X — X has the following property: there exist xg € X,
Zg € pYzo), and a@ € m(X,z) such that o' - H(Z;) -« is a proper
subgroup of H(zg). With this purpose, we take X as the space obtained
by the adjunction of a two-dimensional cell to the figure eight space through
the map aba=1b~2: 8! — figure eight, where a and b are the two canonical
closed paths in the figure eight space. By Proposition 7.14, the fundamental
group of X (with base in xg, crossing point in the figure eight) has the
generators [a] = « and [b] = 3, with the unique relation afa~! = 3°. By
Proposition 7.12, there exists a covering p: (}Z’,Eg) — (X, z) such that
H(Zy) = p#frl(j:’,'ru) is the cyclic subgroup of (X, zy) generated by .
Then o~ *-H(Zp)-« = H(T1), where T; = Zp-a. It follows that H(F1) is the
proper subgroup of H(Zy) whose elements are the powers of 3 with an even
exponent. Therefore, there exists an endomorphism f: ()? ,Ty) = (f \Tg),
which is not an automorphism. 4

7.8 Exercises

1. Let X be the figure eight space and X the subset of the upper half-
plane, formed by the horizontal axis, along with the circles of radius 1/3,
tangent to this axis at the points (n,0), n € Z. Define a covering map of
X onto X. Determine whether this covering is regular or not. Take zy =
(0,0), describe the conjugate class of w1(X, zo) defined by this covering,
and determine G(X|X).

2. In Exercise 3 of Chapter 6, show that p regular implies ¢ regular.

3. Let X bean arbitrary topological space. Given the covering : R — St
£(t) = €', prove that a continuous map f: X — S' has a lifting with
respect to £ if, and only if, it is homotopic to a constant.

4. If n > 2, then every continuous map f: P™ — S! is homotopic to a
constant.
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5. Every continuous map from the sphere $2 to the torus 72 is homotopic
to a constant. The same occurs with maps from 5?2 to S!.

6. Let M be a compact orientable surface of genus g > 1. Show that there
exists f: M — S' continuous, nonhomotopic to a constant.

7. Find a covering of the figure eight space such that H(Z) is a cyclic

group. Is this covering regular? What is the group G (f |X) of the auto-
morphisms of this covering?

8. In Exercise 15 of Chapter 6, if p: X > Xisa regular covering of n
leaves, and f = p, show that Z is the union of n disjoint copies of X.

9. Let X be the union of two circles tangent at the point xy and X
be the grid consisting of the points of the plane that have at least one
integral coordinate. Define a covering map p: X — X such that, by fixing
a point Ty € p~i(zy), H(Zy) is the commutator subgroup (generated by

the elements of the form afa='3=1) in 7 (X, z¢) and G(X|X) = Z & Z.

10.  Determine all of the connected coverings of the torus 7™ = S! x

coox S
11.  Let p: X — X be a covering with X connected, G()Z'|X) be the
automorphism group and 7: X — X/G(X|X) the quotient map. There

exists a continuous map q: X /G(X|X) — X such that o = p. Both
and ¢ are covering maps.

12. Let X = $'US? be the union of a circle and a sphere, with §* M S2% =
{zo}. Obtain the universal covering of X.

13. What is the universal covering of the space formed by the union of a
torus with a circle that has a point in common with it?

14. Let p: G —Gbea homomorphic covering. If G is simply connected,
then ; (G) is isomorphic to the kernel of p.

15. Restate, in terms of the complex integral

Fe)
Lio®

the conditions of the Examples 7.4 and 7.5, in order that the holomorphic
function f: U — C — {0} have, respectively, a branch of log f(z) and a
branch of {/f(z) defined globally in U.

16. We say that a topological space is triangulable when it is homeomor-
phic to a polyhedron. Let p: X — X be a covering. If X if triangulable,
prove that X is also triangulable.
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17. Let a; be the number of simplices of dimension ¢ of the polyhedron
P. If X is a space homeomorphic to P, the number

X(X) =) (1)

i=0

is called the Fuler characteristic of X. If p: X 3 Xisa covering with n
leaves of the triangulable space X, prove that y(X) = n-x(X). By taking
into account that y(S?") = 2, show that a covering p: S?" — X has at
most two leaves. Therefore, if the universal covering of X is 52", then X
is homeomorphic to §2" or 71 (X) = Zz. Conclude also that the only finite
group that acts freely on 52" is Z,.

18. Let p: M —+ M be a differentiable covering (by this we mean, in
particular, that p is a local diffeomorphism between the manifolds M and
M). If M admits a continuous non-null tangent vector field, the same
happens to M.

19.  Use the first part of Exercise 15 to prove the converse of Exercise
16 in the case where M is compact. (Admit the theorem from differential
topology that relates x(M) with the existence of continuous and non-null
tangent vector fields to M.)

20. Let w be a closed differential form of degree 1 and class €' in the man-
ifold M and zg a point of M. Consider the subgroup H C (M, zo) whose
elements are the homotopy classes a = [a] of the paths a: (I,81) — (M, xg)
such that fa w = 0 and the covering p: M — M such that ppm(M,To) = H
for some Ty € p~1(zg). Prove that there exists a function f: M — R, of
class €™, such that p*w = df.

21. In Exercise 20, show that the covering p: M s M is regular and that
its automorphism group G{M|M) is isomorphic to the group of “periods” of
w; that is, the additive group of real numbers fa w, where [a] € 71 (M, xg).

22. Let Z be the simply connected (but not locally connected) space
defined in Exercise 16 of Chapter 2, and ¥ C Z the arc there mentioned.
Denote by X' the interval [0, 1/7] of the horizontal axis and let W = X'UY".
Define a continuous bijection ¢: Z — W by setting ¢(z, sen(1/z)) = x if
z € [0,1/x], and ¢(z,y) = (z,y) if (z,y) € Y. Show that ¢™1: W — Z is
not continuous. Consider a homeomorphism h: W — S! and show that the
continuous bijection g = ho ¢: Z — S does not have a continuous lifting
§: Z — R with respect to the universal covering £: B — S!. Conclude
that g: Z — S' is not homotopic to a constant. (See Exercise 2, above.)







Chapter 8
Oriented Double Covering

In this chapter, we study an example of covering that has applications to
topology and geometry. Since we will treat this topic in detail, we decided
to include it as a separate chapter, which justifies itself because there are
few comprehensive expositions of this subject in the literature.

8.1 Orientation of a Vector Space

Let E be a vector space of dimension m over the field of real numbers.

A basis in E is an ordered list £ = (eq, ..., ey ) of m linearly independent
vectors. If F = (f1,..., fm) is another basis in E, there exists a unique
m % m invertible real matrix, A = (a,-j) such that

m
fi= E Qij€q
i=1

for every 5 = 1,2,...,m. A is called the fransition matriz from the basis
£ to the basis F.

Given two bases £ and F in E, we say that £ and F are equally oriented,
and we denote this by £ = F, when the transition matrix from £ to F has
a positive determinant. The relation £ = F is an equivalence relation in
the set of bases of the space E. Since a transition matrix has either a
positive or a negative determinant, this equivalence relation has precisely
two equivalence classes.

Each one of these equivalence classes is called an orientation of the
vector space E.

Thus, an orientation in the vector space E is a set (O of bases of E with
the following property: if a basis £ belongs to @ and F is any basis in F,
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then F € @ if, and only if, the transition matrix from £ to F has a positive
determinant.

Given an orientation @ in the vector space E, the other orientation of
E' is called the opposite orientation of @ and it will be denoted by —O.

Every basis £ in E defines an orientation O in the space E. O consists
of the bases of E that are equally oriented with respect to the basis £.

In order that two bases £ = (e1,...,em) and F = (f1,..., fm) be
equally oriented it is necessary and sufficient that there exist m paths
hj: I — E such that, for every t € I the list H(t) = (hi(t),... hm(t))
is a basis of E, with H(0) = & and H(1) = F. To prove this, we should
recall that the set of m x m matrices with positive determinant is pathwise
connected. If we have

fi= Zaij—ei, j=1,...,m, with det(a;) >0,
i=1

then we take a matrix path A(t) = (a;;(t)), satisfying det A(t) > 0 for all
t €I, A(0) = m x m identity matrix, A(1) = (a;;), and we set

."Lj(t} = Z Qij (t)&,‘,.
i=1

Thus, two bases of E are equally oriented if, and only if, one of them can be
continuously deformed onto the other, in such a way that at each instant
of the deformation we have a basis of E. (For topological facts in F, we
take an arbitrary norm of the space. It is well known that all norms in a
finite dimensional vector space define the same topology.)

An oriented vector space is a pair (E, O), where F is a vector space of
finite dimension over the field of real numbers and O is an orientation of
E. 1t is very common to refer to such a space by using only the vector
space notation F'; that is, the orientation does not appear explicitly.

The vector space R™ will always be considered with the orientation
defined by the canonical basis £ = (ey, ..., €, ), where e; = (1,0,...,0),
es = (0,1,0,...,0).

In an oriented vector space (E, @), the bases that belong to O are called
positive and the other bases are called negative.

Let E, F be oriented vector spaces with the same dimension m. An iso-
morphism f: F — F is said to be positive when it transforms any positive
basis of I onto a positive basis of F. In order that this occur, it suffices
for f to transform one positive basis of E onto a positive basis of . When
an isomorphism from E onto F' is not positive, we say that it is negative.

A linear transformation T: R™ — R™ is a positive isomorphism if, and
only if, its matrix with respect to the canonical basis of R™ has determinant
= 0.
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When an isomorphism f: E — F, between two oriented vector spaces,
is positive, we say that f is orientation preserving. If only one the these
vector spaces is oriented, the requirement that the isomorphism f: E — F
be positive determines in a unique way an orientation in the other space.

8.2 Orientable Manifolds

By “manifold,” we mean differentiable manifold (Hausdorff with countable
basis), of a certain class C* which we specify when it is necessary. The
differentiable maps will belong to this class C*.

Let M, N be manifolds of the same dimension. For each z € M and each
y € N we choose, arbitrarily, an orientation O, in T M (the vector space
tangent to M at the point x) and an orientation C),; inTyN. Let f: M - N
be a local diffeomorphism. We say that f is positive (with respect to
the chosen orientations) when, for each z € M, the linear isomorphism
f'(x): ToM — Tp(,yN is positive. Analogously, we define a negative local
diffeomorphism; in this case, we must require that, for all x € M, the
linear isomorphism f'(z): T, M — TN reverses the orientation. We
must observe that there may exist local diffeomorphisms which are neither
positive nor negative.

Evidently, it is not interesting to choose, in a random way, an orientation
in each tangent vector space of a manifold without any correlation with one
another. We impose now that this choice be, in a certain sense, continuous.

An orientation O in a differentiable manifold M is a correspondence
that associates to each point z € M an orientation O, in the tangent vector
space T, M, in such a way that every point = € M belongs to the domain
U of a positive coordinate system ¢: U — R™. (That is, for each x € U,
the derivative ¢'(z): (T, M,O,) — R™ preserves orientation.)

An oriented manifold is a pair (M,Q), where M is a differentiable
manifold and @ is an orientation in M.

A manifold is said to be erientable when it is possible to define some
orientation in it.

Let O be an orientation in a manifold M. We denote by —O the cor-
respondence that associates to each x € M the orientation —O, in T, M,
opposite to O,. It is easy to see that —( is an orientation of M, called
opposite orientation of O.

Example 8.1. The Euclidean space R™ is orientable. In fact, R™ is oriented:
We always consider it with its natural orientation. More generally, every
Lie group G is orientable: We choose an arbitrary orientation in the tangent
space T. G (e is the neutral element of G) and we extend it to each tangent
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space TG by requiring that the linear isomorphism Lg: T.G — T,G, the
derivative of the left translation h +» gh, be positive at the point e. <

Example 8.2. Every open subset 7 of an orientable manifold M is an ori-
entable manifold. In fact, for each x € U, we have T, U = T,M. An
orientation of M determines, in a natural way, an orientation in U, called
the induced orientation. This example is a particular case of the next one.

<

Example 8.3. Let f: M — N be a local diffeomorphism. An orientation ¢’
in N determines, by means of f, an orientation © in M, characterized by
the property of turning f: (M,Q) — (N, ') into a positive map; that is,
for each = € M, the linear isomorphism f'(x): ToM — Ty, N preserves
orientation. In fact, this condition defines the correspondence z + O,. In
order to obtain a positive coordinate system : U — R™ around the point
x € M, we just have to take a positive coordinate system ¢: V — R™
around the point y = f(z) € N, an open set U 3 x in M that it is mapped
diffeomorphically by f onto a subset of V', and we set ¢ = ¥ o f. The
orientation O is said to be induced by f. In particular, if N is orientable
and there exists a local diffeomorphism f: M — N, then M is orientable.

<

Soon we will present examples of nonorientable manifolds.

Two coordinate systems, p: U — R™ and ¢: V' — R™, in a manifold
M are said to be compatible when U NV = &, or when U NV # @ and
the change of coordinates ¢ o ™1 (U N V) — (U N V) has a positive
Jacobian determinant at every point of (U N V). An atlas in M is said to
be coherent when any two of its coordinate systems are compatible.

In an oriented manifold M, the set of positive coordinate systems is a
coherent atlas. Since we are taking all of the positive systems, this is a
mazimal coherent atlas; that is, it is not a proper subset of any coherent
atlas on M.

Conversely, if there exists a coherent atlas .4 in the manifold M, we
define an orientation .. in each tangent space T,.M by taking a coordinate
system p: U — R™ that belongs to A and requiring that ¢'(z): T,M —
R™ preserve orientation. The orientation of each tangent space T, M is
well defined because of the compatibility of the systems in .A. Note that
the way that we defined O, shows that we obtain an orientation of M.

Every coherent atlas in a manifold M is contained in a unique maximal
coherent atlas. We could have defined, equivalently, an orientation of M as
a maximal coherent atlas. The definition we gave has a better geometric
flavor.
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We say that an atlas A, in an oriented manifold M, is positive when any
coordinate systems belonging to 4 is positive relatively to the orientation
of M. This means that 4 is contained in the maximal coherent atlas of M.

Proposition 8.1. Let M, N be two oriented manifolds with the same dimen-
sion and f: M — N be a local diffeomorphism. The set of points x € M
at which the derivative f'(x): ToM — Ty, N is positive is an open subset
of M.

Proof. Given z € M and y = f(z) € N, let o: U — R™ and ¢: V —
K™ he coordinate systems in M and N respectively, with z € U, y € V
and f(U) ¢ V. Then f'(z): T,M — T,N is positive if, and only if,
(Vofop™ 1) (p(x)): R™ — R™ has a positive Jacobian. Since this Jacobian
is a continuous function of z, this concludes the proof of the proposition.

O

Corollary 8.1. Let M and N be oriented manifolds. If M is connected, then
a local diffeomorphism f: M — N is either positive or negative.

In fact, the set of all points x € M at which the derivative f'(x): T, M —
Ty N reverses the orientation is also open. Since this set and the set of
Proposition 8.1 are disjoint, one of them is empty by virtue of the connect-
edness of M.

Corollary 8.2. Let w: U — R™ be a coordinate system in an oriented mani-
fold M. If the domain U is connected, then p is either positive or negative.

Corollary 8.3. In a connected oriented manifold, there are two possible ori-
entations.

In fact, consider the orientations @ and @' in a connected manifold M.
The identity map f: (M,Q) — (M, Q') is a local diffeomorphism. Hence,
either f is positive (and in this case, @ = ') or f is negative (and then

o' =-0).

Corollary 8.4. Suppose that, in a manifold M, there exist coordinate systems
w: U = R™, ¢: V= R™, with connected domains U, V', such that at two
points of p(UNV) the change of coordinates Yop™: o(UNV) — w(UNV)
has Jacobian determinants with distinet signs. Then M is nonerientable.

Remark. In the case of Corollary 8.4, the intersection U NV is necessarily
disconnected.
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Example 8.4. If M and N are orientable manifolds, the same happens
with their product M x N. In fact, let A and B be the coherent atlas,
respectively, in M and N, defining the orientations of these manifolds.
The atlas A x B is coherent because if ¢y, @2 € A e ¢y, 9 € B, then
(wax1ba)o(prxn) ™t = (w007 ') x (Yoo ") has as Jacobian determinant
the product of the (positive) Jacobians of ¢z o fpl_l and ¢ o wl_l.

The orientation defined in M x N by the atlas A x B is called product of
the orientations of M and N (in this order). If (w1, ... 4 ) and (v1, ..., vpm)
are positive bases in T, M and T, N respectively, then (uy,... tpm 1. .. Um)
is a positive basis in T{, (M x N).

Conversely, if the product M x N is an orientable manifold, then each
of the manifolds M, N is orientable. In fact, fix an orientation in M x N
and a coordinate system ¢: V — R™ in N, whose domain V is connected.
For each = € M, take a coordinate system p: U — R™ in M, with z € U,
such that ¢ x 1 is positive in M x N. The systems thus obtained form an
atlas A in M. We claim that A is coherent. In fact, if ¢, @2 € U then the
Jacobian of

(2 x D)o (g1 x ) = (P09 ) x (B0 ) = (p209yY) xid

is positive at each point (yp,(x),%(y)). But this equals the Jacobian of
P OLpl_l at the point ¢;(z). In a similar way, we prove that N is orientable.

5]
Consider a fixed point b € N and a basis (v1,...,v,) in T,N. For each
x € M, a basis (u1,...,U%,) in T,M is positive if, and only if, the basis

(Ui .. U, V1, ..., Uy ) B8 positive in T, p) (M x N).

Example 8.5. The map f: §™ xR — R™"' — {0}, defined by f(z,t) = €' -z,
is a diffeomorphism of the product ™ x R onto the open subset R™ ! —{0}
of the Euclidean space. Hence, S™ x R is orientable. It follows from the
previous example that the sphere S™ is orientable. Given xz £ 5™, a basis
(v1,-..,0,) of T, S™ is positive if, and only if det[z, vy,...,v,,] = 0. 4

Example 8.6. Let A = (0,5) x (0,1) be the open rectangle with base 5
and height 1. Given two integers i < j in the interval [0, 5], we let A;; =
(7,7) % (0,1) be a rectangle with base j — i and height 1.

The Moebius band M is the quotient space of A by the equivalence
relation that identifies each point (s,t) € Ag; with (s +4,1—1) € Ays (see
Figure 8.1). Let m: A — M be the quotient map. The restrictions 7| Aoz
e | Ags are, respectively, homeomorphisms onto open sets U and V in M.
We denote by p: U — Agg and 9: V' — Ags their inverses. We see that
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Figure 8.1. The Moebius band.

p(UNV) = Ap UAss and Y(UNV) = Ass U Ag5. Moreover, the change
of coordinates
Yo Tt Ag U Apg — Aoy U Ayg

is the identity in 4,3 and it is given by (s,t) = (s+4,1—¢) in A, . It follows
from Corollary 8.4 that the Moebius band is a nonorientable manifold. <

Example 8.7. The antipodal map a: S™ — S™, a(z) = —z is a diffeomor-
phism, with o' = a. Let us check whether o preserves or reverses the
orientation of S™. Given x € S™, we set £, =T, 5™. We have E, = E__.
A basis (v1,...,v,) em E, is positive if, and only if, det[z, vy, ..., vy] > 0.
It results from this that, although the nonoriented vector spaces E. and
FE_ . are the same, we have O_, = —(@,; that is, the orientations of F,
and E_, do not coincide. The derivative o'(z): E, — E_, is given by
the multiplication by —1. With respect to the orientations O, and O_,
adopted in these spaces, o’(z) is a positive isomorphism if, and only if, m
is odd. Thus, the antipodal map a: 8™ — S™ preserves orientation when
m is odd and reverses it when m is even. 4

Example 8.8. We prove now that the real projective space P™ is orientable
when m is odd and that it is nonorientable when m is even. With this
in mind, consider the canonical projection w: S™ — P™, which is a local
diffeomorphism, and the antipodal map a: 8™ — S™. We have mroa = 7.
If m is odd, we define an orientation in each tangent space T, P™, y = 7(z),
by requiring that the linear isomorphism «’(z): T,,S™ — T, P be positive.
It seems that there is an ambiguity, because we also have y = w(—z). But,
since 7'(—z) o o'(z) = 7'(z) and o' (x) is positive, the isomorphism 7' (—z)
would induce the same orientation in 7, P™. This defines an orientation in
P

Conversely, assume that P™ is orientable. Since S™ is connected, we
can (see Corollary 8.1) choose the orientation of P™ in such a way that
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m: §™ — P™ is positive. Now we fix z € §™. Since the isomorphisms
7'(—z) and «'(z) are both positive, it follows that a'(z) = 7'(—z) " ton'(z)
is positive and therefore m is odd, according to the previous example. <

8.3 Properly Discontinuous Groups of Diffeomorphisms

Let f: M — N he a local diffeomorphism. When N is orientable, we know
that f induces an orientation in M. Consider now the inverse situation:
Supposing that M is orientable, is it possible to define, by using f, an orien-
tation in N7 The particular case 7: §™ — P™ was solved in Example 8.8.
The hypothesis that f is surjective is, evidently, necessary.

Proposition 8.2. Let f: M — N be a surjective local diffeomorphism, defined
on a connected oriented manifold. In order that N be orientable, it is
necessary and sufficient that, for any x, y € M with f(z) = f(y), the
linear isomorphism f'(y)~' o f'(z): T.M — T,M be positive.

Proof. If the condition holds, we define an orientation in N by taking, for
each b € N, a point x € f~1(b) and imposing that the linear isomorphism
f(z): TuM — TyN be positive. The admitted condition means that the
orientation thus defined in each T, N does not depend on the choice of the
point z in f~1(b). Moreover, if we take in M a positive coordinate system
w: U — R™, defined in an open set /'  z which is mapped diffeomorphi-
cally onto an open set V 3 b, the composite map ¢y = o f~1: V — R™
is a positive coordinate system in N. This shows that we have indeed an
orientation in N.

Conversely, let M, N be oriented manifolds. (Here we use the con-
nectedness of M.) Then f: M — N is either positive or negative. By
changing, if necessary, the orientation of N, we may suppose that f is
positive. Then, for any z, y € M with f(z) = f(y), the linear isomor-
phisms f'(z): T.M — Ty N, f'(y) = Ty,M — Ty, N are positive and
consequently the isomorphism f/(y)~! o f/(x) is also positive. O

A frequent situation where Proposition 8.2 applies is that of a properly
discontinuous group of diffeomorphisms, as we explain now.

Proposition 8.3. Let M be a connected manifold of class C* and G be a
properly discontinuous group of diffeomorphisms of elass C* in M. If the
quotient space M /G is Hausdorff then there exists a unique manifold struc-
ture of class C* in M/G such that the quotient map m: M — M/G is a
local diffeomorphism of class C*. Suppose that M is oriented. In order that
M/G be orientable, it is necessary and sufficient that each diffeomorphism
belonging to G preserve orientation.
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Proof. Consider an open covering of M such that each open set contains at
most one point of each orbit of G. Let U, V' be two of these open sets. Then
7w |U and w|V are homeomorphisms onto open sets Uy, Vy € M/G. Suppose
that UgNVy # @. Let A = (x|U)"Y(Uy NVp) and B = (x|V)~ YUy N V).
We claim that the homeomorphism ¢ = (#|V)~!o (x|U): A — B is of
class C*. In order to prove this, we remark that if 2 € A, then &z) =
y = 7w(z) = w(y) = y = a(z) for some a € G. That is, for all z € A,
there exists & € & such that &(z) = a(z). By fixing # € A, let Z be
an open set such that z € Z C A and £(Z) C a(A). We know that
8 #a= p(A)Na(d) =@. Thus, £(Z)NB(Z) = & for all 3 # a. This
shows that £(y) # 3(y) for all y € Z and therefore, {|Z = «|Z. It follows
that £ € C*in Z. Since Z is a neighborhood of an arbitrary point x € A, we
conclude that £: A — B is of class C*. Thus, the topological space M/G
is covered by open domains of homeomorphisms ¢ = (#|U)~1: Uy — U,
which take values in open subsets of M, in such a way that, when the
domain of ¢»: Vi — V intersects that of ¢, then the change of coordinates
£=vop i pUyn Vy) = v(UyN V) is of class C*. Since ¢ is open,
M/@G inherits from M a countable basis. Thus the homeomorphisms ¢
define a manifold structure of class C* in M/G. Evidently, the quotient
map m: M — M/G is a local diffeomorphism. The uniqueness of the
structure in M/G follows easily from this property. Suppose now that M
is oriented and each o € (G is a positive diffeomorphism of M. Then the
local diffeomorphism n: M — M/G satisfies w(z) = w(y) = y = a(z),
with & € G. Since 7 o @ = 7, we conclude that #'(y) o a'(z) = n'(z);
that is, 7'(y)~! o 7n'(x) = o/(z), which is a positive linear isomorphism. It
follows from Proposition 8.2 that M /G is orientable.

Conversely, if M /G is orientable, we take arbitrarily o € G and z € M.
Let y = a(z). Then w(z) = a(y). By Proposition 8.2, the isomorphism
'(y)~t o w'(x) is positive. But this isomorphism coincides with o'(z). It
follows that « is positive, which completes the proof. O

Example 8.9. Now we will see that the orientability of the projective space
(P™ is orientable if, and only if, m is odd) is explained more generally by
Proposition 8.3. In Example 7.8, where we have the group of translations
of B™ by vectors with integral coordinates, the quotient space is the n-
dimensional torus R"/Z" = S x...x S (n factors). Since each translation
z +— = + v is a positive diffeomorphism of BR™, we conclude that the n-
dimensional torus is orientable, a fact that we already knew, because it is
the product of n orientable manifolds, or because it is a Lie group. <

Example 8.10. Let M = S' x R. The diffeomorphism h: M — M, defined
by h(z,y,z) = (x, —y, z + 1), generates a cyclic group G = {h™;n € Z} of
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/

Figure 8.2.

diffeomorphisms of M, which is properly discontinuous. We can imagine M
as a vertical cylinder in R*. The diffeomorphism h maps each horizontal
circle of M onto the circle located one unity above it but, when doing
this, it also reflects the circle around a diameter. The n-th iterate h™ is a
positive diffeomorphism of M if n is even and it is negative when n is odd.
It follows that the quotient space M /G is a nonorientable manifold. It is
called the Kliein bottle. <

Example 8.11. In the example above, let p: M — M/G be the canonical
covering map of the cylinder M onto the Klein bottle M/G. The funda-
mental group of the cylinder is cyclic infinite, generated by the homotopy
class of the path A(s) = (cos2ws,sin2ms,0). Consider now the paths
A'(s) = (cos2ms, —sin2ws, 1), B(s) = (1,0, s), in the cylinder, and their
images a = poA = po A’ and b = po B in the Klein bottle (see Figure 8.2).
Both a and b are closed paths, with base at the point x4 = p(Zs) = p(Z1),
where #p = (1,0,0) and #; = (1,0,1). We claim that we do not have
ab = ba in the Klein bottle. In fact, by taking liftings starting at the
point Zy, we have ab = AB ~ A and ba = BA' ~ A’ ~ A~! (free ho-
motopies). Since A and A~! are not freely homotopic in the cylinder, it
follows that ab is not homotopic to ba in this cylinder. Consequently, we
do not have ab = ba in the Klein bottle. (See Proposition 6.10.) Thus, we
have proved, once more, that the fundamental group of the Klein bottle is
not commutative. <

8.4 Oriented Double Covering

An oriented double covering is a map p: M — M, of class C*, with the
following properties:
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1. M is a connected manifold, M is an oriented manifold, and p is a
local diffeomorphism;

2. For each y € M, the inverse image p~!(y) contains exactly two points;

3. If p(x1) = plz2) with z; ?é 2, then the linear isomorphism
(zg) L p/(2y): Ty, M — T, M is negative.

By virtue of Proposition 6.5, an oriented double covering p: M — M is
a proper covering map. -

Sometimes we say, rather incorrectly, that M (not p) is an oriented
double covering of M.

Example 8.12. When m is even, the quotient map w: ™ — P™ is an
oriented double covering of the projective space P™. When m is odd, «
does not satisfy the Condition 3. ahove. <

Example 8.13. Let a: M — M be a negative involution (o« = id), of class
C* without fixed points, on a connected oriented manifold. Then {a,id}
is a_properly discontinuous group of diffeomorphisms of M. We indicate
by M /a the quotient manifold. (See Proposition 8.3.) The quotient map
7 M — M / a is an oriented double covering. An example of this situation
is M = S* x S! = the two-dimensional torus. We define a: M — M by
setting oz, w) = (Z, —w), where Z is the complex conjugate of z. Then «
is a negative involution without fixed points in the torus M. The quotient
manifold M/« is diffeomorphic to the Klein bottle. The canonical projec-
tion m: M — jf/ a shows that the torus is an oriented double covering of
the Klein bottle. Later, we will show that every oriented double covering
is essentially obtained in this way. <

Example 8.14. (Product covering) Let M be a connected oriented manifold.
Take My = M x {1} and My = M x {2}. Then M = M, UM, is a
manifold, the disjoint union of two diffeomorphic copies of M. Now define
p: M — M by setting p(z,1) = p(x,2) = x. Let's choose an orientation of
M by requiring that p|M; be positive and p|Ms negative. Then p: M— M
is an oriented double covering, called the product covering. <

More generally, we say that an oriented double covering p: M — M
is trivial when M = M; U 1 M’g is the disjoint union of two open subsets,
such that each one of them is mapped by p diffeomorphically onto M. We
now show that this is essentially the only possible oriented double covering
when the base space M is orientable.
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It is important to note that if M is connected, then the base M of the
oriented double covering p: M — M must be a nonorientable manifold,
according to Proposition 8.2, Observe also that p: St — S1, p(z) = 22 is

a covering with two leaves, but it is not an oriented double covering.

Proposition 8.4. Let p: M — M be an oriented double covering. If U C M
is an oriented open set, then p~*(U) = Uy U Uz, is the disjoint union of
two open sets, such that p maps each one of them diffeomorphically onto
U. In ﬁl, p is positive and in Tjrg, it is negative.

Proof. Let Uy = {z € p~Y(U);p/(z) < 0} and Uy = {x € p~Y(U);p/(z) >
0}. Evidently, p~Y(U/) = U, U Us,, the union of two disjoint open sets. In
each U;, p is injective because p(z1) = p(xs) with 7 # x2 would force
p'(z1) and p'(z2) to have opposite signs. Moreover, each point y € U is the
image of two points x1, To € p~}(U); in one of them, the derivative of p is
positive and in the other, it is negative. Hence, p(ﬁl) = p(ﬁg) =U. We
conclude that p|ﬁl and p|5"2 are bijections (and therefore, diffeomorphisms)
onto U. O

Proposition 8.5. Let p: M — M be an oriented double covering. The fol-
lowing statements are equivalent:

1. M is orientable;
2. M is disconnected;

3. The covering p: M — M is trivial.

Proof. 1 =-2: This follows from Proposition 8.2.

2 = 3: Suppose that M is disconnected and take a connected compo-
nent €' of M. Since p is a proper local diffeomorphism, the image p(C)
of the open-closed set ' is open and closed in the connected manifold M.
Hence, p(C') = M. Thus, p maps each connected component of M onto M.
Since the inverse image by p of each point of M has two points, we con-
clude that Mr cannot have more than two components. As a consequence,
M = fifl U f'.fz has precisely two connected components and p is injective
in each one of them. Thus, p|M; and p|M; are diffeomorphisms onto M;
that is, p is trivial.

3 = 1: Obvious. O

Corollary 8.5. Let p: M — M be an oriented double covering. M is con-
nected if, and only if, M is nonorientable.
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Now we prove the uniqueness of the oriented double covering,.

Proposition 8.6. Let pi: ifl — M and ps: ﬁ:fg — M be oriented double
coverings of the same manifold M. There exists a unique positive diffeo-
morphism f: My, — Ms such that ps o f = py. This is illustrated by the
commutative diagram below.

ﬂ"‘f]_ * ;":‘fz

j 4l P2

M

Proof. The conditions that f be positive and satisfy p; o f = p; already
define a bijection f: flfl M, For each point = € M,, f(z) = y is the
point of ﬂ?fz, which is mapped by ps onto the point z = p;(x) in such a
way that p5(y) ! o p{(x) becomes a positive linear isomorphism. (There
exist two points of My which are mapped by pz onto the point z, but only
one of them satisfies the last condition.) Now we just have to prove that
f e CFif p; and ps are of class CF. We fix v € My. Let U 3 z = m(z)
be a domain of a coordinate system in M; we orient U in such a way that

_I(U) U, UV, with z € U; and p1|Ul be a positive diffeomorphism onto
U. Then p; '(U) = Uy U Va, where p2|U2 is a positive dlffeomorphlsm onto
U. It follows that y = f(z) € Uy and f|U; = (po|Us) ™" o (p1|U1). O

The corollary below shows that every oriented double covering is essen-
tially obtained by taking the quotient space of a manifold by a negative
involution without fixed points.

Corollary 8.6. Let p: M — M be an oriented double covering. There exists
a unigue negative involution o M — M’ of class C*, such that po a =
p- The involution o does not have fired points. There erists a_unique
diffeomorphism §£: M’/a — M such that p = £ ox, where «: M — M’/a is
the quotient map.

In fact, let ﬁl and ﬁ}z be the same manifold M with two oppo-
site orientations. The map p determines two oriented double coverings
pi: M; — M (i = 1,2), that differ from the original one only by the orien-
tation of their domains. By Proposition 8.6, there exists a unique positive
diffeomorphism a: M; — My such that ps o @ = p;. Going back to the
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original notation, a: M Misa diffeomorphism that reverses the orien-
tation of M' this, along with the equality p o a = p, shows that, for each
z € M, a(z) = y is the other point of M such that p(z) = p(y) Thus,
a does not have fixed points and a o a = id; that is, a is an involution.
The fact that a € Q"ﬁ was proved in Proposition 8.6. Finally, considering
the quotient space M /a, since the equivalence relation defined by p in M
is the same defined by : M~ M Ja, it follows that there exists a con-
tinuous bijection £: M /o — M such that £ o m = p, as illustrated by the
commutative diagram below.

M

M/a ¢ - M

Since p is a local diffeomorphism of class C¥, it follows that £ is a
diffeomorphism of class C*.

Proposition 8.7. Every connected manifold M of class C* has an oriented
double covering.

Proof. Let M be the set of ordered pairs (z,0;) where x € M and O, is
an orientation in the tangent space T, M. We define a map p: MM by
setting p(x, @,) = x. Clearly, for each € M, the inverse image p~*(x)
contains exactly two points: (z,0 ) and (z,—0,). We introduce now
a manifold structure of class C* in M in such a way that p becomes an
oriented double covering of class C*. For each oriented open set U C M, let
U be the set of pairs (z, 0, ) such that € U, and .. is the orientation of U
at the point z. The map i : U — U, defined by YU = p|U isa leECtIOI’l
The domains U of these bijections ¢y cover the set M. Given YU U—U
and oy V 5 V, ifUNV #£ & then 'LP{'|(UHV) v |(Uﬂ V); hence
the “change of coordinates” @y o ;" : eu(UNV) = oy (UNV) is simply
the identity map. Therefore, the atlas constituted by the bijections s
determines in M a manifold structure of class C*, and p: M — M is alocal
diffeomorphism with respect to this structure. Such structure is defined by
the condition that each ¢y be a diffeomorphism. In order to show that
M is orientable, we remark that M has a natural orientation, imposed by
its definition: in each point # = (z,0,) € M consider the orientation
O; which makes the linear isomorphism p'(Z): (TIM' ,Oz) — (T M,0,)
positive. The map p: M — M is an oriented double covering,. m]
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Corollary 8.7. Every simply connected manifold is orientable.

In fact, let M be a simply connected manifold. Every covering of M
with connected domain is a homeomorphism. Hence, the oriented double
covering of M is disconnected; therefore, M is orientable.

8.5 Relations with the Fundamental Group

Let p: M — M be _an oriented double covering. Given a path a: I — M
and a point # € M such that p(Z) = a(0), there exists a unique path
@: 1 — M such that pod = a and @(0) = #. If we adopt for M the model
presented in the proof of Proposition 8.7, we have & = (z,0,) and the
path @ can be interpreted as the continuation of the orientation O, by
continuity, along the path a. In fact, we have a(s) = (a(s), Oy(s)) for all
s € I. Since a(s) depends continuously on s, it is natural to say that the
orientation Oy, also depends continuously on the parameter s.

Let b: I — M be another path in M with the same endpoints as a. If
a = b (that is, if @ and b are homotopic with the endpoints fixed in M),
then their liftings @ and b starting from the same point & are also homotopic
with fixed endpoints in M. In particular, @(1) = b(1). This means that,
starting from an orientation @, in T, M and extending it by continuity
along the two homotopic paths with fixed endpoints, we obtain in the final
the same orientation. In particular, if the manifold M is simply connected,
it is possible to orient it by choosing an orientation O, at a fixed point
zg € M and, given any point x € M, we connect z to xg using a path
in M and we extend (0,, continuously along this path. The orientation
O, thus obtained does not depend on the path chosen in order to connect
g to x because, since M is simply connected, any two of these paths are
homotopic with fixed endpoints.

Consider now closed paths in M, with base at a point xy. Given the
oriented double covering p: M — M, the lifting of a closed path may
be closed or open. In terms of the model of Proposition 8.7: extending
continuously an orientation O, along the path a, with a(0) = a(1) = zo,
it is possible to obtain, in the final, the orientation ., or the opposite
orientation —Q,,. This fact depends only on the path a, but not on the
orientation @_,. In the first case, we say that a is an orienting path. In
the second case (in which, by extending O, along a, we obtain in the end
the opposite orientation —@,,) we say that a is a disorienting path.

A manifold M is orientable if, and only if, every closed path in M is an
orienting path. In the projective plane P2, a projective line (image of half
a great circle by the projection 7: S? — P2) is a disorienting path.




198 8. Oriented Double Covering

Every closed path homotopic to a constant is an orienting path. In
particular, if ¢: U — R™ is a coordinate system in M, and o(U) is the
Euclidean ball, then every closed path contained in U is an orienting path.
(We say then: Every sufficiently small closed path is an orienting path.)

The central circle of a Mdbius ban is a disorienting path.

An interesting conjecture in cosmology states that the universe is an
orientable manifold. Otherwise, a person who took a trip along a disori-
enting path would return mirrored: with the heart on the right side, writing
everything in the opposite order and with the other hand. The arrows of
his clock would move in the opposite sense and any books he carried with
him would be illegible for us. On the other hand, he would think that
everything here had changed while he was travelling.

Consider a nonorientable connected manifold M. Let a, b be two closed
paths in M, with base in xg. If a = b, then a is an orienting path if,
and only if, b is also an orienting path. If two closed paths are orienting
paths, their product is also an orienting path and so are their inverses.
Thus, the homotopy classes of the orienting paths constitute a subgroup
H C m(M,xg). H is the image of the fundamental group of M by the
induced homomorphism p : :'Tl(fﬁ';'f, Zo) = m (M, zp). (It does not matter
which is the chosen point ¥4 over oy, because every covering with two leaves
is regular.)

In particular, we conclude that the fundamental group of a nonori-
entable manifold always has a subgroup of index 2.

8.6 Exercises

1. Let a: S' x B — S x R be defined by a(z,1) = (—z,—t). Show
that a is a negative diffeomorphism, with o o o = id, that G = {id, o} is
a properly discontinuous group and that M = (S! x R)/G is the Mébius
band. Conclude again that M is nonorientable.

2. In a differentiable manifold M, the domain of a coordinate system is
an orientable submanifold, even when M is nonorientable.

3. Ewvery complex analytic manifold is orientable.

4. If the fundamental group of a connected manifold has seven or nine
elements, the manifold is orientable.

5. If, for each point of a spherical surface, there exists a straight line that
varies continuously with the point, prove that at least one of these lines
passes through the center of the sphere.
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In the following exercises we use the notation below:
e M C R™ denotes a surface of dimension m and class €.

o TM = {(z,v) e R™" x R";jz €¢ M,ve T,M} = tangent bundle of M.

T'M = {(z,u) € TM;|u| = 1} = unit tangent bundle of M.

AM = {(z,[u]); (z,u) € T'M,[u] = {u,—u}} = tangent direction
bundle of M.

6. Prove that TM and T'M are surfaces of class C* in R® x R", with
dimensions 2m and 2m — 1, respectively, both of them orientable.

7. Prove that the maps w: TM — M and n! = #|TTM: T'M — M are
locally trivial fibrations with typical fiber R™ and S™~! respectively.

8. Prove that the fibrations 7!: T1S% — S% and #: SO(3) — S? (this
last one was considered in Chapter 3) are equivalent; that is, there exists
a diffeomorphism ¢: T*S? — SO(3) such that 7 o ¢ = x'. In particular,
the fundamental group of T1S? is Z,.

9. Prove that AM is the quotient space of T1M by the involution (z,u)
(z, —u); hence, it is a differentiable manifold and the map (z,u) ~» (z, [u])
establishes T' M as a covering of AM with two leaves. Conclude that the
map 7: AM — M, where 7(z, [u]) = z, is a locally trivial fibration, with
typical fiber P™~1,

10. If M is connected, the same happens with TM and AM, and also with
T'M when m > 2. If M is compact, 7'M and AM are also compact.

11. TM and T'M are orientable, independent of the orientability of M.
AM is orientable if, and only if, m is odd.

12. A continuous direction field in the surface M is a correspondence
d: x +» d(x) such that the map d: M — AM, given by d(z) = (x,d(x)), is
continuous (a section). The direction field § is said to be orientable when
there exists a continuous unit tangent vector field = + wu(z) (that is, a
continuous section x + (z,u(z)) of the unit tangent bundle T1M — M)
such that §(z) = {u(x), —u(z)} for all & € M. If the surface M is simply
connected, every continuous direction field is orientable. Conclude from
this that the sphere S? (and, more generally, any sphere of even dimension)
does not admit a continuous direction field.

13. Give an example of a continuous nonorientable direction field in
R2 — {0}.
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14.  Consider G = {+1,+¢} as a properly discontinuous group of home-
omorphisms in $®. Prove that the orbit space S*/G is homeomorphic to
AS?. Conclude that the fundamental group of AS? is Z,.

15. Let w: E — B be a locally trivial fibration whose typical fiber is
simply connected. Prove that my: m(E,z) — m(B,y). y = w(z), is an
isomorphism. Conclude that, if dimM > 3, T'M and M have isomorphic
fundamental groups. If, moreover, M is simply connected, then w1 (AM) =
ZQ.

16. The homomorphism of the fundamental groups induced by the fibra-
tion T: AM — M is surjective. If dimM > 3, its kernel is Zs,.

17. Consider a continuous direction field 4, tangent to the surface M, and
let M = {(z,u) € T'M;[u] = d(x)}. Show that p: M — M, defined by
plx, u) = u, is a covering with two leaves and that there exists a continuous
unit vector field % tangent to M such that [p/(Z)-%(F)] = 6(x), where
x = p(T).

18.  With the notation of Exercise 17, show that the field of directions §
is orientable if, and only if, M is the union of two disjoint open sets, and
the restriction of p to each one of them is a diffeomorphism onto M.

19. Use Exercise 17 from Chapter 7 in order to conclude that a compact
surface admits a continuous tangent field of directions if, and only if, it
admits a continuous, non-null tangent vector field.




Appendix
Proper Maps

A map f: X — Y between two topological spaces is said to be closed when,
for every closed subset F' C X, its image f(F) is closed in Y. The following
proposition characterizes closed maps. Note that it somehow expresses the
continuity of the “inverse map” y — f~1(y), whose values are sets.

Proposition A.1. In order that f: X — Y be closed, it is necessary and
sufficient that, given arbitrarily y € Y and an open set U O f~(y) in X,
there exists an open set V C Y such thaty € V and f~Y(y) Cc f~YV) c U.

Proof. (Necessary.) If f is closed then f(X —U) is closed in Y and, since it
does not contains y, there exists V' > y openset in Y, with VN f(X - U) =
@. This means that f~(y) c f~4(V) C U.

(Sufficient.) Suppose that the condition is satisfied, and take the closed
set F C X. If y ¢ f(F) then F N f~'(y) = @; hence the open set U =
X — F contains f~'(y). Then there exists an open set V 3 y in Y, with
f~HV) € U, which means that V N f(F) = @. Therefore f(F) is closed
inY. O

A map f: X — Y, between two topological spaces, is called proper
when it is continuous, closed and the inverse image f~!(y) of each point
y € Y is a compact subset of X.

For example, if X is compact and Y is Hausdorff, every continuous map
f: X =Y is proper.

The inverse image f~'(y) by the inclusion map f: (0,1) — R is a
compact set, for each y € R, but f is not closed, therefore it is not a proper
map. A constant map f: X — ¢ € Y, defined on a non-compact space

201
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X and taking values in a Hausdorff space Y, is closed but it is not proper
because f~1(c) = X is not compact.

Proposition A.2. Let f: X — Y be a proper map. If K C Y is compact then
F~UK) is also compact.

Proof.  Let U a covering of f~1(K) by open sets U C X. For every
y € K, we can find a finite subcollection {U{, U, ... yUY } of U covering
the compact set f~!(y) and, by Proposition A.1, an open set V,, 3 y in Y’
such that

fYv,)cufuufu...u Us,-

‘We can also find points y1,. .., yr € K such that K CV,, U.. .UV, . Then

kM
) gy
G=1li=1
which proves the proposition. O

Without imposing some restrictions, the converse of Proposition A.2 is
false. But it is valid for most of the reasonable spaces. For example, we
have the

Proposition A.3. Let Y be a space whose topology has the following property:
if A CY is such that AN K is compact for every compact set K C Y then
Ads closed in'Y. Let f: X =Y a continuous map such that the inverse
image f~(K) of each compact set K CY is compact. Then f is closed.
IfY is Hausdorff, then f is proper.

Proof. Let F C X be a closed set. For every compact set K C Y,
Fnf~Y(K) is compact and therefore f(FNf~'(K)) = f(F)NK is compact.
Thus f(F) intersects each compact set K C Y in a compact, hence f(F)
is closed in Y. O

Corollary A.1. Let Y be a metrizable, or a Hausdor{f locally compact space.
A continuous map f: X — Y is proper if, and only if, for all compact set
K CY the inverse image f~1(K) is compact.

In fact, the topology of a Hausdorff locally compact space or of a metriz-
able space satisfies the condition of Proposition A.3.

Intuitively, the fact that a map f: X — Y is proper means that if
approaches the boundary of the set X then f(x) approaches the boundary
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of Y. The precise formulation of this statement is given by the proposition
below.

Proposition A.4. Let X, Y be metrizable spaces. A continuous map f: X —
Y is proper if. and only if, the image (f(x,)) of every sequence in X without
convergent subsequences is a sequence in Y that dees not have convergent
subsequences.

Proof. Let f be a proper map. If (f(z,)) has a convergent subsequence,
say f(z!) — y € Y, then the set K formed by the elements f(z!) and the
limit y is compact. All of the elements x!, belong to the compact set f~1(K)
and thus they have a convergent subsequence, which is a subsequence of
(zn)-

Conversely, suppose that the condition is satisfied and let X C Y be a
compact set. Then f~1(K) is closed; if it is not compact, there exists a
sequence (z,,) in f~!(K) without convergent subsequences in X. From the
condition, (f(z,)) does not have convergent subsequences in Y, and this
violates the compactness of K, because f(zn) € K for every n. O

Proposition A.5. Let X, Y be Hausdorff locally compact, but non-compact
spaces and denote by X= XUu{a}, Y = Y U{3} their Alezandrov compact-
ifications. A continuous map f: X — Y s proper if, and only if, the map
f: X > Y, given by flz) = f(z) ifz € X and f(a) = 3, is continuous.

Proof. We leave the proof as an exercise. O

Proposition A.6. Let X, Y be two metric spaces without isolated points. If a
continuous and locally injective map [+ X =Y is closed then the inverse
image f'(y) of each point y € Y is finite and, as a consequence, f is
proper.

Proof. Suppose, by contradiction, that the inverse image f~1(y) of some
point y € Y is infinite. Since f~!(y) is a discrete subset of the metric space
X, we can find for each of its points =, an open set U, containing x, such
that these open sets are pairwise disjoint. Moreover, we may suppose that f
is injective in each one of these open sets. Now we select a countable infinite
family Uy, ...,U,,... among the open sets U, and we set T,, = f(U,,). For
each n, y is an accumulation point of T;,. Hence there exist z, € U, and

€ T, such that 0 < d(yn,y) < 1/n and f(z,) = y,. Thus the set
F = {z,;n € N} is closed in X but f(F) is not closed in Y, which is a
contradiction. D
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orientation of a, 185
oriented, 185
Riemannian, 146
map
k-th root of a, 159
analytic continuation of a, 124
closed, 127, 201
covering, 125
exponential, 53
extension, 13
inclusion, 10
lifting of a, 122
logarithm of a, 158
odd, 61, 72
passing to the quotient, 62
proper, 127, 201
quotient, 119
retraction, 14
section of a, 123
stereographic projection, 41
Moebius band, 188

normalizer, 167

one-parameter family, 3
opposite points, 65
orbit of a point, 130
orientation
induced, 186
of a manifold, 185
of a plane curve, 103
product, 188
orthogonal couple, 114
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pair of topological spaces, 20
parametrization
negative, 31
positive, 31
trivial, 31
path, 25
angle function of a, 55
closed, 26
decomposition, 32
degree of a, 53, 55
disorienting, 197
inverse of a, 29
lifting, 64, 70
lifting of a, 63
lifting property, 55
orienting, 197
parametrization, 25
partial, 32
piecewise C'', 106
product of, 28
rectilinear, 145
regular, 99
reparametrization, 25
winding number of a, 96
path lifting property, 134
paths
homotopic, 26
operation with, 28
Peano curve, 42

quaternion, 75
conjugate of a, 75
modulus of a, 75
orthogonal, 91
unit, 75
quotient space
fundamental property, 62, 68

radial projection, 7, 8, 10, 96
real projective space
fundamental group of, 66
metric on the, 64
orientation of, 189
regular
curve, 99
homotopy, 99
path, 99
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regular homotopy, 100
reparametrization

of a regular curve, 99
retract, 14

Euclidean neighborhood, 15
rotation number, 99, 103

second homotopy group, 92
simplectic group, 91
simply connected space, 40
solid torus, 57
space

contractible, 11

convex, 12

covering, 125

covering of a, 125

figure &, 99, 103, 114, 139, 153,

154, 170, 179, 180
lens, 170
of type ENR, 15
real projective, 62, 189

semi-locally simply connected,

142

star, 12, 47
Space filling curve, 42
special unitary group, 82
sphere eversion, 104
stabilizer, 155
stereographic projection, 41
subgroup

conjugate, 151

normal, 151

theorem
Borsuk, 16
Borsuk-Ulam, 61
Brower fixed point, 60

Fundamental theorem of Alge-

bra, 98

Gram-Schmidt orthonormaliza-

tion, 23, 81, 83

Graustein-Whitney, 98, 101, 104

Hahn-Mazurkiewickz, 42
Hopf, 103
Implicit function, 73

Index

Koebe uniformization, 178
Mean Value Theorem, 146
Poincaré, 80
Poincaré-Bendixon, 61
Poincaré-Bohl, 4

rank, 77

Rouché, 96, 98

Sard’s, 43, 86

Seifert-Van Kampen, 46
Tietze-Urisohn, 13
Umlaufsatz, 103

topological group, 48
topological space

base point of a, 33
multiplication in a, 47
simply connected, 40

topology

compact-open, 6
quotient, 62, 67
uniform convergence, 6

torus, 10, 28
tree, see graph
typical fiber, 68

unique path lifting property, 55, 135
unitary group, 82, 84
Urysohn function, 17

vector field

index of a, 115
on spheres, 8
singularity of a, 115

vector space

basis of a, 183

equally oriented bases, 183
negative basis of a, 184
negative isomorphism of a, 184
opposite orientation, 184
orientation of a, 183

oriented, 184

positive basis of a, 184
positive isomorphism of a, 184
transition matrix, 183

winding number, 105

Zorn Lemma, 23




